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STRATEGY SYNTHESIS IN AERIAL DOGFIGHT GAME MODELS

Michael Falco and Victor Cohen

Research Department
Grumman Aerospace Corporation

Bethpage, New York 11714

ABSTRACT

The main problem of interest in this paper is the "role-
definition problem" arising in one-on-one dogfight game
models. The computational approach is aimed at providing a
decomposition of the space of game initial conditions into
sets of unilateral capture capability for each of the play-
ers, and at outlining the draw and sacrifice sets in accor-
dance with the players' individual preferences for game out-
comes. The procedure develops the feedback policy (in terms
of the observable data) that attains the above decomposition.
Two highly simplified one-on-one games are considered. The
first game model is a discrete time-state alternating move
game (perfect information) on a horizontal grid reminiscent
of the Isaacs examples. The second model is a continuous
time-regional feedback game (imperfect information) in the
horizontal plane. The strategy synthesis is cffected by a
"reinforcement learning" procedure in both game models. Com-
putational results are given in some detail for the first
game, while preliminary results are presented for the second
game model.
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"[• I INTRODUCT ION

One of the more difficult areas for applications ori-
ented workers in the field of modern optimal control theory
continues to be the one-on-one aerial dogfight problem. We
believe, in this case, these difficulties are due in part to
the fact that the one-on-one dogfight problem is perhaps
more accurately modeled as a "qualitative" differential game,
as contrasted wit~i the "quantitative"game model. Briefly,
the qualitative game is such that it contains two or more
events dealing with termination of play, for which the
players' have some preferential ordering, as contrasted with
the quantiative game for which real valued payoff functions
defined on the trajectory and/or terminal data can be un-
equivocally assumed as goals for each player, The Isaacs
"homicidal chauffeur game" and "game of two cars" (Ref. 1)
are pursuit games of the latter type. In these, the roles
of pursuer and evader are clear at the outset, and players
seek to minimize (and maximize) the capture time, respec-
tively. Dogfight game models do not come equipped a priori
with the pursuer and evader roles defined, in fact these
role definitions must be determined in the course of obtain-
ing a resolution of these games.

The approach taken here is a small step in the direction
of trying to resolve these dogfight game models. By resclu-
tion, we mean to decompose the space of game initial condi-
tions into sets of unilateral capture capability for each
player and to outline the sacrifice and draw sets in accor-
dance with the players individual preferences for game out-
comes, and furthermore to derive the associated strategies
(providing the decomposition) as feedback control policies
on the collection of observable data. Two highly simplified
game models are considered in the text. The first is a dis-
crete time-state game with an alternating move structure.
The second model is a continuous time-state game model em-
ploying "regional" feedback policies. In the case of the
first model, "perfect information" regarding the "state" at
each player's control decision has been assumed. A resolu-
tion of that game model for specified dynamics, control capa-

.- bilities, weapons envelopes, and player preferences is ob-
tained by two procedures. The first procedure is similar to
that employed by Isaacs (dynamic programming) in the homi-
cidal chauffeur game, but with some modification to observe
the stipulated preference descriptions of the dogfight in-
stead of the min max capture time criteria of the chauffeur

II



V. game. The second procedure employs a "reinforcement rule"
algorithm used in conjunction with the simulation of game
plays. The second procedure offers the conceptual facility
for immediate extension to the more complex problem present-
ed by the second model. The second model, as constructed,
does not have a predetermined move structure (simultaneous
or alternating), but instead the control reevaluation points
on a time scale are implicitly determined by the traversing
of "regional" boundaries in the observables during the course
of play. This "imperfect informatiori'model is similar in
many respects to the one constructed by Bc::-r, et al.
(Refs. 2, 3) in their "controllable" Markov -hain approach
to pursuit-evasion problems. The te:.t will outline a "re-
inforcement rule" procedure to be applied in these models as
originally described in Ref. 4, and present some prelitilnary
computational results for specific model data.

DISCRETE TIME-STATE DOGFIGHT GAME

Game Model: Description of State, Lethal Envelopes

"The state relative to Player I is given by the triple
(n,m,p). The admissible control choices for any (n,mp)
for Player I are ul,u 2 ,u 3  (see Fig. 1); for Player II are
vl,v 2 ,v 3  (see Fig. 2). We assume the game to have an al-
ternating move structure. The one step transition equations
for a move by Player I are

r n n +i 1-
1

m - m + n/k 1  0 u

p p 1/k 1  0 -1/k 1IK+l K

where K denotes the time unit and where if p t3 (see
Fig. 3) and if u- u 3 , set p - 3; or if u u.
set p -3.

The one step transition equations for a move by Player
II are

j2



i!1

Sn n f(q-1) f(q) f(q+1)

m m + f(p-1) f(p) f(p+l) v

• * p -1/k2 0 1/k 2

* In the above, q- p + 2 and

f(x) -+1. if x- +, +2

- -1 if x- -1, -2, +4, +5

= 0 if x - 0, ±3, +6

also if p - ±3 and if v - v2 or v3, set p - -3; and
if v - vl, set p - +3. The quantities u and v are
interpreted as follows:

When

u-u u-u 2  u-u 3

then ; then ; then
"•~kI 0]O

.. u 0 u , kl u 0

. 0 0] k 1

Similarly, when

v vI v V 2  v V 3

then ; then ; then

k 2 0 0

Iv 0 v , k 2  v 0

i 0 0 k 2

I
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I k and k2 are step sizes in the grid with which the
players move and are representative of the velocities with
which grid points can be traversed.!
Game Outcome Description

In general, for this game only one of four possible out-
comes can result from a play of a game beginning from any

I (n,m,p). The outcomes are:

CI capture by Player I

C I capture by Player II

SS sacrifice (mutual capture)

I. D draw

Note: We have assumed that first "passage" to any of
the outcomes CI, CII, or S terminates play.

On the basis of the lethal envelopes illustrated in
Figs. 1 and 2, the sets become:

I nAm - < O<2 }

1 15  0 3<~n <2A 5n,m,p 0 1 -3 S

-3 < n+m 0. n,,•- 11 -3 <- m-< 01
""-3 < mn O

•'" -{~~n,m,p =21[- ••O

"- -{n P 2°j -•
M. n n•m,p 3 (or -3) 0 < n 3

0 < O n+m < 3

iI

I

I1] ll al !r! mW ,m , ., . . • .-.--- '- --



A , fnmi -2
0 m <mS

Hence the sets

I. C AI n Al

D AI UAIA

dealing with termination can be described in terms of the
(n,m,p) coordinates.

bMove Structure and Information Pattern

We have postulated an alternating move structure in this
discrete game. Therefore, the move structure and informnation
patterns fall into one of the two game structures shown in
Fig. 4, where the argument of x(.) and u(.), v(') is the
time unit.

We assume the move structure and information pattern of
Game I (e.g., Player I moves first) in subsequent discussion.
The game move structure is interpreted as follows: the game
begins at x(O) (coordinates n,m,p). Player I has complete
information, that is, knowledge of (n,m,p) at the time he
makes control decision u(O). The game state is advanced via
the transition equations to state x(l), at which point
Player II, having data x(l), selects decision v(l), and
so on, until a termination occurs. At this point, we require
a stopping time parameter, T, from which a draw termination
"can be decided in a fixed number of stages of play.

5



I
5 Strateaies

The strategies for this game are the functions C,j where:
for Player I x(N) - u(N)I

Player II x(N) -- v(N)

Hence, • is a mapping from all x(N) to an admissible u

(likewise for n and v), and the totality of all ý, (nj)
the strategy spaces. N is the index of time (or stage) of
play. In our algorithm we utilize behavior strategies, and
the actual choice of move made at x(N), is then accom-

I plished by sampling from the stipulated distribution.

J" Outcome Preferences

In line with our treatment of dogfight games as quali-
tative games, there exists a preference for outcomes C1,
CII, S, and D on the part of each of the players. For
this example, a typical preference ordering might be given

[ as:

Player I C1  preferred to D, S, C11

D preferred to S, C 11

I S preferred t o C11

SPlayer Ii CII preferred to D, S, C1

D preferred to S, C1

S preferred to C

Computational Approach Using Reinforcement Rule Logic

I Model Assumptions Made for Computational Expediency

Truncation of the game state to a finite collec-
tion. The truncation is such that the region
shown by the shading in Fig. 5 represents the

1 6



I
finite collection of states, while the region
exterior to it constitutes termination as a draw
outcome. In realistic models, this boundary
would be representative of those relative range

'. values at which visual or other contact could
not be made. In our model, therefore, we con-
sider that any path, even though it starts in

4 'the interior, upon reaching the exterior is
terminated as a draw.

U Introduce a fixed termination time that terminates
all paths as draw outcomes beyond the fixed time,

j |This time is a parameter of the model and can be
varied to examine the solution's dependence on the

A values of this parameter.

* Strategies are functions of the current state only
and not time (or time-to-go) and state.

The Simulation Process

* Data

1) Indexing of the finite state 1, ... , N.

2) Dynamical systemtone stage reachable set de-
scription given for Players I and I1.

3) Classification of outcomes: sets C1 , CII,
S, in terms of weapons system descriptors
Al and AII.

1 4) Termination time specified: T.

S5) Probability distributions on control choices
. initially equally likely for all states for

both players.

1 6) Subjective reinforcement rule weigbtings as-
signed to outcomes C2 - (CI, CII, S, D) in
accordance with given orderings; weightings
ti(ý) for Player I; v(s) for Player IT.

| 7



j |Obtaining A Run

1) An initial game state is selected. A random
j number generator is consulted for determina-

tion of control choice. The sampling is done
in accordance with the probability distribu-

SI tions currently used by that player for that
state. Hence, a pair of state-control se-
quences are generated.

x(O), u(O) x(2), u(2)

x(1), v(1) x(3), v(3)

These data are temporarily stored. An out-I come is observed, say CI; the run is then
terminatp.d. Assume the arbitrary weights

-()= 2.00 v 1 1 - 2.00

p.(D) -1.00 v(D) - 1.00

(S) - 0.99 v(S) - 0.99

-(CI) 0.5 v(C 1 ) - 0.50

have been assigned. (These weights are in
accordance with the example ordering given
earlier.)

2) The reinforcement process is conducted as
follows:

Fur Player I: Assume state xi visited uI
chosen by I at xi. Hence
the distribution at xL is
altered from (-L, 1, 1) to
(½, +,I ¼).

For Player I1 Assume xi visited, vZ
chosen by II at xi, Hence
the distribution at x. is
altered from (- 3 -, to

(2/5, 1/5, 2/5).

8



This procedure is repeated for states
visited during that run by both players.
Note: This is an arbitrary procedure; other
possibilities exist, one being to alter
the distributions nearer teimination more
than those nearer the start of that run.
This is a point for further investigation and
is incorporated in the continuous model.
Hence for the procedure described we change
the distributions In the following way: Let
nl(xi), n2(xi), n 3 (xi) represent nonnegative
entries for Player I associated with state
x . Initially, nl -n- 3; hence

j nK
•! I ~ ~Probllu(xi) " K "'

j-l

J As we have assumed that C, was the termina-
tion, then the new entries become

(C 1 )11)1(xi), n 2(xi)' n3 (xi d

since uI was utilized by Player I when xi
was the current state. These quantities are
then normalized and used as new data for ob-
taining the next run of the simulation. (A
similar procedure is carried out for Player
ii.)

At this point in time, our experience with the above
model is not sufficient Lo disclose the most efficient samp-
ling procedure over the game starting conditions nor the most
efficient reinforcement rule logic. However, our experience
has shown that building from short duration games from start-
ing points close to termination outward to longer duration
games from more distant starting points (s- tar to dynamic
programming) is a preferred procedure with the reinforcement
rule mentioned.

The Markov Chain Models

As our interest in these problems is to obtain a decom-
position of the game starting conditions into sets for which

9



SI Player I can capture Player I1, 11 can capture I, and sets
of mutual capture, according to the players' respective out-
come preferences, the following Markov chain model proves
useful:

* IThe transition operators of Markov Chains are de-
scribed first. We assume that a sufficient number
of runs have been made in the simulation process
and that two families of stable distributions
representing the strategies for Players I and II
ovcr the x, have been obtained.

For Player I we can then form P where

,_- ,c x2x ,.

x1 x2 x3 xj xkI'A.xA 'R+1

xI 1 0 0

x9 0 1 0

S.3 0 0 1 0

Pm

Xi 0 0 Pij Pik Pil

XA+1 0 0 0 0 1

where j

"Pjj " Prob[x(K+l) x•I(K) - xi]

In the above, we have let

10



.......,.......
£ ii {XI E }

= 1 - {xlx e Ci

x 3 - JXx xES

We then require Pll 1 1, P22 1 1, P33 - 1 by our
first passage assumption. The entries for arbi-
trary row xi (PiA; Pik' Pij) are obtained from
two sources: ) te numerical value Pij from
the converged distributions in the strategy table
for the corresponding control choice; and 2) the
location J,k,.f from the one-step reachable set
properties of the dynamical system of Player 1.
The state space truncation to a finite collection
N with termination as draw outside this collec-
tion is treated by the additional state xq+I
with the property that

PN+lN+I "= 1.0

A similar construction is used to obtain an opera-
tor Q for Player II analogous to P for Player
I.

Given the operators P and Q, we can now compute
the following conditional probability of entrance:

Problx (K) - xi, -() 0X3 xo i

where

"0 < K<T

I 0O5v<K ,

and where T is the stopping time parameter.
Hence, we hiave the probability that play will first
terminate in C1  in T stages or less, given that
play began at x(0)- xi. These data are obtained
in the first column of the matrix [pQ]T in game I
(Player I moving first) and in [Qp]T in game II
(Player 11 moving first). The second column

! ~11 i
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signifies termination in C11 , the third column
in S. These probability data serve to provide
the decomposition sought.

Computational Results

Figures 6-9 show the decomposition obtained for game I
with kl - • k 2 - 1 T- 10 moves for each player, the dy-

1' namics, let~hal envelopes, and player preferences all being
assumed as outlined in the previous discussion. The plots
for p - -1, p - -2 are not shown as these data are avail-
able from their symmetrical counterparts p - +1, and
p - +2, respectively.

Note: One finds that all strategies are pure strategies in
the converged results as might have been expected from the
alternating move - perfect information structure of the prdb-
lem. The detailed listing of the associated strategies for
both players making up the decomposition is not given, be-
cause of space considerations.

Computer Considerations

The above described procedure was programmed for use on
an IBM 360/75 computer. The model was composed of 2166
states, (nm,p) triples, by means of equivalence class re-
ductions in the terminations of type CI, CII, S; the re-
sulting state was reduced to N - 2046 (symmetric condi-
tions could have reduced this figure by nearly half). A
total of 50,000 runs (plays) were made in arriving at the
strategy distributions. This required 20 minutes of com-
puter time. The conditional probability of entrance compu-
tations used roughly two minutes of computer time to obtain
the above decomposition. Symmetry considerations could have
reduced the running times to 12 minutes for the example
above.

Storage requirements were as follows for the above

problem:

Strategies (probability distribution

as floating point) One Stage Reachable 100,000 bytes
Set (integer packing) Simulation ( (4 bytes per
Routine with Reinforcement Rule Logic J word)

12
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j Conditional Probability of Entrance 120,000 bytes
Computations Using Markov Chain Model J

. The computer utilized has a 500,000-byte core capacity.

I A Second Computational Procedure

In this section, we briefly describe a procedure simi-
lar to that used by Isaacs (Ref. 1) (in solving the discrete
chauffeur game) and apply it to the discrete time-state dog-

1 fight model. This protedure has special merit in this per-
fect information - alternating move model in that the decom-
position of game initial conditions in accordance with the
player preference orderings is accomplished wiLh minimal
computational expense.

The procedure is as follows:

1) Given termination data CIO, CI1 0 , So (subscript
here refers to number of moves by I to termination

"-- in CI, CII, S). Given preference ordering for
outcomes for individual players.

"2) Initialize array

Control

u 1  U 2  u3  v 1  v 2  v3

* 0 0 0 0

State xi 0

I
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3) Select x dC I UC 1  US 0

a) for u if x ------ C1 0

set xisu 1 - 1.0 in array

1U

if xi---x C• C0

set xI- 0 in array

u 1

if i Ul x e D0

set x - 0.3 in array

u 1

i f x i.

set xi~u1 - 0.7 in array

b) Do a) over all uj

c) For xi

"(1) if 3 at least one u4 - 1.0 in array
for that row call xi C C1

(2) if R no u - 1.0 and at lear one
uj - 0.7 xiJ is not labeled

I
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(3) if 3 no uj-1.0, and no u- 0.7.
and at least one uj 0.3 call

(4) if 3 no uj - 1.0, and no uj 0.7,

#an no uj 0.3 call x C

4) Do step 3) over predetermined range of
x i CI U Cl U SO

0 0

5) Select xk i CI U C II u so UUCI U C1 1 U S1

if x, E C11 1C1 1  set xk, uI - 0 go to 5 d)

if xs I S U S1 set Xk, u1 - 0.3 go to 5 d)

a) For ul,vI: if x-k -x•i m

(1) if xm C I U C I
s 0

• set xe,vI - 0 in array

(2) if x C C 1 U C II
0 1

set x,,vl I in array

"(3) if X E SO SI

set x,,vI - 0.3 in array

(4) if X E D

set x2 ,v1 - 0.7 in array

b) Do a) over vj

1.5



c) For xk

(1) if x e C U C for all vj

set x3,uI - 1.0

(2) if xm e Cii U C1 I for at least one

vj set xk,uI s 0

(3) if x e D for at least one v and

d, C 1 U CII1  for any vj set
xkU 1 0.7

( I: if xm e 6 for at least one vi and

SC 11 U CII U D for any vj set

xk,Ul°m 0.3

d) Do a), b), c) for uS

e) For xk

(1) if xk,ui - 1.0 for any entry ui
call xk C C12

(2) if xk,ui - 0 for all entries ui
call xk C Cl1 2

(3) if Xk,Ui 0 1.0 for any ui, and
Xk,Ui - 0.7 for at least one ui
call xk C D

:-=_-_:-= "(4) if Xk,Ui 0i 1.0 an_.d Xk,Ui 0 0.7 for

any u i  and Xk,Ui w 0.3 for at least
one ui set xk C S2

'=-= -- 6) Do step 5) over predetermined range of

x Ck U C U S U C u C U S

I16



]I
7) The extension to 3 and more stages of play using

steps 5)and 6)is straightforward.

Note: A simultaneous move version of the discrete-time
state model presented is currently under study in the Grumman

j |Research Department. In this case, a revision of the pref-
erence ordering (from that assumed here) has been made to
obtain ultimately a game for which a zero-sum payoff property
is specified. In this case, one of the players is required
to prefer the sacrifice outcome over the draw result. A dy-
namic prograimning procedure is being used to conduct the
strategy synthesis with the optimal mixed strategies in the
single-stage subgames determined by a Brown-Robinson itera-
tion procedure. This procedure was first outlined by Kopp
(Ref. 5) in the context of a simpler simultaneous move dog-
"fight game model.

CONTINUOUS-TIHE-DISCRETE REGION GAME MODEL

IN THE HORIZOnrAL PLANE

The Continuous-Time "Regional" State One-On-One Aerial
Combat Model in the Horizontal Plane

The model for combat in the horizontal plane is a logi-
cal extension of the discrete model and thus permits quali--A tative comparison. Both vehicles are assumed to have con-e: stant velocity.

System Equations

The kinematic equations are similar to those given by
Isaacs (Ref. 1) for the game of two cars. The equations are
written in terms of a coordinate system centered on Player i
(see Fig. 10), and are given as

VI yy• + V sin 8
1I

17
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SV
m Y" •'T X - VI V cos e

SRII

w where 

wPl

V and V are the speeds of Vehicles I and II, re-
spectively;

0 and 4 the control variables for I and II, re-
spectively (both bounded); and

R and RI are the minimum turn radii of I and II,
respectively

with p - 1 x2 + y2  (Range), (z (Bearing), and 0 (relative
heading angle between VI and Vii).

Observable Data and Control Variables

Since we are interested in constructing feedback con-
trols, t(p,o,e) and W(p~w,O), let us look at a proposed
decomposition of the visual sphere (or circle and rays in
this two dimensional version). Based on discussions with
experience combat piloLs, we do not believe that relative
range, bearing, or heading can be measured accurately in the
dogfight encounter. Thus, the state of one aircraft with
respect to the other is imperfectly known. To model this
imperfect information, we ascertained in a cursory way what
is capable of being known and to what degree of accuracy.
These discussions led t3 the partitioning of the visual
sphere (or visual horizontal plane in this two dimensional
version) as shown in Fig. 11. This partitioning is made
with the assumption that Systems I and II are representative
of aircraft in the dogfighting situation. The divisions
themselves, such as Region 41 in Fig. 11, is meant to imply
that Player I can only discern that Player II is somewhere be-
tween 6000 and 12000 feet ahead and somewhere between
00 and 7½0 off to his right. In the partitioning shown

I18



i ] in Fig. 11, the shaded region denotes the lethal gun enve-

. lope of I and the region In which I uses a gunsight forii lead-pursuLt tracking.. We have assumed that a lingering

I time of 0.5 seconds continuously or 1.0 cumulative seconds
in the gun envelope constitutes a "kill;" this isa modifica-
tion of the instantaneous "kill" property of the discreteI game. The second player is assumed to have a similar par-
titioning of the space.

The partitioned state space in p and w has a third
coordinate, 0, which we are assuming again to be imperfect.
We assume also that e is known only to lie within the
values specified below for Regions 1-41 and that it is not
discernible for p > 12,000 feet wherein a vehicle would
appear at best as a black dot on the horizon. Hence, 0 is
observable within the following:

3150 < e 450 e

450 < 0 135 t2

135 < 9 225 63

225 < e 3150 e

A similar breakdown applied to Player IM. Hence, in this
model we have

41
x4
164 + 11 - 175 regions in the decomposition.

We have limited the admissible controls to be finite in num-
ber (i.e., * - ±1, 0, and similarly 11 - ±, 0), hence,
the probabilistic feedback law would be represented by the
following table of state doubles Xi(R,e), where R is the
region and 0 is the relative heading angle between I and

I
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For Player I

State Prob -t+1 Prob I~ Prob 4)O1 Xl (R1=-is 0- 1),- P,

Sx2  (R1 -l, e-e2)
2L- 1 2)

X 4 (R -41, e m 49i x64( -4,0=4) P164 ,+1 PI6,-I P164,0•

X1 6 5 (R -42, all e)

x 1 7 5 (R-52, all 9) P 1 75 ,+ 1  P175,-1 P1 7 5 , 0

where p,•- is the probability of choosing the control
-1 when -Payer I discerns that Player II is in Region 164
with respect to himself.

For Player II, we have a similar table with the states given
by the proximity of Player I with respect to Player II.

State' p-1PVob . +i Prob 00

X1  (R1 M, e-el) Pp,+I Pl,-i PI,O

1X7 5 (R 52, all 0) P1 7 5 ,+l P175,-i P175,0

The sets of capture C1, CIl, and sacrifice S cannot neces-
sarily be identified in terms of p,w,0 at the outset, even
though one may be in the envelope of the other, due to the
linger time stipulation.

I I 20



Simulation Procedure

Assume that a family of games is played with durations
0 < -I!, < T2 < ,. < T (see Fig. 12). Assume that the game
begins at •nitial conditions ý (say in Region 23 for I,
corresponds to 52 for II) and has duration TI. [We select
initial conditions close to termination for I (and II). ]

Choices of control are selected from X(R -23, e- 0i)
for Player I and X(R -52, all e) for Player II. Say, fcr
argumenes sake, that they are 0 - +1 and p - +1, respec-
tively. The differential equations are integrated from ,

using 0 - +l and 7p - +1 until Region 23 for I or Region
52 for II is exited. If either occurs (or both), the new
region for that player is consulted (say 23 - 22 for I,
II continues with, 52); hence X(R - 22, 0 - 01) is con-
suited for the next control decision for I which, say, is
0 - 0. We continue in this way until an outcome CI, CII,
S, or Ti is observed. Meanwhile, the "state-control"
pairs have been temporarily stored. For

1 23, 0 - +1 ; 22, t - 0

II 52, ' - +1

As in the discrete model, the reinforcement rule is applied
to alter the distributions with respect to the temporarily
stored data. We have modified the reinforcement rule to be
other than multiplication of the control choice chain during
any one run by a constant and then normalizing. We have in-
corporated a linear weighting that reinforces the control
choice chain more strongly after many plays of the game,
hopefully avoiding the reinforcement of a basically poor
choice of control that may have led to a successful outcome
on the part of one player because the second had not yet
learned how to play adequately. We repeat LIis procedure
over many • in regions close to termination using time
parameter TI; T2  is then selected, and experiments re-
peated over in regions not previously covered by experi-
ments using Ti.

Note: In this model we do not have to decide whether the

game is of simultaneous or alternating move structure; the
sequence of moves in time resolves itself in accordance with
the assumed decomposition among the observables and the in-
tegration of the kinematic equations. It should also be
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_ noted that we have tined the y-axis as a reflecting barrier

arnd thereby, by sy~metry, have reduced the number of stored
states in our feedback representation, and subsequently in
our simulation.

Preliminary Computational Results

The results presented for the continuous 2-0 model are
by no means complete, but these results do indicate that the
reinforcemetit algorithm developed for the discrete game car-

Sries over directly to the continuous one.

Region 22 (el) as shown in Fig. 13 (and designated
I simply as 22 in Fig. 11) is considered representative of a
• •region close to termination. We are seeking to ascertain

* - the control policy probability distributions on the part of
both players for encounters that begiLn therein. We are also
seeking the probability of the various possible outcomes,
C1 , CII, S, and D. We fix the converged control policies
for Region 22 (el) and, knowi.ng the probabilistic out-

comes for play entering that region, go on to consider Re-
gion 22 (e 2 ). We start play in the latter region and ter-
minate play if we anter Region 22 (el), which has been
previously decided, or terminate by the occurrance of one of
the possible outcomes prior to entering Region 22 (01). We
reinforce accordingly, and begin new encounters until the
"control choice probability dist.:ibution becomes invariant
for Region 22 (02).

The particular parameters that were chosen in this 2-D
continuous model mere V1 = 1000 ft/sec, VI1 = 500 ft/sec,
R, - 3000 ft, and Rl = 2500 ft. Investig.4tion of the
time that any one play from a given initial condition
lasts, before a draw is considered the outcome, resulted in
a time of 100 seconds. At a relative velocity between the
two players of 500 ft/sec this time is sufficient ior the
faster player to catch the slower if the slower is near the
edge of the visual threshold, as shown in Fig. 11, and
headed in the same direc.tion.

I The primary question to whtch we addressed ourselves

was: What is the most favorable probability distribution
Son the choice of control decisions for Player I when he

finds Playeir II ia Region 22 (el)? Note that even though
II is always in Region 22 (e1) with respect to I, T is not
necessarily in the same region with respect to Player II at

I
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~ I. the beginning of play. We utilize 80 particular sets of
initial conditions; these are specified as all- combinations
"of p - 3600 ft, 4200 ft, 4800 ft, 5400 ft; w - 1.5°0 3.0",
4.50, 6.00, and e - -446o -22.5°, 00, 22.50, 440, all of
which fall into Region 22 (01) of II/I (Player II with
respe~ct to Player I).

We begin by dividing the unit interval equally into
V'0 parts, with each part corresponding to one of the 80

p,xw, triples (initial conditions). Starting from a uni-
form distribution on the control policies of Player I for
Region 22 (61), we select an initial condition randomly,
run a game, observe the outcome, make the reinforcement ac-
cordingly, and choose another initial condition; then a
game is run, etc., etc. This resulted in a single distribu-
tion for the region which was PLT - 1.0, PSA - 0, and

i T' PRT - 0, where PLT - probability of making a Left Turn,
PSA m probability of going Straight Ahead, and PRT
probability of making a Right Turn. The results of running
1000 random initial conditions chosen from the 80 allowable
yielded PC 0.885, PC 0.030, PS - 0, and PD = 0.085.
Many of the draw outcomel and captures by Player II occurred
during the first few hundred games. If we look at games 500
through 1000, the p.1 - 0.940t p0  0020, p- 0, PD
0.040, which looks very good for Mayer I. One might con-
lecture that a left turn when the opponent is ahead and
slightly to the right is not the best policy; but after
tracing a few of the plays through, one sees that Player I
turns left as a delaying maneuver and then right (II/I is in
Region 23 (01) or in Region 23 (02) as he turns right)
since he has a closing velocity of 500 ft/sec. If he had
gone straight, Player II would have turned left and could

4 have held I in the weapons envelope as he passed II. If he
turned right, Player II could have made a much sharper right
and obtained a draw. Using a different random number gener-
ator for selecting the initial conditions and the control
choices led to pcI - 0.940, PC 0.009, PS - 0 and PD =
0.051, but the control policy Hor Player I converged toI PLT 0, PSA - 1.0, PRT - 0 which tends to indicate that
making a left turn or going straight ahead on the part of
Player I are equally good policies and result in a high
probability of capture. Player 11's control policy choice
for the initial condition at the end of 1000 games was vir-
tually a uniform distribition in both cases, indicating that
all choices of control on his part were equally bad due to
his being beaten so many times. Other regions converged
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during these 1000 runs such as Regions 23 (el) and 23 (e2)
which converged to PLT - 0, PSA - 0, and PRT - 1.0.

The procedure at this point is to take the resulting
distribution tables for each player and start play in an
adjacent region such as 22 (e3) [since Region 22 (62)
had converged to PTT 1.0, PSA - 0, PRT - 0 in the prior
run] and allow the Histributions to change. Note that those

regions for which the probability distribution on the con-
trols has gone to 1, 0, 0 can never be altered by this
algorithm. We can also terminate play when one of those
regions, such as Region 22 (81), from which we have al-
ready simulated play, is entered since we already know the

outcome which began in that region.

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

It is clear at this point that the general solvability
of realistic one-on-one dogfight game models is far from
being an accomplished fact. In reality, it is not clear at
present that any single computational approach today would
have the requisite efficiency and capacity to handle the
variety of detailed game models, in which veteran combat
pilots might place an ultimate faith. Despite this, there
is a great deal of information of a general nature that can
be gained with these simple models. For example, obtaining
the decompositions of the game initial conditions in a sys-
tematic way can lead to parametric studies involving:

*1 1) vehicle parameters; 2) weapon systems parameters;
3) observable data changes; and 4) player preference order-
"ing changes, 2tc. In this way, the improved capability due
to a vehicle-weapons system's change can be directly mea-
sured by the "volume" increase of space of initial condi-I tions for which that system has unilateral capture capa-
bility; or as might be the case, with improvements in the ob-
servable data, improvements in the capture probabilities as
well. The associated strategies for attaining these decom-
positions would also be obtained when making these studies.
An additional use for such simple models and their resolu-
tion may be to provide the mare complex and extremely de-
tailed digital simulation efforts, with the approximate lo-ll cation of the boundaries making up the initial condition
decomposition and the associated strategies. The computa-
tional method presented here was utilized in a simplified

2
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1 form and although the results sought were obtained, the al-
gorithm as applied in these garde models is computationally
inefficient. Efforts are underway to devise better sam-
pling procedures and more sophisticated reinforcement learn-
ing rules in these models.
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Fig. 1 Lethal Envelope Player I

V v ENVELOPE A1

Fig. 2 Lethal Envelope Player 11
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Fig. 3 Relative Heading
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