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Preface

This thesis is a continuation of the work done by Captains
Charles E. Roger: and Christo Christodoulou, AFIT-ENE, GE-71S in the
application of the Extended Kalman filter to orbit determination.
The Extended Kalman filter is compared to the Weighted lLeast Squares

I would like to express my appreciation and thanks to Lt. Col.
Russell A. Hannen, AFIT-ENE, my sponsor, for his advice and instruction
in estimation theory; Major James E. Funk, AFIT-ENE, for his advice
and instruction in guidance and control; Captain Richard C. Walsh,
Det 1, AFSCF, for his material and advice concerning Weighted least
Squares; and Captains Rogers and Christodoulou for their help in
understanding the Extended Kalman filter computer program. Finally,
I would like to thank my wife, Christina for her help and under-

standing in the preparation of this report.

Jackson R. Ferguson, Jr.
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The problem of estimating the orbit parameters from ecarly-orbit
observations of an earth satellite is used to compare the accuracy and
application of the E#tended Kalman filtcr and the classical filtering
method of Weighted Least Squares. To obtain an absolute comparison,

a true two-body, drag-free Keplerian orbit is simulated, observations
are computed and contaminated with noise, and the orbit parameters
estimated by each filter are compared. The accuracy of the two filters
was compared using ihe same set of observations to determine the cffect
of observation truncation and initial conditions on the results.

Based on this study it was concluded that the Weighted Least Squares

filter and the Extended Kalman filter yield about the same accuracy in

the early-orbit determination problem.
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A COMPARISON OF THE EXTENDED KALMAN
FILTER AND WEIGHTED LEAST SQUARES

IN EARLY-ORBIT DETERMINATION

I. Introduction

The detecrmination of Lhc orbit paurvameters of man-made satellites
usually involves the calculation of the satellite's position and
velocity at some epoch time using a number of observations from the
earth's surface. These observations are inherently noisy, so the
determination of the orbit paramecters is a statistical problem, thus
a "best" estimate of the orbit parameters is obtained using some form
of a statistical filter.

One of the traditional methods of solving this filter problem is
via differential correction of initial conditions using the classical
method of Weighted Least Squares (WLS). This method produces a very
good estimate of the orbit parameters when a large number of observa-
tions are availuable, i.e., when the system is highly overdctermined.
Problems arise when the nunber of observations is small, thus one of
the goals of this study is to investigate the application of the WLS
filter to early-orbit determination. Early-orbit determination is
extremely important as the orbit parameters must be quickly and
accurately obtained in order to generate pointing data for subsequent

tracking stations and to determine continyency actions if the orbit

is unsatisfactory.
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A rccent development in estimation theory is the application of
the Extended Kalman filter to the early-orbit determination problem
(Ref 3). The Extended Kaliman filter yields estimates of the orbit
states and parameters via scquential processing of a set of noisy
observations.

The purpose of this study is to compare the accuracy and case of
application of the Weighted Least Squares filter and the Extended
Kalman filter when applied to the early-orbit determination problem.
The application of the Weighted lLeast Squares filter to orbit deter-
mination is described in Refecence 7. Previous studies consideced the
application of the Extended Kalman filter to single orbit (Ref 3) and
multiple orbit (Ref 8) radar tracking observations of actual earth
satellites. The radar tracking data for thesa Kalman filter studies
were obtalned from the Space Detection and Tracking System (SPADATS).
Although the results of these two studies using the Kalman filter
compared favorably with the orbit parameters determined by SPADATS
using a Weighted Least Squares filter, the results did not give an
absolute comparison of the Kalman filter with the WLS filter as the
true orbit parameters were unknown. This uncertainty in orbit
parameters is due to the fact that an actual eacth satellite is
subjected to perturbations such as the effect of a non-spherical
earth, atmospheric drag and magnetic field drag. These small perturba-
tions and small long term changes in orbit cause changes which were
not accurately modeled by the Extended Kalman filter nor by the WLS
filter.

Therefore, in this study, a true tuwo-body Xeplerian orbit is

simulated, observations are computed and contaminated with noise, and
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- the orbit parameters estimated by each filter are compared. In this

—~

way, both an absolute and relative compari_cr can be made of the
actual orbit parameters and estimated orbit parameters produced by the
two filters. Here the WLS filter as described in Reference 7 and the
Extended Kalman filter as described in Reference 4 are used.

The following assumptions are made concerning the two-body
Keplerian orbit:

1. The satellite is a point mass under the gravitational
attraction of a spherical £otating earth with negligible atmospheric
drag and magnetic field drag.

2, The satellite is non-thrusting.

The following assumptions are made concerning the observations of
the orbit:
(:) 1. Uncertainties in latitude, longitude and height of the
tracking sensors are assumed negligible.
2. The noise in the observation is assumed to be an additive,
zero-mean, white, GCaussian sequence.
This report is divided into seven chapters plus three appendices.
Chapter II includes an explanation of the coordinate systems used, the
required coordinate transformations, a description of the ecquations of
' motion, the method of determining the initial conditions, and the
method used to generate the noisy tracking data. In Chapter III, the
Extended Kalman filter equations and the linearization procedure used

by this filter are described. Chapter IV describes the Weighted Least )

Squares method and the linearization procedure used in this filter.
. Chapter V gives a comparison of the application of the two filters and

<:) details their relative advantages and disadvantages. A description of
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the data and an analysis of the results obtained are in Chapter VI
followed by the conclusions and recommendations in Chapter VII. The
equations for determining the initial position and velocity are
described in Appendix A; Appendix B contains a description of the
system sensitivity matrix and the measurement matrix description is

presented in Appendix C.
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II. The Model

Coordinate Systems

Three coordinate systems ave involved in the orbit determination
problem: the inertial geocentric system and the rotating geocentric
system have as their origin the center of the ecarth, while the rotating
topocentric system has its origin on the surface of the earth at the
location of a tracking station. The three systems are shown in

Figure 1 and are described in detail helow.
g

Inertial Coordinate System. The center of the inertial coordinate

system is the center of the carth. The principal axis, Xy, is directed
toward the first point of Aries, y. 'The Y; axis is directed perpen-
dicular to Xy in the equatovial plane, while Z; is toward the earth's
north pole. The equations of motion employed in the YLS method are
written in this system because orbital motion is most readily expressed
in inevtial space.

Rotating Geocentric System. As with the inertial system, the

center of the earth is the origin of the rotating geocentric system.

The principal axis, XR, is toward the carth's prime meridian, Greenwich,
and YR and ZR are defined similarly to Y; and Z1. The difference
between the two systems is that the rotuting system rotates about the
2R axis at earth rotation, w. The equations of motion used in the
Kalman filter are expressed in this system in order to simplify the
transformation to the topocentric system.

Rotating Topocentric Sy:stem. The origin of the rotating topo-

centric system is the anteuna of the tracking station. The principal

axis, X7, is toward local Morth in the plane tangent to the carth at
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Figure 1. Earth Centered Inertial and Rotating and Station
Centered Topocentric Coordinate Systems
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the station. The Z¢ axis is straight up from the station, while the
Yr axis is toward local West in the tangent plane. The actual and

computed values of the measurements are expressed in this ftrame.

Coordinate Transformations

Transformations between any two reference systems are readily
made with two matrices: the transformation matrix between the inertial
and rotating geocentric frames, and the transformation matrix between
the rotating geocentric and topocentric frames. The matrices are given

below with the angles as shown in Figure 1.

-;£T -tsin(¢)cos(0) ~sin(¢)sin(0)  cos(¢) -;;T

yr| = | sin(8) -cos(0) 0 YR (1)
LET cos(d)eos(0) cos(¢)sin(0)  sin(é)| |2zRr

:; —cos(wt) sin(wt) (; :I—

yr| = |-sin(wt) cos(wt) O] |yrI (2)
s [T ° =

Since these arec orthogonal transformations, any other necessary
relationships may be detevmined by multiplying and/or transposing these

two matrices.

Equations of Hotion

The equations of motion of a satellite albout a spherical earth

are a set of three second order non-liucar differential equations. In

inertial coordinates they are
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Y
o
o
=
1}

<
-
i

(3)

(%)

(5)

while in earth-centered rotating coordinates they are

2 s “HXR 20V 2
AR——I-;_;-—i' wle-wa

- y .
YR ~;3& - 2wxg t mzyR

-qu

| © k.

These second order equations ¢

X, is defined as

X1 = X Xy =
X2 =Y X5 =
<3 = Z R =

The equations of motion then Lecome

equation

r ' (1) = £(x(1))

(6)

(7)

(8)

an be reduced to first order

equations by the use of a state vector formulation. The state vector,

X
y (9)
7
the 6#1 vector differential
(10)

e :
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In inertial coordinates the

where f is a 6%x1 vector valued function.
state differential cquation is

Xy
xs
%6

xp(t) = £3(x;(t)) = (11)
=H¥X)

~-Ux9

#p(t) = frlxr(t))

EN = QwXu + W

+ 2wxy + w?xy

245

(12)

A — e o




GA/EE/72S-1

Initial Conditions A

In applying WLS and the Kalman filter to the orbit problem, an
initial or ncminal state vector must be available. Since the early-
orbit determination problem is very important in non-nominal launches,
it was decided to determine the initial state from the first set of
input data rather than use a nominal vector. This data set includes ;
range, range rate, azimuth, elevation, azimuth rate, and elevation
rate. The angular rates are necded to complete the set of six

independent constants for the equations of motion. The initial

position and velocity vectors in the rotating coordinate system are

then determined by the vector cquations below and the exact method

(Ref 3:88-90) is presented in Appendix A.

r=opL+R (13)

B=pL+ol (14)

This initial state vector is then transformed to an inertial vector

for use in the VLS program.

Data Generation

To generate noisy data for the two orbit determination schemes,
the inertial equations of motion are integrated through the desired
time interval with the starting position and velocity chosen from a
desired nominal orbit. As the satellite passes over the hypothetical
station location, nominal tracking data is produced via a coordinate
transformation from inertial to rotating geocentric and topocentric
coordinates. Once ¥R»> YR» 2R> %Rs YRs ZR> Xrs Yrs and zp are known,

the nominal observation data are determined by
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1/2

p = [(xg-%g)? + (yp-yg)? + (up-ug)?] (15)
6 = 2 [lxgxg)ig + (ygoys)ig + (p-75)ig) (16)
a = tan ! [-yp/xp] (17)
e = tan™! [zp/(<5 + y2)1/?) (18)

where xg, yg, and zg are the station coordinates in the rotating
geocentric system. If the clevation is above a threshold value, the
observation dita are stoved along with time fiom tg. When the
integration has reached tg, the table of observations is contaminated
by zero-mean Caussian noi:e.

The random number gencrator on the CDC 6600 produces a uniform
randoim number sequence between 0 and 1, thus the mean of this sequence
is 0.5 and the variance is 1/12. To convert this sequence to an
approximate normal scquence of mean zero and variance one, the Central
Limit Theorem is used. This theorem applied to a uniform scquence

states that

Sp-ny
e | “D22R ) 2 y(0,0)

o vn

where S, is the sum of n uniform numbers, u is the uniform mean, o is

the uniform standard deviation, and N is the normal distribution

function. In n=12, the equation reduces to




—~

GA/EE/725-1

2
-5 - N(0,1) (20)
1

LU St d

ot

and a normal distribution curve is approximated by a 12th order
polynomial. This is the equation used to produce the approximate
zero-mean Gaussian sequence.  To change the variance, each random
number is multiplied by the desired standard deviation, producing a
N(0,02) distribution. If started at the same place, this random
number generator will alwa&s generate the same sequence realization;
thus, to obtain diffevrent realizations the generator is started with
a random initial ccndition. This normal distribution approximation
suffers from one disadvantage ia that only a 60 range is produced,
thus the '"tails" of the curve are not generated. The impact of this
on the orbit problem is Lhat very large data errors are not cncountered

and the filters may perform better than they would with normally

distributed data.

.
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IIL. The Kalman Filter Equations

Measurement Hodel

The Kalman filter as described in Reference 4 processes noisy
linear data in a recursive manner to produce a linear unbiased minimum
variance estimate of the state of a linear dynamic system. The data
consist of a linear function of the state plus additive Gaussian
noise.

In the crbit determination problem, the data are ground radar
measurerents range (p), range rate (p), azimuth (a), and elevation (e)
which, as seen in equations (15-18) are not linearly related to the
state vector and the station position vector. The measurement model

may be expressed as a discrete non-lincar vector equation
2(k) = hlx(k)] + v(k) (21)

where 2 is a Yxl vector consisting of p, p, a, and e} h is a non-linear
vector valuad function; and v is a white Gaussian sequence. It is

assumed that the noise has mean
Elv(k)] =0 (22)

in this case but this assumption is not necessary in the general

problem. The noise covariance is assumed to be

ECv(k)yT(0] = R(K) 85 (23)

where R(k) is a known positive semi-definite matrix.
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Filter Equat.ions

Since the Kalman filter assumes a linear uy:tunm and a linear
measurement model, the filter cannot be applied directly to estimating
the state of a satcllite orbit based on a sequence of noisy radar
observations. Equations (12) and (21) are the non-linear state and
measurement equations and must be approximated by a linearized set of
equations before the linear filter can be used. The two sets of
equations are expanded in a Tuylor series about a suitable point and

first-order terms are retained. The lineavized equations are

%(t) = Fx(t) (2u)
and

2(k) = Hx(k) + v(k) (25)

where F is the 6x6 State Sensitivity Matrix

F(x)
= |z = &(ktl]k) (26)

and M is the ux6 Measurement Matrix

T |x = &(kr1]k) (27)

The exact form of these matrices is developed in Appendices B and C.
The nominal point about which the non-linecar equations are

expanded is the current state cstimate 2 based on the previous measure-

ment at time k and integrated forward via cquation (12) to time ktl.

As a result of updating the nominal at each time point, initial errors
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are not allowed to propagate through time and the linearity assumptions

should be more valid as the filter progresses (Ref 4:276).

Mow that the state and measurement equations are in a linear form,
the recursive Kalman filter equations can be applied. The filter
consists of a predictor in which the estimated ctate and state error
covariance are integrated forward to the next observation time point
and a corrector in which the state estimate and estimated state error
covariance are corrected by the new observation data.

Prediction. Prediction from time ty to time ty,; is accomplished
by numerically integrating the state vector differential equation (12).

In discrete form this equation becomes

Tk+l
' R(k+1]k) = &(k|k) + f £L&(k|k)1dt (28)
tx

The state error covariance at time ty,; based on data at time t) is
P(k+l|k) = #(k+1,k)P(k|k)&T(ktl,k) (29)

where ¢(k+l,k) is the State Transition Matrix:

!
a&k(k+l)
! o(ktl,k) = ——o (30)
ak(k)
“ &(k+1,k) is determined by integrating the linecar differential matrix
equation

d(k+1,k) = FLR(k[k)e(k+1, k) (31)

15
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. % .
2
%
R =
» ) (38)
0 i
(;(2
0
The error covariance of the corrected state estimate, g(k+l|k+l), is
determined by the equation l
|
P(k+1|k+1) = [I-K(k+1)#IP(k+1|K)LI-K(k+1)MIT + |
I
K(k+1)RK(k+1)T (39) 1
I
. . I‘!
where M is again calculated at time ty4;. |
J To start the process, values of_g(Olo), P(0|0), and R must be
(;j available. The initial state estimate, f§0|0), is computed by the
vy

method in Chapter II; the initial state crror covariance matrix,

P(0|0), must be estimated a priori; and the measurement error covari-

ance matrix, R, is known from antenna tests, or, when the input data
are simulated, from the variances of the noise added to the measurements.

The filter used in this manner is referced to as the Extended ' ]

Kalman filter due to the fact that the equations are linearized about
the current state estimate, gﬂk+l|k). The prediction process does not
involve any linear assumptions, as the non-linear equations (12) and
(33) are used to predict the state and the measurement and the state
error covariance is predicted by the linear matrix differential
equation (29). The lincarization procedure is only used in the

calculation of the corrected state estimate and corrected state error
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covariance, i.e., lincarizaticn involves the state errors rather than

the states themselves.

A derivation of the Extended Kalman filter is found in Reference 4

and a flow diagram fer the filter is presented in Figure 2.

—
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Figure 2. Extendad Kalman Filter Flowchart
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IV. Weighted Least Squares

Least Squares Theory

The goal of the method of Weighted Least Squares when applied to
orbit determination is to determine the values of the six orbit
parameters at some epoch time, tg, given sets of observation data such

that the cost function

3=y - 912 =ty - 921" Wy - 9(20)] (40)

is a minimum. W is an appropriate weighting matrix; y is the observa-
tion vector consisting of range, range rate, azimuth, and elevation at
each discrete time ty, (tg s tx 5 tg), and § is the predicted observa-
tion vector based on the current state vector estimate & at ty. Thus

y is the lnxl measurement vector

(1)

i~
"

Zt f_J

and 2 is the lnxl estimated measurement vector
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A (u2) :

o
=)

The value of xg which minimizes the cost function is the "best" .

estimate in the least squares sense.
Since the predicted observation vector § is a non-linear function
of the states, the cquation relating them must be linearized by
(u‘ expanding ¢ in a Taylor series about £y and dropping higher order terms.

The cost function becomes

3= [yl = 1lag - raxol | (43)

where A is the 4nx6 leasurement Sensitivity Matrix

(hy)

(15)
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Differentiating equation (43) with respect to the state correction
vector, Axgp, and setting the result equal to zcro:

2UaTwWAMxg - ATWay 1T = 0 (46)
This equation is then solved for Axg, yielding the normal matrix
equation for the WLS problem:

ATaaxg = afway - (47)
or

~ AT =L |
Axg = [ATWA] ~ A*Way (u8)

The differences, Ay, are the residuals of the measurements and are the
result of the random observation noise, incoirect values of the
estimated state %y, and computation errors. Since the original WLS
problem has been reduced to the linearired problem of determining a

correction vactor Axp such that
2
|lag - abxol |2 (19)

is minimized, the solution is only approximate. Therefore, an iterative
process must be used until the residuals are reduccd to some minimum

(Ref 7:2-4).

Convergence Criteria

In order to determine when to stop the iteration process, some
convergence criteria must be employed. Using the corrected state

vector to predict a new set of weighted residuals

22
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2 2 .
HagP Ly = Hay - aaxel | (50)

The expression ||Ax_P||w is then the RMS of the predicted residuals.

The least squares process is said to converge if either

oyl 1y - Hay" L,

€] (51)
|18yl

or

HNayll, - [ay® |l s €2 (52)
W W

where ||Ax_||w is the RMS of the current weighted residuals and €y and
€2 are some small constants (Ref 7:20). The values chosen for e; and

-.]’

€2 for this study were both 2x107*,

Sensitivity Matrix

The Measurement Sensitivity Matrix, A, may be calculated using

the chain rule:

3 3%  dx
1 & B B Lig e
g Ixg g

and defining

e o
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the t4x6 Measurement Matrix, and

ax

(t,tg) = xq

the 6x6 State Transition Matrix. The State Transition Matrix is

computed by integrating the matrix differential equation
é’(t’to) = F‘b(t’tO)
with initial conditions

@(to,to) =1

where

and the nominal point x* used in equations (54) and (58) is on the

trajectory predicted by the current value of Z%;. Since the M and

(55)

(56)

(57)

(58)

F matrices are calculated at each observation point in the trajectory,

the A matrix actually consists of the partitioned matrix

— —

Mo‘:’(to ,to)

ety ,tg)

Ma® (tn,tg)

L -

Inx6

The derviation of the F and M matrices is in Appendices B and C.

(59)




N

CA/EE/725-1

Statistical Aspects

Until now, nothing hau Leen said about either statistical theory
or the contents of the weighting matrix, W. For many years, this
matrix was guessed for cach problem and was used as a '"fudge factor"
since it scemed reasonable to weight "reliable" data more heavily
than "unreliable" data. However, recent statistical theory shows that
if this weighting matrix is chosen to be the inverse cf the cobservation
error covariance, R, and the observation errors have a zero-mean, then

the matrix
P = ATwa = ATR-1A (60)

is the state error covariance matrix. In addition, the estimated
state error, Axp, which rcsults from equation (48) using the covari-
ance matrix, P, is the linear unbiased minimum variance estimate of
the state error. If the observation errors have a joint Caussian
distribution, then the state error estimate is also the maximum

likelihood estimate (Rel 7:25-26).

Computational Procedure

The procedure used to determine the satellite's orbit parameters
using WLS are as follows:

1. Set A = ¢. Input R and zq where zj consists of p, D, a,
and e.

2. Determine an initial nominal state vector, %p, from the first
data set (p, p, a, ¢, a, and &).

3. Integrate the trajectory and the State Transition Matrix from

SEp—
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(a) At each time point, t), calculate and store

Ix = 2(%o)
the predicted measurement
Mk, the Measurement Matrix
A = Ap_y + Mo(tyx,tg)
and
Byx = 7 = 2(R0)k
the measurement residual.
4. When t = tg, calculate
P = ATR 1A
the state error covariance, and
[ayl

the weighted residual vector RMS.

5. Invert the covariance matrix and calculate

LaTr tay

Axg = B

26

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

e T
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6. Calculate the predicted RMS

1/2 '
18?11, = Cllay - aaxgl] 2" (69)

and determine whether or not the convergence criteria have been met.
If they have not, return to step 3 with the new %y. If the convergence
criteria have been met, stop. If the predicted RMS is greater than
the current RMS, or if the current RMS is greater than the old RMS,
the process is diverging, indicating some problem with either the data
or the system model. In this case, the process stops and all of the
data must be examined. One type of data which can cause divergence

is an "outlier'"--a data point vory far from the other points. This
point can Le spotted by looking at the residuals of the measurements
and must be manually thrown out. The WLS procedure would then be
restacted without the outliers.

A computer flowchart for the WLS method is shown in Figure 3.
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V. Comparison of the Operation of th Two Filters

. Theory of the Two Methods

It was stated in Chapters III and IV and shown in References ' and
7 that both of the.methods produce a linear unbiased minimum variance
estimate of the state of a linear system given linear measurements with
additive noise. Reference 7 (page 157) lists a number of authors who
have shown that when the Weighted Least Squares methed is applied in a
recursive manner, the resulting cquations are exactly the same as those
in the Kalman filter. Therefore, the only difference between the two
methods compared in this paper is that one is a batch processor while
the other is recursive. Both are linear processors and both linecarize
the earrors in the orbit problem. The Extended Kalman filter linearvizes
about the current state estimate at time ty, while WLS linearizes

o about the state estimate at tg.

Advantages and Disadvantasges

Since the two methods are of the same form, the only theorctical
comparisons which can be made are those between batch and recursive
processing. The following are a few of the theoretical advantages and
disadvantages of the Dxtended Kalman filter as compared with the
method of Weighted Least Squares.

A. Since the filter linearizes about the current state, a large

initial error plus many observations over a long time span would

probably not cause the filter to diverge while WLS may diverge. This
is because WLS would use the erroncous initial orbit to predict for

the entire span and errors at later times may be so large that the

(:> lincarity asscumptions are violatad.
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- B, With a larpge amount ot data, both methods tend to ignore
changes in new data. In WLS, the new data are overcome by the
preponderance of older data and in the filter, once it "learns" the
model, the Kalman gain becomes so small that new data are under-
weighted. The solution in both cases is to restart the process and
leave out most of the old data.

C. The filter data stordge is small while the WLS residual
vector must be stored and may be very large.

D. The filter prQCnging requiremcnts are quite a bit larger
than the requirements of WLS.

E. As stated in Refercnce 1 (page 390), the filter processor is
slower than one iteration of WLS, however, WLS usually requires more
c than one iteration, so they both vequire similar central processor

i time.

F. The filter produces an estimate of the state, the state error,
and the state error covariance at cach point in the process. The
estimated error and error covariance are extremely useful in analysis
of the prccess as any outliers in the data are very apparent, so that
real-time control of the data is possible. The WLS method gives a
weighted RS and predicted RMS in cddition to the state error covari-
ance, but these only give an indication of what the processor did after
an iteration. The whole residual vector must be examined to discover
outliers, and, if the process diverged, there is usually no clear
reason ‘or the problem, nor is there shown any time point at which the

process started to blow up.

30
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This time history output of the filter is probably the most %
important advantage compared to wLS. [t cun Le used to determine the
exact time at which a problem occurs, and if the process starts to
diverge at any point, it may be restarted after that point with only

the initial guess of P(k|k) and £(k) necded.
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VI. Resnlts

In order to compare the performance of the two filters in the
early-orbit determination problem, noisy observations produced by the
generation program and necessary station data are input to the two
filtering programs. The couwparison then consists of Lwo parts. First, )
to compare the applicaticn of the two methods to this problem, a single
gass of cbservation data is processed by each program. The same data
set is input to each couputer program so that the results can be
compared. The resulting outputs of the two filters are then compared .
to determine their suitability to the orbit determination problem and
to show the type of information they each provide. The tilters are
rerun for varying muibers of observations so that the effects of
observation truncation may be seen.

Next, to obtain a comparison of the two filters' absolute
accuracies, their radial and velocity estimates for various nuibers of
observations are compared to the actual orbit radii and velocities.

This provides an absolute accuracy cowparison of the two methods.

If only one set of observaticns were used in making this absolute
ccmparison, the results would nol be valid. This is because the
cbservation sequence is finite and the additive noise is a truncation
of an infinite noise sequence which has Gaussian statistice. Therefore,
the statistics of any single truncated realization of the infinite
gsequence will probably not have the desirved Caussien statistics. A
ressonable approximation to the Gaussian statintics on the additive

noise is obtained by taking an ensemble average of the filters' outputs

for 50 different truncated random sequences used for the additive
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noisze. The results to be compared are then the mean radial and A
velocity errors of the 50 runs. Figure # shows a flow diagram of the
accuracy comparison process. Fifty data sets of 58 obsevvations each
are produced, radial and velocity vectors are estimated by the two
filters and the magnitudes of these vectors arc compared with their

actual values from the nominal orbit.

Data

The actual orbit parameters of the two-body orbit are gtven in
Table I along with the location of the hypothetical tracking station
and the sigmas of the noisy observations. A medium-altitude orbit
was chosen hecause atmospheric drag and solar pressure are small in

this region and the assumptions of a two-body problem with no drag

would be mcre realistic.

Since the problem is am carly-orbhit problem, only one tracking
pass was used. This particular data set simulates a near-polar
satellite launched at Vandenberg Air Torce Base passing over Shemya

Tracking Station on the first orbit.

Filter Output Comparison

Table II shows the error magnitudes predicted by the Kalman
filter, the standard deviations prcdicted by each of the methods and
the actual radial and velocity errov wagnitudes for a various number
of observations. Since these estimated valucs are for only one pass
of data which ranged from 4 to 58 obuervations, the actual numbers
give an indication of the order of magnitude of the outputs of the

two programs. The main result of this comparison lies in the trends

T, =
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Table I

Actual Orbit and Sensor Data

True Two-Budy Keplerian Orbit Parameters

Period

Inclination

Eccentricity

96.38295 Min

$6.0713 Deg

0.00312689

Longitude of

— ——

Ascending lode Perigee

Argument of

Perigece

Height

203.3325 Deg

218.1018 Deg

304.2986 NM

Radivs at ty

Velocity at tg

£383973.2 i

7503.61 M/S

Tracking Statien Sensor Data

T Longitude

Latitude Height
$2.73267 N 17,1023 E 0.0
Azimuth Elevation Range Range Rate

Sigma Sigma Sigma Sigma

(Deg) (Deg) (M) (M/3)

0.02 0.02 100.0 1.0
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of the errors and standard deviations as the number of observations
is varied.

As scen in Table II, the estimatled sigmas produced by each method
are fairly close but the Least Squares radial and velocity sigmas
decrease monotonically, while the Kalman filter's radial sigma reaches
a low at around 30 tracking points and then starts climbing slowly.
This is probably due to the accumulation of computer round-off error.
Since the Kalman filter computes the covariance matrizx in a recursive
manner, any evrors will be‘additive and will finally affect the
significant digits of the estimates covariance and, subsequently, of
the estimated state. Since the radial variance is so much larger than
the velocity variance, this cffect would be observed first in the
radial sigma, as seen in Table II. The VIS process computes the
estimated state and state covarieonce independently from one iteration
to the next, so round-off crrors cannot propagate from one calculation
to the next. Thus the radial and velocity sigmas produced by this
filter do not show any growth.

The estimated state error produced by the filter has no counter-
part in WLS. Since WLS does all of its state calculations at tg, no
time history of state ervors is generated. As seen in Table 1I, these
estimated error values are not close to the actual errors in most
cases but they do give an indication of the order of magnitude of the
actual errovs and of the stability of the process. Whenever the
estimated error is greater than the estimated sigma a majority of the
time the filter is diverging. When these values are plotted, as in

Figures 5 and 6, they give a good picture of the operation of the
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filter. 'This is the "bip picture" which WLL cannet produce. [lpures
5 and 6 show that the filter has no tendenclies toward divergence in
this case. No divergent examples occurred in this study, and none

were expected since the model and the actual system were the same

ncn-linear system of equations. In addition, the noisy data used in
this problem were reasonably well-hehaved since they contained no
additive noise larger than six sigma. In a real situation, a pre=-
processo:r would be used to remove extremely noisy data, so the results
of this study should be applicable to real systems where the actual
model is known fairly well.

Orbit Parameters. VWhen an early-orbit determination program is

actually used, the program's output which has physical significance
is not the radius or velocity but tha orbit parameters. Thus, to
compare the two filters' application to this problem requires a
comparison of the estimated orbit pavameters with the actual parameters.
Table III shows the orbit parameters computed from the estimated
radius and velocity produced by each method from various numbers of
observations. The method of calculating the iwo-body orbit parameters
from radius and velocity is given in Reference 2 (pages 98-107). Even
with as few as ten obsevvations, the predicted orbil parameters are
fairly clos2 to the actual values, and with the whole pass the errors ﬁ

are extremely small.

The most important element to be computed in the early-orvrbit

situation is the period. This is because the pointing data at the next 1
station are very sensitive to period errors. A period change of only

. 10 seconds could cause the satellite to be out:ide the beam width of
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the tracking antenna. The period is a simple tunction of the radius

and velocity, as seen from the following equations.

2"(]3/2

(70)
kV/n

period (seconds) =

where

a = —tE (71)

and k is the Earth gravitation constant in radians/second. Thus the
sensitivity of the period to ervors in radius and velocity is a direct
function of errors in each one. As seen in Table III, the period
estimated by each filter using 58 observations is much less than one
second from the true value, hence the satellite should be easy to

find at the second and subsequent stations.

Accuracy Comparison Using 50 Data Sets

Figures 7 and 8 show the two filters' mean radial and velocity
error for 50 runs versus the number of observations while Figures 9
and 10 show the radial and velocity error standard deviations. The
errors are defined as estimated minus actual values. Figure 9 shows
that the Kalman filter has a slightly smaller radial error sigma when
less than 30 observations arc processed, while WLS appears slightly
better for data amounts greater than that threshold. This appears
consistent with the theory since the Kalman filter "learns" the model
faster than the WLS filter, but once the Kalman f{ilter errors reach a

minimum, the covariance errov starts growing and affects the estimate
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accuracy. WLS does not experience the covariance error o the actual
errors continue to decrease with the nusber of observations processed.

Figure 10 shows that the velocity error distributions of both
rmethods are so similar that they are indistinguishable. Since the
velocity magnitudes are so much smaller than the radial magnitudes,
the difference in the errors in velocity are not as noticeable as the
radial errovs.

Non-Linearity Problems. Figures 7 and 8 reveal a problem with

the Kaliman filter. The estimates of the two melthods should be unbiased,
however the Kalman filter's mean radial and velocity errors show a
small negative bias after some rather large initial errors. This bias
of approximately 30 meters in radius represents an crror of 0.0005%

and the velocity bias of approximately 0.1 m/s is an errvor of 0.001%,

50 it would never be apparent when one case is run at a time. Only
when sceveral cases were studied did the small biases become apparent.
The effect of errors of these magnitudes is scen in Table III in which
the velocity and radial errors for 58 observations are nearly the same
as the mean errors of the 50 runs.

In the search for some bias in the computer program, it was found
that the initial velocity estimated by the initial condition module
was always 500 to 700 m/s higher than the actual velocity. This large
velocity error is nearly 10% of the actual velocity and was due to the
large errors in the angle and angular rate data. If these crrors
excced the linearity region in the Kalman tilter assumptions, a
possible result is a biased estimate (Ref 7:348). To sce if this was
the case, an initial velocity with error magnitude of approximately

100 m/s was manually put into the program. The resulting mean radial
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and velocity errovs for the 50 cases ave shown in FPigurcs 11 and 12,
The WLS mean errors were exactly the same as in the first 50 runs and
are included so that the change of scale can be seen. These figures
show that the mean ervors for the smaller amounts of data do not
expericence the large errors observed in the original runs and that the
negative bias obgerved has been reduced by nearly 50%. The nost
prcbable rcason for the large errors and the bias is that the linearity
assunptions were violated. The Kalman filter's sensitivity to non-
linearities is discussed by Jazwinski (Ref 4%:3u48). This example shows
that WLS is apparently not as sensitive to non-lincarity as the Kalman
filter since it showed no blases or erratic results when used with the
larger initial evrovs.

To deternine non-linear effects in the WLS filter, several runs
were made with progressively larger initial velceity errors. The WLS
process showed no increased error until the initial velocity errors
were in the 6000-7000 m/s range. Specilically, the filter diverged
in all cases when the errors reached 6200 m/s and then no orbital
elements werc produced.

To see how errors of this magnitude affected the Kalman filter,
cases were run with an initial velocity error of 7500 m/s. The
resulting mean radial and velocity errovs are shown in Figure:s 13 and
14, For 58 observations, the orbital periods produced ranged between
96.29636 and 96.30740 minutes. These values reflect an crror range
of 4.53 to 5.12 second. Thus, with inicial error magnitudes larger
than those which cause the Weighted Least Squares method to diverge
and produce no usable .results, the Kalman filter is still able to give

relatively accurate estimates of the ceitical orbit element.
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Computer Memory and Time Requirements

The CDC 660 central processor time required by each program to
compute the final orbit was similar in most cases, with the Kalnan
filter being slightly faster.

For 10 data points, the time per case for the Kalman filter was
1.02 seconds and for WLS 1.29 seconds. lYor 58 data points, the time
per case was 3.0 seconds for the Kalman filter and 5.19 seconds for
the Least Squares filter,

The core storage requirements for sne pass of data for the two
programs v2re 67200 octal words for ti. Kalman filter and 60200 octal
words for Least Squares. The majority of the space used by the Kalman
filter was for the filter itselfl, whereas in the WLS filter a

significant proportion of the memory was used for residual and matrix

storage.
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VII. Coneclusions and Recommendations

Conclusions

1. The Weighted Least Squares filter and the Extended Kalman
filter produce extremély accurate results when applied to onec-pass
tracking data for a medium-altitude satellite where the model is known.
The accuracy of both methods drops when fewer observations are used,
but with as few as 10 observations usable answers are still produced.

2. For the orbit determination problem considered the Extended
Kalman filter is more sensitive to non-linearities in the model than
Weighted Least Squares and is more sensitive to initial condition
errors. This sensitivity leads to relatively large mean errors in |
the early part of the process and an overall small bias as the process

continues. These biases are not of a magnitude to secriously affect

il the resulting orbit parameters, but they do grow to fairly large
magnitudes when the initial errors become very large. When these
initial errors finally become large enough to cause divergence in the
Weighted Least Squares process, the Kalman filter is still able to
produce usable estimates.

3. The coumputer memory and central processor time requirements

are similar for bhoth methods.

Recomnendations

The following topics are reconmended for further study:
1. Apply the Extended Kalman filter and the Weighted Least "
Squares filter, using the same model, to data with different variances

and to data from different orbits to continue the conmparison.
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2. [Lxamine the present orbit model usin, W-ighted Least Squares
compared with the Extended Kalman filter with swmoothing back to ty.

3. Compare the two methods when applied to multiple passes of a
satellite.

4. Examine the two filters when applied to the present model
with known drag forces added

5. Apply the methods using the simple earth model to actual data
and compare their hardling of :odel errors.

6. Expand the two systemns to employ the current known earth
model and use them with actual data. These results could be compared
with results from the previous recommended study.

7. Combine the two methods in a Limited Memory Filter as
described in Reference b (pages 255-258). This method would combine

the best points of ecach of the two methods.
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Appendix A

Detepmﬁnatigﬂlgf Initial Conditions

The equations used to produce the initial state estimate are
presented in this appendix. The initial condition module neceds the

following data:

1. Tracking station heipht in earth radii: h
2. Tracking station latitude in degrees: $
3. Tracking station icngitude in degrees: 0
4, Slant range in meters: o}
5. Slant range rate in meters/scecond: )

6. Azimuth from north, clcckwise, in degrees: a

7. Elevation in degrees: e
8 Azimuth rate in degrces/second: a
9, Elevation rate in degrees/second: é

Station Coordinates in Rotating Frame

Xg (1+h)cos(8)cos(4)
Re = | ¥g = | (1th)sin(0)cos(4) (A-1)
25 |r (1rh)sin(e)

L and L in Rotating Frame

The vectors L and L ave unit vectors in the carth centered

rotating frame representing the position and velocity of the satellite

relative to the station.
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L. M = .
Ly (Ly-%1)cos(0) - 235in(0)
. L=} gy = | (25-21)3in(0) + cos(0) (A-2)
a4y cos(¢p)cos(e)cos(a) + sin(é)sin(e)
. aadd R - -
where
L1 = sin(¢)cos(e)cos(a) (A-3)
Ly = cos(4)sin(e) (A=)
23 = cos(e)sin(a) (A-5)
2y
! E = iy (A-6)
O -
LY ./' 'Q'Z
L %R
where

-+

9, = afcos(0)sin(d)sin(a)cos(e) - cos(a)sin(0)cos(e)]

+

¢lcos(0)sin(d)sin(e)cos(a) + cos(0)cos(d)cos(e)]

ol sin(0)sinla)sin(e)] (A-7)

-+

iy = Adlsin(0)ain(é)sin(a)cos(e) + cosa)cos(0)cos(e)]
¢lsin(6)zin(e)cos(a)sin(e) + sin(0)cos(e)cos(e)] -

Slees(0)sin(e)sin(a)] (A-8)

L, = -ilcos(¢)sin(a)sin(a)] +

alsin(d)cos(e) - cos(dleos(a)sin(e)] (A-9)
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Satellite Position and Velocity in Rotatins Frame

Once the unit vectors L and L_are determined, the satellite's

position and velocity in the carth-centered rotating frame are

Jc"s

and

1>

-

X

y

2

e xe

e

oL + $L (A-11)

These six components comprise the initial state vector 2(0) in the

rotating system.

then determined by

and

The initial state vecter in the inertial system is

cos(wt) -sin(wt) O X
sin(wt) cos{wt) O y (A-12)
0 0 1 2
— - - —|R

57
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cos(wt)
sin( t)

0
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N Appendix B )
\‘
. State Sensitivity Matrix F )
The state sensitivity matrix ', is uscd in the computation of the
State Transition Matrix used in lincarization schemes. t is defined
as
05(1 0..1 3:.(17
5..‘:.’1- X2 ) ] ’ BXG
02:<2 ~'.’2 3:(2
| O, O C U g -
. |H
£(x) ﬂ
F = % = (B-1)
£ 3 —0 . 0
Yo Oxg  9Xg OXg
‘ -0.:;- —an—x—zn L] L] L] —D-x—b:o—‘
and, when the function f(x) is expressed in the inertial frame, the
matrix F, neglecting zero terms is
Fiy = Fag = V3g = 1 (B-2)
-
5 o e Al L2 . -
Fup = [3 ) 1] (B-3)
Fuz = 4 (%) (B-4)
e === -
Bl E
1
]
U /37
- beo e 5 [(BE) (B-5)
+3 P3 PZ
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5 _ 1\y)
Fg) = == ( = (B-6)
= LR L ()
f ;
‘ 2
- U
i Fsp = == [3 (L) - 1] (B-7)
r
1 1 322
Fs3 = -'; ( 2) (B-8)
r I
U [ 3%z
Fon = 2 (22) 5-9)
61 = 575
B = (3’17> (B-10)
62 - "% ) =
U z\2
F63 = [3 (_P-) = l] (B-ll)
r-
When the function f(x) is expressed in rotating coordinates, the
( ) F matrix, again neglecting zero terms, is
Fiy = Foy = Fig = 1 (B-12)
I 2 ,
F‘Ol = --S' [3 (;) - l] + we (3-13)
r
p a4 4y 3xy>
I 4 /28 (B~-1n8)
42 p3 ( 1‘2
_ oy BX%)
Fu3 = —=% : (B-15)
43 3 ( 2
! Fug = 2w (B-16)

7N
«/

60
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. Fgy =

Py =

Fg1

- 2w

61

(B-17)

(B-18)

(B-19)

(B-20)

(B-21)

(B-22)

(B-23)
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Appendix C

Measurement: Matrix M

The measurement matrix M, consists of the partial derivatives of
the measurements p, p, @, and e with respect to the state vectov X, If

the state vector is in rotating coordinates, M is

:/.(1)T ﬁ
) _[ap_(:\;)] @ — :'
ROl g 1(3) 1
H(u) i

. - R 5
ﬂ

where M(1l), ¥(2), M(3), and M(4) are row vectors and avre

)
H(1) = 2 [#g=%g, YR-YS» 2k-75, O 0 O] (c-2)
11, p(xp-%g) | p(yr-yg)
M(2) = = | %, - e o ————— o @5 O
p [ R p R p '
6(ZR-?‘S)
___E-——-, XR=%55 YR-Ygs 4R-2g (c-3)
. 1 . .
M(3) = e [-xpsin(0) - ypsin( )ces(0), xpcos(0) -
(xT t yp)
yrsin(0)sin(¢), ypcos(e), 0, 0, 0] (C-1)
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Mu) = 1 ~1/3 cos($)cos(0) - _Jj_;;.;ll , sin(0)cos(¢) -
(XT + yT)
EI&XS:ZSl- sin(y) - ff(7R “ ) 0, 0, O (C-5)
pz ] pz ] ;] 9

I1f the scate vector is in inertial

[ cos(wt) Ein(wt) 0
-sin(wt)  cos(wt) 0

My = MR 0 0 1
~wsin(uwt) cos(uwt) 0

L weos(wt) - sin(wt) 0

63

coordinates, the matrix M is

0

0

0
cos(wt)

~sin(wt)

0

0

0
sin(uwt)

cos{wt)

(C-6)
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