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Preface

The desire to undertake research in the field of system

identification initially grew out of my experience as a

practicing aerospace engineer working principally on the

design and analysis of stability-and-control characteristics

of vertical take-off and landing (VTOL) aircraft. The

myriad problems encountered in this regard soon led me to

graduate study in both aerospace and electrical engineering,

chiefly in the areas of aeromechanics and automatic control

theory. As a result, it soon became increasingly apparent

that the VTOL parameter identification problem was concep-

tually similar to identification problems frequently

occurring in various areas of electrical engineering. My

interest was further nurtured when subsequent graduate work

in economics and systems analysis revealed still other

applications requiring identification of the parameters of

linear stochastic systems.

The first three chapters of this thesis should be of

particular interest to the reader who has a general curiosity

about the subject area, but who, for one reason or another,

is not particularly interested in the mathematical details.

In these chapters I have endeavored to introduce basic

concepts and present a non-technical assessment of the

current state-of-the-art, izicluding a descriptive exposition

of some of the more popular methods of system identification.

Where material has been condensed and summarized from the

ii
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literature, it has been my aim to do so in such a way as

to maintl an objective, illuminating perspective on the

subject.

My research into the subject area began with a fairly

extensive literature search, the results of which are con-

tained in the bibliography. The articles it lists are keyed

not only by identification methods, but also by general

headings directly related to system identification. The

bibliography is, I think, relatively complete, and should

serve as a ready source for the reader who wishes to investi-

gate further certain areas of system identification.

I wish to express my sincere gratitude to my thesis

advisor, Dr. David R. Barr, Department of Mathematics, for

the many helpful suggestions and constructive comments he

provided throughout this study. Finally, special thanks are

offered to my wife, Veronica. Without her patience and

understanding this investigation could not have been

completed.
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Abstract

This research considers the problem of the identifica-

tion of linear stochastic systems. A current state-of-the-

art assessment of the general field of system identification

is given, and criteria for the classification and selection

of identification methods are presented and discussed.

Several of the more popular identification methods from the

literature are investigated and summarized. A bibliography

containing 185 references, keyed by identification methods

and other relevant headings, is included.

Using the state variable formulation for a discrete

linear stochastic system, a detailed exposition of a few

of the on-line identification methods currently appearing

in the literature is presented. One such method, based on

the autocorrelation function of the output measurements, is

developed to identify the state transition matrix and the

output noise covariance (vector-input, scalar-output case).

It is shown that a canonica 1 nr phase variable system

representation can be used to reduce the number of unknown

parameters requiring identification. Finally, an on-line

identification method called Levy's proper canonical form,

which is based on the Kalman filter representation of the

system, is derived using the innovations sequence and certain

results from optimal estimation theory. It is shown that

this identification method results in still additional

advantages over the identification methods previously

developed.
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THE IDENTIFICATION OF LINEAR

STOCHASTIC SYSTEMS

I. Introduction

Purpose

The purpose of this thesis is to present:

1. A survey of the current state-of-the-art of the

identification of linear stochastic systems.

2. A classification of many of the various identifica-

tion methods currently appearing in the literature, in terms

of the type of the model, input signal, and optimization

criterion used.

3. The relevant properties of the different identifica-

tion methods that differentiate one from another, and provide

the systems analyst with valuable insight into which identi-

fication method to use in a given application.

4. The development of selective topics from the litera-

ture of system identification, including Mehra's on-line

identification method and system identification via adaptive

Kalman filtering.

The Identification Problem

Very basically, the identification problem is simply

the determination of the mathematical model that describes a

given physical process (i.e., the structure and parameters

of the mathematical model). If the system designer is only

interested in the parameter identification problem, he may

1
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choose to model the process as shown in Fig. 1. In the model

depicted in Fig. 1, the plant is that element which relates

the system input to the system output. As such, the plant

Input Pln Output

Fig. 1. Model for Parameter Identification Only.

can be thought of as consisting of the process parameters

interconnected through some mathematical relationship such

that, for a given system input, the output states of the

process are completely determined. Hence, for a discrete-

time process, the coefficients (constant or time-varying)

of the difference equation relating system input to output

may be regarded as functions of the process parameters.

In many physical processes, some or all of the process

parameters may be unknown, or may be known initially but

chang.e stochastically as the process unfolds. The parameter

identification problem consists of the determination of these

unknown parameters.

During the past few years an increasing number of papers

have appeared in the literature on the general subject of

system identification. These papers have appeared in such

diverse fields as economics (Refs 105 and 106), industrial

2
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processes (Refs 107 and 111), and biology (Ref 104).

Generally, there are two primary motivations for the current

interest in system identification. First, the system designer

may only be interested in identifying the paraietrs of a

physical process under consideration. Second, he may require

knowledge of the process parameters for use in a subsequent

control engineering application. Although obviously related,

these two motivations can have distinctly different implica-

tions, which are discussed at length in Chapter II.

An example of a parameter identification problem that

arises often in connection with economic analysis work

concerns the Leontief input-output model (Ref 109). In this

model, the national economy is broken down into N industries,

each of which can be thought of as producing a certain output

product. In general, the output product of each industry is

used as an input, along with certain other inputs (e.g., raw

materials), to the other industries in the economy. An

input-output table is then constructed. The elements, aij,

i, j = 1, ... , N, appearing in the table are called input-

output coefficients, and refer to the amount of input i

required by industry j to produce one unit of output product

j. The identification problem consists of the determination

of the input-output coefficients necessary to sustain a given

level of demand for the various products in the economy.

On the other hand, if the system designer is interested

in the identification of process parameters for subsequent

3
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use in a control engineering application, he may choose to

model the process as shown in Fig. 2. The model shown in

Fig. 2 differs from that shown in Fig. I due to the addition

of a feedback control loop. As shown, the feedback loop

Input + Output
Plant

Feedback
Element

Fig. 2. Model for Parameter Identification Used
for Control Application.

contains an element that operates on the output signal to

yield a signal that is compared to the input signal. The

difference between these two signals is then used as the

effective input signal to the plant. If the design problem

I under consideration is one of control system synthesis, the

system designer must determine the structure and parameters

of the unknown feedback element that will enable the system

output to follow, as closely as possible, some desired signal.

The design of such a control strategy for a given process

I not only requires knowled-e of the structure and parameters

of the process to be controlled, but also knowledge of the

I various process states and how they change with time (the

4
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estimation problem). However, in order to solve the estima-

tion problem, one must first postulate a structure for the

process model, and then identify the corresponding parameters

of the model.

As an example of a situation in which parameter identifi-

cation is Aequired for use in a control engineering applica-

tion, consider the problem of designing a stability augmenta-

tion system for a hovering vertical take-off and landing

(VTOL) aircraft (Ref 108). If the process under consideration

is the VTOL aircraft hovering in still air, it is fairly

straightforward to calculate the process parameters (i.e.,

aircraft stability-and-control derivatives), and hence the

state of the aircraft. However, as the VTOL aircraft transi-

tions from hovering flight to aerodynamic wing-supported

flight, the aerodynamic and propulsion forces acting on the

aircraft interact in such a way as to make a reasonable

prediction of the resulting aircraft stability-and-control

derivatives extremely difficult. Thus, a parameter identifi-

cation problem exists during this transition flight regime

which must be solved before a satisfactory stability augmenta-

tion system can be designed.

In connection with the current interest in svstem

identification for control engineering application, two

points should be made. First, tremendous advances have been

made in computer technology during the past few years. These

advances now enable the system designer to develop computer-

#S
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based algorithms to solve complicated equations which in

many instances were not computationally practical before.

Second, many control engineering applications are such that

if the process parameters are unknown, they can often be

determined experimentally (Ref 135).

Outline

In Chapter I, an overview of system identification is

presented. The general characteristics of the identification

problem are discussed, including its assumptions and limita-

tions. A convenient method for classifying various identifi-

cation schemes is also provided, along with a discussion of

those factors that might be considered in selecting an

identification method for a particular application.

The identification of linear stochastic systems is dis-

cussed in Chapter III. Identification methods included are

maximum likelihood, instrumental variables, adaptive estima-

tion, model reference, stochastic approximation, linear

least-squares, and correlation techniques. The approach taken

in this chapter is to summarize, from the sytem identification

literature, a few of the outstanding papers on each of the

identification methods listed above. A comprehensive

bibliography, keyed by identification method, is included to

indicate other publications not specifically referenced in

this paper.

Mehra's on-line identification scheme is the subject of

Chapter IV. The development presented includes identification

6
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of the state transition matrix, as well as the output noise

covariance. A canonical form representation of the system

is also developed for the case where the designer is concerned

only with obtaining a system model that yields the desired

output, and not interested in the particular structure of

the model.

Chapter V approaches the identification problem through

the use of adaptive Kalman filtering. The particular system

representation that is discussed is Levy's proper canonical

form, which is derived using the innovations sequence and

certain results from optimal estimation theory. A method

for determination of the optimal filtering gains is also

discussed. Finally, the conclusions and recommendations for

further study are presented in Chapter VI.

7
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II. An Overview of System Identification

In this chapter, the general field of system identifi-

cation is examined from an overview perspective. Without

question, such an endeavor as this must of necessity remain

somewhat incomplete. This is not surprising when one

considers the rapid development presently occurring in system

identification, as witnessed by the multitude of recent

papers published on the subject. For a more comprehensive

survey, the reader is referred to the literature (Refs 142

and 156).

An investigation into the literature of system identifi-

cation reveals one immediate fact: there appears to be

little, if any, unification of the field. In addition to

the dozen-or-so recognized identification methods appearing

in the literature, there are a sizeable number of publications

within each method. The result is that the non-expert is

often left somewhat bewildered and confused. Therefore, the

major aim of this chapter is to provide an exposition of the

underlying rationale necessary for improved unification and

classification of the field of system identification.

General Characteristics of Identification Problems

A crucial first step in the formulation of any identifi-

cation problem consists of answering the following two

questions:

1. What is the system being considered'

8
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2. What is the purpose of the desired identification?

Is the system under consideration a portion of some larger

process, the entire process itself, or the process in inter-

action with its environment? Obviously, answers to such

questions are necessary in order to clearly define the

system, and indicate possible limitations in the resulting

identification analysis. Similarly, having the purpose for

which the identification is desired clearly in mind can often

suggest possible identification methods that might be appro-

priate for a particular application.

On the question of the purpose of the desired identifi-

cation, it has been pointed out earlier in this paper that a

primary motivation appears to be possible engineering control

applications. However, many situations exist where the

purpose of the desired identification is only to identify" the

parameters of the process. These two motivations can be

distinctly different, possibly implying the application of

different identification methods. For example, consider as

the process an aircraft in steady unaccelerated flight. If

the design task is to determine whether the aircraft has the

required degree of static stability at this flight condition,

the problem becomes one of parameter identification alone

(i.e., determination of the static stability-and-control

derivatives). In this case, rather precise parameter identi-

fication is usually required. However, if the design task

is to determine whether the aircraft has the required degree

of maneuver capability, the problem becomes one of parameter

9



GSA/MA/72-5

identification for control application. In this case, the

parameter identification part of the problem is generally

not as critical as in the former case, because the aircraft's

flight control system can usually be designed so as to be

flexible enough to cover a variety of "close" models.

The preceding example illustrates an important relation-

ship that often exists between the identification problem

and the control problem. In many situations where parameter

identification is only an intermediate step to a subsequent

control application, the assumption is tacitly made that

the problems of identification and control can be separated.

Generally speaking, a control system designed using this

assumption will not be optimum, primarily because the parameter

identification obtained is seldom exact. For this reason, a

significant number of papers have appeared recently in the

literature dealing with adaptive estimation and model refer-
ence techniques. These methods attempt to deal with the

problems of identification and control more or less simul-

taneously, and are taken up in Chapter III.

Classification of Identification Methods

Generally speaking, there are two ways in which the

system identification problem may be approached:

I. Theoretical (Mathematical-Physics) Analysis

2. Experimental Analysis.

In the theoretical approach, one typically begins by con-

sidering the physical laws that govern a given process, and

10
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attempts to formulate a mathematical model of the process.

The identification problem in this case becomes the determina-

tion of the parameters of the model in terms of the physical

data of the process. On the other hand, the experimental

approach attempts to identify the parameters of the process

by measuring the dynamic behavior (input-output) of the

process. The identification methods discussed in Chapter III

are chiefly of the experimental approach.

A useful framework for considering the problems of

system classification and identification is provided by Zadeh

(Ref 185), who defines system classification as follows:

"Given a black box B and a family of classes of
systems C1, C2, ... , Ck ... , Cn such that B

belongs to one of these classes, say Ck, the

(classification) problem is to determine Ck by

observing the responses of B to various inputs."

The problem of system identification is then defined as a

special case of the classification problem in which each of

the classes C1 , C2 , . C. n has just one member:

"Given a class of systems C with each member of
C completely characterized, the (identification)
problem is to determine a system in C which is
equivalent to B."

The foregoing definitions imply that in order to formulate

the identification problem, one must specify a Alass of

systems, a class of input signals, and some criterion for

defining "equivalence" between model and system. Each of

these requirements is discussed briefly below.

' ~11-
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A variety of representations may be used to characterize

different classes of mathematical models, e.g., linear, non-

linear, continuous, discrete, etc. The form of model selected

can, of course, significantly affect the ensueing identifica-

tion procedure. For the identification of linear stochastic

systems, models are often classified as either parametric

or non-parametric, depending upon whether or not the appro-

priate probability distributions are known. Most of the

models discussed in Chapter III represent discrete linear

systems with some form of additive "noise" present.

Although a wide range of input signals may conceivably

be used in the identification of process parameters, major

simplifications in the identification procedure can oftenI
be achieved by choosing input signals of a special type.

This situation is analogous to the simplification that occurs

in the identification of linear deterministic systems when

an impulse function is used as the input signal. Aoki and

Staley (Ref 83) discuss the input signal synthesis problem

of parameter identification, and derive conditions necessary

for olotaining a class of asymptotically unbiased and efficient

parameter estimates. In Chapter III, the input signal used

most frequently in the various identification methods is a

gaussian "white-noise" sequence.

Once the form of the mathematical model and input signal

have been selected, the remaining requirement in formulating

the identification problem is the specification of some

criterion to he used to measure the equivalence between the

12
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model and system. The selection of such a criterion essen-

tially transforms the identification problem into an optimi-

zation problem. For many of the identification methods

appearing in the literature, this optimization usually

involves the minimization of some function of an "error

signal". The error signals most frequently used are input

errors, output errors, and (where necessary probability

distributions are available) errors in the parameter values.

Selection of an Identification Miethod

Before moving on to a discussion of various identifica-

tion methods, it might be appropriate at this point to make

a few comments concerning some factors that might be con-

sidered in selecting an identification method for a particular

application. Certainly, a primary consideration concerns the

purpose for which the identification is desired, as discussed

earlier in this chapter. In most practical engineering

control applications, seldom does the designer have available

a priori complete knowledge about the process to be controlled

and its environment. However, any reasonable steps that the

designer can take to increase his knowledge concerning the

system--e.g., rough calculations, comparisons with similar

systems, use of engineering experience and judgement--can

often provide valuable insight into possible identification

methods that might be appropriate.

Another factor that can sometimes influence the choice

of a particular identification procedure concerns the required

13



GSA/MA/72-5

accuracy of the identification analysis. Regardless of

whether the ultimate purpose of the identification analysis

is parameter identification or control application, the

degree of accuracy required is an important factor that can

often dictate the type of identification method to employ.

However, a major problem exists in this regard in deter-

mining the degree of accuracy required of the identification

analysis, and formulating a criterion for measuring that

accuracy. Unfortunately, the literature of system identfica-

tion is far from complete in the area of the accuracy of

identification analyses.

14
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III. The Identification of Linear

Stochastic Systems

The overview of system identification presented in the

previous chapter is used as the basis for a general discus-

sion of various identification methods in this chapter.

The approach selected to accomplish this objective is to

summarize, from the system identification literature, one

or more recent papers felt to be illustrative of each iden-

tification method discussed. In order to keep the discussion

in this chapter as generalized as possible, most of the

notational details peculiar to the various identification

methods have becn uwiLte(u. Howcver, many of the definitions

are included in the first two sections of Chapter IV; the

others may be found by consulting the indicated references.

This approach is not meant to be totally comprehensive, but

rather merely to expose the reader to some of the underlying

concepts attendant to the different identification methods.

An endeavor such as this is almost certain to be some-

what.incomplete, as no attempt has been made to include

every identification method or variation appearing in the

literature. Furthermore, it is conceivable that some appli-

cable papers may have been inadvertently overlooked. It is

hoped, however, that the more popular methods have been

included for discussion in this chapter. A list of refer-

ences for each identification method is contained in the

bibliography.

is
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Maximum Likelihood

The maximum likelihood identification of the parameters

of a discrete, stationary linear stochastic system from

noisy input-output measurements is discussed by Kashyap

(Ref 4). In particular, he considers the problem of fitting

linear models to the observed output data of a physical

process. The mathematical model used to describe the process

consists of a vector input-output, linear nth order differ-

ence equation having constant but unknown matrix coefficients.

The system is assumed to be driven by a zero-mean input noise

disturbance which is completely specified by a set of n

unknown correlation matrices. The output measuremenLs are

assumed to be contaminated by a zero-mean, uncorrelated

measurement noise sequence having a constant but unknown

correlation matrix. The input and output noise sequences

are assumed to be mutually independent, and the identifica-

tion problem consists of identifying, from the input-output

record of the process, optimal estimates for the various

unknown matrices. The approach selected by Kashyap is to

denot.e the parameters of the unknown matrices by a parameter

vector, and assume that the conditional probability density

function of the output measurement (given all previous output

measurements and the unknown parameter vector) has a multi-

variate normal distribution. This allows the likelihood

function to be derived, and then maximized with respect to

the unknown parameter vector. The optimal estimates are then

obtained by solving a resulting parameter optimization

16
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problem. Conditions are also derived under which the maxi-

mum likelihood estimates (MLE) are unique, asymptotically

unbiased, and consistent.

The problem of determining the unknown parameters of a

dynamic system from noisy input-output observations is also

considered by Aoki and Yue (Ref 1). Their paper examines

in detail the estimation errors of two algorithms that

approximately compute the maximum likelihood estimates of

the system parameters. A scalar input-output, linear nth

order difference equation with constant but unknown coeffi-

cients is used as the mathematical model of the system. The

input and output observations are assumed to be corrupted by

mutually independent, additive white-noise sequences having

a standard normal distribution. The approach taken by Aoki

and Yue is to combine the unknown coefficients into a

parameter vector, and show that the approximate MLE of the

unknown parameter vector is equivalent to the computation of

an eigenvector of a real symmetric matrix. It is shown that

the algorithms for the approximate MLE yield a global optimum

for the unknown parameter vector, whereas the algorithms for

the true MLE yield only local optimum and hence require

iteration to obtain the global optimum. Necessary and suffi-

cient conditions are derived for the approximate MLE to

converge with probability one to its true value as the sample

size tends to infinity. For finite sample sizes, explicit

bounds are derived for the mean-square error of the approxi-

mate MLE.
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The maximum likelihood identification of stochastic

linear dynamic systems using the Kalman filtering representa-

tion is discussed by Mehra (Ref S). The mathematical model

used is a state variable representation of a discrete,

single-input, single-output linear dynamic system with

constant but unknown system matrices. The input and output

observations are assumed to be corrupted by zero-mean,

mutually independent, gaussian white-noise sequences having

constant but unknown covariance matrices. The approach

followed by Mehra is to transform the given model to an

equivalent state space representation called "Levy's proper

canonical form" (this representation is discussed in detail

in Chapter V). In effect, the output measurements are

"whitened" through use of a causal invertible linear trans-

formation (Kalman filter). The MLE of the unknown system

parameters is then obtained by maximizing the conditional

probability density function of the output measurement (given

all previous output measurements and the unknown system

parameters), subject to the equations defined by Levy's

proper canonical form. Conditions are indicated under which

the MLE are unbiased, consistent, and efficient.

Instrumental Variables

Wong and Polak (Ref 15) consider the use of the instru-

mental variable method to estimate the parameters of discrete,

linear time-invariant systems. In general, the method is

restricted to applications in which the controlled-input
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(if any) is noise-free, while the observed output may be

corrupted by white-noise.

Essentially, the instrumental variable method estimates

a set of unknown parameters from an array of linear algebraic

equations involving these parameters, a set of controlled-

input observations, and a set of noise-corrupted output

observations. The output measurement-noise sequence is

assumed to be a sample from a zero-mean stationary noise

process whose covariance function, r(t), tends to zero at a

rate faster than I/t as t • •. The controlled-input sequence

is assumed to be either deterministic, or else a sample from

a stationary random process statistically independent of

the output noise process. A further restriction in the

method is that the number of equations in the array must be

greater than the number of unknown parameters to be esti-

mated. Wong and Polak show that by first premultiplying the

given array by a suitable rectangular matrix, called the

instrumental matrix, a square invertible array is obtained

which may then be solved for the required parameter estimates.

The elements of the instrumental matrix are called instru-

mental variables.

Since the instrumental variable method cannot be used

with certain inputs (e.g., controlled-inputs corrupted by

noise), Wong and Polak derive a necessary and sufficient

condition for the instrumental matrix to exist when the input

is deterministic and bounded. They also show that under

suitable conditions on the system input and the output
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measurement-noise, optimal instrumental variables exist

corresponding to two criteria of optimality. The method,

when applicable, is always shown to yield consistent esti-

mates of the parameters.

Adaptive Estimation

In most physical processes, the mathematical model

representation of the process can usually be specified only

up to an unknown set of parameters. If X(t) denotes the

state vector of a process and e the time-invariant parameter

vector, then the problem of obtaining the optimal (in some

sense) estimate of the state vector under the condition of

the uncertainty of the parameter vector is often referred

to as adaptive estimation. In essence, it is the simultan-

eous estimation of the state vector and identification of the

process parameters.

The problem of the optimal estimation of a sampled,

Gauss-Markov stochastic process when certain parameters of

the process are initially unknown is discussed by Magill

(Ref 26). His approach is to assume that the unknown para-

meters belong to a set that contains a finite number of

possibilities which are known a priori. The given stochastic

process may then be represented by a set of "elemental

stochastic processes" (one for each possible combination of

parameters), a switch that is permanently but randomly

connected to one of the elemental stochastic processes, and

a set of a priori probabilities for the set of switch
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positions. The elemental stochastic processes are repre-

sented as the outputs of linear dynamic systems excited by

white gaussian noise.

Magill shows that the optimal estimate is one that is

obtained by minimizing a generalized mean-square-error

criterion. In particular, he shows that the optimal state

estimate is obtained by taking the complete set of state

estimates conditioned on all available output observations,

weighting each with the conditional probability that the

appropriate parameter vector is true, and summing over the

space of all possible parameter values. The conditional

weighting coefficients are deternined by an application of

Bayes' rule, where the elemental stochastic processes are

assumed to have a multivariate normal density function.

Hillborn and Lainiotis (Ref 22) have extended the work

of Magill to cover non-Gaussian, Markov processes with

unknown parameters. The processes are characterized as

having probability distributions of known functional form,

but containing a set of unknown parameters. It is assumed

that-all initial knowledge of the unknown parameters can be

expressed by appropriate probability distributions (Bayesian

estimation), with the result that the optimal state estimate

may be determined without going through the intermediate

step of parameter identification per se. For sampled

stochastic processes having finite-state unknown parameters

and a generalized Markov property, Ilillborn and Lainiotis

show that the optimal state estimates can be formed from a
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set of optimal estimates based on known parameters, and a

set of "learning" statistics which are updated recursively.

Necessary and sufficient conditions are also established for

the convergence or "learning" of the constant unknown

parameters.

The adaptive estimation techniques discussed in the

previous two papers have been extended by Lainiotis (Ref 24)

to cover both structural and parameter adaptation, where

structural adaptation refers to the unknown dimensionality

of the state vector. The Bayesian approach to the adaptive

estimation problem is utilized by Lainiotis in assuming that

the system generating the random processes involved is

chosen at random from a finite collection of possible systems.

These systems are characterized as having state vector

dimensionality a, parameter vector value 0., and known or

assumed a priori probability Pr[c,O ]. It is further assumed

that the model structure a is less than some fixed number n,

and the defining parameter vector 0 is time-invariant. The

assumption of an upper bound n to the system dimensionality

permits structural adaptation to be imbedded into parameter

adaptation. This is accomplished by arbitrarily choosing

the dimensionality of the model as n, and determining those

system parameters that are zero if the correct model struc-

ture is less than n.

Using the approach of augmenting the state vector with

the parameter vector, Lainiotis shows that the optimal state
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estimator can be decomposed into two parts: a linear non-

adaptive part consisting of a bank of ordinary Kalman-Bucy

filters matched to each admissible value of the unknown

parameter vector, and a nonlinear part consisting of likeli-

hood ratios that incorporate the adaptive learning nature

of the estimator. In addition, the conditional-error co-

variance matrix is also derived for on-line performance

evaluation.

Model Reference

Model reference or model tracking techniques are ideally

suited to applications where it is desired to obtain the

parameter identification result recursively as the process

develops (called on-line or real-time identification). Such

techniques also enjoy wide applicability in the identifica-

tion of processes with time-varying parameters. A typical

model reference diagram is shown in Fig. 3. Use of the model

SNoise + Noise

,Controlleý Processss

Input + Output MSodel
4.rx Adjust .

•'Inpu• Model JMech.
Signal .f]Output

! •1 Model

0• • Parameter

Feedback

Fig. 3. Identification by Model Reference.
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reference technique begins by formulating, for the physical

process under consideration, a mathematical model having

adjustable parameters. The system input signal is then

simultaneously fed into the actual process and its mathe-

matical model, after which the output of each is fed into

a model adjustment mechanism. This mechanism operates on

the adjustable model parameters in such a way as to make

the model output follow, as closely as possible, the output

of the actual process.

A model reference technique for identifying the

parameters of dynamic systems modeled by differential

equations Is discussed by Usia and Vimolvanich (Ref 37).

An identification algorithm, based on the learning model

concept, is derived using the state-variable formulation.

A multiple-input, single-output noise-free system is first

considered, with the results then extended to the case where

the system has multiple-outputs and noise present. The

system under consideration is characterized by an nth order

vector differential equation, and a corresponding model with

unknown but adjustable parameters is assumed. Arbitrary

initial values of the model parameters are assumed, and the

identification objective becomes to adjust the model para-

meters so that they converge toward the corresponding para-

meter values of the actual system. The parameter adjustment

procedure adopted by t1sia and Vimolvanich is to minimize the

identification error, i.e., the difference betwzeen the
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system's output and the model's output. To accomplish this,

equations are derived for the adjustment of the model para-

meters, and the identification error is shown to converge in

the mean.

Stochastic Approximation

Stochastic approximation is an identification method

that can be used when the system input is assumed to be a

stationary stochastic process. Although some variations of

the method may be used without prior knowledge of the

statistics of the process, most require knowledge of the

noise covariances to yield consistent estimates. The

parameter estimates obtained using stochastic approximation

methods generally have larger variances than those obtained

using other methods (e.g., least-squares estimates).

Ho and Lee (Ref S) consider the problem of deriving a

real-time-convergence identification scheme for linear

dynamical systems using stochastic approximation. A linear

discrete model in state variable form is used to derive an

algorithm for determining the elements of the state transi-

tion matrix (in canonical or phase variable form). The

method is based upon the following assumptions: the system

is excited by a zero-mean, white-noise process having known

variance; the system output is measured exactly, i.e., the

output measurement-noise is zero; and the transfer function

between the input noise sequence and the system output has

no numerator dynamics. The resulting algorithm is shown to
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yield estimates that, although not optimal in a stochastic

sense, nevertheless represent the least-square fit to the

measurement data. The parameter estimates obtained using

the algorithm are shown to converge to their true values in

the mean-square sense.

The work of Ho and Lee has been generalized by Saridis

and Stein (Ref 58) to cover the on-line identification of

forced, discrete linear systems from a sequence of white-

noise-corrupted output measurements. The system is modeled

in canonical or phase variable form using the state variable

representation. The Robbins-Monro stochastic approximation

procedure is used to derive an identification algorithm that

uses only measurements of the system input and output, and

does not require knowledge of the output measurement noise

statistics. However, if the input measurements are also

corrupted with white-noise, the algorithm requires knowledge

of the variance of this noise sequence. The algorithm is

* also shown to converge to the true value of the parameters

in the mean-square sense.

*A slightly different approach to the parameter identi-

fication problem using stochastic approximation is discussed

by Sakrison (Ref 57). he considers the on-line estimation

of the poles and zeros of a rational transfer function whose

order is known not to exceed some fixed number n. A linear,

time-invariant system model is assumed, with both the system

input and output observable in the presence of mutually

uncorrelated, stationary rindom noise processes having
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zero-mean and known correlation functions. The approach

taken by Sakrison is to use stochastic approximation methods

to compute on-line an optimum filter, from which the desired

coefficients in the system transfer function may ba obtained.

The parameter estimates generated using the derived algo-

rithm are shown to converge, in the mean-square sense, to

their true values.

Linear Least Squares

Steiglitz and McBride (Ref 69) discuss an iterative

technique to identify a linear system from samples of its

input and output in the presence of noise. The model assumed

is a linear sampled-data system, with input and output

related by a rational 2-transform. The approach selected

by Steiglitz and McBride is to minimize the mean-square

error between the model output and the observed output of

the plant. A technique is derived for carrying out this

minimization by iteratively performing a sequence of Kalman

least-squares linear regressions on the system's input-output

data. Each iteration is shown to be computationally equiva-

lent to an ordinary Kalman linear regression, except for

prefiltering of the input and output data. Experimental

results are presented to show that the iterative identifica-

tion method converges more slowly than the ordinary Kalman

linear regression method, but results in improved parameter

estimates.
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The problem of identifying, from input-output measure-

ments, the unknown parameters in linear dynamical systems

with transport lags is considered by lusia (Ref 63). An nth

order, linear differential-difference equation model is

assumed, with noise-free input and output. The identifica-

tion technique derived by Hsia essentially involves two

steps: (1) the use of a finite difference technique to

reduce the differential-difference equation to an ordinary

difference equation, and (2) estimation of the system

parameters through identification of the resulting discrete

model via Kalman's least-square method.

Correlation

Anderson, et. al. (Ref 72) discuss the problem of

determining consistent estimates of the parameters of a

linear dynamic system. A discrete linear model in the state

variable formulation is assumed, with uncorrelated, additive

noise present at both the input and output. The state

f transition matrix and input-output noise covariance matrices

are assumed to be unknown, and thus require identification.

Estimates of these matrices are derived and shown to be

strongly consistent when the linear system is stable, i.e.,

when the eigenvalues of the state transition matrix lie within

the unit circle. In addition, the asymptotic properties of

the model are investigated, and shown to remain unchanged

when the unknown system parametcrs are replaced by their

strongly consistent estimates.
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The problem of estimating the autoregressive parameters

of a mixed moving-average time series of known order using

output data alone is considered by Gersch (Ref 75). The

problem is shown to be equivalent to the estimation of the

denominator terms of a scalar transfer function of a

stationary, linear discrete-time system. Three formulations

of the system are discussed: state variable, time series,

and Z-transform representations. It is assumed that the

system is excited by a zero-mean, uncorrelated input noise

sequence of unknown variance, and the output observations

are exact (i.e., the output measurement-noise is zero). The

approach followed by Gersch is to derive a modified set of

Yule-Walker equations, which are then used to solve for an

asymptotically unbiased estimator of the unknown autoregres-

sive parameters. The estimator is also shown to be unbiased

in the presence of additive white output measurement-noise

of arbitrary finite correlation time.

In the next chapter, the on-line identification of

discrete linear stochastic systems is considered. The

identification methods discussed are based largely upon the

statistical correlation properties of the output measurements.

As such, the methods are similar to those employed in time

series analysis (Refs 75, 80, and 82).
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IV. On-Line Identification of Discrete

Linear Stochastic Systems

In this chapter, attention is turned to an in-depth

examination of an identification method recently proposed

by Mehra (Refq. 78 and 79). The method is more general than

some others currently appearing in the literature (e.g.,

instrumental variables and stochastic apprcoximation), in

that complete knowledge of the input-output noise covariance

matricer is not required. Additionally, the method is

capable of providing on-line identification when implemented

using a digital computer.

In the interest of notational simplicity and continuity,

only the discrete case will be discussed in the remainder of

this paper. This should cause no serious limitations, since

the method can be extended to the continuous case with

little difficulty.

Preliminaries

For the convenience of the reader, a few preliminary

definitions are introduced in this section. The terminology

and notation appearing in the remainder of this paper are

fairly standard, being used rather extensively in the

literature of system identification and estimation (Ref

180:106-121).

Definition 1: A stochastic process is a family of

random vectors {X(k), kcI) indexed by a parameter k all of

whose values lie in some appropriate index set I.
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Definition 2: Let X be an n vector. Then the stochas-

tic process {X(k), kel} is said to be independent if, for

any m time points kl, ... , km in I, where m is any integer,

the joint probability distribution function of the m random

n vectors X(kl), ... , X(km) is equal to the product of the

probability distribution functions of zhe m individual n

vectors. That is

P[X(k )< i ... ,I !(k ) < xm] = I Pi[X(k.) < x.J-1.- ~l' - a - -a i=l 1 -

for all n vectors xI, ..." .

Definition 3: Let {X(k), kcI} and {Y(k), kcI} be two

stochastic processes, where X is an n vector and Y is a p

vector. The two stochastic processes are said to be

independent of each other if, for any m time points

kit ... , km in I, where m is any integer, the joint proba-

bility distribution function of the 2m random vectors

X(k )..... X(km), Y(k 1 ), ... , Y(km) i3 equal to the product

of joint probability distribution functions of the m random

n vectors and m random p vectors. That is,

P[X(k 1 ) < xis ... I !(k ) < x Y m (k) < yI ..."I (k m) < ym

= P[X(k) < x10 ... I (k) < x ]P2[Y(k<) • y .".. Y(k ) < y ]
I1- -l- - _a 2 1 -1 a - -M

Sfor all n vectors xl1 "' mx and all p vectors y,1. .. .,m

* Definition 4: A stochastic process {X(k), kcl} is said

to be uncorrelated if, for all j, kL!, j • k
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E[X(j)X' (k)] =E[X(j)]E[X' (k)]

Definition 5: Two stochastic processes (X(k), kcl}

and {Y(k), kcl) are said to be uncorrelated if, for all

j, kel

E[X(j)Y'(k)] = E[X(j)]E[Y'(k)]

Definition 6: A stochastic process is said to be

stationary if the probability laws governing the mechanism

producing the process remain time-invariant as the process

evolves in time.

Definition 7: A stochastic process {X(k), kcIl is said

to be gaussian or normal if, for any m time points ki, ... , km

in I, where m is any integer, the set of m random n vectors

X(kl), ... , X(km) is jointly gaussian distributed.

Definition 8: A stochastic process (X(k), kcl) is said

to be a gaussian white process if, for any m time points

kl, ... , km in I, where m is any integer, the m random n

vectors X(kl), ... , X(km) are independent gaussian random

vectors.

Definition 9: A stochastic process {X(k), keIl} is said

to be a Markov process if, for any m time points

k1 < k2 < ... < km in I, where m is any integer, the condi-

tion probability distribution function of X(k ) for given

values of X(k 1 ), .I.., X(k m 1 ) has the property that
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P[X(k) < x JX(k 1 ) = ...~ I(k 1 ) = x- ml

P[X(k) < x X(k ml =

for all n vectors x1, ", x

Definition 10: A stochastic process is said to be

Gauss-Markov if and only if it is both Gaussian and Markov.

The Model

The system model proposed by Mehra has been discussed

many times in the system estimation and identification

literature, e.g., Kalman (Ref 100), Ho and Lee (Ref 51),

and Meditch (Ref 180). Essentially, the model represents a

discrete linear dynamic system operating in a stochastic

environment, and is formulated using the state variable

approach. A block diagram representation of the model is

shown in Fig. 4.

IU~k) r +X~k+1) D l yX~k) I

System Dynamics Output Measurement
Dynamics

Fig. 4. Discrete Linear Stochastic Model.
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Tha system dynamics and output measurement dynamics are

governed, respectively, by the following two linear differ-

ence equations:

X(k~l) = OX(k) + rU(k) (1)

Z(k) = HX(k) + V(k) (2)

for k = O,, ... , where

X is the n x 1 state vector

4 is the n x n state transition matrix (constant)

U is a p x I vector of gaussian white-noise calld the

system disturbance vector

r is an i. x p matrix called the disturbance transition

matrix (constant)

Z is a r x 1 vector called the output measurement

vector

H1 is a ý" x n matrix called the measurement matrix

(constant)

V is a r x 1 vector of gaussian white-noise called the

measurement error vector

Equation (1) is often called the state equation, and Eq (2)

the measilrement equation.

Assumptions

1. E[U(k)] = 0 (3)

E[U(j)U'(k)J = Q6 j (4)
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E[V(k)] = 0 (5)

E[Vc(j)V'Ck] = R6 k (6)

E[U(j V'(k)] = 0 (7)

EJCX(0)] 0 (8)

E[X(O)X'(0)o = P(0) (9)

for j, k = 0, 1. ... , where

Q is a p x p positive definite matrix called the

input-noise covariance matrix (constant)

R is a r x r positive definite matrix called the

output-noise covariance matrix (constant)

X(O) is a zero-mean guassian n vector called the initial

state vector

P(O) is an n x n matrix called the initial state

covariance matrix

6jk is the Kronecker delta

2. The system is completely observable and controllable.

Kalman (Ref 100) shows that this is equivalent to the

following two conditions:

rank [r, or, ... , (o n -1)r = n (10)

rank [t1', 'IHI, n-1 )11'H'] n (11)

This condition, along with the positive definiteness of

Q and R, is necessary to ensure the asymptotic global

35



GSA/MA/72-5

stability of the Kalman filter, as shown by Deyst and Price

(Ref 95).

3. The state transition matrix, 0, is nonsingular,

with all eig¢:values located inside the unit circle.

DeRusso, et. al. (Ref 177:447) show that this condition is

necessary to ensure stable dynamics for a time-invariant

linear system.

4. The system is minimum phase, i.e., the system

transfer function has no zeros located in the right-half

plane. Truxal (Ref 182:426-427) shows that this condition

is necessary to ensure the physical realizability of a

linear system.

S. The system is time-invariant, and the identifica-

tion procedure begins after steady state conditions have

been reached. This assumption is necessary to allow the

system matrices o, r, and H, the noise covariance matrices

Q and R, and the covariance matrix of the state vector X(')

to be treated as constants.

6. The problem of interest is to identify the unknown

matrices 0, r, H, R, and Q from a record of the output

measurements Z(O), Z(l),....

Properties

1. Meditch (Ref 180:168-169) shows that the model

described by Eqs (1) through (9) has the following properties:
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a. The stochastic processes {X(k), k = 0, 1, ..

and (Z(i), i = 0, 1, ... , j} are Gauss-Markov

sequences with identically zero means.

b. E[X~j)U'Ck)] =0

b) k > j, j = 0, 1, ... (12)

c. E[Z(j)U,(k)] 0 0

V k > j, j 0 0, 1, ... (13)

d. E[X(j)V'(k)] 0 0

V j and k (14)

e. E[Z(j)V' (k)] = 0

Vk > j, j = 0, 1, ... (15)

These properties follow from the linearity inherent in the

model, and the fact that X(k) depends only upon X(O),

U(O), ... , U(k-l), where {U(j), j = 0, 1, ... ) and

(V(j), j = 0, 1,. ... ) are uncorrelated zero-mean white

gaussian sequences independent of the gaussian random

vector X(O).

~ 2. At this point, it is convenient to state some

general properties from optimal estimation theory (Refs 100

and 180).

a. The optimal estimate of the state X(k) given

the output measurements Z(s), 0 < s < j, is

given by the conditional mean of X(k), denoted

as follows:
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X(klj) = E[X(k)IZ(s), 0 < s < j] (16)

If k > j, the estimation problem is one of

prediction; if k = j, the estimation problem

is one of filtering; and if k < j, the problem

is one of smoothing. The filtered and predicted

state estimates are used in the adaptive Kalman

filtering approach to the identification

problem discussed in Chapter V.

b. Let the estimation error of the state X(k) be

defined by

X(klj) E X(k) X(klj) (17)

Then the single-stage optimal predicted

estimate of X(k+l) is given by the following

relation:

A A

x(k+ljk) = 'PX(klk) (18)

where X(klk) is the optimal filtered estimate

of X(k).

c. X(klj) is a linear estimate, i.e., a linear

combination of the available output measure-

ments Z(s), 0 < s < j.

d. X(klj) is unique.
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e. X(klj) and X(klj) are gaussian random n

vectors.

f. The stochastic process {X(k+llk), k = 0, 1, ... }

is a zero-mean Gauss-Markov sequence.

g. X(klj) is independent of any linear combina-

tion of the available output measurements. In

particular, X(klj) is independent of !Rsjt),

which implies that

E[X(klj)X'(slt)] = 0 (19)

for all k, j, s, and t.

h. If the r x 1 vector Y(k) is defined by

Y(k) E iX(k)

so that Y(klk-I) = IiX(klk-l), then Z(j) and

Y(klk-l) are independent random vectors,

implying that

E[Z(j)Y'(kjk-I)] = 0 (20)

for all k and j.

Identification of €

The identification method proposed by Mehra (Ref 78)

to estimate the elements of the state transition matrix €

is based on the autocorrelation function of the output

measurements Z(i). In order to formally derive the method,
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however, it is first necessary to establish that under

steady state conditions the stochastic process

(Z(i), i = 0, 1, ... ) is a stationary gaussian sequence.

Using Eqs (2), (6), and (14), the covariance matrix of the

output measurements may be written as follows for k > 0:

E[Z(i)Z' (i-k)] = E{[HiX(i)+V(i)] [HX(i-k)+V(i-k)],}

= HE[X(i)X'(i-k)]Hl'+iiE[X(i)V'(i-k)]

+ E[V(i)X'(i-k)]lH'+E[V(i)V' (i-k)]

= IIL[X(i)X'(i-k)]Il' (21)

Rewriting Eq (1) in terms of the initial state vector X(O)

results in
i-I

X(i) = 4iX(O) + 1 4"i-1-s PU(s) (22)
Ss=~ -- I

i-k i-k-l
X(i-k) = 0i-k X(0) + i k i-k-l-s Pu(s) (23)

- s=0-=

Solving Eq (23) for X(O) and substituting the result into

(22) yields

i[,k-i i-k-lxci) : i +k iXci-k) - I -t - s rucs)]
s=O

i-I+' t •i-l-s rues)
s=O

k ~i-l 1-
4 k X(i-k) + ls U(s) (24)
- -s=i-k
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Substituting Eq (24) into (21), and using Eq (12) yields

k i- i- 1-s
E[Z(i)Z'(i-k)] = HE{[k X(i-k) + I -l ru(s)]

s=i-k -

[X'(i-k)]IH'

= H kE[X(i-k)X'(i-k)]H'

. -I o-l-s rE[U(s)X'(i-k)]H'
s=i-k - ~

= 114 kE[X(i-k)X'(i-k)]H' (25)

If the n x n covariance matrix of the state vector X(i) is

defined by

P(i) B E[X(i)X,(i)] (26)

then the following expression may be obtained for Eq (25):

E[Z(i)Z'(i-k)] = Hk P(i-k)H' (27)

By assumption five of the model, however, steady state

conditions have been reached. This implies that the co-

variance matrix of the state vector X(.) is constant and

may be written as

P = P(.) (28)

Substituting Eq (28) into (27) results in the following

relation for the covariance matrix of the output measure-

ments:
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E[Z(i)Z'(i-k)] = HOkPill, k > 0 (29)

A side condition on P may be obtained by substituting

Eq (1) into (26), and using Eqs (4), (12), and (28):

PCi) = E([4xci-l)÷ru(i-l)] ([xCi-l)+ru(i-1)]'}

= *E[xci-I)X' (i-l)]4',+rQr,

= *P~i-l)#,+rQr'

or

P =oP'rQr' (30)

Similarly, using Eqs (2), (6), (14), and (28), the

autocorrelation function of Z(i) may be written as follows

for the case of k = 0:

E[Z(i)Z'(i)] = E{[(HX(i)+V(i)][HX(i)+V(i)]'}

= IIE[X(i)X' (i) ]111+R

= HPII'+R, k = 0 (31)

Therefore, it can be seen from Eqs (29) and (31) that under

steady state conditions, E[Z(i)Z'(i-k)] is independent of i

for all k. This implies that {Z(i), i = 0, 1, ... ) is a

stationary sequence, which is also gaussian by property one

of the model.

It sbould be noted that in general, the autocorrelation

function of the output measurements is not a scalar but
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rather a r x r matrix. However, if only scalar outputs are

considered (i.e., r 1 1), the corresponding autocorrelation

function is also a scalar. In the remainder of this paper,

therefore, only the scalar-output case will be considered,

and the scalar autocorrelation function of the output

measurements is given by

-HPH' + R, k = 0
Ck - l- k P" ' , k > 0 (32)

Having established the stationarity of the above

vector-input scalar-output system, attention is returned to

a consideration of Mehra's proposed on-line identification

method (Ref 78). The autocorrelation function of the output

measurements, C k, is used to derive a set of equations

analogous to the Yule-Walker equations in the statistical

analysis of purely autoregressive time series (Ref 183).

The derived set of equations are then shown to form the

basis for the proposed on-line identification method. Using

Eq (32) for k = j, j + 1, .••, j + n - 1, where n is the

order of the system and j 1 1, results in

C. -i Pi I
Cj÷l 110 t~ + pH'I

C j+nI ,.,j +n -I plj,

= B.PH' (33)
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where

110j H

HOj~ HO

B. = (34)

11 j +n-1 H Hn-1

It should be observed that the n x n matrix B. is nonsin~u'ar~J

This follows from assumptions three and two of the model

which state, respectively, that the state transition matrix

0 is nonsingular and the n x n observability matrix is of

full rank, i.e.,

H

rank " = n

lln- l

Therefore, since B. from Eq (34) is seen to be the product~J

of the observability matrix having rank n and the nonsingular

matrix 0, it follows that the rank of B is also n. Thus

the rows of B. are linearly independent, and the nonsingu-I -3
¶ larity of 6. ib esLaolisned. Solving for Pli' from Eq (33)
I

yields
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Ci

C,.

PH' = BI 1  . (35)
!- j

Cj+n-1

Substituting Eq (35) into (32) for k = j + n results in

C.
3

Cjil

C W .+nB71 (36)
j+n ~~ ~

-C j~n-1 -

Equation (36) represents a recursive relationship for

the autocorrelation function Ck. In its present form,

Eq (36) cannot be used in the identification of * because

of the presence of the unknown matrix H. However, H can

be eliminated by use of the Caley-Hamilton Theorem (Ref 177),

which states that the square matrix f satisfies its own

characteristic equation. If the characteristic polynomial

of $ is denoted

f(A) IAI- n n- ... * an X a+

n

where X is a root of the characteristic equation of t and the

ai, il, ... , n are unknown scalars, then this implies that

S a 4n- ... a 2 + a 1! 0 (37)
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Premultiplying Eq (37) by HOJ and solving the resulting

equation for Hj+n yields

Hjn= -a ,,j+n- - - a2 H0+1 - alH

n-- 2 1~~

- -[al, a 2 , ... , a •
n

= -[al, a 2 , ..2, an ]Bj (38)

Postmultiplying Eq (38) by B. results in

H$J3 +nB:.1 -[al, a 2  .. an] (39)
2-- .. 1 n

Substituting Eq (39) into (36), the following result is

obtained:

C.
I

ci..S~j+l

Cj+n -[al, a 2 , ... , an)

Cj+n- 1

n
C. - . aiCi+ I , j > 1 (40)

Equation (40) represents a modified set of Yule-Walker

equations (Ref 183). These equations may be written in
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matrix notation by allowing j to run from 1 to n in

Eq (40):

Cn+1 C1C2 ... Cn a1

Cn+2 C2 C3 . n+l a2

. = . .(41)

C2n Cn C n+ ... C 2 n1_ an

The development leading to the result in Eq (41) is similar

to the approach used by Gersch in the analysis of a mixed

autoregressive moving-average time series (Ref 75). In his

work, Gersch derives an unbiased estimator for the auto-

regressive time series parameters. He refers to Eq (41) as

the "normal equation" of the system, and shows that for

j = 1, ... , n, the n x n matrix of autocorrelations appearing

therein is nonsingular. Hence, Eq (41) may be rewritten as

C ... _C -

a 1  1C2 n n+1

a C .. Ca 2  C2  3 n+l n+2

(42)

a CC C C
n n n+l 2n-1 2n

In order to use Eq (42) to estimate the ai, and hence

t, it is necessary to first estimate the autocorrelation

functions C k* If Ck is used to denote an estimate of Ck, one

possibility is to make use of the fact that the Z(i) are a
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stationary gaussian sequence, and substitute the empirical

autocorrelation functions of the output measurements for C k:

T
C k = l/T I Z(i)Z(i-k) (43)

i=k

where T is the number of sample points of the output. For

finite sample sizes, the estimates of Ck obtained using

Eq (43) are biased, requiring that T in the denominator be

replaced by T-k for unbiased finite-sample estimates.

However, Heffes (Ref 97) shows that the estimates obtained

using Eq (43) result in less mean-square error than the

corresponding unbiased estimates, and hence are preferable.

Therefore, substituting the values of Ck given by Eq (43)

into Eq (42), and letting ^i denote an estimate of ai, the

following result is obtained:

aI C n n n+l
12 C

2 2 n3 n+l n+2
. .(44)

a n Cn n+l " 2n-I 2n

tMehra shows that the identification method represented

by Eq (44) has the following properties:

1. The a. are asymptotically unbiased, normal, and
1

consistent estimates of the a. This follows from the facti1

that for large T, the errors in estimating the a. are approx-: 1

imately linearly related to the errors in estimating the Ck.
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Parzen (Ref 80) shows that Ck is an asymptotically unbiased,

normal, and consistent estimator of C Since the errors in

estimating the Ck are asymptotically normal with zero mean,

the stated property is established.

2. The identification procedure is capable of being

implemented on-line, i.e., the ai can be calculated

resursively. If C k is used to denote the estimate of Ck

based on T + I sample points, it follows that

AT4.l 1 T+l
-T÷ T I ( Z(i)Z(i-k)

i=k

I T k (45)= 77- [Z(T÷I)Z(T+I-k)] T+lCk(5

The a. can then be calculated recursively using Eq (44) for

T + 1 observations:

^T÷l -T+l AT+l . T+! - AT+,-
a1 1 C2 "' n fn+l

^T÷l -T+l tT+l -T+l -T+l

a2 C2 C3 "'" n~l n÷2

- -.. (46)

La n JC n C nl... C 2-C2
an n inl '! 2n-l_ 2n

3. The identification method, while identifying the

coefficients a. in the characteristic polynomial of 0, does
1

not actually identify the elements of the 0 matrix itself.

This can be a serious disadvantage if the exact structure
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of f is required. The reason for this is that once the a.~ 1.

are known, the Cayley-Hlamilton theorem, viz., Eq (37), can

theoretically be used to solve for the actual elements of

the 0 matrix. However, the resulting system of n algebraic

equations in n unknowns is nonlinear, with the result that

non-unique solutions will exist. In fact, Birkhoff and

MacLane (Ref 176) show that corresponding to each nth degree

monic polynomial

g(X) = Xn + a n ..+ + a 1
n2 1

an n x n matrix having characteristic polynomial g(X) can be

constructed. This matrix is called the companion matrix of

g(X), and has the following form:

0 1 0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0

o o 0 ... 1

-a1  -a 2  -a 3  -a 4  ... -an

However, matrices other than the companion matrix can be

found which also satisfy the characteristic equation of 4'.

Identification of it, r, and Hi Using a Canonical Form System

Representation

The possible disadvantages associated with use of the
I

above method for identifying the state transition matrix $
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may be eliminated if one is only interested in modeling the

output observations of the system. That is, if the particular

structure of 0 is unimportant, then the system represented by

Eqs (1) and (2) can be transformed into a canonical or phase

variable form (Ref 90) containing a fewer number of para-

meters to be identified. Consider the following linear

transformation:

X*(k) = TX(k) (47)

where T is a constant n x n matrix that maps the n x 1

state vector X(k) into the n x 1 vector X*(K). Mehra

suggests the following definition for T:

H

T (48)

H~n-

Using the assumption of complete observability, viz., Eq (11),

it follows that T is also nonsingular. Premultiplying Eq (1)

by T and using (47), Eqs (1) and (2) become, respectively

X*(k+l) = O*X*(k) + r*U(k) (49)

Z(k) = H*X*(k) + V(k) (S0)

Si (SO)
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where

0* = TOT- (S1)

r* = Tr (52)

H* = HT- (53)

Equations (49) and (50) represent the original system

in canonical or phase variable form, with o*, r*, and H*

derived as follows. Postmultiplying Eq (48) by 0, and using

Eq (34) with j = 1 results in

HeP

T= " (54)

-1

from which

T -1 =B B-l (55)

T- --1-

Substituting Eq (55) into (S1) yields

0* T4ý(tOBi

2 -1
*= T (B )56

52



GSA/NA/72-5

An expression for V" that is independent of T may be obtained

by substituting Eq (54) into (56), and using Eq (34) with

j = 1:

= BIB-

OB-1

n

-j

2 -1
11~ B

(57)

IfnB -1

But, from Eq (54) it is clear that

H• 1  1 0 0 0.. 0
U 2-;1 o i o ... 0

-1
-0 0 O ... 0V$B ==1 

(58)

I 114) n B 0 0 0 . . I
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Therefore, using Eq (58) to solve for the first n - 1 rows

of 0* in the representation given by Eq (57), and Eq (39)

with j = 1 for the last row of "*, it follows that Eq (57)

can be rewritten as

0 1 0 ... 0

0 0 1 ... 0

0*= (59)

o 0 0 ... I

-a 1 -a 2  -a 3  ... -an

It should be noted in passing that 0*, the canonical or

phase variable representation of the state transition matrix

0, is precisely the companion matrix of the characteristic

polynomial of 0 that was discussed in the previous section.

Furthermore, other representations of 4ý exist, since the

transformation given by Eq (51) identifies 4 only to within

a similarity transformation (Ref 176).

Continuing, an expression for H* can be obtained by

substituting Eq (55) into (53), yielding

11* = |H$B 1

From Eq (58), however, HIBI 1 is seen to be precisely the
I-t1

first row of the n x n identity matrix. Thus, H* may be

written as

Hl = [1, 0, 0, .0 ., 0] (60)
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Finally, it remains to determine r*. Using the canonical

form system representation given by Eqs (49) and (50), and

denoting the covariance matrix of X*(.) by P*, it is easily

shown that the following equation, analogous to Eq (30),

can be derived:

P* = o*P*i*~ + r*Qr*, (61)

Assuming for the moment that the input noise covariance

matrix Q is known, Eq (61) still cannot be used to solve

for r* because of the unknown matrix P*. However, an

auxilary equation for P* may be obtained as follows. Once

again starting with Eqs (49) and (50), it is straightforward

to show that the following equation, analogous to Eq (34)

with j = 1, can be obtained:

S= (62)

H* n

Equations (54) and (56), however, imply that

2 T P2 -l (T -),B l

($)= T'¢3B=1

Vý3 -1h~ B
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and by induction

(")i =~ i÷I B-I1 (63)

Substituting Eqs (53) and (63) with i = 1, ... , n into

Eq (62), and using Eq (57) results in

•2 B
1

3 -1

Now, using Eqs (49) and (50) to derive an equation analogous

to Eq (35) with j = 1, i.e.,

Cl

C2

C
LnJ

and substituting for B* from Eq (64), the following auxiliary

11
equation for P* is obtained:

CI

C 2

P*lj*1 = (4*). (6S)

C
5n
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Thus when Q is known, Eqs (61) and (65) may be used to solve

for r* and P*. Mehra (Ref 181) presents an iterative

procedure for solving equations of the form of Eqs (61)

and (65) for the case of Q equal to the identity matrix.

Identification of the covariance matrices Q and R is dis-

cussed in the next section.

One of the advantapes of using the canonical form

system representation discussed above is that the number of

unknown parameters required to identify the various system

matrices has been reduced. In the original system repre-

sentation given by Eqs (1) and (2), there are a total of
2

n + np + n unknown parameters required to identify 4, r,

and II. On the other hand, in the canonical form representa-

tion given by Eqs (49) and (50), there are only a total of

n + np unknown parameters required to identify 4*, r*, and

H*. Hence, use of the canonical or phase variable system

representation has significantly reduced the total number

of unknown parameters requiring identification.

Identification of Q and R

In the system representation given by Eqs (1) and (2),

the covariance matrix of the input gaussian white-noise

sequence U(k), having disturbance transition matrix r, is

assumed to be a symmetric positive definite matrix Q. In

this section it is shown that no generality is lost in the

system model if the covariance of U(k) is assumed to be the

identity matrix, provided that r is adjusted accordingly.
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The development begins by considering the following

well known result from matrix algebra (Ref 176): if a p x p

symmetric matrix Q is positive definite, then there exists a

nonsingular p x p matrix F such that

Q = FOF (66)

Substitutijng Eq (66) into (30), the following result is

obtained:

P = opo' + rF'Fr'

= oP + (rF')(rF')' (67)

Letting the n x p matrix re rF' be an equivalent disturb-

ance transition matrix, then Eq (67) implies that Eq (1) of

the original system model representation may be rewritten as

X(k+l) = DX(k) + r U (k) (68)

In Eq (68), Ue (k) is a p x 1 vector of equivalent gaussian

white-noise having the following properties:

E[U e(k)] = 0

E[Ue (j)U'e(k)] = 16jk

and I is the p x p identity matrix.

Conceptually, in arriving at Eq (68), the input dis-

turbance matrix r is adjusted in such a way (viz., rF) that

the gaussian whitc-noisc input sequence (11(k), k = 0, 1, ...1
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appears to have its covariance equal to the identity matrix.

That is, the original input model rU(k) can be thought of

as being replaced by an equivalent input model r U (k).~e-e

Statistically, however, the two input models are equivalent

with respect to the state vector X(k). Therefore, no loss

in generality occurs in the system model given by Eqs (1)

and (2) if Q is replaced by I in Eq (4):

E[u(cj)U' k)] = 16ij (69)

The only parameter remaining to be identified in the

system representation given by Eqs (1) and (2) is R, the

covariance of the gaussian white-noise measurement error.

A method that yields asymptotically unbiased, normal, and

consistent estimates of R is suggested by Mehra (Ref 78).

The method is based on the autocorrelation function of the

output measurements when k = 0. Substituting Eq (35) with

j = 1 into Eq (32) with k = 0 yields

C1

C
2

C -. + R (70)

C
n

Premultiplying Eq (37) by If and solving the resulting

equation for all! results in
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" "l -- a "n+l - a 3"T2 - a211

1- nl-- a3 2--

HO2

" -[a 2 , a 3 , ... , a n+I] (71

Ho n

where a 1. Substituting Eq (34) with j = I into Eq (71),
-1

and solving the resulting equation for HB1 yields

-l 1l

-~ = - al [a 2 , a3 , an l] (72)

Substituting Eq (72) into (70), the following result is

obtained:

n
aC = - a C +alR10 j=l j+l I

from which the indicated estimate of R is found to be

R a C. (73)= • X j+l j
a1  j=O

The C. in Eq (73) can be calculated using Eq (43), and the
A

a. can be calculated using Uq (44).

With respect to the statistical properties' of the state

vector X(k), it was shown earlier in this chapter that no

loss in generality occurs in the system model if the co-

variance of the input noise sequence is assumed to be the
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identity matrix. However, a major problem exists if Q must

be identified explicitly. The crux of the problem is that

even though the existence of a matrix F that satisfies

Eq (66) is guaranteed when Q is symmetric and positive

definite, F must still be identified in order to calculate

Q. One possible way in which the problem of identifying

Q and R may be approached is through adaptive Kalman

filtering (Ref 79). Although identification of the noise

covariances will not be pursued further in this paper,

Kalman filtering will be used in the next chapter to develop

another identification method.
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V. System Identification Using

Adaptive Kalman Filtering

Parameter identification using two system representa-

tions was discussed in the preceding chapter. It was shown

that distinct advantages could be obtained by using a

canonical form system representation rather than the original

system representation. In this chapter another model of

the system, called "Levy's proper canonical form" (Ref 74),

is developed. This model is shown to offer yet additional

advantages in solving the identification problem.

Levy's proper canonical form is based on the Kalman

filter representation of the system (Ref 101), and is derived

using the "innovations sequence" of the filter (Ref 76).

Hence, the chapter begins with a definition of the innova-

tions sequence, and proceeds to a development of some of its

properties. Using these results, the optimal filtered state

estimate is derived, and combined with certain results from

optimal estimation theory to yield the desired canonical

form.

The Innovations Sequence

The innovations approach to linear least-squares esti-

mation is discussed by Kailath (Ref 76). Basically, the

innovations approach is to use a causal and causally

invertible linear transformation to first "whiten" the

observed output data, i.e., convert the observed output to

a white-noise sequence. The reason for doing this is that
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with white-noise observations, the estimation problem is 2

greatly simplified. Then, once the solution to this simpli-

fied problem is obtained, the inverse of the original

"whitening" filter can be used to express the solution in

terms of the original output observations.

For the convenience of the reader, at this point the

basic system model for the vector-input scalar-output case

is restated, and certain additional terminology is introduced

(Ref 100):

X(k+l) = DX(k) + rU(k) (74)

Z(k) = Y(k) + V(k) (75)

Y(k) = IIX(k) (76)

where f(k) is the output message, V(k) is the output

measurement noise, and Z(k) is the output signal (message

plus noise). Using Eqs (16) and (17), the .onditional mean

and estimation error of the message sequence are, respectively

SY(kjk-l) = E[Y(k)jZ(j), 0 < j < k-l] (77)

Y(klk-l) = Y(k) - Y(klk-l) (78)

The innovations sequence of Z('), denoted by a(.), is

defined by Kailath (Ref 76) to be the difference between the

output signal and the conditional mean of the message

sequence. Substituting Eqs (75) and (78) into this difference
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yields

a(k) B Z(k) Y(klk-l) = Y(k) + V(k) Y(klk-1)

= Y(kik-l) + V(k) (79)

Another interpretation of the innovations sequence aC(.) may

be deduced as follows. Taking the conditional expectation

of Eq (75) given Z(j), 0 < j < k - 1, results in

Z(klk-l) = Y(klk-l) + VCklk-l) (80)

From Eq (15), however, it is seen that V(k) is independent

of Z(j), 0 < j < k - 1. That is, future measurement noise

is independent of past output signals, and hence

V(klk-l) = E[V(k)IZ(j), 0 < j < k - 1]

= E[V(k)]

S0 (81)

Therefore substituting Eq (81) into (80) yields

Z(klk-I) = Y(klk-l) (82)

after which Eq (79) becomes

ci(k) = Z(k) - Z(klk-1) = Z(klk-1)

The previous equation indicates that the innovations sequence

a(k) may be regarded as the estimation error of the output

signal, i.e., the difference between the output at time k and
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the optimal estimate of the output at time k given all

previous observations of the output. This difference is

precisely the "new information" brought by the latest output

observation Z(k).

Properties of the Innovations Sequence

The following properties of the innovations sequence

a(.) are discussed by Kailath (Ref 76) and Mehra (Ref 79):

1. The stochastic process defined by the innovations

sequence {cL(k), k = 0, 1, ... } is a zero-mean Gauss-Markov

sequence. This property follows from the fact that by using

property 2c of the system model and Eq (76), Y(klk-1) is

seen to be a linear combination of the available Z(s),

0 < s < k - 1. Thus, Eq (79) indicates that c(xk) is also a

linear combination of the available Z(s), 0 < s < k. It

follows, therefore, that since the Z(.) form a zero-mean

Gauss-Markov sequence (property la of the system model), the

ci(.) also form a zero-mean Gauss-Markov sequence.

2. The innovations sequence a(.) is a white-noise

sequence. This property may be established by using Eq (79)

and considering the covariance of the innovations sequence:

E[cL(j)cL(k)] = E{ [Y(j I j-l)+V(j)) IY(klk-l)+V(k)]}

= E[Y(jlj-l)Y(kjk-1)] + E[Y(jlj-l)V(k)]

+ E[V(j)Y(klk-1)] + E[V(j)V(k)] (83)

Ilowevcr, using Eqs (14), (17), and (76), it follows that
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E[Y(jIj-l)V(k)] = tIE[X(jIj-l)V(k)]

= IIE[X(j)V(k)] - HE[X(jIj-l)V(k)]

= -HE[X(jlj-l)V(k)], k > j

Using property 2c of the system model and Eq (15), the last

equation becomes

E[Y(jlj-l)V(k)] = 0, k > j (84)

Also, using Eqs (19), (76), and (78), it follows that

E[Y(jlj-I)Y(klk-l)] = E[Y(j)Y(kjk-l)] - E[Y(jlj-l)Y(klk-1)]

= E[Y(j)Y(klk-l)], k > j (85)

Therefore, substituting Eqs (84) and (85) into (83), and

using Eqs (20) and (75), the following result is obtained:

E[a(j)Q(k)] = E[Y(j)Y(klk-l)I + E[V(j)Y(kfk-l)]

+ E[V(j)V(k)], k > j

= E(Z(j)Y(kjk-1)] + E[V(j)V(k)]

= E[V(j)V(k)I, k > j (86)

By a similar development it can be shown that Eq (86) also

holds for k < j. Therefore, substituting Eq (6) into (86)

yields
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E[c(j)ca(k)] = 0, j ' k (87) A

The variance of the innovations sequence may be obtained

by substituting j = k into Eq (83), and using Eqs (76) and

(78):

"E[Cl(k)aC(k)] = E[V(k)V(k)] + 2E[Y(klk-1)V(k)]

+ E[i~kjk-l)Y(kjk-l)]

= E[V(k)V(k)] + 211E[X(k)V(k)]

- 2HE[X(klk-1)V(k)] + E[t(klk-l)i(klk-l)] (88)

Using Eqs (14) and (15), and property 2c of the system model,

Eq (88) becomes

E[0t(k)c•(k)] = E[V(k)V(k)] + E[E(klk-l)i(klk-1)] (89)

Defining the steady state variance of the estimation error

of the message sequence as

P -- E[iY(klk-l)Y(klk-l)], Y k (90)

and using Eq (6), the following result is obtained from

Eq (89) for the variance of the innovations sequence:

E[aC(k)aC(k)] = R + Py, j = k (91)

Hence, combining Eqs (87) and (91), the variance-covariance

matrix of the innovations sequence may be written as
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E[a(j)a(k)] = (R + Py)6jk (92)

A comparison of Eqs (6) and (92) reveals that the innovations

a(.) is a white-noise sequence like the measurement noise

V(.), but with a different variance.

3. For causal linear operations (i.e., linear operations

that do not require the future value of one variable to

determine the current value of another variable), a(.) and

Z(.) are "statistically equivalent" and may be obtained from

one another. For the case where Z(j), 0 < j < k, is known,

then Y(klk-l) can be calculated using Eq (82). Hence, from

Eq (79), it is seen that a(k) is completely determined by

Z(j), 0 < j < k. For the case where a(.) is known, Z(.) may

be obtained by using the celebrated Kalman-Bucy formula, and

the proof is given in Ref 76.

Levy's Proper Canonical Form

In this section, Levy's proper canonical form representa-

tion of the system is derived. This representation is based

on the Kalman filter for the system, and is discussed by

Geesey and Kailath (Ref 74) and Mehra (Refs 78 and 79).

Preparatory to the formal derivation that follows, however,

a preliminary result is stated in the form of the following

theorem (Ref 76):

Theorem 2: The Projection Theorem

In the original system representation given by Eqs (74)

through (76), the best estimate of the message error Y(kjk-l)
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/

is unique and satisfies the following condition:

YCklk-1) = Y(k) - Y(klk-l)i_ Z(s), 0 < s < k - 1 (93)

where

Y-j Z means E[YZ] = 0 (94)

In words, the projection theorem states that the instantan-

eous message error is uncorrelated with the output signal.

The first step in the derivation of Levy's proper

canonical form involves the development of a useful result

from optimal estimation theory. Meditch (Ref 180) shows

that any linear estimate of the state X(k) given the set of

output measurements {Z(s) = Y(s) + V(s), 0 < s < k} can be

written as

k
i(klk) = I GCk,s)ZCs) (95)

s=O

where the G(k,s) are n x 1 vectors. By property 3 of the

innovations sequence, a(.) and Z(') are statistically

equivalent for causal linear operations, and therefore

Eq (95) implies that

k
R(klk) I [ G(k,s)a(s) (96)

s=O

In Eq (96), the vector G(k,.) acts as a linear filter that

is selected such that the instantaneous error in measuring

the state vector is independent of the output signal, and
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hence is also independent of the innovations. That is,

X(klk) = X(k) - X(klk)_L (s), 0 < s < k (97)

Postmultiplying Eq (97) by a(s), taking the expected value

of the result, and using the projection theorem results in

E[X(klk)a(s)] = 0 = E[X(k)(x(s)] - E[X(klk)ca(s)]

or

E(X(k)a(s)] = E[X(kRk)a(s)] (98)

Substituting Eq (96) into (98), and using Eq (92) yields

k

I G(k,a)E [a(c)a(s)] (100)
o=0

= G(k,s)(R + Py), 0 < s < k (101)

Equation (101) says that in the steady state, the

correlation function between the state vector and the output

signal is proportional to the linear filter G(k,.). Since

in the scalar-output case, R and P are both constant scalars,

the existence or physical realizability of G(k,.) is assured.

Hence, from Lq (101) it followF that

G(k,s) = E[X(k)aC(s)(R +P) P (102)
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Postmultiplying Eq (102) by a(s), summing the result from

0 to k, and using Eq (96) yields

k 1
X(klk) = I {E[X(k)cxCs)](R + Py) ct(s)) (103)

s=0 -

which implies that

k~l 1-
X(k~ljk*l) = {E[X(k+l.)a(s)](R + P y) (I(s))

s=O

k -1
- {E[X(k+l)a(s)](R + Py) a(s)}

s=0

+ E[X(k.l)a(k+l)](R + Py)- a(k+l) (104)

If the steady state Kalman filter gain is now defined as the

n x 1 vector K, where

K - E[X(.)aC.)](R + Pg)-I

then Eq (104) becomes

X(k~llk+l) = {E[X(k+l)a(s)](R + Py) 1a(s)} + Kct(k+l)

s=0

Substituting Eq (74) into the last equation yields
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k -1
X(k+llk+l) = I {E[4X(k)a(s)÷rU(k)c(s)](R + Py)) a(s))

s=O -

+ Kca(k.1)

k
I {E[X(k)c(s)1(R + P) 'c (s))

s=O

k
* r Z {E[U(k) a(s)](R + Py)-c(s)}+K(k+l) (105)

s=O

However, using property 2c of the system model, and Eqs (13),

(76), and (79), it follows that

k k
S{E[U(k)a(s)]} - • {E[U(k)Z(s)] E[U(k)YCsls-l)])

s =0 ~ s =O ~

- 0 (106)

Substituting Eq (106) into (105), and using Eq (103) yields

the following result:

X(k+llk+l) = -X(klk) + Ka(k+l) (107)

For conveniepce, Eq (18) is rewritten below:

X(k+llk) = 4,^(klk) (108)

The optimal filtered estimate of the state X(k+l) is

given by Eq (107), while the optimal predicted estirmate is

given by Eq (108). Together, Lqs (107) and (108) constitute

a partial description of the steady state Kalman filter for
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the system given by Eqs (74) through (76). In recent years

the Kalman filter has enjoyed wide applicability in the field

of optimal control, principally because its recursive form

is ideally suited for implementation using digital computers.

For a complete mathematical description of the Kalman filter,

it is also necessary to determine the optimal filtering gain

and the optimal covariances of the filtered and predicted

estimates. The interested reader is referred to the litera-

ture for details (Refs 101 and 180).

The derivation of Levy's proper canonical form continues

by rewriting Eq (107) as

X(k+llk+l) = X(k÷l1k) + Ka(k+l)

which implies that

X(klk) = X(klk-1) + Ka(k) (109)

Substituting Eq (109) into (108) yields

X(k+lk) = cD[X(klk-l)+Ka(k)] (110)

Premultiplying Eq (110) by T, where T is defined in Eq (48),

and using the linear transformation given by Eq (47), the

following form is obtained for Lq (110):

X*(k+llk) = L*[X*(kJk-l)÷K*o(k)J (111)

where 4* is defined in Eq (51), and

K* = TK (112)
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Solving for Z(k) from Eq (79) and using Eq (76) results in
A/

Z(k) = Y(klk-l) + a(k)

= HIX(klk-l) + c(k)

Using the transformation given by Eqs (47) and (48), the last

equation becomes

Z(k) = H*X*(klk-1) + ct(k) (113)

where H* is defined in Eq i53).

Taken together, Eqs (111) and (113) comprise Levy's

proper canonical form, which is shown in Block diagram

representation in Fig. 5. Levy's proper canonical form

representation has the following advantages over the

canonical form representation given by Eqs (49) and (50):

I. The optimal filtered and predicted estimates of

the state vector are o*,:ained directly.

+ a.)+ X(klk) X*Ck~lli,)

Z(k) 
4

ll'•"(k I - I)X -(klk-l1)

Fig. S. Miodel of Lcvy'5 Pror r Canonical Form.
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2. The innovations sequence a(k) is obtained directly

from the output measurements Z(k) and the optimal predicted

estimate of the state vector X*(kjk-l), where X*(kjk-l) can

be realized using the feedback desigi, shown in Fig. S.

Availability of the innovations sequence enables a check to

be performed concerning the optimality of a Kalman filter

constructed using parameter estimates, as well as providing

information pertaining to the statistical quality of the

parameter estimates. These tests are discussed by Mehra

(Ref 79).

3. For vector-input scalar-output systems, Levy's

proper canonical form representation effects a net reduction

in the number of unknown parameters to be estimated, i.e.,

K* contains n unknown elements, whereas r* contains np

unknown elements.

Identification of K*

Although distinct advantages may be gained by using

Levy's proper canonical form over other system representa-

tions, a problem nevertheless exists in that the optimal

gain K* remains to be estimated. In this section, an

algorithm for estimating K* is discussed (Ref 78). The

algorithm is based on the innovations sequence c(.), and is

capable of being implemented on-line.

As pointed out in the preceding section, a complete

mathematical description of the Kalman filter, and hence of

Levy's proper canonical form, requires knowledge of the
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optimal filter gain and the optimal covariance of the error

in estimating the filtered and predicted states. When all

of the parameters in the original system formulation (viz.,

o, r, H, Q, and R) are known, expressions for determining

the optimal gain and covariances in the Kalman filter are

well documented in the literature (Refs 101 and 180).

However, when the system parameters are initially unknown

and require estimation, a Kalman filter constructed using

these parameter estimates may not be optimal. In cases

where the parameter identification is particularly poor,

the Kalman filter may become unstable and even diverge

(Refs 95 and 97). On the other hand, when the parameter

estimates are good, the Kalman filter will be stable and

the state vector will converge to its true value.

Mehra (Ref 79) shows that a necessary and sufficient

condition for the optimality of a Kalman filter is that the

innovations sequence a(.) be white. This condition forms

the basis for the algorithn, that estimates the optimal filter

gain K*, for when the innovations sequence is white, the

corresponding value of the filter gain is optimal. V-ry

basically, the algorithm begins by arbitrarily assuming an

initial value of the filter gain K 0 and filtering the output

observations {Z(O), .... Z(n)} using Eqs (111) and (113).

Next, the innovations sequence, which M1ehra shows to be

stationary under steady state conditions, is autocorrelated

and tested for whiteness. If the innovations sequence is
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not white, the filter gain is changed to K1, where K1 is

determined by a recursive relationship involving Ko, "

and the normalized autocorrelations of the innovations

sequence. The above procedure is repeated until the sequence

x(.) is white. The sequence of filter gains, KO, Ell ... , is

shown to converge to the optimal value K* in the mean-square

sense.
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VI. Conclusions and Recommendations

for Further Study

Conclusions

This thesis considered the problem of the identifica-

tion of linear stochastic systems. A basically non-technical

state-of-the-art assessment of the subject area was made, and

criteria for the classification and selection of identifica-

tion methods were presented and discussed. Several of the

more popular identification methods from the literature were

investigated and summarized. The methods were shown to have

application to such diverse fields as economics, industrial

processes, and aircraft design.

Using the state variable formulation for a discrete

linear stochastic system, a detailed exposition of a few of

the on-line identification methods currently appearing in

the literature was presented. One such method, based on the

autocorrelation function of the output measurements, was

developed to identify the state transition matrix and the

output noise covariance. It was shown that a canonical or

phase variable system representation could be used to reduce

the number of unknown parameters requiring identification.

Finally, an on-iine identification method called Levy's

proper canonical form, based on the Kalman filter representa-

tion of the system, was derived using the innovations scquencL

and certain results from optimal estimation theory. It was

shown that this identification method resulted in still
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additional advantages over the identification methods

previously developed.

Recommendations for Further Study

Obviously, this thesis has not answered all interesting

questions concerning the identification of linear stochastic

systems. A fruitful area for further research is discussed

below.

Regardless of whether the ultimate purpose of an

identification analysis is parameter identification alone,

or for control application, the degree of accuracy required

is an important factor that can often dictate the type of

identification method to employ. However, a major problem

exists in this regard in determining the degree of accuracy

attainable using a particular identification method, and

formulating criteria for measuring that accuracy. Unfortu-

nately, the literaturc of system identification is far from

complete in this area. Therefore, it is recommended that a

criteria be developed for measuring the accuracy and

sensitivity of different identification methods, and that

such criteria be validated by comparing several identifica-

tion methods using simulation techniques.
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