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CHAPTER I

INTRODUCTTON

The primary purpose of This study is to compare Kendall's method

with linear discriminant analysis in cases when both the assumptions of

equal variance-covariance matrices and multivariate normality are valid,

and in cases when either or both of these assumptions are invalid. The

basis of comparison will be the probabilities of misclassification.

Consider two populations, H, and R2 , and suppose that samples of1 2

size nI and n2 , respectively, are available from each population. Let

fi(x) denote the lensity function of the random vector in T i" it is

frequently assumed that f1(x) and f 2 (x) are multivarlate normal with

means P and p,, re:pectively, and a common variance-covariance matrix

Z. The linear function which minimizes the probability of misclassifi-

cation is

_ 1 ),i.),(1

(£ 2)' -x× -2. . £ + -' 1

the linear discr'm5nant function, a form of which -,;as f'.rst introduced

by Fisher in 1936 (1).

When the parametors are estimated, the sample discrim'nant

function is obtained:

DS (x) (x *- x)'S x - -(2x -ý1 '12~ +) (2)-1 2-2 -?- 1 -2 -l2

S •• •: - ,r*.• .;••• •,.•,.•-, 1<v-*
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-.hnere
n.1

x. - (3)
- nTI A~-10L

and

fl_ X -• x-. (4)

1 + n2-,-2 (x. - x.-

, uc, worl ha- been done in dctermininp the probabliities of misclassifi-

cation in linear d-scr-minant analvsi',, particularly with respect to

the samplr' djsc-rm'.nant function (2,3,4,5,6,7).

,.e.ou- of nonoaranetric discriminant analysis are of interest

because, as noted 3hbove, tlrhe dssurmptions of multivariate normality and

equal varian c--covar:ance matrtces necessary -in linear discriminant

analysis frequentlv are unacceptable. 11. -. Kendall (8, 9) has

suggested a I-itI.hcd o'. ncnrame.ric discriminant analysis, sometimes

referring tc it as the "order-statistic" method. In this method the

variates are examined one at a time. Consider, for example, the ith

variate. Referring to Figure 1, this method may be explained. The

variate values from .7 are indicated by x's and the values from K 2 by

v's. Below .4 there are four values from and none from Ii. Above

.85 there are three oh,';crvations from T1 and none from . There are

thus seven values outside the region of overlap. The lower and upper

cutoff points are .4 and .85, respective]y. All -f the var-iates are

examined in the same way and the variate having the largest number of

values outside the rer-fon of overlap is selected as the f'rst

discrirnination varlate with the cutoff points as the discrimination

cutoff points. -.i', -,-rvations with va.iue-.. for that variate below the

'



.85

further consideraticn; they have been c-assified. The procedure is

continued with the remaining observations and tlhe remaining variates.

hen, the procedure is f-unished a set of classifKcal.on rules will have

been obtained. In thIs case Rule 1 would be as fc]Jc]-s:

Rule 1 x. < .4 assign to H

x. > .85 assign to .7-1 2

.4 < x. < .85 see Rule ý

Early in the study the statistical literature was searched for

examples of multivariate data which could be used to test the

feasibility of Kendall's method. A total of seven examples was found

and Kendall's ret:hod was used with each of these data sets.



In order to investigate the effect of unequal variance-cov.riance

matrices, the following variance-covariance matrices were considered:

E1 = (1 - P )I + pIEpp (5)

E2 = 2 [(l - p 2)I + P 2Epp] (6)

(Epp is a pxp matrix of l's) 1 > Pi • - (- 1)

These were chosen because they are not uncommon in biological and

psychological work and may be good approximations in many other

situations. Variance-covariance matrices of the form (5) and (6) have

been considered in a number of studies concerned with discriminant

analysis. In 1945 Beall (10) introduced an approximate method for

calculating discriminant functions, assuming equality of covariances

and variances, citing the earlier empirical evidence of Jackson (11)

that this was not unreasonable. Later (1946-47), Penrose (12) developed

the concept of size and shape components for the case E= E2 and

P1 = P2. In 1963 Bartlett and Please (13) considered the general case

of E 1 and E2 given by (5) and (6) above with zero mean differences

between the populations and applied the method to some measurements on

twins. A Bayesian analysis of the same problem was given later by

Geiser and Desu (14). Han (1968) (15) derived the discriminant function

in the case of unequal mean vectors and later (3969) (16) studied the

distribution of the discriminant function when p1 = p2 .

Sampling experiments were performed using the variance-covariance

matrices EI and 2. Two p-variate normal populations, Rl and R 2 were

considered, with means o and E-2 and variance-covariance matrices E
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and Z2 9 respectively, in HI and H 2' In the experiments, pl, 029 02 and

.H were varied; El was always set equal to the zero vector. The value

of p used in al. experiments was 5.

Initial samples of tize 20 (sometimes 50 or 100) from populations

HI and f2 were generated and Kendall's discrimination rules were derived

from the initial sample. These rules were then applied to samples of

size 500 each from HI and IT •. The entire procedure was repeated 50

times, each time with nc- samples. The same procedure, using the same

set of random numbers, was used with the linear discriminant function.

The average probabilities of misclassification provided ectimates of the

expected value of the probability of misclassification when these

discrimination procedures would be applied.

The results of the sampling experiments also provided the

necessary data to compare the empirical probabilities of misclassifi-

cation for linear discriminant analysis with the theoretical values

obtained by Gilbert in the case = dl,, that is, when one variance-

covariance matrix is a multiple of the other.

Some sanmpling experiments have been done with multivariate non-

normal distributions (all variables independent). The particular

distributions considered, the Cauchy and the uniform, have been selected

because of the difficulty of distinguishing between these distributions

and the normal on the basis of a small sample. The lognormal distri-

bution was considered also, serving as an example of an asymmetric

distribution.

Another main purpose of this study is to develop a modified

Bartlett and Please method. These authors have obtained a linear dis-

criminant function in the case of zero-mean differences when the
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variance-covariance matrices are of the form already considered,

i.e.,:

E (1 - 0 )I + 0 Epp
1 1

2 - p )1 + p Epp]r2 2( 2)+ 02

However, as A. Kshirsagar has noted, Bartlett and Please have not

correctly obtained the cutoff point for the function which provides

equal probabilities of misclassification. A procedure is developed in

this thesis which does provide this cutoff point. The procedure is

applied to the data considered by Bartlett and Please and the results

compared. The modified Bartlett and Please method is compared also

with Kendall's method in the case of zero mean differences.

Finally, a number of other nonparametric discrimination

procedures are examined and compared with Kendall's method.



CHAPTER II

KENDALL'S NONPARAMETRIC DISCRIMINANT ANALYSIS METHOD

2.1 Description of Method

The simplest way to explain the order-statistic method is by

considering an example. Kendall (8, 9) used the iris data of Fisher.

We will consider a multivariate example from geology. This example is

given by Krumbein and Graybill (17) and is based on the work of Link (18).

This example concerns discrimination between two carbonate subenviron-

ments: clear, shallow water, and abundant algae water on the basis of

two physicochemical variables and two measures of sedimentary texture.

The data is given in Table 1. Here V1 is the Eh below the interface,

V2 is the pH below the interface, V3 is the phi mean diameter, and V 4 is

the phi standard deviation.

Consider now Table 2, in which the data for group 1 (clear,

shallow water) and group 2 (abundant algae water) have been combined and

the measurements of each variable separately have been ordered from low

to high. Consider V . In the range .97 to 1.67 there is overlap in the

V 4 measurements of the two groups. However, below .97 all of the

measurements are associated with group 1. Above 1.67 all of the

measurements are assoriated with group 2. There are thus a total of 13

V values outside the region of overlap - four associated with group 1

and nine associated with group 2. Examination of the data in Table 2

reveals that there are fewer observations lying outside the common

7
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TABLE 2

DATA OF TABLE 1 ORDERED FROM LOW TO HIGH VALUES
OF EACH PARAMETER SEPARATELY

V1  V2 V 4

G oup 1 Group2 2 G2 1 Group 1 Group 2

-383 4.28 .13 .10

-264 4.30 .78 .56

-261 4.34 .82 .79

-235 4.44 .88 .94

-225 4.60 1.22 .97

-224 4.74 1.37 1.01

-214 4.80 1.52 1.08

-214 4.86 1.68 1.13

-214 4.89 1.70 1.13

-213 5.19 1.72 1.20

-200 5.42 1.90 1.21

-193 5.42 1.91 1.23

-174 5.53 1.93 1.30

-170 5.54 1.93 1.33

-158 5.65 2.01 1.41

-158 5.86 2.12 1.51

-157 5.86 2.14 1.55

-107 5.86 2.17 1.57 1.60

- 79 6.10 2.31 1.64

- 76 6.29 2.31 1.67

- 45 6.56 2.38 1.78

- 36 6.86 2.41 2.22

0 6.92 2.51 2.43

34 7.08 2.59 2.72

43 7.22 2.85 2.79

48 7.56 2.90 2.84

74 7.92 3.14 2.86

83 7.97 3.16 2.91

104 8.36 3.52 3.20

110 8.93 5.30

~~~~~~~~~~~~1 Z-f & k S .,.p*.. ~ ~ j~. ~ ~ .. *
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range of these variables than for V This variable is then used for

the first discrimination rule

1. V 4 < .97 assign to group 1 (4)

V 4 > 1.67 assign to group 2 (9)

.97 < V4 4_ 1.67 see Rule 2 (17)

(The number in parenthesis is the number of observations for which the

prior statement applies; e.g., there are four observations with

V 4 < .97.)

The 13 cases discriminated by Rule 1 are then removed from further

consideration. The data remaining is given in Table 3. V3 is now the

most discriminating variable, so Rule 2 becomes

2. .97 < V 4 < 1.67

V3 < 1.22 assign to group 1 (4)

V3 > 2.17 assign to group 1 (1)

1.22 < V3 _ 2.17 see Rule 3 (12)

The remaining data is given in Table 4. For Rule 3,

3. .97 <_ V 4 <1.67

1.22 < V3 < 2.17

V2 < '4.86 assign to group 2 (2)

V2 > 7.22 assign to group 2 (3)

'4.86 < V2 7.22 see Rule 4 (7)



TABLE 3

TABLE 2 DATA REMAINING AFTER DISCRIMINATING WITH V4

V1  V2  v3

Groiup ' rui p 2 Gro__.7 Group 2 Group 1 groUp 2

-383 4.34 .13

-264 4.60 .78

-261 4.86 .82

-224 5.19 .88

-200 5.42 1.22

-193 5.53 1.52

-158 5.65 1.68

-158 5.86 1.70

-107 5.86 1.72

- 76 6.29 1.90

- 36 7.08 1.91

0 7.22 1.93

34 7.56 1.93

43 7.92 2.01

48 7.97 2.12

74 8.36 2.17

104 8.93 2.38

. , h; w •&* L a. % ; %` %• -. .` . . .
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TABLE 4

TABLE 3 DATA REMAINING AFTER DISCRIMINATING WITH V AND V3

V1  V2

Group 1 Group 2 Group 1 Group 2

-383 4.34

-264 4.60

-224 4.86

-200 5.19

-193 5.42

-158 5.86

-107 5.86

- 76 6.29

- 36 7.22

43 7.92

48 7.97

74 8.93

The remaining sample data is given below:

v1

Group 1 Group 2

-383

-264

-200

-158

-107

43

74
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So, finally, Rule 4 is

4. .97 < V4 < 1.67

1.22 < V3 < 2.17

4.86 < V2 V< 7.22
V1 < -264 assign to group 2 (-)

V1 > -264 assign to group 1 (6)

Residual group: 0

Thus it is seen that all of the 30 samples have been assigned

correctly. Krumbein and Graybill in using linear discriminant analysis

have found that 7 of the 30 samples were misclassified. There is, of

course, concern here with the sampling variation. The set of rules

derived from this particular example may perform poorly when applied to

a new sample. This problem is examined in detail later.

2.2 Application to Some Additional Examples in the Statistical

Literature

The statistical literature was examined for further examples of

multivariate data which could be analyzed by Kendall's method.

Cochran (19) had a convenient list of 12 numerical applications of

linear discriminant analysis reported in the literature. Few of these

papers were used, however, either because the data was not in a con-

venient form or else the 7equired individual observation data was not

listed. A total of seven examples, including the Fisher Iris data,

were found finally; these are described in Table 5. One of the

examples, that of Krumbein and Graybill, has already been considered in

Section 2.1. In Table 6 there is a comparison of the results of
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TABLE 5

VARIABLE AND POPULATION DESCRIPTIONS FOR DATA SETS
USED WITH KENDALL'S METHOD

AUTHOR VARIABLES POPULATIONS

1. Fisher Sepal and petal 2 species of Iris
a. length and width Versicolor and Virginica
b. of Iris Setosa and Virginica
c. Setosa and Versicolor

2. Beall 4 psychological Men and women

tests

3. Tintner Length, amplitude, Consumers' and producers'

rate of change, etc., goods

in price cycle

4. Dempster Renal blood pressure Control group and treated

as a function of group of laboratory
time animals

5. Krumbein & Electrochemical Water samples from two
Graybill measurements of water carbonate environments

sample; grain size

and sorting measure-

ments

6. Mosteller & Word frequency Papers by Hamilton and
Tukey occurrence Madison

7. Beerstecher Metabolic Alcoholic and nonalcoholic
et al measurements individuals

.~ V % * ~ t
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applying Kendall's order-statistic method and linear discriminant

analysis to each sample set. Each of these examples, except the Iris

data, are discussed later. The notation N(i,i) used in Table 6 is the

number of observations from the ith population which were correctly

assigned to the ith population. The last column of Table 6 gives the

number of variates used in classification by Kendall's method.

These examples have been considered in order to examine the

feasibility of applying Kendall's method in a wide variety of different

situations.

Beall (10) - Four psychological tests were given to 32 men and

32 women [Table 7]. It is desired to find which test results differ-

entiate between men and women. Kendall's method results in the

following set of rules:

1. V3 > 28 assign to men (18)

V 3< 8 assign to women (3)

8 < V3 < 28 see Rule 2 (43)

2. 8 < V3 < 28

V1 > 20 assign to men (1)

V1 < 7 assign to women (2)

7 < V1 < 20 see Rule 3 (40)

1_
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TABLE 7

THE SCORES OF 32 MEN AND 32 WOMEN
ON FOUR PSYCHOLOGICAL TLSTS.

DATA FROM BEALL (10).

Men Women
1 2 3 4 1 2 3 4

15 17 24 14 13 1' 12 21

17 15 32 26 14 i•' 14 26

15 14 29 23 12 19 21 21

13 12 10 16 12 13 10 16

20 17 26 28 11 20 16 16

15 21 26 21 12 9 14 18

15 13 26 22 10 13 18 24

13 5 22 22 10 8 13 23

14 7 30 17 12 20 19 23

17 15 30 27 11 10 11 27

17 17 26 20 12 18 25 25

17 20 28 24 14 18 13 26

15 15 29 24 14 10 25 28

18 19 32 28 13 16 8 14

18 18 31 27 14 8 13 25

15 14 26 21 13 16 23 28

18 17 33 26 16 21 26 26

10 14 19 17 14 17 14 14

18 21 30 29 16 16 15 23

18 21 34 26 13 16 23 24

13 17 30 24 2 6 16 21

16 16 16 15 14 16 22 26

11 15 25 23 17 17 22 28

16 13 26 16 16 13 16 14

16 13 23 21 15 14 20 26

18 18 34 24 12 10 12 9

16 15 28 27 14 17 24 23

15 16 29 24 13 15 18 20

18 19 32 23 11 16 18 28

18 16 33 23 7 7 19 18

17 20 21 21 12 15 7 28

19 19 30 28 6 5 6 13
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3. 8 < V3 < 28

7 < V1 < 20

V 4> 24 assign to women (14)

V 4 <9 assign to men ( 1)

9 < V4 < 24 see Rule 4 (25)

4. 8 < V3 < 28

7 < V < 20

9 < V4 < 24

V 2> 21 assign to men (1)

V2 < 5 assign to men (1)

Residual group: 23 (11 men + 12 women)

Dempster (20) - (Data from H. D. Sylwestrowicz of CIBA). [Table 8)

This example concerns a type of data frequently found in pharmaceutical

experimentation. Nine variables are measured on 19 animals. The nine

variables are all measurements of renal blood pressure, but taken in

intervals of 1/2 hour over four hours. The animals had been randomly

divided into two groups of sizes 12 and 7. The first group was the

control; the second received a specific drug treatment after the first

of the nine measurements were taken. VI may then be considered a

covariate. Kendall's method results in the following (non-unique) set

of rules:

1. V8 > 7 assign to group 1 (control) (11)

V8 < -8 assign to group 2 (5)

-8< V8 < 7 see Rule 2 (3)
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TABLE 8

MEASUREMENS OF RENAL BLOOD PRESSURE TAKEN
AT ONE-HALF HOUR INTERVALS ON TREATED

AND UNTREATED ANIMALS.
DATA FROM DEMPSTER (20)

GrouD V v V V V V V_ V V
1 2 3 4 5 6- / 8 9

Control 17 27 17 17 25 25 25 15 17

5 5 2 2 5 10 10 12 12

20 20 20 20 18 17 17 17 15

8 17 8 15 25 25 25 25 27

22 22 20 20 15 12 18 13 12

13 17 17 12 17 17 17 17 7

35 23 25 23 28 27 42 42 30

45 43 37 33 35 35 33 32 30

2 5 2 -5 - 7 -10 -8 -8 -18

33 37 22 28 32 30 30 27 28

25 35 22 28 28 30 28 25 22

32 47 48 47 47 47 47 48 47

Treated 45 - 2 2 0 - 5 - 5 -10 -10 -12

- 3 -27 -30 -33 -35 -35 -33 -33 -33

32 17 12 12 7 2 2 7 7

30 - 2 -10 -12 -12 -12 -12 -13 -13

13 -20 -22 -22 -23 -27 -27 -28 -28

20 18 2 -13 -18 -18 -22 -22 -23

22 18 8 - 8 -10 - 8 -7 - 2 0
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2. -8<_V8 < _7

V9 > 0 assign to group 2 (2)

V9 < -18 assign to group 1 (1)

Residual group: 0

Two points are worth making. First it should be noted that 717

would provide as good a result as V . Secondly, although no use of V1

as a covariate was made, the user of Kendall's method should realize

that a covariate could be important. For example, a hypothetical case

could arise in which all of the variable measurements overlapped con-

siderably, but the diff',rence between the subsequent measurements and

the initial measurement was the key to discrimination. Kendall's

method applied directly to the data in this case could result in Door

results. Making the transformation of subtracting the initial measure-

ment from the subsequent measurements (for example) could result in

improved discrimination.

Tintner (21) (Table 0]- This concerns the problem of distinguishing

between the prices of producers' goods and the prices of consumers'

goods on the basis of certain measurements connected to their behavior

during a business cycle. The data consists of the monthly wholesale

prices of nine consumers' goods and ten producers' goods during the

period 1860 - 1913. The seasonal and trend components had been removed

by a moving average method. V1 is the median length of the cycle in

months. V2 is the median percentage of the duration of cyclically rising

prices relative to the total duration of the cycle. V3 is the median

cyclical amplitude expressed as a percentage of the trend. V4 is the

mean monthly rate of change in the cycle.
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TABLE 9

CYCLICAL MEASUREMENTS OF THE PRICES OF CONSUMERS'
AND PRODUCERS' GOODS. DATA FROM TINTNER (21).

V V2 V3 V4

Consumers' Goods

Rice 72 50 8 0.5

Tea 66.5 48 15 1.0

Sugar 54 57 14 1.0

Flour 67 60 15 0.9

Coffee 44 57 14 0.3

Potatoes 41 52 18 1.9

Butter 34.5 50 4 0.5

Cheese 34.5 46 8.5 1.0

Beef 24 54 3 1.2

Producers' Goods

Gasoline 57 57 12.5 0.9

Lead 100 54 17 0.5

Pig Iron 100 32 16.5 0.7

Copper 96.5 65 20.5 0.9

Zinc 79 51 18 0.9

Tin 78.5 53 18 1.2

Rubber 48 50 21 1.6

Quicksilver 155 44 20.5 1.4

Copper Sheets 84 64 13 0.8

Iron Bars 105 35 17 1.8
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1. V1 < 48 assign to consumers' goods (5)

VI > 72 assign to producers' goods (8)

48 < V1 < 72 see Rule 2 (6)

2. 48 <_ VI < 72
V2 < 50 assign to consume-s' goods (1)

V2 > 57 assign to consumers' goods (1)

50 < V2 < 57 see Rule 3 (4)

3. 48 < V! < 72

50 <_ V2 < 57

V3 < 12.5 assign to consumers' goods (1)

V3 > 14 assign to producers' goods (1)

12.5 < V3 < 14 see Rule 4

4. 48 < V1 < 72

50 < V 2 < 57

12.5 < V3 < 14

V < .9 assign to producers' goods (1)

V4 > .9 assign to consumers' goods (1)

Residual group: 0

Mosteller and Tukey (22) - [Table 10]. This example concerns dis-

puted authorship. There are a number of papers which were written by

either Hamilton or Madison, and it is of some interest to be able to

determine the correct author. This example is concerned with 11 papers
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TABLE 10

RATES OF OCCURRENCE OF HIGH FREQUENCY WORDS
IN SOME OF THE WRITINGS OF HAMILTON AND

MADISON. DATA FROM MOSTELLER AND
TUKEY (22).

"and" 11int 1of" "the" "to"

V1 V2  V3  V4  V5

Hamilton

16.1 35.3 63.9 93.3 38.4

32.2 24.5 78.2 110.0 31.4

24.3 23.5 64.7 90.8 42.3

18.0 27.2 59.6 86.8 35.9

20.6 26.9 61.4 83.6 39.5

21.8 17.4 73.1 90.4 35.6

27.9 23.1 61.9 85.4 41.3

28.5 26.1 71.3 74.5 33.3

28.9 20.9 56.9 82.7 44.9

21.3 25.0 60.4 82.2 47.7

18.5 30.7 72.7 109.3 36.6

Madison

31.6 19.9 54.8 93.8 38.6

37.3 23.3 56.8 84.2 31.0

21.2 17.5 58.2 97.6 39.9

27.9 19.1 55.8 93.1 33.5

40.7 9.3 59.0 71.5 33.6

24.4 27.9 60.0 115.3 34.8

27.7 17.7 61.1 115.3 32.7

28.1 22.3 57.0 110.9 29.7

30.6 23.6 68.3 118.6 23.2

33.9 21.8 64.9 93.7 33.6

23.3 31.4 34.8 94.3 49.6

*Al1 rates of occurrence of high frequency words are per thousand words
of text.
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mostly selected from the Federalist papers, of known authorship. The

variables used for discriminating between the authors of the paper are

certain high frequency words. This particular example was selected by

Mosteller and Tukey to illustrate the application of the jackknife

method in discriminant analysis.

1. V3 > 68.3 assign to Hamilton (4)

V3 < 56.8 assign to Madison (4)

56.8 < V3 < 68.3 see Rule 2 (14)

2. 56.8 < V3 < 68.3

V5 > 39.9 assign to Hamilton (4)

V5 < 35.9 assign to Madison (6)

35.9 < V5 < 39.9 see Rule 3 (4)

3. 56.8 < V3 <_ 68.3

35.9 < V5 < 39.9

V2 > 26.9 assign to Hamilton (3)

V2 < 17.r assign to Madison (1)

Residual group: 0

Beerstecher et al (23) (Because of the large amount of data it is

not included here.) In this study 62 variables related to metabolic

patterns were measured in 12 individuals over a period of one month.

This was a preliminary study of the various traits of an alcoholic and

nonalcoholic individual, the former during nondrinking periods, in
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order to discover differences worthy of further study later on. Using

Kendall's method all 12 individuals were separated into the correct

classes using two variates. The most discriminating variate was

hippuric acid concentration in urine. Of the four alcoholics, three

had concentrations above 17 units and of the eight nonalcoholics, seven

had concentrations below 17 units. The remaining two subjects were

correctly classified by a phagocytic index, although undoubtedly many

other variates would have served as well in classifying these two

remaining subjects.

In Beerstecher's study univariate t-tests were used to isolate

important differentiating variates between the alcoholics and non-

alcoholics. The hippuric acid urine concentration and the saliva

sodium concentration had the largest t-values.

It is of course not surprising that Kendall's method provided

compatible results since large t-values for a variate would indicate

wide separation between the means of the samples from the two popu-

lations, causing it to be selected as a discriminating variate by

Kendall's method.

This particular set of data was examined using Kendall's method

in order to illustrate a potentially valuable use of this method as a

screening technique for significant variates. Further consideration

of this use is given in Section 6.1.



CHAPTER III

COMPARISON OF KENDALL'S METHOD WITH LINEAR

DISCRIMINANT ANALYSIS

3.1 Method of Evaluation

The two assumptions of concern in linear discriminant analysis are

equality of variance-covariance matrices and multivariate normality.

Kendall's method is compared with linear discriminant analysis in cases

where all of these assumptions are valid and in cases where either or

both assumptions are invalid.

Sampling experiments were done using the variance-covariance

matrices

Z, = (l-p 1 )I+p 1 Epp

E2 = 02 [(l-p2 )I+p 2 Epp]

Two p-variate normal populations, f1 and T2 2were considered, with means

hi and V and variance-covariance matrices E1 and E2 respectively. In

the experiments pi, P2, a2 and p were varied; ji was always equal to

zero. The value of p used in all experiments was 5.

The particular set of parameters used are given in Table 11.

A CDC 6400 computer which has a 60-bit word length was used in this

study.

26
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TABLE 11

PARAMETER VALUES USED IN SAMPLING EXPERIMENTS

P1 22 -2

.1 .1 1,2 0*,i,2

.5 .5 1,2 0,1,2

.1 .9 1,2 0,1,2

.9 .1 1,2 0,1,2

-.1 .9 _1,2

*01= (0,0,0,0,0)

The method used to generate a sample vector with variance-

covariance matrix E was to generate the vector

x'= (xlX 2 ',x3 ,x 4 ',x5 )

where x. are independent uniform (0,1) variables. Using the inverse of1

the normal probability integral 0-1, the vector

Y'= (yy 2 ,Y3 ,y34 ,y 5 )

was obtained, where 0-1(x.) = yi. Thus

y , MVN(O,I)

The variance-covariance matrix E. was factored into the product of a1

lower triangular matrix and its transpose by a Crout factorization (24).

Thus Z is expressed in the form

= TT'
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Multiplying y by T produced the desired vector

TY_ MVN(O,TT')

or

Ty. MVN(O,E)

The algorithm for the Crout factorization is as follows:

tl ½ (T = it 1j; E = %(7

t. t a i=2,3,...p (8)2.1 11 il il

If the preceding columns k < j have been completed, the jth diagonal

term is calculated by

j-1

t.. ( - ! 2)½ (9)t-~ j = ~
k=2 k

F j < p, the elements below the diagonal are computed by the formula

j-i
-l (ai..- 'tkt.) (10)tii = t~ik = j+lt....,p

ij ji ij k]

k=l

As explained in the introduction, initial samples of size 20

(sometimes 50 or 100) from populations HI and n were generated and1 2

Kendall's discrimination rules were derived from the initial sample.

These rules were then applied to new samples of size 500 each :-':rm ?,

and nI . This entire procedure was repeated 53 times, each time with2

new samples. The same procedure, using the same set of random numbers.

was used with the linear discriminant function.

Consider one of the 50 repetitions of the experiment. Let F(ij)

denote the fraction of the initial sample from population j which was
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classified as population i, and F(O,j) denote the fraction of the

initial sample from j which was not classified. With Kendall's method

F(1,1), F(2,2), F(0,1), and F(0,2) were calculated. Since no proba-

bilities of misclassification were allowed, F(1,2) = F(2,1) = 0. With

linear discriminant analysis, F(l,l), F(2,2), F(1,2), and F(2,1) were

calculated using the resubstitution method. In linear discriminant

analysis all of the saiples are classified, so F(0,1) = F(0,2) = 0.

The set of rules derived from the initial sample was applied to a

new sample of size 500 from each population. Let FI(i,j) (i=0,1,2;

j=l,2) denote the fraction of this index sample classified as

indicated. Fi(i,j) (i=0C1,2;j=l,2) was calculated for Kendall's class-

ification rules and FI(i,J) (i=1,2;j=1,2) was calculated for the linear

discriminant function.

This was done for all 50 repetitions and the F's and FI's

averaged to give estiMates of the expected value of the probability of

misclassification (and classification) based on the initial sample and

the index sample, respectively. The average value of F(i,j) (i=0,1,2;

j=1,2) is denoted by P(i,j); the average value of FI(i,j) (i=0,1,2;

j=l,2) is denoted by P*(i,j).

P(i,j) (i/j) is known to underestimate the expected value of the

probability of misclassification of the sample discriminant function.

It was calculated for comparison with the Kendall estimates from the

initial sample.

The P*(i,j) values are of primary interest, since these measure

the probabilities of misclassification when the classification rule or

function is used. The P(i,j) values are of interest since in practice

only the same sample used to derive the rule or function is available
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to judge the probability of misclassification when the rule or function

is applied. It is important to determine the relationship between the

P(i,j) and P*(i,j) values so that some judgment of the actual

performance of the rule or function may be ascertained from the per-

formance with the initial sample.

In some of the sampling experiments a principal components trans-

formation was done. The principal components were estimated from the

combined samples and the transformation then applied separately to the

two samples. Kendall's method was then applied to the transformed

data.

3.2 Testing the Random Number Generator

Since Kendall's method is based on the order-statistics of the

distribution, it is this aspect of the random number generator which

should be examined most carefully. In order to judge the quality of

the random number generator, some tests were performed. In the first

test 20 N(0,1) independent random numbers were generated and then

ordered from low to high values. This was repeated 100,000 times, and

the average value of each order-statistic calculated. These values

were compared with the theoretical value of the order-statistics as

tabled in Owen (25). The results are given in Table 12; the sampling

experiment results agree quite well with the tabled values. In the

second test use was made of the results of Gupta (26) who has cal-

culated the percentage points of order-statistics from the normal

distribution. Again, a sample of size 20 was generated from an N(0,1)

distribution and this time the percentage points given by Gupta were

used to calculate the number of samples which exceeded each percentage

N V.0-V .0 -.r
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TABLE 12

COMPARISON OF TABLED EXPECTED VALUES OF ORDER STATISTICS
FROM N(0,1) DISTRIBUTION WITH THOSE OBTAINED FROM

SAMPLING EXPERIMENT

Sampling Sampling
Order Tabled Experiment Order Tabled Experiment

Statistic Value Results Statistic Value Results

1 -1.8675 -1.8678 11 0.0620 0.0613

2 -1.4076 -1.4091 12 0.1870 0.1861

3 -1.1309 -1.1314 13 0.3149 0.3148

4 -0.9210 -0.9187 14 0.4483 0.4483

5 -0.7454 -0.7448 15 0.5903 0.5910

6 -0.5903 -0.5891 16 0.7454 0.7455

7 -0.4483 -0.4478 17 0.9210 0.9206

8 -0.3149 -0.3146 18 1.1309 1.1289

9 -0.1870 -0.1872 19 1.4076 1.4074

10 -0.0620 -0.0617 20 1.8675 1.8701

point. This was done 10,000 times. The results are given in Table 13.

Again, the two results agree very well.

3.3 Comparison in the case of multivariate
normality, including consideration of
unequal variance-covariance matrices

3.3.1 Summary and Analysis of Main Sampling Experiment Results

The results of the sampling experiments are given in Tables 14-18;

K denotes Kendall's method; LDA, linear discriminant analysis; K(PC),

Kendall's method with principal components transformation.

V . ." 10 -
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The values for 2 = , p1 = .1, p2 = .9, = 0, 1, 2 have been

calculated already in Table 16 in the entries a2 = 1, p1 = .9, P2 = .1,

S= 0, 1, 2. The experiment has been repeated, however, to serve as a

basis for judging the quality of the estimates. It can be seen from

Table 19 that the estimates are stable for p = 1, and p = 2, but there

is variation in the case of zero mean differences.

Tables 20 and 21 summarize the probability of misclassification

information for the Kendall method and LDA, respectively. P(i,j) is the

probability, estimated from the initial sample, of assigning an observa-

tion from the jth population to the ith population. PT is the average

of P(2,1) and P(1,2); PT(0) is the average of P(o,1) and P(0,2).

PT(i,j) is the probability of assigning an observation from the jth

population to the ith population when the classification rules derived

from the initial sample are used. * is the average of PT(2,l) and
*i 2

P*(1,2). The entries are in order of increasing T2 values for a2 = 2,

and then for increasing T2 values for a2 = 1, where T 2, the Mahalanobis

distance, is

(RI - -P)' -1 (p-p ) (Zn)

in the case of equal variance-covariance matrices. For E1 and E 2 of the

form considered in this study, the equation used for calculating T2 will

be derived:

E1 =( - pl)I + P 1Epp

E2 = a2[(l - p 2)I + p 2EPP]

l + 2 = [( + a2) - (p1 + 02 p2 )3I + (p1 + 02P 2 )Epp (12)

1. %
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Let 1l+ 2 =a P, + 2 p2 =b (13)

Then

[(a - b)I + bEpp] 1l

is determined using the relationship

[I +PQ]- =I -P(I +QP)- Q (4

Thus

[(a -b)I + bEppi -1 (a- b)½1 [ + ab -PP] -1 (15)

b-

Let (a-b) b(9

cEpp] (7

aY b.'a-
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EJi2 - c( i)2

a-b (21)

Using equation (19),

T i 1 (4i2 b ( 2) (22)
- a--b (a-b) + pb

Finally, using equation (13)

22 (P +02 2)(EUi)2
T2 El 2 1• 2 _- (23)

(1+0 2 ) - (p 1+o 2p 2 ) (1+2) + (p-l)(p1 +2 p2)

With Kendall's method not all of the index sample will be classi-

fied. Thus P*(O,1) and P*(O,2) denotes the probability that an obser-

vation from 1l and H2' respectively, will not be classified. P*(O)

denotes the average of P*(0,1) and P*(O,2). These values are

summarized in Table 22. They must be taken into consideration in

judging the performance of Kendall's method.

The relative performance of the Kendall order-statistic method

and LDA (Linear Discriminant Analysis) may be compared by examining

Table 23. One column of Table 23 is identified by P*(K)/P*(LDA). This

is the ratio of the average probability of misclassification of the

Kendall method to that of LDA. The comparison is somewhat unfair, since

not all of the index sample has been classified in using the Kendall

method. A factor, f, has been introduced to allow comparison of the

probabilities of misclassification only with respect to the portion of

the sample actually classified. The factor f is the reciprocal of the
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TABLE 23

COMPARISON OF THE PERFORMANCE OF KENDALL'S METHOD
AND LINEAP DISCRIMINANT ANALYSIS WITH RESPECT

TO THE PROBABILITIES OF MISCLASSIFICATION

P *(K) P*(K)T Tf* *
Case p1  p2  i2 P (LDA) P (LDA)

2T T

1 .1 .9 2 1 .737 .957

2 -.1 .9 2 1 .752 .941

3 .5 .5 2 1 .712 .879

4 .9 .1 2 1 .763 .913

5 .1 .1 2 1 .956 1.08

6 .1 .9 2 2 1.06 1.12

7 -.1 .9 2 2 1.15 1.19

8 .5 .5 2 2 1.04 1.08

9 .9 .1 2 2 1.03 1.07

10 .1 .1 2 2 1.74 1.78

11 .5 .5 1 1 0.663 .835

12 .9 .1 1 1 0.780 .828

13 .1 .1 1 1 1.05 1.14

14 .5 .5 1 2 1.02 1.04

15 .9 .1 1 2 1.11 1.17

16 .1 .1 1 2 2.81 2.86
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fraction of the index sample in Kendall's method which was classified.

One of the columns, identified by f'[P*(K)/P*(LDA], lists this ratio.

Considering the ratio P*(K)/P*(LDA), in cases 1-6, 11 and 12,

Kendall's method has a smaller value than LDA. In cases 7-9, andT

13-15, the two methods perform about the same. The Kendall method is

definitely worse in cases 10 and 16. These are the two cases with the

largest T2 values, and with equal values of p1 and p2. Considering the

ratio f.[P*(K)/P*(LDA)], similar results are obtained for all casesTatT

except for case 6 for which the Kendall method is better and cases 10

and 16 for which LDA is better.

3.2.2 Effect of Unequal Mean Components

In one sampling experiment, the Mahalanobis distance was kept

constant and the components of the mean vector were varied. More

specifically, in one sampling experiment already considered,

P1 = .1, P 2 = .9, 02 = 2, p' = (2,2,2,2,2), the Mahalanobis distance was

3.78. Components of the mean vector were chosen to be (0,0,l,l,x),

where x was such that the distance was unchanged. The value of x was

found to be 1.512. Examining Table 24 shows, as expected, that P does

not change for linear discriminant analysis. However, Pdecreases

substantially for Kendall's method, and this is only slightly indicated

by the decrease in P(l,l) and P(2,2). The point of this single example

is that the error rates can be strongly influenced by changes in the

mean vector, even when the Mahalanobis distance is unchanged. To some

extent this would be anticipated, since, as already noted, Kendall's

method depends on the overlap of distributions more than on the

distances between the means of the distributions.
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3.3.3 Effect of Allowed Probabilities of Misclassification

One problem with Kendall's method is that, especially with distri-

butions of infinite range, one or more extreme valued observations from

one distribution often will be mixed with the second distribution values

and little separation of samples from the two distributions will be

Dcssible. Accepting these few outlying observations as allowed

misclassifications, eliminating them from further consideration, and

proceding with Kendall's method can produce a set of discrimination

rules which result in an increase in the probabilities of classification

in the index sample with only a limited increase in the probabilities of

misclassification. That is, many of the observations unclassified

before will now be classified, and most of these correctly.

There are many ways to introduce an allowed probability of

misclassification. For example, a cumulative allowed probability of

misclassification for each group could be specified. However, there is

a problem in allocation. Suppose that for the samples of 20 from each

of the two populations an allowed probability of misclassification of

0.1 is specified. Suppose also that low values of the first selected

variate favor one population and high values those of another

population. Then the cumulative allowed probability of misclassifi-

cation could be used immediately, allowing two misclassifications for

low values of the variate and two misclassifications for high values

of the variate. However, better overall results may be obtained by

using fewer than these four allowed misclassif-cations for the first

selected variateusing some of these for increasing the classification

quality of the next or subsequent variate. The computer logic for

allocating the four allowed misclassifications so as to maximize the

•,'•'•'J~~~~~~~~~~o""~~ e %, - ", ."•, . .•- -,.,%• 52 P P.>•_°•.• .••-'.• " .---. '..•• -- ,. .. .-
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overall performance of the method could be worked out relatively easily

and some consideration may be given to this at a later time. There

would, of course, be a considerable increase in the computing time.

For the particular set of experiments reported here, a very simple rule

was used, one which is far from optimal. An allowed probability of 0.05

was allowed for misclassifications for low values of the first selected

variate and 0.05 for the high values of this variate. If the selected

variate was such that saamples from one population had low values of this

variate and samples from the other population had high values of this

variate, then the allowed probability of misclassification for each

gruup would he 0.05. However, if both high and low values of a variate

were characteristic of a single population then the allowed probability

of misclassification would in effect be 0.1, whereas there would be no

allowed misclassification for the other group.

The effect of the allowed probability of misclassification was

considered in several sampling experiments and the results are

summarized in Table 25. Kendall's method is denoted by K, and Kendall's

method with an allowed probability of misclassification is denoted by

K(PA). The effect of increased sample size on the index sample

probabilities obtained by Kendall's method can be seen for samples of

size 20, 50, and 100 for the case 02 = 1, Pj 1, and p1  .5, and

for 20 and 100 in the case a2 = 2, v = 2, P1 = .9, P2 = .1. Due to

increased mixing of the distributions with the larger sample sizes, the

portion of the sample classified decreases greatly, but with the

compensation of reduced misclassifications of the index sample. If the

primary consideration is with minimizing the misclassifications, this

effect is of no concern. However, if a substantial portion of both
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samples must be classified, even at the risk of increased misclassifi-

cation, then a trade-off procedure between the portion of the sample

classified and the portion of the sample misclassified is necessary. A

simple method for controlling the probability of misclassification

while trying to increase the sample classified was explained above.

From Table 25 it can be seen that in the case P, = P2 = .5, the effect

of the allowed probability of misclassification is not too impressive,

but in the case p1 = .9, P2 = .1 with a sample size of 100, P*(l,l)

increases from .347 to .733 with relatively minor increases in the

probabilities of misclassification.

Examining Tables 16, 17, and 18, the effect of the principal

components transformation used with Kendall's method may be evaluated

with respect to the index sample. When p! = .9, .12 1, the transfor-

mation is of value when u = 0. In this case P*(l,I) = .246 and

P*(2,2) = .458 when no transformation is used, and P*(1,1) = .546 and

P*(2,2) = .754 when the principal components transformation is used.

P*(I,l) and P*(2,2) are not increased significantly when pI = .9,

P2 = .1, and u ' 0. When p1 = .1, P2 = .9, the only case for which the

principal components transformation gives an improvement is when 02 = 2,

u = 0. In the remainder of the cases it reduces the performance

considerably. When pl = -. 1, p2 = .9, the only case in which the

transformation improves the performance of Kendall's method is for

02 = 2, .i = 1. It is worth noting that when the principal components

transformation is used, almost all of.the initial sample is correctly

assigned, but the performance with the index sample tends to be very

poor. For example, in the case p1 = .1, p2 = 9, 2 = 2, v = 1,

P(l,l) = .954, P(2,2) = .885, but P*(I,l) = .617, and P*(2,2) = .645.
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3.4 Comparison in Cases When Multivariate Normality Does Not Apply

The analysis so far has allowed the possibility of unequal

variance-covariance matrices but multivariate normality still has been

assumed. Some sampling experiments have been done with non-normal

distributions. The distributions considered, the Cauchy and the

uniform, were selected because of the difficulty of distinguishing

between these distributions and the normal on the basis of a small

sampling from the distribution.

In the Cauchy sampling experiments, samples were selected from

each of two populations, HI and H 2:

TI: x' = 'x2 x V x4 , All x.Is are independent and1 =(xI, x,3, x 5,X). Al 1

distributed as Cauchy random variables (H-1(1 + x?)-)

1 2: Y (pxl) % MVN(2,I), where 2' = (2, 2, 2, 2, 2)

In the uniform sampling experiments, samples were obtained from

each of two populations Hi and I2:

TI: -' = (xI, x2 , x3 , x4, x.). All xi's are independent and

distributed as uniform, U(-l, 1) random variables

12: y%1 MVN(v,I). P = 0, 1, 2.

In one experiment HI was as above, butI

12: ' = (YI' y2, y3, y4, y 5 ). All yv's are independent and

distributed as U(O, 2) random variables.
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The sampling experiments are described in more detail in Table 26.

The results of using Kendall's method are given in Table 27, and the

results of using LDA in Table 28. A comparison of the results is given

in Table 29. In experiments 1, 2, and 3, HI is Cauchy and fl2 is

multivariate normal. In experiment 1 there is a relatively large

separation between the means. Kendall's method and LDA give comparable

Svalues, but LDA gives the rather large P*(2,1) value of 0.3]. In
T

experiment two the sample size is increased from 20 to 100. Now only

2% of population two is classified using Kendall's method since with the

larger sample size there is more mixing of the samples from the two

populations. In experiment three there is an allowed probability of

misclassification, PA1 = PA2 = 0.05, and more of the sample can be

assigned.

Experiment one can serve as an example where Kendall's method

would be preferred to LDA if the maximum probability of misclassification

were of concern.

In experiments 4, 5, and 6, R 1 is U(-1,1), and E2 is multivariate

normal. In experiment four, LDA is, of course, not applicable, since

there is zero mean differences between the populations. However,

experiment four would indicate the superiority of Kendall's method for

small mean differences. In experiments five and six the mean

differences become increasingly large and LDA performs better. In

experiment seven R1I is U(-1,1) and R12 is U(0,2). Both Kendall's method

and LDA perform well, but LDA gives the lower probability of

misclassification.

All of the distributions in the examples considered so far hE.ve

been symmetrical. Two sampling experiments were done using

M 'V i
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TABLE 26

DESCRIPTION OF SAMPLING EXPERIMENTS
FOR NON-NORMAL DISTRIBUTIONS

C: Cauchy; U: Uniform; n 1 , n 2 :

sample sizes; PA1 , PA2 : allowed

probabilities of misclassification

Experiment
Number Description

1 1 1=C, I2 = MVN(2,I), n = n2 = 20I1 2 1-2

2 f = C, H2 = MVN(2,I), n 1 = n2 = 100

3 nI = C, T2 = MVN(2,I), n1 = n2 = 100; PA1 PA = .05

1n (zmn V(,) 2I 1 2 1 20

4 1 = U(-II), H2 = MVN(O,I), n 1 = n2 = 20

5 fI = U(-1,1), H2 = MVN(l,I), n, = n2 = 20

6 H,~ = U(-1,1), n 2 = MVN(2,I), n 1=n 2= 20

711 = U(-1,1), H2 = U(0,2), n1 = n2 = 20

•'•," • " ••.• m.••, .• 1 2-• •" •o'• O,2_)•'••'I,n•'i~•.'""n' 2 20• •% .'•.
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TABLE 29

COMPARISON OF THE RESULTS OF SAMPLING EXPERIMENTS
WITH CAUCHY AND UNIFORM DISTRIBUTZICNS USING

KENDALL'S METHOD AND LINEAR DISCRIMINANT
ANALYSIS

Experiment
Number Method P*(2,!) P*(1,2) PT

1 K .148 .137 .143

LDA .311 .047 .179

2 K .003 .020 .012

LDA .297 .046 .172

3 K .027 .080 .049

4 K .422 .201 .312

LDA .422 .552 .487

5 K .132 .197 .165

LDA .045 .164 .105

6 K .055 .089 .072

LDA .000 .020 .010

7 K .123 .121 .122

LDA .036 .031 .034

distributions which were not symmetric. In experiments eight and nine,

the populations were as follows:

S f: =' (Xlx2'x3,x',x5x): All x.'s are independent,

lognormally distributed, In x. N(0,1).
1



1: Same as ft except the lognormnal distribution is shifted by2 1

u, where u = 1, 2 in experiments eight and nine,

respectively.

The results, summarized in Table 30 indicate the distinct super-

iority of Kendall's method in experiment eight. The two methods

perform comparably in experiment nine when there is larger mean

difference between the two populations.

";-,T ,T "".,," '• "/. •_L ]•.i•,,.~,"t- . '',,-'''. ./'
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CHAPTER IV

COMPARISON OF THE PROBABILITIES OF MISCLASSIFICATION
FOR THE LINEAR DISCRIMINANT FUNCTION DETERMINED

FROM THE SAMPLING EXPERIMENTS WITH THE
THEORETICAL VALUES OBTAINED BY
1) GILBERT, 2) OKAMOTO, AND

3) LACHENBRUCH.

4.1 Comparison with Gilbert's Results

Gilbert (7) has considered the effect of unequal variance-

covariance matrices on Fisher's linear discriminant function. She has

calculated the probability of misclassification RP(2,1) + (l-I)P(I,2) as

a function of R (the a priori probability that a sample comes from

population 1), T 2, and d in the case E2 = dZl. No work was done,

however, in determining the probability of misclassification when the

population parameters are estimated. The results of some of the

sampling experiments already considered in this thesis may be used to

provide the expected value of the probability of misclassification when

the population parameters are estimated.

Consider two populations, 11 ^ MVN(I jZI) and x ' MVN(p ,dE1).

Choosing an orthogonal matrix P such that PEP' I and using the
transformation yi = P(x. - 1'), the distributions may be expressed in

the canonical form 2L % MVN(O,I), y2 - MVN(v,D), where

D = Diag(d,d,...,d). The total probability of misclassification is

minimized by the rule which assigns an observation to population two

whenever log [(1 - R)f2 (x)/Tf 1(x) > 0 and to population one otherwise.

58
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Using the linear discriminant function, an observation is classified as

population two whenever

p

R + (1 - l)d Yi > C (24)
i=l

and to population one otherwise. The expression on the left side is

distributed as

P
N(O, v?/[E + (1 - R)d] 2 ) (25)

i1l

in population one and as

p
N(Zv?/[R + (1 - H)d], vd/[R + (1 - T)d] 2 ) (26)

i1l

2in population two. The Mahalanobis distance, T , is

V,[lI + (1 - H)dI]-lv = Ev?/[H + (1 - RMd] (27)

Hence, P(2,1) = 1 - 1([En + (1 - H)d]/T 2 )½C1 (28)

and P(1,2) (D ([n + (1 - 2)d]dT2½(C T2)J (29)

where V(z*) = P(Z < z*) and Z n N(0,1)

The cutoff point C is chosen to minimize the total probability of

misclassification. Gilbert finds that
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C d 1 T2 + WdT 2)1 1 T 2+ + (d -1)d (log d + 2 log T~I-1)111- i- d R + (1 + (i

when d 1 1 (30)

C 2-T + log [H/(l - H)] when d 1 (31)2

Gilbert notes that the only instance when the optimal cutoff point is

not given by equation (30) or (31) is when assigning all the obser-

vations to the same population yields a lower total probability of

misclassification.

For the case in which we are interested,

= (1 - P)I + pEpp1

2 = a 2 [(i - p)I + pEpp]

and d = a2. T2 has been previously calculated when "1 MVN(O,E]),

__2 ",. VN(_2 E2), using equation (23). Since T2 is invariant under

linear transformations, this value may be used in equations (30) and

(31) to calculate P(2,1) and P(1,2). For the analysis in this thesis,

1
T = 1 always, so

P(2,1) = 1 - ¢I([I + 02]/2T2)½Cj (32)

P(1,2) = i ([l + 02]/2a2T2)!5 (C - T2) (33)
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where now

C 1. T2 _± oT T2 + 2(02 - 1) log 02
1-02 1 + a2

a2 1 (34)

C 2T2  o2= 1 (35)

Gilbert tables the values of the total probability of misclassi-

fication for selected values of 9, T 2, and d. The particular values of

o chosen in this study resulted in T2 values which were not tabled.

Equations (32) and (33) were used to calculate P(2,1) and P(1,2) and

the probability of misclassification,

P~ P(2,1) ,. P(1,2) .(36)
PT 2

The results of these calculations are given in Table 31.

In Table 32 the theoretical values of the probabilities of

misclassification for linear discriminant analysis are compared with

the sampling experiment results.

From Table 32 it is seen that, as expected, T underestimates

and in most cases P(2,1) underestimates P(2,1), and P(k,2) under-

estimates P(1,2). It should also be noted that iT is a poor estimate

of except in the cases when the sample size is 100 (denoted by a
pi iT
prime in Table 32).

,-• ..f, '•r NX-- of.'
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4.2 Comparison of the sampling experiment
results in the cases El = E2 with the results
of Okamoto and with the results of Lachenbruch

It is interesting to compare the PT values with those which may

be obtained in a different way. Okamoto (27) has derived an asymptotic

expansion for the distribution of the linear discriminant function

statistic W (the distribution of the sample discriminant function). In

the particular cases of interest in this thesis, the expansion is

S1T al a.2 a3
Pr fW < Ond = 4(- 1) + a + n2 + -A

2 n I n 2  n

bb b b b b
+ 11 + 22 + 12 + b13 + 23 + 33 + 0 (37)

r 2  n2  njn 2  n1n n 2n n 2

1 2

where nI and n 2 are the sizes of samples from populations UI and H29

respectively, and n1 + n2 - 2 = n. In Table 1 of his paper, Okamoto

gives the values of the coefficients for a number of values of p,

including the case of interest to us, p = 5, and for a number of T

values, T = 1, 2, 3, 4, 6, 8. The particular T values in our case are

not included in the Table, however. In order to obtain a highly

accurate result, the coefficients should be calculated for these

particular T values. Okamoto's expansion has been applied to the

cases in Table 32 using, however, Okamoto's tabled coefficients for the

T case closest to our particular T values. The results of the calcu-

lations are given in Table 33. It can be seen that the PT values

obtained in the sampling experiments and the P values calculated

using Okamoto's asymptotic expansion are very close.

N.. *~
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TABLE 33

COMPARISON OF PT VALUES
T

* P

Experiment Sampling T T
Number Experiment Okamoto Lachenbruch

11 .300 .310 .302

13 .203 .198 .209

13' .177 .180 .181

14 .122 .125 .127

16 .042 .037 .045

Lachenbruch (4) provides another way to calculate PT" He con-

siders the sample discriminant function

Ds(X) = [x- 1l + _ - -1 (38)

which is conditionally (on xl, x 2 , and S) normally distributed and has

mean (in the kth group)

DS. -k 2-1 - - - 1 - 23:-1.1 + x2)]S _L ?L2)9

and variance (in either group)

n - l )IS• 1 E 1 G,- (40)

D 11 ?L2u~ 2L2~
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He finds that

nr1 + n 2-2 2(_l)k+l p(n 2 - n1 ) (41)

E[DS(W)] 2(nn1nn2-p- 3) n 1n 2

2 p(nl1 + n 2)nn

E[VD] [T2 + 1 n 2

(nI + n2 - 3)(nI + n 2 - 2)2

S(nI + n2 -p- -2)(n + n2 - p - 3)(nI + n2 -p - 5)

(42)

For n1 and n 2 sufficiently large, the unconditional distribution is

very close to normal, and

P1 ; I E[-Ds( JE)]/[ E(VD)'I (43)

and P 2 =0• IE[Ds(h 2 )J/ [E(VD)]"I (44)

wili supply approximate values for P1 and r2, where

P1 = P(Ds (x) < 0 jxsly1) (45)

P2 = P(Ds(x) > 0 JxCI2 ) (46)

Equations (41), (42), (43), and (44) were used to calculate P by
T

Lachenbruch's method. The results are given in Table 33. The methods
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of Okamoto and Lachenbruch both agree well with each other and with

the results of the sampling experiments.



CHAPTER V

THE MODIFIED BARTLETT AND PLEASE METHOD

5.1 Introduction

Bartlett and Please have obtained a linear discriminant function

in the case of zero mean differences when the variance-covariance

matrices are of the form considered in this thesis, i.e.,

E, = (U - p )I + P1Epp

E2 = 02[(l - p 2)I + P 2Epp]

In the case of zero mean differences it is of interest to compare

Kendall's order-statistic method or variation thereof, with this

Bartlett and Please method. However, the cutoff point which they

obtain for equal probabilities of misclassification is shown to be

incorrect. This chapter will be concerned with the development of a

modified Bartlett and Please method which does provide equal prob-

abilities of misclassification. In section 5.4 this modified Bartlett

and Please method will be compared with Kendall's method.

5.2 Derivation of the Modified Bartlett and Please Method

Let us consider two populations

68
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fi(x) "MVN(oEi) (i - 1,2) (47)

where

= o2j(1 - pi)I + PiEpp (i = 1,2) (48)

A discriminant function may be derived by considering the likelihood

ratio principle:

If f 1 (x)/f 2(x) > . assign to Hl (49)

Expanding the ratio, using the logarithmic transformation,

In exp[-½ýx fZ1  1xi / xp[-½'O" E 2 ]l 1[( 2l1)P/21 1:½ / ( 2 n)P/21E1 j

= .-1 T- -1,-l - in 1 + 1 'E-lx >_ lnX (50)

lnlz I + x_' x_ - lnjl I - _x'Elx < - 21nX (51)

When Z, = Z it is a well-known result that X = 1 provides equal] 2

probabilities of misclassification. Bartlett and Please have inad-

vertently assumed that X 1 also provides equal probabilities of

misclassification when E 1 E 2" When A = 1,
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1,2L - 2•_ ,.-1 x < -lnlzll + lnlE2 1 = ln(lE2 1/1Z11) (52)

In the particular case that we are considering, a2 = 1, a2 = a2, so
12

if xZ.1x - x'Z 1x < p in a2  assign to H (53)
_ - 2- X

The discriminant function equation (53) may be written in the form

az - bz 2 = K* (54)

where z= _x'x z2 = (E lX) 2  Elp = (1,,...,)

1 1
- -1 

2(l - 02 (55)

b - 1 1 (56)
1 - p1  1 + (p - l)p 1  o 2 (l - 02) 1 + (p 1)P2

When P, = P2 = p, the discriminant function becomes

0 +2= (I - p)p in a2Zl + + p -1) = - ! (57)
1 1 + (p - l)p 2 2.

a
2

As noted earlier the cutoff point given by the right side of equation

(57) does not provide equal prob.abilities of misclassification. Using

this cutoff point, however, the Bartlett and Please rule is
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If Z - p <(1 _)p in a2 assign to n (58)
1 1 +Tp- Tp- Z2 - __1

a2

if Z p> (l P)p in u2 ign to T(
1 1 + (p - i__ a 1 2

a2

A method for obtaining the cutoff point which does provide equal

probabilities of misclassification now will be developed. It may be

shown that

U = oZ?( - )X2 (60)1 1 I + (p - 1)p 2P

Hence the rule becomes

Assign x to RI when U < K (61)

Assign x to l when U > K (62)-- 2

with K to be determined so that there are equal probabilities of

misclassification. The probabilities of misclassification are:

a,1 = ff 2 (x)dx; a 2  f f(x)dx (63)

U<K U>K

For a2 1, 02 = 02, these become
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K/1-P Go f

f0p(w)dw and a = f0p(w)dw, (64)

"0 K/o 2 (1-p)

respectively, where Op ', X2().

The correct procedure for equal probabilities of misclassifi-

cation would be to choose that value of K which makes the two integrals

in (64) equal.

Now the function az2 - bz may be written as
2

w= a(l- p.)a. X2  + (a- bp)o. I). + (p- l)Pi x2 (65)p-l i p-i

and therefore,

E() a(l- •i)c2(p- 1)+ (a - bp)a? 1 + (p - 1)Pi = fi (66)

Vi)224 22 1) + 2(a bp)2 1i + (p - igo.

(67)

Then

f.W f_2
_1 ')IX2 -

f2K/g 2

_r(,i Kfx con'es from IT2) = Jon 2 (•)c• (68)

'rW do
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a2 = Pr(w > Kjx comes from RI1 ) = fOn 1 ()d•K (69)

f 1K/g 1

The value of K is to be chosen so that the two integrals in (68)

and (69) are equal. The procedure used to find the value of K was a

Newton-Raphson method. To solve the equation H(x) = 0, a sequence of

x values are calculated:

S(x.)i (70)

xi+l :x -x H'(x.)
1

When the difference between xi+1 and x. becomes acceptably small,

the xi+1 th value will be the solution of the equation. Here

f 2 K/g2 00

H(K) = 0n 2 ()dE - f~n 1c'DdE (71)

-0 ~f 1K!g

dH(K) f h(K) 2 n2 1+ f-On . (72)dK g2 = g--2 / g2 1  g /
____- 02 2 ~k (72

The parameters are estimated by the following procedure:

n.1

Let IZ2r = Ai (i = 1,2) (73)

r=!
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n

3r

where

Z3r =Zlr -Z 2 r/P (75)

Then

E(A.) = fiP 1 + (P - l)pi ni (76)

E(B.) = c2(1 - p.)n.(p - 1) (77)

Hence

(p-1)(A . -B) -B..

2 estimates 1 - (78)iPp2B. •
1

The estimated function is

a - Z (79)
1 2

where

11(p - 1) n2 (p - 1)
a - B B (80)

(p - 1)(AI- BI BI Pn (p - 1)(A9 - B) - B2

p 2

(p - 1)A, - pB, n , (p - 1)A,• - pE,, n,
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Lachenbruch ( 2) has developed an excellent method for

determining the probabilities of misclassification in linear discrim-

inant analysis. In this method, one observation is omitted from the

sample used to calculate the discriminant function and the discriminant

function is then used to classify the omitted observation. This is

done in turn for each observation. The number of misclassifications

provides a good indication of the probability of misclassification.

Lachenbruch's method provides a much better estimate of the probability

of misclassification than is provided by the resubstitution method, in

which the entire sample is used to calculate the discriminant function

and this function is in turn used to classify each of the observations.

A method related to that of Lachenbruch is developed in this thesis

and this .,ethod is compared with the resubstitution method. It is not

strictly a Lachenbruch method since the cutoff points for equal

probabilities of misclassification are not recalculated each time an

observation is omitted from the sample. Let

g_ Zl - br Z2  (83)

be the estimated function omitting the rth observation from H1,

where

(nI - l)(p - 1) n 2 (p - i)a= (84)
r (B1 Z3 r) B2

S .. .. 5 .5l
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(p - 1)(A1 - z 2r P(B 1 Z3r (n1 -
r p(B1 - Zs3 ) (A, - Z2()

(p - 1) A2 - pB2  n2

pB 2 A (85)P2 A2

Similarly, let

h aZ -b bZ (86)
r rilr r 2r

be the estimated function omitting the rth observation from H29

where

a _ nl(p -1i) (n2 - 1)(p -1 (87

r B(B -87)
1 2 Z3r)

(p -1)A 1 -pB nl

b - 1* (88)
r = pB1  A1I(8

(p -)(A 2 -Z 2 )- p(B2  Z3 r) n2 -1

p(B 2 - Z3r) A - 2r

5.3 Application to an example considered by Bartlett and Please

Bartlett and Please considered the problem of discriminating

between monozygotic and dizygotic pairs of twins. Ten variates were
"- - -- ,• '<.- nA s .pts of twins were considered. There

- S ... .... ..,
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were 15 samples each from the monozygotic and dizygotic male twins and

15 samples each from the monozygotic and dizygotic female twins.

The values of a2 and pi estimated from the samples were as

follows:

Case I (Females) &2 = 3.760 p1 = p2 = 0.160

Case II (Males) ;2 = 2.236 P1 = P 2 = 0.223

These two cases considered by Bartlett and Please were reexamined.

Random samples with parameters equal to the estimated parameters of

Bartlett and Please were generated. Experiments with total sample

sizes of 30 and 200 were performed under a variety of conditions. All

experiments were repeated 10 times for each set of parameters and set

of conditions. The two general cases considered then were

Case I: a2 = 1 02 = 3.7612

P, = P2 = 0.160 p = 10

Case II: a2 = 1 a2 = 2.2361 2

P, = P2 = 0.223 p = 10

Solving the equation H(K) = 0 yielded the following values of K

with corresponding values of a.

Case I: K 12.38, a, = a 2 = 0.077

Case II: K = 8.03, a, = a2 = 0.176,
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where K is the cutoff point for the discriminant function

aZ1 - bZ2 = K

Values of a and b were calculated from Equations (55) and

(56).

Case I: a = 0.87386

b = 0.05730

Case II: a = 0.74212

b = 0.05504

The cutoff point, K*, in the Bartlett and Please discriminant

function

aZ - bZ2 = K*

is equal to p'loge a2, so for Case I it is 13.24 and for Case II it is

8.60. Using these cutoff points, the true probability of misclassifi-

cation may be calculated directly from the equations

f 2K/g2

a f n2 ()dE (89)

"0

2t On Jn(E)dE (90)

fIK/g I

*%*.*I*A*... *..



These values were found to be as follows:

Case I: a, = 0.096

a2 = 0.054

Case II: o1 = 0.211

a2 = 0.136

The values of a and a2 estimated by Bartlett and Please from their

data were a, = 0.13, a 2 = 0.00 for Case I and a = 0.47, a2 = 0.27 for

Case II.

The four discriminant functions,

Equal Probability Misclassification

Case I: 0.87386Z1 - 0.05730Z2 = 12.38

Case II: 0.74212Z1 - 0.05504Z2 = 8.03

Bartlett and Please Method

Cace I: 0.87386Z1 - 0.05730Z2 = 13.24

Case II: 0.74212Z1 - 0.05504Z2 = 8.60

may be expressed in the form used in the Bartlett and Please article

-- "
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Equal Probability Misclassification

Case I: Z1 - 0.06557Z2 = 14.17

Case II: Z1 - 0.07417Z2 = 10.82

Bartlett and Please Method

Case I: Z1 - 0.06557Z2 = 15.15

Case II: Z1 - 0.07417Z2 = 11.59

Using the calculated values of K and K*, the Lachenbruch method

may be evaluated by comparing the a1 and a2 values obtained by this

methnd with those estimated using equations (68) and (69). The resub-

stitution method was evaluated in a similar fashion also. In addition,

both the Lachenbruch and resubstitution methods were used in

conjunction with cutoff points K and K* which were estimated from the

data. The results of all of these experiments are summarized in

Tables 34 and 35 for Cases I and II, respectively. The symbols used in

the tables are defined as follows:

a.: Calculated by Lachenbruch method

a.: Calculated by Resubstitution method

.- : Calculated by Lachenbruch method with K estimated fromsample

- --"- " ." V--J, J• F. . ... " -" - "
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TABLE 34

SUMMARY OF SAMPLING EXPERIMENT RESULTS
WITH BARTLETT AND PLEASE AND

MODIFIED BARTLETT AND
PLEASE METHODS

Case I (02 = 3.760)

K Theoretical

Type N. aI O2 a 12 l2

Eq. Pr. 15 .077 .077 .120 .087 .080 .087

Eq. Pr. 100 .077 .077 .086 .073 .083 .074

BP 15 .054 .096 .073 .100 .053 .100

BP 100 .054 .096 .064 .094 .056 .094

K Estimated

1 1 2 1 2

Eq. Pr. 15 .093 .060 .053 .073

Eq. Pr. 100 .083 .072 .082 .079

BP 15 .073 .080 .047 .087

BP 100 .062 .093 .055 .094

p.,

%*O -& ,
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TABLE 35

SUMMARY OF SAMPLING EXPERIMENT RESULTS
WITH BARTLETT AND PLEASE AND

MODIFIED BARTLETT AND
PLEASE METHODS

Case II (W2 = 2.362)

K Theoretical

Type Ni a 12 a1 a2 1 2

Eq. Pr. 15 .176 .176 .240 .133 .194 .153

Eq. Pr. 100 .176 .176 .172 .163 .166 .164

BP 15 .136 .211 .213 .174 .133 .200

BP 100 .136 .211 .145 .197 .139 .199

K Estimated

Type N. 2* &* & &*
1 1 212

Eq. Pr. 15 .233 .153 .167 .147

Eq. Pr. 100 .174 .157 .169 .157

BP 15 .180 .187 .127 .194

BP 100 .122 .187 .132 .187

_______________________________________________ .
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Comparing a. and a. it can be seen that the resubstitution1 1

method gives better results than the Lachenbruch method, probably

because the estimation procedure used in the latter method is poor.

The differences between the performance of the various methods

may be seen more clearly by comparing the values of

1al - [a + - (91)

where [a.] may be i., , a.*, or .*. The value of this expression iswee[ima ei'e'1 1 "

denoted by D, D, D*, or D*, depending on the [ai] used.

The values of D are summarized in Tables 36 and 37. The super-

iority of the method of resubstitution is quite apparent for the

smaller sample size, although the two methods provide comparable

results for the larger sample size.

In the case of estimated cutoff points, the procedure used was

not actually a Lachenbruch method, since the cutoff points were not

recalculated for each sample after a Darticular observation had been

deleted. This could have been done, but the amount of computation

would have been increased considerably. For example, with a sample

size of 200 the equation H(K) = 0 for the equal probability case would

have to be solved 200 times. Although it is doubtful if this refine-

ment would improve the results for the 30 sample size case, some

further study will be devoted to it. However, the value of this

method as a practical approach would be questionable even if some

improvement resulted. This Lachenbruch method would be improved

substantially only by impro ing the estimation procedure for a and b
r r



84

TABLE 36

COMPARISON OF ERROR PROBABILITIES ASSOCIATED
WITH BARTLETT AND PLEASE AND MODIFIED

BARTLETT AND PLEASE METHODS

Case I (W2 = 3.760)

Type N. D D D* D*

Eq. Pr. 15 .053 .013 .033 .028

Eq. Pr. 100 .013 .009 .011 .007

BP 15 .023 .005 .035 .016

BP 100 .003 .004 .011 .003

Case II (a2  2.362)

Type N. D D D* D*
1

Eq. Pr. 15 .107 .041 .080 .038

Eq. Pr. 100 .017 .022 .021 .016

BP 15 .114 .014 .068 .026

BP 100 .023 .015 .036 .028
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5.4 Comparison of the Modified Bartlett
and Please Method with Kendall's Method

The Modified Bartlett and Please method was applied to some of

the data sets obtained in the sampling experiments. The modified

method was applied to each of the 50 sets of samples and the results

averaged, just as has been done in all of the previous sampling experi-

ments discussed so far. The results are given in Table 37. K, as

before, refers to Kendall's method; K(PC), to Kendall's method with

principal components, and MBP, to the modified Bartlett and Please

method. The method of resubstitution was used to obtain P(l,l) and

P(2,2) for the latter method.

TI e excellent performance of the modified Bartlett and Please

method is evident from Table 37. The principal components transfor-

mation was applied in the case pl = .9, P2  1 .1, and, although the

performance of Kendall's method was improved considerably, the modified

Bartlett and Please method was still superior.

't is, of course, unfair to compare Kendall's method to the

modified Bartlett and Please method in cases for which the latter

method was designed. It would be interesting to compare Kendall's

method to the modified Bartlett and Please method when there actually

was a small mean difference.
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CHAPTER VI

COMPARISON OF KENDALL'S METHOD WITH
OTHER NONPARAMETRIC TECHNIQUES

6.1 Successive Screening

Feldman, Klein, and Honigfeld (28) have developed a discrimination

method which is quite similar to Kendall's order-statistic method.

Referring to their hypothetical example given in Table 38, their method

can be explained. It is desired to separate out Group B. For scores

of four and above, the ratio of Group B to Group A is 10/1; for three

and above it is 25/10. The cutoff point for the parameter is that

value for which the ratio of Group B to Group A is largest. Each

parameter is examined in like fashion and that parameter giving the

highest ratio is selected. All samples with that parameter value

beyond the cutoff point are eliminated from further consideration, and

the procedure is continued on the remaining samples using the remaining

variables. The procedure stops when the maximum ratio at any stage

falls below a specified limit.

In Kendall's method the cutoff point is chosen so that samples

from only one of the populaticns are beyond the cutoff point or else,

using the allowed probability of misclassification, that only a

specified number of samples from the other distribution are allowed. In

Kendall's met:hod separation of samples from each of the two populations

is equally important.

87
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TABLE 38

HYPOTHETICAL DISTRIBUTION OF ITEM RATINGS
FOR TWO DIAGNOSTIC GROUPS (FROM

FELDMAN, ET AL (29))

Ordinal Scale

1 2 3 4 Total

Group A 30 20 9 1 EO

Group B 30 25 15 10 80

It would reouire only minor changes in Kendall's procedure to

obtain that of Feldman, Klein, and Honigfeld. What would be the

advantage of modifying Kendall's method in this way? In the case in

• !ich the var~abler are cn an ord;ial scale '.ut only a --ma]l number of

values are possible, such as in rating a personality trait or opinion

on a scale from 0 through 10 in increments of 1, there may be consid-

erable overlap in samples from the two populations; frequently there

would even he complete overlap. :n situation- like this, modifying the

Xendall order-statistic method to incorporate the Feldman, Klein, and

Honigfeld ideas would be advisable. Since Kendall's method is more

generally applicable than that of Feldman, Klein, and Honigfeld, and

since only minor modifications of the computer program based on

F'endall's method would be needed to incorporate this optional method,

it would ap;ear more advantageous to make this modification than to

have two different methods available in the form of separate, but quite

similar computer programs.

Feldman, Klein, and Honigfeld list eight advantages in the use of

successive screening in medical work. These eight advantages are
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quoted here since the same claims may be made for Kendall's order-

statistic method:

1. No restrictions are placed on the data distributions or the
0oint distributions.

2. The categories are polythetic, i.e., members of the same class
need not have even a single trait in common, but must exhibit a
minimw, numLer of alternative trait set members. To some degree
this resembles the ambiguity that occurs with keys formed by
the summation of weighted items, but the successive screening
method stiDulates a specified minimum intensity for any trait to
!-e of consequence in the discrim.nation.

3. Pat !.,, sir , -.i be ea..yI recognie:, bnt, in gcneral,

classification is made by sign pattern.

4. Certain classes may be 'ruled out' by certain traits.

5. Ordinal traits may have both extremes used for the same effect,
a iU-shaped relationship of classification to trait can be

utilized.

6. The successive screening technique is essentially a counting
procedure and does not utilize mathematical procedures that
depend on interval or ratio scales.

7. The procedure makes easily inspected prima facie sense and does
riot involve such obscurities as suppressor variables.

8. The model systemitizes the sequential screening approach of
clinical diagnosis but avoids the problem of making serious
misclaszifications through single measurement errors, by using
multiple alternative traits at each decision point.

6.2 Henrichon and ru Algorithm

There is another nonparametric discriminant analysis technique

which has been well received by specialists in pattern recognition (29),

although it has not been reported in the statistical literature. This

is the Henrichon-Fu technique (30, 31) which will now be explained.

Consider first the univariate case with two populations HI and H2' Let

= (Xl,x 2 , ... ,xnI) te a set of independent observations from flH and
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x. (yly 2 ,.". ,Yn2) be a set of independent observations from !12. The

x and y observations are represented respectively by a) and b) in

Figure 2 below.

Step 1. (Figure 2,c) - Combine the x and y observations and

order the set xUy according to increasing numerical value. Partition

the set _Uy so that there are K samples in each cell. In Figure 2,

K 5.

Step 2. (Figure 2, d and e) - Let C(i = 1,2) be the cost of

misclassifying an observation from R .(i = 1,2) and let C be the cost

of not classifying an observation. In Figure 2, C1 = C2 = 6, C0  1.

Count the number of x's and y's in each cell and assign to Hfl, '12 or

%0 (unclassified) according to the following:

If I2
Min C (no. of samples from nl < C CK

1=

j #i

then assign to fH. (i=1,2).

Otherwise assign to IIO.

Then combine adjacent cells of the same class.

Step 3. Adjust the cell boundaries by perturbing them a maximum

of X/2 samples in either direction and locate the boundary at the

point giving best classification (Figure 2, f).



0 0

0

0
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Step 4. For any remaining cell with less than K/2 samples,

dissolve the cell, placing the samples in the cell into adjacent cells

in such a way that there is the smallest increase in misclassification

(Figure 2, g).

Step 5. Repeat Step 2. For this final partition compute the

empirical classification statistic, or Score:

2
Score = YiC. (No. of samples misclassified from II.) (92)

izl

+ CO (No. of unclassified samples)

The procedure is extended to the multidimensional case by cal-

culating a score for each variate and selecting the variate with the

lowest score first. After the space has been partitioned with this

first variate, the resulting cells are further partitioned using the

variate with the second lowest score. This procedure is continued until

there are no new cells formed.

The Henrichon-Fu algorithm is similar to the Kendall algorithm.

In the Kendall method observations once classified using a particular

variable are removed from further consideration in examining any other

variables. In the Henrichon-Fu algorithm the observations are not

explicitly removed from further consideration once they are classified

as TI1 or H2' but this is indeed the effect. Only II0 cells resulting

from the use of a variable are further partitioned when the next

variables are considered.
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If we consider these two techniques applied to two unimodal distri-

butions, then they are quite similar. Consider the Kendall method with

no initial misclassifications allowed. The Henrichon-Fu algorithm with

C1 and C2 very much larger than C0 would cause all cells with at least

one observation differing from the rest to be labelled Hl0, producing the

same effect. For any selections of allowed probabilities of misclass-

ification with the Kendall method the same results could be produced

with the Henrichon-Fu algorithm using suitably chosen values of Co, Ci,

C2 and K.

The superiority of the Henrichon-Fu algorithm becomes evident when

multimodal distributions are considered. Referring to Figure 3, it can

be seen that Kendall's method would be useless but the Henrichon-Fu

method would be appropriate. Another point in favor of the Henrichon-Fu

algorithm is that it is readily usable with more than two populations,

but the Kendall method in the present form is usable only with two

populations.

Figure 3. Hypothetical Case When Kendall's Method
Would Not Perform As Well As the
Henrichon-Fu Method

#* ~. .... ... ~ . . . ~ r h'h~%:
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The Kendall method could still be better in the unimodal, two-

population case, since a poor choice of K with the Henrichon-Fu

algorithm could produce poor results. Of course the data could be

examined prior to use of the Henrichon-Fu algorithm in order to select

the best value of K. However, if there are many variates, each

requiring possibly a different value of K, the task could become

difficult. There is another important reason why the Kendall method

would still be preferred. This is the fact that Kendall's method is

easily used in routine discrimination, even without the use of a

digital computer.

In summary, for discriminating between two unimodal distri-

butions, the Kendall method may still be better, but for many other

cases the Henrichon-Fu algorithm promises to be a superior method.

Regardless of the advantages of the Henrichon-Fu algorithm in more

sophisticated situations, the Kendall method still has the distinct

advantage of being capable of being used without recourse to the

digital computer.

Even when the Henrichon-Fu algorithm is applicable it would be

interesting to consider the use of an initial Kendall method prior to

application of the Henrichon-Fu technique.

Further study of the Henrichon-Fu algorithm and its possible

modifications and a more complete comparison of the two algorithms ave

planned for future research.

6.3 Nearest Neighbor and Related Methods

Fix and Hodges (32) have considered a nearest neighbor method in

which a point to be allocated is assigned to the class of the nearest
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classified point in the p-dimensional space. Variations of this

method have considered allocating a point to the class of the majority

of the nearest points. The latter method is referred to as the

k-nearest neighbor decision rule.

Kendall (9) criticizes the nearest neighbor methods for generatirF

impossibly complicated classification regions when there is consider-

able mixing of the samples from the different populations, and this is

the situation of most importance.

Pelto (33) has developed a method which he calls adaptive non-

parametric classification. This method estimates probability densities

by counting known points observed within a hypersphere around the

point to be classified. The radius of the hypersphere is fixed to

minimize the expected loss of the decision rule.



CHAPTER VII

CONCLUSIONS

7.1 Summary of Results

1. Kendall's order-statistic method is a promising technique in

discriminant analysis. In cases where the LDF, linear discriminant

function, is appropriate, Kendall's method does not give much larger

error rates than are obtained by use of the LDF. In cases of multi-

variate random variables with symmetric distributions such as the

Cauchy or the uniform (both with independent random variables), or

multivariate normal random variables with unequal variance-covariance

matrices, Kendall's method gives lower error rates than those obtained

by use of the LDF for populations with small mean differences. It

gives comparable error rates to those obtained by use of the LDF for

populations with larger mean differences. However, in most of these

cases there is a relatively large portion of the index sample which

will not be classified. The multivariate lognormal (independent

variables) has been considered as a representative case of a multi-

variate random variable with a distribution which is not symmetric.

In this case Kendall's method provides much lower error rates than are

obtained by use of the LDF and most of the index sample is classified.

96
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2. Use of an allowed probability of misclassification in the

initial sample can greatly increase the portion of the index sample

classified, while raising the error rates only slightly.

3. Maintaining the Mahalanobis distance but reducing the

overlap of the component variates may sharply increase the error rate

using Kendall's method.

4. Error rates for linear discriminant functions estimated

from samples are compared with the theoretical error rates for a

number of cases of multivariate normality with unequal variance-

covariance matrices.

5. A modified Bartlett and Please method has been developed

which provides equal probabilities of misclassification. This has

been applied in a number of cases.

7.2 Future Work

Some interesting questions for future research would be

1. Extension of Kendall's method to more than two populations.

If A, B, and C denote three populations, one possible approach would

be to find which is most casily disc-iminated, A from B and C, B from

A and C, or C from A and B. That separation is then carried out. Then

discrimination could be tried between one of the two groups remaining

and the other group combined with the residual group from the first

separation.

SW•, • No " """- • ' • .- ""ý?•• •• %" " %" '••
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2. Investigation of The effect of allowed probability of

misclassification in Kendall's method. More work needs to be done on

the trade-off between increasing the acceptable misclassification level

and decreasing the portion of the sample unclassified.

3. Investigation of the effect of differences in sample sizes

in Kendall's method. This could be an important factor, particularly

if one sample size is much larger than the other.

4. Investigation of the effect of non-normal multivariate

populations on Kendall's method. This work is important in order to

develop a measure of the probabilities of misclassification to be

expected.

5. Investigation of the effect of unequal mean components on

Kendall's method, i.e., P'= (pI514 2,513,114 5,1 5 ), Iii not necessarily equal

to 1j. (i~j). In the one example considered in the study, maintaining

the Mahalanobis distance but changing the mean components strongly

affected the result.

6. Investigation of the effect of different values of p other

than 5. With smaller values of p discrimination will be reduced, but

the question is how much? With larger values of p, Kendall's method,

like linear discriminant analysis, may classify the initial sample only

too well, greatly overestimating the probabilities of classification

and underestimating the probabilities of misclassification.
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7. Consideration of the effect of the a priori probability

that a sample comes from a particular population. In this study equal

a priori probabilities have been assumed.

8. Further investigation of the Henrichon and Fu algorithm

and comparison with Kendall's method. As mentioned in the study, this

may be an improvement over Kendall's method. Professor Fu kindly has

supplied a copy of the latest version of his computer program.

9. Calculation of the probabilities of misclassification in

using Kendall's methods by means of nonparametric statistics such as

is done by Henrichon and Fu in their consideration of generalized

tolerance limits.

10. Study of the adequacy of the representation of

02[(1 - p)I + pEpp]

for variance-covariance matrices in general.

11. Improvement of the estimation technique in the modified

Bartlett and Please method.

V 1-
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