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COMPARATIVE DYNAMICS (SENSITIVITY ANALYSIS)

IN OPTIMAL CONTROL THEORY*

Hajime Oniki

I. Introduction

Optimal control theory was developed by Pontryagin and his

associates (91 as a renovation of the classical theory of calculus

of variations. It provides a convenient method for analyzing a

wide class of economic problems such as planning the optimal

capital accumulation of an economy and investigating the process

of investment by a firm or by an individual. Although many ap-

plications of Pontryagin's theory to economic problems have been

published, only a few of them have paid attention to the problem

of comparative dynamics (sensitivity analysis), i.e., that of

analyzing the effect of a parameter on the optimum solution.1/

In planning problems comparative dynamics may be useful for in-

vestigating the dependence of a plan on exogenous factors. In

dynamic behavioral models it could serve as a tool for deriving

the demand or the supply funccions of an economic agent in ques-

tion.

The present paper develops a systematic method dealing with

comparative Cynamics in optimal control problems. To facilitate

the basic idea, let us consider a simple problem of maximizing

the function f(x,O) in x, where e is a parameter to be regarded

as fixed while the maximization is carried out. What we usually

do is to obtain the first--order condition:

(1) f (x,B) = 0,x
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and to solve this for x. Assume that the solution x thus obtained

is a unique optimum. The dependence of this optimum on the parame-

ter B may be studied by calculating the derivative of x with

respect to 0.

(2) f .x'(G) + f = 0, or
xx x)

X'(e) - (f ) -'

This method can be extended to constrained maximum problems. In

the theory of household behavior, for example, the solution is

known in such terms as Slutzky equations, Hicksians, etc., where

the role of 0 is played by commodity price or income.

It is noted that Pontryagin's optimum condition for a control

problem (composed of the maximum principle, auxiliary differential

equations, and transversality conditions) is essentially the first-

order condition; in this sense it is an extension of (1).-Z/ What

I intend to do in this paper under the name of comparative dynamics

is to extend (2) to optimal control problems. Under certain as-

sumptions we shall provide a set of formulas by means of which

the derivatives of the optimum solution of a control problem with

respect to a parameter may be calculated.

It is well known that under certain conditions a solution of

a system of differential equations is differentiable with respect

to a parameter appearing in the system (the theorem of variational

differential equations).-/ Since Pontryagin's condition contains

differential equations, it is suggested that one might make use

of this theorem for comparative dynamics. However, an immediate

application is difficult, since the theorem presupposes that the
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differential equations are continuous in state variables, while

those appearing in Pontryagin's condition frequently exhibit dis-

continuities in state variables (e.g., bang-bang controls).-/

To resolve this, we shall extend the theorem of variational equa-

tions to the discontinuous case (Section III). Once this is at-

tained, we can readily derive formulas for comparative dynamics

from Pontryagin's condition (Section IV).

The method of comparative dynamics to be presented in this

paper is general enough to allow a parameter to appear almost

anywhere in the original control problem; e.g., the objective func-

tion may contain it, the initial state may be a function of it, or

the constraint on the control may be affected by it (or any com-

bination of these). The paper deals with the effect of a parameter

on the optimal control, on the state variables, and on the objec-

tive function. Both cases of finite and infinite horizons are

considered.

The following section (Section I1) formulates our problem.

Section III is devoted to extending the theorem of variational

differential equations to the case where discontinuities arise.

The main results will be presented in Section IV. It will state

a set of conditions sufficient for the optimum solution to be

ditferentiable with respect to a given parameter, together with

formulas for computing the derivative. Section V deals with the

effect of a parameter on the objective function. The last section

(Section VI) is devoted to an example in which the method of com-

parative dynamics is applied to a model of optimal capital accumu.-

lation.
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II. The Problem

We shall be concerned with an optimal control problem with

a parameter. It is of fixed time, variable end-points, autonomous

differential equations, and fixed constraints on controls:"5-/

the objective function

(3) v = f 0 (x(t),u(t),e)dt,

0

is to be maximized in x(t) and u(t), subject to

(4) k(t) = f(x(t),u(t),8),

(5) g(u(t),q) - 0 (to0  ; t ý t ),

(6) 0i(x(ti),e) 0 (i = 0,I),

where (t 0 ,t ) (-W -_ t0 < tI _ +-) is a fixed interval of time, x is

an n-vector (the state variables), u is an m-vector (the controls),

8 is a number (the parameter), and the functions f0 : R n+ml R1

Rn+m+l Rn, i : n+l, r ig m+l Ik (
f: r R 0: Rl. R i(0 g r.i n), g: R -, R (k k 0)

are all assumed continuously differentiable with respect to the

arguments, R3 being a j-dimensional space. Let us put

((t) = f 0 (x(t),u(t),O) (to0 s t _ t 1

(7) v(0) 0,

so that

(3a) v = v(tl)-

If the functions u(t,8), x(t,O), and v(t,8) maximize (3a) subject

to (4)-(7) for a given parameter 8, they are called optimum. In

addition, we call such u(t,8) optimal control.
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The appearance of 8 in the above functions reflects the

fact that, in general, an optimum depends on it. Comparative

dynamics deals with how a change in 0 affects an optimum. First

of all, it is easily established that for each t the set of optimum

solutions u(t,8) and x(t,O) is upper semicontinuous in 0 (with

respect to the inclusion relation), since everything is continuous

in 6. Furthermore, the objective function

(3b) v = v(t 1 ) = v(tlG)

is continuous in 0. In the present paper, we shall focus our at-

tention on the differentiability of an optimum solution with re-

spect to 0, assuming its uniqueness.

It is seen that without losing generality the differentiability

of an optimum solution may be examined. with the assumption 8 = 0.

For simplicity, when 6 is set equal to zero, we may suppress the

number 0 for 6 in the argument of a function. Thus, f(x,u)

f(x,u,0), x(t) = x(t,O), etc.

Next, we state Pontryagin's optimum condition for the control
7L8/

problem. First of all, define the Hamiltonian
f0

(8) H(px,u,8) f (x,u,@) + p.f(x,u,8),

and its maximum in u subject to (5)

(9) M(p,x,O) Max H(p,x,u,8)
g(u,8)- 0

where p is an n-vector (the auxiliary variables) and the dot denotes

the inner product. If u(t) and x(t) is an optimum for a problem

in which 6 = 0, then there exists a nontrivial function p(t) on

(t 0 ,tl) such that



(the maximum principle)
(10) H(p(t),x(t),u(t)) =M(p(t),x(t)),

(the auxiliary differential equations)

(ii(t) -Hx(PtW,(t)(t) (t 0; t 9 t I

(the transversality conditions)
Li Li

(12) P(ti) E: L (x(ti)) (i = 0,),

provided that

(13) rank( i(x(ti)) r. (i = 0,1),

where H , 0 are, respectively, the partial derivatives of H,x x

Swith respect to x; H will be treated as an n-vector and Q(
x Li I

as an (rin)-matrix. Further, L is the subspace of R spanned

by the row-vectors of 0i(x(ti)).x

The optimum solution characterized by the above condition

ranges over a very wide variety. In order to isolate a class of

optimum solutions which can be studied by means of comparative

dynamics, we define a regular optimum solution in the following way:

DEFINITION:

(a) A pair (p,x) is regular for G, if the control u satisfying

the maximum principle

(14) H(p,x,u,6) = M(px,e)

is unique and is a continuously differentiable function

(15) u = u(p,x,8)

in a neighborhood of (p,x,q).

(b) An optimum control u(t,e) is rexular at t for 6, if

(p(t,G), x(t,W)) is regular for e and u(t,O) = u(p(t,8),

I
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(c) An optimum control u(t,8) is regular on (t 0 ,tI)

f.or 0, if the optimum control is regular for 8 at to, at

tJ, and at each t of (t0,t ) except for a finite number

of points, say s, (called switching time-points)3

,...,q 0 0), where tO < s1 < s2<..."q 1< t

It is easily seen that not all optimum solutions are regular.

In control problems encountered in applications, however, optimum

solutions usually turn out to be regular. In the sequel, we shall

be concerned only with regular optimum solutions.

The concept of regularity defined above has a close relation

to (in fact, is originated from) the method of phase-diagrams, used

commonly in applications for solving control problems. The follow-

ing is a typical regular optimum for a problem with 0 = 0 described

in terms of phase-diagrams: The whole interval (t0,tl) is divided

into (q+l) subintervals by the switching time-points s q'.. .

We consider an optimal control u(t) which is regular (hence smooth)

at the interior of any subinterval. It may be discontinuous at a

switching time-point. On the other hand, the (p,x)-space is

divided into regions of regular points, each of which is an open

set (from (a) of the definition of regularity). The path of the

optimum solution (p(t), x(t)) starts at an interior point of a

region at t=t 0 , crosses its boundary at t=sl, stays in the interior

of another region for sI < t < s2, crosses its boundary at t=s2,

and so on. It terminates at an interior point of some region at

t=t The path iJs smooth in the interior of any region. At a

boundary point it is continuous but may not be smooth. If we

characterize the boundary of regions which the path crosses at

t=s by the equation hj(p,x) = 0, then

(0
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[

We shall call (p(s.), x(s,)) switching point. Figures la and lb

illustrate a regular optimum solution for a case of n--m=l and

q=2.

There are several reasons that an optimum control "switches"

at a time-point, say t = s. This might arise from the fact that

the set of effective constraints of (5) is changed from one to

another at t = s. Also, it might arise from the fact that the

control satisfying (14) jumps from a local maximum to another

local maximum at t = s. We shall study the properties of the op-

timum control at a switching time-point more in detail in Section IV

We are now able to state our problem. First, to simplify

the notation, let us introduce

z (p x),

(17) F(z,9) (-H (z,u(z,8),8) f(x,u(z,8),8))

where z is a (2n)-vector and F: R2 n+l -R2n is a continuously

differentiable function for regular z = (px). It may be discon-

tinuous at a point satisfying hj(z) = 0. Then, the constraints

(4)-(6), the optimum condition (10)-(12), and the switchings (16)

for a problem in which 0 = 0 can be reduced to:

(the original and the auxiliary differential equations

together with the maximum principle)

(1B) i(t) = F(z(t))

for regular t in (to,t I) (i.e., for all t except Sl,...,Sq),

(the §witchings)

(19) hj (z(s)) = 0 (j=1,...,q),J
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(the end and the transversality conditions)

(20) Wi(z(ti) 0 (i=0,1),

i 2n+l nwhere 4i R - R is a function of (z,O) and (20) is equivalent

to (5) and (12). To see that this is possible, it suffices to

observe from (13) and the definition of L. that (12) is equivalent

to (n-r,) linear constrainvi on z(t.).

Our task will then be to investigate how the function z(t) S

z(t,0) is shifted when the parameter e is changed near e = 0.

In Section IV, we shall obtain a set of conditions sufficient for

z(t,@) to be differentiable with respect to 0 at 6 = 0 and formulas

to compute the derivative.

It is noted that the condition (18)-(20) is only necessary

for optimum. Hence it is possible that z(t) = z(t,0) satisfying

(18)-(20) is an optimum but z(t,O) satisfying equatiols like (18)-

(20) for a small 8 / 0 is not an optimum. If this is the case,

the derivative oi z(t,@) with respect to 8 at 8 = 0, though it

exists and is computable, does not describe the shift of the op-

timum solution. Such a case may arise in applications, even if

the optimum for 6 = 0 is regular. (If the optimum solution is

not unique at 0 = 0, then usually this will be the case.) It

seems that there is no systematic way of dealing with this kind

of complexity; it can be analyzed case by case only.9/ Yet it is

true that in many applications the function z(t,@) satisfying (18)-

(20) remains as the unique optimum for all 8 near e 0. In such

an "interior-maximum" case, our method will bL useful directly for

comparative dynamics.
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III. Variational Differential Equations

In this section, we shall state two lemmas on variational

differential equations. The first is well known in the theory of

ordinary differential equations. The second is an extension of

the first to the case where the equations are allowed to be dis-

continuous in state variables. The notation in this section is

independent of that in the previous and the following sections.

Consider the following system of differential equations to-

gether with an initial condition, both containing a parameter a:

(21) = F(xO),

(22) x(T(8)) = g(O)

where x and g are vectors, F a vector-valued function, T denotes

the initial time, and ý the initial point of the state variable x.

The fu.actions F, T, g are all continuously differentiable. Further,

F , F 8 , T8 , etc., are (partial) derivatives, and F(x,O) -= F(x),
x

S(0) - , etc. It is assumed that a fixed interval of time T

(t0,t is given and that

(23) to < T(8) < t .

LEMM 1 (Peano): Suppose that a solution x(t) of (21) and (22)

in which 8 = 0 exists on the entire interval T:

(21a) A(t) = F(x(t)), (t e T),

(22a) x(T) =

Then, there exists a positive number, say 6, for which the

following is true:



(i) For each 0(181 < g), a unique solution x(t,B) of (21),

(22) exists on T;

(ii) For each 8(181 < 9) and each t(t e T), the following

expressions exist and are continuous in (t,0):

(te) bx(t,e)

2 2

(24 x ~t6t,0)~,

xe (t0e)e
(tO satfie th system

(iii) The derivative x 0 (t) -- X8 (tO aifestesse

of variational equations

(25) %(t) = F (x(t))x (t) + F (x(t)), on T,

and the initial condition

(26) xe (T) = § - x(T)Te

Next, let h(x,6) be a scalar-valued function. We shall deal

with a system of differential equations with discontinuities in

the state variables specified in the following way:

(27) = F(x,e), if h(x,e) -_ 0,

G(x,e), if h(x,G) < 0,

(28) x(T(8)) = 9 (0),

where F and G are vector-valued functions. We assume that the func-

tions F, G, h, T, and ý are all continuously differentiable with

respect to (x,) or 6. We asume, for definiteness, that

iii! ' r 1"I1'1'1"r '•I'P•"1'l:l I"I 1 ~ lr' i I: - l-- i i / li
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(29) h( (0),o)0 () > 0.

LEMMA 2: Suppose that a solution x(t)(t c T) of (27) and (28)

for 6 = 0 exists. The function x(t) satisfies:

(30) x(t) is continuous; on T, and

there exists a switching time s(t < s tI) such that
0 1

;C(t) = F(x(t)),

(31) h(x(t)) > 0, if t 0 :< t < s

(32) h(x(s)) = 0,

i(t) ý G(x(t)),

(33) h(x(t)) < 0, if s < t t

(34) x(T) =

Suppose, further, that

(35) h (x(s))-F(x(s)) / 0,
x

h (X( S)).G(x(s)) 0,O

where the dot denotes the inner product.

Then, there exists a positive number, say 0, for which the

following is true:

(i) For each 0(191 < f), there uniquely exists a switching

time s(O) and a solution x(t,G) of (27), (28) on T. The functions

s(e), x(t,0) satisfy:

(36) k•(te) = F(x(t,0),8),

(x (t, ), ) > 0, if tO 0 t < SO);

(37) h(x(s(B),0),O) = 0;

1 •]1• qT• -
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(38) X(tO) Gxt) 1 )

h(x(t,a),O) < 0, if s (o < t g t1

(39) X(T (0) 0)

(i i) For each 6(181 < ý)and each t(t e T, t ? s(O)), the
following derivatives exist and are continuous:

(40) Sds(O)
e do

ax(t,o)

x(t~e)

,c(t,e) a x(t,8j a 2 x~tO)
8atao aeat

ii) The dL~ivatives x 0 (t) x (t,0))(t s) and so s0 (0)
satisfy:

(41) M8 t F x(x(t))X e(t) + F 8 (x(t)), if to 0 t < S7

(42) X (T) X(T-

(43) %(t) =G X(x(t))x 0 (t) + G 0(x(t)), if S <~ t :5 t1

(44) Xe (s+0) x6 (S-0) - so .[x(s+0) - *so]

(45) s h (x(s)).X (s-0) + h (x(s))

h X(x (s))(s-o)

h (x(s))*x a (s+0) + h0 (x(s))

h x(x(s))**(s+o)
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(iv) The derivative
(46) dx(s) dx(s(G),6)

dG dR 0

exists and is given by

(47) dX(s) =d k(s-0).s + X0 (s-0)

= c(s+O)s + x (s+O).l-l/

Figure 2 illustrates LEMMA 2. It is noted that the formulas

(41) through (45) are two successive initial-value problems of

linear differential equations; a program capable to solve an

initial-value problem of linear differential equations can also

solve (41)-(45). For, we may first solve (41) for xe(t) on (t 0 ,s)

given the iitial condition (42). From this we may compute xa (s-0),

and hence se by means of (45). Then, we may proceed to solve (43)

for x (t) on (s,tI) given the initial condition x (s+0) computed

from (44). (Note that the original solution x(t) is regarded as

fixed, during the time we are solving (41)-(45).)

Equation (47) provides a formula to compute the shift of the

switching point x(s(e),8); the first term of the right side ex-

presses its shift arising from the change in the switching time-

point s(G) and the second that arising directly from the change

in the function x(t,O).

IV. Comparative Dynamics

In Section II we formulated Pontryagin's condition satisfied

by a regular optimum solution z(t) of a control problem into the

system (18)-(20). This system is a two-point boundary-value
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Figure 2: Shift of the solution of differential equations
with discontinuities along a curve h = 0.
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problem of ordinary differential equations possibly with discon-

tinuities in the state variables. In the present section we shall

make use of LEMMA 2 of the previous section to present a set of

conditions sufficient for the function z(t) -• z(t,0) to be differ-

entiable with respect to 0 near 0 = 0 and to obtain formulas to

compute the derivat 4 ve:

THEOREM 1. Suppose that a unique (regular) solution z(t)(t _
0~

t 9 t1 ) of (18)-(20) exists. The function F(z,8) is assumed con-

tinuously differentiable for all (z,8) such that 0 is near 0 and

z is regular with respect to 0. The functions h (z,8) and *i(z,8)

are also continuously differentiable in neighborhoods of (z(sj,0)J
and (z(ti),0), respectively. Suppose further that the following

conditions are satisfied by z(t):

(48) hJ(z(s))'F(z(sj+0)) 0 (j=l,...,q)

z0

(49) -= 0

z y -j

O 0 1 1 1where A is a (2n,2n)-matrix, A 0 and A . y are (n,2n)-
i = i

matrices, Wz tz(ti)) is the derivative of i (z,O) with respect
to zat zti 0 yl

to z at (t.),10), y- y (t() is a (2n,2n)-matrix to be defined

later by (66), and 1A1 is the determinant of A.

Then, there exists a positive number, say 6, for which the

following is true:

(i) For each 8(161 < 9), there uniquely exists switching

i i i i ii i i i i i i i i i i i i
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time-points s.(G)(j~l,...,q) and a unique regular solution z(t,8)

satisfying

(50) £(t,6) = F(z(te),O) for all t #ý s

(51) hJ(z(s(e),8),)= 0 (j=l,...,q),

(52) • (z(tio),e) = 0 (i--,1).

(ii) The derivatives
(53)__ ( )sj (e)l

(3 sjo = jo 10) j d88 = 0

(54) z (t) ze (t,4  z(t,e) (tds)

(55) d z(s)z()

dG do e)e 0

exist and satisfy

(56) a (t) =Fz (z(t)).z (t) + Fa(z(t)) (t3sj)

(57) z8 (to) = -A-1 - B,

(58) zs(s +0) = Za(Sj-0) - s je.[Rs.+0) - i(sj-O)]iG '

hJ(z(s±)).z0(sj+0) + hl(z(sj))_Z _ _--(59) sj8 h3 (z (Sj) -:i.(sjt:o)

d

(60) z(s.) = •(sj±0).s + ±0(sj) (j=l,...,q),dO j j a + je

where

(61) B [ 0 - ye + j]
B 1."Y8 + *
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is a (2n)-vcctor, B z + • is an n-vector, 41 (z(ti))
z 9 6 9 i

is the derivative of i(z,O) with respect to 0 at (z(ti),0) and

i

ya = Y8 (tj) is a (2n)-vector to be defined later by (66).

Some comments on this theorem follow. First, the assumption

of continuous differentiability of F(z,8) will be satisfied if the
0 0 0 0 0derivatives ix, f ff f , fx0, fu, f f0 f ,andx u' xx fxu' fx9 fs' xx' xu'

f0 exist and are continuous (see (17), (8), (15)); we need the
x'

second-order derivatives to obtain s and z; (t). This resembles

the case of simple maximization shown in (2).

Second, assumptions similar to (48) appeared in LEMMA 2 pre-

viously (see (35)). We need (48) and (49) for the sake of regul-

arity (not in the sense defined in Section II but in the general

sense). If (48) does not hold, then it is possible Ghat the number

of switching time-points ( q) changes when 0 varies near 0 or

even that the optimum solution z(t,6) is no more regular (in the

sense defined in Section II) for a small 9. If (49) is not satis-

fied, then it is possible that z(t,0) is no more unique for a small

0 so that the derivative z (t) may be undefined. We, however, know

that usually these singularities do not arise in applications. In

simple maximization (2), a regularity condition (jfxxj F 0) was

required.

Third, the formulas (56) through (59) are regarded as a suc-

cession of (q+l) initial-value problems of linear differential

equations. Comments like those immediately after LEMMA 2 may be

mentioned here on (56)-(60).

PROOF OF THEOREM 1:

We shall prove the theorem for the case q = 1 by using
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LEMMA 2. A proof for the case q 0 (no switching) may be obtained

simply by replacing LEMMA 2 in the proof below with LEMMA 1 and

eliminating all statements concerning switchings. A proof for the

case q > 1 (multiple switchings) may be obtained first by extend-

ing LEMMA 2 to the case of multiple switchings (this is easy; all

we need to do is to use LEMMA 2 successively q times) and then by

applying the result thus obtained to the theorem in the same way

as shown below for the case q = 1.

Thus, for the rest of the proof we assume that q = 1. For

simplicity we write sI = s, s1 (G) = s(O), h h, etc.

We now proceed to prove the theorem for the case q = 1.

First of all, choose any T(t 0 - T _ t1 ) at which the optimum is

regular. Then, from LEMMA 2 and the assumptions of the theorem

((18), (19), (48), and others), we can assert that there exist

functions o(T,e) and y(t,n,8) satisfying

(62) 9(t,T, 8) = F(y(t,r 1 ,e),1 ) (t 0 t _ tl , a (, ,

(63) y(',T',I ) = -q,

(64) h(y(0(,,6),r,8),e) 0,

where y is a (2n)-vector (state variables), u a (2n)-vector repre-

senting the initial value for y (parameters), and 8 a number (a

parameter). The assertion above can be shown by applying LEMMA 2

(2n+l)-times for the (2n) components of rj and 6, each being succes-

sively substituted for the parameter 8 of LEM.1MA 2. Furthermore,

LEMMA 2 shows that the derivatives

(65) C _L _ a(Z(T),0)
T -- 1
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(66) y It) Y(t,Z(T),0),

exist and satisfy

(67) ~v(t) F F(z(t).y (t) (t 2- s)

~TI

Ti h (z (s)) (S io)
z

y (S+0) =y (S-0) - [ý(S+O) -(-OCTiTI TI

(68) p(t) =F z(z(t)).y 0tW + F6(Wt)) (t /S),

y (t0  0,

_ ~(z(s))*ye(S±o) + h (z(s))

ye(S+0) = (S-O) -[ý'(s+0) - r(s-0)JCa~

where a ?Iis considered as a (2n)-vector, a0as a scalar, y 'n(t) as
a (2n,2n)-matrix, ytM as a (2n)-vector, and I is an identity
matrix.

Let us next turn to the conditions (20). For simplicity,
we shall write as

(69) 41z z(z(t.)), ~t

y(ti) 4 y0 (j etc.
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Then, by (20), (49), and the implicit function theorem, a continu-

ously differentiable (2n)-vector-valued function n(8) satisfying

(70) 0 i.'l(70 $(y(ti,•(O),B),O) = 0 (i=0,1)

exists for 0 sufficiently small, and satisfies
-i

(71) -= (0) -A .B,

where

(72) n(o ) o I
d8e 8=0.

The derivative (71) may be obtained by differentiating (70) with I
respect to 8 and then setting 0 equal to 0.

Now define

(73) s(G)

z(t,) y(t~ n(o),e

Then, substitution of (73) into (62), (64), and (70) yields (50)-

(52). We have thus shown that a solution of (50)-(52) exists for

0 sufficiently small.

Next we shall show that this solution is unique. Let s(G)

and z(t,e) be an arbitrary solution of (50)-(52). Define rI(O) by

(74) •(0) z ( , ).

Then, (73) must hold, since the pair s(G), z(t,8) satisfies the

system (50), (74), (51), and the pair o(r(8),6), y(tQ(G),B)

satisfies the system (62)-(64) with n replaced by n(O), and these

two systems are identical. (Note that the solutions of these system

are unique by LEMMA 2 and the assumption (48) of the theorem.)

If we substitute the second equation of (73) into (52), then we
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know that the function q( 8 ) is determined uniquely by the implicit

function theorem and the assumption (49) of the theorem. We then

conclude that the solution s(O) and z(t,O) is uniquely determined

by (50)-(52). This completes proving the first part of the theorem.

Proving the second part is straightforward. Since the right

sides of (73) are differentiable with respect to 9 (t/s(e)) (see

(65), (66), and (71)), so are the left sides. Differentiation of

(73) then yields (putting 8 = 0)

(75) s =C7 +

z(t) = Y (t)re + y0 (t) (t~s),

so that

(76) (t) W (t 8 + ý (t) (t~s) .
Tii

If we multiply (67) by n8, add this to (68), and use (75) and (761,

then we obtain (56) through (59). Equation (60) can be proved in

an analogous way. (QED)

We have thus obtained the formulas for computing the deriva-

tives s8 and z (t). It is straightforward (though tedious) to

write down the equation (56) in terms of the original notation

f(x,u,8), f 0(x,u,9), and u(p,x,G) (see (17), (15), and (8)). In

applications, however, it is easier to differentiate (50) directly

with respect to 0 and to put 8 = 0 than to refer to the formula

of (56) stated in terms of the original notation.

In the foregoing discussions the original control problem was

of the type of variable end-points; the end and the transversality

conditions were expressed by (20). In the following, we shall con-

sider two special cases:
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(a) The initial point of the state variable is fixed at a

point determined by the parameter, and the end point is left free:

0 0 1pxe =1. h•0(z,e) - (p,x,8) = x -0(0), and 'l(z,8) = (p,x,6) p. The

conditions (20) become

(20a) x(t 0 1 8) - 0(0) = 0,

P(tl,1) 0.

where 0 is an n-vector-valued function of 8, which is smooth near

= 0. Let us put

(54a) z (t) (p 9(t) x 8 (t))

(63a) j =-= (7,9) , T = top

(66a) y (t) PT, (t

T (t) xg (t)

ye(t) (pe (t)xe(t)) (tps).

We then obtain

~p.(t) p (t 3  = ~p (t1)
A

so that the regularity condition (49) and the initial condition

(57) for this case can be written as

(49a) Ip,(tl) 0,

(57a) Pe (t 0 ) = -P (t (p• (tl)@ + p (t]))

x0 (t0) =0 0

where 0 is the derivative of 0(8) at e = 0.

= -• ... - , i , i I •' "8
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(b) The initial and the terminal values of the state vari-

ables arn completely determined by the parameter: 4i(z,o)
i(p,x) i xi 0,I), say. For this case, we obtain4'( •x~ = x -- acsw

A = L ] B 00

and hence

(49b) Ix (t ) 1 0,

* -1
(57b) PO(t 0) = -X (ti) .(x (tY)0e + xe(tI) - 0e),

*0

x (to) = 00
90 *

V. Sensitivity of the Objective Function

In this section, we shall examine the effect of the parameter

on the maximized value of the objective function. To do this, we

compute the derivative of (3) or (3a) with respect to 8 at 0 = 0:

(77) ve 9  v e(tl) ý dG v(t 5le) 1j 0 "

If the derivatives x 6 (t) and p6 (t) have already been obtained by

means of the comparative dynamics as explained in the previous sec-

tion (for simplicity, we write x (t), p (t) for x (t), p (t), re-

spectively), we may calculate (77) directly by differentiating (3)
(Note that p6 (t), x (t), and u (t) exist on (to,tI) except at a

finite number of points.):=ftltlfo(t)xe (t)+ fu(t)u0 (t)+ f 6 (t)]dt'

0 0
(78) v( + +

0

It
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where f0 (t) f 0 (x(t), u(t)),
x x

a U(D (t) ,x(t))
u (t) u (p(t) ,x(t))x 8 (t) + u (p(t), x(t)+)p +0x p 5

(see (15)), etc. In the following, we shall abbreviate arguments

of a function as done above.

It is possible to obtain, from Pontryagin's condition, further

properties of the derivative v6 . In order to do this, define

(79) w(t) = H (t)u (t) + H (t) (týsj)
St

W(t) w (,T)d'r
to

0

We shall prove

THEOREM 2: If the condition assumed for THEOREM 1 is satisfied,

then
V6 (tl) = p(to)x6 (to) - p(t )x 8 (t 1 ) + W(t )

Furthermore, the term p(t.)x (t) vanishes, if the function
i6

in the end condition (6) of the original control problem is inde-

pendent of 0: 0 (x,) = 01 (x), say.

PROOF: Differentiation of (7) with respect to 8 yields

(81) v(t) = fO(t)X (t) + f0(t)u (t) + f9(t) (t~ s.

In view of (17), we write down the second half of (56):

(82) * (t) f x(t)x (t) + f (t)u (t) + f (t). (t4s)

The auxiliary equation (11) is (see (8))

(11a) ý(t) = - [fO (t) + p(t)f (t)]
x x

n= •I
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Forming [(81) + p(t).(82) + (lla).x 0 (t)] and using (8), (79),

we get

d

We then obtain (80) by integrating (83) over (t 0o,tI), since

v0 (t 0 ) = 0 (see (7)).

Next, assuming that 0 is independent of 0, we write down (6):

(6a) 0i(x(ti,0)) = 0.

Differentiate (6a) with respect to 0 and set 0 = 0, obtaining

(84) Wi(x(t ))x (t) 0.
x i "

This implies that the vector x8 (t i) is orthogonal to the row vectors

of 0i(x(ti)' In view of (]2), we conclude that p(t.)x (ti) = 0.

(QED)

Equation (80) states that v is the sum of three terms, the

first and the second being the derivative x (t ) multiplied by the

auxiliary variable p(ti) and the third W(tl) Since W(t 1 ) is ob-

tained from the Hamiltonian (see (79)), which is also t] ý product
0

of the functions f , f( = :(t)) with p(t), we can recognize that

a role of the auxiliary variables p(t) is to relat.e the state var-

iables to the objective function.

Furthermore, let xk be the k-th component of the vecto- x.

If we assume that

(85) Xk(t 0) = e

for the end condition (6) for i=0, and that (85) is the only place

that the parameter 8 appears in the control problem, then (80)
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yields

(86) ve = k(t0),

since the last two terms of the right side of (80) vanish. Thus,

we have shown:

COROLLARY: if the condition assumed for THEOREM I is satisfied,

then dv k
(87) k t) p (tO) (k=l0.. ,n),

dx (t) 0

where the derivative takes into account all the adjustments needed

to keep the solution optimal. Similarly,
dv k

(88) p (t) (k=l,...,n).
dxk (t)

The property (87), (88) is well known; p(t) is interpreted to

be the marginal contribution of the state variables to the objec-

tive function. It is not true, however, that this property holds
12 /without qualification.-" The corollary above shows a sufficient

condition for (87), (88).

VI. An Example (Comparative Dynamics in a Model of Optimal

Capital Accumulation)

In the present section, we shall attempt to show how the com-

parative dynamics developed in the previous sections can be used

for economic analyses. A standard model of optimal capital ac-
13/

cumulation developed by Cass [3] will be used as an example.1

For short, we shall follow his notation and avoid repreating the

definition of variables.

To begin with, write Pontryagin's condition for the model
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14/
of Cass:-

(18c) el (6 - f' (k))q,

Z = f(k) - c(q),

(20c) k(0) = k , k(T) k T

where u' (c(q)) = q. For simplicity, it is assumed that X = 0 and

that z > 0 throughout the planning period (0,T) (i.e., no switching).

We shall consider the discount rate 6 as the parameter. We

then write: q q(t,6), k a k(t,6), c = c(q(t,6)) - c(t,6), etc.

In view of (57b) appearing at the end of Section IV, we know that
0

we need k 0(T) and k 6 (T), where q(0) ý q . To do this, let us

q 0
differentiate (18c) and (20c) with respect to q to obtain

q g 0 "-l -f i q O

(67c) •0, fkO

q 0 (0) =1. k (0) 0

0 0
q q

The sign of each element in the matrix appearing in (67c) is deter-

15/
mined from Cass's assumption as follows:--

q0 = V + 4 kqY0 "

To investigate the path of q 0 (t) and k 0(t), we construct a phase
q q

diagram (see Figure 3). Each arrow in the phase diagram indicates

a possible direction of the path. Since the path starts at a point
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on the upper half of the vertical axis, it is clear from the

diagram that

(89) q 0 (t) > 0, k (t) > 0 for all t.0 0
q q

Following a similar method, we obtain

(68c)L:VL .q]4 ] j
6

q6 (0) =0, k.6 (0) = 0.

From this and a phase diagram (see path A in Figure 4), we conclude

that

(90) q6 (t) > 0 , k6 (t) > 0 for all t.

Then, (57b), (89), and (90) yield

(57c) q 0) = -k (T)/k O (T) < 0,
q

k (0) = 0.
6

In addition, since k(T,6) kT

(91) k 6 (T) = 0.

Let us finally consider variational equations for q (t) and
k (t) (which is a special case of (56)). In fact, these equations

6 , ,

are obtained bý substituting q 6 and k 6 into (68c). We may use

Figure 4 to describe the path of q 6 (t), k 6 (t). In view of the

end conditions (57c), (91), we know that the path must start at a

Sij
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point on the lower half of the vertical axis, and must terminate

at a point on the upper half of it. Hence, it stays within the

second and the third quadrants. It is seen that the path may

cross the horizontal axis more than once, but never the vertical

axis. Path R in Figure 4 is a typical one.

From the above consideration, we can conclude that

k (t) < 0, for all t,6
(92) * *

c 6 (t) = c'(q(t)).q 6 (t) > 0 for small t,
< 0 for large t,

summarizing the effect of a change in 6 on the optimum path.
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APPENDIX

Proof of LEMMA 2

1. Let x(t) and s E T be given as stated in the first part of the

LEMMA. We may extend the solution x(t) of (31) slightly beyond

the switching time s;L-/ i.e., there exists a number sl €T and a

function y(t) defined on [0,s such that
1

(Al) s < s < 1,

(A2) y(t) = x(t), on [Os]

(A3) k(t) = F(y(t)), on [0,s ],

y(T) =

Likewise, for the solution x(t) of (33), there exists a number
2 2s eT and a function z(t) defined on the interval (s ,1] such that

(A4) 0 < s 2 < s,

(A5) z(t) = x(t), on [s,l],

(A6) i(t) = G(z(t)), on [s2,1]

z(s) = x(s).

2. Consider the system of differential equations

(A7) F(y,e), on [O,slJ,

and the initial condition

(A8) y(T(9)) = £( )

Then, LEMMA 1 and the construction of the solution y(t) by (A3)

immediately yields that, for a sufficiently small 0, the solution

y(t,9) of (A7), (A8) exists uniquely on the interval [O,sI ) and

satisfies (i), (ii), (iii) of LEMMA 1 with x, T replaced respectively

by y, [0,sljo
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3. Let us next consider the equation

(A9) h(y(r7,8)0 ,) = 0,

where a is an unknown variable.

Since we have [see (32), (A2)]

(AlO) h(y(s,O),O) =_ h(y(s)) = h(x(s)) 0,

and [see (35)]

(All) dh(y(a0)'O) 0 h (x(s)).F(x(s)) X 0
do I=s x

it follows from the implicit function theorem that, for a suffi-

ciently small 6, there exists a function s(e) such that

(A12) s(0) = s,

(A13) h(y(s(O),G),O) =_ 0,

(A14) s(O) is continuously differentiable.

Differentiation of the identity (A13) with respect to 6 at 9 0

yields [see (35)]

h x(Y(S)).y8 (s)+h (y(s)/
(A15) s -

hx(Y(S)) -y(s)

Furthermore, we have, in view of (Al), (A4),
2 1

(A16) s < s(O) < s

for a sufficiently small 6.

4. We shall next show that, for a sufficiently small 6,

(A17) h(y(t,O),e) > 0, if t 0o t < s(0).

For, suppose, on the contrary, that, for each 6 converging to 0,
t ithere exists a tsuch that
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(A18) 0 t < s(0

i i i(A19) h(y(t 0 ),0 ) 0.

Since h(y(0,0),0) > 0 [see (31)), we have h(y(0,0 ),0 ) > 0 for
i i i.

a sufficiently small 6 Since h(y(t,6 ),0 ) is continuous in t,

we may redefine ti so that inequality (A18) and

i ~ii(A20) h(y(ti, 0'),ei) 0

hold for all i. The range of t , as being contained in T, is

bounded, so that we may choose a converging subsequence. Let us

once more redefine ti to be such a converging subsequence and de-

note its limit by t . Passing to the limit of inequality (AI1)
*

[see (A12), (A14)], we have exactly two alternatives: t < s,

ov t s. But if t < s, (A20) implies that h(y(t ,0),0) =

h(x(t )) = 0, a contradiction to (31). Hence, let t = s. In

view of (A13), we have h(y(s( i),i0 ),0 = 0. Then, (A20) and the

mean value theorem yield that

i i i i i i
(A21) h(y(s(O ),@ ),@i) _ h(y(ti, ,

i i

ti i i) i i)
where t ( 7 s(G • Since t sO0 [see (A18)], (A21) implies

that

(2)do hx0
(A22) dh(-y(a'6i)'6i) d =i= hx(Y(i, ), i)-F(y(0i'ei),@) = 0

We then obtain, taking the limit of (A22),

(A23) h (y(s,0),0).F(y(s,0),0) = h (x(s))-F(x(s)) 0,
x x

which contradicts to the assumption (35). Therefore, inequality
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(A17) holds.

5. Let us next consider the system of di.fferential equations
2

(A24) i = G(z,O), on [s , I],

with the initial condition

(A25) z(s(e)) = y (s(@),O).

For a sufficiently small 0, y(s(O),O) is continuously differenti-

able with respect to 6. Furthermore, z(t) is the solution of (A24),
2(A25) on the interval [s ,4] when 8 = 0 (see (A6)]. Therefore,

all the assumptions of LEMMA 1 are again satisfied when x, F,

T(O), g(G), T of LEMMA 1 are replaced respectively by z, G, s(e),
2y(s(O),G), [s ,4]. Then, we may state that, for a sufficiently

small 6, the solution z(t,O) of (A24), (A25) exists uniquely on
2

the interval [s , i] and satisfies (i), (ii), (iii) of LEMMA 1.

In particular, (22a) becomes

(A26) z(s(6),8) = y(s(G),e).

Also, we obtain, in view of (A25), (26),

(A27's)(S) y (S) I- ý (S)s - (s)s

Furthermore, it can be shown, as was done in 4., that, for

a sufficiently small 9,

(A28) h(z(t,6),6) < 0, if s(O) < t t1

A6. Let us now choose a sufficiently small 6 for which all the

foregoing constructions are valid. Let us define [see (A26)]

(A29) x(t,O) -y(t,a), (to n• t < s 8 )

x(s-(6),O) -= y(s(G),O) = z(s(G),O),

X(t ,8) = z(t,O), (s (0) < t :5 tl)
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for each 0 such that 101 <. We then conclude that the number

0 and the functions s(0), x(t,O) satisfy (i)-(iv) of LEMMA 2.

Note that

(A30) k (s-0) = (S)

xa(s-O) = y (s),

*(s+O) = (s)0

x6(s+O) z0 (s),

and that (44) and (45) can be derived from (A27), (A15), (A30),

and (43).

Finally, the two derivatives

(A31) dy(S d(e),8 = = (s) s8 + y0 (s)

dZoS(8),6) I = 2(s) s0 + z (s),

are defined and coincide [see (A27)]. Equations (A29), (A30),

then lead one to (46), (47) immediately. (QED)
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FOOTNOTES

I_/ See, e.g., Koopmans [6], pp. 119-122, a graphical approach to

comparative dynamics in a model of optimal economic growth.

Cass [31, p. 844, also dealt with a comparative dynamics in

optimal growth. Jorgenson [5], pp. 147-151, stated a method

for comparative dynamics in investment theory. Oniki [71 and

[8] made e:ctensive use of the method of this paper for problermu

of optima] growth and human investment, respectively.

Outside the economics literature, Barriere [2] set forth in-

vestigating the present subject. His viewpoint, however, is

narrower than ours: first, he analyzed the effects on the ob-

jective function only, while ours covers those on the optimum

control. and the state variables as well; second, he did not

state any condition sufficient for the objective function to

be differentiable with respect to a parameter, while ours does

2/ In fact, the maximum principle contains more than what is sup-

plied by the first-order condition in calculus of variations.

In this paper, however, we do not use the implications of

the maximum principle beyond those expressed in terms of first-

order derivatives.

3/ LEMMA 1 of Section III.

4/ Cass [.3] used this theorem for comparative dynamics (his foot-,

note 5). In his case, however, the optimal control is continu-

ous in state variables; the difficulty stated in the text does

not arise there.
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5/ Formally speaking, the assumption that the differential

equations are autonomous is not restrictive, since a non-

autonomous system can always be converted into an autonomnus

system by introducing an additional state variable: x

say.

6_/ For simplicity we assume that the constraints on controls

are fixed so that g in (6) is independent of x. The main

results of the paper will continue to hold if g(u,8) is re-

placed by g(x,u,O) (with appropriate modifications, some of

which will be mentioned later in footn-Les).

7/ See Pontryagin [9], pp. 66-69, 189-191. If the time-horizon

is infinite so that ti = + -, then we assume that lim x(tI1
tC-

exists. (Similarly, for the case to -•.) Furthermore, an

optimum solution of the infinite-horizon problem might not

satisfy Pontryagin's condition (see Arrow and Kurz [1], p. 46).

In the following, we exclude such cases from our consideration.

8/ If the function g depends not only on (u,O) but also on x,

then (9) is modified accordingly, and (10) is replaced by

P(t) = -[HX (p(t),x(t),u(t) + X(t)gx (x(t),u(t))] , where X(t)

is the Lagrangian multipliers associated with g in (9). With

these modifications, the discussions through Section IV will

continue to hold.

9/ The situation explained in the text may arise even in the

simple maximization problem discussed in Section I. Figures

a and b illustrate. The function f(x,O) has two local maxima

near 8 = 0: x (8) and x 2(e) (Figure a). The overall maximum
2 2

x(9) is given by x (e) if 8 * 0 and by x (8) if a 9 0 (Figure
1 2

b). One needs to combine the derivatives of x (e) and x2(8),
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each being computable as in (2), in order to describe the

shift of the optimum near e = 0.

10/ For proof, see Pontryagin [10], pp. 170-177, 194, 198, or

Hartman [4], pp. 93-94, 95-100.

LI/ For proof, see the Appendix.

12/ For a counterexample, see Pontryagin [9], p. 73.

13/ The method presented in this section was once introduced

by Oniki [7].

14/ See Cass [3], pp. 837-838.

15/ See, ibid., pp. 834-835.

16/ See, e.g., Pontryagin [101, pp. 163-166.
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