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PREFACE

The research described in this report, 'Nodal Blocking in Large
Networks," by Jack Zeigler, is part of a continuing investigation of
Computer Network Research, sponsored by the Advanced Research Projects
Agency (ARPA), Department of Defense Contract DAHC-15-69-C-0285, under
the direction of L. Kleinrock, Principal Investigator, and G. Estrin,
M. Melkanoff, and R. Muntz, Co-Principal Investigators, in the Computer
Science Department of the School of Engineering and Applied Science,
University of California, Lus Angeles. This project was also partially
sponsored by a National Scierce Foundation Traineeship.

This report was the basis of a Ph.D. dissertation (June 1971) sub-

mitted by the author under the chairmanship of Leonard Kleinrock.

111



ACKNOWLEDGEMENTS

I would like to thank the members of my camittee, Professors
pavid G. Cantor, Wesley W. Chu, James R. Jackson, Leonard Kleinrock
(Chairmar), and Richard R. Muntz, for their assistance in this work.
Special thanks go to Dr. Cantor, who helped me obtain the solutions
given in Appendix A, and to my advisor, Dr. Kleinrock, who introduced
me to the nodal blocking problem and cleverly guided my work. Thanks
also go to Frank Kontrovich and Charlotte LaRoche, who aided me with
their sound judgment.

This research was supported in part by a National Science Founda-
tion Traineeship and the Advanced Research Projects Agency of the

Department of Defense under Contract #DAHC-15-69-C-0285.



ABSTRACT

A theoretical study is given for store-and-forward communication
networks in which the nodes have finite storage capacity for messages.
A node is "blocked" when its storage is filled, otherwise it is "free."
A two-state Markov model is proposed for each node, and the fraction of
blocked nodes in the network is shown also to have a two-state Markov
process representation. The tiuec~dependent probability that any given
node in the :etwork is blocked is obtained for some uniform networks of
arbitrary dimension, and various results describe the clumping phenomena
in these networks.

Through a modification of the basic Markovian network model, the
fraction of blocked nodes in a computer-simulated store-and-forward

communicarvion network is predicted with reasonable accuracy.
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CHAPTER 1
INTRODUCTION

A. Computer Networks

In the early 1960's the first time-sharing facility began opera-
tion. Since that time, facilities and systems have grown and developed
across the comtry into quite sophisticated and unique sites each having
speciai features and capabilities in the form of exceptional computer
programs, data files, hardware devices, resources, and human talent
which, in general, are not easily transferable. A desire to share these
resources has led to the development of computer networks which permit
the separate computer facilities to communicate with each other.

A computer network is a collection of nodes (computers) connected
together by a set of links or lines (commmnication channels). Messages
in the form of conmands, inquiries, replies, and file transmissions
travel through this netwark over data transmission lines. At the nodes,
the task of relaying messages (with all proper routing, acknowledging,
error control, queueing, etc.) and inserting and removing messages which
originate and terminate at that node must be carried out.

The Advanced Research Projects Agency (ARPA) Network [1-5] is a
store-and-forward computer commmication network linking approximately
fifteen research centers across the country at the present time with
approximately five more scheduled for campletion by the end of 1971. In
a store-and-forward netwark, messages are broken up into convenient

sized packets that individually make their way through the net, "hopping"




| | \
from node to node. If ; packet c\:annot be tx\':ansmitted immediately out of
a node on its way through the net because its designatéd output I\me is
in use, it forms a queue and awaits its turn to be transmitted. ‘
Western Union has used the store-and—forv;ard concept for years as
has the .United States Air F&rc':e in its Sage Defense System. In ?Jova!ber
of 1969 DATRAN Corporation proposed to the Federal Camunications Commis-
sion a ;:nwork for digital oommnicatim linking 35 metropolitan areas
) from' Boston to \San Francisco and comprising 240 mcrmra\{e relay stlat:.ons
Eventually they propose to make it a sbore—and—foxward nebmrk [6]. We
gsee that numerous store-and-forward networks are already in use and

others afe being planned. : \

B. Structure of the ARPA Network

' Let us examine the structure of the ARPA Network more carefully.

At each site in the nebwork thert is at least one large digital computer
called a }hST, which acts as a source and \tnmunal for messages in\ the.

‘ net:work\'. These conputers are basically inconpatible in hardware, soft-
ware, file structure, etc., and hence there is a\'need for an intermedi-
ate device to interface these HOSTs to the coxmxicatim net which con-
nects them. This function, and others, is performed in the ARPA Network
at each site by a digital computer called an Intérfacé Message Processor
(IP). The IMPs carry out the message handling process in the network,

50 when we speak of themd%sinﬂmenetw.eareactuallyreferringto
' \

the various IMPs. ‘ \
An.INP in the ARPA net receives messages from two\swrces:
1. Other IMPs like itself over fully duplex 50 Kbit/sec. leased
telephone lines. \; |

i | .
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2. One or more HOSTS over 100 Kbit/sec. fully duplex lines.

\ :
Message bits are" sent in series and are protected by error detection

sd\emes If an error is detected, the message must be retrqnsmitted
CatpazedtoanyHOSTcmputer, tne I is asmallmachmew:.th
finite storage space for messages. _‘Part of the IMP storage is strictly
allocated for messages vhich are relayed from neighboring IMPs and which
must be transmitted to still another IMP before reaching their destina-
tion; this ig called store-and—forward trafficw Part of the remaming
storage in an INP is strictly «\allocat:ed for the reassenbly of multi-
packet messages destined for.one of the IMP's HOSTs. \;(A multi-packet
message is one which is too large to be transmitted as a single packet
whose maximum size is 1008 l;its. Multi-packet messages may be up to 8
packets in length, and each of these packets must be held until afu are
rece:.vedmﬂaefmalnode atwhldxy_metheyarereassenbledmtothe
original message and delivered to the HOST. Longer nessagee must be
~partitioned in the HOST into many multi-packet messages.) The ranalm.ng
storege is allocated between these two typeS\of traffic as needed. In

all, the IIVP contains storage space for about 50 single-packet messages.

C. Noda) Bloclu.Lg | .

Frcm time to time, during per:.ods of high ut1112ation, the IMP's

storage can become filled, so that arriving messages must be refused.
W}en this occurs we say that the node \is "blocked." B1|ocking in the IMP
c;nocmrinanycfthreeways: : . \

1. There are no more ireas.'v.enbly spaces available for HOST ttaffic,
and packets for a HOST that were sent by other IMPs must be refused

2. There are no more spaces avA:.]able for store-and-forward

L P




traffic, and thus non-HOST packets must be refused.

3. There are no more spaces for arriving messages and all traffic
mst be refused. |
Certain high priority messages are never blocked, e.g., space is always
saved for positive acknowledments sent by neighboring IMPs to indicate
that a messaje previously sent by the IMP has been received without er-
ror and can thus be discarded by the IMP. On the otiier hand, a blocked
message is ignored by the IMP, and the absence of a positive acknowledg-
rent tells the IMP which sent the message that the message will require
retransmission.

Selective blocking, as in points (1) and (2) apove, or total block-
ing, as in (3), can occur in this network if the input rate of messages
equals or exceeds the output capacity over a period of time. We would
normally expect this to occur only during peak lwours of the day. How-
ever, it is a potentially dangerous situation because a blocked neighbor
reduces a node's message output rate with no corresponding change in its
input rate. This causes ite storage to fill at a faster rate and in-
creases its ctance of becoming blocked. Thus blocking could propagate
in both space and time.

The purpose of this research is to gain 2n understanding of the

blocking behaviar in a message-switching network.



CHAPTER 2

THE MODEL

A. General Description

Selective blocking is a very difficult problem to analyze. The
allocation of storage between store-and-forward trarfic and HOST traffic
is equivalent to the formation of two distinct queues with finite wait-
ing room, or strrage space, in which the maximum size of the waiting
room for each queue is dependent on the nunber of customers (i.e. mes-
sages) in the other queue. To make the problem mathematically tractable,
the network we analyze will consist of nodes having a single queue for
messages. If there is an empty space in the queue, the first arriving
message, regardless of its final destination, will take that space. If
there are no spaces for arriving messages, then the node is "blocked.”

As soon as one message is transmitted by a blocked node, it becomes
a "free" node. It remains in this state as long as there is at least
one empty space in storage that could be used by an arriving message.
When the storage fills again, the node re-enters the blocked state.

Figure 1 shows a simplified model of such a node in the terminology
of the ARPA Network. The IMP, when free, accepts messages into its main
storage from two sources:

1, Other IMPs.

2. A single HOST which generates and receives messages (as a

source and terminal).

A message in a message buffer is queued up for transmission over an
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Figure 1. Schematic of a Node




appropriate output line to sawe neighbor as determined by the final des-
tination of the message, and is then transmitted serially to that neigh-
bor. Any of these neighbors can become blocked, thus preventing the use
of the output line feeding such neighbors.

Nodal blocking is caused by the finite storage room for messages in
the IMP and the overutilization of the system. By overutilization, we
mear:. that when the node is accepting messages, its average arrival rate
equals or exceeds its average service rate (which is the total outpul
channel capacity divided by the average message length). Elementziy
queueing theory [7] shows that if (1) the system is underutilized, and
(2) there is storage space for approximately twenty messages or more,
then under fairly general conditions there will be essentially no -
blocking.

The analysis of the propagation of blocking is difficult for at
least three reasons. First, it involves networks of queues for which
only stationary results at best can generally be cbtained. Second, the
pertinent stochastic processes are dependent, for if a node becomes
blocked, it cannot accept messages from its neighbors and heir storage
will tend to fill at a faster rate. Finally, it is a transient queueing
problem and even the simplest of these is very difficult to solve. (For
exanple, the queueing system with Markovian arrivals, a single exponen-
tial server, and unlimited waiting room has modified Bessel functions in

its time dependent solution [7].)

B. Related Work
A number of topics in graph theory are related to this problem.
Ignition phencmena as developed by Rapoport [8] and Allanson [9] treats




vertices (nodes) which are "excited" if they receive a certain minimum
runber of stimuli within a certain amount of time. This excitation is
assumed to stimulate d other vertices to which it is randomly connected.
Stable states, i.e., constant fractions of vertices being excited, are
shown to exist under same conditions. This model) has immediate applica-
tion to neural networks because of their essentially random connectivity
and the nearly deterministic behavior of neurons. However, the model
cannot be reascnably applied to computer networks because they are not
randomly connected ard the probabilistic nature of information transfer
in the form of variable length and time of arrival of messages makes the
excitation process (i.e. the blocking) very much non-deterministic.

Percolation Theory [10] considers lattices in which a ‘branch be-

tween any two nodes is present with probability p or deleted with
pichability 1 - p. The main concem here is the minimum value of p
(i.e. the critical value; for which a connected component of infinite
length exists in the lattice with probability one. The relation of this
theory to the work of Gilbert [11] on random plane networks is clear.

In the study of probabilistic graphs [12], branches and/or vertices

are deleted in same random fashion. The questions raised (and answered)
are the following: what are the probabilities corresponding to various
kinds of connectivity; what is the distribution of the size of the larg-
est oconnected camponent, etc.

An interesting variation on the network vulnerability problem is

that which considers a probabilistic repair time for vertices or
branches that have been damaged by an attack from some weapon system.
In [13] the time varying probability of comnectivity is determined for

randam graphs.



In none of these areas of graph theory is the state of a node (or
vertex) ever taken to be a function of the states of its neighbors.
Thus such results are not applicable to the study of blocking propaga-
tion,

Eden [14] and Morgan and Welsh [15] studied two~dimensional Poisson

growth processes. They assumed that "infection" in a cell network

spread from cell to neighboring cell in an amount of time taken from
sare probability distribution. These authore obtained results on the
shape of the infected area and the rate of spread of the infection. In
their models, ance a cell becomes infected it remains in that state for-
ever, thus their work cannot be taken as a solution to the blocking
problem,

Roach [16] studied the overlap of obiects placed at random in same
space and called these overlappings "clumps." He treats the number of
clups, their size, their shape, and the spacing between them for a num-
ber of interesting cases, including the square lattice. He assumes the
prubability that a lattice point is marked (i.e. blocked) is the same
for all lattice points. Because of this independence assumption and
also because his system is static, we cannot utilize his results; how-

ever, we will adopt his terminology.

C. The Mathematical Model

The blocking problem is a difficult one. Since we cannot solve the
problem exactly, our goal is to make good approximations that allow us to
analyze the system and characterize its blocking behavior in same way.

To this end we make the following assunptions:



2.

3.

The HOST cannot became blocked (it is an infinite sink).

a. Input traffic from the HOST is Poisson.

b. Traffic on all lines (including the HOST-IMP iine) has
the same average rate so that total traffic into each
node is o messages/sec.

a. Message lengths are expanentially distributed.

b. Service (transmission) time on any line is therefore
exponentially distributed such that for a node with k
blocked neighbors, the rate at which messages exit from
that node is u(k) messages/sec., dependent on the num-
ber of blocked neighbors.

The probability of an erpty queue in the IMP is approximately

zero (since the system is assumed to be overutilized.

10



CHAPTER 3

ANALYSIS

A. The Nodal Model

Under the assumptions in "The Mathematical Model" (Section 2.C), we
arrive at a simplified blocking model for a node in the network as a
two-state Markov process (Fig. 2). If the node is blocked, i.e., in
state b, it becomes free in the next instant of time At with proba-
bility u®)At where k is the number of blocked neighbors it is
experiencing at that time. Similarly, if the node is free, i.e., in
state £, it becomes blocked in the next instant of time At with
probability A*) t uwhere k is again the number of blocked neighbors.
Thus A(*) is the rate at which a free node becomes blocked in the
presence of k blocked neighbors, and suculd increase with k. u(k),
on the other hand, being the rate at which a blocked node becomes free,

should decrease with k.

1. Derivation of u(k)

Below we show the appropriateness of this model. First, we
require the Laplace transform of the message interdeparture time proba-
'bility density SD(s). For any node let o = P[non-empty node] and let
the Laplace transform of the probability density of the message inter-
arrival time process be A(s). Because we have assumed that the service
time is exponential with parameter u(k) ,. we know that the Laplace
transform of the departure process, conditioned on a non-enpty system is

11
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u® /(s + u k), merefore,

(k) (k)
D(s) = R+ (1 - P) A(s) __.m.“ 1
s + u(k) s+ W
By assumption (4) we have p ~ 1
D(s) ——m-“(k) (2)
S) =
s+ u

.

which says that the departure prbc&ss is a Poisson stream. See Burke
{17] and Reich [18] for further details on departure processes.

We have assumed that the traffic on all lines has the same
average rate. If, for example, every node has exactly four neighbors
and one HOST, then there are five output lines fram each node. All of
these lines are equivalent (except that the HOST cannot become blocked)
and, by the assumption of exponential message lengths, the departure
process from each output line constitutes a Poisson stream at rate.
u(o)/s when that neighbor is not blocked (and at rate 0 when that
neighbor is blocked).

g -5 -k 0  y_9,1,..,4 (3)

where u(o) is a given system parameter and :represents the maximum mes-
sage departure rate from a node. This set of nutbers is merely an illus-
tration; any combination can be treated by this model. These results
show that we can approximate the time spent in the blocked state as be-

ing expaentially distributed with parameter u(k) . Because of the

13



memoryless property of the exponential distribution, the expected value
of the remaining time to be spent in the blocked state, given that k
changes to same new value Kk, while in the blocked state, is simply
l/u(kn) . By By. (3) this means that an increase in k should tend to
increase the time spent in the blocked state, and a decrease in k
should tend to decrease this time. We would expect to see such hehavior
in a real computer network.

2. Derivation of A(k)

The derivation of the parameter Ak g not nearly as sinmple.
The time that an IMP spends in the free state is distributed as the busy
period in a queueing system with finite queuveing room for customers, as
‘we now show. We begin by first considering the state transition diagram
or Markov chain model for such a single node finite storage queueing
system as shown in Figure 3a. The nunbers inside the circles represent
the nutber of customers (messages) in the node. We assume that custo-
mers arrive in a Poisson fashion with parameter o, and depart after
receiving service (exponentially distributed with an average of 1/u
seconds). A busy period begins when a customer arrives to find an empty
system (at which time he immediately enters the service facility).
Customers arriving during his service time form a queue behind him.
With each arrival the system moves to the right along the state transi-
tion diagram because the number in the system is increased by one, and
with -~ »-h service completion (i.e., departure) it moves to the left.
Cust.acis arrlvmg when the system contains N customers are lost
| (i.e., depart without sexrvice). The busy period ends the first time the
system goes empty after initiation of the busy period.

14



For the IMP model we now consider a dual queue in which the
roles of service and arrival are reversed, and the numbers inside the
circles now represent the nunber of empty places in storage that oould
be used by arriving messages (Fig. 3b). The free period of the IMP
begins with the departure of a message from a previously filled system,
i.e., no empty places for arriving messages. With a transmission (de-
parture) the system moves from state 0 to state 1. It continues to move
to the right with each transmizsion and to the left with each arrival.
The free period ends the first time the system returns to the 0 state.
The correspondence between the primal and dual queues is perfect; thus
any results cbtained for the busy period in the primal system are appli-
cable to the dual queue free period in the IMP simply by substituting
u(k) for 0 and ¢ for u, as in Figs. 3a,b.

The busy period for a finite gueueing room system is difficult
to obtain, but the result for unlimited queueing room is well known.
The prabability density of the length t of the busy period in such a

system is

p{t) = L lotuty, (2t/om) (4)
to

where p, the utilization factor = (o/u) <1 and I, (x) is the modi-
fied Bessel function of the first kind, of order one [19]. If the size
of the queueing room is greater than 20, the solution for unlimited
gueueing room is a good approximate solution to the limited queueing
room problem. (This follows since we have assumed P [empty IMP] = 0;
but the P[empty IMP] corresponds to the probability of being in state N

(i.e., all N spaces are enpty) in Fig. 3b, and thus an increase in N
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will not seriously affect our results.) We make the ft)rther approxima-
tion that Bq. (4) holds when o varies as u®), i.e., when o is time
varymg\. Since we hmp assumed oveﬁuuhzaum, we have (;\(0)/0) <1,
and we are justified in substituting this (or u‘k)/o) for p. Thus we
get the following for thq approximate prabability density of the length
le ofthet.ineipmtmﬁ\efreestate : \

p(t) = -lé\/% e-(o+u® e, (26\fou® ) (5)
: H

]
l .
|
As the ratio u(k)/o approadmes 0, i.e., as the system becomes more
overu hzed, ﬁ’cis density approaches that of the exponential distribu-
" tion except out on the tail of the digtnbuum where the pmbablht:y

\ density will be assumed negligible. To arrive at'a more tract,able

' model, we theiefore, q:proxim\ate the free period distribution by an expo-
nential distribution having the same value. The mean value of the
busy period in the original system is easy to cbtain, and is given by
\l/u(l - 0. 'merefore, as an appﬁomnatim to the free penod in the

DP, we take an exponenual d.xstnbuti.m with mean value 1/(0 - u(k))

A& =g -, 0 (6)

\
\

}
For the marginal case, 0 = \u(o) , elementary queueing theory shows that

we must take | . '
\ * | \
\ }‘(0) = g/N for o= u(o) (7)
" ' “ \
where N is the size of the storage capaéit:y of the 'INP (in messages) ,

16
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process or, in the language of renewal theory, an alternating Poisson

renewal process [20].

B, Derivation of the Network Model - 1.

awwaytodeqaibeﬂxedyrx\anﬁcsofar_xg_tg_nﬁc_ofsud\mdasisto
emﬂ.ne.the probability that any given node is blockad at same time t.
For a network let us enploy a two-dimensional integer'iattice. In this |
vay we can have a large system and yet mininize the conplexity of its
description. cmsi&r.anodewit'h itL four neighbors numbered 1 to 4:

. |

|

Iet \
S =
PX(t) = Plk neighbors blocked at time t] (8)
|
and let \ \

p(t) = Plnpde blocked at: time t] \ (9)

Then, from elementary cons.:i.derations, we have (correct to within o(At))

I3

4 . 4
Cplt+at) = Q- p(t))gopk(t)k(k)At +p®) (A - &op‘ﬁl(t)u‘k’w \

where fram By. (3) .
. \
20 =, _ /5y, |

- ——
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and from Bg. (6)

N TR R () RO ()

for o> u(o). We will assume that this holds for ¢ = u(o) as well.
The usefulness of the results that we will cbtain will justify this
approximation.

We also note that
A0 4 k) =g (10)

Thus,

4 4
b(t + AX:: =B . (1 - pe)) TN K - pet) TP (0™
k=0 k=0

Letting At approach 0, we have

: 4 3
8B - p(e) 3 PR () A0 4 )y 4 Pk ®)
k=0 k=0

4 4
-op(t)zpk(t) + 2Pk(t) (o - u(o) + (k/S)u(o))
k=0 k=0

(0) 4
—op(t) + o - (@ 4 E— p> KX (t) (11)
> %0

This can be simplified by noting that
a
E[nurber of blocked neighbors at time t] = 3 kP*(t) (12)

k=0

wvhere E denotes expectation. Define the indicator function

18



1 if node n is blocked at time t
£ (t) =
" 0 otherwise

Now let

pn(t) = P[node n is blocked at time t]

EI£_(t)] = p () (13)

Further, from By. (12) we have that
4
Y k() =E(X £.(8) = T E(£,(t) (14)
k=0 neM neM

where M is the set of neighbors for this node (wiich we nunber 1,2,3,

4). From Egs. (13) and (14) we get
4
]Z.;okr“(t) = py (8) + By () + P3(t) + py(t) (15)

Finally, from Egs. (11) and (15) we have the result

(0)
Qed__ét) = op(t) +o -0 + e—(p, (8) + py(t) + p3(t) + pg(t)) (16)

It is interesting that this relation can also be derived from
epidemiology. We will adopt the notation from Bartlett [21].

Consider a deterministic epidemic without migration of individuals
and with but two types of individuals, infected and susceptible, in
which "cured" individuals are returmed to the susceptible ranks. Assume

19



that the nunber of individuals in an infected group who are cured at
time t + At is equal to the nunber of infectives in the group at time
t multiplied by a constant, u,, diminished by the nunber of infec-
tives found simultaneously in surrounding areas weighted in same spatial
manner. Similarly, we will assume that the nunber of individuals in a
group of susceptibles who become infected at time t + At is equal to
the nunber of susceptibles in the group at time t multiplied by a con-
stant, )‘0’ increased by a spatial weighting of the infected neighbors.
Neighboring infectives will, therefore, always have a detrimental effect.
They tend to increase the rate of infection and decrease the rate of
cure.

Conbining these assumption yields the following cyuation for the

density of infectives at point r at time t + At
£(r,t + At) = £(r,0) [ - Bt(uy - [ ulz - 8) (s, t)ds]
+ (n(x) - f(r,t))ath, + [ Mz - s)f(s,t)ds)

where n(r) is the density of individuals of both types at r, u(r - s)
is a scalar function with a vector argument that gives the effect of
infectives at s on the cure rate of infectives at r, and A(r - s)
gives the effect of infectives at s on the infection rate of suscep-
tibles at r. Define p(r,t) = Plan individual at r is infected at

. f(r,t)
time t], then p(_r_,t)=_n%)—, and

p(r,t + At) = p(r,t) [1 - At(u, - fulz - s)n(glp(s,t)ds]

+ (1 - p(r, )ALl + [A(r = s)n(g)p(s,t)ds]

20



op(r,t)

e — = Pt [y + A + [z - 5) - u(x - s))n(s)p(s,t)ds)

+ Ag *+ [Ax - s)n(s)p(s,t)ds

In our example system each individual (node) occupies a point on the
integer lattice, and since each node is connected only to its four near-

est neighbors, we have

A for |[r-s| <1
AMr-s8) = N
0 otherwise
{u for [ - 8| <1
and u(e - s) =
0 otherwise

The result is a system of differential equations which relate the
probability that any node is bad at time t to the probability that
other nodes are bad at time t. The equation for a non-border node at
r is

ap(r,t)
—e— = Plt) [uo + 2+ (A =) (p(s;.t) + plsy,t)

+ p(s3.t) + p(sget))] + Ay + A(p(s;.t) + pls,,t)
+ p(s3,t) + pls,,t))

5 @ g,

Values for the parameters AO' ' Hor and u are cbtained in the

where s,, are the four nearest neighbors to the node at r.

following way:
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0
I L
(0)
= - (0) =u
bg=0 v, A=
(0)
uo=u(°).u=—“5

Substituting these values into the differential equation yields

o , u®

.t B —(p(s)/t) + PlEy,t) + Plsg,t) + Plsy,t))

= -op(r,t) + o - u

which was obtained in By. (16) from a strict probabilistic model.
Adjacent nodes have nearly equal probabilities of being blocked.

Consider the case when all of these probabilities are exactly equal (as

an approximation). Then from Eq. (16)

gp-‘%)-= ~op(t) +o - ul® + %uw)p(t)

=-(c - %u(O))p(t) +0 -

which has the solution

- (0)
© | ~-guTt 5,00
0 - (o] M
p(t) =] p(0) - o—-i—u-(_o-)- e + m (17)
5 5

which will be assumed to hold for o > u{?).

Now consider the altemating Poisson renewal process shown in Fig.
4, There are two states, called blocked (B) and free (F). If the
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o= o

Figure 4. Network Model

system is in state B at time t, it goes to state F in the next instant

At with probability (u (o)/S)At. In similar fashion, the probability

that it leaves state ' and re-enters state B is (0 - u(o))At. There-

fore, the probability that it is in the blocked state at time t + At is

u(0 ©)
pB(t + At) = pB(t) - T At) + (1 - py(t)) (@ = HT)At

dpg (t)

dat

ENCIEE PR RECERL

( | -(o- &) (0)
(t) =| p(0) - <X TR o 18
pB . o -gul o - 40 ae
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This is the same as Bq. (17) which was obtained for the probability that
ar_gdg_isblodtedatt.im t! In a large homogencous network, the frac-
tion of blocked nodes may be closely approximated by the probability that
any one ~f them is blocked. Therefore, the fraction of blocked nodes at

time t in a large uniformly connected (i.e., two-dimensicnal lattice)

network is approximately equal to the probability that the two-state

Markov process shown in Fig. 4 is in the blocked state at time t. Thus
we may take this two-state Markov process as a model for the network.

So far we have presented only aggregate results. To cbtain the
probability that any given node in the network is blocked at time t we
must consider a system of equations of the fomm (see Eq. (16))

dp; (t)
at

_ (0) (0)
= -op; (t) + 0 - W + }"—&.,-—(pj (t) + B (t) + py () + py(t)

for each node i in the network with ncighbors j, k, £, and m. These
equations are cbviously of the form

P(t) = AP(t) + C (19)

If there are M nodes in the net, then P(t) is the M x 1 matrix
whose ith conponent is the probability that node i is blocked at time
t. A isan MxM oconstant matrix and C is an M x 1 oonstant

matrix. The solution is well known:
P(t) = etp(o) + a1 (Pt - 1)C (20)

For a small net this solution poses no difficulty, but for a large
one the required matrix computations rapidly get out of hand. There are
same special cases which are solvable, however, and we cbtain the solu-
tion for one of these beiov.
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Consider a network consisting of 1024 nodes arranged in a 32 x 32
(n x n) grid. For this system the matrix A is n? x n? or 1024 x 1024
and takes the following form:

D A
A D A O
A= A D A (21)
O  aoa
u A D
ab T
b a b O
where D = b ab (22)
O b ab
N b a nxn
and
A=bIn (23)
where
(0)
a=-0, b=, and I, is then xn identity matrix. (24)

This cbservation holds for a square grid with any number of nodes n on
a side. (See Appendix A which gives the complete solution for P(t)
with arbitrary n for this network configuration and two others.)

The network model predicts that the equilibrium fraction of blocked

nodes is zero for the case o=u(°). For an infinite value of N (the
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storage size in the IMP) this result would be obtained. However, for
finite N the equilibrium fraction of blocked ncdes is non-zer>. To
obtain an expression for this equilibrium value we must look at the
different topologies of connected blocked nodes, which we call clumps.
As a by-product of this analysis we will also get the clump size distri-

bution for the case o=u(°).

C. Clumping Analysis
1. Definition of a Cluyp

For a lattice network in which each node has exactly four

neighbors (adjacent nodes) we wish to define a clump of blocked nodes.
Two blocked nodes are in the same cluwp if they are adjacent or are
linked to each other throuch a series of adjacent blocked nodes. A
blocked node that is surrounded by four free nodes is a cluwp of size
one.
2. Markov Chain Model for Clump Growth

Suppose 0 = 1{0) ana that the expected fraction of blocked
nodes is very low, say less than .1. Then the probability of the inter-
action of two clunps is very small, being on the order of .01, and we
are justified in looking at the growth of clumps fram single nodes (as
an approximation). Thus we will neglect the possibility that two clunps
combine. The simulation results (described later) indicate that this
approximation is good for a storage size N > 50. Also, we neglect the
effect of the HOSTs since, by assurption, they cannot became blocked.

Consider one free node in the midst of many free nodes. It be-
cames blocked in a Poisson fashion at a rate A(o). Then we have the
following situation:
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X = blocked node
0 = free node

o
O ¥ O
o

This clump of one can became a clump of two at a rate 41(1), again in

a Poisson fashion, or die out at a rate u(o). Suppose it becames a

clump of two, then we have the following:

O o
O X X O
o o

This clump of two can became a clump of three at a rate SA(D, or be-

came a clump of one at a rate 2u(1). Suppose it goes to a clump of

three, of which there are two forms:

I) o O II) o 0 O
O X X O O X X X O
O X O O O O
0

Form I has a growth rate of 621 + 12 ana a death rate of
211(1) + u(2)’ while form II has a growth rate of 82.{1) and a Geath

rate 2u(l) + u(Z). The death rates are cbviously equal for the two

different forms, but, surprisingly, the growth rates are also. Recalling

that
A _ gy @ 4 kO
and ul -, -%u(O)




we have for form I (using Ay to indicate growth rate for form I):

=70 - + §,©@

g (0)

u(O)) + 8y

and Arp = aal) = g0 -

Then, for the case o-u(O), we have AI=AII=8A(1).

There are five different topologies for a clunp of four blocked

nodes:
I) o o
0O X X O A = (D
0O X X O nyp = 4u (2)
o o
1) 0O 0 0 O N
Arp = 100
0O X X X X O - e
Uit = 2 + 2u
0 0 0 O
II1) 0o o
o X X O g = 29+ 24
0o o
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V) 0
0o 0 X O
ry= 8@ 2@ 2@
O X X X O
Uy = 2u(2) + 2u(1)
0 0 O —
V) O 0 O
=6+ 2@ 210
0O X X X O
by = 311(1) + u(3) d 211(2) . u(1)
o X ©
0

The growth and death rates are, except for the square, form I, the same
for the different forms. So, to determine the growth and death rates

for a clump of four blocked nodes it is approximately sufficient to look
at the straight line form, form II. For larger size clumps, we consider
only this straight line form for determining the growth and death rates.
Such a simplification is, of course, necessary since the nunber of dis-
tinct topologies prohibits exhaustive treatment. Simulation results
support this approximation and show that elongated clumps are more likely
to occur in systems of this kind than are square or circular-shaped
clumps with their minimum circumference to area ratio. For a clump of

length n we therefore have the following:

A =2+ D
Wy = (n - 2)u2 + 20 )

29
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Thus our approximation leads us to the follcwin‘gbirth—death
. \
process for clump size: I

'I '

5 (0 ald ol a1 A, —2(n+1)x‘1’
eC_CL_ B 0 - A
PEURPRER L2 5 2 Wy = (u=2)u H

|

We will sinplify M samewhat.

\

| !

| - W= - 2u@ + 20
@ <2y ® 42, © -
@ 4
= (n+ 1@

'hlerefom, to sinplify the solution we use the approximations

Vo =2m+em® a1 '

: . ) e (26)
\ i el Sl

Define p_ to be the equilibrium probability of n blocked nodes in

the cluwp ‘and by el tary queueing theory [7)

A
pn r? pon ir_i— n>0
j=0 "itl
2O n-d 3 @ |
P, Pr—iav -!-——L—‘-ﬂ- n>1l
i i];[l (1 + 20
L (0)
2pg ) - 2 (1) '
- P71 vhere r= __m_z (27)
(n+ l)u(o) M
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For the case 0 = u](o’. we thus have the equilibrium fraction of blocked
nodes (Bq. (28)) and the distribution of clump size (Bg. (30)).
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In Appendix B we apply the clumping analysis to the 8-neighbor
case (shown in Fig. 5) to obtain the equilibrium fraction of blocked
nodes for this network configuration when o = u(o) . The results ob-
tained from the clumping analysis are good for the case o = u(o) in
both 4- and 8-neighbor configurations. But the results are very poor
for o > u(o) , and this is probably attributed to the interaction of

clutps. We treat this case next.

Figure 6. Eight Neighbor Lattice

3. Average Cluwp Size for o >J(°)

Although we have not arrived at a method for determining clump

size distribution in the more heavily blocked cases (i.e. 0 > u(o)),

we
have a method which gives a crude estimate of the average clump size for
these cases. It is based on the idea that any node is potentially the

"origin" of a clutp. The network model, Eq. (18), gives the equilibrium

probability p Of a blocked node for o 2 u(?) while the clumping
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analysis, Bg. (30), gives the distribution of clump size from an isolated
node (only for o = u(o)). To treat the case o > u(o) we must combine
these ideas.

We assume that clumps occur as overlaps of clumps from origin
nodes which are distributed wniformly across the lattice with probability
p. It would seem that a problem of conservation of blocked nodes might
exist, but for estimating the average clump size this method gives good
approximate results.

Let us take the left-hand extremity of a cluwp as its "origin."
We will use a simplified clumping analysis that assumes clumps are always
linear with growth or death occurring at the ends. This is generally a
poor approximation, but it has the advantage that the length of a cluwp
is then geametrically distributed and analytic results are possible. In
particular, we will find the probability that a point is neither an
origin nor is "covered" by a clurp and call this P[empty "gystem"].

The relationship of this system to an infinite server queueing
system (M/M/=) will be shawn. Using arguments similar to those used in
[7] to get the average length of a busy period in a single server system,
we will get the average length of a one-dimensicnal clump for the case
o> u(o). Finally, we will enploy three different topologies for the
average two-dimensional cluwp and/or different interpretations for the
average one-dimensional cluwp length to get estimates of the average
clung size for the two-dimensional case with o > u(o).

Let us suppose that nodes are marked (blocked) with probability
p, the equilibrium fraction of blocked nodes cbtained from Eg. (18) by
letting t + =, Associated with each marked point is a length, geometri-
cally distributed, which extends out to the richt as in Figure 6.
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Figure 6. Clumping Model for 0 > '@

p(a =¥ = (- &l x=1,2,...

where k = 1 corresponds to a clump of size one

P(Lsk) =1-P(>k) =1- X (1-a)oj'1=1-o“
okl

Ifapointisnotmveredbyalineoranark, then we say that the sys-
tem (i.e. point) is "empty."

P lenpty systen] Zp = (L - P[] (@ - p) + 02 - *)
k=1

-Ma- po%) (31)
k=0
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Using

ey =x -l 21,3 1.8
log(l - x) > 2x2 X X

we have

'3-(00)"

_ _k_1 k2_
10990— (-po i(po)

k=0

N - B p? 1_p°

1-0 21-02 314
» j
B —e 32

We make the restriction p < 1/2 since, analogous to the conjectured
exact result for the critical probability in percolation theory (see
Chapter 2, "Related Work"), the probability of an infinite clump may be
non-zero for the case p 2 1/2. Approximating p, by the first term
only, we have

Py~ € - TE= (33)

Let us compare this model to an infinite server queueing system
(M/M/=) . The average interarrival time of customers to such a system is
1/A seconds and a customer departs after receiving an average of 1/u

seconds of service. For this case we have

P[enpty system, i.e., no customers] = e -

=]>
m
d

In our nodal blocking system the "average interarrival distance" between

marked points (in nodes) is

35
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%=p(1+2(1-p)+3(1'P)2+... )

=p 2 k(1 - p)k-l
k=1

Let X=1-p

1 d ¢ d 1 _
then PR LY CPRTITET L,

The "average" service distance" (in nodes) is

1 2“: k=1 _ 1- ¢ 1

== k(1 - 0)o = =

L~ 1-02 1°°9
and P0=e-%=e-1—§7a;po

Thus the system we are considering corresponds approximately to an in-
finite server queueing system.

Our system is "empty" with probability p, and "busy" with probabil-
ity l-po. In any line of N nodes or points (N >> 1) Np, will,
on the average, be empty and N(1 - po) will be busy (see Fig. 6). The
average length of an empty string is the average interarrival distance
for our system = 1/p nodes. Therefore, the Np, empty nodes will, on

the average conprise
NPy
%~ "o P

distinct empty sets or strings. Therefore, the average length of a busy

string is

W F T TP (34)
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which is analogous to the average length of a busy period in an W1
queueing system (7].

We must still determi:2 o, the parameter in the geometric length
distribution We do this by omsidering a line of n block:d nodes and
assuming that growth or death can only occur at the ends of the string.
Then we have the following:

O X X .. X X O X = blocked node

- n - 0 = free node

This implies the following birth-death process for chain length:

4 (0 2 (D (D
@O O _
(] . 24 2u

Define qn=P[cha1'.nisof length n], then

A (0)
9= %

NG A2 A
q, = —Tn-zu =q —(-D-u n>1

(1)
Clearly, we should take o = in our clump nodel
ullS

There are at least three possible approaches to the determination

of the average clump size C:

1~ Po
po P

is the average length of the intersection of a randam lire with a circle

I) Assume all of the clumps are circles of radius R, and & =
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of radius R. Kendall and Moran [22] give the average length of the

intersection to be 1/21R. Then we have

l1-p 2(1 - p,)
I= 0=%1'|'R = R=————2—
Py P Dy P
2
2(1 - p,)
= 1 0
Cgﬂnzz—(._—-—) (35)
T\ P, P

where p,me - p/(1 - 0) and p is the equilibrium fraction of blocked
notes cbtained from the network model.

II) Assume 1 is the diameter of an average clurp (assumed circular),

=\2 :
C= n(%-) (36)

III) Assune 1 is the length of the side of an average clump (assumed
square) , then

C=T12 (37)

For the case which prompted this analysis all three of these methods
give an average clump size within .9 of the value cbserved in sumlations
(approximately 3.48). Method I overestimates the cbserved value by .76,
method II underestimates it by .86, and method III underestimates it by
.16.

4, Maximm Clump Size

A model which predicts the size of the largest clump surpris-
ingly well was suggested to the author by Mr. Tom Leavitt of the UCLA
Computer Science Department. In previous sections we assumed that
"stringy” clumps are more common than round or square ones because
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growth in a probabilistic system occurs by shooting out projections in
random directions. These random projections actually "weaken" the clump
by exposing it to more free nodes. Weacpectﬂelargectdunpémsm
a tendency to minimize their circumference with respect to their area.
Therefore, in modelling the largest clumps we will use rectangular
clump topologies. We assume that a clumwp will increase in size until
the nutber of free nodes on the border that are becoming blocked is
equal to the mmber of blocked nodes on the border that are becoming
free. This equilibrium point correspords to the largest clump. In
order to perform the analysis we must make the following assumptions:

1) all clunps are rectangular

2) blocked nodes not on the border will remain blocked

3) every blocked node on the border has exactly three blocked
neighbors

4) every free node on the border has exactly one blocked neighbor

An exanple of such a clump is that shown in Fig. 7.

NRRNRRNN \\\\\\\\\ \\\\\\\‘ NN

OB SNY
i
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X = BLOCKED NODE
0= FREE NODE
/! = BLOCKED BORDER
\\ = FREE BORDER
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We see that the number of blocked nodes on the border is
2L + 2(w=2) =2(2 +w-=2)
and the number of free nodes on the border is
28 + 2w+ 2) = 2(1 +w+ 2)
At equilibrium we have
200 +w - 2Pt = 200 + w+ 22 Wae

(n, G
= 2(A + ')
brv=S O,

For a fixed border size, the nunber of nodes in the clump is maximized

for L =w, or
(1) (3)
20 = 200 +% )
I -2
Therefore, the expected maximm clump size is

A1)

2
(3)
2 _ +
L -[}LG;__AET] (38)

U

There ~re two reasons why this result estimates the maximum clump size

and not the average clunp size:

1) Cluwps do not grow by adding entire borders; they add projec-
tions that weaken the clump. '

2) The model assumes, incorrectly, that blocked nodes within the
clunp cannot became free; but they do and this further weakens
the clump.

A number of nodels and results have been presented to characterize
the behavior of a network of two-stage Markovian nodes. The efficacy
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of these methods will be shown in the next section in which we discuss

the network simulation.
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CHAPTER 4
MARKOV MODEL NETWORK SIMULATION

A. Description

Simulation of a network of 1024 nodes employing the Markovian in-
ter-event time assunption has substantiated the analytical approxima-
tions described earlier. The two different programs which simulated
this network are listed in Appendix C. These programs run on the UCIA
XDS Sigma-7 camputer.

The first program simulates a network arranged in a square grid
32 x 32 and simultaneously displays the net activity on a Digital Equip-
ment Corporation 340 Precision Display CRT (Fig. 8). Each node is con-
nected to its four nearest neighbcrs (a lattice) except in the case of
the nodes along the border, which have only three nearest neighbors (or
two nearest neighbors in the case of the four corner nodes). When a
node changes state, new event times are chosen for it and for all of its
nearest neighbors based on the new number of blocked neighbors. The
memoryless property of the exponential distribution simplifies the cal-
culations.

The second program simulates a randamly connected graph in which
each node is given exactly four neighbors. Due to memory size limita-

tions, this program does not have a graphical display.

B. Cawarison of Observations and Predicted Behavior

1. Fraciion of Nodes Blocked

Coamparison of the network model (Eqg. (18)) and the simulation
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Figure 8. Network Simulation CRT Display
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results for the lattice cid the random graph are shown in Figs. 9, 10,

and 11 for three different sets of system parameters o and u(O)

each
starting both from completely blocked and completely free nets. In Fig.
9 the equilibrium fraction of blocked notes is obtained from Eq. (28) of
the clumping analysis.

At any point in time the network model (Eq. (18)) predicts some
value f as the expected fraction of blocked notes. Assuming no corre-
lation between nodal states and a network having 1024 nodes, B8, the

standard deviation of the measurement of the fraction blocked is (23]

g = Q-8
At equilibrium we have in
Figure 9: £=.07 B = .00796
Figure 10: f=.,25 B = .0135
Figure 1l: f=.833 B = .01165

With a 95% confidence limit of 1.968 and a 99.7% confidence limit of 38,
we see that in Fig. 9 the assumption of independence is completely un-
acceptable. Recalling that the equilibrium value for this case was pre-
dicted fram the clumping analysis which shows a high degree of correla-
tion, the deviations abserved in the equilibrium value in Fig. 9 are not
surprising. The behavior cbserved in Figs. 10 and 11 is generally with-
in the 99.7% confidence limit. Occasional excursions outside this range
show the effect of clump formation and dissolution.

Figures 12, 13, and 14 give simulation results for the two-dimen-
sional integer lattice in which each node is assumed to have eight
neighbors. This was accamplished by extending the nearest neighbor defi-
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nition to include nodes which are diagonally adjacent. The random graph
program, because of computer memory limitations, could not be modified
to include the 8-neighbor case. In these figures camparison is made to
the predicted behavior cbtained from the network model assuming every IMP
has exactly nine output lines, one of which goes to the HOST. The equil-
ibrium fraction of blocked nodes in Fig. 12 is obtained fram the clump-
ing analysis given in Appendix B.

Figures 15, 16, and 17 compare simulation results on the lattice of
degree four, when a free node with k blocked neighbors is considered
k-fourths blocked, to the predicted behavior based on a non-linear "par-
tial blocking" model. This model makes two assumptions:

1. The disturbance (i.e., blocking propagation) spreads out in a

wave-like manner from blocked nodes and can be characterized as
a Poisson growth process of the type studied by Morgan and
Welsh [15]. In particular, we assume that the blocking starts
with a single blocked node in the center of the network and
that blocking is limited to what we call the "disturbed area"--
those nodes which are within a distance r(t) of the center
node.

2. If the number of blocked nodes within the disturbed area (com-
prising a total of N(t) nodes is n(t), then the number of
blocked neighbors k(t) seen by an average node within the
disturbed area is

k(t) = 4 E—((%-+ 4 (1 - 3_((_8_) E(E)
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N(t) is found by assuming that a free node on the edge of the "disturb-
ance wave" sees on the average 1-1/2 blocked neighbors as pictured below:

X O
X X O

X = blocked node
Y X O

0 = free node
X X O
X O

Then the radius of the disturbed area, r(t) is given by (15] as approxi-

mately 2\t where

1.5 0 , 1.5

r=alS oo -y 5“(0)

These equations must be integrated step by step. The results are gener-
ally poor except in the case o = .02, which is relatively insensitive
to changes from the basic 4-neighbor network model.

2. Distribution of Clump Size for ¢ = u(o)

Figure 18 compares the equilibrium distribution of clump size
cbserved in the 4-neighbor lattice simulation to the prediction based on
Eq. (30). Figure 19 gives the expected clump size distribution in a
lattice when the blocked nodes are placed randomly on the lattice with
an average fraction blocked of .07 as given by Roach [16]. We compare
this to the clump size distribution observed in the random graph for the
case o =1'®, N =50 by fomally assuming that the nodes are in a
lattice. The result of this assumption is a mapping that randomly die-
perses the clumps. The agreement is excellent, and by comparing Figs.
18 and 19 we see that the clumping in the Markov network is not at all
random (i.e., uncorrelated).
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3. Average Cluwp Size for o>ul® 5 \

\

3.48 was obsexved in the simulation after equilibrium %s attained. Thé,

For the case ¢ = .01067, u(o) = .01 an average ciurp size of

three different methods for pred?.ct:.ng this value give estimates of 4.24,
2.62, and 3.32, respectively. Straightforward hpplication of the clump-

\ ing analysis (Eq. (28)), which is valid for o = u(O) A yieléls a value

greater than 6. Hence these new methods offer some improvement.

\

4. Maximum Clump Size "

|
Figures 20 and 21 show the du)tr:.butl.m of the maximum clump

H A

| size cbserved in the similation for two different sets of parameters
after equilibrium is reached. Figure 21 shows the effect of "harmonics"
\ of the expected mm:imm clump size as large clumps catbmed for short
| times. The results are remarkably goo& especially cons:.dermg the dis-
persi,on in the distributim in Fig. 21. !

\
\

{

C. “THot Spots” - Analysis and Results ' !

\ | In this section w\e analyze tl'le effect of placing a smll number of
high rate of blocking (i.e. 0>>u'?) nodes into networks of predomi-
\ nantly low rate of blocking nodes (o<u(°)) We call these h;gh rate of
\ blocking nodes "hot spots”. The gimilatiph of a smglé hot sbot (with
o = 2u'?) placed centrally in a13_2 x 32 network of nodes with
| o = 110 /2 revealed that such low rate of blocking nodes effectively
prevent blt;ckmg propagation. ‘The high rate of blocking node was the |
only node in the network that was ever observed to"‘bloc}:. Hence in the
analysis to fallow, the low rate of blocking nodes will be assuned to
‘ have o=u(°),N;50, and weiwill approximate the hot epots as being

. penm,nentl)\r blocked. L

\
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Line of N Permanently Blocked Nodes

X X .. X X

N —

Suppose a line of permanently blocked nodes is put into an environ-
ment of nodes with 0 = u(o) and N = 50. For a network consisting en-
tirely of this latter kind of node, we know that the expected maximum
clunp size is 9 nodes. This leads us to expect a triple row of N
blocked nodes, including those permanently blocked. Therefore in a net
of 1024 nodes, recalling that .07 is the expected fraction of blocked-
nodes in the absence of permanently blocked nodes, we should have, with
ouwr blocked line,

E[fraction blocked] = (3N + .07(1024 - 3N))/1024
x .07 for N smll ‘ (39)

For N = 32, i.e., the line of permanently blocked nodes spanning

the network, we should get

E[fraction blocked]

(32 * 3 + .07(1024 ~ 32 * 3))/1024

.157 (40)

For isolated permanently blocked nodes we must again consider the
growth topologies and the Markov chain structures.

Let @ indicate a permanently blocked node
X indicate a temporarily blocked node

(1)
® A = 47
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We see that from a single permanently blocked node growth occurs at a
rate of 4).(1) . Let us look at a cluwp of two and form the carrespond-

ing Markov chain:

= g (D

J\z = 6A
= (1)

X @ My = W
M3 = 3um

The death rate out of state 3 (i.e., a clump of 3) assumes that
either of the following topologies

X @ X or X ®

is much more likely than

X X @

Already we have been forced to make approximations. The topological
problems which we face in this analysis are even more difficult than
those faced before in analyzing the system to ocbtain the average nuwber

blocked for the case c=u(o). At that time we found it useful to make

the appraximation

A =2m+1n B n>1

W (n+1) (2.) n>2

In tte system with permanently blocked nodes the growth rate at
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different clump sizes should be the same as those above. However, the
permanently blocked node cannot, by definition, become free. Assume that
it is well within the clump at larger clump sizes. Then we should use
the y given above diminished by ya0 ere km is the highest
nutber appearing and the expression for e Hence we will assume the
following growth and death rates:

w=2m+mP  n>1
un=nu(2) n>2
Then
n-l Xi
p. = I—L n>1
n p11= Hivl
n=1 ,. (1) -
= p 2(J.+l)x2 =p1rnl n>1
1= (i+1)u”
(1)
v;.rher:’er=2A
H
- -] [+ -] p
n 1
Tp =1l=p Lr ==
nel P o 1-°F
Therefore
pl=l-r
ard
pn=(l-r)rn n>1

E[# in system] = ) np = (1 - r)ann-l
=l n=1

(1)
e — =2
—l_rwherer-—(--)—uz
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ag= .01=u( s N=50
(1)
)‘(l) =0 - l-l(l) =0 - u(o) +£5--= .002
W2 20 %u(O) S To06
Therefore
_al o
¥ _('u 2) -3
Therefore
E[# in systen] = 21— =3
3

Thus an isolated permanently blocked node should, on the average, cause
a clup of size 3 to be produced, i.e., itself plus two temporarily
blocked nodes. If there are N isolated permanently blocked noces and
N is less than, say, 100 we should have

Elfraction blocked] = (3N + .07(1024 - 3N))/1024 (41)

If N is large, i.e., greated than 100, we must iterate to a solu-
tion as in the following example. Oonsider a lattice of 256 permanently
blocked nodes superimposed on the 1024 node network:

2 Jo |2 Jo |2
2 2
@
%oﬁzoz
¢
12 o |2 lo |2

The number: -ide a node indicate how many permanently blocked nodes

65

s



that node has as neighbors. It is easy to see that one-third of the
non-permanently blocked nodes are of the O type, and the other two-
thirds are of the 2 type.

From the amount of time spent in the blocked state and the free
state, we know that a node with X blocked neighbors is blocked with

prabebility

1
£ - %) _ 2 | A X
* Zoo Tl W0

Therefore, we have as a first step in the solution
E[# blocked] = 256 + 512 f2 + 256 f0
with

2
(2) _,(0) (0) /
f=A =2 U +§u =-g-andf=°50=-02
2 o] o] 5 0 o

Ietk2=average#ofblockedneighborsforatype2node
k0=average#of blocked neighbors for a type 0 node

then our iter-+ion proceeds as follows:

k2=2+2*f0=2+2(.02)=2.04==‘-2
k0=0+4*f2=4(.4)=1.6

g A2 %2,

2 o 5
k2=2+2*f0=2+2(.32)=2.64
k0=0+4*f2=4(.4)=1.6
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2
Kk
08
fo =3 = -32
k,=2+2%£)=2+2(.32) = 2.64
ko=0+4*f,=4(.528) = 2.112
k
2
ff2='§-'= 0528
k
0_
£, =5 = .422
’k2=2+2* £, = 2 + 2(.422) = 2.84
ko =0+4* f2 = 4(.528) = 2.112
k
-2 _
£, =g~ = .569
0=3k9- .422

We will end the iteration at this point and get as an approximate solu-

tion
Effraction blocked] = (256 + 512 f2 + 256 fo)/1024
= ,639
In the limit the E[fraction blocked] = .66176. (42)

The last case which we will consider is that of an R X R clump of
permanently blocked nodes, with R > 2. Modelling the border of this
clump as a line of permanently blocked nodes formed into a square, we
should expact the clump to increase to (R+ 1) X (R+ 1).
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Therefore,
E[£raction blocked] = ((R + 1) + .07(1024 - (R + 1) 2)y /1024 (43)

Table 1 lists the results cbserved in the simulation of hot spots on
the 32 x 32 grid for the following cases:

1. Two hot spots side by side

2. Two hot spots separated by one low rate of blocking node

3. Three hot spots in a connected straight line

4. 32 hot spots in a line (one whole row of the network)

5. A lattice of 64 hot spots spread evenly over the 32 x 32 grid

6. A lattice of 256 hot spots spread evenly over the grid

7. Four hot spots in a 2 x 2 cluwp

8. Nine hot spots in a 3 x 3 clump

9. 25 hot spots ina 5 x 5 clump

Time Total

% Blocked of % Blocked Observation % Blocked  Pertinent

Case High  High Average Time (Prediction)  Equation
1 10.0 1327 7.5 1636 7 39
2 8.4 953 7 1331 7 39
3 8.6 1901 7 1985 7 39
4 16.8 2412 13.5 3581 15.7 40
5 25.4 838 24 1265 24.4 41
6 64.3 632 63 758 66.2 42
7 9.6 1897 7 2060 7 43
8 10.7¢ 2237 8.4*% 2380 7 43
9 10.7 1731 9.2 2098 10.2 42

HOi SPOTS RESULTS

TABLE 1

*The high value and the overall greater average were due to the forma-
timofalargecl\mpﬁxatwasmtcmnectedtoﬁxe3x3c1ump.
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These models have clearly proven their applicability. This campletes
our analysis of hot spots.

So far we have permitted ourselves the strong assunption of two-
state Markovian nodes. In the next section we treat the application of
these results to a simulated camputer-comunication network of 64 nodes
which has many real world properties.
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CHAPTER 5

SIMILATION OF A NETWORK WITH MESSAGE TRANSFER

A. Description

. A program which simulates a store-and-forward cammunication network
of 64 nodes was run on the UCLA XDS Sigma-7 computer (see Appendix C for
a listing of this program'. In this network messages are sent from ori-
gin to destination nodes under nearly fixed routing strategies. The es-
sential characteristics of this simuilation network are the following:

1. Nodesarearrangedinansngridarxiarenmberedconsecu-
tively from 1 to 64 by rows. Any node i isconnectedtonodesiil,
i + 8 modulo 64. The result is a "twisted torus," which shows conplete
symmetry fol- each node. (A torus network prevents the center of the net
from becoming a bottleneck, and a "twisted torus" is conveniently pro-
grammed. )

2. Message lengths are exponentially distributed with an average
of 5/u'? units.

3. Every node has storage for exactly N messages (1 < N< 50).

4. The arrival rate of requests for inputs to the IMP from the
HOST is (o - 440 5).

5. When a blocked node becames free, each of its neighbors who has
a message for it makes a request to send that message to it at a rate of
0 RETRY (or just o RE).

6. FRouting is fixed. The routing algorithm, after being queried
by a node, relays to that node the "best" next node and the "second best"

Prece'ding page blank
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next node for that message based on its fina) destination. However,
every queue within a node for an output line from that node is limited
in length to N/4 + 1. This avoids the "deadly embrace" that could re-
sult if two adjacent nodes should fill up with messages for the other
and thus both became permanently blocked.

7. Messages are sent to and fram the HOST on lines equal in capa-
city to an IMP-IMP line.

8. Message destinations are chosen within a node from a uniform
distributioa on the remaining 63 nodes.

With these assumptions the network was simulated with u(o) = ,01,

N = 50, and various values of ¢ and ¢ RE.

B. Observations

The surprising result of these simulations was that eventually, the
network blocked completely in every case observed for o > u(o) . The
network in the case 0 = u(O) » did show a degree of stability, however,
requiring an extremely long time to block completely. After the network
had blocked campletely, an inspection of the contents of the nodes showed
that each was filled with messages destined for the other IMPs, i.e.,
they ocontained no HOST messages. An explanation and model for this be-
havior and the camplete blocking of the network is given in the next

section.

C. Derivation of the Mbdified Network Model

The basic reason that the IMPS become completely filled with mes-
sages for the other IMPS can be stated very simply. In a non-blocking
network an equilibrium exists between the input-output rates (and the
average storage required) for both HOST and non-HOST traffic. Blocking
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causes a decrease in the output rate of non-HOST messages while the in-
put of such messages remains constant. On the other hand, blocking has
no cffect on either the input or the output rate of HOST traffic. The
loss of equilibrium between the input and output rates for non-HOST traf-
fic causes a gradial increase in the storage required for such traffic.
Eventually, the storage is conpletely taken over by non-HOST traffic,

and thus the rate at which the network delivers messages to destinations
(HOSTS) goes to zero.

We now present a mathematical model for this phenomenon. Consider
once more the simplified network model shown in Fig. 4.

The rate at which the system becomes free is u(o)/S, which is
equal to the average rate of message transmission into the HOST. Simi-
larly, the rate at which the system becames blocked is ¢ - u(o) which
is the excess of the arrival rate over the total service rate. This
model assumes that there is always a message in the IMP that is destined
for the HOST. In real networks such may not be the case.

Let P(t) = P[there is a message in the IMP destined for the HOST
at time t]. Then the average rate of transmission into the HOST is
p(tu{®/5 and a better network model would be that shown in Fig. 22.

ple
plt) ——

o_”loi

Figure 22. Modified Network Model
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This model yields the following system equation:

(t) : (0)
de = pg(t)ic —\_. (0) +% \p(t)) to- u@ .

where pB(t) = P[system is in state B (blocked)].

Before solvint this equation we must derive an e:épression for
p(t), which we do by employing the Ehrenfest nodel of diffusion [24].
We will make the optimistic assumption that the IMP is completely filled
with messages (optisq:i.stic because it increases the char\lge of finding a
message in the IMP that is destined for the HOST) and neglect the fact
that this means it is blocked. We will use the modified network model
(Fig. 22) to get the fraction of blocked nodes given p(t), and p(‘t)
will bei'determined at the same time by means of the blocking history.
We will then\solve this system of eqaat:.ons.
\ Suppose ‘that we ha\}e “two barrels labeled HOST (H) and Store—and—
i?oxward (SF) . Distributed between these two banjels are N marbles
(messages) . At random times* one or the other of these\;barrels is chosen
according to some probabilit)‘r_l law, and a mafble is taken from that barrel
(if it has a marble). With some probabii.r the marble is put into the
SF barrel and with the complementary probability it is put in the H
barrel. |

The state of the systen is the m:mbe.r of marbles in the SF barrel
at time %, or aquivalently, the nurber of storage cells requlred for

| .
store-and—foxwlard traffic. . In particvlar, we want to know

S |
pN(t) = P[barrel SF contains all N marbles]

|
*The .interval between thes\e times is presumed to have an avbrage value
equal to the average time required for a transmission plus an arrival
given the condition of the network, i.e., the fraction of blocked nodes.
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\
which corresponds to the case of a node with no traffic deliverable to

its HOST. Then it follows that

p(t) =1 - pN(t)

Choosing barrel H and withdrawing a marble from it represents the
transmission of a message to thé HOST. If there is a message to be
transmitted, the transmission rate is u(o) /5 (more generally it is
Mlu(o)/M, if there are M output lines of which M, go to the HOST).
Choosing barrel SF and taking a marble from it represents the transmis-
sion of a store-and-forward message. If a fraction £(t) of the nodes
are blocked at time t, then the average output rate for store-and-
forward traffic is 4/511(0) (1 - £(t)) assuming that there are at least
four store-and-forward messages in the IMP and all of the output lines
to other IMPs are being utilized. The total output rate from the IMP
is thus . !

: ;
C L A0 ) =40 4O
The probability of choosing barrel H given that there is a marble in H
and at least four marbles in SF is thus
‘9 | 95
u 0. -g—u 0 £ty

L)
]

and the probability of choosing barrel SF under the same conditions is

4 (0)
'1 (1 - £(t))

”‘é

For the case of j SF messages in the IMP with j < 4, the output
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rate for SF traffic is j/4 times the output rate for j = 4. The total
output rate and the probability of choosing a barrcl must then be adjust-
ed.

Assume that the average path length in the network is L. Then, on
the average, a message visits L + 1 IMPS in making its way through
the network. If the time spent in any segment of the path is appraxi-
mately the same for all segments, then the probability of a message be-
ing in any particular segment of its path is 1/(L + 1). In particular,
the probability that a message is in its final path segment is 1/(L + 1).

Placing a marble into barrel H represents the arrival of an IMP of
a message that is destined for the HOST, which occurs with probability
1/(L + 1). Similarly, placing a marble into barrel SF represents the
arrival of a store-and-forward type message, and this event occurs with
probability L/(L + 1).

Let us define

PHA(t) = P[HOST type message arrival] = P[placing a marble in

barrel H])
PSA(t) = P[store-and-forward type message arrival]
= P[placing a marble in barrel SF]
Pm.(t) = P[message transmission to HOST] = P[taking a marble fron
barrel H]

PST(t) = P[message transmission to another IMP]

P{taking a marble from barrel SF]

E. = event that there are j marbles in barrel SF
aij(t) = P[going from E; to Ej in one step, i.e., one message
transmission plus one message arrival]
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If there are no store-and-farward messages in the IMP, then the praba-
bility of a transmission to the HOST is one, and if the IMP is completely
filled with store-and-forward messages, the probability of a store-and-
forward transmission is one. Analogously, we are not allowed to choose
an empty barrel from which to withdraw a marble. As a result we get
the following:

ag (t) = Pga (t)

a50(t) = B (V)

ajj(t) = Pya (t)Pyp(t) + Pgp (B)Pgn(t)

ajj_l(t) = Pgp (t) Py, (1)

ajj+l(t) = Byp(t)pgy ()

an-1(8) = P (V)
agn(t) = pga ()

where, for simplicity, we have not listed all of the cases aij for

i or j<4.

Let
At) = [aij(t)]
P; (t) = P[Ej at time t)
and”
P(t) = [py(t),py (£),py(t) ... By(t)]
then

P(t + At) = P(t)A(t)

We have assumed that the IMP is campletely filled with messages; there-
fore, we must have a message departure before we can allow a message

arrival. Thus, given the fraction of blocked nodes in the network
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£(t), and a message arrival rate to the IMP of ¢ message/sec., we have
that the average time required for one step (1 departure + 1 arrival) is

1 1
At = + = (44)
WO B0y ©

The other equations comprising the system of equations that must be
solved to get p(t) ace the following:

(0)
afe) = - £(0) 0 - w0 + L p(e) +0-u® (45)
dt

P(t + At) = P(t)A(t)

P(E + At) = 1 - p(t + AY) (46)

To actually calculate the solution to this system of equations we
must be given the initial values p,;(0) and £(0). Equation (45) is
integrated step by step using a value of p(t) that remaiis constant
for a length of time At given by Eq. (44) whereupon it is recalculated
using Eq. (46) with the new values of a5 (t).

The solution of this set of equations shows that the fraction of
blocked nodes changes very slowly and the final value is higher than
that preducted by the unmodified network model (Fig. 4). If state N is
made an absorbing state, i.e., ance the IMP kecomes filled with store-
and-forward messages it remains in that state, the model predicts that
the network locks completely for the case o > u'®) with probability

one.

D. Camarison to Simulation

The modified network model predicts that the case ¢ = u(o) should
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be stable, i.e. should not block completely. This is a weakness in the
model. By the clumping analysis we know that the equilibrium fraction
of blocked nodes in a network with these parameters and N = 50 should
be about .07. Any amount of blocking will result in a loss of equili-
brium between the input and output rates of store-and-forward traffic
and thus we expect camplete network blocking to be the final result.

In one similation run with o = u(o)

and N = 50 the network
stayed in the range 3.1% to 12.5% blocked for 98,000 time units. This
may be compared with a time of 2,000 units which was the time required
to reach equilibrium in the unmodified network model (Eg. (18)) for this
set of parameters. This message transfer simulation required a net time
of 250,000 time units to block completely, the net time being the amount
of time from first observed blocking until the entire net is block.d.

A subsequent run required 180,000 time units to block completely. Both

of these runs used a value of 1,000 for The effect of this value

g *
was almost to insure that when an IMP becomes free its empty spot gets
filled with a message fram another IMP, which may be a HOST message.
This tends to free the net. When op, was decreased to a value of
.002, a rate camparable to that at which messages are arriving from the
HOST, the net time tu total blocking dropped to 91,000 time units. A

g caused this net time to drop to

further decrease of Opp to 10
66,000 time units.

A similation run with o = .01067, '®) = .01, and oy = 1,000
(Fig. 23) again showed same stability. The net time to complete blocking
was observed to be 118,000 time units. Reduction of g W .002

6

(Fig. 24) and then to 10 ° (Fig. 25) caused the net time to drop to
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64,000 and 52,000 time units respectively. The predicted time to com-
plete blocking from the modified network model with initial conditions
p40(0) =1 and £(0) = 0 is 77,000 time units. In Fig. 25 the predic-
tion from the modified network model assumes P [store-and-forward message
arrival] = 1, and P[HOST arrival] = 0 and the same initial conditions
as before. One of the reasons that the fit between the simulations and
the predicted trajectories is not better is the difficulty of achieving
unifcrm initial conditions for the simulated network, which are assumed
in the modified network model.

Simulation results for the network with o = .02, u'® = .01, and

6 yielded net times to

Opp ©qual successively to 1,000, .002, and 10-
total blocking of 46,000; 22,000; and 24,000 time units respectively.
The prediction from the modified network model is 18,000 time units.

We see that this model is far fraom being perfect, but it does pro-
vide nearly quantitative and certainly qualitative mdersﬁanding of the

behavior of these simulated networks.
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CHAPTER 6
CONCLUSIONS

A number of new models that have application to store-and-forward

comunication networks have been presented.
First, we have the probabilistic model for nodal blocking due to

finite storage space (Fig. 2 and Egs. (3-7)). The model is applicable
when the average message arrival rate o equals or exceeds the average
message service rate u(o) . The model shows that the blocking behavior
of an IMP is approximately a two-state Markov process.

Our second model is for the fraction of blocked nodes in a network

of such nodes and also has a two-state Markov process representation
(Fig. 4 and Eq. (18)). The result appears valid for both randamly con-
nected and lattice networks and for a variety of system parameters (Figs.
9-14) . However, the model for the fraction of blocked nodes in a "par-
tial blocking” network (Figs. 15-17) needs to be greatly improved.
Various clumping mouels have been presented and shown useful for

such a network. The clump size distribution for the case o = u(o)

(Eq. (30) and Fig. 18) and the maximum clump size model (Eq. (38) and

Figs. 20 and 21) appear adequate to describe these cases. The average
clump size for the case 0 > u(o) (Egs. (35-37)) is a fair appraximation
and needs further work.

The modified network model (Fig. 22) provides a clue to the funda-

mental behaviar of store-and-forward commnication networks that are

subject to overutilization. The model treats the case 0 > u(O) fairly

Preceding page biank
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well (Figs. 23-25) but does not appear applicable in the marginal case:

Further work on models of this type appears justified. An effort
should be made to improve the moditied network model for the case
o = u{®, and investigations should be made into the transient clumping
behavior ‘in completely blocking networks. Also, the variance of the
measurement of the fraction blocked in such networks, and the time depen-
dent connectivity requires investigation.

Questions regarding the behavior of netwarks with selective blocking,
as in the ARPA network, remain unanswered; nor have we introduced the
effect of milti-packet messages. These would be important (and difficult)
areas for research.

The whole subject of blocking in networks of this type appears to
be absent fram the literature. We believe that this field contains many

additional challenging research areas.
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APPENDIX

A. Solution of P = AP + C for samne special cases

In this section we solve the network equation
P=AP +C

for some special network topologies. Recall that if there are m nodes
in the net, then P(t) is the m x 1 matrix whose ith component is
the probability that mode i is blocked at time t. A isan mxm

constant matrix and C is an mx 1 constant matrix. The solution is

P(t) = %(0) + a 1Pt - 1)C

Thus our problem is to find the exponential and the inverse of the

matrix A.
1. Lattice

Consider a network consisting of m = n2 nodes arranged in an
n x n grid with 4-neighbor connections. For this system the matrix A

is n2 X n2 and takes the following form:

D A
A D A O

A= A D A
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a b
b ab O
where D = b a b
O b ab
b a nxn
— —
and
A=bIn
where

a=-o,b--—5-—,and I is the n x n identity matrix.

We must first find the eigenvalues Y, ©f D which are the solu-
tions of |D - yI| =0. Let a stand for a -y in D; we wish to find
the zeros of the determinant of D. Expanding by the elements of the
top row, we note the following recurrence relation for the detemminant

An of the n xn matrix D:
_ 2
Ay =ah, 3 = b,
with initial conditions 4; =a, A =1, A_; = 0. Foilowing Grenander
and Szego [25] we substitute a = 2b cos 9, assume a solution of the
form A, = pn, and solve the resulting quadratic in p. After satisfy-
ing the initial conditions the result is sinply

= p" sin(n + 1)90
Ar'l sin 6

which vanishes for

0 = vn/n+l v=1,2, .., N

Therefore, the eigenvalues of D are
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v
a-'ZbCOSm V=l’2’ ey N

which are all disti.pct. The eigenvectors are the solutions of

=1 -1 r - P~ =
a b X1 Xn
9 O X2 X2
b ab a3l = Yy X3
O b a
- - ..).(W.‘. ..x"n_

It is easy to verify that the normalized solutions are

- * . xvm

&/k=\/r+—l smn+1
2

| so that the (i,j) element of eD

D _Q v
ei'j_\gle xwxvj

and o
n _
Dj; = Z o) T R Ky
where
Yy=ar- % cos nvI 1
ard
_ =)k ke

Ry = o= sin Yy
il

Similarly, itz is easy to show that the transformation R*AR (where R*

is the transpose of R) where
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-;(I i[ XI.1
1tn oo ¥ath oo fm'tn

)(]‘211_l cee szIn voe anIn

with X vk 23S given

x
1"

x I .'.X I ...x I
L_lnn vn' n nm'n |

above reduces i to the quasi-diagonal form

_Ml Oﬂ
M
_O ...Mn-

where
v
Mv D- 2bqosn+1 n

Since Mv is equal to D with a change of the diagonal element, we have

that the (k,1) element of the (i,j) block of e" is

’J K,1 me V3 Zlexp(a -2b cos——- -2b cos-&)xpkxpl

-1
By gk, = & Xvifes 2 (a-2b cosT - 2 cosghp) oy

where

n-k
(-1) sin kv

Xox = BT n+1
V 2

In our system a = -0 and b=u(°)/5 so the time constants, i.e.,

the arguments in each of the exponentials appearing in the solution for

eAt are of the form
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V.T

211(0) vin
-ot-——-s—t[cosn+l+cosﬁ—h]

which takes on its smallest absolute value for v, = vj = n. Thus the

motion of the system is bounded by

P W () RS
exp - (O g M oosn+l)t

The nmber n is the square root of the mmber of nodes in the square
lattice. This result shows that as n +® the system attains its

steady state at a rxate
exp - 0 -3 ule

which agrees with simulation results for n = 32 (see Eq. (18) and Figs.

9-11) .

2. Torus

Againweoonsideranetworkof m=n2 nodes arranged inan nxn

grid with 4-peighbor connections, but this time we assume that opposite
sides of the grid are connected together. The result is a torus, and

for this case the matrix A, again n2 X n2, takes the following form:

D A 1\—T
A D A O
A = [ N )
O A D A
A L D
b —
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where D =
O b a b
b b alnxn
— J
and
A=Dbl
n

where a = -0, b = u(O)/S, and In is the n x n identity matrix. The
solution follows from the fact that A is a block circulant matrix [26].

It is easy to verify that the transformation R*AR (where R* is

the transpose of R) where

X0'n  Xio'n  *no’n
R = xllIn see xilIn ces )S')lIn
xln-l]:n Xin-1Tn nn-1Tn
- =
Xy = 1/v/n k=0,1, .., n-1
ka= %sm_k%"' veven, #0, <n

&H_lk_ 2 M k=0’1' eey n"'l

xnk= L ifneven;k=0,l, eey n-1
/n

reduces A to the quasi-diagonal form
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where
M1=D+2A

MV=MV+1=D+2AcosX—" veven, #0, <n
Mn=D-2A if n even

Therefore, the (i,j) block of & is

)
|
o]
Lo

and

_ -1
Ai,j B 2 siX SJ M)

with My and X as given above.

sk

We observe that the matrix D is simply matrix A wherein each block is

of dimension one; therefore, the (k,1) element of eD is

m,
z kaxp ze

! 1
= p{:lxpkxpz (m )
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where

m1=a+2>
n\,=n\’+l=a+2bcosavl veven, #0, <n
mn=a-2b if n even

Since A= bIn, each of the matrices Mg is equal to D with a change
of the diagonal element. Hence the (k,1) element of the (i,j) block

of eA is
"bs
1,3 k,2 % s:|. s] 21 p,Q,
‘and
n
(m )"t
ALkt Z‘i 51’8 lxpkxpz "ps
‘where
| Mg =ag+

s

and
al=a+2)
a_= =a+ 2 cos =L reven, #0, <n
r = %41 n ’ ’
a,n=a-2b if n even

‘and with xj_j as given before.

/3. Twisted Torus

Once more we consider a network of m=n2 nodes arranged in an
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n xn grid with 4-neighbor connections. We assume that nodes are num-
bered from 11:on2 by rows and that node i is connected to nodes
i*1l, i+ nmodulo n®. A "twisted torus" results for which the connec-

tion m rix A is as follows:

D A A*
#o s O
A= [N N 2
O A*D A
*
LA A D_
Pa b ]
b ab O
where D =
O b ab
b a nxn

The matrix is a circulant, i.e., any row is a cyclic shift of the pre-
vious row. Following Bellman [26] we find that the eigenvalues are

2m;1 2nkni gnjk (n2-n) i 2_m§(n2_1) i)
vy =a+be” +e’ +el +el

=a+2b(oosz—“§-+oosz—:)5) k=0,l,..,n2-l
n

where i = /=1, and with associated eigenvectors
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E‘%i

e n

© 2K (nP-1)4
e 7 .

The eigenvalues occur in pairs in all but the extreme cases.

be shown easily:

2 2
Y, =a+ D(cos 2n (n -k)+cos——-——~—-2“(nn-k))
n =k | n
= a + Z(cos 2I¥ + cos 2IK)
n
Thus the eigenvaluzs are
Y1=a+4b
X =/
V2 kv
= — sin
&'k' n _nz veven,;éo,<n2
' 2
k=0,1 ey N°=1
. _/f kVTI'. ’ ? ey
X1k = 0 5 732
n
k
~1) neven; k=0, 1, .., n2-1

There.fore, for the twisted torus
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