
AD'74

Best Available Copy

N~ATIONAL TECI-INCAL

INFORMATION ~SEIVICIs



TWO ITEMS CONCERNING DIRECTIONAL DATA

BY

M. A. STEPHENS

TECHNICAL REPORT NO. 192

April 3, 1972

PREPARED UNDER CONTRACT N00014-67-A-0112-0053

(NR-042-267)

OFFICE OF NAVAL RESEARCH

Herbeit Solomon, Project Director

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Alm



ass w = 0OCWMN CONTROL DATA - U&P

I. qmusWrw. AcvWITf po" MO SPORT GSK#PhYV 8LASfl6PICAYI~lM

Departme t of St~atistics _______________

Stauford UniversityI 32. "PONTMI ti
TWO ITEHS CONCERNINC DIRECTIONAL DATA

4. 5MAMMPIV OEM Mew. w4 sww 7- Inbash dM=

TECHNICAL REPORT
11. AUTNOWN) jLmW mom amn. w~me

STEPHENS, M4. A.

4. 0111PORT OAC 70-T V~Ad. 610. OP PAG49 j lb. N.. ow naps

April 3, 1972 1
8L. COMTNAO? oil GRANT mO. JI& OUOAel"(S6. %KpUnT N!.mUSP4I

N00014-67-A-O1 12-0053
Technical Report No, 192

NR.-042-267 b.£wILNNOS Ai Efmih .mveaEsd

10- A V A W AS9TVIL~UN7ATICi44 "IOMCS

DISTRIBUTION OF THIS DOCMENT IS UNLIMITED

11- 6UPPLBUKINfAUY NOTU 19- ""&ORORNO MILITARY ACTIVITV

GSLatlatics & Probability Vrdfgram
Office of Naval Research

____________________________________________A111 I ni' t nn VA

13. ANSTNACT,

It A difiCusSiOn is giver of confidence pDrocedures for the model
vector A Of a Von Mi!ses or F~uhcer distribution. Slight
revisions Of confidence. levels axre su.ggested becawuie the
usual procedure strictly giLveL; the' exia but not the direction

t of A

2j The likelihood ratio test is given, with percentage pointe, for
testing A = , for the Fisher di~bribirtion. A good approx-
imation i; ofeored for the similar test lor the 'von M~ises die-
tribution.

DD I J" 147 UNCLASSIFIED



* t LNCL&8SIFIED

Seiait CamllctiLINKt A LINKIs at
Key WORDS _0o6.9 -N -OL -ot.1w

directional data

vectors

Fisher distribution

Von Mines distribution

the epor. rportkomDDC.1'
2& RMPORT SECLUTY CLASSIVICATIONt Eisler the ovie, (3 "Fr~ anouncement and disesmination of ithisall security classification of the report. Inditgate whether rotb D ontataio"Restrlicted Date" in included. Mark-Ing to to be In accowd&eotb D~Iantatoie.

onewith appropriate security regulatIons. (3) "U. S. Goverrunent sganda ma obtain cisie of
this report directly front MD.7 Othe que2b. OROU~t Automatic dowrepsding is specified in DOD DI- users *hall reques thDCg

rectA,. 52M 10 omd Atined Forces Industrial Manual. Enter
the group number. Also, whem applicable, show that optional
markftns have been usedi for Group 3 and Group 4 as author. (4) "ULl. &military agencies away obtain copieso this

report ifirectly from DDC. Other vualified alsme
3. REP'ORT TITLL, Enter the complete report title In all shall requaest through
CAPItal letters Title* in all cairca should hrm uLlaasslfled
If a meoenlniti title cannot be selecied without 41lsseifica.
tiara, show title clasouiftontlr In all capitals in parenthesis (5) "All distribution of this report As ocotrolied, Quel.
immediately following the tiles. Ailed DDC users sthall request through
4. DUSCRIPTIVE i"OTES& It opprdprlsto, enter the type of ______________________r

report, e.g., Interim, progress, summary, annual, or Kiliall. It the report ham been furnished to thii Office of Teeatcel
Giv* the inclu~aive dates chart a slpecific reporting period Is services. Department of Commerce, for "sal to the public, laimrover"d COsO this fact and eater the price, if knlown.

*S. AUTHOR(S); Enter the name(s) of authar(s) as shown on IL SUPPLEMENTARY NOTES- Use for additiounal eaplese-os in the report. Ent"t lost name, ftr.'- name, raIddle initiaL tory note..
If ui~ltary, show rank and bruncil of a. vice. The name of
the principal isuthor lot an slisolute mm -nuat requirement. l. SPONSORING MILITARY ACTIVITYi Enter the nasse of

the departmental project offic, ar laboratory sponsoring (pay-IL REPORT DAT11. Enter thim date of the report a@ day, ing~ for) the resattach &ri development. Inludud address.month, ytar, or month, year, if more than one date appears, 13. ABSTRACT. Enter art abstract giving a brief sad factualon the report, use date of publication,
7a. OTA HUMER F PGES.Thetotl pat cunt summary of the document Indicative of the report, even though

sh.oTAld follow OFma pa GES:io Thceues total eaoontete it may olso appear elsewhere In the body of the technical re-
snulde of ollow cntan normalpai tto ipon.ae e.ene h port. -If additional space Is required. a continuation sheet WonU

numbr o pe..s ontinig iriornaton.be attached.

refernc.Ies Oite Rin ER E Ente reetoalnubeto It Is highly desirable that lie abstract of classified Preprt
refeence citd I therepotbe unclassified. Each paragrapha of the abstract Shell eamd with

go, CONTRACT OR GRANT NUMB3ER: It appropriate, enter an indication of the militasy S'curity classification Of the in.
the applicable number of the contract or geant under which formation in the paragraph, represented as fYe), (a), (C), ep (V1).
the report was Written. Titere Is no Limitation 00 the length of the shettrct. How-
9b. 11, & Sld. PROJECT NUWdDEM Enter lte approprinte ever, the suggested length is from 150 to 225 words.
military department Identification, such as pioject number.
subproject numb*#, system numbers, task number, aet. 14. KEY WORDS: Key words are technically meenssgtu tISMe

go. RIGNATRISREPOT NMBE(S) F~tr te oel- or short phrases that characterige a report and May he used as
ga. ~iGNATO'S EPOR NU.II3R(S: Ener he oA.. indx entries for cataloging the report. Key words Waast hecalo report number, by which the document will be ldent~Led s6eluctdso thatso security claoselication Irequired. Lleuti-

end controlled by Ithe originating activity. This number must flers, such aso equipment model delsination, trade same, militaryhe unique to this teport. Project code name, geographic location, mtay be used as key
Oh- OTIMR REP~ORT NUMIIER(S): It the repost hoe beon weeds hut will be followeOd by as indication of technical corn-

astgned any qther report numbers (either by the criginsfor taxt. SIke assignment be Linsh. miles, a"d weights is optlceel.
18r do th eonvo,). also enter this number(s).

10. AVAILABILITY/LIMITA-11OtE NOTICE& Enter any "04sustloas, en furether dissemnsation, of the report, other then tho

DD %J~f1 '04 1473 (BACK) Unclassifted
Security Clsseificauom



TWO ITFEMS CONCERNING DIRECTIONAL DATA

by

M..A. Steph3ns

In this paper we consider two topiz connected with directional

data, i.e., observations which may be recordel by unit vectors OP,

from the center 0 of a circle or spherf cf ralius 1, to points P1

on the circumference or surface, Alternatlkr.iy, the pcint P on a

circle may record an observat ion, such as t h#', -ccurrence nf an event,

during a period whose Length is represented by the tot-aI circumference.

When the observations are clustred around a central direct ion,

the von Mises distribution, on the circLe, or the Fisher d~itrib'ution,

on the sphere, are used to describe the dh'.a These arc- unimodaL

probability distribitions, with dpnsit.y on thE surface propcrtion&l

to exp(Kcosa), where R: is a concentration parameteýr and. a the

angle between OP and the cent.rrl. (modal) vector •. If wiji' be

assumed that the readrlr is familiar wii.h these di ;rtih'utionsý the

references given in the text may be used as sources for e•i.r"litr references,.

The two topics to be discussed in the next two sections are. In

section 2j A discussion of the standard tests ani confidence interval

procedures for the modal vector A of a von Mises or a Fisber dlstribu-

tion, when the concentration paraketer K is not known. It i6 not

generally noted that the usual test is strictly for the axis along

which A lies, without specifying the dir~cti on, anJ this necessitates

& slight revision of confidence levels.
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In section 3ý Significance points are provided for the likelihood-

ratio test for A for a Fisher distribution, for the case when the

concentration parameter K is known. The test will replace a teat

already suggested elsewhere, and indications are that an approximation

will hold well for the von Mises distribution also.

2. Tests and Confidence Intervals for the Modal Vector of a

von Mises or Fisher Distribution.

2.1. The von Mi.ses and Fisher distributions have densities propor-

tional to exp(Kcos(X), where a is the angle between a sample vector

OP. and the modal vector A, and K is a concentration parameter. For

a test of H.: A is along a given A, when K is not known, Watson

and Williams (1956) proposed a conditional test, both for the circle' and

the sphere. Suppose a sample of N unit vectors gives a resultant vector

R, length R, and let its component on A be X; the test depends'-0

on the fact that the conditional distribution of R, given X, is

independent of K. Critical values Ro, for given X, X, and a, have

beeii given by Stephens (l962a,b) in the form of charts of R against
0

X) if R exceeds R, the null hypothesis is rejected.

The distribution of R, given X, is in fact the same for X

positive or negative, and if a given A is acceptable when the-0

component of R on A is positive, the vector -A would be equally
-~0 '-0

acceptable, the component being now negative. Thus the test is strictly

a test for the modal axis, without direction. This will become important

when we use critical values R of R to obtain a confidence interval0

for A. The use of the charts both for testing and for confidence

2
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i.itervals, can best. be illustrated with the help of a diagram. In

Figure 1 we have taken the case of a sample of size N ý 20, drawn

from the von Mises distribution,

Suppose OX points in the direction of the modaL vektor A, and

let OY be the axis at right angles.. For every sample wi•.t resultant

R, we can calculate Y - _, and set C - (X,Y), QC is the

resultant R, and C represents the samplh on the diagram. C lies

inside the circle, center 0, radius 20. Let R be the critical

value of R for given X, at the 5% level, given by +he chart.s, and

draw the curve r = R-X2i call this the _j . ltical limit. This

is shown in the illustration, and also part of the 1% critical limit

obtained from 1,$ critical values of R. The curves are symmetrical

about OY ac well as OX. Since for every X the probability of C

falling outside the curve shown in 0.05, with Y either posit.ive or

negative, the probability of failing a.bh,%re the upper curve is 0.025

and of falling below the lower curve is also 0.025, whatever the value

of K. Suppose now OX has coordinate ýo measured ý;.nticlockwise

from a suitable initial line OB if the true modc.l •,s<tor were

along OX' with angle 9. > e more than 2.5% of sample points C

would fall above the upper 2 .5% curve. In the same way, if e 1 0

an excess of sample points will lie below the lower 2.5% critical

boundary. As a result, a test of the hypothesis, Ho, that the

direction of the mod.al vector is (, - , against the one-sided

alternative that 0c > e0 consists in (a) Calculating X and R frim

the sample, (b) finding from the charts in Stephens (.1962.) the critical

value P of R(.0") IX (or R(0O1.X)) and (c) re-cting H at the
00

(J "'" O



2.5%(or 0.54) level, if the observed R > Ro. There will be a corres-

ponding one-sided test against the alternative ec < 00, and if the

alternative is simply e 0 eo, then the steis above are followed

but, in (c), Ho is rejected, if R is too large, at the 5%

(or 1ý) level. For N, X not given in the cherts, Stephens (1962a)

has given several approximations. Simelar charts and approximations

for use with the Fisher distribution, are given in Stephens (1962b).

2.2 Confidence limits for .

Suppose that the true modAl vector has direction ec = e but

that we are unaware of this and must estimate c from the direction

of the samle vector resultant. Figure I shows two possible resultants

OCl, 0C2 , at angles 01,e2  respectively, buth of the same length

R = 7.90. We find from Stephens' tables that for N = 20 the

corresponding abscissa fox a = 0.05, is X = 5.0, and note that
o-1(l ) o-1 -1 _

(I = O= cos = cos (5.0/7.9) cos-1(.6329) = 50.70.

p is clearly the angle between OZ and OX, where OZ is 7.9 and

Z is on the 5% critical limit.

Suppose the lower confidence limit for e. is obtained by sub-

tracting q from the angle of % the two illustrations then give

limits 0i1.50.7° and 92-50.70. In the first example this limit

gives a confidence interval which does not include the true modal

vetor, along OX, and this is clearly because the point C1 is above

'-he 5% critical boundaryý while the interval based on CC2  does include

OX, because C2 is below the 150 boundary. Since 2.5% of samples

4



would give a. sample point above the boundary, Like C1 , and 97.5%

below, like C2 , the procedure clearly p.,ovides a. lower 97.`;% confl-

dence limit for a whatever is the value of K. Similarly, if

we add q = 50.70 to the angle of the sample reuiilt.-wL vector we shall

have an upper 97.5% confidence limit for &c .6.nd the fwo Ilmit will;

define a central 95% confidence interval for 8c, A similar result

holds for the left side of the diagram, where X is negativt. Thus

the interval is not strictly for the modal vector wnth direc' ion, but

only for the axis along which it lies, with either possible direction.

In practice, of course, except for K very small, negdtive vaulues of

X will rarel.y occur, and the confidence interval is always chosen to

give positive X, but this lowers the confidence level. The amount

by which it is lowered is found as follows. Let p be the probabLlity,

for given K, that X > 0, i.e.., the probability that the sample point

falls to the right of OY. If P Is the confidence probability (i.e..,

100P% is the confidence leve~l) then the probab.lity that the above

procedure includes the positive modal vector is Pp. The relationship

of p and K, for p near 1, may be found approxlimatr.ly from a

table of percent-age points of X, in Stephens (.1969a).. From this

we have

N: 10 10 20 20 4o 40

p. 0,95 0.99 0.95 0.,)9 0O95 0,99

K: 0.74 1.08 Oo5. 0.,74 0 2,7 0,-).'5

Thus for K > 1, the risk of mistaking the direction of A, will be

very small, for N - 10 say, and the confidenc:e le'rel hs.rdly changes,



for larger samples, K may become even smaller with negligible risk of

a wrong decision.

2.3 The Ficher Distribution.

For three-dimensions, the same type of argument holds, though a

geometric representation would noW involve an ellipsoid for the 5%

critical limit. Corresponding to two-sided confidence intervals for

e on the circle, there will now be a cone of confidence for 9 on

the spheres it would be difficult to interpret one-slded tests or

confidence intervals. Again the test based on R for given X is

really a test for the axis of A, without directioný and the alleged

confidence probability P must be multiplied by a p which depends on

N and K. From tables of the distribution of X for given N, c

given in Stephens (1967) the table of values for p for the sphere

becomes

N: 10 10 20 20 40 40

p: 0.95 0.99 0.95 0.99 0.95 0.99

K: 0.91 1.30 0.64 0.91 0.45 0.64

K is required to be a little higher for the sphere than for the circle

to obtain the same p for given N.

2.4 Numerical illustration.

In Table I we give, for N = 10 and 20, the relationship between

PIN and the critical value X/N for a 95% confidence interval with

the Fisher distribution; also the 6c to which this corresponds.

6



Further, R/IN is used to estimate K (by K, the solution of

CothK-1-K - WN); the estimate could then be used to est:imate p
A

as described above. Values of K are aLso included in Table 1.,

Op

I
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TABLE 1

Critical values of X/N and ac (to nearest degree) for 95% confidence

A
interval, given BIN, and estimated value K derived from R/N. (Fisher

distribution).

N = 3.0

R/N: ,4ý .45 .5 .55 .6 .7 .8 .9

X/N: .00 .056 .241 .342 .45,1 ,582 .721 .861

c: 90 83 61 52 44 34 26 17

1.51 1.55 1.80 2.07 2JhO 3.30 5-00 10.00

N 20

R/ .32 .35 .4 .5 .6 .7 .8 .9

X/N: .00 .16 .29 .142 .55 .65 .77 .88

90 63 44 34 28 22 17 11

K: 1.03 1.14 1.34 1.80 2 .40 3.30 5.00 10.00

9
.1
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5. Likelihood-Ratio Test for the Modal Vector of a Fisher Distribution

When the Concentration Parameter is Kniown.

5.1 The test to be discussed in this section is similar to that

in Section 2, but with the concentration parameter K assumed known.

This is probably less likely to occur, but when it does, a more powerful

test of H can be mads. The likelihood-ratio test statistic for
i

Ho0 A: along A o, against the alternative "A: that A in along a

vector other than A , may be shown to be R-X. Thus if the distribu-

tion of Z = R-X were known, & test based on Z, rejecting if Z

were too large, should give a more powerfil test against the alternative.

The exact distribution of Z is difficult to findi however, for the

Fisher distribution, significance points can be found, and are given in

Table 2. The test may formally be set out as follows:

(a) Calculate Z = R-X)

(b) In Table 2 for given N, K and a, find the table entry z;

(c) If Z > z, reject H at significance level a.
0

If K is too large for Table 2, solve for z from

where is the upper signifl.cance point of at level a.

3.2 Theory of the test.

We start by defining

10



C(K) ,and

N r>

N and r are positive Integers, and iti < N I he notat, ion <. z >

means < z > =-z if z > O, and. < z > 0 if z < 0. The joint.

denatty of R tad X is (Stephens, 1.967)

fl(R,X) - c(,)exp(KX)PN' 2 ( 13)i(N-2).' IXI < R, 0 < R < Ni (2

Let y R-Xi the joint density of y,R Is then

Sf2(y,R) c(x -exp(.Ky)exp(KR) -'(R)/(N-2)..
2 N

0 < y 2R , 0 < B,' N (N)

For the density of y alone, we must integrate out R, so we require

N --2
J ex~p(•R i(R)dR wth V-

This ir.tegrai. J enters an expression for an integral I given in

Stephens (1967, top of page 2.16) and may easily be deduced from the

resu~lt for Ii the densi~ty of" y then becomes

.1.1

I , !• !- - . . .



F

()KC()eXP(-KY) Lexp( (-Ky2) Y -exp(y/ 2 ) ) +

I I(eXP(K(N- 2r))-expY/2 ))( -r ] 0 <y_2N

Where t Is the greatest integer less than (N-y/2)/1. This density has

been integrated numerically to give the significance points in Table 2.

The X approximation in step (c) of Section .5.2 may be deduced from

the fact that -2 in % = 2K(R-X), where X is the likelihood ratio for

the test of Ho, and so is asymptotically X2  distributed. However,

Watson (1956) first gave the approximation, and deduced it from the

properties oi the Fisher density for large K- It is interesting also to

see that it follows from (2) above, if K is large, since in this

circumstance we expect large R and X and therefore small values of y.

Thus if we replace the range of y in (2) by 0 < y < ., and adjust

the constant c(K) accordingly, we can see that the Joint density of

y and R now factors into two components, one containing only y and

the other only R) with appropriate choice of constant terms, these

must be the marginal densities of y and R. For y, since the term

with y is exp(-Ky), we see that Ky must have the exponential

distributioni the full density is

f(y) = Kexp(-Ky) , y > 0

and this is equivalent to

22y

[.2



These two approximate derivations of (5) show that we can expect It to be

a good approximation: (a) when K is iarge, for. oil N, and (b) for

smaller values of K, as N -,', The values given by the approximation

are recorded in Table 2 opposite N -- - the exact vadues given for

other values of K show that the above expectations -ire borne out

extremely well2.

3.3 Power comparisons.

The test of H above can also be m.de using X alone, since itso

distribution for given N arid K is known 6.nd significance points tribu-

lated. This suggestion was given in Stephens (1967), but was wrongly

described as a two-tailed test, in fact, H would be rejected on].y if

X is too small for given N and k. We now comphre the fwo tests

for power, not directly, but indirectly by comparing the confidence

intervals for A obtained by the two mo-thodsa Supposte A is at angle

e to R) a (l-ax)% confidence Interval for e is 0 < 9 < Oc, where

e c is the solution of R cis Oc =. X C and Xc is the criticel value

of X found in either test, at significance level a.

Consider an example, when N = 10 and K - 4 The 5% critical

valve of R-X is found from step (c), the va-lue is 0.750, so

X = R-0.750. For the test based on X alone, X = 6.10 (from Table i,c c

Stephens (1967)). Thus the R-X test will give smaIllr' confidence

band for 9 whenever R-0.750 > 6.10, i e., whenever R > 6.85 1R0

say. From Table 2 of Stephens (19b() the probability Pr(R > Ro) can
0

roughly be estimatedi for N 10, K )1, 'hP lower 1% and 5% values
i

I



of R are 6.42 and 5.'1 and Pr(R > 6.85) is near 0.9. Thus 90% of

the time the R-X test, for N = 10, K = 4, would give greater power

than the test based on X alone. For N = 10, and other values of K,

the value of R Is given, and a rough estimate of the probabilltj p

of exceeding it, In the following small table:

K: 1 1.5 2 2.5 3 4

: 3.21 5.-78 4.56 5.29 5-92 6.85
0

p: 0.5 0.7 0.75 o.85 0.88 0.90

p represents the probability that the Z-test is better than the X-test.

The same pattern is repeated if one makes the calculations for N 20.

Clearly the Z-test is on the whole a better test.

3.4 Corresponding test for the circle.

For the von Mises distribution also, Z = R-X is the likelihood-

ratio test statistic for H the exact distribution cannot be harndled,

but the asymptotic result is 2K(R-X) - , so that critical values z

of Z would be given by

2K - (cZ )

Monte Carlo results suggest that. this approximation will hold with

in a manner similar to that for the sphere, i.e., for K > 2, and N > 20,

and, for larger K, even for N < 20.

The author gratefully acknowledges correspondence with Professor E.S.
Pearson, on which Section 2 is almost entirely based.
This research has been supported by Contract No. NOOOI4-67-A-0112-0053

(NR-o42-267), Dept. of Statistics, Stanford University.
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TALE 2. Critical Values of R-X, for Test of Modal Vector, Sphere.

*1' In descending order the values are for .€g - .0@1 .025P, .05, 10

N k 0.5 1.0 1.5 2.0 2.5 3.0

14 4.722 3.746 2.902 2.273 1.837 1.534
14.o57 3 .W3 2.357 1.828 1.43 1.229
3.486 2.597 1.931 1.487 1.197 0.998
2.847 2.047 1.4.95 1.1i5 0.920 0.767

5 5.161 3.950 2.969 2.289 1.84o 1.535
14.licq 3.258 2.399 1.837 1.475 1.229

3.767 2.701 1.959 1.493 1.198 0.999
3.06 2.117 1.512 1.19 0.921 .767

6 5.532 4.099 3.0o8 2.296 1.841 1.555
4.699 3.361 2.423 1.841 1.475 1.230
4.ooo 2.775 1.974 1.496 1.198 0.9993.2_30 2.165 1.522 1.150 0.921 o.768-

7 5.850 4.211 3.032 2.299 1.84.1 1.535
4.948 3.438 2.437 1.843 1.475 1.230
4.197 2.828 1.983 1.497 1.197 0.998
3.376 2.200 1.527 1.150 0.920 o.766

8 6,127 4.296 3.046 2 .300 1.841 1.535
5.164 3.495 2.445 1.643 1.474 1.230
14.307 2.868 1.988 1.1497 1.197 0.999
3.500 2.225 1.530 1.150 o.92o 0.768

9 6.372 4.361 3.055 2.301 1.840 1.535
5.354 3.538 2.450 1.843 1.474 1.230
14.515 2.897 1.992 1.497 1.197 0.999
3.6o8 2.243 1.532 1.151 0.920 0.768

10 6.590 4.12 3.060 2.301 1.839 1.535
5.522 3.571 2.453 1.843 1.472 1.230
14.645 2.919 1.994 1.1496 1.198 0.999
3.702 2.257 1.533 1.151 0.920 0.768

11 6.783 4.451 3.064 2.301 1.837 1.535
5.669 3.596 2.455 1.843 1.472 1.230
.4.759 2.936 1.955 1.497 1.198 0.999
3 .784 2.267 1.534 1.151 0.920 0.765

12 6.956 4.1482 3.065 2.299 1.837 1.535
5.8c0 3.615 2.456 1.843 1.1471 1.230
14.862 2.949 1.994 1.497 1.198 0.999
3.857 2.2y4 1.533 1.151 o.918 0.756
9.210 14.605 3.070 2.302 i.81 1.535
7.378 5.689 2.460 1.844 1.476 1.230

A 5.991 2.996 1.997 1.498 1.198 0.999
4.605 2.303 1.535 1.152 0.922 0.768
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