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ABSTRACT

When gases are admitted rapidly to a vessel the temperature

may rise several hundred degrees in some circumstances. A simple

formula involving the specific heat ratio, thermal conductivity

and molecular weight of a gas is derived which successfully

describes the maximum value of this temperature pulse as a

function of temperature and pressure for a variety of gases.

Safety applications and corrections to measurements of ignition

limits and ignition delay times are discussed.
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I. INTRODUCTION

When gases are admitted rapidly into an evacuated vessel the

temperature at the center of the vessel can rise dramatically

hundreds of degrees above the temperature of its surroundings.

If this is not realized and isothermal conditions are assumed

to hold, large experimental errors can be made in the determination

of ignition limits. Figure 1 shows the explosion limits of a

hydrogen-oxygen mixture with large discrepancies in the upper

limits as determined by static heating (dashed line) and rapid

admission of gas to a pre-heated vessel through a solenoid
1*

valve (solid line) .

If the gases form a combustible mixture

for explosion has been made the consequences

Industrial accidents have occured during the

explosive gases from one vessel to another.

and no provision

could be disastrous.

transfer of potentially

Sometimes such

accidents are blamed on the buildup of static charge in spite of

the fact that adequate electrical grounds have been provided. A

more probable cause is the phenomenon described in this report.

In summary, both the combustion chemist and the safety

engineer can benefit by a better understanding of what is happening.

It is the purpose of the present report to contribute to this

understanding.

The phenomenon
2-5 in

and MacKinven

II. lliE PHENOMENON

has been carefully investigated by Fine, Gray

the course of their work on spontaneous ignition.

Figure 2 gives a sample of their measurements of the maximum tempera-

ture increase AT ~ove the vessel walls reached at the center of an

evacuated spherical vessel (1.222 x 103 cm3) at 190°C as a function

*Reference8 am lieted on page 28.
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Figure 1. Explosion Limits of a Hydrogen-oxgyen Mixture as Determined
bv Static Heating (dashed line) and RaPid Admission of Gas
to a Pre-Heated Vessel (Solid Line)

14



of the final pressure in the vessel for various gases. Smaller

temperature rises occur closer to the vessel walls with a

parabolic profile along a vessel diameter. Generally speaking,

the greater the pressure rise the greater the maximum of the

transient temperature pulse with a larger effect for monatomic

gases than for diatomic gases and with small changes for heavy

polyatomic gases. Within a monatomic or diatomic series however

the lighter atoms usually have a smaller effect. Figure 3 shows

the same relations for a vessel at room temperature. Relations

within a series are brought out more clearly by Figure 4 where

AT is plotted against the ratio of specific heats, for the same

experimental conditions as Figure 2 but with the final pressure
2

only equal to 10 torr . Again it is clear that the heavier atoms

show a larger effect in the monatomic series, however in the

diatomic series oxygen shows a smaller effect than nitrogen in

spite of the fact that it is more massive. Still both show a

larger effect than hydrogen. The fact that there are other factors

at work besides the molecular weight and y of a molecule is made clear

by the observation that AT for argon increases with an increase in

vessel temperature while AT for neon and helium decrease. Figure 5

shows the same relations as Figure 4 under the same conditions except

that the vessel is at room temperature instead of 190°C.

All of these gases were studied under identical conditions and

were admitted to the vessel through a solenoid valve with the

temperature pulses for a final pressure of 10 torr reaching their

maximum values in about 0.1 or 0.2 seconds and decaying almost as

rapidly. The temperature changes took place throughout the volume

but the changes at the center were always greatest. Cooling effects

were also observed on expansion of gases from a vessel at higher than
2

atmospheric pressure . In summary, the size of the effect is a

function of the properties of the gases themselves, the temperature

and pressure employed and the speed of transfer. In the next section

15
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of this report we shall develop a simple formula to describe the

observed behavior.

III. THEORYOF THE PHENOMENON

A. A General Formula

When a vessel of gas at higher pressure is connected to one

at lower pressure we might think of the gas in the first vessel as

having a potential energy relative to the final state in which both

are at the same pressure. As soon as the valve connecting the two

vessels is opened the gas in the first vessel converts its potential

energy into kinetic energy and rushes into the second vessel in the

form of a jet. The kinetic energy of this jet is then converted into

internal energy of the gas which has been admitted by collisions with

the vessel walls and with other molecules. This manifests itself as

a temperature rise which reaches its maximum value AT at the center

of the vessel where heat exchange with the surroundings is slowest.

Let us write this increase in internal energy as (1/2) fNkAT where

f is the number of degrees of freedom of the molecule, N is the

number of molecules, k is Boltzmann~s constant and AT is the maximum

size of the thermal pulse at the center. The energy which has been

admitted into the vessel is in the form of n moles of gas with kinetic

energy (1/2)Nmv~ , some of which is lost to the walls by heat transfer

with coefficient K(erg per mole-deg). We may then write

(1/2)fNk AT = (1/2)Nmv~ - nK AT (1)

as the average energy balance, Here we are using the most probable

speed of the molecules Vm = (2RTw/M) 1/2
instead of the root mean

square speed (3RTw/M)l’2 in terms of the molecular weight M and the

20



.

temperature of the vessel wall Tw with AT = T - Tw where T iS the

maximum temperature reached at the center of the vessel. All

except the heavy gases are heated to the temperature of the vessel

walls in the entry arm. However, propane and diethyl ether show

slight cooling before pulse heating since they are not fully warmed

on entry because of their high heat capacities. This results in a

lower AT than expected. Since (1/2)f = l/(y-1), Nm = nM and NK = nR,

we obtain

AT

Alternatively we

compressed by the gas

thermodynamics for an

= (y-l) Tw/(l + (K/R) (y-1)).

,

(2)

may consider the gas admitted first to be

admitted later and use the first law of

ideal gas in the form

Aq = CVAT+ pAV = CVAT+ RAT - RTAp/p (3)

where

given

v is the specific volume V/n and T is the temperature after a

amount of work has been done. If we take Aq = -KAT,

Cv +R=c
P

= YR/(Y-1) and Ap = p since the initial pressure in the9
vessel is ~ractically zero, we find

AT=T- Tw = (y-l)T/(y+ (K/R)(y-1))

or in terms of Tw

AT = (y-l)Tw/(l + (K/R)(Y-Q )

as in equation (2) above. If the vessel already contains

Ap/p would be an appropriate fraction r instead of unity.

would then be

AT = r(y-l)Tw/(Y+ (K/R - r)(y-1) ).

21
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This can also be derived from the first model ifwe multiply

(1/2)Nmv~by the fractional contribution r to the total energy

in the vessel. In other words, the added energy must be shared

between the molecules added to the vessel and those already inside.

The effect of r less than unity is to lower AT.

Both derivations are crude energy balances which take no

account of the complicated changes which are taking place in time

and space. However our only aim is to predict the maximum temperature

rise at the center of the vessel. In addition we will treat the timing

factor in an empirical fashion leading simply to useful results.

B. The Heat-loss Factor

Heat losses occur to the vessel

convection and conduction. Studies2

walls by a combination of

have been made which suggest

that conduction is dominant at pressures up to 100 torr at least

during the cooling portion of the temperature pulse. Let us write

our thermal loss coefficient K = ALT/n where ~ is the coefficient Of

thermal conductivity (erg/cm-sec-deg), L is the effective loss distance

(cm) and T(SeC) is the time for the gas to enter and the temperature

pulse to reach its maximum at the center. If the gas is admitted very

slowly, K becomes very large and AT approaches zero, a practical way

to avoid unwanted temperature pulses, but a poor way to determine

delay times or ignition limits in a reaction. Since n = pV/(RTw)

we ha-~e K/R = (L/V)AITw/p, showing that losses are smaller at higher

pressures giving larger AT. If we use the experimental value T= .21

seconds for nitrogen at 10 torr final pressure in a 1.222 x 103 cm3

spherical vessel at room temperature which produces a pulse AT = 57°C,

we find that K/R must be 2.86 which gives a value of L = 280 cm, much

22



larger than the vessel diameter of about 10 cm. In the context of

the semi-empirical approach we have adopted we might attribute this

to the effect of convection on the heating portion of the temperature

pulse. Forced convection must make a considerable contribution when

a jet of gas rushes into an evacuated vessel although density

differences and so free convection may be unimportant. In the

simple model we have developed we will represent convection through

the factor L which we will fix at the value above in all our

calculations. Where experimental values of ~ are not available

we will calculate them from the appropriate values for nitrogen

by the formula ~ =
1/2

TN (M/28) since it has been observed2 that

T is approximately pr & ortional to the square root of the molecular

weight. It is likely that T is inversely proportional to the molecular

speed which would make it proportional to (M/TW)l’2. This agrees

approximately with the observed values (Cf.Table 1) and enables us

to calculate T as a function of temperature also.

IV. COMPARISONWITH EXPERIMENT

Table I gives the required parameters for calculating AT for a

final pressure of 10 torr for a variety of gases and compares these

calculated values with experimental values taken from Figures 4 and 5.

As we see, i f we omit propane and diethyl ether which show an initial

cooling before heating the average deviation is about 1.33°C with a

maximum deviation of 7°C. If we had used a calculated value for Helium

at 300°K instead of the quoted experimental value, the 7°C deviation

would have been much reduced. This is remarkably close agreement

considering the crudeness of the model and the accuracy of the

experiment and encourages us to compare the predictions of the model

with experiments as a function of pressure (Figures 2 and 3).
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Table II. Experimental and Calculated Values of ATI°K) as a
F~ction of Pressure for an Initially Evacuated
Reaction Vessel at Two Temperatures.

Tw = 300°K

80—
175

(171)

100

-..
(175)

155
(152)

---

(160)

---

(128)
---

(138)

nitrogen
(% (;:) (%) (::) (::) (::!)

105
(105)

---

(108)

Tw . 4fj3°K

pressure (torr) ~ 20— 60 E 100

230 245
(237) (248)

argon
(::)

140
( 137)

100
( 94)

165 180
(168) (190)

200
(207)

210
(218)

neon
(::)

125 150
(123) (144)

165
(161)

180
(176)

200 210
(196) (212)

170 18S
(150) (170)

helium
(::)

100 125
( 83) (102)

130
(118)

150
(131)

nitrogen
(::)

100 110
(111)(123]

120
(132)

130
(139)

135 ---
(148) (154)

Calculated values are in parentheses. Experimental
estimated from Figures 2 through 5.

values have been
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Table II compares calculated and experimental values of AT as a

function of pressure for two temperatures, The agreement is generally

good considering the model and the experiment and might have been better

if experimental values of T were available as a function of pressure.

However, the values of ~ measured or calculated for a final pressure of

10 torr were used throughout [as was a constant L value) and the K/R

values of 10 torr were taken simply as inversely proportional to the

pressure, probably accounting for much of the variance observed.

v. DISCUSSION

The model is too crude to warrant many refinements, yet it

successfully predicts trends including the observed crossover of the

nitrogen curve with the neon and helium curves as a function of

pressure (Figures 2 and 3). It also predicts an upper limit to the

temperature increase of AT = (Y-l)TW when K = O. When Tw = 300°K,
max

ATmax = 2000K for monatomic gases, 1200K for diatomic gases, and so

forth. When Tw = L1630K (1900C), ATmax= 310°K for monatomic gases and

185°K for diatomic gases, etc. These predictions are of special

interest from a safety viewpoint and slow gas admission can be used to

eliminate danger. When the measurement of ignition delays and ignition

limits is of interest we can do several things to reduce error. If a

heavy fuel plus oxygen system is being studied the oxygen might be

admitted to the reaction vessel before it is heated and the fuel

admitted rapidly after the desired temperature has been reached since a

heavy molecule (unlike oxygen) will only give a small temperature pulse.

Alternatively, if we desire to admit the oxygen rapidly into a vessel

containing the fuel we can get an estimate of the temperature pulse by

using an inert gas such as nitrogen (or an inert model of the fuel if

the fuel were to be transferred). Or in some circumstanceswe might

adopt the idea of two vessels connected by a wide-bore stopcock with

26



diffusion mixing after pressure equilibration. Finally, if premixed

gases are admitted to a vessel effective average values of M, y, and A

can be used to calculate AT and make corrections.

VI. CONCLUSION

We have derived a simple formula for calculating the temperature

increase which results when a gas is admitted rapidly to a vessel. In

spite of its simplicity the predictions of this formula agree well with

experimentally measured values as a function of temperature and

pressure for a variety of gases. This enables us to understand the

phenomenon more clearly and to take precautions or make corrections

as required.
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ABSTRACT

When gases are admitted rapidly to a vessel the temperature may rise several
hundred degrees in sane circumstances. A simple formula involving the specific
heat ratio, thermal conductivity and molecular weight of a gas is derived which
successfully describes the maximum value of this temperature pulse as a function
of temperature and pressure for a variety of gases. Safety applications and
corrections to measurements of ignition limits and ignition delay times are
discussed.
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