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Preface i

The desire to undertake research in the field of system
identification initially grew out of my experience as a 1
practicing aerospace engineer working principally on the
design and analysis of stability-and-control characteristics
of vertical take-off and landing (VTOL) aircraft. The

myriad problems encountered in this regard soon led me to i

graduate study in both aerospace and electrical engineering,
chiefly in the areas of aeromechanics and automatic control
theory. As a result, it soon became increasingly apparent
that the VTOL parameter identification problem was concep-
tually similar to identification problems frequently
occurring in various areas of electrical engineering. My
interest was further nurtured when subsequent graduate work
in economics and systems analysis revealed still other
applications requiring identification of the parameters of
linear stochastic systems.

The first three chapters of this thesis should be of
particular interest to the reader who has a general curiosity
about the subject area, but who, for one reason or another,
is not particularly interested in the mathematical details.
In these chapters I have endeavored to introduce basic
concepts and present a non-technical assessment of the
current state-of-the-art, including a descriptive exposition
of some of the more popular methods of system identification.

Where material has been condensed and summarized from the

ii
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literature, it has been my aim to do so in such a way as
L0 maintain 2n objective, illuminatineg verspective on the
subject.

My research into the subject area began with a fairly
extensive literature search, the results of which are con-
tained in the bibliography. The articles it lists are keyed
not only by identification methods, but also by general
headings directly related to system identification. The
bibliography is, I think, relatively complete, and should
serve as a ready source for the reader who wishes to iavesti-
gate further certain areas of system identification.

I wish to express my sincere gratitude to my thesis
advisor, Dr. David R. Barr, Department of Mathematics, for
the many helpful suggestions and constructive comments he
provided throughout this study. Finally, special thanks are
offered to my wife, Veronica. Without her patience and
understanding this investigation could not have been

completed.
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Abstract

This research considers the problem of the identifica-
tion of linear stochastic systems. A current state-of-the-
art assessment of the general field of system identification
is given.iand criteria for the classification and selection
of identification methods are presented and discussed.

Several of the more popular identification methods from the

literature are investigated and summarized. A bibliography
containing 185 references, keyed by identification methods
and other relevant headings, is included.

Using the state variable formulation for a discrete
linear stochastic system, a detailed exposition of a few
of the on-line identification methods currently appearing
in the literature is presented. One such method, based on
the autocorrelation function of the output measurements, is
developed to identify the state transition matrix and the
output noise covariance {(vector-input, scalar-output case).
It is shown that a canonica! or phase variahle system
reprgsentation can be used to reduce the number of unknown
parameters requiring identification. Finally, an on-line
identification method called Levy's proper canonical form,
which is based on the Kalman filter reprcsentation of the
system, is derived using the innovations sequence and certain
results from optimal estimation theory. It is shown that
this identification method results in still additional
advantages over the identification methods previously

developed.

I..........l....'..............-...“.....-...-“._ .
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THE IDENTIFICATION OF LINEAR

STOCHASTIC SYSTEMS

I. Introduction

Purpose (

The ﬁurpose of this thesis is to present:

1. A survey of the current state-of-the-art of the
identification of linear stochastic systems.

2. A classification of many of the various identifica-
tion methods currently appearing in the literature, in terms
of the type of the model, input signal, and optimization
criterion used,

3. The relevant properties of the different identifica-
tion methods that differentiate one from another, and provide
the systems analyst with valuable insight into which identi-
fication method to use in a given application.

4. The development of selective topics from the litera-
ture of system identification, including Mehra's on-line
identification method and system identification via adaptive

Kalman filtering.

The Identification Problem

Very basically, the identification problem is simply

the determination of the mathematical model that describes a
given physical process (i.e., the structure and parameters

of the mathematical model). 1If the system designer is only

intercsted in the paramcter identification problem, he may
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choose to model the process as shown in Fig. 1. In the model
depicted in Fig. 1, the plant is that element which relates

the system input to the system output. As such, the plant

Input Output
Plant

Y

Fig. 1. Model for Parameter Identification Only.

can be thought of as consisting of the process parameters
interconnected through some mathematical relationship such
that, for a given system input, the output states of the
process are completely determined. Hence, for a discrete-
time process, the coefficients (constant or time-varying)

of the difference equation relating system input to output
may be regarded as functions of the process parameters.

In many physical processes, some or all of the process
parameters may be unknown, or may be known initially but
change stochastically as the process unfolds. The parameter

identification problem consists of the determination of these

unknown parameters.
During the past few years an incrcasing number of papers
have appeared in the literature on the general subject of

system identification. These papers have appeared in such

diverse fields as economics (Refs 105 and 106), industrial
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processes (Refs 107 and 111), and biology (Ref 104).
Generally, there are two primary motivations for the current
interest in system identification. First, the system designer
may only be interested in identifying the paraumetcrs of a
pihysical process under consideration. Second, he may require
knowledge.of the process parameters for use in a subsequent
control engineering application. Although obviously related,
these two motivations can have distinctly different implica-
tions, which are discussed at length in Chapter II.

An example of a parameter identification problem that
arises often in connection with economic analysis work
concerns the Leontief input-output model (Ref 109). In this
model, the national economy is broken down into N industries,
each of which can be thought of as producing a certain output
product. In general, the output product of each industry is
used as an input, along with certain other inputs (e.g., raw
materials), to the other industries in the economy. An
input-output table is then constructed. The elements, aij’
i, =1, ..., N, appearing in the table are called input-
outpﬁt coefficients, and refer to the amount of input i
required by industry j to produce one unit of output product
j. The identification problem consists of the determination
of the input-output coefficients necessary to sustain a given
level of demand for the various products in the economy.

On the other hand, if the system designer is interested

in the identification of process parameters for subsequent
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use in a control engineering application, he may choose to
model the process as shown in Fig. 2. The model shown in
Fig. 2 differs from that shown in Fig. 1 due to the addition

of a feedback control loop. As shown, the feecdback loop

Input + Output
>- Plant >
Feedback .,
Element o

Fig. 2. Model for Parameter Identification Used
for Control Application.

contains an element that operates on the output signal to
yield a signal that is compared to the input signal. The
difference between these two signals is then used as the
effective input signal to the plant. If the design problem
under consideration is one of control system synthesis, the
system designer must determine the structure and parameters
of the unknown feedback element that will enable the system
output to follow, as closely as possible, some desired signal.
The design of such a control stratecgy for a given process
not only requires knowledze of the structure and parameters
of the process to be controlled, but also knowledge of the

various process states and how they change with time (the
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estimation problem). However, in order to solve the estima-

tion problem, one must first postulate a structure for the
process model, and then identify the corresponding parameters
of the model.

As an example of a situation in which parameter identifi-
cation is-Acquired for use in a control engineering applica-
tion, consider the problem of designing a stability augmenta-
tion system for a hovering vertical take-off and landing
(VTOL) aircraft (Ref 108). 1If the process under consideration
is the VTOL aircraft hovering in still air, it is fairly
straightforward to calculate the process parameters (i.e.,
aircraft stability-and-control derivatives), and hence the
state of the aircraft. However, as the VTOL aircraft transi-
tions from hovering flight to aerodynamic wing-supported
flight, the aerodynamic and propulsion forces acting on the
aircraft interact in such a way as to make a reasonable
prediction of the resulting aircraft stability-and-control
derivatives extremely difficult. Thus, a parameter identifi-
cation problem exists during this transition flight regime
whicﬁ must be solved before a satisfactory stability augmenta-
tion system can be designed.

In connection with the current interest in svstem
identification for control engineering application, two
points should be made. First, tremendous advances have been
made in computer technology during the past few years. These

advances now cnable the system designer to deveclop computer-
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based algorithms to solve complicated equations which in
many instances were not computationally practical before.
Second, many control engineering applications are such that
if the prccess parameters are unknown, they can often be

determined experimentally (Ref 135).

Qutline

In Chapter II, an overview of system identification is
presented. The general characteristics of the identification
problem are discussed, including its assumptions and limita-
tions. A convenient method for classifying various identifi-
cation schemes is also provided, along with a discussion of
those factors that might be considered in selecting an
identification method for a particular application.

The identification of linear stochastic systems is dis-
cussed in Chapter II1. Identification methods included are
maximum likelihood, instrumental variables, adaptive estima-
tion, model reference, stochastic approximation, linear
least-squares, and correlation techniques. The approach taken
in this chapter is to summarize, from the sytem identification
literature, a few of the outstanding papers on each of the
identification methods listed above. A comprehensive
bibliography, keyed by identification method, is included to
indicate other publications not specifically referenced in
this paper.

Mehra's on-line identification scheme is the subject of

Chapter IV, The development presented includes identification
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of the state transition matrix, as well as the output noise
covariance. A canonical form representation of the system

is also developed for the case where the designer is concerned
only with obtaining a system model that yields the desired
output, and not interested in the particular structure of

the model.

Chapter V approaches the identification problem through
the use of adaptive Kalman filtering. The particular system
representation that is discussed is Levy's proper canonical
form, which is derived using the innovations sequence and

certain results from optimal estimation theory. A method f

for determination of the optimal filtering gains is also

discussed. Finally, the conclusions and recommendations for

further study are presented in Chapter VI,
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I1. An Overview of System Identification

In this chapter, the general field of system identifi-
cation is examined from an overview perspective. Without
question, such an endeavor as this must of necessity remain

somewhat incomplete. This is not surprising when one ?

considers the rapid development presently occurring in system
identification, as witnessed by the multitude of recent
papers published on the subject. For a more comprehensive
survey, the reader is referred to the literature (Refs 142
and 156).

An investigation into the literature of system identifi-
cation reveals one immediate fact: there appears to be
little, if any, unification of the field. 1In addition to
the dozen-or-so recognized identification methods appearing
in the literature, there are a sizeable number of publications
within each method. The result is that the non-expert is
often left somewhat bewildered and confused. Therefore, the
major aim of this chapter is to provide an exposition of the
underlying rationale necessary for improved unification and

classification of the field of system identification.

General Characteristics of Identification Problems

A crucial first step in the formulation of any identifi-
cation problem consists of answering the following two

questions:

1. What is the system being considered?
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2. What is the purpose of the desired identification?
Is the system under consideration a portion of some larger
process, the entire process itself, or the process in inter-
action with its environment? Obviously, answers to such
questions are necessary in order to clearly define the
system, and indicate possible limitations in the resulting
identification analysis. Similarly, having the purpose for
which the identification is desired clearly in mind can often
suggest possible identification methods that might be appro-
priate for a particular application.

On the question of the purpose of the desired identifi-
cation, it has been pointed out earlier in this paper that a
primary motivation appears to be possible engineering control
applications. However, many situations exist where the
purpose of the desired identification is only to identify the
parameters of the process. These two motivations can be
distinctly different, possibly implying the application of
different identification methods. For example, consider as
the process an aircraft in steady unaccelerated flight. 1If
the design task is to determine whether the aircraft has the
required degree of static stability at this flight condition,
the problem becomes one of parameter identification alone
(i.e., determination of the static stability-and-control
derivatives). In this case, rather precise parameter identi-
fication is usually required. However, if the design task
is to determine whether the aircraft has the required degree

of manecuver capability, the problem becomes one of paramecter

e
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identification for control application. In this case, the
parameter identification part of the problem is generally
not as critical as in the former case, because the aircraft's
flight control system can usually be designed so as to be
flexible enough to cover a variety of "close' models.

The preceding example illustrates an important relation-
ship that often exists between the identification problen
and the control problem. In many situations where parameter
identification is only an intermediate step to a subsequent
control application, the assumption is tacitly made that
the problems of identification and control can be separated.
Generally speaking, a control system designed using this
assumption will not be optimum, primarily because the parameter
identification obtained is seldom exact. For this reason, a
significant number of papers have appeared recently in the
literature dealing with adaptive estimation and model refer-
ence techniques, These methods attempt to deal with the
problems of identification and control more or less simul-

taneously, and are taken up in Chapter I1I.

Classification of Identification Methods

Generally speaking, there are two ways in which the
system identification problem may be approached:

1. Theoretical (Mathematical-Physics) Analysis

2. Experimental Analysis.
In the theoretical approach, one typically begins by con-

sidering the physical laws that govern a given process, and

e N
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attempts to formulate a mathematical model of the process.

The identification problem in this case becomes the determina-
tion of the parameters of the model in terms of the physical
data of the process. On the other hand, the experimental
approach attempts to identify the parameters of the process

by measuring the dynamic behavior (input-output) of the

process. The identification methods discussed in Chapter III

are chiefly of the experimental approach.
A useful framework for considering the problems of
system classification and identification is provided by Zadeh

(Ref 185), who defines system classification as follows:

"Given a black box B and a family of classes of
systems Cl, Cz, ey Ck’ v ey Cn such that B

belongs to one of these classes, say Ck’ the
(classification) problem is to determine Ck by

observing the responses of B to various inputs."

The problem of system identification is then defined as a

special case of the classification problem in which each of

the classes Cl, CZ’ ve e Cn has just one member:

?Given a class of systems C with each member of
C completely characterized, the (identification)
problem is to determine a system in C which is
equivalent to B."
The foregoing definitions imply that in order to formulate
the identification problem, one must specify a :lass of
systems, a class of input signals, and some criterion for

defining "equivalence" between model and system. £Each of

these recquirements is discusscd briefly below.

11 -
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A variety of representations may be used to characterize
different classes of mathematical models, e.g., linear, non-
linear, continuous, discrete, etc. The form of model selected
can, of course, significantly affect the ensueing identifica-

tion procedure. For the identification of linear stochastic

————

systems, models are often classified as either parametric
or non-parametric, depending upon whether or not the appro-
priate probability distributions are known. Most of the
models discussed in Chapter IIl recpresent discrete linear
systems with some form of additive "noise' precsent.
Although a wide range of input signals may conceivably

be used in the identification of process parameters, major

-

simplifications in the identification procedure can cf{ten

be achieved by choosing input signals of a special type.
This situation is analogous to the simplification that occurs
in the identification of linear deterministic systems when

an impulse function is used as the input signal., Aoki and

e e A r— T —— - M

Staley (Ref 83) discuss the input signal synthesis problem
of parameter identification, and derive conditions necessary
for ohtaining a class of asymptotically unbiased and efficient
parameter estimates. In Chapter III, the input signal used
most frequently in the various identification methods is a
gaussian "white-noise" scquence.

Once the form of the mathematical model and input signal
have been selected, the remaining requirement in formulating
the identification problem is the specification of some

criterion to be used to mcasure the equivalence between the

12
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model and system. The selection of such a criterion essen-
tially transforms the identification problem into an optimi-
zation problem. For many of the identification methods
appearing in the literature, this optimization usually
involves the minimization of some function of an "error
signal"”. The error signals most frequently used are input
errors, output errors, and (where necessary probability

distributions are available) errors in the parameter values.

Sclection of an Identification Method

Before moving on to a discussion of various identifica-
tion methods, it might be appropriate at this point to make
a few comments concerning some factors that might be con-
sidered in selecting an identification method for a particular
application. Certainly, a primary consideration concerns the
purpose for which the identification is desired, as discussed
earlier in this chapter. In most practical engineering
control applications, seldom does the designer have available
a priori complete knowledge about the process to be controlled
and its environment. However, any reasonable steps that the
desiéner can take to increase his knowledge concerning the
system--e.g., rough calculations, comparisons with similar
systems, use of engineering experience and judgement--can
often provide valuable insight into possible identification
methods that might be appropriate.

Another factor that can somctimes influence the choice

of a particular identification procedurc concerns the required

13
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accuracy of the identification analysis. Regardless of
whether the ultimate purpose of the identification analysis
is parameter identification or control application, the
degree of accuracy required is an important factor that can
often dictate the type of identification method to employ.
However, a major problem exists in this regard in deter-
mining the degree of accuracy required of the identification
analysis, and formulating a criterion for measuring that
accuracy. Unfortunately, the literature of system identfica-
tion is far from complete in the area of the accuracy of

identification analyses.

14
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I11. The Identification g£ Linear

Stochastic Systems

The overview of system identification presented in the
previous chapter is used as the basis for a general discus-
sion of various identification methods in this chapter.

The approach selected to accomplish this objective is to
summarize, from the system identification literature, one

or more recent papers felt to be illustrative of each iden-
tification method discussed. In order to keep the discussion
in this chapter as generalized as possible, most of the
notational details peculiar to the various identification
methods have been uvmitted. However, many of the definitions
are included in the first two sections of Chapter IV; the
others may be found by consulting the indicated references.
This approach is not meant to be totally comprehensive, but
rather merely to expose the reader to some of the underlying
concepts attendant to the different identification methods.

An endeavor such as this is almost certain to be some-
what incomplete, as no attempt has been made to include
every identification method or variation appearing in the
literature. Furthermore, it is conceivable that some appli-
cable papers may have been inadvertently overlooked. It is
hoped, however, that the more popular methods have been
included for discussion in this chapter. A list of refer-
ences for each identification method is contained in the

bibliography.

15
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Maximum Likelihood

The maximum likelihood identification of the parameters
of a discrete, stationary linear stochastic system from
noisy input-output measurements is discussed by Kashyap
(Ref 4). In particular, he considers the problem of fitting
linear models to the observed output data of a physical
process. The mathematical model used to describe the process
consists of a vector input-output, linear nth order differ-
ence equation having constant but unknown matrix coefficients.
The system is assumed to be driven by a zero-mean input noise
disturbance which is completely specified by a set of n
unknown correlation matrices. The output measuremenis are
assumed to be contaminated by a zero-mean, uncorrelated
measurement noise sequence having a constant but unknown
correlation matrix. The input and output noise sequences
are assumed to be mutually independent, and the identifica-
tion problem consists of identifying, from the input-output
record of the process, optimal estimates for the various
unknown matrices. The approach selected by Kashyap is to
denote the parameters of the unknown matrices by a parameter
vector, and assume that the conditional probability density
function of the output measurement (given all previous output
measurements and the unknown parameter vector) has a multi-
variate normal distribution. This allows the likelihood
function to be derived, and then maximized with respect to
the unknown parameter vector. The optimal estimates are then

obtained by solving a resulting parametcr optimization
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problem. Conditions are also derived under which the maxi-
mum likelihood estimates (MLE) are unique, asymptotically
unbiased, and consistent.

The problem of determining the unknown parameters of a
dynamic system from noisy input-output observations is also
considered by Aoki and Yue (Ref 1). Their paper examines
in detail the estimation errors of two algorithms that
approximately compute the maximum likelihood estimates of
the system parameters. A scalar input-output, linear nth
order difference equation with constant but unknown coeffi-
cients is used as the mathematical model of the system. The
input and output observations are assumed to be corrupted by
mutually independent, additive white-noise sequences having
a standard normal distribution. The approach taken by Aoki
and Yue is to combine the unknown coefficients into a
parameter vector, and show that the approximate MLE of the
unknown parameter vector is equivalent to the computation of
an eigenvector of a real symmetric matrix. It is shown that
the algorithms for the approximate MLE yield a global optimum
for the unknown parameter vector, whereas the algorithms for
the true MLE yield only local optimum and hence require
iteration to obtain the global optimum. Neccessary and suffi-
cient conditions are derived for the approximate MLE to
converge with probability one to its true value as the sample
size tends to infinity. For finite sample sizes, explicit
bounds are derived for the mcan-square error of the approxi-

mate MLE.

17
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The maximum likelihood identification of stochastic 2
linear dynamic systems using the Kalman filtering representa-
tion is discussed by Mehra (Ref S). The mathematical model
used is a state variable representation of a discrete,

single-input, single-output linear dynamic system with

constant but unknown system matrices. The input and output
observations are assumed to be corrupted by zero-mean,
mutually independent, gaussian white-noise sequences having
constant but unknown covariance matrices. The approach
followed by Mehra is to transform the given model to an
equivalent state space representation called "Levy's proper
canonical form" (this representation is discussed in detail
in Chapter V). 1In effect, the output measurements are
“"whitened" through use of a causal invertible linear trans-
formation (Kalman filter). The MLE of the unknown system
parameters is then obtained by maximizing the conditional
probability density function of the output measurement (given
all previous output measurements and the unknown system
parameters), subject to the equations defined by Levy's
proper canonical form. Conditions are indicated under which

the MLE are unbiased, consistent, and efficient.

Instrumental Variables

Wong and Polak (Ref 15) consider the use of the instru-
mental variable method to estimate the parameters of discrete,
lincar time-invariant systems. In general, the method is

restricted to applications in which the controlled-input
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(if any) is noise-free, while the observed output may be
corrupted by white-noise.

Essentially, the instrumental variable method estimates
a set of unknown parameters from an array of linear algebraic
equations involving these parameters, a set of controlled-

input observations, and a set of noise-corrupted output

observations. The output measurement-noise sequence is
assumed to be a sample from a zero-mean stationary noise
process whose covariance function, r(t), tends to zero at a
rate faster than 1/t as t =+ @, The controlled-input sequence
is assumed to be either deterministic, or else a sample from

a stationary random process statistically independent of |

the output noise process. A further restriction in the
method is that the number of equations in the array must be
] greater than the number of unknown parameters to be esti-
mated. Wong and Polak show that by first premultiplying the

given array by a suitable rectangular matrix, called the

instrumental matrix, a square invertible array is obtained
which may then be solved for the required parameter estimates.
The elements of the instrumental matrix are called instru-

mental variables.

Since the instrumental variable method cannot be used
with certain inputs (e.g., controlled-inputs corrupted by
noise), Wong and Polak derive a necessary and sufficient
, condition for the instrumental matrix to exist when the input
is deterministic and bounded., They also show that under

j suitable conditions on the system input and the output

19




-

¥ o ot

GSA/MA/72-5

measurement-noise, optimal instrumental variables exist
corresponding to two criteria of optimality. The method,
when applicable, is always shown to yield consistent esti-

mates of the parameters.

Adaptive Estimation

In most physical processes, the mathematical model
representation of the process can usually be specified only
up to an unknown set of parameters. If }(t) denotes the
state vector of a process and 9 the time-invariant parameter
vector, then the problem of obtaining the optimal (in some
sense) estimate of the state vector under the condition of
the uncertainty of the parameter vector is often referred
to as adaptive estimation. In essence, it is the simultan-
eous estimation of the state vector and identification of the
process parameters.

The problem of the optimal estimation of a sampled,
Gauss-Markov stochastic process when certain parameters of
the process are initially unknown is discussed by Magill
(Ref 26). His approach is to assume that the unknown para-
mete;s belong to a set that contains a finite number of
possibilities which are known a priori. The given stochastic
process may then be represented by a set of "elemental
stochastic processes" (one for each possible combination of
parameters), a switch that is permanently but randomly
connected to one of the elemental stochastic processes, and

a sect of a priori probabilities for the set of switch

20
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positions. The elemental stochastic processes are repre-

A
sented as the outputs of linear dynamic systems excited by
white gaussian noise.
Magill shows that the optimal estimate is one that is
obtained by minimizing a generalized mean-square-error
criterion. In particular, he shows that the optimal state L

estimate is obtained by taking the complete set of state

estimates conditioned on all available output observations,

weighting each with the conditional probability that the
appropriate parameter vector is true, and summing over the
space of all possible parameter values. The conditional
weighting coefficients are determined by an application of
Bayes' rule, where the elemental stochastic processes are
assumed to have a multivariate normal density function.
Hillborn and Lainiotis (Ref 22) have extended the work
of Magill to cover non-Gaussian, Markov processes with
unknown parameters. The processes are characterized as
having probability distributions of known functional form,
but containing a set of unknown parameters. It is assumed
that -all initial knowledge of the unknown parameters can be

expressed by appropriate probability distributions (Bayesian

estimation), with the result that the optimal state estimate
may be determined without going through the intermediate

step of parameter identification per se. For sampled

stochastic processes having finite-state unknown parameters
and a generalized Markov property, lillborn and Lainiotis

show that the optimal state estimates can be formed from a

21




GSA/MA/72-5

set of optimal estimates based on known parameters, and a
set of "learning" statistics which are updated recursively.
Necessary and sufficient conditions are also established for
the convergence or "learning" of the constant unknown
parameters.

The adaptive estimation techniques discussed in the
previous two papers have been extended by Lainiotis (Ref 24)
to cover both structural and parameter adaptation, where
structural adaptation refers to the unknown dimensionality
of the state vector. The Bayesian approach to the adaptive
estimation problem is utilized by Lainiotis in assuming that
the system generating the random processes involved is
chosen at random from a finite collection of possible systems.
These systems are characterized as having state vector
dimensionality o, parameter vector value 90, and known or
assumed a priori probability Pr[o,eol. It is further assumed
that the model structure o is less than some fixed number n,
and the defining parameter vector 0 is time-invariant. The
assumption of an upper bound n to the system dimensionality
permifs structural adaptation to be imbedded into parameter
adaptation. This is accomplished by arbitrarily choosing
the dimensionality of the model as n, and dctermining those
system parameters that are zero if the correct model struc-
ture is less than n.

Using the approach of augmenting the state vector with

the parameter vector, Lainiotis shows that the optimal state
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estimator can be decomposed into two parts: a linear non- /
adaptive part consisting of a bank of ordinary Kalman-Bucy
filters matched to each admissible value of the unknown

parameter vector, and a nonlinear part consisting of likeli-

hood ratios that incorporate the adaptive learning nature
of the estimator. In addition, the conditional-error co-
variance matrix is also derived for on-line performance

evaluation.

Model Reference

Model reference or model tracking techniques are ideally
suited to applications where it is desired to obtain the
parameter identification result recursively as the process
develops (called on-line or real-time identification). Such
techniques also enjoy wide applicability in the identifica-
tion of processes with time-varying parameters. A typical

model reference diagram is shown in Fig. 3. Use of the model

Noise
+ +

Noise

Y

Process

Process ~
Qutput Model
Ad just.
Model Mech.
Output

Model

A Parameter

Feedback

Fig. 3. Identification by Model Reference.
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reference technique begins by formulating, for the physical
process under consideration, a mathematical model having
adjustable parameters. The system input signal is then
simultaneously fed into the actual process and its mathe-
matical model, after which the output of each is fed into

a model adjustment mechanism. This mechanism operates on
the adjustable model parameters in such a way as to make
the model output follow, as closely as possible, the output
of the actual process.

A model reference technique for identifying the
parameters of dynamic systems modeled by differential
equations is5 discussed by Hsia and Vimolvanich (Ref 37).

An identification algorithm, based on the learning model
concept, is derived using the state-variable formulation.

A multiple-input, single-output noise-free system is first

considered, with the results then extended to the case where

the system has multiple-outputs and noise present. The

system under consideration is characterized by an nth order

vector differential equation, and a corresponding model with

unknown but adjustable parameters is assumed., Arbitrary
initial values of the model parameters are assumed, and the
identification objective becomes to adjust the model para-

meters so that they converge toward the corresponding para-

meter values of the actual system. The parameter adjustment

procedure adopted by Hsia and Vimolvanich is to minimize the

identification error, i.e., the difference between the
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system's output and the model's output. To accomplish this,
equations are derived for the adjustment of the model para-
meters, and the identification error is shown to converge in

the mean.

Stochastic Approximation

Stocﬁastic approximation is an identification method
that can be used when the system input is assumed to be a
stationary stochastic process. Although some variations of
the method may be used without prior knowledge of the
statistics of the process, most require knowledge of the
noise covariances to yield consistent estimates. The
parameter estimates obtained using stochastic approximation
methods generally have larger variances than those obtained
using other methods (e.g., least-squares estimates).

Ho and Lee (Ref 51) consider the problem of deriving a
real-time-convergence identification scheme for linear
dynamical systems using stochastic approximation. A linear
discrete model in state variable form is used to derive an
algorithm for determining the elements of the state transi-
tion.matrix (in canonical or phase variable form). The
method is based upon the following assumptions: the system
is excited by a zero-mean, white-noise process having known
variance; the system output is measured exactly, i.e., the
output measurement-noise is zero; and the transfer function
between the input noise sequence and the system output has

no numerator dynamics. The resulting algorithm is shown to




GSA/MA/T72-5

yield estimates that, although not optimal in a stochastic
sense, nevertheless represent the least-square fit to the
measurement data. The parameter estimates obtained using
the algorithm are shown to converge to their true values in
the mean-square sense,

The work of Ho and Lee has becn generalized by Saridis
and Stein (Ref 58) to cover the on-line identification of
forced, discrete linear systems from a sequence of white-
noise-corrupted output measurements., The system is modeled
in canonical or phase variable form using the state variable
representation. The Robbins-Monro stochastic approximation
procedure is used to derive an identification algorithm that
uses only measurements of the system input and output, and
does not require knowledge of the output measurement noise
statistics. However, if the input measurements are also
corrupted with white-noise, the algorithm requires knowledge
of the variance of this noise sequence. The algorithm is
also shown to converge to the true value of the parameters
in the mean-square sense,

‘A slightly different approach to the parameter identi-
fication problem using stochastic approximation is discussed
by Sakrison (Ref 57). He considers the on-line estimation
of the poles and zeros of a rational transfer function whose
order is known not to exceed some fixed number n. A linear,
time-invariant system model is assumed, with both the system
input and output observable in the presence of mutually

uncorrelated, stationary random noisc processcs having
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zero-mean and known correlation functions. The approach g
taken by Sakrison is to use stochastic approximation methods

te compute on-line an optimum filter, from which the desired

coefficients in the system transfer function may bS:c obtained.

The parameter estimates generated using the derived algo-

rithm are shown to converge, in the mean-square sense, to

their true values.

Linear Least Squares

Steiglitz and McBride (Ref 69) discuss an iterative
technique to identify a linear system from samples of its
input and output in the presence of noise. The model assumed
is a linear sampled-data system, with input and output

related by a rational Z-transform. The approach selected

by Steiglitz and McBride is to minimize the mean-square
error between the model output and the observed output of
the plant. A technique is derived for carrying out this
minimization by iteratively performing a sequence of Kalman
least-squares linear regressions on the system's input-output
data. Each iteration is shown to be computationally equiva-
lent to an ordinary Kalman linear regression, except for
prefiltering of the input and output data. Experimental
results are prescnted to show that the iterative identifica-
tion method converges more slowly than the ordinary Kalman
linear regression method, but results in improved paramcter

estimates.
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The problem of identifying, from input-output measure-
ments, the unknown parameters in linear dynamical systems
with transport lags is considered by Hsia (Ref 63). An nth
order, linear differential-difference equation model is
assumed, with noise-free input and output. The identifica-
tion technique derived by Hsia essentially involves two
steps: (1) the use of a finite difference technique to

; reduce the differential-difference equation to an ordinary 5
difference equation, and (2) estimation of the system
parameters through identification of the resulting discrete

model via Kalman's least-square method.

Correlation

Anderson, et. al. (Ref 72) discuss the problem of

determining consistent estimates of the parameters of a

linear dynamic system. A discrete linear model in the state

variable formulation is assumed, with uncorrelated, additive
noise present at both the input and output. The state
transition matrix and input-output noise covariance matrices q

f are assumed to be unknown, and thus require identification.

Estimates of these matrices are derived and shown to be

—— ——r

strongly consistent when the linear system is stable, i.e.,
when the eigenvalues of the state transition matrix lie within
the unit circle. In addition, the asymptotic properties of
the model are investigated, and shown to remain unchanged

when the unknown system parameters are replaced by their

strongly consi<tent estimates,
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The problem of estimating the autoregressive parameters
of a mixed moving-average time series of known order using
output data alone is considered by Gersch (Ref 75). The
problem is shown to be equivalent to the estimation of the
denominator terms of a scalar transfer function of a
stationary, linear discrete-time system. Three formulations
of the system are discussed: state variable, time series,
and Z-transform representations. It is assumed that the
system is excited by a zero-mean, uncorrelated input noise
sequence of unknown variance, and the output observations
are‘exact (i.e., the output measurement-noise is zero). The
approach followed by Gersch is to derive a modified set of
Yule-Walker equations, which are then used to solve for an

asymptotically unbiased estimator of the unknown autoregres-

"sive parameters. The estimator is also shown to be unbiased

in the presence of additive white output measurement-noise
of arbitrary finite correlation time.

In the next chapter, the on-line identification of
discrete linear stochastic systems is considered. The
identification methods discussed are based largely upon the
statistical correlation properties of the output measurements.
As such, the methods are similar to those employed in time

series analysis (Refs 75, 80, and 82).
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IV. On-Line Identification of Discrete

Linear Stochastic Systems

In this chapter, attention is turned to an in-depth
examination of an identification method recently proposed
by Mehra (Refs. 78 and 79). The method is more general than
some others currently appearing in the literature (e.g.,
instrumental variables and stochastic approximation), in
that complete knowledge of the input-output noise covariance
matrices is not required. Additionally, the method is
capable of providing on-line identification when implemented
using a digital computer.

In the interest of notational simplicity and continuity,
only the discrete case will be discussed in the remainder of
this paper. This should cause no serious limitations, since
the method can be extended to the continuous case with

little difficulty.

Preliminaries

For the convenience of the reader, a few preliminary
definitions are introduced in this section. The terminology
and notation appearing in the remainder of this paper are
fairly standard, being used rather extensively in the
literature of system identification and estimation (Ref
180:106-121).

Definition 1: A stochastic process is a family of

random vectors {X(k), kel} indexed by a parameter k all of

whose values lie in some appropriate index set I.
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Definition 2: Let X be an n vector. Then the stochas-

tic process {X(k), kel} is said to be independent if, for

any m time points kl, ceey km in I, where m is any integer,
the joint probability distribution function of the m random
n vectors X(kl), ey §(km) is equal to the product of the

probability distribution functions of the m individual n

vectors. That is

m
PIXCR) € X voes Xy Sxp) = TP [XCGRy) < 1y
for all n vectors Xys ooes Xoo

Definition 3: Let {X(k), kelI} and {Y(k), kel}l be two
stochastic processes, where X is an n vector and Y is a p
vector. The two stochastic processes are said to be

independent of each other if, for any m time points

k k in I, where m is any integer, the joint proba-

1, s 0 g m
bility distribution function of the 2m random vectors

X(kl), oo X(km), Y(kl)’ o eos Y(km) is equal to the product
of joint probability distribution functions of the m random

n vectors and m random p vectors. That is,
PIX(k)) € x)y veey X(k) € xy Y(K)) S yps veny Y(K) €y ]
= Pllf(kl) f fl’ ¢ e 0y z(km) f fmlpzl‘!(kl) f Zl’ ""Y(km) f y ]

for all n vectors x X and all p vectors Zl' ceey, Y

1? cce
Definition 4: A stochastic process {x(x), kel} is said

to be uncorrclated if, for all j, keI, j # k
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E[X()X' (k)] = E[X(IE[X' (K)]

Definition 5: Two stochastic processes {X(k), kel}

and {Y(k), kel} are said to be uncorrelated if, for all

j, kel
E[X()Y'(K)] = E[X(3)IE[Y' (K)]

Definition 6: A stochastic process is said to be
stationary if the probability laws governing the mechanism
producing the process remain time-invariant as the process
evolves in time.

Definition 7: A stochastic process {X(k), kel} is said

10 e km

to be gaussian or normal if, for any m time points k

in I, where m is any integer, the set of m random n vectors
§(k1), e §(km) is jointly gaussian distributed.
Definition 8: A stochastic process {X(k), kel} is said

to be a gaussian white process if, for any m time points

kl, ...s k_in I, where m is any integer, the m random n

m
vectors X(kl), ey X(km) are independent gaussian random
vectors.

Definition 9: A stochastic process {X(x), kel} is said

to be a Markov process if, for any m time points

k1 < k2 < .. < km in I, where m is any integer, the condi-
tion probability distribution function of X(km) for given

values of E(kl), v ey x(km-l) has the property that
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P[§(km) < §m|§(k1) = 51’ ety §(km-l) = fm-l]
= PLXCR) € x IXCk 1) = x, 4]

for all n vectors Xpo s XL

.

Definition 10: A stochastic process is said to be

Gauss-Markov if and only if it is both Gaussian and Markov.

The Model

The system model proposed by Mehra has been discussed
many times in the system estimation and identification
literature, e.g., Kalman (Ref 100), Ho and Lee (Ref 51),
and Meditch (Ref 180). Essentially, the model represents a
discrete linear dynamic system operating in a stochastic
environment, and is formulated using the state variable
approach. A block diagram representation of the model is

shown in Fig. 4.

| v (K)
U(k) . X (k+1) X (k) s
AT : —helay | TR ==
- ol et

Z (k)
X (k)
S ——fpeclay
System Dynamics Qutput Measurement
Dynamics

Fig. 4. Discrete Linear Stochastic Model.
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The system dynamics and output measurement dynamics are
governed, respectively, by the following two linear differ-

ence equations:

§(k+1)

X (k) + TU(K) (1

Z(k) = HX(k) + V(K) (2)

for k =0, 1, ..., where

§ is the n x 1 state vector

2 is the n x n state transition matrix (constant)

Uis a p x 1 vector of gaussian white-noise called the
system disturbance vector

I'is an 1. x p matrix called the disturbance transition
matrix (constant)

E is a r x 1 vector called the output measurement

!ector

H is a »» x n matrix called the measurement matrix

{constant)

is a r x 1 vector of gaussian white-noise called the

te

measurement error vector

Equation (1) is often callcd the state equation, and Eq (2)

the measvrement equation.

Assumptions

1. E[U(K)) = O (3)

E[UGHY ()] = Q6 (4)
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E[V(K)] = 0 (5)
E[V(IV' () = RE, (6)
E[U(IV' (k)] = 0O (7)
E[X(0)} = 0 (8)
E[X(0)X'(0)] = P(0) (9)

for j, k =0, 1, ..., where
Q is a p x p positive definite matrix called the

input-noise covariance matrix (constant)

is a r x r positive definite matrix called the

(3=

output-noise covariance matrix (constant)

X(0) is a zero-mean guassian n vector called the initial

state vector

P(0) is an n x n matrix called the initial state

covariance matrix

ij is the Kronecker delta

2. The system is completely observable and controllable.

Kalman (Ref 100) shows that this is equivalent to the

following two conditions:

rank [T, oT, ..., (o™}

-~

)I) = n (10)

rank [H', ¢'H', ..., (?n-l

~ o~

)'H'] = n (11)

This condition, along with the positive definiteness of

Q and R, is necessary to cnsure the asymptotic global

-~
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stability of the Kalman filter, as shown by Deyst and Price 2
(Ref 95).

3. The state transition matrix, f» is nonsingular, |
| with all eigeaivalues located inside the unit circle.
DeRusso, et. al. (Ref 177:447) show that this condition is
necessary to ensure stable dynamics for a time-invariant
linear systen. 3
i 4. The system is minimum phase, i.e., the system
transfer function has no zeros located in the right-half
plane. Truxal (Ref 182:426-427) shows that this condition
is necessary to ensure the physical realizability of a
linear systenm.

S. The system is time-invariant, and the identifica-

tion procedure begins after steady state conditions have
been reached. This assumption is necessary to allow the
system matrices ?, E, and E, the noise covariance matrices
g and 5, and the covariance matrix of the state vector 5(')
to be treated as constants.

6. The problem of interest is to identify the unknown
matrices ?. r, E, R, and g from a record of the output

~ ~

measurements Z(0), Z(1), ... .

Properties
1. Meditch (Ref 180:168-169) shows that the model

described by Eqs (1) through (9) has the following properties:
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a. The stochastic processes {X(k), k =0, 1, ...}
and {2(i), i = 0, 1, ..., j} are Gauss-Markov

sequences with identically zero means.

b. E[X(j)U'(kK)] = 0

Vk>j,j=0,1,... (12)
c. E[Z(jiu'(x)] =0

Vk2>j,j=20,1,... (13)
d. E[X(IV'(k)] =0

VY j and k (14)
e. E[Z(IV'(K)] =0

Vk>j, j=0,1, ... (15)

These properties follow from the linearity inherent in the
model, and the fact that X(k) depends only upon X(0),
u(e), ..., U(k-1), where {U(j), j = 0, 1, ...} and

{v(i), j 0, 1, ...} are uncorrelated zero-mean white

gaussian sequences independent of the gaussian random

vector X(0). -
2. At this point, it is convenient to state some

general properties from optimal estimation theory (Refs 100

and 180).

a. The optimal estimate of the state X(k) given

the output measurements Z(s), O <s <j, is
given by the conditional mean of X(k), denoted

as follows:
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X(k]j) = E[X(k)|Z(s), 0 < s < j] (16)
i . s :
If k > j, the estimation problem is one of
prediction; if k = j, the estimation problem
i

is one of filtering; and if k < j, the problem
is one of smoothing. The filtered and predicted
state estimates are used in the adaptive Kalman

filtering approach to the identification

problem discussed in Chapter V.

b. Let the estimation error of the state X(k) be

defined by

X(k) - X(k|3) (17)

X(k|j)

Then the single-stage optimal predicted

estimate of §(k+1) is given by the following

relation:

g(k+1|k) = gg(k|k) (18)

n e e - - a ————t—

where X(klk) is the optimal filtered estimate

‘ of X(k).

c. X(k}j) is a linear estimate, i.e., a linear
combination of the available output measure-

i ments Z(s), 0 < s < j.

X(k|j) is unique.
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e. X(k]j) and i(klj) are gaussian random n

y
* vectors, i
f. The stochastic process {g(k+1|k), k=0,1, ...}
is a zero-mean Gauss-Markov sequence.
g. X(k|j) is independent of any linear combina-
tion of the available output measurements. In
particular, i(k|j) is independent of i(slt),
| which implies that
E[X(k]j)X'(s|t)] = 0O (19)
i
for all k, j, s, and t.
h. If the r x 1 vector Y(k) is defined by
Y(k) = HX(k) L

so that Y(k|k-1) = HX(k|k-1), then 2(j) and
i(klk-l) are independent random vectors,

implying that

E[Z()Y' (k[k-1)] = 0 (20)
for all k and j.

Identification of ¢

F —_=

The identification method proposed by Mehra (Ref 78)
to estimate the elements of the state transition matrix ¢
is based on the autocorrelation function of the output

measurements Z(i). In order to formally derive the method,
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however, it is first
steady state conditi
{z(iy, i =0, 1, ...
Using Eqs (2), (6),

output measurements

E[Z(i)Z2'(i-k)]

Rewriting Eq (1) in

results in

»
~~

[ N
~

#

Solving Eq (23) for

(22) yields

necessary to establish that under

ons the stochastic process

} is a stationary gaussian sequence.
and (14), the covariance matrix of the

may be written as follows for k > 0:

E{[HX(1)+V ()] (HX(i-k)+V(i-k)]"}

HE[X (1) X' (i-K) JH'+HE[X(1)V" (i-K)]

+

E[V(I)X' (i-K)JH'+E[V(1)V" (i-K)]

HE[X(1)X" (i-k) JH" (21)

terms of the initial state vector X(0)

. i-1
olx(0) + 7 o171°5 rygs) (22)
- - s=0 ° =~

i-k-1 |
-k yoy 7 ertkoles pyqey (23)
X Lo ¢ v

X(0) and substituting the result into

(24)
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Substituting Eq (24) into (21), and using Eq (12) yields A
k 1Ll i1-s
E[z2(i)Z'(i-k)] = HE{[® X(i-k) + )} ¢ Tu(s)]
- R s=i-k ~ -
IX' G-k 1
k . .
= HOTE[X(i-K)X'(i-k)]H"
Ll ie1-
+H § ¢ S TE[U(s)X'(i-k)]H'
~ s=i-k -t -
= HEE[X(1-K) X (i-K) ]H" (25)

If the n x n covariance matrix of the state vector X(i) is

defined by
P(i) = E[X(i)X'(i)] (26)
then the following expression may be obtained for Eq (25):
E[2(1)2' (i-K)] = HE®P(i-K)H" (27)

By assumption five of the model, however, steady state
conditions have been reached. This implies that the co-
variance matrix of the state vector X(:) is constant and

may be written as
P = P(.) (28)

Substituting Eq (28} into (27) results in the following
relation for the covariance matrix of the output measure-

ments:
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A
E[Z(1)Z2*'(i-k)] = H@kPg', k>0 (29)
i
A side condition on P may be obtained by substituting ;
Eq (1) into (26), and using Eqs (4), (12), and (28):
P(i) = E{[9X(i-1)+TUCi-1)][¢X(i-1)+TU(i-1)]"}
= ?E[X(i—l)X'(i-l)]f'+rQP'
= ?P(i-1)¢'+FQF‘ j

or

P = $PO'+TQr! (30)

~ oo -~ n o

Similarly, using Eqs (2), (6), (14), and (28), the
autocorrelation function of Z(i) may be written as follows

for the case of k = 0:

E[Z(i)Z'(1)]

E{[HX()+V (1)) [HX(1)+V(i)]")
= HE[X(i)X' (1)]H'+R

= HPH'+R, k = 0 (31)

~ o o

Therefore, it can be seen from Eqs (29) and (31) that under
steady state conditions, E[Z(i)Z'(i-k)] is independent of i

for all k. This implies that {Z(i), i

0, 1, ...} is a
stationary sequence, which is also gaussian by property one
of the model.

It should be noted that in general, the autocorrelation

function of the output measurements is not a scalar but
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rather a r x r matrix. However, if only scalar outputs are

considered (i.e., r = 1}, the corresponding autocorrelation
function is also a scalar. In the remainder of this paper,
therefore, only the scalar-output case will be considered,

and the scalar autocorrelation function of the output

measurements is given by

HPH' ¢ R, k = 0
L P TTR: o

Having established the stationarity of the above
vector-input scalar-output system, attention is returned to
a consideration of Mehra's proposed on-line identification
method (Ref 78). The autocorrelation function of the output
measurements, Ck’ is used to derive a set of equations
analogous to the Yule-Walker equations in the statistical
analysis of purely aﬁtoregressive time series (Ref 183).
The derived set of equations are then shown to form the
basis for the proposed on-line identification method. Using
Eq (32) for k = j, j + 1, ..., j + n - 1, where n is the

order of the system and j > 1, results in

_ . - -
c; nelpur
so1 el * o
Cien-1 Hed*M-lpys
= B.PH' (33)

~)~~
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where
- . - p—
HeJ
Hel*!
B, = =
~j . . ~
pei*n-1 Ho ™1
_~~ - L - -t

It should be observed that the n x n matrix Ej is ronsingular
This follows from assumptions three and two of the model
which state, respectively, that the state transition matrix

f is nonsingular and the n x n observability matrix is of

full rank, i.e.,

- -
H
Ho
rank ) = n
o~ !
I-~~ =

Therefore, since Ej from Eq (34) is seen to be the product
of the observability matrix having rank n and the nonsingular
matrix ?j, it follows that the rank of gj is also n. Thus
the rows of Ej are linearly independent, and the nonsingu-
larity of Ej i> estavbiisned. Solving for PH' from Eq (33)

yields
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Cj A
j+1
PH' = 851 . (35)
C5en-1
Substituting Eq (35) into (32) for k = j + n results in i
" c, 7]
J
Cj,'1
= j*+n_-1
cj+n E? Ej ¢ (36)
Cien-1

Equation (36) represents a recursive relationship for
the autocorrelation function Ck' In its present form,
Eq (36) cannot be used in the identification of g because
of the presence of the unknown matrix H. However, H can
be eliminated by use of the Caley-Hamilton Theorem (Ref 177),
which states thaf the square matrix 3 satisfies its own
characteristic equation. If the characteristic polynomial
of f is denoted

n n-1
f£(\) = |A1-g| =27« a ) LEETREL L PY UL B

where A is a root of the characteristic equation of ¢ and the

a,, i=l, ..., n are unknown scalars, then this implies that

n n-1
? + an¢ ¢ .. 0 32? + alg = 0 (37)

-
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Premultiplying Eq (37) by H¢j and solving the resulting

equation for H?J*" yields

HeI*™ = _a med*™ 1 L .. - a nel*! . a_nHed
N~~ 2~~ 1~~

-~ -

(-u¢’
HeJ *1
- '[al, 32, e ooy an]
el *n-1
\——~ —
= -[a19 az’ LI} an]Ej (38)
Postmultiplying Eq (38) by B}l results in
jen -1 _
ﬂ? gj = [al, Ay eees an] (39)

Substituting Eq (39) into (36), the following result is

obtained:

o
j
Ciu1
cj+n -[al, a,, . an] .
Cj+n-1
n
Cion = - izl 3;Cip5.10 3 21 (40)

Equation (40) represents a modified set of Yule-Walker

equations (Ref 183).

These equations may be written in
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matrix notation by allowing j to run from 1 to n in y,
1
Eq (40): .

Cn+1 Cl C2 ‘e Cn a2,

cn+2 C2 C3 .o Cn+1 a,
.. = - . . (41) ;

C c C ... C a

N 2n N | n n+l 2n-1_J | n_

The development leading to the result in Eq (41) is similar
to the approach used by Gersch in the analysis of a mixed
autoregressive moving-average time series (Ref 75). In his
work, Gersch derives an unbiased estimator for the auto-
regressive time series parameters. He refers to Eq (41) as
the "normal equation" of the system, and shows that for
j=1, ..., n, the n x n matrix of autocorrelations appearing

therein is nonsingular. Hence, Eq (41) may be rewritten as

- - - -1 -
al'l C, ¢, ...C Coal
az CZ C3 oo cn+l Cn+2
. = - R . (42)
an Cn cn+1 ‘e C2n-1 c2n
- and . — b —t

In order to use Eq (42) to estimate the a,, and hence
¢, it is necessary to first estimate the autocorrelation
functions Ck. If Ek is used to denote an cstimate of Ck’ one

possibility is to make use of thec fact that the Z(i) are a
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stationary gaussian sequence, and substitute the empirical A
autocorrelation functions of the output measurements for Ck:

C, = LT .T Z(i)Z(i-k) (43)
i=k

where T is the number of sample points of the output. For
finite sample sizes, the estimates of Ek obtained using
Eq (43) are biased, requiring that T in the denominator be
replaced by T-k for unbiased finite-sample estimates.
However, Heffes (Ref 97) shows that the estimates obtained
using Eq (43) result in less mean-square error than the

corresponding unbiased estimates, and hence are preferable.

Therefore, substituting the values of ék given by Eq (43)
into Eq (42), and letting ﬁi denote an estimate of a;, the

following result is obtained:

A ~ A A -l A

a1 Cl C2 o Cn Cn+1

a2 C2 C3 .o C“‘.‘1 Cn*Z

. = . ) (44)
an cn cn+1 et C2n-l C2n

¢ Mehra shows that the identification method represented
by Eq (44) has the following properties:

: 1. The ;i are asymptotically unbiased, normal, and

consistent estimates of the as. This follows from the fact

that for large T, the crrors in estimating the a, are approx-

imately linearly related to the errors in estimating the Ck.
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Parzen (Ref 80) shows that Ek is an asymptotically unbiased, 4
normal, and consistent estimator of Ck' Since the errors in
estimating the Ck are asymptotically normal with zero mean,
the stated property is established.

2. The identification procedure is capable of being
implemented on-line, i.e., the Qi can be calculated

~

resursively. If CI*I is used to denote the estimate of Ck

based on T + 1 sample points, it follows that

T+1
AaT+1 1 . :
¢, ® Ta1 1oz@zd-x
i=k
1 T aT
= gy [2(T+1)2(T+1-K)] + 57 G (45)

The ai can then be calculated recursively using Eq (44) for

T + 1 observations:

— — e - -1 p— e
AT+l AT+l aT+1 ~T+1 AT+1
a1 C1 C2 .o Cn C,H1
~Te+1 AT+1 ~T+1 ~T+1 AT+1
az C2 C3 e Cn#l Cn+2
. = - . . . (46)
~T+1 AT+1 AT+1 AT+1 AT+1
. Lan Lcn cn#l et C2n-1_ LCZn

3. The identification method, while identifying the

e

coefficients a; in the characteristic polynomial of ¢, does
f not actually identify the elements of the $ matrix itself.

This can be a serious disadvantage if the exact structure

49
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of f is required., The reason for this is that once the a,
are known, the Cayley-Hamilton theorem, viz., Eq (37), can
theoretically be used to solve for the actual elements of
the 2 matrix. However, the resulting system of n algebraic
equations in n unknowns is nonlinear, with the result that
non-unique solutions will exist. 1In fact, Birkhoff and
MacLane (Ref 176) show that corresponding to each nth degree

monic polynomial

g(A) = A" + a ATl a,d + a

n 1

an n x n matrix having characteristic polynomial g(\) can be
constructed. This matrix is called the companion matrix of

g(2), and has the following form:

0 1 0 0 e 0
0 0 1 0 oo 0
0 0 0 1 oo 0
0 0 0 0 e 1
-al -32 -33 -34 c e -a

However, matrices other than the companion matrix can be

found which also satisfy the characteristic equation of ¢.

Identification of ¢, T', and Il Using a Canonical Form System

-~

Represcntation

The possible disadvantages associated with use of the

above method for identifying the state transition matrix ¢

lieesiul M,
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may be eliminated if one is only interested in modeling the
output observations of the system, That is, if the particular
structure of 9 is unimportant, then the system represented by
Eqs (1) and (2) can be transformed into a canonical or phase
variable form (Ref 90) containing a fewer number of para-
meters to be identified. Consider the following linear

transformation:
X* (k) = TX(k) (47)

where T is a constant n x n matrix that maps the n x 1
state vector X(k) into the n x 1 vector X*(k). Mehra

suggests the following definition for T:

— —

H

He

~ o~

=]
th

(48)

Ho" "1

Using the assumption of complete obscrvability, viz., Eq (11),
it follows that T is also nonsingular. Premultiplying Eq (1)

by I and using (47), Eqs (1) and (2) become, respectively

X*(k+1)

n

$*X* (k) + I*U(K) (49)

Z (k)

H*X* (k) + V(k) (50)
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where )
-1
o* = TOT (51) ;
1
]
I« = 1T (52)
-1 -
ﬂ* = HT (53)

i Equations (49) and (50) represent the original system
in canonical or phase variable form, with ¢*, T'*, and H*
derived as follows. Postmultiplying Eq (48) by ¢, and using

Eq (34) with j = 1 results in

o [ He ]
He
T¢ = = B, (54)
!
L Ho™
from which
71 . ¢B11 (55)

Substituting Eq (55) into (51) yields

o* = T¢(¢BII)

‘ ~ -~ o~

! (56)

! = 70k

~< 21
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s ' ‘
3 :
' An expression for ¢* that is independent of T may be obtained A
1 - ~
] by substituting Eq (54) into (56), and using Eq (34) with
{ j o= 1:
- -1
o* = (T$)0B
-1
8,25,
T He |
* -1
- 0]
o™~ 1
Ho"
P —y
2 -1
HO"B,)
} L]
= ’ (57)
n_ -1
HO"B,
wot*lp-!
€ i—-~~ ~1 —
i But, from Eq (54) it is ciear that
; - T - -
: H¢BI 1 0 0 ... ©
| i u¢23;1 0 1 0 ... 0
o T¢B;1 - ) =1 = (58)
i 1 ~ o~ o -~
Lo
! u¢“B;1 0 0 0 ... 1
; L. - T L -
'
)
!
?
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Therefore, using Eq (58) to solve for the first n - 1 rows
of ¢* in the representation given by Eq (57), and Eq (39)
with j = 1 for the last row of ¢*, it follows that Eq (57)

can be rewritten as

- -
0 1 0 ‘e 0
0 0 1 ‘e 0
o* = . (59)
0 0 0 .o 1
L-al -32 -33 . -an

It should be noted in passing that ?*, the canonical or
phase variable representation of the state transition matrix
f, is precisely the companion matrix of the characteristic
polynomial of ¢ that was discussed in the previous section.
Furthermore, other representations of ? exist, since the
transformation given by Eq (51) identifies ? only to within
a similarity transformation (Ref 176).

Continuing, an expression for H* can be obtained by

substituting Eq (55) into (53), yielding

Ht = popl!

-~ ~~~l

From Eq (58), however, H<!>B.1 is seen to be precisely the

~e=1

first row of the n x n identity matrix. Thus, H* may be

written as

(60)
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Finally, it remains to determine E*. Using the canonical
form system representation given by Eqs (45) and (50), and
denoting the covariance matrix of 5*(-) by E*, it is easily
shown that the following equation, analogous to Eq (30),

can be derived:

P* = Q*P*g*' 4+ T#*Qr+’ (61)

- ~ N e -~ A ey

Assuming for the moment that the input noise covariance
matrix g is known,6K Eq (61) still cannot be used to solve
for E* because of the unknown matrix f*- However, an
auxilary equation for P* may be obtained as follows. Once

again starting with Eqs (49) and (50), it is straightforward

to show that the following equation, analogous to Eq (34)

with j = 1, can be obtained:
H*o*
H*(¢*)2
g; = . (62)
H* (o*)"

Equations (54) and (56), however, imply that

(4+)? = T¢ZB;1(T¢)9§;1

= To3p71

~~ ~1
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and by induction

(Q*)l = Igl*lgil (63)
Substituting Eqs (53) and (63) with i =1, ..., n into
Eq (62), and using Eq (57) results in
- -
2 -1
He 8,
3.-1
HO'B,
* =
4 . = v (64)
n+l_-1
HE™ "By

Now, using Eqs (49) and (50) to derive an equation analogous

to Eq (35) with j =1, i.e.,

P*H*' = (B*l*)'1

and substituting for BI from Eq (64), the following auxiliary

equation for P* is obtained:

Efljtl = (%) . (65)
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Thus when g is known, Eqs (61) and (65) may be used to solve
for I'* and P*. Mehra (Ref 181) presents an iterative
procedure for solving equations of the form of Eqs (61)

and (65) for the case of g equal to the identity matrix.
Identification of the covariance matrices Q and R is dis-
cussed in the next section.

One of the advantapges of using the canonical form
system representation discussed above is that the number of
unknown parameters required to identify the various system
matrices has been reduced. In the original system repre-
sentation given by Eqs (1) and (2), there are a total of
n2 + np + n unknown parameters required to identify ?, E,
and Q. On the other hand, in the canonical form representa-
tion given by Eqs (49) and (50), there are only a total of
n + np unknown parameters required to identify ?*, E*, and
E" Hence, use of the canonical or phase variable systen

representation has significantly reduced the total number

of unknown parameters requiring identification.

Identification of Q and R

l

In the system representation given by Eqs (1) and (2},
the covariance matrix of the input gaussian white-noise
sequence g(k), having disturbance transition matrix E, is
assumed to be a symmetric positive definite matrix Q. 1In
this section it is shown that no generality is lost in the

system model if the covariance of U(k) is assumed to be the

identity matrix, provided that I' is adjusted accordingly.

57




C aawme et e e e ————e —— et

GSA/MA/72-5

The development begins by considering the following
well known result from matrix algebra (Ref 176): if a p x p
symmetric matrix Q is positive definite, then there exists a

nonsingular p x p matrix F such that
Q = F'F (66)

Substituting Eq (66) into (30), the following result is

obtained:

P = ¢P®' + TF'FI"

~ o~ ~ o e

= 99"+ (IEV)(TEY)" (67)

Letting the n x p matrix Fe = T'F' be an equivalent disturb-
ance transition matrix, then Eq (67) implies that Eq (1) of

the original system model representation may be rewritten as
X(k+1) = ®X(k) + FeUe(k) (68)

In Eq (68), ge(k) is a p x 1 vector of equivalent gaussian

white-noise having the following properties:

E[U (K)] = 0

E[U,(IUL(K)] = 16,

and I is the p x p identity matrix.
Conceptually, in arriving at Eq (68), the input dis-
turbance matrix ' is adjusted in such a way (viz., TF) that

the gaussian white-noise input sequence {U(k), k = 0, 1,
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appears to have its covariance equal to the identity matrix.
That is, the original input model Eg(k) can be thought of

as being replaced by an equivalent input model Eege(k).
Statistically, however, the two input models are equivalent
with respect to the state vector §(k). Therefore, no loss

in generaiity occurs in the system model given by Eqs (1)

and (2) if Q is replaced by I in Eq (4): 3

B[V (K] = 18, (69)

The only parameter remaining to be identified in the
system representation given by Eqs (1) and (2) is R, the
covariance of the gaussian white-noise measurement error.
A method that yields asymptotically unbiased, normal, and
consistent estimates of R is suggested by Mehra (Ref 78).
The method is based on the autocorrelation function of the
output measurements when k = 0, Substituting Eq (35) with

j = 1 into Eq (32) with k = 0 yields

¢
C,
-1
C, = HB] . + R (70)
c
n

Premultiplying Eq (37) by H and solving the resulting

equation for a,H results in

1
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H= -a_ . HO" - - a e - a_ue g
al~ n+leo tte 3~~ 2+~
HO |
Ho?
= -[az, Bgy e an01] . (71)
HOM
[~
where a1 = 1. Substituting Eq (34) with j = 1 into Eq (71),
! and solving the resulting equation for HB; yields
1
; 1 1
Egl = - ;; [az, Bgs «ees an+1] (72)

Substituting Eq (72) into (70), the following result is

obtained:

n
a,C. = - Z a., ,C.
170 j=1 j+17j

from which the indicated estimate of R is found to be

- -

A A

o aj*lcj (73)

x>
"
N)lw
ez

1 I

The Ej in Eq (73) can be calculated using Eq (43), and the
aj can be calculated using Eq (44).

With respect to the statistical properties of the state

[N

vector X(k), it was shown earlier in this chapter that no
loss in generality occurs in the system model if the co-

variance of the input noise scquence is assumed to be the 1
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identity matrix. However, a major problem exis}s if Q must
be identified explicitly. The crux of the problem is that
even though the existence of a matrix E that satisfies

Eq (66) is guaranteed when Q is symmetric and positive
definite, F must still be identified in order to calculate
Q. One possible way in which the problem of identifying

Q and R may be approached is through adaptive Kalman
filtering (Ref 79). Although identification of the noise
covariances will not be pursued further in this paper,
Kalman filtering will be used in the next chapter to develop

another identification method.

61
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V. System Identification Using

Adaptive Kalman Filtering

Parameter identification using two system representa-
tions was discussed in the preceding chapter. It was shown
that distinct advantages could be obtained by using a
canonical form system representation rather than the original i
system representation. In this chapter another model of

the system, called "Levy's proper canonical form" (Ref 74),

is developed. This model is shown to offer yet additional
advantages in solving the identification problenm.

Levy's proper canonicai form is based on the Kalman
filter representation of the system (Ref 101), and is derived
using the "innovations sequence'" of the filter (Ref 76).
Hence, the chapter begins with a definition of the innova-
tions sequence, and proceeds to a development of some of its
properties. Using these results, the optimal filtered state

estimate is derived, and combined with certain results from

optimal estimation theory to yield the desired canonical

form.

The Innovations Sequence

The innovations approach to linear least-squares esti-
mation is discussed by Kailath (Ref 76). Basically, the
innovations approach is to use a causal and causally

invertible linear transformation to first "whiten' the

observed output data, i.e., convert the observed output to

j a white-noisc sequence. The reason for doing this is that

: 62
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with white-noise observations, the estimation problem is
greatly simplified. Then, once the solution to this simpli-
fied problem is obtained, the inverse of the original
"whitening" filter can be used to express the solution in
terms of the original output observations.

For the convenience of the reader, at this point the
basic system model for the vector-input scalar-output case

is restated, and certain additional terminology is introduced

(Ref 100):
X(k+1) = $X(k) + TU(K) (74)
2(k) = Y(k) + V(K) (75)
Y(k) = HX(K) ' (76)

where v(k) is the output message, V(k) is the output

measurement noise, and Z(k) is the output signal (message

plus noise). Using Eqs (16) and (17), the conditional mean

and estimation error of the message sequence are, respectively

n

Y(k|k-1) = E[Y(X)|2(5), 0 < § < k-1] (77)

i

Y(k|k-1) = Y(k) - Y(k|k-1) (78)

The innovations scquence of Z(-), denoted by a(-), is
defined by Kailath (Ref 76) to be the difference between the
output signal and the conditional mean of the message

sequence. Substituting Egs (75) and (78) into this difference
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yields

Y(K) + V(k) - Y(k[k-1)

a(k) = 2(k) - Y(k[k-1)

Y(k|k-1) + V(k) (79)

Another interpretation of the innovations sequence a(-) may
be deduced as follows. Taking the conditional expectation

of Eq (75) given Z(j), 0 < j < k - 1, results in
Z(klk-1) = Y(k|k-1) + V(k|k-1) (80)

From Eq (15), however, it is seen that V(k) is independent

of 2(j), 0 < j <k - 1. That is, future measurement noise

is independent of past output signals, and hence

V(klk-1) = E[V(K)|Z(i), 0 < j < k - 1]
; = E[V(k)]
‘ =0 (81)
'e
: Therefore substituting Eq (81) into (80) yields
b
: Z(x|k-1) = Y(k|k-1) (82)

after which Eq (79) becomes

v o

a(k) = 2(k) - Z(k|k-1) = Z(k|k-1)

The previous equation indicates that the innovations sequence
a(k) may be regarded as the estimation error of the output

signal, i.e., the difference between the output at time k and

64
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the optimal estimate of the output at time k given all
previous observations of the output. This difference is
precisely the "new information'" brought by the latest output

observation Z (k).

Properties of the Innovations Sequence

The following properties of the innovations sequence
a(-) are discussed by Kailath (Ref 76) and Mehra (Ref 79):

1. The stochastic process defined by the innovations
sequence {a(k), k = 0, 1, ...} is a zero-mean Gauss-Markov
sequence. This property follows from the fact that by using
property 2c of the system model and Eq (76), Y(k|k-1) is
seen to be a linear combination of the available Z(s),
0 <s < k - 1. Thus, Eq (79) indicates that a(k) is also a
linear combination of the available Z(s), 0 < s < k. It
follows, therefore, that since the Z(-) form a zero-mean
Gauss-Markov sequence (property la of the system model), the
a(-) also form a zero-mean Gauss-Markov sequence.

2. The innovations sequence a(-) is a white-noise
sequence. This property may be established by using Eq {(79)

and considering the covariance of the innovations sequence:

E{a(3)a(k)] = EC[Y(5]5-1)+V() IV (K|k-1)+V (k) ]}

E(Y(§]j-1)V(k]k-1)] + E[Y(3]j-1IV(K)]

E[V(j)Y(k|k-1)] + E[V(5)V(K)] (83)

+

However, using Eqs (14), (17), and (76), it follows that
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E[Y(3]35-1)V(K)] = HE[X(G]5-1)V(K)] A

o

= HE[X(JIV(K)] - HE[X(3[5-1)V(K)]

-HE[X(j|3-1)V (0], k > 3

Using property 2c of the system model and Eq (15), the last

equation becomes

; E(YGi-1V(K)]) =0, k> j (84)
Also, using Eqs (19), (76), and (78), it follows that

E[Y(jli-1)Y(k|k-1)] = E[Y(5)V(k]k-1)1 - E[¥(i|i-1)V(k|k-1)]

E[Y(G)Y(k]k-1)], k > j (85)

Therefore, substituting Eqs (84) and (85) into (83), and

using Eqs (20) and (75), the following result is obtained:

E(Y(j)V(k|k-1)] + E[V(5)Y(k]|k-1)]

E[a(jla(k)]

+

E[V(jIV(K)], k>3

E(Z(j)Y(k]k-1)] + E[V(j)V(K)]

E[VGIVKY]Y, k> (86)

By a similar development it can be shown that Eq (86) also

holds for k < j. Therefore, substituting Fq (6) into (36)

- yields
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Ef{a(jla(k)] =0, j #k (87) A

The variance of the innovations sequence may be obtained
by substituting j = k into Eq (83), and using Eqs (76) and

(78):

E[a(k)a(k)] = E[V(K)V(K)] + 2E[Y(k|k-1)V(K)]

E{Y(k|k-1)Y(k]k-1)]

+

"

E[V(K)V(K)] + 2UE[X(K)V(K)]

2HE[X(K|k-1)V(K)] + E{Y(k|k-1)Y(k|k-1)] (88)

Using Eqs (14) and (15), and property 2c of the system model,

Eq (88) becomes
E[a(k)a(k)] = E[V(K)V(K)] + E[?(klk-1)?(k|k-1)] (89)

Defining the steady state variance of the estimation error

of the message sequence as

Py = E[Y(k|k-1)Y(k|k-1)], V k (90)

and using Eq (6), the following result is obtained from

Eq (89) for the variance of the innovations sequence:

Efa(k)a(k)] = R + P =k (91)

Yl J

Hence, combining Eqs (87) and (91), the variance-covariance

matrix of the innovations sequcnce may be written as
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Ela(jla(k)] = (R + PY)ij (92)

A comparison of Eqs (6) and (92) reveals that the innovations
a(+) is a white-noise sequence like the measurement noise
V(+), but with a different variance.

3. For causal linear operations (i.e., linear operations
that do not require the future value of one variable to
determine the current value of another variable), a(-) and
Z(-) are "statistically equivalent" and may be obtained from
one another. For the case where Z(j}, 0 < j < k, is known,
then ?(k]k-l) can be calculated using Eq (82). Hence, from
Eq (79), it is seen that a(k) is completely determined by
2(j), 0 < j < k. For the case where a(-) is known, Z(-) may
be obtained by using the celebrated Kalman-Bucy formula, and

the proof is given in Ref 76.

Levy's Proper Canonical Form

In this section, Levy's proper canonical form representa-
tion of the system is derived. This representation is based
on the Kalman filter for the system, and is discussed by
Geesey and Kailath (Ref 74) and Mechra (Refs 78 and 79).
Prcparatory to the formal derivation that follows, however,
a preliminary result is stated in the form of the following
theorem (Ref 76):
Theorem 2: The Projection Theoren

In the original system representation given by Eqs (74)

through (76), the best estimate of the message error ?(k[k-l)
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is unique and satisfies the following condition:
Y(k[k-1) = Y(k) - Y(k|k-1) ] Z(s), 0 < s < k - 1 (93)
where
Y| Z means E[YZ] = 0 (94)

In words, the projection theorem states that the instantan-
eous message error is uncorrelated with the output signal.
The first step in the derivation of Levy's proper
canonical form involves the development of a useful result

from optimal estimation theory. Meditch (Ref 180) shows
that any linear estimate of the state }(k) given the set of
output measurements {Z(s) = Y(s) + V(s), 0 < s < k} can be
written as

X (k) G(k,s)Z(s) (95)

n
1l 1%

s=0

where the G(k,s) are n x 1 vectors. By property 3 of the
innovations sequence, a(:) and Z(+) are statistically
equivalent for causal linear opcrations, and therefore

Eq (95) implies that

P

X(klk) - ] G(k,s)a(s) (96)

In Eq (96), the vector G(k,:) acts as a lincar filter that
is seleccted such that the instantancous error in mcasuring

the state vector is independent of the output signal, and
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hence is also independent of the innovations. That is,
X(k[k) = X(k) - X(k|k) | a(s), 0 <s <k (97)

Postmultiplying Eq (97) by a(s), taking the expected value

of the result, and using the projection theorem results in
E[i(klk)'a(s)l = 0 = E[X(k)a(s)] - E[X(k|k)a(s)]
or
E[X(K)a(s)] = E[X(k|K)a(s)] (98)

Substituting Eq (96) into (98), and using Eq (92) yields

k
E[X(k)a(s)] = E [ ] G(k,0)a(o)a(s) (99)
g=0
k
= ] G(k,0)E[a(a)a(s)] (100)
0=0 ~
= G(k,s)(R + Py), 0 ¢ s <k (101)

Equation (101) says that in the steady state, the
correlation function between the state vector and the output
signal is proportional to the linear filter G(k,+). Since

in the scalar-output case, R and P, are both constant scalars,

Y

the existence or physical realizability of G(k,+) is assured.

Hence, from Lq (101) it follows that

G(k,s) = E[X(Ka(s))(R + P! (102)
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Postmultiplying Eq (102) by o(s), summing the result from

0 to k, and using Eq (96) yields

=

Rklk) = 1 (EIXR)a(s)IR + ) ags)) (103)
, B

which implies that

k+1

I {E[X(k+Da(s)](R + P)”
s=0

1

g(k+1|k+1) a(s)}

k
I (E[X(eDa(s)1R + p) ta(s))

s=0

E[X(k+1)a(k+1)] (R + pY)‘la(k+1) (104)

+

If the steady state Kalman filter gain is now defined as the

n x 1 vector K, where

K= E[X()a()](R + P )7}

then Eq (104) becomes

X(kel{ke1) = § {E[X(k+Da(s)](R + PY)'1

a(s)} + Ka(k+1)
s=0 N

Substituting Eq (74) into the last cquation yields
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k
] {E[8X(K)a(s)+TU(K)a(s)I(R + Py) a(s))

i(k+1|k#l)
b s=0

+

Ka(k+1)

»

1

¢ I {E[X(K)a(s)I(R + P)”
2L, ‘R

a(s)}

1

+*

T
T s

{E[U(K)a(s)](R + Py)”

a(s)}+Ka(k+1) (105)
0 h

"t~

However, using property 2c of the system model, and Eqs (13),

(76), and (79), it follows that

AN e e s M e e AP G W = Aot - < = = asee i = e

k k R
I {ElUK)a(s)]} = ] {E[U(K)Z(s)] - E[U(K)Y(s|s-1)]}
s=0 s=0 -
= 0 (106)

Substituting Eq (106) into (105), and using Eq (103) vields

-

the following result:

X(k+1]k+1) = oX(k|k) + Koa(k+1) (107)
; For convenience, Eq (18) is rewritten below:
X(k+1|k) = ¢X(k|K) (108)

The optimal filtered estimate of the state X(k+1) is
given by Eq (107), while the optimal predicted estimate is
é given by Eq (108). Together, Eqs (107) and (108) constitute

a partial description of the stecady statc Kalman filter for
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the system given by Eqs (74) through (76). 1In recent years
the Kalman filter has enjoyed wide applicability in the field
of optimal control, principally because its recursive form
is ideally suited for implementation using digital computers.
For a complete mathematical description of the Kalman filter,
it is also necessary to determine the optimal filtering gain
and the optimal covariances of the filtered and predicted
estimates. The interested reader is referred to the litera-
ture for details (Refs 101 and 180).

The derivation of Levy's proper canonical form continues

by rewriting Eq (107) as
X(k+l1|k+1) = X(k+1[K) + Ka(kel)
which implies that
X(k|k) = R(k[k-1) + Ka(k) (109)
Substituting Eq (109) into (108) yields
X(k+1lk) = ¢[X(k|k-1)+Ka(k)] (110)

Premultiplying Eq (110) by T, where T is defined in Eq (48),
and using the linear transformation given by Eq (47), the

following form is obtained for Eq (110):
X*(k+1|k) = @*[X*(k|k-1)+K*a(k)] (111)
where ¢* is defined in Eq (51), and

K* = TK (112)

~

73




- e < i m———

GSA/MA/72-5

Solving for Z(k) from Eq (79) and using Eq (76) results in

2(k) = Y(k|k-1) + a(k)

HX (k|k-1) + @ (k)

Using the transformation given by Eqs (47) and (48), the last

equation becomes
Z(k) = g*g*(klk-l) + a(k) (113)

where E* js defined in Eq 153).

Taken together, Egs (111) and (113) comprise Levy's
proper canonical form, which is shown in Block diagram
representation in Fig. 5. Levy's proper canonical form
representation has the following advantages over the
canonical form representation given by Lqs (49) and (50):

1. The optimal filtered and predicted estimates of

the state vector are o -ained directly.

y ol Re(klK) o BrRe2]0)
) J— K — o :é>
(k) ~ +
H* é. ' Delay
Hek* (hk-1) X+ (k|k-1)

Model of Levy's Prop T Canonical Form.
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2. The innovations sequence a(k) is obtained directly
from the output measurements Z(k) and the optimal predicted
estimate of the state vector g*(klk-l), where g*(klk-l) can
be realized using the feedback desigic shown in Fig, 5.
Availability of the innovations sequence enables a check to
be performéd concerning the optimality of a Kalman filter
constructed using parameter estimates, as well as providing
information pertaining to the statistical quality of the
parameter estimates. These tests are discussed by Mehra
(Ref 79).

3. For vector-input scalar-output systems, Levy's
proper canonical form representation effects a net reduction
in the number of unknown parameters to be estimated, i.e.,
K* contains n unknown elements, whereas I'* contains np

unknown elements.

Identification of K*

Although distinct advantages may be gained by using
Levy's proper canonical form over other system represcnta-
tions, a problem nevertheless exists in that the optimal
gain 5* remains to be estimated. In this section, an
algorithm for estimating K* is discussed (Ref 78). The
algorithm is based on the innovations scqucnce a(+), and is
capable of being implemented on-line.

As pointed out in the preceding section, a complete
mathematical description of the Kalman filter, and hence of

Levy's proper canonical form, rcquires knowledge of the
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optimal filter gain and the optimal covariance of the error
in estimating the filtered and predicted states. When all
of the parameters in the original system formulation (viz.,
2, E, ﬂ, g, and 5) are known, expressions for determining
the optimal gain and covariances in the Kalman filter are
well documented in the literature (Refs 101 and 180).
However, when the system parameters are initially unknown
and require estimation, a Kalman filter constructed using
these parameter estimates may not be optimal., 1In cases
where the parameter identification is particularly poor,
the Kalman filter may become unstable and even diverge
(Refs 95 and 97). On the other hand, when the parameter
estimates are good, the Kalman filter will be stable and
the state vector will converge to its true value.

Mehra (Ref 79) shows that a necessary and sufficient
condition for the optimality of a Kalman filter is that the
innovations sequence a(-) be white, This condition forms
the basis for the algorithm that estimates the optimal filter
gain K*, for when the innovations sequence is white, the
corresponding value of the filter gain is optimal. Very
basically, the algorithm begins by arbitrarily assuming an
initial value of the filter gain 50 and filtering the output
observations {Z(0), ... Z(n)} using Eqs (111) and (113).
Next, the innovations secquence, which Mehra shows to be
stationary under stcady state conditions, is autocorrelated

and tested for whitcness., If the innovations sequence is
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not white, the filter gain is changed to K where K., is

~1’ 1
determined by a recursive relationship involving 50, ?*» E*,

and the normalized autocorrelations of the innovations

sequence. The above procedure is repeated until the sequence
a(-) is white. The sequence of filter gains, 50,
shown to cbnverge to the optimal value K* in the mean-square

51, eeey 1S

sSeéensc.
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VI. Conclusions and Recommendations

for Further Study

Conclusions

This thesis considered the problem of the identifica-
tion of linear stochastic systems. A basically non-technical
state-of-the-art assessment of the subject area was made, and
criteria for the classification and selection of identifica-
tion methods were presented and discussed. Several of the
more popular identification methods from the literature were
investigated and summarized. The methods were shown to have
application to such diverse fields as economics, industrial
processes, and aircraft design.

Using the state variable formulation for a discrete
linear stochastic system, a detailed exposition of a few of
the on-line identification methods currently appearing in
the literature was presented. One such method, based on the
autocorrelation function of the output measurements, was
developed to identify the state transition matrix and the
output noise covariance. It was shown that a canonical or
phase variable system representation could be used to reduce
the number of unknown parameters requiring identification.
Finally, an on-:ine identification method called Levy's
proper canorical form, based on the Kalman fiiter representa-
tion of the system, was derived using the innovations secquence
and certain results from optimal estimation thcory. It was

shown that this identification method resulted in still
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additional advantages over the identification methods %

previously developed.

Recommendations for Further Study

Obviously, this thesis has not answered all interesting
questions concerning the identification of linear stochastic
systems., A fruitful area for further research is discussed
below.

Regardless of whether the ultimate purpose of an
identification analysis is parameter identification alone,
or for control application, the degree of accuracy required
is an important factor that can often dictate the type of
identification method to employ. However, a major problem
exists in this regard in determining the degree of accuracy
attainable using a particular identification method, and
formulating criteria for measuring that accuracy. Unfortu-
nately, the literaturc of system identification is far from
completc in this area. Therefore, it is recommended that a
criteria be developed for measuring the accuracy and
sensitivity of different identification methods, and that
such criteria be validated by comparing several identifica-

tion methods using simulation techniques.
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