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-" ABSTRACT

i • Techniques for determination of "dynamic" error parameters, or those

obtained from real trajectories, are studied in detailI, with particular
-. attention being given to dependence of estimates on trajectory and to
Sshortcomings of est mation procedures which ignore such dependence.4

:• A technique is presented to determine dynamic estimates of error para-
"•:.•, meters for the rawintonde and is verified by data. The data indicate•!ilthat error paramete-s so determined are smaller than given by most

earlier studies and tend to conform to error claims made for the
AN/GMD-(IA) Rawlnset.
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INTRODUCTION

If a moving object is under c'servation by a given tracking system, the
observations so made generally take 1-he form of a sequence of vectors,
each of which is related to a specific time, and whose components give
estimates of tne object's position in some convenient coordinate system.
For a radar. this sequence is of the form {(Li, ai, eI)1i=l,n}, where

* each vector ir. the sequence represents range, azimuth, and elevatiG,;.
respectively, at times {tili=l,nl in the obvious fashion. In contrast,
the rawinsonde system for bal:oon tracking gives rise to the family
{(a'l, e'., t4'., Pi, hi)li=l,nl, where the components of a vector re-
present azimu+i and elevation from the AN/GMD-( ) windset, and temper-
ature, pressure and humidity from the radiosonde balloon. Here again
all vectors are indexed by a time value. From each vector (a'i, ei,
t'i, Pi, hi), a new vector (a' 1i, e', zi) is derived through use of
the hydrostatic equation. The mi {(a'i, e'i, zi)li=l,n} so formed
represents positior coordinates in a curvilinear system. It is this
system which will be considered in the following study.

In the statistical model to be employed, a sequence of vectors arising
in the fashion e;scuss.3d previously will be considered as a single
realization of an appropriate subprocesz of a multivariate stochastic
process. The index set for this process will be a set T containing
{tili=l,n}. For each t In T, the corresponding multivariate random
variable will have as its mean a vector which represents rhce position
of the object in an appropriate coordinate system and wilk have as
Its variance-covariance matrix a matrix E independent of t. The pro-
blems to be addressed in this study are concerned with obtaiping es-
timates of the matrix E from a single realization of some multivariate
subprocess. Sdch estimates will be designated as "dynamic", as they
represent the behavior of the system in motion, as contrasted to
s-atic tests which obtain error estimates for a fixed configuration.
The marginal processes are in general nonstationary, even in the weak
sense Mi] due to the variation of mean values with changing t, so
that the problems involved may be considerable.

Chief among the problems encountered is the dependence of the estimates
on trajectory. Suopose It is desired to cbtain dynamic error parameters
for a radar. Superficially, one might adopt the following procedure.
The radar to be tested and a second radar of known error behavior are
placed in close proximity and allowed to track an object simultaneously
for a time interval T. The radars may be expected to g.ve rise to
vector sequences {(4j, a,, ei)Ii=l,n} and {(%'i, a'i, e'i)Ii=l,n},
respectively, where the unprimed sequence will represent the radar of
unknown error characteristics. As position and verýclty are generally
studied in a cartesian coordinate system, transform each to a single
fixed reference system (X, Y, Z), obtaining sequences {(xi, yl, zi)Il=l,n)
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and {(x'i, Y'i, z'i?)Ii=l,n}- If calibration procddures are correct, Lip
to errors introduced by the system itself, these values should be
identical. Therefore, members of the vector sequence {(xi-x'i, yi-ygi,
zi-z'i)li=l,nl should have near-zero components, and the variances and
covariances required to determine the error behavior of the radar,with.
reference to (x, y, z) position estimates may be calculated. With
these values, the behavior of derivative estimates are determined. This
procedure has been in common use in the past to estimate error behavior.
To understand the difficul-ies introduced by such a procedure, additional
background will be required and will be presented in the following section. j

This presentation will be made for two reasons. First, it is worthwhile
from the standocint of understanding error behavior introduced by mathe-
maticai transformations in a radar, and second it is necessary for the
understanding of a technique to be introduced for determining dynamic
error parameters for the rawinsonde.

ERROR BEHAVIOR IN THE TRANSFORMATION FROM
SPHERICAL TO RECTANGULAR CARTESIAN COORDINATES

Let an object be moving along a trajectory {(p(t), a(t), e(f))ItET}
relative to a given spherical coordinate system. Sdppose a radar' is
located at the origin of this coordinate sys+em and oriented in such a
fashion that a point (p, a, 0) in the system corresponds to range,
azimuth, and elevation Ps seen by the radar. Let a sequence
{(&i, ai, ei)liil,n} of observations be taken in the time interval T,
along the given trajectory, these observations occurring at times
{tili=l,n}. It is desired to determine the trajectory of the noving
object with respect to a rectangular coordinate system related to the,
first by the transformation

X = pcosacosE

-L.iu y = psinacose (I

F I z = psine

which will be called T.

From (1) the family {(0i, ai, ei)li=!,n} gives rise to a new family
{(XI,, Y, zi)111=,n} in an obvious manner. If the first of these fami-
lies Is considered as a realization of a subprocess of a combined
random process {(Rt, At, Et)ItcT}, {(xi, yi, zi)li=l,n) becomes a reali-
zation of a subprocess of the joint stochastic process {(Xt, Vt, Zt)IteT}
defined for each + In T by
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X RtcosAtcosEt

Zt RRtsinEtc.

Recall. that for any t in T, (Rt, At-, Et) has mean vector (p(t), a(t),e(t)) and varlance-covariance matrix E:. Let R be a region in three-spare

in which T is at least of class C! (possesses continuous partial deriv-
.atives of order at. lea'st I), and apsume {(p(t), aM(t, e(t))jtET} lies.. entirely inR. It is known'E2] that for a given precision fi3ure. 6,

there exist a trarsformat~ion 1 and a constant X dependent on 6 such
that .r;

Pr{IIL(R t ) - T(t, At, Et)11 > 6} . (2)

where tr(E) denotes the trace of E. ,.

From (2), if tr(E) is sufficiently small, the random vectors jL(Rt, A, Et)
"and T(Rt, At, Et) differ only glightly in their behaviDr. The advantage
*of this lies id the fact thpt the variance-covariance matrix of L(Rt-, At, Et)

S" has the simple forrd dTtEd~t, where dTt is the differential of the trans--
formation T evaluated at (p(t), a(t), e(t)), and dTt denotes the Trans-

pose of dTt [3]. The ,,atrix dTt has a simple form
-- '_--•• • ' cos(t~cose(t) -p(t)sina(t)cose(t) -p(t)coa(t)sine(t)

* dTt = jsina(t)cose(t) p(t)cos(tt)cosc(t) -p(t)sinc(t)sine(t (3)

SLsine(f ) 0 • (t~cose(t)•

*From (3) the matrix 't - = dTtEdTt may easily be calculated.

As an example, let the obJect tracked be a balloon rising at a fixed rate,
a, in still air. Assumethe balloon is re~leased a horizontal distance,
b, along the line a = 0. The parametric equations for the balloon tra-
jectory are '

p(t) = (b2 +'a2t2)I/
2

ct(t)'= 0

e(t), =rr: b 2.7
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The matrix dT:. becomes, for the time t,

0- -atVbz + -azt-

0 b 0

allI

+ar/ 0 b
The matrix E'l may now be calculated, obtaining

_bata "

bb~a

Th ati has + a t2a33 0 th aet - batforS•b2 + a•2t23 b z+aZZ3

0 b22 0
•.•2 .batal a 2t 2al

"1 bt 1 b 2a3
b. -z---z -+bat7733 b zz 3

- The matrix El' has, ai- t=O, thp .|mpie form

0 0

- 0 ba 202 0

•%0 0 b2a 33

As t increases, a'ill(t) the entry of E't in the first row and column,
either decreases from a to a minimum of

:•:•,,t = b 11 1

(• *then increases without bound thereafter, the case occurring when

aC•. > ba -; or a' Mt Increases without bound as t increases, the33 II 33
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case for aIl l bc 3 3 " Clearly G' 2 2 (t) remains constant for all values
of t in T while a'3 increases from b2a2

33 a t = 0 approaching c21
+ b2a2

33 as i becomes largs. The nonzero covariance term a' 13 (t)a 3 1(t)
like O'HM(t), achieves an extremal value only if 61, > ba 3 3 , in thic case
a maximum, then decreases without bound with increasing t values. In
this case, when t is large, these terms resemble -bata3 3. If all<bu3;,
a'i=(tl = 0 '31(t) decreases without bound from t = 0, again resembling
-ba a3 3 when t is large. It is not difficult to see the role played
by b in the mairix V't. This emphasizes the depenoence of the matrix
Eft on the trajectory chosen. Clearly, if two radars at different loca-
tions, say horizontal distances bI and b2, observe the same balloon,
then at a given time t, the associated variance-covariance matrices of .

the two random vectors produced would vary considerably. It would
appear then that a realization of the process {(Xt, Yt, Zt)IteTI is
useless in the estimation of error parameters except in the grossest
sense, so that other techniques must be utilized to describe the error
behavior of the system. Such a technique will now be presented.

It is possible to approach the prob!em from a direct statistical stand-point, and results of some generality may be obtained. However, these

techniques require knowledge or approximate knowledge of trajectory and,
for the case of the rawinsonde, have the unfortunate characteristic of
being unable to exclude induced balloon oscillations. For this case
the results are included only as an appendix.

ESTIMATION OF DYNAMIC ERROR PARAMETERS FOR
THE AN/GMD-( ) BY USE OF A RADAR

If a radar such as the T-9 or FPS-16 is available and in a proper con-
figuration with the AN/GMD-( ), the following approach to the evaluation
of error parameters of the AN/GMD-( ) shows promise. Let a radiosonde
balloon be released and simultaneously tracKed by the radar and the
AN/GMD-( ). The output of the former of these devices consists of a
sequence of vectors {(i,, aI, ei)!i=l,n} where the compcnents of a vector

(,I, ai, el) represent range, azimuth, and elevation esTimates, respec-
tively, for a time ti in the Interval [tI, tn] under consideration.
The latter system has as Its output the vector sequence {(01, 'i)l=ln}.

In this case, the components of a vector (bi, 6I) are estimates of
azimuth and elevation, respectively) at a time t, Identical to that time
specified above. The vector sequences {(ai, ti, el)Jirl,n} and
{(M1 , di)Ii=l,n} will be considered as realizations of appropriate vector
subprocesses of the continuous vector processes {(Rt, At, Et)ltcT} anG
{(St, Ft)ItcT}' respectively, where LtI, trJ is contained in T. The
mean for the former of these processes will be the vector function
{(p(t), a(t), e(t))IteT} which gives the true trajectory of the balloon
in the obvious spherical coordinate system associated with the radar.
The vector function {(O(t), p(t))It}T} plays an exactly similar role
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with the GMD. It will also be assumed that the former sequence has
variance-covariance matrix E Independent of t in T, and the latter the
varlance-covariance matrix r, likewise independent of t in T. Now let

• (X, 6, D) be a vector giving in component order range, azimuth and ele-
vation oY the radar dnder consideration with respect to the GMD. In

other words, (X, 6, n) are the spherical coordinates of the radar with
respect to the obvious system located at the GMD. (See Figure I.) It
will be assumed throughout that the radar and the GMD are in parallel
orientation. It Is clear that if X is sufficiently large, this would
not In general be the case, this due to the curvature of the earth.
The equations relating (1(t), M(t)) and (p(t), a(t), e(t)) will be more
complicated when the earth's curvature is included than when it Is riot;
therefore, from a standpoint of simplicity, the parallel orientation
model is desirable. Also, as will be made clear later, if X is chosen
too large, the method for evaluating dynamic parameters to be presented
now will fail. Then concern will be only with X so small that curvature• of the earth presents a negligible effect.

Under these circumstances, and under suitable restrictions, the follow-
ing equations may be shown to hold:

OM = arctan p(t)cose(t)sina(t) + XcosnsinS]
nl(t)cose(t)cosa(t) + Xcosncos6J

• (4)

g = &rctan [~)sinc(t) + Xsinn

where M(t) Is given by

*(t) [(p(t)cosC(t)) 2 + (Xcosn) 2 + 2%p(t)cosncose(t)cos~c(t)-6)].

C "The equations In (4) define a transformation of Euclidian 3-space into
Euclidian 2-space which will be denoted by T*. It follows by definition
that {T*(p(t), c(t), e(t))IteT} is identically the vector function
{(O(t), W(t))j1iT} if quadrant ambiguities are considered. The vector
process {T*(Rt, At, Et)IteT} would be expected to exhibit behavior in
Its mean similar to {(Bt, Ft)IteT}. The complicated nature of T* pro-
!hibits direct calculation of the mean and variance-covariance matrices
of the various vectors In {T*(Rt, At, Et)IteT} even under assumptions
of joint normality of the process {(Rt, At, Et)IteT}. In this case Hi
becomes necessary to resort to approximation. The magnitude of the ele-
ments of Z suggests that satisfactory approximations of both the meai, and
the variance-covarlance matrix of (T*(Rt, At, Et)IteT} are pos!,ible In
terms of Z and {(p(t), a(t), e(t))IteT} E23. In this light, the approx-
Imation to the desired variance-covarlance matrix of e'*(Pt, A r, Et)
Is simply dT*tEcrI*t where dT*t Is the differential of the transformation

6
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T* [3J a' (p(t), a~t), e(t)), and jT* tdenotes the transpose of this
matrix. The-calculation of dT*t Is routine but tedious, and the follow-
Ing definitions will be made to simplify notation.

A(t) = (p(t)COSC(t))2 + (XCOSn)2 + 2Xcosnp(t)cose(t)cos(a~t)-S).

For- 1=1, 2, J=I, 2, 3, let )1*(I,j,t) designate the I, jth entry of dT*t.

~ ,d) )cos ncose(t)sIn(ct(t)-6)

~*(l,,t) [F(t)Cose(t)]2 + p(t)XCoSnCOSE(t)Co5(adt)-6)

~*(I3.,t = cosnsine(t)sIn(a(t)-tS)

0*(2,1, t) X2COSri~sine-(t)K1-i -_cose(t)sinncos(ci(t).-6)3

?Xp(t)cose(t)LsInnc:ose(t) - cosris~ne(t)cos(ct(t)-S)j

ADp*(2,02,t) FP(t)sine~t) + XsinnJ[)xp~t)cosncose(t)sin(a(t)-6)]
A vWT-F

11*(2,3,t) p3(t)czosL,(t) + 2X 2(t)cos2s(t)cosflcos(ca(t)_6)
Av*(7t)

+ XO(t)EP(t)sIne(t) + Xslnn1ri]snncosc(t) + cosesIna(t),cos~a~t)-6)]

Observe ihat the following relations hold.

IiJm)I*(I,2,t) lImli*C2j,3,,t) =I

IIMiQ*(I,,J,t) IImv* (2, k, t) =0 j/2, ký3.
P M )4c)-

8



Hence in the case of very large p(t), the matrix dT*t resembles the
matrix

and dT*tZdT*t resembles

-0 33j
the lower principal submatrix of Z. It follow3 that for p(t) sufficiently
large, the bivariate random variable ([Bt-TT(Rt, At, Et)], [Ft--Tý(Rt, At, Et)]
has as its variance-covariance matrix a matrix resembling

a 22+Y11 a 23+YI2]

L 32 +Y 1  a33+Y221

where the dependence of the matrix on the trajectory {(p(t), a(t), e(t))ItcT}
has been nearly eliminated. Clearly the variance-covariance matrix
associated with any other time t' will also have the above form if p(t')
, p(t). It should be noted that the estimate of r will be dT*t~ddT*t-E',
where E' Is the lower principal 2x2 submatrix of E. As p(t) increases,
the matrix dT7t~dT-t-' becomes Increasingly less dependent on the
trajectory and gives an increasingly more valid representation of r.
In addition, an examination of dT*tEdT*t yields that terms of the nature
of

A

p (t)

will be present, Clearly then If It Is desired that these terms go to
zero, p(t) must be large with respect to A. This may be facilitated
If a configuration can be chosen such that A Is small with respect to
ranges which may be encountered. If such a configuration is not possible,
practical attempts at estimating r in this fashion will fall, and in
general will result in overestimation of the magnitudes involved. For
this reason, it is clear that the magnitude of X required for successful
evaluation of dyncmic parameters wil: be so small that curvature problems
are of no consequence. It should be mentioned at this time that the
vectors of means of the members of the family {T*(Rt, Al , Et)lteTi are
biased away from the respective vectors in {T*(p(t), a( ), s(t))IteT}., •'•These biases, however, may be shown to be very small when p(t) Is large.
The demonstration of this fact Is routine but tedious and will be

9
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Somitted. It follows that if p(t) is large, the blvariate process
{([Bt - l(Rt, At, Et)], [Ft - *2(Rt, At, Et)])IteTl will have mean
near zero and independent of t in T. In this portion of the trajectory
the process is very near to weak'y stationary and hence behaves as a
sample. One may then estimate the diagonal members of the variance-
covariance matrix of this process and hence obtain an estimate of r.

In Table I, estimates of r are derived using FPS-16 radars and AN/GMD-IB
windsets at various base lines, or X values. The scarcity of data is re-
cognized, but the tendencies indicated bear out the theoretical develop-
ment, and would seem to indicate that the AN/GMD-IB is operating at near
+o engineering specifications insofar as measurement of jzimuth and
elevation angles Is concerned.

The prohlems of greatest magnitude associated with The rawinsonde system
appear to be related to errors in height. A systematic study of the
effects of height errors on position estimates for the rawinsonde
system is found, for example, in [4] and indicates That for small eleva-
tion angles, system performance depends critically on height errors,
with small excursions in height causing large excursions in correspond-
Ing position estimates.

Errors in height may be divided into two classes. The first are errors
due to systematic biases and random fluctuations in the instruments mea-
suring temperature, pressure, and humidity. The second are errors due
to physical situations which may cause variations in the validity of
the hydrostatic equation. It is clear that errors such as these can
vary with height and from run to run. If an individual trajectory is
examined, only the excursions due to random fluctuations in the instru-
mentation of the radiosonde package are apparent. The remaining errors
generally take the form of biases, the presence of which is not obvious
from the examination of a single trajectory unless this trajectory is
compared with a trajectory measured by a device whose error behavior
results in a trajectory which is not so greatly biased away from the
absolute; a trajectory such as that measured by an FPS-16. The exact
error behavior of height measurements due to random fluctuations in
temperature, pressure, and humidity is difficult to obtain, even approx-
imations of this quantity. This is due to the complexity of the mathe-
matical operations Involved and the number of interacting factors. How-
ever, the portion of the variance of height estimators due TO this aspect
is believed by the author to be quite small in relation to the remaining
contributors. This explains the smoothness and small excursions observed
In a single trajectory. It Is only when many tV-jectories are available
which may be compared with absolute trajectories that the effects of
the remaining contributors become apparent. It is suspected by the
author that the effects of the latter contributors may be an order of
magnitude greater than the former. As has been remarked, the magnitudes

10
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of the errors in height may be expected to vary with height, arid from
run to run; a single error parameter, or for that matter any number of

b - error parameters, may not suffice to describe the system adequately.
in this case one is forced either to calculate bounds, if possible, or
to seek situations for which error parameters are stable. Toward this
end the following procedure may be useful for determining average abso-
lute height errors for the rawinsonde system.

Let e(t) be defined for each t in T by

e(t) = p(t)sine(t) + Xsinn.

Here p(t), e(t), X, n have the meanings ascribed previously. It is
not difficult to see that e(t) is the height of the balloon under ob-
servation at time t in T as seen from the AN/GMD-( ). A reasonable
estimator of this quantity based on observations from the radar is

= = Rt sin Et + Xsinn.

For any t in T, by the same logic as presented earlier, the variance of
0 t is approximated by

Var(Ot) P sin 2 c(t)olI + p 2 (t)cos 2 C(t)a 33.

Now suppose that

p(t) J .

-U33

Then

p2 (t) --I -
a 33

or

Sp2(t)CF33 111li

If It Is assumed that 0 < e(t) s w/2, cose(t) > 0 and p 2(t)cos 2c(t)033
Scos 2c(t)ol; hence, p2(t)cos (t)a3 T ' (l-sin 2 (t))all and p2 (i)coszE(t)0 33

+ sin 2c(t)fl l a,,. From this it fo lows that Var3t a when

p (t ) 1 .

7233
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(Accepted values [5] for the error behavior of the FPS-16 give ai 15
feet', a33 = .01 degree; hence, the erroi in Ot will be bounded by 15
feet for slant ranges up to 83,000 feet.)

If Zt represents the estimate of balloon height from the rawinsonde
system, it follows immediately that Var(Zt) > Var(Zt-Ot) - all as
long as

P~t) ~0• o33

Observing that one may choose a portion of a given trajectory to satisfy
this condition, and also that for any t in the given range the expected
value of (Zt-et) should be zero, an estimate of an average variance of
(Zt-et) may be calculated for this interval and hence-a lower bound for

C Var(Zt) in that range. it is again to be stressed that such estimates
will vary from run tc run and could only be expected to yield pross be-
havior characteristics. However, in many circumstances gross behavior
char3cteristics are better than wrong behavior characteristics or none
at all.

13'
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APPENDIX

A General Statistical Approach

Ibe a multivariate random variable with mean
X = (Xl, 1 2, ... , xn) and variance-covariance matrix E. Let T be a
transformation on Euclidi •n n-space of class C1 in a region R contain-ing X. Suppose that T has parametric representation

yl = f I(XlJ• x 2, .. xn)

Y2 = f 2 (xl 0'" xnI-I (I)

• n =n(xl x2' x' Xn)

Conside, the multivariate random variable V = (YI, Y2 , -- ', Yn) obtained

from (X, X2, X ) and T in the obvious fashion. From the multi-
variate random variable Y = T(X) it is desired to recover information
about X, in particular th6 vector of means and variance-covariancemalrix. The following theorem will be required which Is similar to

Theorem 25 of chapter 5 of [3], and is included for reference.

Theorem I: Let T be a transformation on Euclidian n-space of class C1

in a region R containing x. Let dT represent the differential [3] of
T at x, and assume dT is nonsingular or equivalently that the Jacobian
of T does not vanish at X. If y - T(X), then there exists a neighborhood
J about x which ;s mapped in a I-I Tashion on';o a neighborhood T(J) of
y, and on T(J), a transformation T' may be defined of class Y1 in T(J)
such that for any z in J, T-I(T(z)) = Z, Tnd moreover, if dT- is the
differential of T-1 evaluated at y, dTdT- = I, when I is the identity
matrix.

The following theorem may now be established.

Theorem 2: let X, T be as previously defined. Let T- be as in theorem
1. If jilvl2 is defined for e- n-vector v by

then as T'-Is a measurable transformation there exists a number n>O
S5 rednsuch that

S;15 Preceding page blank



-l trO)

Pr{XfT (Y)M I <r(

Here Pr denotes probability, tr(Z) the trace of E.

Proof: Choose n so small that {zlllz-Xll<n} is contained in J. This
assures that T- is delined on T({zlllz-xll<nl), hence {zlllz-ill<n} is
contained in {zlz=T-I(z))}. Now consider the event {XJT#1(Yj}.
(Observe that T-I will be measurable.) It is clear that {VT 'V)!C(IIX-,1II'nJ
so that Pr{X#T-(Y)} < Pr{IIX-xll>n}. However,

n
Pr{IIX-xlln} = -r{ E (X-x) 2 > n2}.

j=l

From this it follows (see [6], section 15.7) that

"• ~n
-IJ3 rJPr{IIX-xI n} =< tr(E)

This proves the theorem.

This theorem states that the probability that X and ?-l(Y) will differ
depenis on the size of the trace of Z, and on the area of definition
of T-1. If the nature of T is such that n is very small, unless tr(E)
is correspondingly small, it may occur that In a probability sense Y may
furnish little information about X.

Estiimtion of Parameters

To estimate the matrix Z from a sample of the multivariate random variable
V, one may choose to estimate the variance-covarlance matrix of Y, call
it A, and then take dT-IAdT-I as tne desired estimate. This estimate
will be biased, especially since the expected value of Y is not necessarily
T(X). However, if tr(M) Is sufficiently small, this will not he signi-
ficant. In dealing with multiva late stochastic processe., affairs be-
come more complicated. Let IXtlteT} be such a process. Let the vector
of means of Xt be given for any time t in T by the vector function Y(t),
and let E be the variance-covarlance matrix, independent of t. Let T be
a measurable transformation on Euclidian n-space of class C1 in a region
R containing {X(t)JtcT}. For each t in T, let Yt = T(X). The multi-
variate process {VtlteT} so defined will no longer have variance-covarlance
matrices Independent of T. Let At denote the variance-covarlance matrix

16



.of Y for each t in T. Observe that no nontrivial estimate of At IS

Spossible from a single realization of {vtltcT}, .hence a technique such
• as descýribed above for findinlg Z is not possible".

It has been shown E2], however, that for each t in T there exists a trans-

formation Lt on n-space such that Lt(Xt) is a multivariate random vari-
able with mean T(X(t)) and variance-c-'ryriance matrix dTt~dTt, where
dTt represents the differential of , at x(t). Moreover. for any chosen
precision figure e, there exists a number 6(c) tuch 4 hat,

tr(E)Pr{llVt - Lt(xt) 't)t< t(s)

If for a chosen e>O, tr(E) is sufficiently sma~ll that {Lt(Xt)ltc•} is
a uniformly satisfactory substiiute for {VtiteT}, the following approach

4is possible. For i and j among I, 2, ... , n,.let U(i,jt) and a'(ij,t)
represent the i, jth entries of dTt and dTtEdTt, respectively. Now
assume Z is diagonal so that one may always write

n
a'(i,j,t) = p(i,k,t)p(j,k,t) (I)

k=lI kk

Since dTtZdTt is symmetric, it is possible to find,

n(n+l)
2 2

distinct equations of the above form of which at most n may be independent.
A reasonable choice of n equations is obtained by setting I = j, obtaining

0C for 1 = I, 2, ... , n,

n•'(,£ =E'2(Z,k,t)a kk.

k=j

Observe that the fact that dTt is nonsingular does not Imply that this
system Is nonsingular. Now suppose that for [tl:t 2 ]'an interval In T,
a(l,j,t) and •(l,j,t) are Integrable functions of t. One may then writef from (I)

i• •t nF{ t2

2 n 2
fl - - '(i,j,t)dt = E rt2I -t i(i,kt)1(j,k,i*)dt]c kk. (2)r t7 k=l tI

17



K *I

I ~I

'Like (1), (2) is also a linear equation 'in ihe Okk with th~e co6fficients
completely determined by the knowledge of {,x(t)ItF-T}Kand T.If the
integral

2 1

is known, for some n distinct valueslof (i,j),, and the~ resulting system
is -nonsingular-, the Okk arý completely deternmined. iHoweverý these
values are not known. If es+imates of some satisfactory set of these
integrals exist,ihowever, this "nay lead i-9 estimates of the Okk.

Consider the-system defined. far 9. = 1, 2, ...,;.n by

!t

tl?- It J,fCjidt E I t -V f Ii'i(j,j,tdT kk.
tIk=l 2 1 t

Let [ti,f 2J be1 divided into rn-I equal intervals of lenbth A by
tl ='sl < s2 < .. < sm = t.Let X- Xs- for j=I, 2, ... , rn-and let
xj be the mean of X... Define {Le(Xtion =il,'Mh in the obvious manner, and
let L y be the ithncobponert kowled Now for { 1 1, 2, n, define

I tn

lt*,follows that'S

[2 ,(Eiaj(i~it )

I tt = rnj=I J=l

I M
- Ei

~~; 121 j1l

Slncnainla,I) is integrable on Dtet as A approaches zero,

t- c0( - EC, i s
2 1j=l
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approaches

I t2

The linear systeri

St--1T I2 2(j'k't)dt], j=l, 2 *, np 'j k=l 12-I tI

may now be solved for wk, providing that the system is nonsingular.
If it should occur that the system is singular, other members of the

n(m+l)
2

distinct equations of this form may be tried or [tl,t 2 ] varied to obtain
a sufficient number of independent equations.
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