TN

- AN EVALUATION OF XENDALL'S ORDER-STATISTIC METHOD OF
N DISCRIMINANT ANALYSIS AND RELATED STUDIES
o
S »
Ie Stowart F. Musket
)
- Tochnical Repert Ne. 112
Depertment of Statistics ONR Ceatract

Reproduction in whole or in part is permitted
for 2ay purpose of the United States Government

This document has heen approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University
Dallas, Texas 75222




ey B ol

3 ke | :

Y O ,

4\9
\2

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




N

- UNCLASSIFIED

Secunty Classificati n

DOCUMENT CONTROL DATA - R & D |

Seunty classihication af “itie, bodv ot ahstract and indexing ann: *atjon must be entered when the ove:all report is classilied)
} ORIGINATING ACTIV Ty (Coarporate anthor) 28. REFORY SECURITY CLASSIFICATION
- SOUTHERN METHODIST UNIVERSITY UNCLASSIFIED

2b. GROUP
UNCLASSIFIED

3 MEFPORY TITLE

An Evaluation of Kendall's Order-statistic Method of Discriminant Analysis and
Related Studies

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report

S AU THORS: (First name, middie initiel, last neme)

Stewart F. Musket

8 MEPOAT DATE 78. TOTAL NO. OF PAGES 75. NO. OF REFS
November 27, 1971 108 33

88 CONTRACT OR GRANTY NO 8. ORIGINATOR'S REPORT NUMBER(S)
N00014-68-A-0515
5. PROJEC T NO 112
NR 042-26C

c. [N g“r:c':.:o:fﬂonf NO(S) (Any offrer numbers thet may be assigned

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited. Reproduction in whole or in part is permitted for any purpose of the

United States Government.
11 SUPPLEMENTAAY NMOTES

Bz

12. SPONSORING MILITARY ACTIVITY

h

¢ 4
» G

Office of Naval Research

~,
.

1y ApsSYRACT

LA AAL

N gy’
o asy

-

.

-
N

sle

7

Methods of nonparametric discriminant analysis, an example of which is Kendall's
order-statistic method, are of interest because two of the assumptions of linear
discriminant analysis, equality of variance-covariance matrices and multivariate
normality, are not acceptable in many applications. A number of sampling experiments
were preformed in order to evaluate Kendall's method and to compare it with linear
discriminant analysis on the basis of the expected values of the probability of mis-
classification., Two p-variate (p=5) populations, . and Hz, were considered and in
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most of the experi%ents the populations were assumed multivariate normal with variance} Bd\js
covariance matrices Zl = [(l-pl)I + olEpp] and Ez = 02[(1-02)1 + szpp], where Epp S;E;:
is a pxp matrix of 1's. A few experiments were performed also with multivariate NS T
Cauchy, uniform, and lognormal distributions (all variables independent). L

In some of the sampling experiments 21 = 0222, that is, one variance-covariance r“i .
'y
matrix is a multiple of the other. In these cases the expected values of the probab- afﬁi
ility of misclassification are compared with the theoretical probabilities of mis- N Q
classification determined by Gilbert (Biometrics, 25, 1969, pp. 505-515). N
Bartlett and Please (Biometrika, 50, 1963, pp. 17-21) have developed a method Ay
of linear discriminant analysis when there are zero mean differences between the two 1~
populations and I ((l-p.)I + p,Eppl and L_ = 02[(1- YI + p_Eppl. It is shown in ]
this paper that t%e linearldiscriminant func%ion which %hey ob%ain does not give equaﬁ ﬁ\“(
R
probabilities of misclassification. A method for obtaining the linear discriminant RASAS
function which does give equal prob. of misclassification is developed and applied. d:'&
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CHAPTER 1
INTRCDUCTION

The primary purpose of this study is ‘o compare Kendall's method
with linear discriminant analysis in cases when bcth the assumptions of
equal variance-covariance matrices and multivariate normality are valid,
and in cases when either or both of these assumptions are invalid. The
basis of comparison will be the probabilities of misclassification.

Consider two populations, H! and H?, and suppose that samples of
size ny and n,, respectively, are available from each population. Let
f£.(x) denote the density function of the random vector in M, It is
frequently assumed that fl(g) and f2(§) are multivariate normal with

means L. and Moo racpectively, and a common variance-covariance matrix

1

-

Z. The linear function which minimizes the probability of misclassifi-

cation is
_ | _ 1 _ . ty=1g..
(b = e )7 = F e, - )T, ), (1)

the linear diseriminant function, a form of which was flrst introduced
by Fisher in 1926 (1).
When the parareters are estimated, the sample discriminant

function is obtained:

) (2)
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“here

and

Tuch work har leen done in determining the probabilities of misclassifi-
cation in linear discriminant analvsis, particularly with respect to
tha sample discr’minant function (2,3,4,5,6,7).

le*hod:r of nornparametric discriminant analvsis are of interest
tecause, ac no*ed ahove, *the assumptions of multivariate normality and
enual variance-covarliance matrices necessary in linear discriminant
analysis freqguentlv are unacceptahle. if. G. Kendall (8, 9) has
suggested & methed of nenparametric diseriminant analyvsis, sometimes
referring tc it ac the "order-statistic" method. In this method the
variates are examined one at a time. Consider, for example, the ith
variate. Referring to Figure 1, this method may be explained. The

variate values from are indicated bv x's and the values from L by
o~

?}
y's. Below .4 there are four values from :1 and nene frem I . Above
.85 there arc three oh<ervations from H2 and none from ﬁ]. There are
thus seven values outside the region cf overlap. The lower and upper
cutoff points are .4 and .85, respectively. All of the variates are
examined in the same wav and +the variate having the largest number of
values outside the rerion of overlap is selected as the first

discrimina‘ion variate with the cutoff peints as the discrimination

cutoff points. 421 chrrpvations with values for that variate below the

ORI A LA
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Tigure 1. Illustrative Example of Kendall's !Method

lower cutoff peint and above the upper cutoff point are removed from
further consideraticrn; they have been ciassified. The procedure is
continued with the remaining observations and the remaining variates.
""en the procedure is finished a set of classification rules will have

been obtained. In this case Rule 1 would be as fcllows:

Rule 1 %, < W4 assign *to nl
-+
X, > .85 assign to 1
4« ®y < .85 see Rule .

Early in the study the statistical literature was searched for
examples of multivariate data which could be used to test the
feasibility of Kendall's method. A total of seven examples was found

and Kendall's meihod waz used with each of these data sets.

- . - - - - - - - - .. - - - - Y . - . » - A - - -
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I
In order to investigate the effect of unequal variance-covuriance

matrices, the following variance-covariance matrices were considered:

L = (1 - pl)I + o Epp (s)
- ~2 -
22 = o¢[(1 p,)I + szpp] (6)
(Epp is a pxp matrix of 1's) 1>p0,> - (p - l)-l

These were chosen because they are not uncommon in biolecgical and
psychological work and may be good approximations in many other
situations. Variance-covariance matrices of the form (5) and (6) have
been considered in a number of studies concerned with discriminant
analysis. In 1945 Beall (10) introduced an approximate method for
calculating discriminant functions, assuming equality of covariances
and variances, citing the earlier empirical evidence of Jackson (11)
that this was not unreasonable. Later (1946-47), Penrose (12) developed
the concept of size and shape components for the case Zl = 22 and
Py =P, In 1963 Bartlett and Please (13) considered the general case
of I, and 22 given by (5) and (6) above with zero mean differences
between the populations and applied the method to some measurements on
twins. A Bayesian analysis of the same problem was given later by
Geiser and Desu (14). Han (1968) (15) derived the discriminant function
in the case of unequal mean vectors and later (1969) (16) studied the
distribution of the discriminant function when Py =P,
Sampling experiments were performed using the variance-covariance
matrices 21 and Zz. Two p-variate normal populations, nl and Hz, were

and u

2 and variance-covariance matrices Zl

1

considered, with means u




v o .
LS TR
PCIC AP IFIR

- T T T TR T RS

5
and 22, respectively, in Hl and nz. In the experiments, Py pz, 02 and
¥, were varied; Eﬂ was always set equal to the zero vector. The value
of p used in ali experiments was 5.

Initial samples of :ize 20 (sometimes 50 or 100) from populations
Hl and HZ were generated and Kendall's discrimination rules were derived
from the initial sample. These rules were then applied to samples of
size 500 each from nl and Hz. The entire procedure was repeated 50
times, each time with nev samples. The same procedure, using the same
set of random numbers, was used with the linear discriminant function.
The average probabilities of misclassification provided e-timates of the
expected value of the probability of misclassification when these
discrimination procedures would be applied.

The results of the sampling experiments also provided the
necessary data to compare the empirical probabilities of misclassifi-
cation feor linear discriminant analysis with the theoretical values
obtained by Gilbert in the case 22 = dil, that is, when one variance-
covariance matrix is a multiple of the other.

Some sannling experiments have been done with multivariate non-
normal distributions (all variables independent). The particular
distributions considered, the Cauchy and the uniform, have been selected
because of the difficulty of distinguishing between these distributions
and the normal on the basis of a small sample. The lognormail distri-
bution was considered also, serving as an example of an asymmetric
distribution.

Another main purpose of this study is to develop a modified
Bartlett and Please method. These authors have ohtained a linear dis-

criminant function in the case of zero-mean differences when the

s W W _® » - » - - - -
TR AT 0 A A AT R NP I RN AP LN L R I RPN
IR A5 ¥ AR KRN IR AR NN (R AR R O T SR L AT (PG N TPy

o ® e

|
|



6
variance-covariance matrices are of the form already considered,

i.e.,:

™
"

(1 - OI)I + plEpp

™~
L]

2 -
ag?[(1 pz)I + oZEpp]

However, as A. Kshirsagar has noted, Bartlett and Please have not
correctly obtained the cutoff point for the function which provides
equal probabilities of misclassification. A procedure is developed in
this thesis which does provide this cutoff point. The procedure is
applied to the data considered by Bartlett and Please and the results
compared. The modified Bartlett and Please method is compared also
with Kendall's method in the case of zero mean differences.

Finally, a number of other nonparametric discrimination

procedures are examined and compared with Kendall's method.
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CHAPTER II

KENDALL'S NONPARAMETRIC DISCRIMINANT ANALYSIS METHOD

2.1 Description of Method
The simplest way to explain the order-statistic method is by

considering an example. Kendall (8, 9) used the Iris data of Fisher.

We will consider a multivariate example from geology. This example is
given by Krumbein and Graybill (17) and is based on the work of Link (18).
This example concerns discrimination between two carbonate subenviron-
ments: clear, shallow water, and abundant algae water on the basis of
two physicochemical variables and two measures of sedimentary texture.

The data is given in Table 1. Here Vl is the Eh below the interface,

V, is the pH below the interface, V

2
the phi standard deviation.

3 is the phi mean diameter, and Vu is
Consider now Table 2, in which the data for group 1 (clear,
shallow water) and group 2 (abundant algae water) have been combined and
the measurements of each variable separately have been ordered from low

tc high. Consider Vu. In the range .97 to 1.67 there is overlap in the

Vu measurements of the two groups. However, below .97 all of the
measurements are associated with group 1. Above 1.67 all of the
measurements are associated with group 2. There are thus a total of 13
V“ values outside the region of overlap - four associated with group 1
and nine associated with group 2. Examination of the data in Table 2

reveals that there are fewer observations lving outside the common

7
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TABLE 2

DATA OF TABLE 1 ORDERED FROM LOW TO HIGH VALUES
OF EACH PARAMETER SEPARATELY

Vl V2 \I3 Vu
Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Goup 2
-383 4.28 .13 .10

-264 4.30 .78 .56
-261 4.34 .82 .79
-235 B4y .88 .94
-225 4.60 1.22 .97
-224 4.74 1.37 1.01
-21u 4.80 1.52 1.08
-214 4.86 1.68 1.13
-214 4.89 1.70 1.13
-213 5.19 1.72 1.20
-200 5.42 1.90 1.21
-193 5.42 1.91 1.23
-174 5.53 1.93 1.30
-170 5.54 1.93 1.33
-158 5.65 2.01 1.4
-158 5.86 2.12 1.51
-157 5.86 2.1u 1.55
-107 5.86 2.17 1.57 1.60
- 79 6.10 2.31 1.64
- 76 6.29 2.31 1.67
- 45 6.56 2.38 1.78
- 36 6.86 2.41 2.22
0 6.92 2.51 2.43
3 7.08 2.59 2.72
43 7.22 2.85 2.79
48 7.56 2.90 2.8u
T4 7.92 3.14 2.86
83 7.97 3.16 2.91
104 8.36 3.52 3.20
110 8.93 5.30
.
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range of these variables than for Vu. This variable is then used for

the first discrimination rule

1. V, < .97 assign to group 1 (%)
v, > 1.67 assign to group 2 (9)
.97 < V, < 1.67 see Rule 2 (17)

(The number in parenthesis is the number of observations for which the
prior statement applies; e.g., there are four observations with

Vu < .97.)

The 13 cases discriminated by Rule 1 are then removed from further

consideration. The data remaining is given in Table 3. V3 is now the

most discriminating variable, so Rule 2 becomes

2. .97 ¢V, < 1.67
vV, < 1.2 assign to group 1 (u)
V3 > 2.17 assign to group 1 (1)
1.22 ¢ V, < 2.17 see Rule 3 (12)

The remaining data is given in Table 4. For Rule 3,

3. .97 <V, < 1.67
1.22 <V, < 2.17

V, < 4.86 assign to group 2 (2)

v2 > 7.22 assign to group 2 (3)

4.86 < V, < 7.22 see Rule 4 (7)

-'o 17 37 WSS N ‘.‘-'P' -y b’- - ‘*- e ..'.'.- TR T O I \' \'.-. LU YR LR U L SRS TR G R X
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TABLE 3

TABLE 2 DATA REMAINING AFTER DISCRIMINATING WITH Vu

Vl V2 V3
Group o Group 2 Gro'p I Group 2 Group I  Group 2
-383 4.34 .13
-264 4.60 .78
-261 4.86 .82
-224 5.19 .88
-200 5.42 1.22
-193 5.53 1.52
-158 5.65 l1.68
-158 5.86 1.70
-107 5.86 1.72
- 76 6.29 1.90
- 36 7.08 1.9
0 7.22 1.93
3u 7.56 1.93
43 7.92 2.01
48 7.97 2.12
74 8.36 2.17
104 8.93 2.38
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TABLE 4

TABLE 3 DATA REMAINING AFTER DISCRIMINATING WITH Vu AND V3

v1 V2
Group 1 Group 2 Group 1 Group 2
-383 4.34
-264 4.60
=224 4.86
-200 5.19
-193 S.42
-158 5.86
-107 5.86
~ 76 6.29
- 36 7.22
43 7.92
u8 7.97
T4 8.93

The remaining sample data is given below:

Y1

Group 1 Group 2

-383

-264

-200

~158 |

-107 |
43 ‘

74

N ," -......(.(. -'.._\..s*.*\._\.-.\ﬂ
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So, finally, Rule 4 is
4. .97 <V, < 1.67
1.22 <V, € 2.17
4.86 < V, < 7.22
v, < -26e4 assign to group 2 (1)
v, > -264 assign to group 1 (6)

Residual group: 0

Thus it is seen that all of the 30 samples have been assigned
correctly. Krumbein and Graybill in using linear discriminant analysis
have found that 7 of the 30 samples were misclassified. There is, of
course, concern here with the sampling variation. The set of rules
derived from this particular example may perform poorly when applied to

a new sarple. This problem is examined in detail later.

2.2 Application to Some Additional Examples in the Statistical
Literature
The statistical literature was examined for further examples of
multivariate data which could be analyzed by Kendall's method.
Cochran (19) had a convenient list of 12 numerical applications of
linear discriminant analysis reported in the literature. Few of these
papers were used, however, either because the data was not in a con-
venient form or else the vequired individual observation data was not
listed. A total of seven examples, including the Fisher Iris data,
were found finally; these are described in Table 5. One of the

examples, that of Krumbein and Graybill, has already been considered in

Section 2.1. In Table 6 there is a comparison of the results of
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TABLE S

VARIABLE AND POPULATION DESCRIPTIONS FOR DATA SETS
USED WITH KENDALL'S METHOD

AUTHOR

Fisher
a.
b.

C.

Beall

Tintner

Dempster

Krumbein §
Graybill

Mosteller &
Tukey

Beerstecher
et al
IS 2N,

VARIABLES

Sepal and petal
length and width

of Iris

4 psychological

tests

Length, amplitude,
rate of change, etc.,

in price cycle

Renal blood pressure
as a function of

time

Electrochemical
measurements of water
sample; grain size
and sorting measure-

ments

Word frequency

occurrence

Metabolic

measurements

POPULATIONS

2 species of Iris
Versicolor and Virginica
Setosa and Virginica

Setosa and Versicolor

Men and women

Consumers' and producers'

goods

Control group and treated
group of laboratory

animals

Water samples from two

carbonate environments

Papers by Hamilton and

Madison

Alcoholic and nonalcoholic

individuals
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applying Kendall's order-statistic method and linear discriminant
analysis to each sample set. Each of these examples, except the Iris
data, are discussed later. The notation N(i,i) used in Table 6 is the
number of observations from the ith population which were correctly
assigned to the ith population. The last column of Table 6 gives the
number of variates used in classification by Kendall's method.

These examples have been considered in order to examine the
feasibility of applying Kendall's method in a wide variety of different
situations.

Beall (10) - Four psychological tests were given to 32 men and
32 women [Table 7]. It is desired to find which test results differ-
entiate between men and women. Kendall's method results in the

following set of rules:

1. Vy > 28 assign to men (18)
V3 < 8 assign to women (3)
8 <V, <28 see Rule 2 (u3)

3
Vl > 20 assign to men (1)
Vl < 7 assign to women (2)
7 <V, <20 see Rule 3 (40)
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TABLE 7

THE SCORES OF 32 MEN AND 32 WOMEN
ON FOUR PSYCHOLOGICAL TISTS.
DATA FROM BEALL (10).

Hen Women
1 2 = 4 L 2 3 H
15 17 24 14 13 1 12 21
17 15 32 26 14 13- 14 26
15 14 29 23 12 19 21 21
13 12 10 16 12 13 10 16
20 17 26 28 11 20 16 16
15 21 26 21 12 9 1y 18
15 13 26 22 10 13 18 24
13 5 22 22 10 8 13 23
14 7 30 17 12 20 19 23
17 15 30 27 11 10 11 27
17 17 26 20 12 18 25 25
17 20 28 24 14 18 13 26
15 15 29 24 14 10 25 28
18 19 32 28 13 16 8 14
18 18 31 27 14 8 13 25
15 14 26 21 13 16 23 28
18 17 33 26 16 21 26 26
10 14 19 17 14 17 14 14
18 21 30 29 16 16 15 23
18 21 3y 26 13 16 23 2u
13 17 30 24 2 6 16 21
16 16 16 15 14 16 22 26
11 15 25 23 17 17 22 28
16 13 26 16 16 13 16 14
16 13 23 21 15 14 20 26
18 18 3y 2u 12 10 12 9
16 15 28 27 14 17 2u 23
15 16 29 24 13 15 18 20
18 19 32 23 11 16 18 28
18 16 33 23 7 7 19 18
17 20 21 21 12 15 7 28
19 19 30 28 6 5 6 13

A R N e eSS n oo et et
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3. 8 < V3 < 28
7 < Vl < 20
v, > 24 assign to women (14)
v, <9 assign to men (1D
9 <V, <24 seeRuley (25)
4 8 < V3 < 28
7 < Vl < 20
9 < Vu < 24
v,> 21 assign to men (1)
V, < 5 assign to men (1)

Residual group: 23 (11 men + 12 women)

Dempster (20) - (Data from H. D. Sylwestrowicz of CIBA). [Table 8]
This example concerns a type of data frequently found in pharmaceutical
experimentation. Nine variables are measured on 19 animals. The nine
variables are all measurements of renal blood pressure, but taken in
intervals of 1/2 hour over four hours. The animals had been randomly
divided into two groups or sizes 12 and 7. The first group was the
control; the second received a specific drug treatment after the first
of the nine measurements were taken. Vl mav then be considered a

covariate. Kendall's method results in the following (non-unique) set

of rules:
1. V8 > 7 assign to group 1 (control)  (11)
v8 < -8 assign to group 2 (5)
-8 <V, <7 see Rule 2 (3)
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TABLE 8

MEASUREMEN{S OF RENAL BLOOD PRESSURE TAKEN
AT ONE-HALF HOUR INTERVALS ON TREATED
AND UNTREATED ANIMALS.
DATA FROM DEMPSTER (20)

CGroup Vl V2 V3 Vu V5 V6 V7 V8 Vg
Control 17 27 17 17 28 25 25 15 17
5 5 2 2 5 10 10 12 12
20 20 20 20 18 17 17 17 15
8 17 8 15 25. 25 25 25 27
22 22 20 20 15 12 18 13 12
13 17 17 12 17 17 17 17 7
35 23 25 23 28 27 42 u2 30
45 u3 37 33 35 35 33 32 30
2 5 2 -5 -7 -10 -8 - 8 -18
33 37 22 28 32 30 20 27 28 1
25 35 22 28 28 30 28 25 22 !
32 47 ug u7 u7 u7 u7 ug y7 l
Treated u5 -2 2 0 -5 -5 -10 -10 =12
-3 -27 -30 -33 -35 -35 -33 -33 -33
32 17 12 12 7 2 2 7 7
30 -2 -10 -12 -12 -12 -12 -13 -13
13 -20 -22 -22 -23 -27 =27 -28 ~-28
20 18 2 -13 -18 -le -22 -22 -23
22 18 8 -8 -10 -8 -7 -2 0

BT Pt ey YT N PP P P P P Pl e v Ca T Ca Ty T T LIRS SR T T R L AN L GO R RN RTINS ._‘.'\-_\.'-‘
POOGRGR AR A0 T 54 T A M A A VADAYE AAIN 0T Y NI AN N I N M AN A S I NI PN |



20

2. -B<Vg<7
Vg > 0 assign to group 2 (2)
V9 < -18 assign to group 1 Q1)

Residual group: O

Two points are worth making. First it should be noted that V7
would provide as good a result as Ve. Secondly, although no use of V1
as a covariate was made, the user of Kendall's method should realize
that a covariate could be important. For example, a hypothetical case
could arise in which all of the variable measurements overlapped con-
siderably, but the difference between the subsequent measurements and
the initial measurement was the key to discrimination. Kendall's
method applied directly to the data in this case could result in poor
results. Making the transformation of subtracting the initial measure-

ment from the subsequent measurements (for example) could result in

improved discrimination.

Tintner (21) [Table @]- This concerns the problem of distinguishing
between the prices of producers' goods and the prices of consumers'
goods on the basis of certain measurements connected to their behavior
during a business cycle. The data consists of the monthly wholesale
prices of nine consumers' goods and ten producers' goods during the
period 1860 - 1913. The seasonal and trend components had been removed

by a moving average method. V. is the median length of the cycle in

1
months. V2 is the median percentage of the duration of cyclically rising
prices relative to the total duration of the cycle. V3 is the median
cyclical amplitude expressed as a percentage of the trend. V, is the

u

mean monthly rate of change in the cycle.
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TABLE 9
CYCLICAL MEASUREMENTS OF THE PRICES OF CONSUMERS'
AND PRODUCERS' GOODS. DATA FROM TINTNER (21).

Vl V2 V3 Vu

Consumers' Goods

Rice 72 50 8 0.5

Tea 66.5 ug 15 1.0

Sugar 54 57 14 1.0

Flour 67 60 15 0.9 :
Coffee Y 57 14 0.3 :
Potatoes 41 52 18 1.9 '

Butter 3u.5 50 u 0.5 ;

‘

Cheese 3u.5 46 8.5 1.0
Beef 2u 54 3 1.2 )

Producers' Goods

o

Gasoline 57 57 12.5 0.9 3
Lead 100 S4 17 0.5 E
Pig Iron 100 32 16.5 0.7 ):'
Copper 96.5 65 20.5 0.9 ‘
Zinc 79 51 18 0.9 'E‘
Tin 78.5 53 18 1.2 .
Rubber u8 50 21 1.6 3
Quicksilver 155 uy 20.5 1.4 'g
Copper Sheets 8y 64 13 0.8 :
Iron Bars 105 35 17 1.8
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1. Vl < 48 assign to consumers' goods (5)
V1 > 72 assign to producers' goods (8)
48 <V, < 72 see Rule 2 (e)

1l -
V2 < 50 assign to consumers' goods (1)
V2 > 57 assign to consumers' goods (1)
50 <V, < 57  see Rule 3 (u)
3. ug < Vl < 72 r
50 < V, < 57
V3 < 12.5 assign to consumers' goods (1)
vy > 14 assign to producers' goods (1)
12.5 < V3 < 14 see Rule 4
b. 4B <V, <72
50 < V2 < 57
12.5 < V, < 1y
Vl+ < .9 assign to producers' goods (1)
v, > .9 assign to consumers' goods (1)

Residual group: 0

Mosteller and Tukey (22) - [Table 10]. This example concerns dis-

puted authorship. There are a number of papers which were written by
either Hamilton or Madison, and it is of some interest to be able to

determine the correct author. This example is concerned with 11 papers

S L T D I oo R e e S L L N s ey L LN s
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TABLE 10
RATES OF OCCURRENCE OF HIGH FREQUENCY WORDS

IN SOME OF THE WRITINGS OF HAMILTON AND
MADISON. DATA FROM MOSTELLER AND

TUKEY (22).

"and" "in" "of" "the" "to"
V1 V2 V3 Vu V5
Hamilton

16.1 35.3 63.9 93.3 38.4
32.2 2u.5 78,2 110.0 31.4
24.3 23.5 64.7 90.8 42.3
18.0 27.2 59.6 86.8 35.9
20.6 26.9 61.4 83.6 39.5
21.8 17.4 73.1 90.4 35.6
27.9 23.1 61.9 85.4 41.3
28.5 26.1 71.3 74.5 33.3
28.9 20.9 56.9 82.7 4.9 3
21.3 25.0 60.4 82.2 47.7 |
18.5 30.7 72.7 109.3 36.6
Madison

31.6 19.9 54.8 g93.8 38.6
37.3 23.3 56.8 84,2 31.0
21.2 17.5 58.2 97.6 39.9
27.9 19.1 55.8 93.1 33.5
40.7 9.3 59.0 71.5 33.6
2u.4 27.9 60.0 115.3 34.8
27.7 17.7 6l.1 115.3 32.7
28.1 22.3 57.0 110.9 29.7
30.6 23.6 68.3 118.6 23.2
33.9 21.8 64.9 93.7 33.6
23.3 31.4 34.8 94.3 49.6
%A11 rates of occurrence of high frequency words are per thousand words
of text.

!
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mostly selected from the Federalist papers, of known authorship. The
variables used for discriminating between the authors of the paper are
certain high frequency words. This particular example was selected by
Mosteller and Tukey to illustrate the application of the jackknife

method in discriminant analysis.

1. v, > 68.3 assign to Hamilton (4)
vV, < 56.8 assign to Madison ()
56.8 < V, < 68.3 see Rule 2 (1%)

2.  56.8 <V, < 68.3

3
Vg > 39.9 assign to Hamilton ()
V5 < 35.9 assign to Madison (6)
35.9 < V5 < 39.9 see Rule 3 (u)

3. 56.8 < V_ < 68.3

3_
35.9 < V5 < 39.9
V2 > 26.9 assign to Hamilton (3)
v, < 17.7 assign to Madison (1)

Residual group: O

Beerstecher et al (23) (Because of the large amount of data it is

not included here.) In this study 62 variables related to metabolic
patterns were measured in 12 individuals over a period of one month.
This was a preliminary study of the various traits of an alcoholic and

nonalcoholic individual, the former during nondrinking periods, in

'.:f Wl Y
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order to discover differences worthy of further study later on. Using
Kendall's method all 12 individuals were separated into the correct
classes using two variates. The most discriminating variate was
hippuric acid concentration in urine. Of the four alcoholics, three
had concentrations above 17 units and of the eight nonalcoholics, seven
had concentrations below 17 units. The remaining two subjects were
correctly classified by a phagocytic index, although undoubtedly many
other variates would have served as well in classifying these two
remaining subjects.

In Beerstecher's study univariate t-tests were used to isolate
important differentiating variates between the alcoholics and non-
alcoholics. The hippuric acid urine concentration and the saliva
sodium concentration had the largest t-values.

It is of course not surprising that Kendall's method provided
compatible results since large t-values for a variate would indicate
wide separation between the means of the samples from the two popu-
lations, causing it to be selected as a discriminating variate by
Kendall's method.

This particular set of data was examined using Kendall's method
in order to illustrate a potentially valuable use of this method as a

screening technique for significant variates. Further consideration

of this use is given in Section 6.1.
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CHAPTER III

COMPARISON OF KENDALL'S METHOD WITH LINEAR

DISCRIMINANT ANALYSIS

3.1 Method of Evaluation

The two assumptions of concern in linear discriminant analysis are
equality of variance-covariance matrices and multivariate normality.
Kendall's method is compared with linear discriminant analysis in cases
where all of these assumptions are valid and in cases where either or
both assumptions are invalid.

Sampling experiments were done using the variance-covariance

matrices

I, = (1-p,)1+p Epp

2 -
L, = 0“[(1-p,)1+p,Eppl

Two p-variate normal populations, I, and ﬂz,were considered, with means
¥, and u, and variance-covariance matrices Zl and 22 respectively. In
the experiments Pys Py 02 and E_zwere varied; u, was always equal to
zero. The value of p used in all experiments was 5.

The particular set of parameters used are given in Table 1l.
A CDC 6400 computer which has a 60-bit word length was used in this

study.

26
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TABLE 11

PARAMETER VALUES USED IN SAMPLING EXPERIMENTS

P, o, 0? ™
1 .1 1,2 0%,1,2
.5 .5 1,2 0,1,2
1 .9 1,2 0,1,2
.9 1 1,2 0,1,2
-1 .9 2 1,2

*Q'= (09030’090)

The method used to generate a sample vector with variance-

covariance matrix I was to generate the vector

x'= (xl,x2,x3,xu,x5)

where X, are independent uniform (0,1) variables. Using the inverse of

the normal probability integral ¢ !, the vector
¥'= (¥)5Y55Y55Y,,5Y¢)

was obtained, where ¢"1(xi) = y;- Thus
y ~ MVN(0,I)

The variance-covariance matrix Zi was factored into the product of a
lower triangular matrix and its transpose by a Crout factorization (2u4).

Thus I is expressed in the form

I =TT
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Multiplying y by T produced the desired vector

Tz- N MVN(Q,TT’ )
or

Ty ~ MVN(D,E)

The algorithm for the Crout factorization is as follows:
e men (e fels te o) 7y
11 11 ijl? il ‘

i=2,3,...p (8)

+

"
t
Q

If the preceding columns k < j have been completed, the jth diagonal
term is calculated by
j-1
37 Cagm 2 e o)
k=1

If j < p, the elements below the diagonal are computed by the formula

ol

j-1
tig " tjj'l(oij - ztiktjk) k = §+L,...,D {10)
k=1

As explained in the introduction, initial samples of size 20
(sometimes 50 or 100} from poopulations Hl and n2 were generated and
Kendall's discrimination rules were derived from the initial sample.
These rules were then applied to new samples of size 500 each Trom RI
and Hz' This entire procedure was repeated 50 times, each time with
new samples. The same procedure, using the same set of random numbers.
was used with the linear disciriminant function.

Consider one of the 50 repetitions of the experiment. Let F(i.j)

cdenote the fraction of the initial sample from population | which was

eI 3830 N I R R VU R TR A A R LA IR SRS SIS,
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classified as population i, and F(0,j) denote the fraction of the
initial sample from j which was not classified. With Kendall's method
F(1,1), F(2,2), F(0,1), and F(0,2) were calculated. Since no proba-
bilities of misclassification were allowed, F(1,2) = F(2,1) = 0. With
linear discriminant analysis, F(1,1), F(2,2), F(1,2), and F(2,1) were
calculated using the resubstitution method. In linear discriminant
analysis all of the samples are classified, so F(0,1) = F(0,2) = 0.

The set of rules derived from the initial sample was applied to a
new sample of size 500 from each population. Let FI(i,j) (i=0,1,2;
j=1,2) denote the fraction of this index sample classified as
indicated. FI(i,j) (i=0,1,233=1,2) was calculated for Kendall's class-
ification rules and TI(i,3) (i=1,2;j=1,2) was calculated for the linear
discriminant function.

This was done for all 50 repetitions and the F's and FI's
averaged to give estimates of the expected value of the probability of
misclassification (and classification) based on the initial sample and
the index sample, respectively. The average value of F(i,j) (i=0,1,2;
j=1,2) is denoted by ﬁ(i,j); the average value of FI(i,j) (i=0,1,2;
j=1,2) is denoted by P*(i,j).

ﬁ(i,j) (i#j) is known to underestimate the expected value of the
probability of misclassification of the sample discriminant function.
It was calculated for comparison with the Kendall estimates from the
initial sample.

The P*(i,j) values are of primary interest, since these measure
the probabilities of misclassification when the classification rule or
function is used. The ﬁ(i,j) values are of interest since in practice

only the same sample used to derive the rule or function is available
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to judge the probability of misclassification when the rule or function
is applied. It is important to determine the relationship between the
ﬁ(i,j) and P*(i,j) values so that some judgment of the actual
performance of the rule or function may be ascertained from the per-
formance with the initial sample.

In some of the sampling experiments a principal components trans-
formation was done. The principal components were estimated from the
combined samples and the transformation then applied separately to the
two samples. Kendall's method was then applied to the transformed

data.

3.2 Testing the Random Number Generator

Since Kendall's method is based on the order-statistics of the
distribution, it is this aspect of the random number generator which
should be examined most carefully. In order to judge the quality of
the random number generator, some tests were performed. In the first
test 20 N(0,1) independent random numbers were generated and then
ordered from low to high values. This was repeated 100,000 times, and
the average value of each order-statistic calculated. These values
were compared with the theoretical value of the order-statistics as
tabled in Owen (25). The results are given in Table 12; the sampling
experiment results agree quite well with the tabled values. In the
second test use was made of the results of Gupta (26) who has cal-
culated the percentage points of order-statistics from the normal
distribution. Again, a sample of size 20 was generated from an N(0,1)
distribution and this time the percentage points given by Gupta were

used to calculate the number of samples which exceeded each percentage

ORISR I 35, FR SN NT IV AT AT RV A A AC AR IC AL S A S AL RN PR X L8 PRy \7 SN A LR
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TABLE 12
COMPARISON OF TABLED EXPECTED VALUES OF ORLDER STATISTICS

FROM N(G,1) DISTRIBUTION WITH THOSE OBTAINED FROM
SAMPLING EXPERIMENT

Sampling Sampling
Order Tabled Experiment Order Tabled Experiment
Statistic Value Results Statistic Value Results
1 -1.8675 -1.8678 11 0.0620 0.0613
2 -1.4076 -1.4091 12 0.1870 0.1861
3 -1.1309 -1.1314 13 0.31u49 0.31u48
y ~0.9210 -0.9187 14 0.4483 0.4483
5 ~0.7454 -0.7448 15 0.5903 0.5910
6 ~-0.5903 -0.5891 16 0.7u454 0.7u455
7 -0.4483 -0.4478 17 0.9210 0.9206
8 -0.3149 -0.3146 18 1.1309 1.1289
9 -0.1870 -0.1872 19 1.4076 1.4074
10 -0.0620 -0.0617 20 1.8675 1.8701

point. This was done 10,000 times. The results are given in Tahle 13.

Again, the two results agree very well.

3.3 Comparison in the case of multivariate
normality, including consideration of
unequal variance-covariance matrices

3.3.1 Summary and Analysis of Main Sampling Experiment Results
The results of the sampling experiments are given in Tables 1u4-18;
K denotes Kendall's method; LDA, linear discriminant analysis; K(PC),

Kendall's method with principal components transformation.
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The values for g2 = 1, P, = -1, 0, = .9, u =0, 1, 2 have been

2 —
calculated already in Table 16 in the entries o2

1,0, =959
¥ =0, 1, 2. The experiment has been repeated, however, to serve as a
basis for judging the quality of the estimates. It can be seen from
Table 19 that the estimates are stable for y = 1, and u = 2, but there
is variation in the case of zero mean differences.

Tables 20 and 21 summarize the probability of misclassification
information for the Kendall method and LDA, respectively. P(i,j) is the
probability, estimated from the initial sample, of assigning an observa-
tion from the jth population to the ith population. ﬁT is the average
of P(2,1) and P(1,2); fT(O) is the average of P(0,1) and P(0,2).
P;(i,j) is the probability of assigning an observation from the jth
population to the ith population when the classification rules derived
from the initial sample are used. P; is the average of P;(2,1) and
P;(1,2). The entries are in order of increasing T2 values for 02 = 2,
and then for increasing T2 values for 62 = 1, where T2, the Mahalanobis
distance, is

(u, - 2 - ) (11)

1 L

in the case of equal variance-covariance matrices. For Zl and 22 of the

form considered in this study, the equation used for calculating T2 will

be derived:

™
]

= (1 -9+ 0 Epp

™
"

2 - I PP
o4 (1 °2) + ozE ]

£, + I, = [(1+ 02) - (o, + czpz)]I + (o, + czpz)Epp (12)
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Let 1+02=a P, + ozpz = b (13)

Then

[(a - b)I + bEpp] ™t

is determined using the relationship

[r+pPQ1 Y =1-p1+qp) o (14)
Thus
[(a - B)I + bEpp]-l = (a - b)'l[I + a—ljl—DEpp]'l (15)
1
1 1
=1 |r-2]- b
e L= (1 + ET]:-) (1,1,...1) (16)
1
! b . [a-b+pb
=31 [I s ( a-b ) EPP] an
1 b
ey [1 "B T EPP] (18)
Let b = ¢ (19)
(a-b) + pb
Then

2

T 1
5 = 7 L'[I - cEpply (20)
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Euiz - o(zu;)?
- a_b (21)

Using equation (19),

2
T . 1 b
7" a_-H(Z”iz R RS “3“1)2) (22)

Finally, using equation (13)

(p,+02p )(Zu,)?
2 = 2 tw 2 - 2 i (23)
(1+02) - (p,+0%,) (1+02) + (p-l)(p1+0292)

With Kendall's method not all of the index sample will be classi-
fied. Thus P%*(0,1) and P*(0,2) denotes the probability that an obser-
vation from II1 and Hz, respectively, will not be classified. Pg(o)
denotes the average of P*(0,1) and P*(0,2). These values are
summarized in Table 22. They must be taken into consideration in
judging the performance of Kendall's method.

The relative performance of the Kéndall order-statistic method
and LDA (Linear Discriminant Analysis) may be compared by examining
Table 23. One column of Table 23 is identified by P;(K)/P;(LDA). This
is the ratio of the average probability of misclassification of the
Kendall method to that of LDA. The comparison is somewhat unfair, since
not all of the index sample has been classified in using the Kendall
method. A factor, f, has been introduced to allow comparison of the
probabilities of misclassification only with respect to the portion of

the sample actually classified. The factor f is the reciprocal of the

e e T e N P S T T SN N S N et
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Case

10

11

12

13

14

15

16

4y
TABLE 23
COMPARISON OF THE PERFORMANCE OF KENDALL'S METHOD

AND LINEAR DISCRIMINANT ANALYSIS WITH RESPECT
TO THE PROBABILITIES OF MISCLASSIFICATION

PR (K)
oy 0, o? u P?(LDA)
1 .9 2 1 .737
-1 9 2 1 752
5 .5 2 1 .712
9 1 2 1 .763
1 1 2 1 .956
1 9 2 2 1.06
-1 .9 2 2 1.15
.5 5 2 2 1.0
9 .1 2 2 1.03
1 1 2 2 1.74
5 5 1 1 0.663
9 1 1 1 0.780
1 1 1 1 1.05
5 5 1 2 1.02
9 1 1 2 1.11
1 1 1 2 2.81

*
PT(LDA)

*
Pr(X)

.957
.41
.879
.913
1.08
1.12
1.18
1.08

1.07

1.78 |
.835
.828

1.14

1.04

1.17

2.86

DTN L 2L L Lt LR S SR S S TR LR 4O o L S OE A LAGEL b < Oy i AL B ]
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fraction of the index sample in Kendall's method which was classified.
One of the columns, identified by f’[P?(K)/Pz(LDA], lists this ratio.

Considering the ratio P;(K)/Pg(LDA), in cases 1-6, 11 and 12,
Kendall's method has a smaller P? value than LDA. 1In cases 7-9, and
13-15, the two methods perform about the same. The Kendall method is
definitely worse in cases 10 and 16. These are the two cases with the
largest T2 values, and with equal values of p1 and Py Considering the
ratio f-[P?(K)/P?(LDA)], similar results are obtained for all cases

except for case 6 for which the Kendall method is better and cases 10

and 16 for which LDA is better.

3.2.2 Effect of Unequal Mean Components

In one sampling experiment, the Mahalanobis distance was kept
constant and the components of the mean vector were varied. More
specifically, in one sampling experiment already considered,
p, = .1, p, = .9, 02 = 2, y' = (2,2,2,2,2), the Mahalanobis distance was

3.78. Components of the mean vector were chosen to be (0,0,1,1,x),

where x was such that the distance was unchanged. The value of x was

found to be 1.512. Examining Table 24 shows, as expected, that P¥ does
not change for linear discriminant analysis. However, P? decreases

substantially for Kendall's method, and this is only slightly indicated
by the decrease in P(1,1) and P(2,2). The point of this single example
is that the error rates can be strongly influenced by changes in the
mean vector, even when the Mahalanobis distance is unchanged. To some
extent this would be anticipated, since, as already noted, Kendall's
method depends on the overlap of distributions more than on the

distances between the means of the distributions.
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3.3.3 Effect of Allowed Probabilities of Misclassification

One problem with Kendall's method is that, especially with distri-

. butions of infinite range, one or more extreme valued observations from

one distribution often will be mixed with the second distribution values
and little separation of samples from the two distributions will be
pcssible. Accepting these few outlying observations as allowed
misclassifications, eliminating them from further cconsideration, and
proceding with Kendall's method can produce a set of discrimination
rules which result in an increase in the probabilities of classification
in the index sample with only a limited increase in the probabilities of
misclassification. That is, many of the observations unclassified
before will now be classified, and most of these correctly.

There are many ways to introduce an allowed probability of
misclassification. For example, a cumulative allowed probability of
misclassification for each group could be specified. However, there is
a problem in allocation. Suppose that for the samples of 20 from each
of the two populations an allowed probability of misclassification of
0.1 is specified. Suppose also that low values of the first selected
variate favor one population and high values those of another
population. Then the cumulative allowed probabilitv of misclassifi-
cation could be used immediately, allowing two misclassifications for
low values of the variate and two misclassifications for high values
of the variaie. However, better overall results mav be obtained by
using fewer than these four allowad misclassifications for the first
selected variate, using some of these for increasing the classification
quality of the next or subsequent variate. The computer logic for

allocating the four allowed misclassifications so as to maximize the

-‘.'I~I-'-.I.:.'..’\f




VoAl A ~

48
overall performance of the method could be worked out relatively easily
and some consideration may be given to this at a later time. There
would, of course, be a considerable increase in the computing time.
For the particular set of experiments reported here, a very simple rule
was used, one which is far from optimal. An allowed probability of 0.05
was aliowed for misclassifications for low values of the first selected
variate and 0.05 for the high values of this variate. If the selected
variate was such that samples from one population had low values of this
variate and samples from the other population had high values of this
variate, then the allowed probability of misclassification for each
group would te 0.05. However, if both high and low values of a variate
were characteristic of a single population then the allowed probability
of misclassification would in effect be 0.1, whereas there would be no
allowed misclassification for the other group.

The effect of the allowed probability of misclassification was
considered in several sampling experiments and the results are
summarized in Table 25. Kendall's method is denoted by K, and Kendall's
method with an allowed probability of misclassification is denoted by
K(PA). The effect of increased sample size on the index sample

probabilities obtained by Kendall's method can be seen for samples of

size 20, 50, and 100 for the case a2 1, ¥y =1, and Py =P, = .5, and

2

for 20 and 100 in the case 02 = 2, u =2, p, = .9, Py, = .1. Due to
increased mixing of the distributions with the larger sample sizes, the
portion of the sample classified decreases greatly, but with the
compensation of reduced misclassifications of the index sample. If the

primary consideration is with minimizing the misclassifications, this

effect is of no concern. However, if a substantial portion of both
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samples must be classified, even at the risk of increased misclassifi-
cation, then a trade-off procedure between the portion of the sample
classified and the portion of the sample misclassified is necessary. A
simple method for controlling the probability of misclassification
while trying to increase the sample classified was explained above.

From Table 25 it can be seen that in the case Py = = .5, the effect

P2
of the allowed probability of misclassification is not too impressive,

but in the case Py = -9, 0 .1l with a sample size of 100, P%*(1,1)

2=
increases from .347 to .733 with relatively minor increases in the
probabilities of misclassification.

Examining Tables 16, 17, and 18, the effect of the principal

components transformation used with Kendall's method may be evaluated

with respect to the index sample. When bl = .9, p, = .1, the transfor-

mation is of value when u = 0. In this case P¥(1,1) = .246 and

P%(2,2) .458 when no transformation is used, and P%¥(1,1) = .546 and

P%(2,2)

.754 when the principal components transformation is used.

P%(1,1) and P*(2,2) are not increased significantly when p = .9,

1

p, = .1, and u ¥ 0. Vhen P, = .1, P, = .9, the only case for which the

2

principal components transformation gives an improvement is when 02 = 2,

¥ = 0. In the remainder of the cases it reduces the performance
considerably. When oy = -.1, o, = .9, the only case in which the
transformation improves the performance of Kendall's method is for

o2 = 2, 4 = 1. It is worth noting that when the principal components
transformation is used, almost all of the initial sample is correctly
assigned, but the performance with the index sample tends to be very

poor. For example, in the case p, = .1, p, = .9, 02 =2,y =1,

P(1,1) = .954, P(2,2) = .885, but P*(1,1) = .617, and P%(2,2) = .6uS.
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3.4 Comparison in Cases When Multivariate Normality Does Not Apply

The analysis so far has allowed the possibility of unequal
variance-covariance matrices but multivariate normality still has been
assumed. Some sampling experiments have been done with non-normal
distributions. The distributions considered, the Cauchy and the
uniform, were selected because of the difficulty of distinguishing
between these distributions and the normal on the basis of a small
sampling from the distribution.

In the Cauchy sampling experiments, samples were selected from

each of two populations, I; and H2:

. ' - ' s ;
Hl. X (xl, Xps Xgs X XS)' All Xy s are independent and

-1
distributed as Cauchy random variables (I~1(1 + x%) )
n,: Yy (le) v MVN(z,I), where 2' = (2, 2, 2, 2, 2)

In the uniform sampling experiments, samples were obtained from

each of two populations I, and HZ:

. ' - ' s
m: x (xl, Xps Xgs Xy XS)' All x;'s are independent and

distributed as uniform, U(-1, 1) random variables
nm: y ~MWN(p,I). p=0,1, 2.
In one experiment nl was as above, but

n: y'= (yl, Yo Ygs ¥y ys). All yi's are independent and

distributed as U(0, 2) random variables.

ﬁﬁiﬁm:i_:ﬂiﬁyfﬁmmﬂiﬁﬂiﬂiﬁmmﬁl1%1%’&1'\'i’{*:mmﬁﬁ&m2&3&‘&
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The sampling experiments are described in more detail in Table 26.
The results of using Kendall's method are given in Table 27, and the
results of using LDA in Table 28. A comparison of the results is given
in Table 29. In experiments 1, 2, and 3, Hl is Cauchy and Hz is
multivariate normal. In experiment 1 there is a relatively large

separation between the means. Kendall's method and LDA give comparable

*

Fr

values, but LDA gives the rather large P%#(2,1) value of 0.21. In
experiment two the sample size is increased from 20 to 100. Now only

2% of population two is classified using Kendall's method since with the
larger sample size there is more mixing of the samples from the two
populations. In experiment three there is an allowed probability of
misclassification, PAl = PA2 = 0.05, and more of the sample can be
assigned.

Experiment one can serve as an example where Kendall's method
would be preferred to LDA if the maximum probability of misclassification
were of concern.

In experiments 4, 5, and 6, Hl is U(-1,1), and H2 is multivariate
normal. In experiment four, LDA is, of course, not applicable, since
there is zero mean differences between the populations. However,
experiment four would indicate the superiority of Kendall's method for
small mean differences. In experiments five and six the mean
differences become increasingly large and LDA performs better. In
experiment seven Hl is U(-1,1) and m, is U(0,2). Both Kendall's method
and LDA perform well, but LDA gives the lower probability of
misclassification.

All of the distributions in the examples considered so far hwve

been symmetrical. Two sampling experiments were done using

R R T R R e A T A A SN B 05
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TABLE 26

DESCRIPTION OF SAMPLING EXPERIMENTS
FOR NON-NORMAL DISTRIBUTIONS

C: Cauchy; U: Uniform; n,, n,:

sample sizes; PAl, PA,: allowed

2

probabilities of misclassification

Description
m =G "2 = MVN(2,I), n, =m, = 20
I, =¢C, M, = MVN(2,I), n; = n, = 100
mo=¢C, I, = MVN(2,I), n; = n, = 100; PA, = PA, = .05

n = u(-1,1), I,

MVN(0,I), n, = n, = 20

Hl = U(-1,1), Hz = MVN(1,I), Dy =0, = 20
Hl = U(-l,l), nz = HVN(z,I), nl = n2 = 20
Hl = U(-1,1), H2 = U(0,2), n; =N, = 20
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TABLE 29
COMPARISON OF THE RESULTS COF SAMPLING EXPERIMENTS

WITH CAUCHY AND UNIFORM DISTRIBUTICHS USING
KENDALL'S METHOD AND LINEAR DISCRIMINANT

ANALYSIS
Experiment

Number Method P*(2,1) P%(1,2) P;
1 K .148 .137 .143
LDA .311 .047 .179

2 K .003 .020 .012
LDA .297 .0u6 172

3 K .027 .080 .0u9

4 K 422 .201 .312
LDA 422 .552 .487

5 K .132 .197 .165
LDA .0u5 .164 .105

6 K .055 .089 .072
LDA .000 .020 .010

7 K .123 .121 <122
LDA .036 .031 .03y

distributions which were not symmetric. In experiments eight and nine,

the populations were as follows:

| x' = (xl,x

. X oX.sX, SX_): All xi's are independent,

2°73°74°7s

lognormally distributed, 1ln s ~ N(0,1).
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N _: Same as Hl except the lognormal distribution is shifted by
u, where u = 1, 2 in experiments eight and nine,

respectively.

The results, summarized in Table 30 indicate the distinct super-
iority of Kendall's method in experiment eight. The two methods
perform comparably in experiment nine when there is larger mean

difference between the two populations.

Y S N TG O T . L L PR, e e
N e TP S TR e A AN N AT A

e -
LN \".‘-’.'j




57

Lh6° €s0° ---= LhT* 68" -=-= 656" 126" ¥a71

ze6* 9h0* 220" zet” ghs* 0€0* 000°T 000°T A 6

©89° 9TE" ---- zse” ghL* -—-= ohL® €18" ¥a'

h6L* hot* Zho* 6LT" n1g* L00* 9L6" 586" A 8
(2°C)=d (2¢T)wd (2°0)xd (1°2)%d (T°T)%d (T°0)xd (2°2)d (T°1)d odAL JaqunN

Ya'T QNV QOHL3IW S,TIVANIX ONISN
NOILNAIYISIA TYWIONDOT HLIM SINIWIYIIXT ONITARVS

0t 319Vl

Jusutaedxy

W

AR AN

Sy
L, Y

AN

>
Y

IR

oy ]
PGy

v t.. :\ ;

-
oy

2

-
T

AN LN 200

KA

-pv T

-clt\:\{" . "}“. \)‘b



CHAPTER IV
COMPARISON OF THE PROBABILITIES OF MISCLASSIFICATION
FOR THE LINEAR DISCRIMINANT FUNCTION DETERMINED
FROM THE SAMPLING EXPERIMENTS WITH THE
THEORETICAL VALUES OBTAINED BY

1) GILBERT, 2) OKAMOTO, AND
3) LACHENBRUCH.

4.1 Comparison with Gilbert's Results

Gilbert (7) has considered the effect of unequal variance-
covariance matrices on Fisher's linear discriminant function. She has
calcula:ed the probability of miseclassification NP(2,1) + (1-M)P(1,2) as
a function of N (the a priori probability that a sample comes from
population 1), T2, and d in the case I, = le. No work was done,
however, in determining the probability of misclassification when the
population parameters are estimated. The results of scme of the
sampling experiments already considered in this thesis may be used to
provide the expected value of the probability of misclassification when
the population parameters are estimated.

Consider two populations, x; v MVN(EJ,ZI) and %, v MVN(E_,dZI).
Choosing an orthogonal matrix P such that PIP' = I and using the
transformation ¥; = P(_rg_i - Ei)’ the distributions may be expressed in
the canonical form x, ~ MVN(Q,I), y, ~ MVN(y,D), where
D = Diag(d,d,...,d4). The total probability of misclassification is
minimized by the rule which assigns an observation to population two

whenever log [(1 - H)f2(§)/ﬂfl(§)] > 0 and to population one otherwise.
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Using the linear discriminant function, an observation is classified as

population two whenever

P
ESH + (

i=l

V.
1 >
1 - 10)d Vi

o (2u4)

and to population one otherwise. The expression on the left side is

distributed as

P
N(o,zv§/[n + (1 - mard) (25)
i=]1

in population one and as

P
NCZVZ/[G + (1 - n)d],zvgd/[n + (1 - ma1d) (26)

i=]

in population two. The Mahalanobis distance, T2, is

VNI + (1 - Marl™ty = 5v2/00 + (1 - 1)d] (27)

Hence, P(2,1) = 1 - ¢[([H + (1 - H)d]/TQ)%C] (28)
2.} 2

and P(1,2) = ¢[([n + (1 - M)dJarT")(c - T )] (29)

where ¢(z%) = P(Z < z*) and Z ~ N(0,1)

The cutoff point C is chosen to minimize the total probability of

misclassification. Gilbert finds that

S R R
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! 2 23 [.2 (d - 1) T o\1%
¢ = —2—[r? ¢ (ar’) [12 + — tivs (108 ¢ + 2 log 7 n)] l
when d # 1 (30)
c = %TZ + log [N/(1 - M] when d = 1 (31)

Gilbert notes that the onlv instance when the optimal cutoff point is
not given by equation (30) or (31) is when assigning all the obser-
vations to the same population vields a lower total probability of
misclassification.

For the case in which we are interested,
= (1 - o)I + oEpp

£, = 62[(1 - p)I + pEpp]

and d = o2. T2 has been previously calculated when x

x; v KUN(O,I)),

X AVN(u ,I.), using equation (23). Since T2 is invariant under

A, 2

linear transformations, this value may be used in equations (30) and
(31) to calculate P(2,1) and P(1,2). For the analysis in this thesis,

= %—always, so

P(2,1) = 1 - @[([1 ' 02]/2T2)%C] (32)

P(1,2)

XL 2
¢[([1 + 627,202T2)(C - T )] (33)

I\“l\\ "‘“

% mlmiaﬂx,mg\;\, \;a;s T ﬁf\!hf\ig? N }ﬁiﬁcnks \*Qkk}s e :
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where now
. 2_
c=—21 Jp?2 07|02, 202 -1) llogozl
1-¢? 1+ o2
62 #1 (3u)
¢ = ir? o2 = ) (35)

Gilbert tables the values of the total probability of misclassi-
fication for selected values of I, T2, and d. The particular values of
¥ chosen in this study resulted in T2 values which were not tabled.

Equations (32) and (33) were used to calculate P(2,1) and P(1,2) and

the probability of misclassification, u
P = 3 {p2,0) - P(1,2) | . (36)

The results of these calculations are given in Table 31.

In Table 32 the theoretical values of the probabilities of

misclassification for linear discriminant analysis are compared with
the sampling experiment results.

From Table 32 it is seen that, as expected, ﬁT underestimates P

T!

and in most cases ﬁ(2,1) underestimates P(2,1), and §(1,2) under-

estimates P(1,2). It should also be noted that P, is a poor estimate

T
of P; except in the cases when the sample size is 100 (denoted by a
prime in Table 32).
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4.2 Comparison of the sampling experiment

results in the cases I; = I, with the results
of Okamoto and with the results of Lachenbruch

It is interesting to compare the P; values with those which may
be obtained in a different way. Okamoto (27) has derived an asymptotic
expansion for the distribution of the linear discriminant function

statistic W (the distribution of the sample discriminant function). In

the particular cases of interest in this thesis, the expansion is

a a a
Pr{wW < olm =4>(-1)+—;-+—2—+—§-
2 n n n
1l 2
b b b b b b
+ 11 + 22 + 12 + 13 + 23 + 33 + 0., (37)
2 2 2 3
T n n1n2 nin nyn n

] 2

where n, and n, are the sizes of samples from populations II1 and nz,

respectively, and n, +n, - 2 = n. In Table 1 of his paper, Okamoto
gives the values of the coefficients for a number of values of p,
including the case of interest to us, P = 5, and for a number of T
values, T =1, 2, 3, 4, 6, 8. The particular T values in our case are
not included in the Table, however. In order to obtain a highly
accurate result, the coefficients should be calculated for these
particular T values. Okamoto's expansion has been applied to the

cases in Table 32 using, however, Okamotc's tabled coefficients for the
T case closest to our particular T values. The results of the calcu-
lations are given in Table 33. It can be seen that the P; values

obtained in the sampling experiments and the P¥ values calculated

using Okamoto's asymptotic expansion are very close.

Mm \ﬁ\-‘(\. A*(Mf:}\’k TR
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TABLE 33

COMPARISON OF P; VALUES

%
P'r p* p*
Experiment Sampling T T
Number Experiment Okamoto Lachenbruch

11 .300 .310 .302
13 .203 .198 .209
13' 177 .180 .181
14 122 .125 .127
16 .0u2 .037 045
Lachenbruch (4) provides another way to calculate P;. He con-

siders the sample discriminant function

Dg(x) = [x - 3(x, + X 1'sH(xE, - &

2) (38)

which is conditionally (on g&, gé, and S) normally distributed and has

mean (in the kth group)

Dgly,) = [y, - KX + x)1'sTHE, - &) (39)

by

and variance (in either group)

- - -1_.-1,— -
- - ' -
Vp = (%) - %,)'S 7S T(x; - x,) (10)




&
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He finds that
( )\
n, +n, -2 p(n, - n
1 2 2 k+1 2 1
E[D.(y, )] = = T°(-1) - — (41)
S' =X 2(nl +n,-p 3) nn,
p(n, + n.)
E[V,] = 12 4+ —;L-—?-—
172
_ - 2
. (nl +n, 3)(nl + n, 2)
(nl +n, -p- 2)(nl +n, -p- 3)(n1 t+n, -p- 5)

(42)

For n, and n, sufficiently large, the unconditional distribution is

very close to normal, and

o
]

L= o | Bngtu1 LECV 0 (43)

o
"

1,
and o | BIDg(u1/ [50v)T%} (u4)

will supply approximate values for P. and P2, where

1

d
|

= P(Dg(x) < O [xell) (45)

o
|

= P(Dg(x) > 0 |xell,) (u8)

Equations (41), (42), (43), and (44) were used to calculate P; by

Lachenbruch's method. The results are given in Table 33. The methods

R
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of Okamoto and Lachenbruch both agree well with each other and with

the results of the sampling experiments.



CHAPTER V

THE MODIFIED BARTLETT AND PLEASE METHOD

5.1 Introduction
Bartlett and Please have obtained a linear discriminant function
in the case of zero mean differences when the variance-covariance

matrices are of the form considered in this thesis, i.e.,

™
1"

1 (1 - pl)I + QIEPP

™
1

= g2 -
o¢f(1 pz)I + szPP]

In the case of zero mean differences it is of interest to compare
Kendall's order-statistic method or variation thereof, with this
Bartlett and Please method. However, the cutoff point which they
obtain for equal probabilities of misclassification is shown to be
incorrect. This chapter will be concerned with the development of a
modified Bartlett and Please method which does provide equal prob-
abilities of misclassification. In section 5.4 this modified Bartlett

and Please method will be compared with Kendall's method.

5.2 Derivation of the Modified Bartlett and Please Method

Let us consider two populations

68
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£(x) ~ MVN(D,E,) (i =
where
I, = o2 | (1 - 0,)T + p,Epp (i =

A discriminant function may be derived by

ratio principle:

1,2) (47)

1,2) (u8)

considering the likelihood

If £,(x)/f,(x) > 2 assign to I, (49)
Expanding the ratio, using the logarithmic transformation,
vy 1 1yl
exp[-*x'Z; “x] fexp[-*=x'Z, x]
1ln
1 1 -1 1 1 -1
=1 - Zx'zL - +>x'L >
MEE ARE T My raiaxz A (s0)
1 2|
o1 A
1n|21| +x'5 7% - 1n|£2| - x'L7x < - 2Im (51)
When Zl = 22 it is a well-known result that A = 1 provides equal
probabilities of misclassification. Bartlett and Please have inad-
vertently assumed that A = 1 also provides equal probabilities of
misclassification when Zl # 22. When X = 1,
R s L AR O A AN e G R S v

” " f.-v.
A )
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x'I 1x - _x_'z;15< -infz, | + 1|z, = (|, l/lz, D (52)

In the particular case that we are considering, 0% =1, cg = 02, so

1 §fz;l§,< p 1n 02 assign to I (53)

if 1(_'21 X

The discriminant function equation (53) may be written in the form

- = K%
az, bz2 K (54)
where z, = X'x z, = (E x)2 E, = (1,14..-,1)
1 == 2 1p- lp 2Tt
a =< 1 1
1 021 - p,) (55)
S S 1 ) °2 ) 1 (56)
l1-p, 1+¢ (p - 1)p, 62(1 - pz) 1+ (p - l)o2
When P = Py = 0 the discriminant function becomes
o) (1 - p)p 1n o2
+ =
2 l+(p—l)pz2 1 - L (57)
02

As noted earlier the cutoff point given by the right side of equation
(57) does not provide equal prohabilities of misclassification. Using

this cutoff point, however, the Bartlett and Please rule is

,1.,\(.1-.' -r-'r\ « t.-','
La JMM BN IEN NP, Lt {‘.x.j,_f:'_{: APV SR AN CYARCHASC ST A S oYLt
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e 2
- (L-p)plngo .
1 1l + (p - l)p 22 _<_ 1 assign to nl (58)

- —

If z

[

g2

2
> D)E In o assign to n, (59)

1 - =—
g2

If 2

- P 7
1 1+ (p-1p “2

A method for obtaining the cutoff point which does provide equal

probabilities of misclassification now will be developed. It may be

shown that

Uz2, - —P2——— 7~ o201 - p)x. (60)
1 1+ (p-1) “2 1 P

Hence the rule becomes
Assign x to I, when U < K (61)
Assign x to M, when U > K (62)

with K to be determined so that there are equal probabilities of

misclassification. The probabilities of misclassification are:

a, = ffg(l‘.)d?_‘_; a, = ffl(?.‘_)d?i (83)
U<K U>K

For c% =1, 0% = 02, these become

|
|
|
|
\
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(00 A0 Y
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K/1-p ®
a, = @p(w)dw and o, = /;p(w)dm,
“K/02(1-p)

(64)

o

respectively, where @p xz(p)-

The correct procedure for equal probabilities ol misclassifi-

cation would be to chcose that value of K which makes the two integrals

in (64) equal.

Now the function az, - bz2 may be written as

w = a(l - pi)ci Xé—l + (a - bp)o% 1+ (p - l)oi x? (65)

and therefore,

E(w) = a(l - ¢)0%(p - 1) + (a - bp)of | 1+ (p - Lho; [= s (66)
V(w) = 2a2(l - pi)2o;(P - 1) + 2(a - bp)zcg Il + (p - l)p:I 2. 2gj
(67)
Then
£.u £.2
£ = — v x?| =
[ \ o5
i &
£,K/g,
al = Ir{n < K[z_comes from Hz) = Qn?(i)di (68)
3

SR o ARt
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(- -]

a, = Pr(w > K|§_comes from Hl) = v/énl(ﬁ)dﬁ (69)
flK/gl

The value of K is to be chosen so that the two integrals in (68)
and (69) are equal. The procedure used to find the value of K was a
lewton-Raphson method. To solve the equation H(xX) = 0, a sequence of

X values are calculated:

H (xi)
T3 e H'(x,) (70)
When the difference between X1 and Xs becomes acceptably small,
the Xi4 th value will be the solution of the equation. Here
f2K/g2 ©
H(K) = [ﬁnz(a)dg - [ @#n (£)dE (71)
Yo flK/gl
£ f. K £ £ K
WO 00 < 2an, (1) on (). (72
&2 &2 g1 &1
The parameters are estimated by the following procedure:
n,
1
Let ji er = A, (i =1,2) (73)




T4
nl
I l
Zer = B, (i =1,2) (74)
r=
where
, Zap = Z1p T 7o /P (75)
i
i Then
| E(a,) = osp {1+ (p - Lo, n; (76)
i
s
= g2(1 - -
i E(Bi) Gi(L oi)ni(p 1) (77)
Hence
(p - 1)(A, - B.) - B, 0.
i } = = = estimates —— (78)
s 2 1 - p.
; P B. 1
; 1
\
i The estimated function is
.
= - 7
E az, - bz, (79)
\
: where
) nl(p 1) n2(p - 1)
a = 5 - 5 (80)
. 1 2
'
E . (p - l)(Al - Bl) - By pny (p - l)(A? - B2) - B2
) b= 5 S vl 5 (81)
S
r
b
S (p - 1)A, - pE, n, (p - A, - pE, 1.
9
e g T L e N P A R e
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Lachenbruch ( 2) has developed an excellent method for

determining the probabilities of misclassification in linear discrim-
. inant analysis. In this method, one observation is omitted from the
sample used to calculate the discriminant function and the discriminant
function is then used to classify the omitted observation. This is
done in turn for each observation. The number of misclassifications
provides a good indication of the probability of misclassification.
Lachenbruch's method provides a much better estimate of the probability
of misclassification than is provided by the resubstitution method, in
which the entire sample is used to calculate the discriminant function
and this function is in turn used to classify each of the observations.
A method related to that of Lachenbruch is developed in this thesis
and this wethod is compared with the resubstitution method. It is not
strictly a Lachenbruch method since the cutoff points for equal
probabilities of misclassification are not recalculated each time an

observation is omitted from the sample. Let

3
. - arzlr h br Z2r (83)
be the estimated function omitting the rth observation from Hl,
where
(n, - (-1 n,(p - 1)
i = —= B (84)
r (B - Z3.) 5
l't;l.:fs'f;f;,'f,;).;l"; RPN RN, X e .'_. .
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) (p - 1)(Al -~ er) - p(B1 - Zsr) (nl -1)

r P(Bl - Z3r) (Al - er)

i (p - l)BA2 - PB, . ;2_ 85)
P2,

N

Similarly, let

h =az,_ -b2 (86)

be the estimated function omitting the rth observation from nz,

where

n(p-1) (n, - 1)p - 1)

a_ = - (87)

T Bl (B2 - er)

R (p - l)Al - pBy n,

br - B ) A (88)
PE 1

(p - 1)(A2 - 25 - p(B2 - Zsr) ooy - 1
p(B2 - Zar) (A2 - Z2r)

5.3 Application to an example considered by Bartlett and Please
Bartlett and Please considered the problem of discriminating

between monozygotic and dizygotic pairs of twins. Ten variates were

7 == test =a1n anAd famale gets of twins were considered. There
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were 15 samples each from the monozygotic and dizygotic male twins and
15 samples each from the monozygotic and dizygotic female twins.

The values of o2 and Py estimated from the samples were as

follows:
Case I (Females) 62 = 3.760 p, = p, = 0.160
Case II (Males) 62 = 2.236 81 = 82 = 0.223

These two cases considered by Bartlett and Please were reexamined.
Random samples with parameters equal to the estimated parameters of
Bartlett and Please were generated. Experiments with total sample
sizes of 30 and 200 were performed under a variety of conditions. All

experiments were repeated 10 times for each set of parameters and set

. of conditions. The two general cases considered then were
Case I: 02 =1 ol = 3.76
p1 =0, = 0.160 p = 10

Case II: o2

1
[

2 -
02 2.236

0.223 p = 10

©
n
©
n

Solving the equation H(K) = 0 yielded the following values of K

with corresponding values of a.

Case I: K = 12.38, a, = a, = 0.077
Case II: K = 8.03, a, = @, = 0.176,
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where K is the cutoff point for the discriminant function

az, - bZ2

Values of a and b were calculated from Equations (55) and

(56).
Case I: a = 0.87386
b = 0.05730
Case II: a = 0.74212
= 0.05504

b

The cutoff point, K*, in the Bartlett and Please discriminant
function
so for Case I it is 13.2u4 and for Case II it is

is equal to p-loge 02,
Using these cutoff points, *he true probability of misclassifi-

8.60. i
cation may be calculated directly from the equations

fZK/g2

ap = | #n,y(£)48 (89)
o}
co
a, = [ on (F,)dg (90)
f,K/g]
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These values were found to be as follows:

Case I: ul = 0.096

. az = 0.054
Case II: a, = 0.211

“2 = 0.136

The values of @ and a, estimated by Bartlett and Please from their

data were a, = 0.13, a, = 0.00 for Case I and @, = 0.47, a, = 0.27 for
Case II.

The four discriminant functions,

Equal Probability Misclassification

Case I: 0.873862l - 0.0573022 = 12.38
Case II: 0.7u212zl - o.ossouz2 = 8.03
Bartlett and Please Method
Case I: 0.873862l - 0.0573022 = 13.2u4
Case II: 0.74212Z. - 0.05504Z_ = B8.60

1 2

may be expressed in the form used in the Bartlett and Please article

7 4 /*I_(,l_' .. N h . -\,'._ g K N - ; N , . r*- '\'\!"\( el _.r A ;.
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Equal Probability Misclassification

Case I: 2, - 0.06557Z2 14.17

1l

Case II: 2. - 0.07417Z

1 2 10.82

Bartlett and Please Method

15.15

Case I: Zl - 0.0655722

Case II: 2Z, - 0.074172

. 1 2 11.59

Using the calculated values of K and K%, the Lachenbruch method

may be evaluated by comparing the a, and a, values obtained by this

1 2

method with those estimated using equations (68) and (69). The resub-
stitution method was evaluated in a similar fashion alsc. In addition,
both the Lachenbruch and resubstitution methods were used in
conjunction with cutoff points K and K®* which were estimated from the
data. The results of all of these experiments are summarized in

Tables 34 and 35 for Cases I and II, respectively. The symbols used in

the tables are defined as follows:

a,: Calculated by Lachenbruch methecd

a.: Calculated by Resubstitution method

d.*: Calculated by Lachenbruch method with K estimated from
sample

- Teata s e kAl ek VW artrlmatrad Fram

.-, = -

-
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TABLE 34

SUMMARY OF SAMPLING EXPERIMENT RESULTS
. WITH BARTLETT AND PLEASE AND
MODIFIED BARTLETT AND
PLEASE METHODS

Case I (02 = 3.760)

K Theoretical

Type Ni a a, a, a, @, az
Eq. Pr. 15 .077 .077 .120 .087 .080 . 087
Eq. Pr. 100 .077 .077 .086 .073 .083 .074
BP 15 .054 .096 .073 .100 .053 .100
BP 100 .054 .096 . 064 094 .056 . 094

K Estimated
3% 5 5% a % ok
Type Ny * *2 % %2
Eq. Pr. 15 .093 . 0690 .053 .073
Eq. Pr. 100 .083 .072 .082 .079
BP 15 .073 .080 . 047 .087
BP 100 .062 .093 .055 .094

T A Py S IO TR SRR S W R W S R G T
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TABLE 35
SUMMARY OF SAMPLING EXPERIMENT RESULTS
WITH BARTLETT AND PLEASE AND

MODIFIED BARTLETT AND
PLEASE METHODS

Case II (02 = 2.362)

K Theoretical

Type Ni o, a, a, a, a, a,
Eq. Pr. 15 .176 .176 .240 .133 .14 .153
Eg. Pr. 100 .176 .176 .172 163 .166 .164
BP 15 .136 .211 .213 174 .133 .200
BP 100 .136 .211 .1u45 .197 .139 .198

K Estimated

S 3 a% a%
Type Ni a 1 o ay 02
Eq. Pr. 15 .233 .153 .167 .1u7
Eq. Pr. 100 174 .157 .169 +157
BP 15 .180 .187 .127 194
BP 100 .122 .187 .132 .187

TSR e R P T R
Cat’e® cal Aot Lol ol @l L Ly
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Comparing a, and &i it can be seen that the resubstitution
method gives better results than the Lachenbruch method, probably
because the estimation procedure used in the latter method is poor.
The differences between the performance of the various methods

may be seen more clearly by comparing the values of

le, - [a1]| + o, - fa2]| (91)

~

where [ai] may be di’ » a;%, or a;*. The value of this expression is

i i
denoted by D, D, D%, or D*, depending on the [ai] used.

The values of D are summarized in Tables 36 and 37. The super-
iority of the method of resubstitution is quite apparent for the
smaller sample size, although the two methods provide comparable
results for the larger sample size.

In the case of estimated cutoff points, the procedure used was
not actually a Lachenbruch method, since the cutoff points were not
recalculated for each sample after a particular observation had been
deleted. This could have been done, but the amount of computation
would have been increased considerably. For example, with a sample
size of 200 the equation H(K) = 0 for the equal probability case would
have to be solved 200 times. Although it is doubtful if this refine-
ment would improve the results for the 30 sample size case, some
further study will be devoted to it. However, the value of this
method as a practical approach would be questionable even if some
improvement resulted. This Lachenbruch method would be improved

substantially only by impro ing the estimation procedure for a, and br'

‘ ’ - - o .. - '. - '. M .-, - - - - » - - - - A -
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TABLE 36

COMPARISON OF ERROR PROBABILITIES ASSOCIATED
WITH BARTLETT AND PLEASE AND MODIFIED
BARTLETT AND PLEASE METHODS

Case I (02 = 3.760)

Type N, D D D D%
Eq. Pr. 15 .053 .013 .033 .028
Eq. Pr. 100 .013 *.009 .011 .007
BP 15 .023 .005 .035 .016
BP 100 .003 .00k .011 .003

Case II (o2 = 2.362)

Type N; ) D p* D*
Eq. Pr. 15 .107 .oul .080 .038
Eq. Pr. 100 .017 .022 .021 .016
BP 15 L1y .014 .068 .026

BP 100 .023 .015 .036 .028
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5.4 = Comparison of the Modified Bartlett
‘and Please Method with Kendall's Method

The Modified Bartlett and Please method was applied to some of
the data sets obtained in the sampling experiments. The modified
method was applied to each of the 50 sets of samples and the results
averaged, just as has been done in all of the previous sampling experi-
ments discussed so far. The results are given in Table 37. K, as
before, refers to Kendall's method; K(PC), to Kendall's method with
principal components, and MBP, to the modified Bartlett and Please
method. The method of resubstitution was used to obtain P(1,1) and
§(2,2) for the latter method.

T' 2 excellent performance of the modified Bartlett and Please
method is evident from Table 37. The principal components transfor-
mation was applied in the case o, = .9, p2 = .1, and, although the
performance of Kendall's method was improved considerably, the modified
Bartlett and Please method was still superior.

Tt is, of course, unfalr to compare Kendall's method to the
modified Bartlett and Please method in cases for which the latter
method was designed. It would be interesting to compare Kendall's

method to the modified Bartlett and Please method when there actually

was a small mean difference.
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CHAPTER VI

COMPARISON OF KENDALL'S METHOD WITH
OTHER NONPARAMETRIC TECHNIQUES

6.1 Successive Screening

Feldman, Klein, and Honigfeld (28) have developed a discrimination
method which is quite similar to Kendall's order-statistic method.
Referring to their hypothetical example given in Table 38, their method
can be explained. It is desired to separate out Group B. For scores
of four and above, the ratio of Group B to Group A is 10/1; for three
and above it is 25/10. The cutoff point for the parameter is that
value for which the ratio of Group B to Group A is largest. Each
parameter is examined in like fashion and that parameter giving the
highest ratio is selected. All samples with that parameter value
beyond the cutoff point are eliminated from further consideration, and
the procedure is continued on the remaining samples using the remaining
variables. The procedure stops when the maximum ratio at any stage
falls below a specified limit.

In Kendall's methed the cutoff point is chosen so that samples
from only one of the populaticns are beyond the cutoff point or else,
using the allowed probability cf misclassification, that only a
specified number of samples from the other distribution are allowed. In
Kendall's method separation of samples from each of the two populations

is equally import*ant.

87
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TABLE 38
HYPOTHETICAL DISTRIBUTION OF ITEM RATINGS
FOR TWO DIAGNOSTIC GROUPS (FROM
TELDMAN, ET AL (29))

Ordinal Scale

1 2 3 4 Total
Group A 30 20 9 1 €0
Group B 30 25 15 10 80

I+ would reauire onlv minor changes in Kendall's procedure to
cbtain that of Feldman, Klein, and Honigfeld. What wculd be the
advantare of modifying Kendall's methed in this way? In the case in
+hich the variabler are cn &n oruyiazal scale “ut only a cmall number of
values are possible, such as in rating a personality trait or opinion
on a scale from 0 through 10 in increments of 1, there may be consid-
erable overlap in samples from the two populations; frequently there
would even re complete overlap. :n situations like this, modifving the
Kendall order-statistic method to incorporate the Feldman, Klein, and
Honigfeld ideas would be advisable. Since Kendall's method is more
generally applicable than that of Feldman, Klein, and Honigfeld, and
since only minor modifications of the computer program based on
rendall's method would be needed to incorporate this optional method,
it would arjpear more advantageous tc make this modification than to
have two different methodz available in the form of separate, but quite
similar computer programs.

Feldman, ¥Klein, and Honigfeld list eight advantages in the use of

successive screening in medical work. These eight advantages are
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AL GATE (G RPN N AU AR M R RN A Y

N, =, s_e_@re.v_ e
SASRCGITL AN




PR T USRS TS TS W VAP WAL VRE Vg T AT W Tl W IR YO Wt A T S TR L T D T W T T T T S T W

89

quoted here since the same claims may be made for Kendall's order-
statistic method:

1. No restrictions are placed on the data distributions or the
joint distribu<ions.

2. The categories are polythetic, i.e., members of the same class
need not have even a single trait in commcn, but must exhibit a
minimum pumber of alternative trait set members. To some degree
this resembles the ambiguity that occurs with keys formed by
the surmaticn of weighted items, but the successive screening
method stipulates a specified minimum intensity. for any trait to
ke of consequence in the discrim.nation.

a ric sijns ®may be eawlly recognizcl, dut, in general,

lassification is made by sign pattern.

PN

4. Certain classes may be 'ruled out' by certain traits.

5. Ordinal traits may have both extremes used for the same effect,
l.é., a U-shaped relationship of classification to trait can be
utilized.

6. The successive screening technique is essentially a counting
procedure and does not utilize mathematical procedures that
derend on interval or ratio scales.

7. The procedure makes easily inspected prima facie sense and does
not involve such obscurities as suppressor variables.

8. The model systemitizes the sequential screening approach of
clinical diagnosis but avoids the problem of making serious
misclascifications through single measurement errors, by using
multiple alternative traits at each decision point.

6.2 Henrichon and Fu Algorithm

There is another nonparametric discriminant analysis technique
which has been well received by specialists in pattern recognition (29),
although it has not heen reported in the statistical literature. This
is the Henrichon-Fu technique (30, 31) which will now be explained.

Consider first the univariate case with two populations nl and nz. Let

(xl’xz""’xn ) e a set of independent observations from Ill and
1l

R R R S A AR TN ¢ SR E e A e N e P N o R L
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y = (yl,y2,...,yn ) be a set of independent observations from Hz. The
2
x and y observations are represented respectively by a) and b) in

Figure 2 below.

Step 1. (Figure 2,c) - Combine the x and y observations and
order the set xUy according to increasing numerical value. Partition
the set Uy so that there are K samples in each cell. In Figure 2,

K = 5.

Step 2. (Figure 2, d and e) - Let Ci(i = 1,2) be the cost of
misclassifying an observation from Hi(i = 1,2) and let Co be the cost

of not classifying an observation. In Figure 2, C1 = C2 = 6, CO = 1.

Count the number of x's and y's in each cell and assign to nl, Hz, or

Ty (unclassified) according to the following:

If
2
Min l Cj (no. of samples from Hj) < CK
i
1

#i

de de

then assign to nj (i=1,2).
Otherwise assign to Ho.

Then combine adjacent cells of the same class.

Step 3. Adjust the cell boundaries by perturbing them a maximum
of K/2 samples in either direction and locate the boundary at the

point giving best classification (Figure 2, f).
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Figure 2.
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Step 4. For any remaining cell with less than K/2 samples,
dissolve the cell, placing the samples in the cell into adjacent cells
in such a way that there is the smallest increase in misclassification

(Figure 2, g).

Step 5. Repeat Step 2. For this final partition compute the
empirical classification statistic, or Score:

2

Score = E{Ci (No. of samples misclassified from Hi) (92)
i=]

+ C0 (No. of unclassified samples)

The procedure is extended to the multidimensional case by cal-
culating a score for each variate and selecting the variate with the
lowest score first. After the space has been partitioned with this
first variate, the resulting cells are further partitioned using the
variate with the second lowest score. This procedure is continued until
there are no new cells formed.

The Henrichon-Fu algorithm is similar to the Kendall algorithm.
In the Kendall method observations once classified using a particular
variable are removed from further consideration in examining any other
variables. In the Henrichon-Fu algorithm the observations are not
explicitly removed from further consideration once they are classified
as ﬂl or Hz, but this is indeed the effect. Only Ho cells resulting

from the use of a variable are further partitioned when the next

variables are considered.
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If we consider these two techniques applied to two unimodal distri-
butions, then they are quite similar. Consider the Kendall method with
no initial misclassifications allowed. The Henrichon-Fu algorithm with
Cl and C2 very much larger than Co would cause all cells with at least
one observation differing from the rest to be labelled Ho, producing the
same effect. For any selections of allowed probabilities of misclass-
ification with the Kendall method the same results could be produced
with the Henrichon-Fu algorithm using suitably chosen values of Co’ Cl’
C2 and K.

The superiority of the Henrichon-Fu algorithm becomes evident when
multimodal distributions are considered. Referring to Figure 3, it can
be seen that Kendall's method would be useless but the Henrichon-Fu
method would be appropriate. Another point in favor of the Henrichon-Fu

algorithm is that it is readily usable with more than two populations,

but the Kendall method in the present form is usable only with two

populations.
4|
Figsure 2. Hypotheticazl Case When Kendall's Method
Would Not Ferform As Well As the
Henrichon-Fu Method
AN DY P o 0 N N I I I N N N A S I B D R R T N ST S AT ATA SO0 SLELT (1, G Sk, 250K



The Kendall method could still be better in the unimodal, two-

population case, since a poor choice of K with the Henrichon-Fu
algorithm could produce poor results. Of course the data could be
examined prior to use of the Henrichon-Fu algorithm in order to select
the best value of K. However, if there are many variates, each
requiring possibly a different value of K, the task could become
difficult. There is another important reason why the Kendall method
would still be preferred. This is the fact that Kendall's method is
easily used in routine discrimination, even without the use of a
digital computer.

In summary, for discriminating between two unimodal distri-
butions, the Kendall method may still be better, but for many other
cases the Henrichon-Fu algorithm promises to be a superior method.
Regardless of the advantages of the Henrichon-Fu algorithm in more
sophisticated situations, the Kendall method still has the distinct
advantage of being capable of being used without recourse to the
digital computer.

Even when the Henrichon-Fu algorithm is applicable it would be
interesting to consider the use of an initial Kendall method prior to
application of the Henrichon-Fu technique. ’

Further study of the Henrichon-Fu algorithm and its possible
modifications and a more complete comparison of the two algorithms are

planned for future research.

6.3 Nearest Neighbor and Related Methods

Fix and Hodges (32) have considered a nearest neighbor method in

which a point to be allocated is assigned to the class of the nearest

',; :- I\ ‘,; 1: : i\ ts 35 :\ E :\ -i\ :\ :°- t\ :\‘i;!-: :\ ts ‘:\k'.} -~ -.'t x&\é\':\é \'t \'t\‘m*cs':\::\"! -.E-‘ s't'\} ﬂ-’: :‘:’ \{:'{;&&R}:E\l\*
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classified point in the p-dimensional space. Variations of this
method have considered allocating a point to the class of the majority
of the nearest points. The latter method is referred to as the
k-nearest neighbor decision rule.

Kendall (9) criticizes the nearest neighbor methods for generatirg
impossibly complicated classification regions when there is consider-
able mixing of the samples from the different populations, and this is
the situation of most importance.

Pelto (33) has developed a method which he calls adaptive non-
parametric classification. This method estimates probability densities
by counting known points observed within a hypersphere around the
point to be classified. The radius of the hypersphere is fixed to

minimize the expected loss of the decision rule.
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CHAPTER VII

CONCLUSIONS

7.1  Summary of Results

1. Kendall's order-statistic method is a promising technique in
discriminant analysis. In cases where the LDF, linear discriminant
function, is appropriate, Kendall's method does not give much larger
error rates than are obtained by use of the LDF. In cases of multi-
variate random variables with symmetric distributions such as the
Cauchy or the uniform (both with independent random variables), or
multivariate normal random variables with unequal variance-covariance
matrices, Kendall's method gives lower error rates than those obtained
by use of the LDF for populations with small mean differences. It
gives comparable error rates to those obtained by use of the LDF for
populations with larger mean differences. However, in most of these
cases there is a relatively large portion of the index sample which
will not be classified. The multivariate lognormal (independent
variables) has been considered as a representative case of a multi-
variate random variable with a distribution which is not symmetric.
In this case Kendall's method provides much lower error rates than are

obtained by use of the LDF and most of the index sample is classified.
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2. Use of an allowed probability of misclassification in the
initial sample can greatly increase the portion of the index sample

classified, while raising the error rates only slightly.

3. Maintaining the Mahalanobis distance but reducing the
overlap of the component variates may sharply increase the error rate

using Kendall's method.

L, Error rates for linear discriminant functions estimated
from samples are compared with the theoretical error rates for a
number of cases of multivariate normality with unequal variance-

covariance matrices.

5. A modified Bartlett and Please method has been developed
which provides equal probabilities of misclassification. This has

been applied in a number of cases.

7.2 Future VWork

Some interesting questions for future research would be

1. Extension of Kendall's method to more than two populations.
If A, B, and C denote three populations, one possible approach would
be to find which is most cacily discriminated, A from B and C, B from
A and C, or C from A and B. That separation is then carried out. Then
discrimination could be tried between one of the two groups remaining

and the other group combined with the residual group from the first

separation.
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2. Investigation of the effect of allosed probability of
misclassification in Kendall's method. More work needs to be done on
the trade-off between increasing the acceptable misclassification level

and decreasing the portion of the sample unclassified.

3. Investigation of the effect of differences in sample sizes
in Kendall's method. This could be an important factor, particularly

if one sample size is much larger than the other.

4, Investigation of the effect of non-normal multivariate
populations on Kendall's method. This work is important in order to
develop a measure of the probabilities of misclassification to be

expected.

5. Investigation of the effect of unequal mean components on
Kendall's method, i.e., u'= (“1’“2’“3’“u’“5)’ W not necessarily equal
to “j (i#j). In the one example considered in the study, maintaining
the Mahalanobis distance but changing the mean components strongly )

affected the result.

6. Investigation of the effect of different values of p other
than 5. With smaller values of p discrimination will be reduced, but
the question is how much? With larger values of p, Kendall's method,
like linear discriminant analysis, may classify the initial sample only
too well, greatly overestimating the probabilities of classification

and underestimating the probabilities of misclassification.
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7. Consideration of the effect of the a priori probability
that a sample comes from a particular population. In this study equal

a priori probabilities have been assumed.

8. Further investigation of the Henrichon and Fu algorithm
and comparison with Kendall's method. As mentioned in the study, this
may be an improvement over Kendall's method. Professor Fu kindly has

supplied a copy of the latest version of his computer program.

9. Calculation of the probabilities of misclassification in

using Kendall's methods by means of nonparametric statistics such as

is done by Henrichon and Fu in their consideration of generalized

tolerance limits.

10. Study of the adequacy of the representation of

a?[(1 - p)I + pEpp]

for variance-covariance matrices in general.

11. Improvement of the estimation technique in the modified

Bartlett and Please method.
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