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ON THE DETERMINATION OP ELASTIC AND ANELA8TIC 
PROPERTIES OP 180TROPIC SPHERES 

by 

Martin L. Smith 

(NTRODUCTION 

An elastic sphere whose properties vary, at most, as a function of radius alone is the only 
bounded three-dimensional body whose entire spectrum of free vibrations can be determined exactly. 
(A quantity is. here, considered to be "determined exactly" if it can be computed as the root of 
an expression which is composed of a finite number of conventional transcendental functions or 
which can be evaluated by B one-dimensional numerical inteRration.) Roughlv speaking, this is a 
consequence of the fact that in any of the three elementary coordinate systems (Cartesian, cylindrical 
and spherical coordinates) a sphere of the above composition is the only finite body which is totally 
symmetric under two of the three coordinates. 

Because the solutions so obtained are not restricted to extremely high or low frequencies or to 
limiting geometries, as in the case of cylinders and plates, we may reasonably hope to evolve an 
interferometric technique for inferring compressional and shear velocities from observed resonance 
spectra. This has. in fact, been done. 

The earliest such work is that of Birch (personal communication) which antedates World War II, 
and is unpublished. The earliest published work is that of Fräser and LeCraw U964). This pioneer 
work was done on small (19-24 mm radius) spheres of yttrium gallium garnet and yttrium aluminum 
garnet.  Fräser (1968, 1970) made extensive use of the technique to study the properties of vitreous 
silica. The techniques presented by Fräser and LeCraw (1964) were also applied by Anderson and 
Soga (1966) to very small (0.5 mm) spheres of polycrystalline MgO, by Soga and Anderson (1967) to 
two tektites, moldanite and indochinite, and by Auderson et al. (1970) to very small glass spheres 
(about 0.5 mm) taken from a sample of lunar fines. 

The use of spherical interferometry to infer elastic properties requires that we be able to 
"invert" a known geometry and a set of observed resonant frequencies into, in the case of a 
homogeneous sphere, a compressional and a shear velocity.  Previous workers have used graphical 
techniques based upon forward eigenfrequency calculations by Cole and Fräser (unpublished). Al- 
though such methods do. in fact, yield high accuracy for geometrically precise, high-Q materials 
such as vitreous silica (Fräser 1968), we believe that the development of statistical, relatively 
objective methods was appropriate for the study of much less ideal materials, such as frozen soils. 
In later sections we describe, and use, a numerical algorithm for inverting arbitrary sets of data and 
describe a rough method of estimating uncertainties in the result. 

A second obstacle we have encountered in the use of low-Q (Q < 500) materials is the difficulty 
of identifying modes, since many resonances are lost in the "skirts" of others. This difficulty is 
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lesb pronounced, and nay often IM- ubsenl, with hu-h-ü materials.  In relief of this, we have 
developed the appropriate theory of the forced response of an elastic sphere and utilized it to esti- 
mate relative modal amplitudes.  These results lave been extremely useful in interpreting experi- 
mental results. 

Wf> have also extended both the forward and inverse algorithms to deal with arbitrarily layered 
spheres (which still, of course, retain spherical symmetry), in order to admit of jacketed samples. 
Computer storage limitations preaeatly prohibit multilayer inverse calculations and we do not 
present here numerical or experimental results on such samples. 

In pursuit of various of the above, we develop expressions for the kinetic and various potential 
energy densities associated with modes of free vibration and show how these are useful in a) esti- 
mating the effect of compositioiial perturbations on the eigen^pectrum and b) partitioning a given 
mode's lumped Q into compressional and shear Q's. Coquin (1964b). in an application of his 
earlier technique (Coquin  1964a). has also solved the latter problem for a homogeneous sphere by 
using <ts characteristic equation.  His results, white obtained by a different technique, are 
fundamentally identical with ours, and could be extended numerically to handle the multilayered 
version of either a) or b) above. 

Many of the techniques and results we have utilized are drawn from seismological literature 
concerned with interpretation of the earth's free oscillations.  Particularly lucid theoretical dis- 
cussions are available in Backus and Gilbert (1967) and Dahlen (1968). The methods detailed by 
Backus (1967) are extremely helpful in problems of this sort and we have made extensive use of 
them.  One of the most useful discussions of the behavior of vibrating systems is presented in 
Raylelgh's TAcory of Sound (Rayleigh 1945), first published in 1877. 

ELASTIC DISPLACEMENT SOLUTIONS IN SPHERICAL COORDINATES 

We consider a volume of space filled with an isotropic, homogeneous, linearly elastic medium 
having Lam^ constants A and fi, and density p.  We assume the medium to be free of gravitation and 
other body forces, but allow the existence of one of more surfaces across which tractions may be 
applied. 

Let u be the displacement field specifying the motion of each particle from its unique rest 
position.  We assume n to be a first order infinitesimal and do not, in the absence of zeroth order 
fields, have to distinguish between Eulerian and Lagrangian coordinate systems.  Let T be the 
elastic stress tensor.  If we assume that B ■ « corresponds to the unstressed state of the medium, 
T is given by (Fung 1965): 

T = A(V. uW + /iftTu  + uV), (1) 

where Ms the identity tensor. Vu is the gradient tensor of u, and uvis its transpose. 

The conservation of linear momentum leads immediately to the equation of motion, 

p«?j-u = V T. (2) 

Equation 1 and some standard vector calculus identities convert eq 2 to 

pöftt = (A + 2fi)V(V' u) - nV x V x  u. (3) 

I 
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We choose to represent u by (Backus 1967) 

u =Tl/  > V^ -Tx V^ (4) 

where U, V, and W are scalar fields ?ud Vj is defined by 

Vl  =Jde + ^(sinö)-1^. (5) 

Tis a unit vector directed away from the origin, d and <^ are the colatiUide and longitude, and 6 and 
^"are their respective unit vectors.   ^ is the gradient operator on the surface of a sphere of unit 
radius. It is related to the three-dimensional gradient operator by 

V = T(?r - r1^. (6) 

After seme algebra, we can show (Backus, 1967) that 

\ + v^e, + ?-)u + r*v*v]. (7) 

and 

v x v x u =r\r2dlirv2
lv) - r2v\u\ + ^Ir^o - rlifm\ + 

+ T x V! Ir-2vf V + r-ldf (rW)!. (8) 

We insert eq 4, 7 and 8 into eq 3. We now appeal to the uniqueness of the representation 4 (Backus 
1967) to yield the three coupled partial differential equations 

pä*ü = (A + M(?r|(it + r-) 
ü + rlv\vj - 

_ L iar,(f7fv) - viUi. (9a) 
f2 

pdfK = (A + S^/^r-1^ + 4) ^ + rZV*V} - 

~t{$tV - ^(rV)t, (9b) 

and 

ptfW mlMfm + f-1Vi«'l- (9c) 
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We note that both V and W may be augmented by any constant without affecting u (see eq 4). There- 
fore, we may expect these two scalar fields to be determined only to within an additive constant. 
We also note that eq 3a and 9b both involve U and V but not W, while eq 9c involves W but neither 
Unorl'. 

The manner in which one elects to solve eq 9a. 9b and 9c (plus whatever boundary conditions 
appertain) depends upon the intended application of the solution.  For our purposes, we wish to find 
a set of linearly independent vector fields, each of which satisfies eq 3.   If the set is complete, 
all possible solutions to eq 3 may then be expressed as some linear combination of the members of 
the set, the coefficients used in the expansion being determined by boundary and initial conditions. 

In pursuit of this, we Fourier transform eq 9a-9c, going from time t to angular frequency w. We 
do not introduce a distinct symool for Fourier transforms since it will be clear from the context 
whether a symbol refers to the transformed or untransformed variable. The result of Fourier trans- 
formation is to replace d^ by -w2. 

To transform the   isultant tri' of equations from partial to ordinary differential equations we 
introduce a surface spherical harmonic expansion of U, V and W. For / > 0 and -/ < m < I, we 
define (HiU  1953) 

17 (0, #) = (-ir (H-Li Ü - Wf PJ» (cos 9) eW (10) 
I     4»      (i +  |m|)I J       ' 

where P^1 is the Associated Legendre Function given by 

Pf (X)  =  (ij1J[!)(|m|/2)   J+lml (,8  _  ^ (11) 

If Sj is the surface of a sphere of unit radius centered on the origin, the yj" are orthonormal in the 
sense 

/ Y* (Ö. $) ¥% (Ö, 0) sin ddddt = 5lA5m// (12) 
sl 

where the bar indicates complex conjugation and 8^ is the Kronecker delta. 

The Kj" (6. $) form a complete set and, if we assume that I/, V and If are sufficiently regular, 
we uiay expand them as 

Uir. 0, tf, u) = 2      1    (/"(r, «) Y* (8. <f>). (13a) 
1=0  m—1 

^(r, M, ft>) - I    2   Vf (r. <ü) K"1 (0. </>), (13b) 
1-1 m=-i 

W(r, d,<t>,ü>) = 1     i   Vf (r, w) K" (0, ^). (13c) 
1=1 m=-l 

The I ■ 0 terms have been omitted from eq 13b and 13c since inspection of eq 4 reveals that these 
terms do not contribute to the displacement field. 
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We now insert eq 13a-13c Into the transfotmed equations 9a-9c, and make use of the relation 

v^ry = -;a + Drf. (14) 

The resultant expressions are then multiplied by a particular Yf and Integrated over the surface of 
a sphere of radius r. Application ol eq 12 leads immediately to the set of coupled ordinary differential 
equations: 

+ tmi ♦ x)i,wf\ - id ♦ i^r1 (15a) 

r2 

- £ |#ffff  - ^(rVf)l. (15b) 

and 

. p^iyj- = t Lf (<) - iLii^ If} . (15c> 

We note that none of eq 15a-15c explicitly Involves m. 

The set 15a-15c can be solved by any of several standard techniques. The method used here 
is detailed in Appendix A. The results are 

,  I      for i > 0; 

(16) 

and 

U0o = l<Mo(*')   ^o^l [S (17a) 

yO  = 0; (17b) 

Wf = Ir/jtyr)    ry^yr)! j pU       for/ > 0; (18a) 

«,0 = 0; (18b) 
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where 

(19) 

V (A ♦ 2?       v 

p 

m 

V. und VH ar«. respwtively, the vel«;ities of compressional and shear waves in the medium.   The 
functions /,(*) and y,(x) are spherical Bessel functions defined hy 

'221) I,«       ^jp.*« 
and 

V2X Fl«     ./C^« W 

where J, and V, are conventional cylindrical Bessel functions. 

We note that the functional form of the solutions 16-18 is independent of m.  The degeneracy of 
this index, which will persist to the case of a layered sphere, is a direct result of spherical symmetry. 
Any linear combination of surface spherical harmonics of order /. 

H,  .     i    afVC (23) 
ni=-l 

is itself a surface spherical harmonic of order 1 and satisfies eq 14. 

FREE OSCILLATIONS OP A LAYERED ELASTIC SPHERE 

We consider a sphere divided into N concentric spherical shells. We number the shells from 
the center outwards and let r, be the outermost radius of the ith shell. Then rN is the radius nf the 
sphere. Let r0 equal zero. We suppose that the i"1 shell is composed of an elastic, homogeneous. 
Isotropie medium of density />, and having Lam^ parameters ^ and ^. These parameters define the 
compressional velocity V . and the shear velocity Vsi. 

We assume that the surface r      rN is free from ali tractions, and that no body forces (such as 
gravitation) are present. We wish to know for what angular frequencies <,> there exists a non-trivial 
displacement n(r) e'4"1, such that the surface is free of traction and all internal boundary conditions 
(discussed below) are fulfilled. We shall label such angular frequencies eigenlrequencies and their 
associated displacements eigentunctions. We refer to such traction-free motions as free osci/lafjons. 
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Let yu,(i) ••""' b«' Ihe disphufim-nl tiohl in Hi«' z"1 lavi. Fr H»- »lisplaifim'til, w.' «an ••ompulf 
a stress it>ns<K   T'" by »«q 1.  Kquation 2, nunioly 

fnif*       V. T (S) 

must hold everywhm' in Hi»' im'diuin. sun«' it «xjirfsses iHily Hi«' «•umwrvatlun ol linear nionienliiin IUKI 

is not dependent II|KMI smii assumplions as «sjrtrtipy. homogeneity, etc.   In particular, «q 2 is valut 
in a small ■"Gaussian pillbox" whuh encompasKes a porluni of the surface r      r,. the houndary 
hetwetm the Ith ;uid (I   ■   l)"1 shells.  Let i denote the volume enclosed between the radii r1   -  <V 
and r    .   /if and by some ranue of the coordinates 6 and «.'». Then 

I f>,*'i*dv      j   r- Tdi. <24) 

If i. is the surface of i, Gauss's tlieorem leads to 

i fi^udf       ( T • ndn 
v - 

where ■ is the unit outward normal on i.. If we let fit f.o to zero, then the volume of i- also vinish.s 
and. if (M^'U remains bouiid»«d. the left-hand inte^al »«oes to zero.  Hie nclit-liand side becomes 

/ |T,,,,,  -  TMUI • t'dn      0      at r      r,. (25) 

Since this result is independent of the details of the shape of i. we conclude that the quantity T • r* 
must be e*erywhtft » onlinuous. and in particular across boundaries. 

To condition -'.'. we add one expressing our intuition of the oehavior of elastic materials.  If 
both the t,h and li   •   1»"' shells are solid, we require that the displacement u be continuous.  We 
refer to interfaces at which this is true as bein»; -welded."  If. however, one or bo!h shells m 
fluid (that la, p     01. we require only the radial component of displacement to be continuois.  In ihe 
latter case, we allow the boundary to slip laterally but in neither case do we allow holes to open 01 
■natter to mte penetrate itself. 

The quantity T • /is a vector and is the traction (force) actinu on a surface ncrmal to 
rT In a fashion Identical to eq 4. we may represent I» as 

T  • r     r*P   .   VXQ  - r* ■   V,«. (26) 

where P. Q and R are scalar fields. Equation 25 states that P. Q and R are continuous across an 
interface. The stress-displacement relations, eq 1, enable us to relate P, y and R to (/, I' and i, 
the scalar representatives for u.  These relations, which are derived In Appendix B, are 

p = (A . u».o • -ü • -v!^ (27a) r
 r r 
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■ ■ ^(7)- (Wc) 

The import of the boundary conditions, then, is that P, Q, R md U m> conilnuous everywherf 
and V und W are continuous in solid domains. 

We now have six scalar fields to contend with. Hov ever, an examination of eq 16. 17. IK und 
27 indica:es that we can group them into two sets, one consisting of U, V, P and V. and on« 
consisting of W and R. These two sets are completely independent: they do not interact in any 
way.  We may, without loss of generality, ireat them separately. 

The set {U, V, P. Q) is the set of spJleroida/ variables.  The displai-emenis described by this 
set give rise to both compressional and shear strain, and are tnierlerenre products of cnmpressional 
and vertically polarized shear waves.  Raylelgh surface waves are one product of this class of 
motion. 

The set (If, R) is the set of toroidal variables. The displacements described by this set .ire 
orthogonal to r and produce only shear strain. They are the mterferenc« products of horizonlally 
polarized shear waves.   Love surface waves are associated with tins set. 

From this point forward we will discuss only spheroidal types of motion.  A similar development 
for toroidal oscillations can be easily formulated since the toroidal problem is substantially simpler. 

For any specified angular fretiuency of oscillation w. the set W. V, P. Q) can be expanded in 
terms of spherical harmonics as 

Pfo *,*,»)  -   $      i    Ufit.^Y'PiO.t) (13a) 
1 0   m -I 

V (r, 6. t. <o)        1       I    Vf (r, u.) Y? {0. 6) , ". ' ' 1 ■--,■' (l.lh) 
1=1   ni=-l 

Pir.O.t.io)       1       {   P* (r, ,0) Y? (0. <i) (28a) 
I 0    m  -1 

<3(r. 0. tf. a>)  =    $      L   Qf {r,,.,) Y*(0. 4). (28b) 
I  I   ■ -1 

The l/j" and V^ ate   ..'en. in terms of a set of co« fficients, by the analytic solutions IG and 17. 
Pj" and Q" are then given by eq 27. Our problem is to determine those frequm ..-s. .,.. for which 
we can construct U, V, P and Q for each layer, such that all boundary and interface conditions are 
met. 

Because the V™ are an orthogonal set. we may consider the abr./e problem separately for each 
yj".  That is. given 

U(r,fl.4.<o)      Vf(r(«)irf(l^)i (29) 

etc.. for what angular frequencies ,„ can we satisfy all mtenul and external boundary condition^'' 
Since m, M discussed earlier, is a degenerate index, we can simplify eq 29 to 
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Uir.d.t.u,)      t/^r.ui)«,^. 0). 

P{t.ß.t,u,)      P^r.«)«,(«. «*). 

CiOu) 

CJOb) 

(Mo) 

gu. 0. ö.o,)    g^r.u.)«, (ö. ^). CJOd) 

whw M. is »siven by eq M and is SOHR' spherical hiirmoiiif of (U'iv«'«" '•  ^«f (l«'la<!s of H, are of 
no ii.iriit ular inleresl at presenl sine»' Wv iMnenfrHqiiHiicU's .ml ll»- form of t/,. . .. V, remain fixed no 

mailer whal H, we ( hoos«. 

Onr problem now is to find the ei^enfrequenries assoiiated with spherical harinonies of deffec 
;.   If we wish to Know all e'Kenfrequewies. we mus» repeal this proeedure for each of /       0. 1. 

2. ... 

We will devise a ronstriKtive aluorithm whirti will enable us. for a niven annular frequency «u. 
to construct » solution from the center outward which meets all boundary conditions save one.   If 
the last condition is met. <., is an einenfrequency.  The method we present here is one application of 
the use of propaKator matrices.  The ceneral method is discussed by Gilbert and Backus (1966). 
Seismolonical applications are numerous (see. for example. Harkrider 1964, Ben-Menaliem 19C4h and 

Anderson 1966). 

We consider eq 18. which expresses t/, and V, as a linear combination of four independent func- 

tions of radius.  Kquation 27 allows us to extend eq 16 to 

«I 
V   J 

B 
>      «1 < ö, 

Cl 

i3l) 

V.   J 

where!       ) N desinnatns the layer to which the solmion is appropriate. //{ is a •!  >   4 matrix 

constructed from 

2A 
^  - (A   .  2v)dthli   * Th{i -  A /(/   •   1) 

-2J. (32a) 

ft4j       t^tti   '  ''f^1*^' (32b) 

and the first two rows of H| are taken from eq 16.  The set Ii4{ 0{l are constants. We omit the 
0 and •/» terms for convenience. 

We rewrite eq 31 as 

l'(r)      H'fr) • C' (33) 

where we have omitted the subscnpl /. The vector SV) includes ;;olh the stress and displacement 
terms. 
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Wi- will now pwoead it» oomttuol • solution s.insivnm nil mirnal boundvy oondltlooB, in 
region l which Includei tlw pomi r     (t w CM a prior/ Blimlnato thoHP Btdutionfl winch no as 
f, [kr) mitl f|(j r).  Tlit'it'loiv. C1 li.is thr tonn 

/i'f* i ilij; (84) 

whtTf t*,  and e*. are Kmlulean fonr-diiiH'iisional unit coordinate vectors directed alonn the lirst and 
second coordinate axes,  in the first region, then, we have 

S^r)       //'(r)  •  M'e*   i   «'e*!. 

In the second NgkM, we have 

S-CD       H^r) •  08. 

AssimiuiK both regions to he solid, the boundary conditions require that 

(35) 

(36) 

(37) 

,1^ //-(r,) •  C"      »'(r,) •  lA1?",  + Bli^l. (38) 

Because the solutions composing the columns of Ware linearly independent, matrix theory guarantees 
that H is nonsinmilar.  Therefore, we may express C" as 

An allernativr' form for eq ;)i) is 

Cs      A1^   .   B«^ 

where 

(39) 

(40) 

(41) 

(42) 

Kquations 40, 41 and 12 suffice to specifv S'Cr).   Bv a similar procedure, we can extend the 
th solution from the j"1 to the (j   i   1)"' shell.  The appropriate relations are 

-./«l 1 Htl Alt 1>1+1 BH 

(43) 

(44) 
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^"1      \Hnl(r)\ '  •  H'lr) •  # (r') 

^"l      |//',l(f)| ' • HHt) ■ C (48) 

In fact, either of £''l or t,'n' can be oomputsd alone by si art inn with eq 11 or 1^ and simply 
applying eq ■15 or 16 as many times as is necessary. 

We suppose now that we have compuled (N ami (N where N is the numb« of shells.  The 
solution in this shell is given by 

iN(t)      HN(r)  •   \AUN   i   ß'^l. (17) 

We note that both the solution associated with t:N I i.e., SN (r) when /il       ()| and the solution 
associated with CN separately satisfy all of Hie internal boundary conditions.  If u, Is an einon- 
frequency. we will be able to find some .4l and S1, not both zero, such (hat the last two 
components of SN (r^) are zero. 

(48a) 

A straightforward way to do this is to evaluate 

N 

and 

(b)SN       HN(ru)  ■  iN. ^b) 

If S^(rN), i.e. P. must vanish, A[ and S1 must satisfy 

4l(ftSj)  -  - ßM^). (4^ 

We may, without loss of generality, impose a normalization such as 

M1)2   i   (ß1)-      1. ,50) 

which, with eq 49, allows us to compute Ax and ß1.  UsinK ^l1 and ß1, we then compute S* (rN), i.e. 
Q, and examine it to see if it vanishes.  If it does, CJ is an eigenftequency; if it does not, <, is not 
an einenfrequeiicv. 

If w is an eisenfrequeiicv then we may use the values of i41 and ß1 in eq 43 and 44 to compute 
the einenfunction S^r) at any radius in the system.  We recall that S' (r) must be nmltipli.nl by some 
spherical hiirmonic of decree / and the factor e,aJt to obtain the fidl solution. 

S{(r, 9, </;. t)   -   SfWH^e. <t>)eiü>' 

where we have reinstated the subscript 1.  We emphasize a«ain that the precise nature o. //, depends 
upon other considerations and is not relevant here. 

This method requires modification when either i     0. or /  / 0 but one or more shells have a 
vanishing shear modulus.  We will briefly outline the fonn these modifications take. 

When 1      0, ß1 vanishes identically and only one solution is propagated. The matrix ßj is 
collapsed to a 2' ■   2 matrix by eliminating those solutions with arguments  yr.  V and Q both vanish 
and the only condition at r   - rN is that P vanish.  A] becomes merely a scale factor and may be 
taken as equal to unity. 
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In a fluid region, Q vanisln's identically.  ACTOBH a solid/fluid or nuid/fhud interface V may be 
dis(!ontimioiis and Q is i;oiitimioiis and /.»MO.  If we a^ö propanatum upward throiiKh a solid and 
encounter a fluid, we must combine tin* i and c. solutions to yield Q      0 at the interface.  This re- 
quirement determines A{ and B1 and, therefore, C' for all shellti up to, and includinK, the fluid 
region. 

Consequently, in a fluid region we have only one solution. In crossing from a fluid to a solid 
region, we must "start" a new solution having some non-zero V, but for which U, P and Q vanish. 
We may always find some £ which yields this result. 

For a given /, we shall arrange the frequencies of free oscillation in ascending order, as QOI,, 

■oti, .JOJI, ...  We shall designate the displacements, as a function of r, as QU^ JU], ... and the 
four-vector of displacement and stress by QS,, 1S1 etc.  The "lowest" mode, for a given I, is 
referred to a& the "fundamental" mode and the remainder as "overtones." 

Each mode of order I represents, in fact, a space of modes of dimension 2hl (the number of 
possible values for m between -/ and +1).  Each member of this space has the same eigenvalue and 
depends functionally upon radius in the same way, but is associated with a different -surface 
spherical harmonic of order i.  The entire set of modes for a given layered sphere consists of the 
doubly infinite sets (0    n < «• and 0 ^ / < <«) of 21+1 degenerate spheroidal and toroidal modes. 

This set is complete (Backus 1967) and therefore any elastic motion, consistent with the fore- 
going boundary conditions, which the system may undergo can be described as a sum, in the time 
domain, of members of this set.  A discussion of the asymptotic relations between modes and 
"waves" is given by Ben-Menahem (1964).  As an example of this we note that 

Y\{9,*)      (- If . /«J-l <^ •"* (81) 1 Y 4*2/)!      2; 

as can he seen from eq 10 and 11.  VJ describes motion which is closely confined to the equator 
(0       n/2) and which behaves as waves traveling circumferentially about the equatorial zone.  The 
change of phase, per unit of distance traveled in the indirection, is l/a and is therefore the mode's 
surface wave number.   Kor large values of a», we may. rough'v, expect that the quantity 

U*       a *i (52) 
dl 

represents a group velocity and 

C*  =  — (53) 
/ 

represents a phase velocity. 

ENERGY DENSITIES AND RAYLEIGH'S PRINCIPLE 

The nth overtone of the spheroidal mode of degree / has displacements nu,l given by 

„u,  = r^jCr)»,(«, «A) * tK|« V{ »,(#. 0) (54) 
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where Hj is some surface harmon«! of decree /.  The lull Hiilmciripl. n. dnmilrn the overtOM to Which 
U and V are appropriate. 

The total kinetic energy of motion, averaged over one oyolt, is ^,ivnili.v 

EK - \A! PW • Wdv- m 
4
 V 

Using the results of Backus (1967). we can show 

£
K - sX/VVf • '(' ^ l)

n
v> (56) 

■ 0 

when Hj is normalized such that 

/ HjH, sinädOdt      1 (57) 

(see eq 12). 

The total elastic energy is given by 

-  C tr (T  •  e) dV (58) 
2 

f- - - / » (T  •  •) dV 
v 

where tr indicates the trace operator, T is. as before, the elastic stress tensor, and e is the 
(infinitesimal) strain tensor defined by 

e ^  1 IVu  .   uVl, (59) 
2 

After some algebra, we can show 

Ea .  1 / |Alr(9rU   t  21/  - «1   t   \)V\2   f /i[2(r(9rU)2   t  1(1   (   l)(f/  + r<9rV - ^)2 ♦ 
2 0 

+ I2f;   - 1(1   ♦   1)V]2   i   (I  - !)/(/ t 1)(/ * 2)V:->]|dr (60) 

where, for simplicity, we have dropped the subscripts n and /. 

When   u, is an eigenfunction of the system we are interested in. and „w,2 is its associated 
eigenvalue, we have 

If we define 

K      [U2  t ZU  ♦  l)V2lr2. (62) 
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L  =  \r<)tU   i   2U  - 1(1   i   1)1^, and (63) 

M      2itdtU)2   i   HI   i   l)(ü   i   rr^      K)s   ( 

t  I2f/      1(1   i   DKI"   .   (i       l)i(]   (   i)(/   i   a)^" 

we may rewrite eq 61 as 

(64) 

j   (AL   i   ^iMtfr 

'N 

f pKdt 
o 

(65) 

As first pointed out by Rayleigh (1910) and discussed by Backus and Gilbert (1967), the 
t'unetional „'"^(„Uj), defined by eq 62-65, is stationary with respect to small variations in ^ if 
^ is an elgeoftmction associated with   w?,   As a ooasequeQce of this, we may use eq 65 to relate, 
to first order, small changes m A, n and p to small changes in   uf.  The n-stilt is 

S{n<of) 

f{8kL   .   onM       Sfx.rlOdr 

/ pKdr 
o 

(66) 

where, clearly. 

The "partial detivatives" of ^ with respect to A, p and p may be converted to those with respect 
to V    Vs and p by application of 

(It) V* 
Wvp.vS 

P'    s 

2^s 

.4pK. 

(67a) 

(67b) 

(67c) 

(67d) 
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[Jr] o. and (67e) 

WDP' (670 
i.'Vg.p 

EFFECTS OF A SLIGHT ANELASTICITY 

We now suppose that the perturbations m A and fi aie purel ■ Imaginary; 

a A      IcuA' (68a) 

c/i       ii.jfi' (68b) 

where A' and fi' are real.   This is precisely equivalent to replacing A by A   4   k'd, and p by 
H   t   n'r'>l in eq 3.  Then 

rN 
lnwj / (A'L   t   f/'M)dr 

S(no>f)       (69) 

/ pKdr 
o 

to first order in A' and ^i1.   Alternatively, 

Mn<of)      v., „D, (70) 

which serves to define   Dj,  Therefore 

8^)      i   ,0, (71) 

and the lumped quality factor nQ1 is given by 

We define 

and 

Q'J        —^  (A'   *   a,,') (73) VI>       A   .   2,i 
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These are, respectively, the inverse Q'a of pure compressional and pure shear waves in a homogene- 
ous, slightly lossy niediuni.   From eq 7.'5 and T-l it follows that 

ß'      - Q'v (75) 
ot        i 

A- JLI±)Q-J   - g/fWl  . (76) 

Combining eq 69, 70, 72, 75 and 76, we have 

rN 
L j    W} (A   I   ^)L   i   Qv1 (,iAf  -  2^L)|dr 

/ pKdr 
0 

or 

rN 

ii 

/ IQy1 (A   t   2^)L   (   QV1 ll(M  -  2L)|dr 

Q;
1
   =  0 " _ J!  (77) 1 2E 

RESULTS FOR A LAYERED SYSTEM 

The above expressions are all valid for a spherically symmetric body whose properties A, p 
and p are arbitrary (but reasonable) functions of position.   For the sake of completeness, we render 
below specific expressions for a sphere composed of layered homogeneous shells. 

For convenience, we suppose that we have always normalized |1u1 so that its kinetic energy is 
equal to H.iüj.   That is 

N 'i 
v  p.   fKdr  .  1. (78) 

Then the variation in ,,01, due to perturbations in \, pi and ^^ for /      1 N is 

r fi ri -\ 
S(noif) -   I   fo^   JLdr  (   6^   / Mdr - 8pi    f    ^'f Kdrl 

ilL      't-1 ri-l r.-l 

(79) 

Equation 79 is an explicit representation of the perturbation in the (n, i)"1 squared eigenfrequency 
as a Mnear combination of perturbation in the layered sphere's parameters. Similarly, for (?*v and 
Qy1 , we have 

r. 

Q-l  . JL    I   [QV
1
 .(A,   ,  2,.,)   /     Ldr.QV1,'',      ''   (M      2L)är] (80) 
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FORCED RESPONSE OF A LAYERED ELASTIC SPHERE 

We now consider the response of ;> layered elastic sphere, having a small anelasticity, to a 
specified driving force.  Tins species of problem is classical (see Rayleigh 1945) but we pve our 
particular development here because, as a first approximation to our experiment, the specific 

theoretical results are quiu- helpful. 

In the time domain, Mie appropriate field equation is 

p«>fi    LU i L'<\u i r (81) 

where /. is the elastic operator of eq 8, f'is a spatial and temporal force distribution, and L' is an 

isotropic, viscous operator of the form 

(A'    .   tyt*)TO   •   - fiVxVx. (82) 

A1 and p1 are takea to be small and constant (see eq 68).   Associated with eq 81 are the internal 
and external boundary conditions discussed earlier. 

We Laplace transform eq 81 and assume (for convenience) that both u and (\u vanish everywhere 
at time f       0.   Then eq 81 becomes, with p the transform variable. 

(pp8      pL'    Du      (' ,88' 

where u and Prefer now to transformed variables.   We shall expand u m the spheroidal einenfunctions 

nul aH 

>- n«i A 
(84) 

and the sum is taken over all non-negative values of n and /.and     /</_/■  The nu\ are 
orthogonal, as a result of the Hermitian nature of L and its boundary conditions.  The set is. here, 
complete because the set of all free oscillations is complete (Backus 1967) and we shall considei 
only a class of sources which cannot excite toroidal modes.  We may further require the nu{ to be 

orthonormal in the sense 

v 

If we insert the expansion 84 into eq 88. multiply on the left by inu*. integrate, and use the re- 

sult 

we find, after applying eq 85, that 
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Since L' is an usotropic operator, the nine! product (d, L' nu*) will vanish lor k / / or i / s as 
a result of the orthogonality of spherical harmonicR.   We do not know ttiat this is true for k     1, 
j     I, m / n  that is, we do not know that anelastuity of this sort does not result in coupling be- 
tween overtones with the same order /.   For our purposes, however, we are interested in tlie effect 
of the anelastic term when one mode is strongly excited relative to other modes, i.e. near a 
resonance.   This case is approximately the same as a response composed of a single mode, and 
we shall ignore possible overtone coupling.   Following eq 70, we define the scalar 

A lnUl-L'nUi1- (86) 

Then we have 

n«'{ 
•x« 

r ' P M 
(87) 

n^l   ■   „"'l 

(This does not constitute a redefinition of MD{.   The (inanlity defined above is the same as that given 
by . j ti9-70.) 

We assume, for f ir. t), the form 

•      •        • f  sin UM t       0 
t ir. t)      r B ir       r   I      i (88) 

If) t <  0 

where (S(x) is the three-dimensional Dnac delta function and r"s is the "source" location.  Then 
eq 87 becomes 

u  (89) 
(P      '   Pi.0!    '    n"jr1(P^    •    K) 

Mf1(»'s) is the value of the radial displacement component at r , the source radius.  Since radial 
displacemeu; vanishes identically for toroidal modes, a radial force somce will not excite toroidal 
oscillations. 

In order to compute the time-domain solution u(r. t), we have to apply the inverse tiaiisfoim to 
•q 89 and use the resultant .«{(0 m »'q 8-1.   The task is straightforward and we Mientum here only its 
salient, albeit predictable, features.   n<ij. as given in eq 89. has four sinsulanties. one at each 'J 

* i*. one at - K nD{   *  i £3f      '* nD\ and one at    '. nD'1       i y/^~-  Ü „Dj.  The formei two 
represent forced motion of the body at the frequency K.  Technuallv speaking, the forced component 
of motion exists because of the singularities in the transform of the source time lunction.  Time 
functions such as delta, ramp and step functions whose transforms lack singularitifs do not give 
rise to such forced motion. 

The second set of singularities represents free vibration at the body's various natural periods. 
These motions result from "turning on" the source at t       0.   They ate damped exponentially and 
the farther in time one is from t       0. the weaker these motions become. 

Foi our purposes, we require only the forced motion and we will neglect the lemaining poles. 
The result is 
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U, (r )Y'AO , 6 ) 
"   '   s     '    s     s    [((^ - K8) sin Ut) f KD COS (Kt)l a(t)   =    "   '   s     '    s   "s    [(^8 _ K8) sill (Kt) f KD C08 (K()| (90) 

(a,«  -  Ka)2   ,   K-D^ 

where the subscripts have heen deleted from a, u mid D for convenience. 

We now suppose that the source is located at 6      0, r      rN and that at Ö  -  ff, r = rN 

is emplaced a radial motion detector.   For the latter location, eq 84 becomes 

where the sum is taken only over n and / as a result of the source locytion. 

The received power as a function of driving frequency K is given by 

lx   -.      2 2\2 2    2   n2   I V*—'(    2 

A^- D'KCöVC 
(91) 

where 

XV(^) 
, /i,    L : . 02) 

We have expressed R*(K), tlie squared signal strength, in terms of the source factors nAx and the 
lumped quality factors nQv  If only a single mode need be considered, we have 

«W    .A • B«i (93) 

Whtoh relates response maxima to both ni41 and |1Q1. 

It is straightforward to show that when only one mode is significant and 

R-U)       iRa( •„,) (94) 

then to first order in „Qj1. « satisfies 

2 n   ' (95) 

■A 

Equation 95 is the classic lelation between dissipation and peak width, and is useful only if nQ\ 
is sufficiently small. 

We have supposed above that the amplitude of / and the sensitivity of the radial displacement 
receiver were independent of frequency n.  If this is not so neither eq 93 nor eq 95 is necessarily 
correct.  Howevei. the half-power relation, eq 95, will generally be usable if source strength and 
receiver sensitivity do not vary appreciably over the ran^e 

2 'n   V 
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In anticiipution of experiment, we mention tluil if the above influences are important or. as is 
more often the ease, if the |1<,)1 are suffieiently "dense" on the «-axis, then neither M) 93 nor 
eq 95 will yield reliable measures of   QJ1.   If this is the case, we will not be able to improve matters 
appreciably by making time domain measurements of the decay of a (-iven mode.  Irregularities in the 
"forced" spectrum will appear in the latter as distortions of a mode's exponential decay envelope. 

We wish to make otu» furtlier point, regarding restrictions on the nature of the dissipative 
mechanism, eq 82.  Suppose that the time domain stress-strain relation is expressible as 

f 

T  =  Te   i   fC(t  -   r) : ^«Wdr, (96) 
0 - 

where T" is t''6 elastic stress defined in eq 1, C is a fourth order tensor function of the time  "Ian." 
I - T, and e(r) is the strain tensor, 

e(r)      ~ (Vu   .   utf). (97) 
- 2 

We suppose both stress and strain to vanish for negative times.   Laplace transforming eq 96 and 
supposing o(0) to vanish gives 

T       Tü   .   pC(p) : e(p). (98) 

When C is an Isotropie tensor, the use of the stress defined m eq 98 m the transformed equations 
of motion (eq 2) will yield exactly operators of the form L and L' of eq 81 and 82.   These differ from 
our usage only in that A1 and /x' may now depend functionally on p. the tiansform variable.  The 
quantity   D, defined by eq 86 or eq 69-70 would, in turn, depend upon p.   If MD1 (or A1 and //') does 
not vary appreciably over a frequency span of a "few peak-widths." the results derived above should 
be usefully accurate.   (We must still have A' and n'. or ,,0,. mall since we have used a perturbation 
method to include attenuation.) 

THE INVERSE PROBLEM 

In two of the preceding sections we developed tiie "forward" problem for a layered elastic 
sphere.  The forward problem consists of the generation of the eigenvalue spectrum associated 
with a given model.  In this section we consider the inverse problem of utilizing a measured 
eigenvalue spectrum (which will, inevitably, be incomplete) to infer the properties of the materials 
of which the sphere is composed. 

Let U be the space of all layered elastic spheres having N layers delimited by the points 
lr0, f., ..., rN I where, as before, r0  = 0 and rN is the sphere's radius.  Then all models in M have 
a common geometry but differ in the elastic properties (including density) of their component shells. 
Af, then, is a space of dimünsion 3/V (since each shell has three distinct properties) and we may 
represent a given model by m. a vector of dimension 3N.  We further limit M by requiring that it 
encompass only physically realizable models.  A model is said to be physically realizable if each 
shell's properties satisfy 
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P   ■ 0. (99a) 

f  ; n. (991)) 

und 

-    8* 
(990 

whore both equulities 99h and 'We arc not simultuneously true.  The latter two constraints nierelv 
express the eondition that an elastic material lie tlicrniodynamically s' ihlc (Func 1988), 

Let n<"i(in' be the n     overtone of the spheroidal mode of decree / associated with the nuxlel m. 
(Both n and / ran^e over the non-negative integers.) We cannot express „«^(m) in closed analytic 
form but w > can, through techniques previously discussed, generate it uumerically.   We van now 
fcxmulate the inverse problem in the following mannei (Backus and (Jilbert 19(i7). 

L"' n,'"'),. '       1 K In observed resonant frequeiu'ies asstxiated with particular modes of 
oscillation.   We wish io determine a model m. satisfying 

(m) 1. (100) 

As Backus and Gilbert (19Ü7) have pointed out, we do not know, a priori, if the set of solutions 

to eq 100 is empty, has a single member, or is a subspace of N of one or more dimensions. 

We do not know a direct procedure for solving eq UK) tor one or more models m.   We resort here 

to iterative methods for, hopefully, ueneratum successively improved approximations for m.   For 

convenience we rewrite eq 100 as 

D.dii)       D1, 1. ..,, K (101) 

where the D? are ünlu and the D^mi .ire daJa functions.  D^m) is a scalar-valued function whose 
domain is the UJV-dimensional vector space Kl and whose value is the angular frequency of free 
oscillation of the nj'1 overtone of decree L,   Let m,, be sone model winch we believe to lie ne;ir m. 
We wish to find some perturbation, «'»ni, in m", such thai m"   ■   «Sm more nearly satisfies eq 101. 
(ro0 and m0   •   bm must both lie in M but ^m alone need not.)  We wish to have 

D/m 0 (Sm) n ,0 i. (102) 

Expanding 0,(0)) in a Taylor series pves 

D.O ..m> 
3N   1,10 

J 1 
dm 

i 

fun. 

m 
0( bm '') 1. (103) 

Then, to first order in  f>m , we wish '"»m to satisfy 

1 1 
rim. 

MB 

D) 

m 0,(01°) 1. (101) 
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II \dm\ is su'fici.nll.v sinull we iii:iy npMl NMM m1       «"   ■   «in will iii(»f nearly satisfy t'«| lui 
than m1   l\l.   As a nieusure ol a IIICKUM'S smtalulitv. we mav MhM 

•- isr/o- (106) 

Kquatiuns 101 lonstitut»' a K'   •    :.V BP! of Ittiiai (•qualionH in tht- i'uiii|Hin*-nts ui on    We mav 
not, in general, expect tu lind om exactly satislyinu oq IDI tin all pctHHible rases,   II the rank of the 
system din's not exceed UN. such a i^m exists Inn is not necessarily iinuine.   If the rani exceeds 
M/, it din's no; exist. 

Vanois Mthodl ot solution have been applied to the system 101 (Backus and (iilberl 19<)7. 
Anderson and Smitl. 1%H. Smith and Franklin HMii). .loid.m and i'taiikliii, matiusdipt. 1971). We 
adopt here a p'tieral technKine propwd bv Kränkln, (unpublished manuscript. 15HW). 

We rewrite eq KM mote compactly as 

Aim0)   ■     m       Rim"' (KKi) 

where .4(nin) is the matrix whose "letnents a    are 

ar«)       L _1 (107) 
J 1*11« 

and R(in0) is the vector of data residuals whose i"1 i-(Miip<tti«vnt is 0"       D,!»"). We now rojuird 
eq 106 as a linear relation between three stochastic processes    a smnal proeess. a data prrness 
and a noise process.  (Sm is a sample of the signal process, and R(«0i is the sum of u sample of 
the data process plus a sample of the noise process.   Kach process is taken to have zero 
expectation. 

The use of stochastic techniques to solve eq lOfi is based, in part, upon contemplation of some 
of the potential sources of error entennj; into the relation.  The measured specir;il value« D" are 
contaminated bv measurement error and possible mode misidentification.  The physical system upon 
which measurements are made may deviate from tlie class of models M in which n must lir.  It is 
possible that there is no model m in M that would then satisfy eq 101, 

Let Rm denote the autocorrelation associated with the sipial process rim , and K" denote the 
autocorrelation operator associated with the noise process.   Hm is a 3N      3/V square matrix whose 
(i, 0** component is the expectation of the product bmfim .  /T1 is defined analogously. The best 
linear estimate for frr is given by (Franklin   1969): 

Cm     R"' ■ /»r(ni(,l • |W) • Km • -4rlni()» i K0I '  • •(■ft. (108) 

A solution, hm, can be guaranteed to exist if R" IS a positive definite matrix. 

The above method for computing dir was chosen, in preference to such lerhnlques as least- 
squares solutions  because experience has indicated that the solution I0H is typically smallei and 
more stable than that provided by better known methods.   Since eq 10H is used .mly to compute the 
perturbation ttm, which we use to Herativel\ improve m". n dm-s not follow that the enors in our 
"final" fit will correspond to any of the components of K0 or that the "distance" lietween our initial 
and final models will be strongly related to Hm. 
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in pmeUM M iak.- tfi lo IN I K     I dtatOMl Mtrii «taM i"' «at«»! '•''•'""i" '« *« Slilial',! 

„1 M .■st.ii.al.' ..I II..- m.mtamlv ol Ihr /'" «lalum.   R'" is also Uk.-n to I..- a .Itanonal matrix whos." 
l"1 tlMMal is Mm «■«Itial to .'-'q-;. wh.-r.- . is a small miinlM-r (we iis«'(l 0.:l lo 0.01), anil f/, is the 
i"1 roiiipoii.Mil d m.    rims, wo "MCRMt" to .'.I 108 that .hand's in a niv.Mi componnit of m should 
lw ..I Uw ot.h-t «I a lia.tion of its valm-.  (Lit- is not iiuit." that simpl.' SUKC. as Franklin (1989) 
points out. it is only thr ratio of sipial to noise that counts, Imt the values «iven ahove lend to 
W(Hk well in ptaetire.) 

It is also helpful to haw some measure of the uncertainty associated with results so ohiained. 
Such estimates must telv, of course, on the statistical properties we assign to errors in the data 
and errors in the model and the fashion in which one relates to the other.   Kornomn this, we adopt 
here an estimate which is simple, and perhaps crude, in the extreme. 

We dehne the r.m.s. ahsolule error in eip-nfreijuency .( as 

*    ! E ««(■). im) 
1
      K i -1   ' 

AsMxiated with each component m, of m is an r.m.s. sensitivity 9, defined hy 

■   i   l 

We take ,   o  as a measure of the uncertainty in m,.   If the data depend only weakly upon m,. then 
,;  will he small and ., <», larp'.   Similarly, if the data depend stronuly on '»,, <f ", will he (relatively) 
lärp'.  We cannot offer a more quantitative justification for this method. 

EXPERIMENTAL AND NUMERICAL RESULTS 

lllustiative applications 

In order to render more specific the developments of preceding sections, we (jive, first, the re- 
sults of two experiments and van.ms aspects of their interpretation.   The first sample discussed 
here was a l-in.-diam sphere of Lucile, formed hy machining from a section of har stock. 

Figure 1 shows the observed for« nl spe<-triim of this sample as recorded hy a swept-frequency 
analy/er    The sample *as moderately damped between a quart/, tiansducer and a PZT-» iransdu.er. 
which happened to he available, and was in a refnuerated cabinet at about    10 C.   'Ihe numbers are 
peak frequencies in kilohert/.. as measure.l with a counter, and the mode assipm.ents were made on 
the basis of considerations outlined below. 

From past experience, it was possible to readily identify the   •mam sequence" of modes „S.. 
S all of which have substantial maxima and which, for / in excess of 2. lend to be more or less 

evenly spaced.   Since, as we shall show, the properties of this sequence arc generally dominated by 
shear velocitv over regions of Poisson's ratio of common interest, it was desirable to ident.ly at 
least (me of ()S„ or 0S,. both of which are simnficantlv influenced by compressional velocity.   In 
identifying X. we applied two useful mildes, gleaned from contemplation of eq 91. 

1. Adjacent modes both havinu i even or / odd will in.erfere destructively. 
2. Adjacent modes not both havuu: the same parity will interfere constructively. 

These Bildes apply to frequenries lyim: between the two appropriate eipenfrequencies.   in Unlit of 
these, we interpret the sharp asymmetry of „S,, as IH-UIK a result of destructive interference with 

„S, (Nl the left. 
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0*11 
53.90      oSiz 

58.18 

5 kHz 
L _L _L 

Figure 1. Observed forced response spectrum of a 4-in.-dium Lucite sphere ut -40oC. Ordinate is 
linear and arbitrary.  Mode assignments and peak frequencies are shown in kilohertz. 

From these data, we estimated that V   was about 2.84 km/sec and l/s was about 1.44 km/sec. 
Using these values we carried out forward calculations lor all spheroidal modes having frequencies 
less than 10' Hz, the- results of which are shown in Figures 2 and 3 
numerical aspects of the forward calculation. 

Appendix C discusses some 

Figure 2 depicts the source factors, ni4j, for the fundamental and first four overtones. These 
results confirm the identity of the main sequence and 0S0, and permit the identification of a number 
of additional modes. Most of these are fairly deeply buried in the "noise" and are useless as data 
but they do help confirm our identifications. Prior to the use of these source factors, and the inter- 
ference rules, we often found that, our results were marred by uncertainty about mode identification. 
The above aids have greatly improved this aspect of the technique. 

Figure 3 shows the quantity 

ß   _ 

where Qa and (?jy are the weights computed from eq 77 to average the invers£Q's of compressional 
and shear waves to arrive at a mode's lumped inverse Q.  (Actually, Q[l   i   Qa =  1, but the above 
form is more indicative.)  In addition to being inherently significant, this quantity is a convenient, 
normalized index of the partition of energy into compressional and shear waves and thus of the 
properties "controlling" a given mode.   (The two families nSn and nSj have been joined by separate 
curves.)  Figure 3 suggests that the main sequence is dominated by shear velocity and almost uni- 
formly so.   We should not expect, then, to get good values for compressional velocity from this set 
alone.   The set nS]   for n       2, 5, 8 etc. is controlled by V   hut does not usually show up well on 
observed spectra.  Experience indicates that 0S0, and to a lesser extent 0Sl, provide the most 
commonly observed control on V     Other modes are useful only when Q is sufficiently high that 
they appear clearly. 
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Figure 3.   K '/alive attenuation partition coefficients lor a •l-in.-diam Lucite sphere ut   40 C. 
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7% otoS? amplitude 

Frequency 

Figure 4.   Portion of the theoretical forced response spectrum of u 4-in.-(]inm Lucite 
sphere assuming Qa       Q^       ,500.   The peak is nS() and is asymmetnc due to de- 

structive interference on the left witl' „S.. 0   4 

In rhis taHtWM. i»s Figure 1 shows. Q is so low lliat we cannot set a baseline in order to esti- 
mate peak widths.   For higher Q materials, we are sometimes able to measure man sequence attenua- 
tions from peak widths.  We are seldom able to net reliable Q'a for 0S0 or other compression- 
dominated modes.   Similar difficulties were reported by Fräser (1970) in vitreous silica, and it does 
not seem likely that we will tie able to net reliable compressional attenuation data in any simple 
fashion. 

This gloomy statement is bolstered by theoretical computations of the forced response iismt: 
eq 91 and assumed values of Qit and Qn.   Figure 1 shows the theoretical ,).*>4-(,.S() inleraetion when 
Qa and (fy are both equal to 500.  (These results are based on calculations for the 1-in. Lucite 
sphere.)  In addition to the resemblance of Figure 1 to Figure 1. we note that „.S,, still possesses 
substantial asymmetry even though the two peaks are (in this case) about :!:i peak-widths apart. 

Figure 6 depicts the interaction of ,5^ ^Sj and jA, with „S, on the left and 0.SH on the right. 
Calculations for two values of Qa       Q» are shown. "The asymmetry of each of .5. and „S, is 
clearly due to interaction with the more distant iiiain sequence modes rather than with each othei. 
The appearance of all three modes is dominated bv their positions on the   'tail'   of JL,  The Hgure 
also depicts the rapid degradation of low amplitude modes witii decreas.nu Q.  The maxima associated 
with 1S4 and ^ become increasingly blurred as Q decreases.   In the case of Lucite. which has a 
(•(»iiipressional Q of about 70, Figure 1 shows that only J», persists as a noticeable maxnmmi. 

We attempted, next, to "invert'' the data obtained from the main sequence, plus „S,,. in three 
different ways.  The results of this endeavor are given in Table 1. 

0 0' 

The first result. Inverse 1. was obtained by using all the data in the automated algorithm.   The 
"fit" has an r.m.s. relative error of 1".. due largely to the 2.ß"„ error in matching „S,,.   Inverse II 
was obtained by manually matching „S,, and „S,,.  This result has the same r.m.s. refative error 
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7% ofoSz amplitude 

Frequency 

Figure 5.   Portion of the theoretical forced response spectrum of a -/-in.-d/am Lucite sphere for 
two assumed values of Qa      Q^.   The figure depicts the effects of interference on 0S4, ^Sj, 

and ySy, 

Table I.   Comparison of velocUy estimates. 

Hotle        ObsiTwd In ferse 1 /n verse 2 /nrerse .7 

kit/ kHz < kHz « kHz f 

A          MJI -'4.41 -f..S in-' UM.OT -K.L'  • lo- 24.27 1,28 IO- 

,8,              11.54 11.84 -L'.ti li)-a 11.9^ -a.3 M vr* 11.91 -;i.2 IO" 

A              17.7» 17.t)4 7.H KV' 17.77 5.6  ■ u)-4 
17.75 1.65 »•• 

„s,        aa.7i L'L'.ö:! 8.4 »•' ; 1.78 -l.M • lo- 2L'.78 ;l.99 io- 

0S            «7.48 L'T.:«) 4.7 in" 87.10 -C.8 ■ 10-' 27.47 1.44 »•• 

A        M-oi UM r>.!) ■ W :!L,.04 -0.4  ■ lo- HL'.Ol -41.0 •   10'" 

A        w.« HM 4.1» lO" 18.18 -1.9 • »'' .■«i.46 -8.7 • W 

oS,              lO.ST 4().(jL, 8.1 10-' 40.«Ml -7.;i ■ lo-' 10.86 :1.2 io-' 

A        «i.« 44.itr. 6.8 Id"' 4:).^) ii 45.21 1.0 io"' 

oS,0         «.si «.a Vo »•' 49.(id -1.8 • »•• 49.54 -6.9 ■ io- 

Ohs-Comp 
KMSRF, 1.0 K)-' RMSRK 1.0 ■ »•• RMSKK 1.0   • io'-' 

Ol.s 

Utiserved      5.08-cm-ra(liiis Lucile sphere at -40"C 

Inverse 1      Cmrputed usmj; all data shown 

¥ 284262 

Vm        142577 

Inverse 2      Kstimated for fit tu A ailc' A 

V[)       28r»8ti4 
Vs        14.1650 

Inverse '.i      Computed iisiiig all but „S, 

V 283566 
V_   m   143504 
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despite an inc: ease m the error for „S... and further su^ests that 0SL. is behaving anomalously.  The 
third result. Inverse III, was obtained by usinn all the data except „S... and still has an r.m.s. relative 
error of 1".,.  The constan.y of this number is. so far as we know, fortuituus.   However, if we omit 
„S., entirely, the error drops to 0.09^..   It is not. in our experience, m usual for the mode 0S, to be 
ineonsistent with remaining modes.   We ( annol ollei N explanation of this observation at this lime 
but do recommend that, when sufficienl allernative data are available, it not be utilized.   We ma> 
observe, however, that of the suite of surface v ave modes. „S,. „S., etc.. 0S2 does possess the small- 

est surface wave number. (/   i   '.■)/«. 

Talde II slu.ws the result ol ,m uiveisiou ..I data IKMII I l-iu. QB-ltS fused Muarl/. sphere at 
19 C.  The error is 0.0:i'V and ()S„ taN Ml sl,ow anomalous behavior.   These results are unusually 
|Md.' We note that the relative errors surest that . .mpuied freqi ties for the main sequence are 
deviating systematically above obseivd fraqMM lM     1» ■ I ** <>< *• '«■ «A ■•• k"()W"' 1()r 

increasmt; I, to become in.ieasim'h cncentiated WM  .uilacc. we mav s|H-cuIaie that such 
sysli-matic errors imply a lower-veloeilv surficial MglM.   »liliei . andidales arc neomelncal 
irregularities, influence of tbe tiansduci^is. de.   W.  IIIIIIHIU.C ihi' point because Kraser (1970) has 
shown that vacuum healinc ol •OW viiieous silicas SIKHU'IV influences the attenuation of various 

torsional (shear) modes, 

Tabl* II.   InvMnlon of data from a 4-ln.-d»amHw Hamplp of (IE-125 fused quartz at 190C. 

Mml. 1 IflM'M id lllllllllll'll ((• (is   ClIHI (ii  Oli.s 

(///I til/I 

\ ins'is (i IHS'll t.L'll  • »•* 

\ M0I6, > :|HII».. 7 7.m ■ w" 
1 

MMfcO ii:.r.s L-.O?   ■ 111-* 

M ..'• 1 (MM.4 ■l.Jl   ■ ur* 

■. 
UÜM,I IMM.I ti.tr- • 10 ' 

•'• BM   i.B MMt.t !>.:!<■ in-" 

>. iigos.a MlLMIl.tl l.L'M  ■ Id"' 

.V IIL'IWL'.H •an.i l.si. 10H 

K.M.s   U. l.iliv)' )'triir :l.O id- 

(Inmpulail Vt'liM IIH'S i; r.it;umi cm Nt'C 

V STsaoa cm SIT 

Interfeiometric lechiiii|ues sm h as this are particularly useful for pwgtRg the influence of 
variables such as temperature on velocities.   It is often possible to  •track" variations in velocities 
which are smaller than the errors of measurement.   Kadi additional set of data is easily interpreted 
as a perturbation of the previous set and does not iei|iiire additional mode identification.   Figure 6 
shows results obtained from Lucite and fused quart/ at three different temperatures.   The data art- 
shown as variations relative to values measured at L'l C.   We have estimated temperature variations 
in the cabinet at ' 1 C and these are depicted as horizontal error bars.  The linearity of the tempera- 
ture dependence of elastic velocities in Lucite is striknu:.  The sli^hi negative temperature 
dependence of fused quartz is consistent with results described by Mason (1958).   (These data are 
shown purely for purposes of demonstration.) 



ELASTIC AND ANELASTIC PROPERTIES OF ISOTROPIC SPHERES 29 

0 032 

0 024 

V(T)-V(2n 

vttn 
0016 

0 008 

24 

-I r 

/4 mcri 
/ Ludlt 

Shior/ 

16 e 
Tamptraturt     C 

Figure 6.  Inferred relative variations of compressional 
and shear velocities in 4-in.-diam spheres of Lucite and 
GE-125 fused quartz, with temperature.  Results are 
shown as a relative change, for each quantity, from its 

value at 210C. 

Some tennal results and a griphical Inversion method 

FiRure El (Appendix E) depicts the variation of the dimensionless frequency w various 
spheroidal modes of a homoKeneous sphere H a function of the ratio of shear and compressional 
velocities.  The dimensionless frequency J* is related to the actual frequency „f, (we have used 

Hertz here) by 

A £)«'■ 
In addition. PoissaVs ratio is shown for those values of ¥/¥, for which it is positive. 

The loci of all modes shown, except 0S0. appear to converge on ^^^S^SST 
functions of V /V .  „S, remains substantially linear for VH/V   as great as 0.625.  Clearly modes 
wrch^have I thPis fashion are virtually independent of concessional velocity and Figure El con- 
firms our earlier statements about the sensitivity of various modes to compress.onal and shear 
velocities   The left-hand side of the figure would have been more manageable if Va had been used 
,o nondimensionalize frequency instead of V     We took the point of view, however, that in experi- 
mental work one is more likely, if any prior data are available, to have an estimate for ^p. 
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On the other extreme, calculations were (tarried to the "Limit of Klastic Stability," indicated 
in the figure.  This limit is imposed hy the condition of .. non-ne^utive compressibility and 
corresponds to a Poisson's ratio of   1.  So far as we are aware, any requirement of a Don-negattVI 
Poisson's ratio is based strictly on intuitive and empirical grounds. 

Figure E2 is a plot of the ratio of freqiiemv for several pairs of modes (dimensionless or other- 

wise) as a function of V/V     The ratios ^i^g, oVoV il"(, o'r O^L' 
ar(' s,luwn llsl,l>1 ,,,,' *Oti» 

on the left, and (/;) (/o is shown usinn the greatly expanded scale on the rif.ht.   Figure KL* implies 
that the pair ,/,, ami „/., will nc  serve well to determine l's I' . when'a.s „/„ and ,/., or „f^, will. 
Tlie pair yl^ and 0fL, is of qi:«"  ional)le value. 

The plots are useful ;is a means of uraphical inversion, as we shall now show from the data of 
Table 111.   For the 4-in. fused quart/, specimen we have 

0^0 

7t 
44555 

NM 
1.4420 

0^0 44555 
45580 

0.9775 

and 

^      l5^      1.47517 
1^       U0898 

which imply (from Fin. F2) 

V 
-      0.6:;i, 0.633 and 0.631. 

V 
p 

For Vs/Vv       0•6,2• flW— KI B>VPS 

0.3807 
OHI'M 

(M 

and 

'.' 

Kp      INSSS 

^s       37574« 

which differ about 0 2"' from the values determined by automated inversion. 

This method should provide usefully accurate results when individual data are of a fairly In^h 
quality - as is often the case for isotropic. hit;b-Q materials. When only data of lower quality are 
available, or greater precision would be useful, we must use some sort of automated alnoiithm. 
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Table DI. 

Korward BOVfalMtOI li>r   I B0M80 cm  se<' 

;57.r),r>4(> tin  sec 

„i,,     44r<>;).i)r, 
u(,      intS.44 

Inverse ((inipiitalKin 

Pass 
no. v V ■ < _!lL_ ^s i 

1 71L'76« 4«m4H 1    ■ in'1 47r.l84 .■U»()4:iü I     •  ID"1 

* r>i);)7i>H ;{7r.40L' ;i.ti • ur* .-.94 UtL' .•«ri()78 :Ui • in"4 

a IMMO ;J7r,r>4i) 7.2 • 10*' :,'i:-.'tsn .175541) 6.4 - 10"' 

Automated inversion 

The inversion of spectral data to vield elastir veloeities is, e>en in our relatively simple case, 
a fundaiiientally nonlinear process,   ("onsetjiientlv it is dirficult or iinpossihle to provide the proof's 
of uniqueness comnionly avaiiahle for linear prohletns.  The more general problem of uniqueness when 
elastic properties are functions of radius has been extensively discussed (see, for example. Backus 
and Gilbert 19()7) but the results are not of much use to us here. 

The monotomc dependence of the ratio of ,/„ to or,. and of the dimensionless frequency 0^, on 
V /V ) sun^ests that, within the nafB of ^s V   shown in Figure E2, inversion is unique if the proper 
data are used. 

In a realistic application, however, we must account for several additional factors.  The follow- 
ii^ effects may he important; 

1. Measurement errors or contamination of the data by asphericity. anisotropy, inliomot;eneity, 
a finite Q. and external influences. 

2. Mode misidentification. 

3. Numerical instability in the computing processes.  The result of either 1. or 2. may be to 
produce a set of data which no homogeneous sphere will "■fit."  The influence of such errors will 
be heightened if we attempt to use contaminated data to determine a parameter which is only a slowly 
varying function of these data.  Such a problem is said to be "ill-posed ' and the effects of small 
errors in "ill-posed" computations are often quite large (see, as an example. Franklin 1968). 

Wlule we have not devoted extensive attention to this problem, we have performed a few 
exploratory calculations.  Table III shows the result of two inversions usini: artificial data.  The 
startini; models were chosen to be about 20"'. "away" from the known correct model.   "E" denotes 
the r.m.s. relative error of the data at the end of each pass.  The process is rapidly convergent.  We 
have also performed similar calculations with data to which a 1% random error was added.   Such 
inversions no longer gave the correct answer but, in the few cases we tried, the answer remained 
independent of the starting model. 

I 
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It is easy to conceive of various Monte Carlo experiments, requiring the usual spectacular 
amounts of computing time, which would help delimit, for a t^iven data set, the error level ,it which 
inversion becomes "incoherent."   Because of the large multiplicity of parameters required to cover 
just typical experimental cases, we do not presently think it worthwhile to do this.  As a matter of 
experience, we have never, so far as we can tell, encountered any patholonical results. 

Enors 

We will briefly discuss only one potential source of error:  the effect of mechanical loading by 
transducers or support devices.  Appendix D describes a computation which purports to esvimaie 
the perturbation in eigenfrequency induced by clamping, with a given force, a sphere against a 
half space of known elastic properties. 

The errors so deduced do not exceed a few parts in 10* for a fairly realistic range of properties. 
We believe these results lend support to claims by Fräser and LeCraw (1964) and Birch (peisonal 
communication) that this method is relatively free from errors ariung from such sources. 
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APPENDIX A.  ANALYTIC SOLUTIONS OF THE TRANSFORMED WAVE EQUATION 

We represent u by 

u = vA + V x Tfhi + V x V x tte (Al) 

where ^, X and a ^ scalar fields. The representation Al was chosen because it is "natural" to 
the field equations (eq 3). 

It is helpful to develop the following useful expressions 

V •  u = V2"/», 

and 

Vxvxu =  VxVxVx(n'x)  +   v*   V^Vx    ^x (ffff) - 

=   V x  lv(V • Try) - V2^^)! + 

+   V x  V  x  IV(V • Tra)  - VZ^Xio)\. 

We expand v2^*) as 

V2(rrx) =r|v2(rx) - M  +  ^llfv} 

;=Trv2X  +   Vl2xi 

as may easily be shown by expanding.  So, 

yx   vxu=-Vxr",rv2X-VxVxrr V2a. 

If we insert these into the field equation (eq 3) and regroup terms, we find 

Vlpdf«/' -  (A + 2/i)V20l  +  v x Tr \pd\x  - ^V2Xi + 

+   Vx  Vx7rtp^2ff-^V2'7I = 0' 

In order to ensure that eq 3 is satisfied, it is sufficient that i/», >c and a be solutions to 

pd\4,  - (A + 2^)V20  ■ 0. (A2a) 
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Pd'fx - HV2X  -- 0. (A2b) 

pdf a -  iiv2o = 0. (A2c) 

We have not shown that all solutions to eq 3 can be expressed in terms of functions satisfying 
er| A2 and Al.  These solutions are, however, known to be complete (Stemberg  1960). 

We now Fourier transform the system and introduce the expansions 

0(r. 0, </,, w)   -   v     {    & (rt u)Ym (0( ^ (A3a) 

X(r. 0. </>. u>) =  1      v    tf it, u)Yf to, 4), (A3b) 
1=1   in=-l 

and 

a(r. d, <J>. <o)  . S       S   of (r. w)^ (Ö, ^). (A3c) 
1-1   tn=-l 

The terms of degree I      0 in the expansions for x and " have been omitted since they do not 
contribute to the displacement field. 

The expansions A3a-A3c are inserted into the transformed versions of A2a-A2c.  We make use 
of eq 6 and 14 to simplify the result.  If / is some scalar field, then by eq 6 

vi m rdtt ♦ ^(T1/) 

and 

V2/ • aff ♦* dt( * rz
V\l. (A4) 

The resulting expressions are multiplied by V^ W, </i) sin 0 and integrated over Ö and ^.  We appeal 
to the orthogonality relation 12.  We then have 

fa«   >Ut* -^V  - OLlJl] ^(r, «)  . 0, (AB.) 

and 
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\ r      r    r       |i r-'      J 

Each of the operators in brackets is some form of the spher.cal Bessel's upera.or. Its MMtaM 
are well-known and they are 

t*  - i47,U/1(kr)  i   If W)/,^). ,A6il) 

x* . cfW)/l(yrt • D^(•")>'l,>^,• <A6h) 

of  - £f (aJ);1(yr)   I   F™U)y1Ur). ,A6r) 

where 

Ic 
(A7) 

IK  i 2/i 

and 

y ■ 
(A8) 

V 
We wish now to relate I/. V and * to 0. * and .,. To do th.s. we wUl IHRMH eq Al to 

resemble eq 4.  For conven «snce we will drop subscripts and superscripts. 

We note immediately »hat 

Also, 

V  xTrx = rxv  > ? - T * V(rx) 

- - T X   V! x • 

The third term can be expanded as 

V   *   V x Tra  =   V(V  •   "a)  - V2 Hv^ 

i 
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^7  •   V  ■  ft"      r't-rv1"'«'   •   ''r Ir'^'^lr8«») - ~"ll   i 

./-It/   •   n    1 . v, \rldtim)\. 

Collect in»: tin's«' Wf liav»' 

u      f-|v. nt > i) 
r 

TtanlBN 

U?      dr** - 
;u » i) 

r 

l/m        ,-\ 1. ■ .    .t   Ir.J1 

-L-Hol-   V, lr  'i/'   '   r^'rMro)!  -  r       V, ,\, 

of, (Ate) 

)|. (A«b) 

wm        ..m (A9c) 
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APPENDIX B.  THE TRACTION ON A SPHERICAL SURFACE 

Let T be the elastic stress tensor resulting from a displacement field u.  T is given by 

T   = A(V •  u)i + fi{Vu + uv) (B1) 

where uV is simply the transpose of V«. The force (not stress) acting across a surface whose 
unit normal isTis given by TT •  T, which is a vector quantity. We represent the force acting 
across a surface whose normal is the radius vectorTby 

r- T    =TP +  VxQ -Tx  V^R. (B2) 

Our problem is to relate the scalars P, Q and R to the scalars U, V and W which characterize the 
displacement field. 

We note first that 

7*.  T   = A(V •  ^7*+ /zr*.  IVu + uVl. (B3) 

The divergence of u can be expanded as 

V • u = (T^ + r1^) • (Tt/ + V^) 

since 

y.  (_rx  ViW) - ~T'  (V x VjlV) 

= _r-  (Tx  VdtW) 

= 0 

because Tx   ^W must be normal toT.  Equation B4 can be written as 

(B4) 

. u = drt/ + rlv\v +rst . vxv + r^-Vi -ru. (B5) 

The third term vanishes 
equal to (2/r) U as may be 
then have 

since dI commutes with Vv and V^v is normal to r^.  The fourth term is 
)e seen by replacing r-1 ^ with  V - 7*^, an equivalent expression.  We 

v • u -(<?,+ -W + r^fv. (B6) 
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The :enn V •  I ? ■  » ■ VI in eq B3 is more difficult to deal with. In terms of the coordinate 
representation of u, (i.e. ur, UQ, and u .), 

r-  I^i + «Vl = rK2drür) * d-döur  i ^r(—)     ♦ 

1 't?ST *■*"' * '*• {T)\ ■ (B7> 
By inspection of eq 5 which explicitly gives the coordinate component« of ^ we see that eq B7 
may be rewritten as 

r*.  Iv« ♦ «Vl ■ T{2dtut) +   yJ-Lj + 

We note that dt commutes with 0 and 6.  The expression in square brackets represents the non-radial 
portion of a and must therefore be identical with Vj v - 7* x   Vj w. Since ur is identical with U, 
we have 

7*. Ivu » uVl     1tl4tr) + i ^u  t tsi-V^ - LTX  ^wl 

r •  t Vu + uVI l\Zdtu) ♦   V.j^ra^ivjj   -r*   V, [r^r(lv.)] . 

Combining the above results, we have 

P =  (A + 2/i)(9ru  + — u   f - v*v, (B8a) 

Q =  /iJ^ + rar(^]L (B8b) •\j-^)} 

••'{O) (B8c) 
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APPENDIX C.  NUMERICAL TECHNIQUKS 

We outline, briefly, in this appendix the numerical techniques used in this study to a) generate 
the suite of normal modes for a layered elastic sphere and b) evaluate various integrals of interest 
associated with these modes. 

For a given I and w, the generation of solution functions proceeds exactly as outlined in 
Section B. The matrix inversion required by eq 45 and 46 was not done explicitly.  We chose instead 
to solve two sets of simultaneous linear equations. The Crout Reduction (Hildebrand  1956) was 
found to be particularly convenient. 

Bessel functions were generated by using Miller's well-known recurrence algorithm (Abraraowitz 
and Stegun  1968). One consequence of this technique is that the accurate evaluation of a spherical 
Bessel function for many values of its argument, as required, say. for integration, is a time-consuming 
process.  For such appUcations it would perhaps be more efficient to numericaUy solve Bessel s 
equation, but computer iramory limitations did not permit the additional coding this required. 

In practice, the program was assigned a model and a value of i and proceeded to compute trail 
solutions for evenly spaced values of frequency.  As the computation proceeded, indicator variables, 
as explained in Section B. were monitored for a change of sign, which was taken to indicate a zero 
crossing. When this occurred, an estimate was made of the location of the zero crossing and the 
algorithm described below was invoked to iteratively improve the estir xe. In general, two applica- 
tions of the following procedure sufficed to locate the eigenfrequency to within one part in 10 . 

Gilbert and Backus (1967) observed that Rayleigh's principle could be utilized to improve 
estimates of eigenfrequencies obtained by coarser methods. Suppose that for some frequency u>. 
near an eigenvalue. a>». we have computed a trial solution and find that the stress-ftee surface con- 
dition cannot be met.   W« may apply Rayleigh's principle, or perturbation theory, to the solution we 
have generated to estimate the change in M the elimination of surface stress would produce.  The 
first order estimate for this change is given by 

^IWW -  '" > ^,(rN)(?,(rN)l 
0(O   -   löffU))       — • 

tm 
f   pt2\Uf(t) + Hl + l)Vf(r)ldr 
o 

We will not derive eq Cl here. We then replace a> by <* ^ IN and repeat the process.  We chose to 
terminate the iteration when |Sw/(Sw + CJ)\ fell below 10"'. 

The last point we wish to mention is the evaluation of integrals of the form 

/  = / Z(«)dr (C2) 

0 

I 
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where Z is some operator on the sclutiou functioas, t/(r), etc. In general, we may expect Z to vary 
appreciably over a length L of about 

2nVD 

I ■  (C3) 
m 

where V^ is the local compressional velocity.  L is simply the wavelength of a compressional wave 
of angular frequency w. In computing /, the program was designed tr utilize steps not exceeding 
(&.; where i is a small (~ 3 x  10"*) number and L1 is the scale length appropriate to a given shell. 
This technique yielded a reliably constant accuracy over many wide variations of scale without 
extracting undue computing labor for small values of u. 



APPENDIX D.  AN ESTIMATE OF TRANSDUCER AND SUPPORT 
INFLUENCES ON MEASURED EIGENFREQUENCIES 

Pettur'jattoB due to an anchored spring 

V/e suppose that one end of a sprinn of spring constant * is affixed to a point P on the surface 
of the sphere. The spring is oriented radially and its other end is finnly anchored at a distance 
equal to its rest length. When P moves outward a distance u. it is subject to a force, directed 
radially inward, 01 magnitude ku. The boundary conditions for elastic motions of this body car. be 

expressed as 

r ■ T .   - r k (u • ?) 5 (/ - t\)       on r      rN . (Dl) 

T is the elastic stress tensor, n is displacement, rp is the location of P, S is the surface Dirac 
delta function, and rN is the sphere's outer surface.  Thus, for all points on r     rN other than P. 
as before, r • T must vanish. 

We now utilize Rayleighs principle to compute, correct to first order, the perturbation &J 

in an eigenvalue u>2 caused by the perturbed boundary condition.  The Fourier transformed equation 

of motion is 

-Po.2u       V.T (D2) 

(We have dropped sub- and superscripts.)  Forming the dot (scalar) product of D2 with u gives 

Equation D3 is true everywhere and we may integrate both sides of it over the volume 0 ^ r v rN. 
If while doing so we rearrange the right-hand side somewhat and appeal to Gauss' theorem, we may 

easily arrive at 

•.•/>•• id»      /T :Vudv  -  j V • T • Sdr. (D4) 
V v s 

V denotes the volume of integration and S is its surface.  The colon denotes a scalar tensor product. 

In the absence of a boundary perturbation the surface integral vanishes since r  • T vanishes on 
S.  What remains, in this case, is exactly eq 61 describing the equality of kinetic and potential 
energies in free vibration.  To determine the effect (to first ordei) of the new boundary condition Dl, 
we (following Rayleigli 1945) replace a»" by a,2   I   8a»1 and evaluate the contribution of the surface 
integral.  We then subtract the unperturbed energy terms (which are equal) leaving 

tu,2 Ou • udv      k(u ■ r')2 (Dr,) 

v 

where u • r' is evaluated at r . 
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If we adopt the normalization 78. the volume integral becomes equal to unity. If r   is at either 
Q = 0 or Ö = ir. and if we replace ^CJ

2
 by ZOJSIO, we may massage D5 into the form 

m ■ \'- *1 

where ni41 is the appropriate source factor, and we consider only axisymmetric (m  - 0) vibrations. 

A sphere agaiut a half-space 

In order to estimate an appropriate val <e for tho spring constant k, we consider the contact 
problem of a sphere against a half-space.  Let Cs and V8 be the Young's modulus and Poisson's 
ratio of the sphere, £n and Vn the corresponding properties of the half-space, and R the - idius of 
the splere. Timoshenko and ooodier (1951) present approximate results, useful when thi   jontact 
area is small, which we quote here. The normal force F, not stress, acting on the sphere causes 
it to move a distance d toward the half-space given by 

where 

*„ 
V* 

and 

*n 

TE. 

1   _   ^2 

ff£„ 

We suppose that the sphere is pressed against the support, or transducer, with a force F and 
that motion results in small variations abou' an equilibrium position given by D7. Then the 
appropriate value for the spring constant is given by 

* = WFdrl (D8) 

where the derivative is evaluated at F, the confining force. We cannot expect this mocel to be use- 
ful if any dimensions involved become significant compared to a wavelength of motion (about 
ZrrR/U  t Vs). All we really ask of it, in any case, is an order of magnitude for potential errors. 
Equations D7 and D8 give 

3 f 16BF       l'» 
1 Ux ♦ *n)2l 

(D9) 

Another quantity of some interest is the radius aj of the contact area, given by 
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Table DI presents numerical results from these expressions for a Lucite and a fused silica 
sphere. 4 in. in diameter, held by its own weinht on a steel support and a polyethylene support. 
The elastic constants were taken from Mason (1958).  The lower portion of the table gives the 
effective spring constants, contact dimension, and fractional perturbations for several modes. 

These results suggest that soft materials, such as a polyethylene, induce a smaller shift in 
measured eigenfrequencies than do hard ones.  We may interpret this as being due to the low acoustic 
impedance of polyethylene which more nearly matches the free boundary condition.  As impedance 
increases, the effective boundary condition in the contact area approaches a rigiü boundary state, 
and the influence on eigenfrequency grows accordingly.  Equation D6 requires Ww to grow without 
bound as k goes to infinity. We must recall ?hat D6 applies only to modes with M      0 when the 
spring is affixed at one of the poles.  A spring affixed to a mode's node has no disturbing influence. 

We also note that, not surprisingly, modes with small source factors (such as jSg) are less 
perturbed than modes with large source factors (such as 0S2). Since the source factor is directly 
related to the amplitude of surface radial displacement, such a result is to be expected.  This result 
is not particularly helpful in choosing data since low-source-factor modes are more difficult to 
observe and locate accurately. 

Table DI. 

4ng 
pR* tot 

Material 
Young's 
modulus 

Poisson's 
ratio *••»■ 4 in. sphere 

Lucite 0.4      ■ lO10 0.4 6.68 x 10'" 8      x 10' 

Fused silica 7.3     x 10'° 0.17 4.24 x 10'ia 1.38 x 10* 

#347 Stainless 19.6      * 10,0 0.30 1.48 x 10',a 

Polyethylene 0.076 x 10'° 0.458 3.31 x lO"10 

to 

Matenai 
pair                      k a 

t 
A oS„ i ,s. A 

Lucite 
Stainless                1.1 « 10* 8.7   - lO"' 3.7 x 10"4 2.5 x 10'' 2.9 x 10"4 9.0 x 10"' 

Lucite 
Polyethylene          i;.a < 10" 0.16 1.1 x 10"* 7.7 x 10'' 8.9 X   W 2.7 x 10"' 

Fused silica 
Stainless                fi.l « 10' 4.5   « 10'J 2.0 x 10"4 2.9 x 10"' 1.7 ■ to'4 6.0 x 10'* 

Fused silica 
Polyethylene          1.1 * 10* 0.18 1.3 « 10"' 1.9 * 10'' 1.1 xlO"' 3.9 x 10'7 



CVJ 

_L J_ 
CO 

ro ro 

i i 
O 
ro 

CO 
(si 

CD 
cvi CVJ 

CJ o 
cvi 

oijoy Aouanbajj 



ß 
o 
o 
lO 

o o 
00 

o 
1^ 

1^- 
o 

_1_ 
CVJ 
cvi 

I 

o 
cvi 

oo CD (M 

uanbajj 

CD 

o 

o 

o 

O 

00 

o 

(/) 



).60 
0fl5 OflO 



ofio 



c* 



D.40- 

0.30 

0.20 



V 
\ 

\\c 
\ 

\ 



\ofo 

\ 

\ 

\ 

V 
V 
\ 

\\of 
\ 

\ 

\ 

\ 

I0f2 

\ 

\ 

\ 

\ 

\ 

\ 

\ 



0.10 

0 0.1 0.2 0.3 

FIGURE El 



Poisson's Ratio 

\ 

N 
\ 

\ 

\ 

\ 

\ 

J i^J 

O.i 

0.- 

a; 

O.J 

o.i 

0.4 0.5 0.6 0.7 

Vvp 



\ 

\ 

\ 

\ 

\ 

\ 

\ 

0.6 

\ 

_k_ 
0.7 

0.5 

0.4 

0.3 

0.2 

0.1 
Llmltof 

Elastic Stability 

0.8 0.9 


