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TWO ITEMS CONCERNING DIRECTIONAL DATA
by

M.A. Stephans

In this paper we consider two topic: connected with directional
data, 1.e., observations which may be recorded by unlit vectors Q?i
from the center 0 of & circle or saphere «f radius 1, tn points Pi
on the circumference or surface. Alternatively, the pcint P1 on &
clrcle may record an observation, such as the occurrence of an event
during a period whose length is represented by the totali circumference.

When the observations are clustred around a central direction,
the vorn Mises distribution, on the circle, or the Fisher distriburion,
on the sphere, are used to describe the da*a. These are unimodal
probability distributions, with density on the surface propcrticnal
to exp(kcosx), where k 1is a concentrstion parsmeter and @ the
angle between OP and the centrsl (modai) vector A It will be
asgumed that the readrr is familiar with thege digtributions; the
references given in the text may be used as scurces for earlic¢r references.

The two topics to be discussed tn the next two secrions are. In
gection 2, A discussion of the standsrd tests and confidence interval
procedures for the modal vector A of a von Mises or e Fisker distribu-
tion, when the concentration paraketer x 1is not konown. It is not
generally noted that the usual tes!, is strictly for the axis along

which A 1lies, without specifying the dirs=ction, and tuis necessitates

& slight revision of confidence levels.




In section 33 Significance pointe are provided for the likelihood-
ratio test for A for a Fisher distribution, for the case when the
concentration parameter k 1g known. The teat will replace a test
already suggested elsewhere, and indications are that an approximation

will hold well for the von Mises distribution also.

2. Tests and Confidence Intervals for the Modal Vector of a
von Mises or Flsher Distribution.

2.1, The von Mises and Fisher dlstributions have densitles propor-
tional to exp(kcosx), where o 1s the angle between a sample vector

OP. and the modal vector A, and « is a concentration parameter. For

- & test of Ho: A 1s along a given &o’ wvhen « is not known, Watson

and Williems (195() proposed a conditional test, both for the circle and -
the srhere. Suppose a sample of N unit vectors gives a resultant vector
R, length R, and let its component on Ao be X; the test depends

on the fact that the conditional distribution of R, given X, 1s
independent of x. Critical values Ro, for given N, X, and @, have
been given by Stephens (1962a,b) in the form of charts of R, against

X; 1if R exceeds R,» the null hypothesis is rejected.

The distribution of R, given X, 4s in fact the same for X
positive or negative, and if a given Ao is acceptable when the
component of R on ﬁo is positive, the vector 'Ao would be equally
accephable, the component belng now negative. Thus the test 1s strictly
a test for the modal axis, without direction. This will become important
when we use eritical values Ro of R to obtain a confidence interval

for A. The use of the charts both for testing end for confldence

2
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intervals, can best be 1llustrated with the help of a diagram. 1In
Figure 1 we have taken the case of a sample of gize N = 20, drawn
from the von Mises distribution.

Suppose QX points in the direction of the modal vector A, and
let 0Y be the axls at right angles. For cvery sample wivh resultant
R, we can calculate Y - t RQ-XE, and set C = (X,Y). O 1is the
resultant R, eand C represents the sample on the diagram. C 1lies
inside the circle, center 0, radius 20. Let RO be the critical

value of R Tfor glven X, at the 54 level, given by the charts, and

o]
draw the curve Y = Ri-xe; call this the 59 critical limit.  This

is shown in the illustration, and also part of the 14 critical limit
obtalned from 14 critical values of R. The curves are symmetrical
about 0OY ar well as OX. Since for every X the probability of C
falling outside the curve shown in 0.05, with Y either positive or

negative, the probability of falling abcve the upper curve is 0.025

and of falling below the lower curve is also 0.025, whatever the value

of k. Suppose now OX has coordinate go measured snticlockwise

from a suitable initial line OB, 1if the true modsl vector were

along OX' with angle 91 > eo, more than 2.54 of swmple points C
would fall above the upper 2 .54 curve. In the same way, if 9, < eo

an excess of gample points will lie below the lower 2.5% critical
boundary. As a result, a test of the hypothesis, Ho’ that the
direction of the model vector is 8, - 8., against the one-sided
alternative that 6, > 6, consists in (&) Calculating X and R fram
the sample, (b) finding from the charts in Stephens (1962a) the critlcal

value R of R(.0%)|X (or R(.01|X)) and (c) reiscting H, at the

3
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2.%(or 0.54) level, if the observed R > R . There will be a corres-
ponding one-sided test against the alternative G < 8¢ and 1f the
alternative is simply ec ¢ 60, then the steps above are followed

but, in (¢), H

o 18 rejected, 1f R 4is too large, &t the 5%

(or 14) level. For N, X not given in the charts, Stephens (1962a)
has given gseveral approximations. Similer charts and approximations

for use with the Fisher distrivution, are given in Stephens (1962b).

2.2 Confidence limits for ec.

Suppose that the true modal wvector has direction 0, = 90, but
that we are unaware of this and must estimate 6, from the direction
of the sample vector resultant. Figure 1 shows two possible resultants
0Cy, 0C,, at angles 6,,6, respectively, buth of the same length
R =7.90. We find from Stephens' tables that for N = 20 the

corresponding abscissa for @ = 0.05, 18 X = 5.0, and note that

@ = coa-l(le) - cos™t - cos“l(5.0/7.9) = cos-l(.6}29) = 50.7°,

¢ 1is clearly the angle between OZ and OX, where 0Z 18 7.9 and
7 18 on the 54 critical limit.

Suppose the lower confidence limit for o o is obtained by sub-
tracting ¢ from the angle of R; the two illustrations then give
limits 9,-50.7° and 0,-50.7°. In the first example this 1imit
gives a confidence interval which does not include the true modal
ventor, along OX, and this is clearly because the point Cl is8 above
\\t.he 5% critical boundary; while the interval based on 0C, does include

2
OX, becwuse C, 1s below the 5% boundary. Since 2.5% of samples

I




would give a sample point above the boundary, like Cl, and g7.5%

below, like C,, the procedure clearly provides o lower 97,t¢ confl-

dence limit for ec, whatever 1s the value of «. Similarly, if

we add ¢ = 50.7o to the angle of the sample resultunt veentor we shall
have an upper 97.5% confidence limit for 6, &nd the two limits will
define a central 95% confidence interval for B A similar result
holds for the left side of the diugram, where X 1ig negative. Thus

the interval is nct strictly for the modal vector wirh direciion, but

only for the axls slong which it lies, with either possible direction.
In practice, of course, except for « wvery small, negative values of

X wlll rarely occur, and the confidence interval is always chosen to
glve positive X, but this lowers the confidence level. The amount

by which it 1s lowered is found as follows. Let p be the probability,
for given «, that X > 0, i.2., the probability that the sample point
falls to the right of 0Y. If P 15 the confidence probability (i.e.,
100P4 1is the confidence level) then the probability that the above
procedure includes the positive modal vector is Pp. The relationship
of p and Kk, for p near 1, may be found approximately from a

table of percentage points of X, 4in Stephens {196va). From this

we have
N: 10 10 20 20 Lo 40
P: 0.95 0.99 0.95 0.99 0.95 0.99
K: 0.7h 1.08 0.53 0.74 0.357 0.4

Thus for x > 1, the risk of mistaking the direction of A will be

very small, for N - 10 say, and the confidence lewvel hardly changes;

A
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for larger samples, K may become even smaller with negligible risk of

a wrong decision.

2.% The Ficher Distribution.

For three-dimensions, the same type of argnment holds, though a
geometric representation would now involve an ellipsoid for the 5%
critical limit. Corresponding to two~sided confidence intervals for

8 on the circle, there will now be a cone of confidence for ¢ on

the sphere; 1t would be difficult to interpret one-gslded tests or
confidence intervals. Agein the test based on R for given X 1is
really a test for the axis of A, without direction, and the alleged
confldence probabllity P must be multiplied by & p which depends on
N and k. From tables of the distribution of X for given N, «
given in Stephens (1967) the table of values for p for the sphere

becomes

N: 10 10 20 20 ko 40

p:  0.95 0.99 0.95 0.99 0.95 0.99
k: 0.91 1.30 0.64 0.91 0.45 0.64

k 1s required to be a little higher for the sphere than for the circle

to obtain the same p for given N.

2.4 Numerical 21lustration.

In Table 1 we give, for N = 10 and 20, the relationship between

R/N and the critical value X/N for a 95¢ confidence interval with

the Fisher distribution; also the 64 to which this corresponds.
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[ Further, R/N 1is used to estimate «k (by »?, the solution of
1 cothk-1-k = R/N); the estimate could then be used to estimate p
as described sbove., Values of i? are also inciuded in Table 1.
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TABLE 1

Critical values of X/N and Ay (to nearest degree) for 954 confldence

interval, given R/N, and estimated value

distribution).
R/N: o Ll
X/N: .00
Oc: 90
s 1.51
R/N: .32
X/N: .00
9c: 90
K: 1.03

45
.056

83

1.55

35

63
1.14

2h1
61

1.80

hi
1.34

55
Sk

52

2.07

3k
1.80

£ derived from R/N.

31
Ly

2.ho

.53
28
2.h0

7
.58
b1

3.50

.65
22

3.30

ST21
26

5.00

7
7

5.00

(Fisher

861
17

10.00

.88
11

10.00

i WAL o, Al s el i il Y
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b Likelihood-Ratic Teat for the Modal Vector of a Fisher Distribution
When the Concentration Parameter is Kuown.

3.1 The test to be discussed in this section ia similar to that
in Section 2, but with the concentration parameter xk assumed known.
This is probebly less likely to occur, but when it does, a more powerful
test of Ho can be mad=z. The likelihood-retio test statistic for
HO: é along éo’ against the alternative HA: that ﬁ 1a along a
vector other than A, way be shown to be R-X. Thus if the distribu-
tion of Z = R-X were known, a test based on Z, rejecting if 2
were too large, should give a more powerfill test against the alternstive.
The exact distribution of 2 1s difficult to find; however, 1nr the
Fisher distribution, significance points can be found, and are given in
Table 2. Tre test may formelly be set out as follows:
(a) Calculate Z = R-X;
(b) In Table 2 for given N, k and &, find the table entry z;
(¢) If Z >z, reject Hy at significance level «a.

If k 18 too large for Table 2, solve for z from
2kz = Xg(a) , (1)
where xé(a) is the upper significance point of xg at level «.

3.2 Theory of the test.

We start by defining
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N
K
) = (gamam) -
r o N s ' ] r
P(t) = ¥ (-1 < pet-as >y

8:=0

N and r are positive integers, and |t| < N; 'he notation < z >
means <z > =12 if 2>0, and <z >=0 if 2z < 0. The joint

density of R and X 1s (Stephens, 1967)
. PN.? L . =
£1(R,X) - c(k)exp(kX) Py “(R)/ (N-2)! |X| <R, O< R<DN,
Let ¥y = R-X; the Joint density of y,R 1is then

£,(y,R) = c(x)expl -«—y)exp(wag*’(R)/(w-m.'. ;

OS<SYy<2R, OLRSN (3)
For the density of y alone, we must Integrate out R, 80 we require
N -2
J af exp(KR)‘Pg (R)dR . with V - y/2 .
v
This integral J enters an expression for an integral 1 glven in

Stephens (1967, top of page £16) and may easily be deduced from the

result for I; the density of y then becomes

1l

(?)

i e e e i Sk T g

s = -

LT it 1 8 S
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N-1 PV T(y/2)
fS(Y) = ke(k)exp( -ky) |exp{-y/2) ¥ _E;r_n___ +
r<2 kK (N-r)!

4
L (exp(K(N-a’r))-exp(Ky/E))(f)(—Hr , 0<y<2eN.
0

N r=
K

Where t 1s the greatest integer less than (N-y/2)/#. This density has
been integrated numerically to give the significuance polnts in Table 2.
The X approximation in step (¢) of Section 3.2 may be deduced from
the fact that -2 1n M = 2¢(R-X), where A is the likelihood ratio for
the test of Ho, and so is asymptotically x? distributed. However,
Watson (1956) first gave the approximation, and deduced it from the
properties oi the Flsher density for large «. It is interesting also to
see that 1t follows from (2) above, if k 1s large, since in thls
circumstance we expect large R and X and therefore small values of Y.
Thus 1f we replace the range of y in (2) by 0 <y < w, and adjust
the constant c(k) accordingly, we can see that the joint density of
y and R now factors into two components, one contalning only y eand
the other only R; with appropriate cholce of constant terms, these
must be the marginsl densities of y and R. For ¥y, since the term
with y 1s exp(-ky), we see that «y must have the exponential

distribution; the full density is

f(y) = kexp(«y) , ¥ >0

and this is equivalent to

eky = ><2 . (3)

ALl it bt
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These two approximate derivations of (3) show that we can expect It to be
a good approximatlion: (a) when « 18 iarge, for sll N, and {b) for
smaller values of «, a8 N —»w. The values givea by the approximation
are recorded iln Table 2 opposite N = w; the exmct values glven for
other values of k eghow that the above expectations =re borne out

extremely well.

3.3 Power comparisons-.

The test of Ho above cun also be m-.de using X alone, since its
distribution for given N and « 1s known &and significance points trbu-
lated. Thie suggestion was given in Stephens (1967), but was wrongly
described as a two-talled test, in fact, Ho would be rejected only if
X is too small for given N and «. We now compsre the two tests
for power,not directly, but indirectly by compiaring the confidence
intervals for A obteained by the twc methods. Supposs A 1is at angle
6 to Ry a (1-a)% confidence intervel for g 1s 0<9 <6, where
ec is the solution of R cos ec = Xc’ and XC is the criticel value
of X found in either test, at significance level @.

Consider an example, when N = 10 and «k = 4 The 5% critical
valve of R-X 1is found from step (c), the value is 0.750, so
Xc = R-0.750. For the test based on X alone, XC = 6.10 (from Table 1,
Stephens (1967)). Thus the R-X test will give smaller confidence
band for 8 whenever R-0.750 > 6.10, i e., whenever R :» 6.85 = Ro
say. From Table 2 of Stephens (196/) the probability Pr(R > Ro) can

roughly be estimated, for N - 10, ¢ - I, *he lower 1% and 5% values

13
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of R are 6.4 &nd 5.71 and Pr(R > (.85) is near 0.5. Thus 90§ of

the time the R-X test, for N = 10, k = 4, would give grester power ;

| than the test based on X alone. For N = 10, and other values of K, §

»% the value of Ro is given, and a rough estimate of the probabillty p ?

,% of exceeding 1t, in the following small table: |

| ki 1 1.5 2 2.5 3 b :

;,_} Ry 321 378 W56 5.29 5.2 0.85 Z

| p: 0.5 0.7 0.75 0.85  0.88 0.90 :

fé p represents the probability that the Z-test is better than the X-test. ;

| The same pattern is repeated if one makes the calculations for N = 20, ) j
Clearly fhe z-~test 1s on the whole a better test, ;

3.4 Corresponding iesat for the circle, %

{; For the von Mises distribution also, Z = R-X 1s the likelihood-~ _é

;i ratio test statistic for Ho; the exact distribution cannot be handled, §

N .
| but the asymptotic result is 2x(R-X) = Xi , so that critical values z

of 2 would be glven by

2kz = ﬁi(a)

Monte Carlo results suggest that this approximstion will hold with

in a manner similar to that for the sphere, i.e., for k >2, and N > 20,

and, for larger «, even for N <20. :

The author gratefully acknowledges correspondence with Professor E.S.
Pearson, on which Section 2 1s almost entirely based.

This research has been supported by Contract No. NOOOLL-67-A-0112-005%
(NR-OW2-267), Dept. of Statistics, Stanford University.
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" E TARLE 2. Critical Valuss of R-X, for Test of Modal Vector, Sphere. 1
é In dsscending order the values are for g = .01, .@5, .05, .10
N .
Nl k 0.5 1.0 1.5 2.0 2.5 3.0
L 4,722 3,7h6 2.902 2.273 1.837 1.534
' 4.057 3.11% 2.357 1.828 1.k73 1.229
i 3.486 2.597 1.951 - 1.487 1.197 0.998
2.8k7 2.047 1.495 1.145 0.%0 0.767
' 5{ 5.161 3.950 2.969 2.289 1..8%0 1.535
Y. 4ot =,258 2.359 1.837 1.4%75 1.229
£ 3,767 2.701 1.959 1.493 1.198 0.999
3.06 2.117 1.512 1.1k9 0.921 0.761
6| s.5%2 4.099 3.008 2.296 1.841 1.555
E L.699 3.361 2.423 1.8l 1.475 1.230
. 4.000 2,775 1.974 1.496 1.198 0.999
3.0%0 2,165 1.522 1.150 0.921 0.766
S 71 5.850 b.211 3.032 2.299 1.8 1.535
S L.9h8 3.438 2.37 1.8 1.475 1.230
Lo b.197 2.628 1.9835 1.497 1.197 0.998
i 3.376 2.200 1.507 1.150 0.920 0.766
81 6.127 4.296 3.046 2.300 1.841 1.535
5.16L 3.495 2.445 1.543 1.47h 1.230
ol L.307 2.868 1.988 1.497 1.197 0.999
; 3.500 2.225 1.5%0 1.150 0.920 0,768
L § 9| 6.372 4.361 3.055 2.301 1.840 1.535
5.354 3,538 2.450 1.843 1.474 1.230
 F 4.515 2.897 1.992 1.k97 1.197 0.999
3 ~3.608 2.243 1.5%2 1.151 0.920 0.768
| E
i 10 | 6.590 L.h12 3.060 2.301 1.839 1.535 :
s 5.522 3.571 2.453 1.843 1.472 1.230 |
£ 4,645 2.919 1.99% 1.496 1.198 0.999
o 7 3,702 2.257 1.533% 1.151 0.920 0.768
11 | 6.783 L.451 3,064 2.301 1.837 1.535 ;
5.669 3.596 2,455 1.843 1.472 1.230 |
4.759 2.936 1.955 1.497 1.198 0.999
3,784 2.267 1.534 1.151 0.920 0.765 'g
12 | 6.956 L, 482 3,065 2.299 1.837 1.535
5.800 3,615 2.456 1.843 1.471 1.230
L. .86 2.949 1.994 1.h4g7 1.198 0.999
3,857 2.274 1.533% © 0 1.151 0.918 0.756
.w | 9.210 4,605 3.070 2.302 1.84 1.535
7.378 3.689 2.460 1.844 1.476 1.230
5'991 ’ 2.996 1-997 loh’98 10198 0-999
4,605 2.30% 1.535 1.152 0.922 0.768




REFERENCES

Stephens, M.A. (1962a). FExect and approximate test: for directions, 1.
Biometrika, 49, 4o3-L77.

Stephens, M.A. (19(2b). Exact snd approximmte tephs tor directions, 2.
Biometrika, 49, 547-552.

Stephens, M.A. (1967). Tests for the dispersion, and for the modal
vector, of s distribution on a sphere., Blometrika, Sh, =1i-23.

Stephens, M.A. (1969). Tests for the von Mises distrioutbion. Biometrike,
56, 149-160.

Watson, G.S. (1956). Analysis of dispersion on a spbere. Mon. Not. R.
Astr. Soc: Geophys. Suppl. 7, 1535-144.

Watson, G.S. and Williams, E.J. (1956). On tke construction ot signi-

ficance tests on the circle and the sphere. Biomeririka, 45, “hh-s4,

N




