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PREFACE

This report was prepared by 11T Martin L. Smuh, Jr., Geologist Physieal Serenees
Brauch, Research Division, U.S. Army Cold Regions Research are Legeermg Labotatory.
The work described is part of an investigation of the propagition of clastic waves in sml
materials near the freezing point of water sponsored by the Advaneed Research Projects
Agency (ARPA Order 1525). This report deals with elforts to measue vompressionil
and shear velocities, and their respective attenuations, from the modes of free vibriation of
an elastic sphere. Au attempt has been made to provide i reasonably complete and self-
contained account ol the appropiiate theory (nmuch of which is tutorial), a aseful deseription
of the experimental and data-reducing processes, and some graphical aids to allow manual
data reduction. Computer codes are not listed but nray be obtained (in Fortran 11) from the

author.

The author wishes to acknowledge the invaluable gumidance and encouragement ol
Dr. Yoshisuke Nikano. USA CRREL. duriug these endeavors. Captain Randolph J. Martin
111 and. more recently, Mr. Robert Amold, both of USA CRREL. were of great help. Mr.
Joseph Przybyla helped with the extensive machine calculations; his consistent efforts
suved much time. Professor Francis Birch of Harvard University very graciously dis-
cussed his own ungublished research in this area. Dr. David B. Fraser of the Bell Tele-
phone Laboratories, Inc., Murray Hill, N.J., kindly shared his experiences and provided
helplul reprints and manuscripts. Professor C.H. Scholz of Columbia University also
provided many reprints and manuscripts. '
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ON THE DETERMINATION OF ELASTIC AND ANELASTIC
PROPERTIES OF 180'TROPIC SPHERES

by

Martin L. Smith

INTRODUCTION

An elastic sphere whose properties vary, at most, as a function of radius alone is the only
bounded three-dimensional body whose entire spectrum of free vibrations can be determined exactly.
(A quantity is, here, considered to be ''determined exactly’’ if it can be computed as the root of
an expression which is composed of a finite number of conventional transcendental functions or
which can be evaluated by = one-dimensional numerical integration.) Roughlv speaking, thisis a
consequence of the fact that in any of the three elementary coordinate systems (Cartesian, cylindrical
and spherical coordinates) a sphere of the above composition is the only finite body which is totally
symmetric under two of the three coordinates.

Because the solutions so obtained are not restricted to extremely high or low frequencies or to
limiting geometries, as in the case of cylinders and plates, we may reasonably hope to evolve an
interferometric technique for inferring compressional and shear velocities from observed resonance
spectra. This has, in fact, been done.

The earliest such work is that of Birch (personal communication) which antedates World War II,
and is unpublished. The earliest published work is that of Fraser and LeCraw {1964). This pioneer
work was done on small (19-24 mm radius) spheres of yttrium gallium garnet and yttrium aluminum
gamet. Fraser (1968, 1970) made extensive use of the technique to study the properties of vitreous
silica. The techniques presented by Fraser and LeCraw (1964) were also applied by Anderson and
Soga (1966) to very small (0.5 mm) spheres of polycrystalline MgO, by Soga and Anderson (1967) to
two tektites, moldanite and indochinite, and by Anderson et al. (1970) to very small glass spheres
(about 0.5 mm) taken from a sample of lunar fines.

The use of spherical interferometry to infer elastic properties requires that we be able to
*‘invert’’ a known geometry and a set of observed resonant frequencies into, in the case of a
homogeneous sphere, a compressional and a shear velocity. Previous workers have used graphical
techniques based upon forward eigenfrequency calculations by Cole and Fraser (unpublished). Al-
though such methods do, in fact, yield high accuracy for geometrically precise, high-Q materials
such as vitreous silica (Fraser 1968), we believe that the development of statistical, relatively
objective methods was appropriate for the study of much less ideal materials, such as frozen soils.
In later sections we describe, and use, a numerical algorithm for inverting arbitrary sets of data and
describe a rough method of estimating uncertainties in the rasult,

A second obstacle we have encountered in the use of low-Q (Q < 500) materials is the difficulty
of identifying modes, since many resonances are lost in the “‘skirts’’ of others. This difficulty is
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less pronounced, and 1ay often be absent, with high-@ materials. In relief of this, we huve
developed the appropriate theory of the forced response of an elustic sphere and utilized it to esti-
mate relative modal amplitudes. These results huve been extremely useful in interpreting experi-
mental results,

We have also extended both the forward and inverse algorithms to deal with arbitrarily layered
spheres (which still, of course, retain spherical symmetry), in order to admit of jacketed samples,
Computer storage limitations preseatly prohibit multilayer inverse calculations and we do not
present here numerical or experimental results on such sumples,

In pursuit of various of the above, we develop expressions for the Kinetic and various potential
energy densities associated with modes of free vibration and show how these are useful in a) esti-
mating the effect of compositional perturbations on the eigenspectrum and b) partitioning a given
mode’s lumped Q into compressional and shear Q's, Coquin (1964b), in an application of his
earlier technique (Coquin 1964a), has also solved the latter problem for a homogeneous sphere by
using its characteristic equation, His results, while obtained by a different technique, are
fundamentally identical with ours, and could be extended numerically to handle the multilayered
version of either a) or b) above,

Many of the techniques and results we have utilized are drawn from seismological literature
converned with interpretation of the eaith’s free oscillations. Particularly lucid theoretical dis-
cussions are available in Backus and Gilbert (1967) and Dahlen (1968). The methods detailed by
Backus (1967) are extremely helpful in problems of this sort and we have made extensive use of
them. One of the most useful discussions of the behavior of vibrating systems is prosented in
Rayleigh's Theory of Sound (Rayleigh 1945), first published in 1877,

ELASTIC DISPLACEMENT SOLUTIONS IN SPHERICAL COORDINATES

We consider a volume of space filled with an isotropic, homogeneous, linearly elastic medium
having Lamé constants A and g, and density p. We assume the medium to befree of gravitation and
other body forces, but allow the existence of one of more surfaces across which tractions may be
applied.

Let u be the displacement field specifying the motion of each particle frem its unique rest
position. We assume u to be a first order infinitesimal and do not, in the absence of zeroth order
fields, have to distinguish between Eulerian and Lagrangian coordinate systems. Let T be the
elastic stress tensor. If we assuie that u =—0.corresponds to the unstressed state of the medium,
T_ is given by (Fung 1965):

T =MV.0!l + pVu + uv), ¢V

where [ is the identity tensor. Vu is the gradient tensor of u, and uV is its transpose,

The conservation of linear momentum leads immediately to the equation of motion,
pofu = v . T. @
Equation 1 and some standard vector calculus identities convert eq 2to

patzu =+ 20)V(Vew) - pvU x V x W 3
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We choose to represent u by (Backus 1967)
W =FU + O,V -Tx VW @
where U, V, and W are scalar fields and v, is defined by

v, = 0dp + H(sin 6136, (5)

'r_’is a unit vector directed away from the origin, J and ¢ are the colatitude and longitude, and G and
@ are their respective unit vectors. ¥, is the gradient operator on the surface of a sphere of unit
radius. It is related to the three-dimensional gradient operator by

v=To, - riv. )
After scme algebra, we can show (Backus, 1967) that

vVVv.uw =—r.6l, {(6, + g)U + r-lvz‘l’V} 4
r

+ Vl{(r‘lar + E

re

)u + r%“{v}. Q)

and
v x v x u=Flr2aeviv) - r29lul + v trta U - et «
+T x 9, !r“’v“{w + r‘laf Wi, ®

We insert eq 4, 7 and 8 into eq 3. We now appeal to the uniqueness of the representation 4 (Backus
1967) to yield the three coupled partial differential equations

pRU = (\ + 20)9, {(a, + ?) U+ r‘v“{v} -

- % 19,4v3V) - 93U, (92)
r

POFV = (A + 20 {("‘6, + 32) U+ r'2V%V} -
r

- o0 - v, (9b)

and

pW = % 02aw) + rrigiwi. (90)
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We note that both V and W may be augmented by any constant without affecting u (see eq 4). There-
fore, we may expect these two scalar fields to be determined only to within an additive constant.
We also note that eq 9a and 8b both involve U and V but not W, while eq 9¢c involves W but neither
UnorV.

The manner in which one elects to solve eq 9a, 9b and 9¢c (plus whatever boundary conditions
appertain) depends upon the intended application of the solution. For our purposes, we wish to find
a set of linearly independent vector fields, each of which satisfies eq 3, If the set is complete,
all possible solutions to eq 3 may then be expressed as some linear combination of the members of
the set, the coefficients used in the expansion being determined by boundary and initial conditions,

In pursuit of this, we Fourier transform eq 9a-9¢c, going from time ¢ to angular frequency w. We
do not introduce a distinct symool for Fourier transforms since it will be clear from the context
whether a symbol refers to the transformed or untransformed variable. The result of Fourier trans-
formation is to replace Bf by —w®,

To transform the ) sultant tri~ of equations from partial to ordinary differential equations we
introduce a surface spherical harmonic expansion of U, V and W, Forl > Oand-l < m < I, we
define (Hill 1953)

2l + 1 (I - |m) )%

o = (-1
Y6, ¢) = (-1)7 Tl

PP (cos ) e!™% (10)

where P{" is the Associated Legendre Function given by

(1 - x2)iml’2)

P{"(x) - alx+|m| x2 - 1, (11)

2l

If S, is the surface of a sphere of unit radius centered on the origin, the Y{" are orthonormal in the
sense

J YT (6, ¢) YK (6, ¢) sin 6d6d¢ = 51A5m,1 (12)
8y

where the bar indicates complex conjugation and Bi [ is the Kronecker delta,

The Y{" (6, ¢) form a complete set and, if we assume that U, V and W are sufficiently regular,
we ay expand them as

00 1

U6 ¢ 0 =2 I UG o) PP, ¢), (13a)
1=0 m==l

Ve 6 do) =5 £ vme ¥R 9, (13b)
l= m=—1

and

We 6 do) =% &£ Wre,0yme, 9. (13¢)

1=1 m=-]

The I = O terms have been omitted from eq 13b and 13c since inspection of eq 4 reveals that these
terms do not contribute to the displacement field.



ELASTIC AND ANELASTIC PROPERTIES OF ISOTROPIC SPHERES b

We now insert eq 13a-13c into the transformed equations 9a-9c, and make use of the relation
TIYP - - 10+ DYT. (14)

The resultant expressions are then multiplied by a particular Y{" and integrated over the surface of
a sphere of radius r. Application of eq 12 leads immediately to the set of coupled ordinary differential

equations:

N p(,,|2ui" = A+ 2wo, {(6, + %)ufl _ 1 : 1) V'l"} +

L UER A GER U, P (15a)
r
- PV = (A + 2) {(ra, R %)u{" : '(’r; L v'l"} -
- £io,up - FevP, (15b)
and
_ pulWh - %‘.{af(rw;") A w'l’}. (15¢)

We note that none of eq 15a-15c explicitly involves m,

The set 15a-15¢ can be solved by any of several standard techniques. The method used here
is detajled in Appendix A, The results are

p m
: st M2 D500 aynwn M2 Yyon) [4
r r Bm
i 1 forl > 0;
j (kr) y, (kr) c*
v L L) e AU DS”
(16)
AO
0 v
and
vy - 0; (17b)
W{" = {rjyiyn) 1y (yn)l {@ forl > 0; (18a)
wl - o; (18b)
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where
K = e = (19)
A+ 2 Vl’
]
and
R .. (0)

V and vV, are, respectively, the velocities of compressional and shear waves in the medinm. The
functions /y(x) and y,(x) are spherical Bessel functions defined by

L) = % Jy oy ) (21)

, m
y,(x) = 2—; thé(x) (22)

where J, and Y, are conventional cylindrical Bessel functions.

and

We note that the functional form of the solutions 16-18 is independent of m. The degeneracy of
this index, whicl. will persist to the case of a layered sphere, is a direct result of spherical symmetry.
Any linear combination of surface spherical harmonics of order [,

Hy = i a{"Y{" (23)

m=-]

is itself a surface spherical harmonic of order ! and satisfies eq 14.

FREE OSCILLATIONS OF A LAYERED ELASTIC SPHERE

We consider a sphere divided into N concentric spherical shells. We number the shells from
the center outwards and let r, be the outermost radius of the i*? shell, Then ry is the radius of the
sphere. Let ry equal zero. We suppose that the i*? shell is composed of an elastic, homogeneous,
isotropic medium of density p; and having Lamé parameters A, and p,. These parameters define the
compressional velocity Vp‘ and the shear velocity V 8l*

We assume that the surface r = 'y is free from all tractions, and that no body forces (such as
gravitation) are present. We wish to know for what angular frequencies « there exists a non-trivial
displacement wu(r) e“‘". such that the surface is free of traction and all internal boundary conditions
(discussed below) are fulfilled. We shall label such angular frequencies eigenfrequencies and their
associated displacements eigenfunctions. We refer to such traction-free motions as free oscillations.
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Lot we) @' he the displicement field in the i'F layer, From the displcement, we can compate
a stress tensor T by eq 1. Equation 2, nuwely

pﬂfu A v 'I: 2

nust hold everywhere in the mediam, since 1t expresses only the conservidion of hineir momentua and
1s not dependent apon such ussnmptions as isotropy, homogencity, etc. n partienlar, eq 2 is vahid

in a small "Gaussian pillbox’ which encompusses a portion of the sutface r 1., the boundiry
notween the i' and (1« 1)' shells, Let - denote the volume enclosed between the radii r, - &
and r, + Or and by some range of thy coordinutes 0 and &, Then

[ pdfudy - [ € Tdv. (24)
, i
If Y is the surtace of i+, Gauss's theorem leads to

fpdiudv - [T .udo
v A

where o is the amt outward normal on X, If we let o go to zero, then the votume of i also vanishes
[ R - .
and, if p «)'l' u temains boanded, the left-hand integral goes to zero. The nght-hand side becomes

T _ D Tde - 0 atr - oxy. (25)

07—

Since this resalt ts independent of the details of the shape of X we conclude that the quantity T - 7
nst be everywhere continuons, and in particular across boundaries.

To condition 25 we add one expressing our intuition of the behavior of elastic materials, If
both the i' and G+ 1) shells are solid, we require that the displacement u be continuous. We
refer 1o interfaces at which this is true as being **welded.'’ If, however, one o both shells are
flnid (that is, p - 0), we require only the radial component of displacement to be continuous. lu the
latter case, we allow the boundary to slip laterally but in neither case do we allow holes to open or
matter to inte:penetrate itself,

The quantity T « Tis a vector and is the traction (force) acting on a surface ncrmal to
7 In a fashion identical to eq 4, we may represent it as

T '? ?P + th --f.- le’ (26)

where P, Q and R are scalar fields. Equation 25 states that P, Q and R are countinuous across in
interface. The stress-displacement relations, eq 1, enable us to relate P,Qand Rto U, V and W,
the scalar representatives for u, These relations, which wre derived in Appendix B, are

P2l 202Gy, (27)

Q - ,,{2 ' rd, (Z)} (27h)
r r
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end
R = }Har(—tl). (2%c)

The import of the boundary conditions, then, is that P, Q, R and U are continuous everywhere
and V and W are continuous in solid domains.

We now have six scalar fields to contend with, Hov'ever, an examination of eq 16, 17, 18 und
27 indicales that we can group them into two sets, one consisting of U, V, P and Q, and one
consisting of ¥ and R, These two sets are completely independent; they do not interact in wny
way. We may, without loss of generality, treat them separately.

The set (U, V, P, Q) is the set of spheroidal variables. The displacements described by this
set give rise to both compressional and shear strain, and are interference products of compressional
and vertically polarized shear waves. Rayleigh surface waves are one product of this class of
motion.

The set (W, R) is the set of toroidal varfables. The displucements described by this set are
orthogonal to r and produce only shear strain. They are the interference products of horizontally
polarized shear waves, Love surface waves are associated with tiiis set.

From this point forward we will discuss only spheroidal types of motion. A similar development
for toroidal oscillations can be easily formulated since the toroidal problem is substantially simpler.

For any specified angular frequeucy of oscillation w, the set (U, V, P, Q) can be expanded in
terms of spherical harmonics as

Ve 6 g = S & UMa 0 Y7 (0, @) (133)
1=0 m=-]

Ve b do - 3 & VG W YR, ¢ (13h)
I=1 m=-]

P60 doo) - S & PPGLw) VR0, @) (28a)
1=0 m==l

Q(ro 00 ¢o w) = 3‘- i Q;ﬂ(r. w) ylln(oo ¢)' (28h)
Il m=-l

The Uf’ and V’l" ae .ven, in terms of a set of coeificients, by the analytic selutions 16 and 17.
Pf’ and Q'l" are then given by eq 27. Our problem is to determine those frequencies, w, for which
we can construct U, V, P and Q for each layer, such that all boundary and interface conditions aure

met,

Because the Y'," are au orthojzonal set, we may consider the abcve problem separately for each
Y". That is, given

U(f, 0, ‘bo w) = Ulln (r, w) yllll(o. &), (29)

etc., for what angular frequencies « can we satisfy all intemmal aud external boundary conditions?
Since m, as discussed earlier, is a degenerate index, we can simplify eq 29 to
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Ur,0,é,w) - Uitr, ) H) (0, ¢), (30a)

Vi 0,5, w) = V(e w)Hy (0, é), (30h)

P(,0,é.w) » Pylr.w)ll (0, 4), (30c)
and

Qr. 0. é, w)  Qir, w) H, (0, ). (30d)

where If, is given by eq 23 and is some spherical harmonic of degree 1. The details of Il are of
1o particular interest at present since the eigenfrequencies and the form of U,. .... Q, remain fixed no
matter what H, we choose.

Our problem now is to find the eigenfrequencies associated with spherical harinonics of degrea
1. if we wish to know all elgenfrequencies, we nmst repeat this procedure for eachof I 0, 1,
9

We will devise a constructive algorithm which will enable us, for a given angular frequency w,
to constrict & solution from the cence: outward which meets all boundary condutions save one. If
the last condition is met. « is an eigenfrequency. The wmethod we preseat here is one application of
the use of propagator matrices. The gencral method is discussed by Gilber! and Backns (1966).
Seismological applications are numerons (see, for example, Harkrider 1964, Ben-Menahem 19€4b and
Anderson 1966).

We consider eq 15, which expresses Ul and Vl as a linear combination of four independent func-
tions of radius. Equation 27 allows us to extend eq 16 to

(u1) ’A‘F
i i
Vis-m QB @D
Py c
Ql Dl
oy e

where i = 1, ..., N designaras the layer to which the solution is appropriate. _l_l{ fsad4 » 4 matrix
constructed from

2A 0+ 1)
and
PP Ukt TR EA ) PHT (320)

and the first two rows of Ll{ are taken (rom eq 16. The set 14, ..., D{I are constants. We omit the
0 and ¢ terms for convenience.

We rewrite eq 31 as
8@ - '@ . ¢ 33)

where we have omitted the subscript I. The vector 8! (r) includes Loth the stress and displacement
terms,
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We will now proceed to constrnet a solution satistving atl mternal bonndary conditions, n

region 1 whnel ineludes the pomt r 0 we can a prionr eliminate those solntions which po as
Yyke) amd yy (yr). Therefore, C! has the tor

cl

'L
B - .
a Ale] + Bl (34)
0

whore €, y and éz, are Fuclidean four-dimensional nnit coordinate vectors directed along the first and
second coordinate axes, In the firsl region, then, we have

st - ' - 1atey v B'EI, (35)
In the second region, we have

§°(n - H*( . C*. (36)
Assuming both regions to be solid, the boundary conditions require that

$°(r,) - Sl(y), (37
or

HEr) « €% - H'(p - 14YE) + BIEL (38)

Because the solutions composing the columns of H are lineorly independent, matrix theory guatintees
. )
that H is nonsingular. Therefore, we may express C~ as

C® - el Y .oty o MAYE 4 Blel, (39)
o 1 = 1 1 2

An alternalive fonn for ¢q 39 is

c?ooAter B¢ (40)
where
L | (I @1
¢E ol ey - E, (42)

Equations 40, 41 and 42 suffice to specify S (r). By a similar procedure, we can extend the
solntion from the i*! to the (i D shell, The appropriate relations are

sty - witlg) . ci'! (43)
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Nttt st - € (1)

Sttt ot L g (46)

In fact, either of é_f“ Lor (;‘ ' gan be computed alone by starting with eq 41 or 42 and simply
applyitg eq 45 or 46 as many times a8 is necessary,

We suppose now thit we hiavo computed GN and {N where N is the number of shells, The
solution in this shell is given by

V() - V() . 1ateN o BYCNY, (17)

We note that hoth the solution associated with €V li.e., SN (r) when B! 0] and the solution
associated with {N separately satisfy all of the internal boundary conditions, If w is an cigen-
frequency, we will be able to find some Al and Bt. 1ot both zero, such that the last two
components of sV (rN) are zero,

A straightforward way to do this is to evaluate
@V~ p¥ry) - EY, (482)
and
M BN () - ¢, (48h)
if Sg] (rN). i.e, P, must vanish, Al and B! must satisfy
A'@syy - - BLCsY), (49)

We may, without loss of generality, impose a normalization such as

9
~

(ah® + BhH: -1, (50)
which, with eq 49, allows us to compute Al and B, Using Al and B!, we then compute SQ’ (rN). i.e.
@, and examine it to see if it vanishes, 1f it does, w is an eigenfrequency; if it does not, « 18 not
an eigenfrequence,

If w is an eigenfrequency then we may use the values of A® and Bl in eq 43 and 44 to compute
the eigenfunction §'(r) at any radius in the system, We recall that S§'(r) must be multiphed by some
spherical harmonic of degree I and the factor e!@wto obtain the full solution,

§1(r, 0, by 1) = Si(D) H (0, ¢) e

where we have reinstated the subscript 1, We emphasize again that the precise nature o H depends
upou other considerations and is not relevant here.

This method requires modification when either I = 0, or | # 0 but one or more shelts have a
vanishing shear modulus, We will briefly outline the fonn these modificatious take.

When / 0, B! vanishes identically and only one solution is propagated. The matrix ﬂ{ is
collapsed to a 2 = 2 matrix by eliminating those solutions with arguments yr. V and @ both vanish
and the only coudition at r = ry is that P vanish, Al becomes merely a scale factor and may be
taken as equal to unity.
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In a fluid region, @ vanishes identically. Across a solid/fluid or fluid/fluid interface V may be
discontinuous and @ is continuous and zero, [If we are propagating upward through a solid and
encounter a fluid, we must combine the ¢ and ¢ solutions tu yield @ 0 at the interface. This re-
quirement determines Al and B! and, therefore, C! for all shells up to, and including, the fluid
region.

Consequently, in a fluid region we have only one solution. In crossing from a fluid to a solid
region, we must ''start’”’ a new solution having some non-zero V, but for which U, P and @ vanish,
We may always find some ¢ which yields this result.

For a given 1, we shall arrang;e the frequencies of free oscillation in ascending order, as jw,,
191 W[y o We shall designate the displacements, as a function of r, as gu, ,u, ... and the
four-vector of displacement and stress by ¢§,, |8, ..., etc. The ‘‘lowest’’ mode, for a given I, is
referred to as the *‘fundamental’’ mode and the remainder as ''overtones."’

Each mode of order I represents, in fact, a space of modes of dimension 2/+1 (the number of
possible values for m between -1 and +1). Each member of this space has the same eigenvalue and
depends functionally upon radius in the same way, but is associated with a different surface
spherical harmonic of order I, The entire set of modes for a given layered sphere consists of the
doubly infinite sets (0 <n < = and 0 <1 < ~) of 21+1 degenerate spheroidal and toroidal modes.

This set is complete (Backus 1967) and therefore any elastic motion, consistent with the fore-
going boundary conditions, which the system may undergo can be described as a sum, in the time
domain, of menbers of this set. A discussion of the asymptotic relations between modes and
“*waves'’ is given hy Ben-Menahem (1964). As an example of this we note that

¢ ; 1
vl (. ) 21 + 1 (sin 6) ilg 51
L6 ) - (1) ,/4”(21)! e (51)

as can be seen from eq 10 and 11, Y{ describes motion which is closely confined to the equator

0 n/2) and which behaves as waves traveling circumferentially about the equatorial zone, The
change of phase, per unit of distance traveled in the E’direction. is 17a and is therefore the mode’s
surface wave number. For large values of w, we may, rough'y, expect that the quantity

s
Ut - a (52)
dl

represents a group velocity and

represents a phase velocity.

ENERGY DENSITIES AND RAYLEIGH'S PRINCIPLE

The n'? overtone of the spheroidal mode of degree I has displacements  u,, given by

a = TRU @O H (0, ¢) + V(D) 9y H (6 ¢) b
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where H, is some surface harmonic of degree 1. The left subseript, o, donoles the overtone 10 which
U and V are appropriate.

The total kinetic energy of motion, averaged over one cycle, 18 piveuby

E

DO =

K n“’l:2 J ey - (E) dv. (hH)
v

Using the results of Backus (1967), we can sliow

r
1 .
Ex - 5 nwfof pr?l U + 10 + 1) Vildr (56)

when H | 1s normalized such that

[ HH sinodode - 1 (57)
5
(see eq 12).

The total elastic energy is givenby

E =

g

fu(T . g) av (58)
\'%

O]

where tr indicates the trace operator, T is, as before, the elastic stress tensor, and e is the
(infinitesimal) strain tensor defined by

e = % {Pu + uVl. (59)

After some algebra, we can show

-

N

E, - = [{Mra U + 20 - 10 + DV + p[2000)° + 10+ W +rdV - V2 o+
0

g

DO -

LU - 10+ DV 4 d - DA+ DA - VE]ar (60)

where, for simplicity, we have dropped the subscripts n and I.

When oY is an eigenfunction of the system we are interested in, and n(u12 is its associated
eigenvalue, we have

| o e (61)

If we define

K - [U® + 10 + D)V3]e2, (62)
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L =trd U + 20 - 10 + 1)VI*, and (63)
M- 204U 10+ DU+ rdV - V)

U - 1d v DV g - DIA v 1)U o 2R (64)
we may rewrite eq 61 as

r

N
[ (AL + pMdr
o 0
n®1 - (65)
'N
[ pKdr
0

As first pointed out by Rayleigh (1945) and discussed by Backus and Gilbert (1967), the
functional nmi‘g("ul), defined hy eq 62-65, lb) stationary with respeet to small variations in oYy it
V) is an eigenfunction associated with noy As a consequence (l))t' this, we may use eq 65 to relate,
to first order, small changes in A, g and p to small changes in wp. The result is

r

N

JSAL + SuM - SpwPK)dr
o 0
(S(“u)i") S = — (66)
N
[ pKadr
0

where, clearly,

Ewf) = 2w 8( w).

n-l

The ‘'partial derivatives'' of p@) With respect to A, p and p may be converted to those with respect
to Vp. V. and p by application of

("’_") - VE (67a)
dp Vo Vg
dplv_,v P s

ps
(f“_) = 2V, (67¢)
d s Vp.p

(i"_) - 4pV, (674)
Vp' [
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(_‘7&) 0, and (67¢)
()Vp Vp

( oA ) oy (671)
o -2V,

(7Vp VH' p D

EFFECTS OF A SLIGHT ANELASTICITY
We now suppose that the perturbations in A and p aie purel imaginary:
od = dwA (68a)
op  fop' (68h)

where A' and p' are real. This is precisely equivalent to replacing A by A + A'd, and p by
p + p'd ineq3. Then

'N
o [ AL+ w'Mdr
S(Hmiz) 0 (69)
N
[ pKar
0

to first order in A' and p'. Alternatively,
2 .
b (nml ) =i n®1 nDl (70)

which serves to define nD]. Therefore

i

8 () 3 \D, (71)
and the lumped quality factor | @, is given by
@
IR (72)
nDl
We define
o e ¢ U P (73)
va A+ 2p !
and
o) - Zu. (74)
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These are, respectively, the inverse @'s of pure compressional and pure shear waves in 4 homogene-
ous, slightly lossy medium, From eq 73 and 74 it tollows that

N -1 =
n o st (75)
' At 2#) - [ -1
A - L
( W Q 2((4)) st ' (76)

Combining eq 69, 70, 72, 75 and 76, we have
N
L@ 2L @) (M - 2uLldr
] 0 ) i

Q! - -
n rN
[ pKdr
0
or
N
f [Q.le()\ ¢ 2uL Q'Vl nM - 2L)ldr
8
Q=2 : 77
nvl 2EK (77)

RESULTS FOR A LAYERED SYSTEM

The above expressions are all valid for a spherically symmetric body whose properties A, pt
and p are arbitrary (but reasonable) functions of position. For the sake of completeness, we render
below specific expressions for a4 sphere composed of layered homogeneous shells.

For convenience, we suppuce that we have always normalized  u, so that its kinetic energy is
equal to ‘/znmi?'. That is

5

N

S p [Kdr =1, (78)
i=l T.

i1
Then the variation in w, due to perturbations in A, pyand p, for i - 1,..,Nis
5 N l’i l’i ri 5
5(nml) _— [0)\1. fLdr + 5p.i [ Mdr - 5pi 1) nw'l“Kdr]. (79)
= fi-1 Ti-1 fi-1

Equation 79 is an explicit representation of the perturbation in the (n, I)”' squared eu,enfrequen(

as 2 linear combination of perturbation in the layered sphere’s purameters. Similarly. for QV and
QV , we have p
3 1 N l’i l'i
nQ'll - 2 [Qvl MLV ) [ LerrQ'vlsiyi f M - 2L)dr] . (80)

2 =1 P
n(,)l 1 T. l’i_l

i-1
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FORCED RESPONSE OF A LAYERED ELASTIC SPHERE

We now cousider the response of » layered elastic sphere, having a small anelasticity, to a
specified driving force. This species of problem is classical (see Rayleigh 1945) but we give our
particular development here because. as a first approximation to our experiment, the specifie
theoretical results are quue hielpful,

1n the time domain, the appropriate field equation is
pdiu - Lu i L'du f (81)

where 1. is the elastic operator of eq 3, f is a spatial and temporal force distribntion, and L' is an
isotropic, viscous operitor of the form

L' = (A" + 290 - - pVxVx (82)
A' and p' are takeda to be small and constant (see eq 68). Associated with eq 81 are the internal

and external boundary conditions discussed earlier,

We Laplace transform eq 81 and assume (for convenience) that both u and (ilu vanish everywhere
at time ! 0. Then eq 81 becomes, with p the transtorm variable,

(/)p2 plL' - L)u { (83)

where u and  refer now to transformed variables. We shall expand u in the spheroidal eigenfunctions
aYp as

u-X o o (84)

and the sum is taken over all non-negative values of n and I, and - I < j 1. The nu{ are
orthogonal, as a result of the Hermitian nature of L and irs boundary conditions. The set is, here,
complete hecanse the set of all free oseillations is complete (Backus 1967) and we shall consider
only a class of sources which caunot excite toroidal modes. we may further require the n“)l to be
orthonormal in the sense

(p ), ) = f poW o pupdv = B 65 (85)
v

If we insert the expansion 84 into eq 83, multiply on the left by mu;. mtegrate, and use the re-
suit

L..u{ - P nwf n“{'

we find, after applying eq 85, that

mait [p2 ! ‘”lzt - P i(m“it' L nu{)l (mu

g
=
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Since L' is an isotropic operator, the inner prodiet (muk. L' u'l“) will vanish fork 7/ lorj £ as
a result of the orthogounality of spherical harmomes, We do not know that this is true for k1,

j s, m 4 n:that is, we do uot know that anelasticity of this sort does not resnlt in conpling be-
tween overtoues with the same order I. For onr purposes, however, we are interested in the effect
of the anelastic term when one mode is strougly excited relative to other modes, i.e. near a
resonance, This case is approximately the same as a response composed of a single mode, and
we shall ignore possible overtone coupling. Following eq 70, we define the scalar

DI

nt

“t~ L' u’) (86)
Then we have

(ul !.)
. l-
n¢t ‘:—n—- , = E (87)

= ] 2
PT b Dy e

(This does uot constitute a redefinition of “D’t. The quantity defined above is the same as that gaven
by « 169-70.)

We assume, for f (r, t), the torm

.
<

.. C 0 s (al) t o>
fa, ) o r) (88)
] 0 t- 0

where 5(x) is the three-dimensional Dirae delta function and r_ is the “'sowrce’ loeation, Then

e 87 bhecomes

A U(r)Y’(()S.(.))

a . s =
1

. ’ (89)

(p2 ' p"[){ ! ntui’)(pg )

U (r,) is the valne of the rachal displacement component at r., the source radius, Since radial
(hspl.xcomem vanishes identically for toroidal modes, i radial ton ¢ sonrce will not exceite toroidal
oscillations,

In order to compute the time-domain solution u(r, t), we have to apply the wverse transform to
eq 89 and nse the resultant na’l(t) in eq 84. The task is straighttorward and we mention here mxl\' its
salient, albeit predictable, feutnres af, as given in eq 89, has four singnlarities, one at each ¢,
tix, oneat-'% D + i ‘/n“’lg - ' D} and one at - % nD’l - ier -k D". The former two
represent forced motion of the hody at the frequency . Technically speaking, the forced component
of motion exists hecause of the singnlarities in the transform of the source time function, Time
functions such as delta, ramp and step functions whose transforms laek singutarities do not give
rise to sueh forced motion,

The second set of singnlarities represents tree vibration at the body’s various natural penods,
These motions result from *‘turning on’' the souree at ¢ 0. They wre damped exponentially and
the farther in time one is from ¢ 0. the weaker these motions becone.

For our purposes, we require only the foreed metion and we will negleet the remaining poles,
The result is
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ue) Yo, )
a(t) - =2 17s 1 7 [(w? - &°) sin (kt) + «D cos (xt)] (90)

a0

(@2 - K®)°% & &*D*

where the subscripts have been deleted trom a, w and D for conveuience.

We now suppose that the source is located at 6 = 0, r = ry andthat at 0 = o, r ™
is emplaced a radial motiou detector. For the latter location, eq 84 hecomes

1 241
X =n% ")( ) \/T nUl(rN)

where the sum is taken only over n and I as a result of the souree locetion.

The received power as a function of driving frequency « is given hy

A (- ])I(m - K2)0)2 2 A, (- l)IK(z)3/Q 3
Rg('\‘)< Zn 1 . n’l 1)
(2 - P+ kPwR/Q? (w® - K5 sz’Qz
where
2 21 + 1
vl (rN)(T)
pime —= = 92)
nr

[ . . . .
We have expressed R~ (x), the squared signal strength, in terms of the source factors nAl and the
lumped quality factors an. If only a single mode need he considered, we have

R(nml 4 - n@) (93)

nl

whieh relates response maxima to both | l and Ql

It is straightforward to show that when only one mode is significunt and

RE(x) - L R2( w) (94)
2 n"l 1

then to first order in nQil, k satisfies

@) : 5 n%|
K —_—_—— (95)
an

Equation 95 is the classic 1elation hetween dissipation and peak width, and is useful only if nQil
is sufficiently small.

We have supposed above that the amplitude of f and the sensitivity of the radial displacement
receiver were independent of frequency «. If this is not so neither eq 93 nor eq 95 is necessarily
correct. lowever, the half-power relation, eq 95, will generally be usable if source strength and
receiver sensitivity do not vary appreciably over the range
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L, -
Loyt = 5 ,Q0, oy 1+ 5“9,‘)1.

In antieipation of experiment, we mention that it the above influences are important or, as is
more often the ease, it the gy are sutn(‘lently ‘dense’’ on the x-uaxis, then neither eq 93 nor
eq 95 will yield reliable measures of Ql . 1f this is the case, we will not be able to improve matters
appreciably by making time domain measurements of the decay of 4 given mode. lrregularities in the
*forced’’ spectrum will appeir in the latter as distortions of a mode's exponential decay euvelope,

We wish to make on2 further point, regarding restrietions on the nature of the dissipative
mechanisn, eq 82, Suppose that the time domain stress-strain relation is expressible as

t
T = + JC - 0 delndr, (96)
0

where 7% is the elastie stress defined in eq 1, C is a fourth order tensor function of the time "‘lag,"’
t — r, and e(r) is the strain tensor,

e(r) (Yu + u®. (97)

1O =

We suppose both stress and strain to vanish for negative times, Luplace transforming ¢q 96 and
supposing ¢(0) to vanish gives

0
T=T pg(p) celp). (98)

When C is un isotropic tensor, the use of the stress defined in eq 98 1 the transformed equiations
of motion (eq 2) will yield exaetly operators of the form L and L' of eq 81 and 82, These differ from
our usage ouly in that A' and p' mity now depend funetionally on p. the transform varlable, The
quantity D, defined by eq 86 or eq 69-70 wouid, in turn, depend upon p. It "DI (or A' and ') does
not vary .Lpprecmhly over a frequency span of a *‘few peak-widths,'" the results derived above should
be usefully accurate, (We must still have X' and p', or nD[, small since we have used a perturbation
method to include attenuation.)

THE INVERSE PROBLEM

In two of the preceding sections we developed the "*forwurd’’ problem for a lavered elastic
sphere. The forward problem consists of the generation of the eigenvalue spectrum associated
with a given model. In this section we consider the inverse problem of utilizing a measured
eigenvalue spectrum (which will, inevitably, be incomplete) to infer the properties of the materiuls
of which the sphere is composed.

Let M be the space of all layered elastic spheres having N layers delimited by the points
179 ST tNl where, as before, r, = 0 andry is the sphere’s radius. Then all models in M have
a common geometry but differ in the elastic properties (including density) of their component shells.
M, then, is a space of dimension 3N (since each shell has three distinct properties) and we miy
represent a given model by m, a vector of dimension 3N, We further limit M by requiring that it
encompass only physically realizable models. A model is said to be physically realizable if each
shell's properties satisfy
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p >0 (99a)

p >0, (99h)
and

A2 “gl‘- (99¢)

where both equalities 99b and 99¢ are not simultaneously true. The latter two constraints merely
express the condition that an elastic material be thermodynamically stable (Fung 1965).

Let jw, (m) be the n'! overtone of the spheroidal mode of degree | associated with the model m,
(Both n and ! range over the non-negative integers,) We euannot express ¢ (m) in closed analytic
form but we can, through techniques previously discussed, generate it nwmerically, We ean now
formulate the inverse problem in the following manuer (Baekus and Gilbert 1967).

Let mm‘“. ! 1, ..., K be observed resonant frequencies associinred with particular modes of

oscillation. We wish to determine a model m, satisfving
w (m) w! i 1., K (100)
moh ur h s T

As Backus and Gilbert (1967) have pointed out, we do not know, a priori, it the set of solutions
to eq 100 is empty, has a single member, or is a subspace of M of one or more dimensions.

We do not know 1 direct procedure for solving eq 100 for one or more models m. We resort here
to iterative methods for, hopefully, penerating suceessively improved approximations for m, For
convenience we rewrite eq 100 as

D,(m - DY i1 .0,k (101)
where the D? are data and the Dl(m) are data functions, D, (m) is a scalar-valued function whose
domain is the 3N-dimensional vector spiace M and whose value is the angular frequency of free
oscillation of the n:" overtone of degree Il. Let m, be sone model which we believe to lie near m,

We wish to find some perturbation, om, in m®, such that m® + Sm more nearly satisfies eq 101.
(m® and m® + Sm must both lie in M but &m alone need not,) We wish to have

D,(m® + &m) - DY

‘ i1k (102)

Expanding D;(m) m a Taylor scries gives
3N (oD 3
D (& . &m) = D (m) . 2 1 om s 0Cm D) i=1,... K. (103)
Om.l =0 )
)=1

Then, to first order in [6m|, we wish ém to satisfy

S )

Z: i ém - D% - D (m% i1, ...K. (104)
om ) o ! ! !

1=1 y‘m
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It |8m| is sufficicntly small we may expeet thit m' m' o Sm wall more nearly satlsfy eq 101
than m® did. As a measnre of a model’s snitanllty, we may define

0
-~

K D(m) pY

" 1
& (m) Z b (105)

vt D:‘

Equations 101 constitute 2 K < 3N set of hnear equations in the components of Sm. We may
not, in general, expeet to lind dm exactly satistving eq 101 tor all possible cases, If the rank of the
system does not exeeed SN, sneh a om exists bt 1s not necessarily nmgue,  If the ik exceeds
3N, it does nov exist,

Varioas methods of solution hiave been applied to the system 104 (Backns and Gilbert 1967,
Anderson and Switl: 1968, Smith and Franklin 1969, Jordan and Franklin, wannseript, 1971), We
adopt here a general teehnigne proposed by Frunkhu (unpuhlished wanmseript, 1969),

We rewrite eq 104 more compactly as

Am" . sm  R(m"Y (106)

where ﬂ(mo) is the matnx whose elements i@, e

107
j(l) [0m ] "

and R(mo) is the vector of data residnals whose i'? component 1s p" - D'(lo). We now regard
e 106 as a linear relation between thiee stochastic processes i a'u.n 1l process, a data process
and a noise process. fm is a sample of the signal process, and R(n ) i8 the sum of a sample of
the data process plus a sample of the noise process, Euach process is taken to have zero
expectation,

The use of stochastic techniques to solve eq 106 is based, in part. npon contemplation or sonic
of the potential sources of error entering into the relation. The measured spectral valucs D are
contaminated by measurement error and possible mode misidentification, The physical %yﬁtom npon
which measutements are made may deviate from the class of models M in which m must lie, 1t is
possible that there is no model m in M that would then satisfy eq 101,

Let R™ denote the autocorrelation associated with the signal process ém , and !j" denote the
autocorrelation operator associated with the noise process, R™ is a 3N ~ 3N square matnx whose
(i, Hth component is the expectation of the product Sm'b‘mj. _En is defined analogously. The best
linear estimate tor 6m is given by (Franklln 1969):

om - R" . AT(m® . (Am®) . R™ . ATm® « ROI-' . R, {108)
A solution, ém, can be guaranteed to exist ifﬂ" is a positive definite matrix,

The ahove method for computing ém was chosen, in preference to such technigues as least-
squares solutions, hecimse experience has mdicated that the solition 108 i typically smaller and
more stahle than that provided by better known methods, Sinee eq 108 is nsed only to compitte the
perturbation ém, which we nse to iteratively improve m®. it does not follow that the enors in onr
“final”* fit will correspond to any of the components of lj" or thiat the “distance’” hetween onr initial
and final models will be strongly related to R™,



ELASTIC AND ANELASTIC PROPERTIES OF ISOTROPIC SPHERES 23

In practice, we take I_f” tobe a K« K diagonal matrix whose '™ diagonal element is the square
of onr estimite of the uneertamty of the ™ datum, BR™ is also taken to be a diagonal matrix whose
ith clement 18 taken egnal to .2q;". where s i mnull-nnmh(-r (we nsed 0.2 to 0.01), and q, is the
' component of m. Thas, we “guppest to eq 108 that changes in a given cowponent of m should
be of the ofder of a fraction of its value, (Life is not quite that simple sinee, as Franklin (1969)
pouts ont, 1t 15 only the ratio of spnat to noise that counts, but the values piven ahove tewd to
work well i practice.)

It 15 also helpful 1o have some measure of the uncertainty associated with results so obtained,
Sueh estimates must rely, of course, on the statistical propert jes we assipn to errors m the data
and errors 1 the model and the fashion in which one relates to the other, Forpoing this, we adopt
here an estimate which is sunple, and perhaps crude, i the extrene.

We deline the r,m.s, absohite error in eigenlrequency o as
K ¥
i . 2 R;(m\. (109)
(B

Associated with cach component mof m is an s, seusitivity o, defined by

g 1 & .8
of « 5 2 . (110)

We take 'r/"n as o measure of the uncertainty in m,. If the data depend ouly weakly upon m,, then
o, will be suall and o o large, Similarly, if the data depend strongly on m;, ¢ 'ui will be (relatively)
large. We cannot offer a more quantitative justification for this wethod,

EXPERIMENTAL AND NUMERICAL RESULTS

Ilustrative applications

I order to render more specific the developments of preceding seetions, we give, first, the re-
sults of two experiments amd vartous aspects of their mterpretation,  The First sample disenssed
here was a f-in.-diam sphoere of Lucite, formed by machining from a scction of bar stock,

Figire 1 shows the observed foread spectnun of this sample as recorded by a swept-frequency
analyzer, The sample was moderately clamped between a quartz transducer and a PZT-4 wansducer,
which happened to be available, and was in i refrigerated cabinet at abont  40°C. The numbers are
peak frequencies in kilohertz, as measured with a connter, and the mode assignments were miacte on
the basis of considerations onthued below,

From past experience, it wias possible to readily identify the “main sequence’” of modes ¢S,
pSge oe all of which have substantial naxima and which, for 1in excess of 2, tend to be more or tess
evenly spaced. Since, as we shall show, the properties of this sequence are generatly dominated hy
shear velocity over regions of Polsson’s ratio of common interest, it was desirable 1o identify at
least one of ¢S, of 051 both of which are significantly Inflienced by compressional velocity,
identifying 0SO, wo applied two useful gides, gleaned from contemplation of eq 91:

1. Adjacent modes both having [ even or 1 odd will inierfere destructively,
2, Adjacent modes not both having the same parity will interfere constriuctively,

These puides apply to frequencies lying between the two appropriate eigenfrequencices, ln light of
these, we interpret the sharp asynumetry of aSo s being a result of destrucetive interference with
g4 on the Jeft,
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Figure 1. Observed forced response spectrum of a 4-in.-diam Lucite sphere at —40°C. Ordinate is
linear and arbitrary. Mode assignments and peak frequencies are shown in kilohertz,

From these data, we estimated that V , was about 2.84 km/sec and V' was about 1.44 km/sec.
Using these values we carried out forward calculanons for all spheroidal modeb having frequencies
less than 10® Hz, the results of which are shown in Figures £ and ®. Appendix C discusses some
numerical aspects of the forward calculation.

Figure 2 depicts the source factors, nA], for the fundamental and first four overtones. These
results confirm the identity of the main sequence and 080' and permit the identification of a number
of additional modes. Most of these are fairly deeply buried in the “‘noise’’ and are useless as data
but they do help confirm our identifications. Prior to the use of these source factors, and the inter-
ference rules, we often found that our results were marred by uncertainty about mode identification.

The above aids have greatly improved this aspect of the technique.

Figure 3 shows the quantity

o

9
TQ‘:T'«T/;)

where Ja and @7, are the weights computed from eq 77 to average the inverse Q’s of compressional
and shear waves to arrive at a mode's lumped inverse @. (Actually, Q Q; -1, but the above
form is more indicative.) ln addition to being inherently significant, thlb quantity is a convenient,
normalized index of the partition of energy into compressional and shear waves and thus of the
properties ‘‘controlling’" a given mode. (The two families | S, and S, have been joined by separate
curves.) Figure 3 suggests that the main sequence is dominated by shear velocity and almost uni-
formly so. We should not expect, then, to get good values for compressional velocity from this set
alone. The set nS] for n 2, b, 8 etc. is controlled by V  but does not usually show up well on
observed spectra, Experience indicates that 050' and to a iesser extent 081' provide the most
conmonly ohserved control on Vp. Other modes are useful only when € is sufficiently high that
they appear clearly.
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Figure 2. Source factors, A, for spheroidal modes of a 4-in.-diam Lucite sphere at -40°C,
Ordinate is logarithmic. Arrows for | 0andl 1 indicate the overtone assignments for
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Figure 3. Relative attenuation partition coefficients for a 4-in.-diam Lucite sphere at -40°C,
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Figure 4. Portion of the theoretical forced response spectrum of 4 4-in.-diam Lucite
sphere assuming @, - Qﬁ 500, The peak is (S and is asymmetric due to de-

structive interference on the left with S,.

In this instance, as Figure 1 shows, @ 1s so low that we camot set a baseline in order to esti-
mate peak widths. For higher @ materials, we are sometimes able to measure mai'i sequence uttenua-
tions from peak widths. We are seldom able to get reliable Q's for 0Sp or other compression-
dominated modes. Similar difficulties were reported by Fraser (1970) in vitreons silica, and it does
not seem likely that we will be able to get reliable compressional attennation data in any simple
fashion,

This gloomy statement is bolstered by theoretical computations of the forced response using
eq 91 and assumed values of Qa and @ 3 Figure 4 shows the theoretical 054-080 interaction when
Qa and Qg are both equal to 500. (These results are based on calculations for the 4-in. Lucite
sphere.) 1n addition to the resemblance of Figure 4 to Figure 1, we note that aSy still possesses
substantial asymmetry even though the two peaks are (in this case) about 32 peak-widths apart.

Figure 5 depicts the interaction of tS4' 25, and 2S2 with 057 on the left and ;Sg on the right,
Calcenlations for two valnes of Q, Q4 are shown. The asymmetry of each of 154 and ,S, is
clearly due to interaction with the more distant main sequence modes rather than with each other.
The appearance of all three modes is dominated by their positions on the “‘tail” of 055 The tigure
also depiets the rapid degradation of low amplitude modes with decreasing Q. The muxima associated
with t54 and 252 become increasingly blurred as @ decreases. In the case of Lucite, whieh has a
compressional € of about 70, Figure 1 shows that only oS¢ Persists as a noticeable maximum,

We attempted, next, to “invert” the data obtained from the main sequence, plus oJp. in three
different ways. The results of this endeavor are given in Table 1.

The first result, Inverse 1, was obtained by using all the data in the automated algorithm, The

“fit”’ has an r.m.s, relative error of 19, due largely to the 2.6% error in matching 0820 Inverse 1t
was obtained by mannally matching 050 and ¢S,. This result has the same r.m.s. relative error
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Figure 5. Portion of the theoretical forced response spectrum of a 4-in.-diam Lucite sphere for

two assumed values of Qa

Mode Observed

and 252.

Table 1. Comparison of velocily estimates.

Inverse 1

Inverse 2

Inverse 3

Q4. The figure depicts the elfects of interference on 054 25y

B kiz kiz ‘ kiiz ¢ kitz —
48, 24.27 24,41 5.8~ 107 24,29 8.2« 10™ 24,27 1,98 < 107
oS 11.54 11.84 2.6 « 1072 11.92 -3.3 » 107! 11.91 3.2 %107
oSy 17.78 17.64 7.9 107 17.77 5.6 % 107 17.75 1.65 « 107
oSs 22,78 22.63 6.6 - 10 £2.79 —-4.3 + 10™ 22,78 3.99 « 107
oSs 27.43 27.30 4.7 < 107 £7.60 2.5+ 107 27.47 -1.44 ~ 107
oSe 32.01 31.82 59~ 107 32.04 -0.4 ¥ 10 32.01 6.0 ~ 10"
oS5 36.43 36.25 4.9~ 107" 36.50 1.9~ 107 36.46 8.7 10"
oSy 10.87 40.62 6.1« 10" 40.90 -7.3~10" 40.806 3.2 «10™
oSy 45,26 44.95 6.8 < 107 45.26 0 46.21 1.0 w107
oSio 49.51 49.% o0« 107 49.60 -1.8 ~ 107! 49.54 6.9 ~10™
Obs. I . :
. o G RMSRE 1.0 - 10 RMSRE 1.0 1077 RMSRE 1.0 v 107
Obs
Observed  5.08-cm-radius Lucite sphere at —40°C Inverse 2  Estimated for fit to S, and ,S,
V. = 28
Inverse 1  Computed using all data shown p 83804
v 143650
v 284262 8
Vs = 142577 Inverse 3  Computed using all but .S,

V. = 283566

U

V. = 143504

s
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despite an inerease in the error for 052, and further suppeests thit OS.’2 is behaving anomalously. The
third resalt, Inverse 111, wis obtained by using all the data except ()S:." and still has an r.m.s, relative
error of 1%. The constancy of this number is, so far ax we know, fortuitous. However, if we omit

oS, entirely, the error drops to 0.09%., 1t is not, m our experience, nrusual for the mode oSy to be
inconsistent with remaining modes, We cannot offer an explamition of this observation at this time
but do recommend that, when sufhicient alternative data are available, it not be utilized. We may
observe, however, that of the suite of surface wave modes, “Sg_ ()S:i et (,S.J does possess the small-
est surface wave number, (1« '%)/a,

Table 11 shows the result of an mverston of dati from i dm, GE-126 fused quartz sphere at
19°C, The error 18 0.03% and (S, does not show anonitons beluvior, These results are unusitlly
good, We note thit the reliitive ¢rrors sigpest thit compntel neguencies for the miin sequence are
deviating systematically ahove observed fregneneics, e mades al the fonn USl are known, For
inereasing 1, to become mereastely conventeated near the s Face, woe ity specalate that such
systematic errors tmply o lower-veloeity srftetad wegion,  Other candidates are geometiical
irregularities, influence of the transdueers, ete, We tttodinee thas point heeinse Fraser {1970) has
shown that vaemnn heattg of some vitteoas stheas sttonely influences the attenuation ol virious
torsional (shear) modes,

Table Il. Invernion of data from a 4in.-diameter sample of GE- 125 fused quartz at 19°C.

Mode Ohserved Computed {Ohs Comp) Obs
(Hzi (i)
oS, ORISR HoRaLY RUTIE (1
S, AR AR D7 7.64 - 0"
11aH0.1 REHE R 2,07 -t
150707 RSN 2,27~ 1w
S, “HORK 1 ORUKE D TR (O
oy TR IS (IR (U
s w6 Lot LU s o
S, TRHCRNT HLNKT. 86~ 107
RM.S, Retanve ertor L0 107
Computed velocities "l' HMRGRT e see
"s NTH04 e see

Interferometric technigues suclt as this are particalarly useful for gauging the influence of
variables sach as temperiature on velocities, 1t is often possible to “'track’’ variations in velocities
which are smaller than the errors of measnrement. Kach additional set of data 1s easily interpreted
as a perturbation of the previous set and does not require additional mode identification. Figure 6
shows results obtained from Lucite and fused quartz at three different temperatures. The data are
shown as variations relative to vialues measured at 21°C, We have estimated temperature vatriations
in the cabinet at *1°C and these are depicted as horizontal error bars, The lineanty el the temperii-
ture dependence of elastic velocities in Lucite is striking. The slight negitive temperature
dependence of fused quartz is consistent with resnlts described by Mason (1958). (These data are
shown purely for purposes of demonstration.)
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Figure 6. Inferred relative variations of compressional

and shear velocities in 4-in.-diam spheres of Lucite and

GE-125 fused quartz, with temperature. Results are

shown as a relative change, for each quantity, from its
value at 21°C,

Some general results and a graphical inversion method

Figure E1 (Appendix E) depicts the variation of the dimensionless frequency G various
snheroidal modes of a homogeneous sphere as a function of the ratio of shear and compressional
velocities. The dimensionless frequency n!: is related to the actual frequency [, (we have used
Hertz here) by

T
N
n!r (7_ ) n{l .

p

In addition, Poisson's ratio is shown for those values of VS/Vp for which it is positive.

The loci of all modes shown, except 050 appear to converge on the origin as linear homogeneous
functions of Vs/V . oSp remains substantially linear for Vs/Vp as great as 0.625. Clearly modes
which behave in this fashion are virtually independent of compressional velocity and Figure E1i con-
firms our earlier statements about the sensitivity of various modes to compressional and shear
velocities. The left-hand side of the figure would have been more manageable if Vs had been used
to nondimensionalize frequency instead of V.. We took the point of view, however, that in experi-
mental work one is more likely, if any prior Sata are available, to have an estimate for Vp.
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On the other extreme, calculations were carried to the *‘Limit of Elastic Stability,”" indicated
in the figure. This limit is imposed hy the condition of & non-negative eompressibility and
corresponds to a Poisson's ratio of -1, So far as we are aware, any requirement of a non-negative
Poisson’s ratio is based strietly on intnitive and empirical grounds.

Figure E2 is a plot of the ratio of frequency for several pairs of modes (dimensionless or other-
wise) as a function 'of VS/VP. The ratios 011/0’2- 010/013. and of, 7, are shown using Ehu. scu.le
on the left, and ,f,/f, is shown using the greatly expanded scale on the right. Figure E2 implies
that the pair of, and of4 will not serve well to determine V /V | wherzas of, and (fy or of, will.

: : P’
The pair of and yf, is of ques 1onable value.

The plots are useful as a means of graphical inversion, as we shall now show from the data of
Table 1. For the 4-in, fused quartz specimen we have

oo 44555

S Ty 4420
ofs 30898

olo 44556

ofy 45580

0.9775

and

"
08 1080y a1y

ofs 30898

which imply (from Fig. E2)

V%

V_. = 0.651, 0.633 and 0.631.
Y

For VH/VP 0.632, Figure E1 gives

fnr
CON 03807
7
ll
or
V, 594535
and

v 375746

s

which differ about 0.2% from the values determined by automated inversion.

This method should provide usefully accurate results when individual data are of a fairly high
quality - as is often the case for isotropic, high-Q materials. When only data of lower quality are
available, or greater precision would be useful, we must use some sort of automated algorithm,
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Table HI.

Forward computalion for l‘) 593980 ¢ sec
375510 o’ sec

oo 4156305
o,  30913.44
ofe — 58119.63

tuverse compntanon

Pass

no. XL_ VH B ¢ Vp Vs ¢
1 712766 450648 2 .10 475184 300432 2 1ot
2 503768 375102 3.6 - 107 594192 375678 a6 107
3 593980 376640 7.2 07 H93980 376540 6.4~ 107

Automated inversion

The inversion of spectral datit to vield clastic veloeities is, even in onr relatively simple case,
a fundamentally nonlinear process. Consequently it is difficult or impossible to provide the proofs
of uniqueness commonly available for linear problems. The more general problem of unigneness when
elastic properties are functions of radius has been extensively disenssed (see, for example, Backns
and Gilbert 1967) but the results are uot of nmch nse to us here,

The monotonic dependence of the ratio of (f to of,,, and of the dimensionless frequency 0!('). on
Vs/Vp suggests that, within the range of V""Vt' shown in Figure E2, inversion is unigne if the proper
data are nsed.

In a realistic application. hlowever, we must account for several additional factors. The follow-
ing effects may be important:

1. Measurement errors or contamination of the data by asphericity, anisotropy, inhomogeneity,
a finite @, and external influences.

2. Mode misidentification.

3. Numerical instability in the computing processes. The result of either 1. or 2. may be to
produce & set of data which no homogencons sphere will “*fit.”" The influence of such errors will
be heightened if we attempt to nse contaminated data to determine a parameter which is only a slowly
varying function of these data. Such u problem is said to be "ill-posed™ and the effects of small
errors in "‘ill-posed’’ computations are often quite large (see, as an example, Franklin 1968).

While we have not devoted extensive attention to this problem, we have performed o few
exploratory colculations. Table 111 shows the result of two inversions using artificial data. The
starting models were chosen to be about 20% '‘away'' from the known correct model. “'E’* denotes
the r.m.s. relative error of the data at the end of each pass. The process is rapidly convergent, We
have also performed similar calculations with data to which a 1% random error was added. Such
inversions no longer gave the correct answer but, in the few cases we tried, the answer remained
independent of the starting model.
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It is easy to conceive of various Monte Carlo experiments, requiring the usual spectacular
amounts of computing time, which would help delimit, for a given data set, the error level at which
inversion becomes ‘‘incoherent.’” Because of the large multiplicity of paramelers required to cover
just typical experimental cases, we do not presenily thirk it worthwhile to do this. As a matter of
experience, we have never, so far as we can tell, encountered any pathological resulls.

We will briefly discuss only one potential source of error: 1he efiect of mechanical loading by
transducers or support devices. Appendix D describes a computalion which purports to estimate
the perturbation in eigenfrequency induced by clamping, wilh a given force, a sphere against a
halfspace of known elastic properties,

The errors so deduced do nol exceed a few parts in 10* for a fairly realistic range of properties,
We believe these results lend support 1o elaims by Fraser and LeCraw (1964) and Birch (personal
communicalion) that this method is relalively free from errors arising from such sources.
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APPENDIX A. ANALYTIC SOLUTIONS OF THE TRANSFORMED WAVE EQUATION
We represent u by
u=v|/z+vx_r’rx+vaxTro (AY)

where ¢, x and o are scalar fields, The representation Al was chosen because it is ‘‘natural’’ to
the field equations (eq 3).

It is helpful to develop the following useful expressions

AvAD) u=v2|/z,

and
UxUxUu=VxVxx{ry) + Vx VxV x vx {fro) =
= wx WV - Try) - V2 Ury) +
y wx v x WV Tro) - V2ol

We expand vz—(_t.r X ) as
vEry) =T{V2(rx) - rgx} ¥ V1{%x}

- Trvix + vizgyl
as may easily be shown by expanding. So,
v x Uxu=-gx tyey - v x v x It V2.
If we insert these into the field equation (eq 3) and regroup terms, we find
leaflﬁ -+ 2pWVRYL ¢ v x TT lp&?x - uvPyl o+
+ ¥ x Vx—r'rlpafo - uv2ol = 0,
In order to ensure that eq 3 is satisfied, it is sufficient that ¢, x and o be solutions to

pd%y - (A + 20 VRY = 0, (A2a)
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pdx - uvlx = 0, (A2b)
and
p@?o -y =0, (A2¢)

We have not shown that all solutions to eq 3 can be expressed in temms of functions satisfying
eq A2 and Al. These solutions are, however, known to be complete (Stemberg 1960).

We now Fourier transform the system and introduce the expansions

be 0 6w - 3 E yme, (o, @), (A3a)
1=0 m=-l
Xt 040 - 8 il A" 6 )Y (6, $), (A3b)
9 M
and
0,0, 4w = F L ) YPGB (A30)

=1 m=-]

The terms of degree I = 0 in the expansions for x and ¢ have been omitted since they do not
contribute to the displacement field.

The expansions A3a-A3c are inserted into the transformed versions of A2a-A2c., We make use
of eq 6 and 14 to simplify the result. If f is some scalar field, then by eq 6

VI =T + v,
and
V2! = a?l + E (9'{ + r-2V%l. (A9)
r

The resulting expressions are multipiied by Y;" (60, ¢) sin 0 and integrated over 0 and ¢. We appeal
to the orthogonality relation 12, We then have

2
o 2 w“p I+ 1)
{6, e 2 e =0, o)
2 {
{6? + g(;r + ﬂ - X_\I.:._H} x{ﬂ (f. w) = 0, (A5b)
r u 2
r

and
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r

2
5, e Gaf l‘l_*_‘-’.}.f," () = 0. (ASC)
n

{0? +

Each of the operators in brackets is some form of the sphencal Bessel's operator, Its solutions
are well-known and they are

~ |

2
r~

Y = A @) Jy k) + BT (w)y, k), (AGa)
X,l" = C'l"(w)il (yn) + D{" (m)}'l (yr), (Abh)
and
a = E'l" (w) ) (yn) + F'l" @)y, yn), (ABc)
where
k = v A7
A+ 2 i
P
and
w (A8)

We wish now to relate U, V and W to ¢, \ and o, To do this, we will rearrange eq Al to
resemble eq 4. For convenience we will drop subscripts and superscripts.

We note immediately that
TY = To Y + vl(r'llll).
Also,
O xTrx = Ix9Y x [ =T x vx)

-Tx 9ly)

—?X le-

The third term can be expanded as
U x ¢ x fte = VIV . Tro) - ©° {tro)

.

= =TI9%0 - ¥(20) + < [r2or %))
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V ~ v « fro r.'-rv‘”‘u ] (7[ |r-:"!"r(r3|l) - 2"“ +

VA lr':"?r(r”u) - 27 g

f.'f—‘vzlll v TRLETIIN i)ru(

?{_-’-(’1 .——l—)- n} ' V‘ lr'l()[ (ro)l.
r

Collecting these we have

" r’{"r"" ﬂ ;.—l.).u}, V‘ 'f“ll." ' r"ll')r (r")( -1 - V"\'.

Therefore
TN LU (A%)
r
2 et (VI 1978 1§ (A9b)
and

wy' \T - (A9c)
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APPENDIX B. THE TRACTION ON A SPHERICAL SURFACE
Let T be the elastic stress tensor resulting from a displacement field w T is given by
T = AV +» 0]+ p(Vu + uv) (B1)
where uV is simply the transpose of wu. The force (not stress) acting across a surface whose
unit normal is @is given by 7" - T, which is a vector quantity. We represent the force acting

across a surface whose normal is the radius vector T by

F.T -TP+ 9@ - Fx R (B2)

Our problem is to relate the scalars P, Q and R to the scalars U, V and W which characterize the
displacement field.

We note first that
T.T =AMV - wWr+ pr- [Vu + uvi, (B3)
The divergence of u can be expanded as

veu=0o +rly) U+ v Y (B4)

since

Ve T x BW) = =T+ (Vx 7, ¥)

-T . (Fx VarW)
=0
because T x VJ W must be normal tor. Equation B4 can be written as
v-u=0U+rivdv T . vV« o LT (B5)
The third term vanishes since d, commutes with V,, and ¥,d v is normal to . The fourth term is

equal to (2/r) U as may be seen by replacing ! V; with ¥ - —r'a,, an equivalent expression, We
then have

V-.u-= (ar + ..2.)U + r'lV%V. (B6)
r
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The term 7"« |Vu + wV!in oq B3 is more difficult to deal with. In terms of the coordin. te
representation of u, (i.e. u, ug, and u¢).

u
T Vs + avl = ?(28,::,) + W[;aour + 19, (79)] +

— 1 ugb
+ @ [rTinT dgl, + 19, (r_)] ; (B7)

By inspection of eq 5 which explicitly gives the coordinate components of Vs we see that eq B7
may be rewritten as

u
Telow + uyl = ?(20,!1,) + vl(_r) +
r

+ rarlrl (?uo + $u¢)] .

We note that d, commutes with 0'and E' The expression in square brackets represents the non-radial
portion of u and must therefore be identical with Vv - T x ¥, w. Since u, is identical with U,
we have

T lvu + av! --7‘(20,v) o Vu o+ ra,{lvlv Sy o Vlw}
r r r
or

T {Vu + u?vl =ﬂ20ru) + 9 [E + r&r(-l-v)] - T x 7 Irar(-l-w)l .
r

r
Combining the above results, we have

A s 2au o+ Zu . 2oy, (B8a)

,1{3 + 1, (1)} (B8b)
r r
R - ,l{ra, (L:’)} (BSc)

P

DO
]

and
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APPENDIX C. NUMERICAL TECHNIQUES

We outline, briefly, in this appendix the numerical techniques used in this study to a) generate
the suite of normal modes for a layered elastic sphere and b) evaluate various integrals of interest
associated with these modes.

For a given ! and w, the generation of solution functions proceeds exactly as outlined in
Section B. The matrix inversion required by eq 45 and 46 was not done explicitly. We chose instead
to solve two sets of simultaneous linear equations. The Crout Reduction (Hildebrand 1956) was
found to be particularly convenient.

Bessel functions were generated by using Miller’s well-known recurrence algorithm (Abramowitz
and Stegun, 1968). One consequence of this technique is that the accurate evaluation of a sphericai
Bessel function for many values of its argument, as required, say, for integration, is a time-consuming
process. For such applications it would perhaps be more efficient to numerically solve Bessel’s
equation, but computer memoty limitations did not permit the additional coding this required.

In practice, the program was assigned a model and a value of | and proceeded to compute trail
solutions for evenly spaced values of frequency. As the computation proceeded, indicator variables,
as explained in Section B, were monitored for a change of sign, which was taken to indicate a zero
crossing. When this occurred, an estimate was made of the location of the zero crossing and the
algotithm described below was invoked to iteratively improve the estir ‘te. In general, two applica-
tions of the following procedure sufficed to locate the eigenfrequency to within one part in 10°,

Gilbert and Backus (1967) observed that Rayleigh's principle could be utilized to improve
estimates of eigenfrequencies obtained by coarser methods. Suppose that for some frequency w,
near an eigenvalue, w*, we have computed a trial solution and find that the stress-free surface con-
dition cannot be met. We may apply Rayleigh's principle, or perturbation theory, to the solution we
have generated to estimate the change in @ the elimination of surface stress would produce. The
first order estimate for this change is given by

W, ()P, () + 10 + VYV, 0 )Q(r )
dw = (817(11))-1 TN 1NN . ()]

r

N
[ eI + 10 + DYE@Idr
0

We will not derive eq C1 here. We then replace w by w + 5w and repeat the process. We chose to
terminate the iteration when |8w/(8w + w)| fell below 107°.

The last point we wish to mention is the evaluation of integrals of the form
u

I = [ Z(wdr (C2)
0
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where Z is some operator on the sclution functions, U(r), etc. In general, we may expect Z to vary
appreciably over a length L of about

L = (C3)

@

where V _ is the local compressional velocity. L is simply the wavelength of a compressional wave
of angular frequency w. In computing /, the program was designed tc utilize steps not exceeding
eL; where ¢ is a small (~ 3 x 10°) number and L, is the scale length appropriate to a given shell.
This technique yielded a reliably constant accuracy over many wide variations of scale without
extracting undue computing 1abor for small values of w,
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APPENDIX D. AN ESTIMATE OF TRANSDUCER AND SUPPORT
INFLUENCES ON MEASURED EIGENFREQUENCIES

Pertur>ation due to an anchored spring

Vie suppose that one end of a spring of spring constant k is affixed to a point P on the surface
of the sphere. The spring is oriented radially and its other end is firly anchered at a distance
equal to its rest length. When P moves outward a distance u, it is subject to a force, directed
radially inward, of magnitude ku. The boundary conditicas for elastic motions of this body can be
expressed as

FeT - -rfku-F)8(F -1) onr = ry. (D1)

T is the elastic stress tensor, u is displacement, r. is the location of P, 8 is the surface Dirac
delta function, and ry is the sphere’s outer surface. Thus, for all points onr = ry other than P,
as before, r + T must vanish.

We now utilize Rayleigh’s principle to compute, correct to first order, the perturbation 5w®
in an eigenvalue w® caused by the perturbed boundary condition. The Fourier transformed equation
of motion is

-pou - V. T (D2)
(We have dropped sub- and superscripts.) Forming the dot (scalar) product of D2 with u gives
-pwlu.u = (VT .0 (D3)

Equation D3 is true everywhere and we may integrate both sides of it over the volume 0 < r < ry.
If while doing so we rearrange the right-hand side somewhat and appeal to Gauss' theorem, we may
easily arrive at

9

w* fpu-udv = [T :Qudv - [r . T .udu. (D4)
v v ]

V denotes the volume of integration and S is its surface. The colon denotes a scalar tensor product.

In the absence of a boundary perturbation the surface integral vanishes since r - T vanishes on
S. What remains, in this case, is exactly eq 61 deseribing the equality of kinetic and potential
energies in free vibration. To determine the effect (to first ordet) of the new boundary condition D1,
] ) 9 o 0 2 g
we (following Rayleigh 1945) replace ™ by w~ + 6w~ and evaluate the contribution of the surface
integral. We then subtract the unperturbed energy terms (which are equal) leaving

Sw? [pu - udv - klu - r? (D5)
v

>

where u - r is evaluated at il"
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If we adopt the r.ormalization 78, the volume integral becomes equai to unity. If rp is at either
0 = 0or6 = n, and if we replace 5w? by 2wbw, we may massage D5 into the form

dw 1
—} ==k A
n(w)l 2 nl

where nAl is the appropriate source factor, and we consider only axisymmetric (m = 0) vibrations.

A sphere against a half-space

In order to estimate an appropriate vaie for the spring constant k, we consider the contact
problem of a sphere against a half-space. Let E, and V. be the Young's modulus and Poisson's
ratio of the sphere, E and V the corresponding wroperties of the half-space, and R the ~adius of
the sphere. Timoshenko and (modier (1951) present approximate results, useful when th. “ontact
area is small, which we quote here. The normal force F, not stress, acting on the sphere causes
it to move a distance d toward the half-space given by

2\% [ F2 %
d - (?1.';_) [R—(ks + ks)2l (D7)
where
2
L -V
s - nEs
and
2
kK - -V
n nE )

We suppose that the sphere is pressed against the support, or transducer, with a force F and
that motion results in small variations abou: an equilibrium position given by D7. Then the
appropriate value for the spring constant is given by

- @pd! (D8)

where the derivative is evaluated at F, the confining force. We cannot expect this mocal to be use-
ful if any dimensions involved become significant compared to a wavelength of motion (about
27R/(1 + %). All we really ask of it, in any case, is an order of magnitude for potential errors.
Equations D7 and DB give

%
k-3 __&l (D9)
9*(k, + k)

Another quantity of some interest is the radius a, of the contact area, given by

[__ FR (k, + kn)lz
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Table D1 presents numerical results from these expressions for a Lucite and a fused silica
sphere, 4 in. in diameter, held by its own weight on a steel support and a polyethylene support.
The elastic constants were taken from Mason (1958). The lower portion of the table gives the
effecuive spring constants, contact dimension, and fractional perturbations for several modes.

These results suggest that soft materials, such as a polyethylene, induce a smaller shift in
measured eigenfrequencies than do hard ones. We may interpret this as being due to the low acoustic
impedance of polyethylene which mote nearly matches the free boundary condition. As impedance
increases, the effective boundary condition in the contact area approaches a rigid boundary state,
and the influence on eigenfrequency grows accordingly. Equation D6 requires dw/w to grow without
bound as k goes to infinity. We must recall that D6 applies only to modes with M = 0 when the
spring is affixed at one of the poles. A spring affixed to a mode's node has no disturbing influence.

We also note that, not surprisingly, modes with small source factors (such as 152) are less
perturbed than modes with large source factors (such as 0S2). Since the source factor is directly
related to the amplitude of surface radial displacement, such a result is to be expected. This result
is not particularly helpful in choosing data since low-source-factor modes are more difficult to
observe and locate accurately.

Table DI.
4m
= pR? for
Young's Poisson's 3
Material modulus ratio kg or kn 4 in. sphere
Lucite 0.4 x10% 0.4 6.68 x 10°" 8 x10°
Fused silica 7.3 x10*° 0.17 4.24 x 10°"? 1.38 x 10°
#347 Stainless 19.6 x 10" 0.30 1.48 x 10°*?
Polyethylene 0.076 x 10" 0.458 3.31 x 107"
&t
Material {
pair k = oS 5 oS¢ )
Lucite
Stainless £.1x10° 8.7 x 107 3.7%x 10 2,5x% 107 2.9 x 10™ 9.0 x 10°*
Lucite .
Polyethylene £.5 < 10° 0.16 1.1 %10 7.7x 10 8.9 107 2.7x10"
Fused silica
Stainless 61 x 10° 4.5 x 107? 2.0 x 107 2.9 x 10 1.7 x 107 6.0 x 10™®

Fused silica
Polyethylene 5.3 x 10 0.18 1.3x 10°* 1.9 x 10 1.1x10° 3.9x 10"
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