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71 ABSTRACT

Two new developments, multivariate sequential sigu.ficance tests and a method of
forming multivariate two-sample tolerance tests, are proposed. The sequential signif-
icance test considered is a fixed-length succession of two-sample subtests where each
subtest reuses some or all of the data for preceding subtests. By proper choice of

i the subtest statistics and use of a permutation basis the subtests are made independent

The class of multivariate two-sample tolerance tests developed by the proposed

method are directly applicakle as subtests in the sequential significance tests. The
proposed method is based on a new technique of constructing tolerance regions for the
two-sample problem. Subject to certain mild limitations the analyst may actually

look at the combined observed vector values in order to construct the desired tolerance]
regions. This advantage can be used effectively in choosing the shapes of the toler-
ance reqion? so as to emphasize the alternative hypotheses associated with the selected
' test statistic. The only requirements are that the joint null distribution of the

i ~ombined data be a symmetric function and that the observations be such that the pro-
[ posed construction process is unique with prckakility one,
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CHADTER T

TRTPANCTTON

Propesed are a class of sequential sipnificance tests of limited
length and a method of forming multivariate two-somnle tolorance tasts.
The sequential signilicance test gtudied ie conducted as a finite suc-
cessicen of certain multivariate twvo-samnie permutation subtests. Thr
two-sample tolerance tests produccd by the proposed method satisfy the
required properties as subtests. The sequential esignificance test
using these tws sample tolerance subtests can be practicallv applied in
rultivariate quality control.

The sequential significance tests are discussed in Chapter II.

The data considered are independent sets of random samples which, under
the null hypothesis, are from the same multivariate population. Two-
sample subtests are performed in a sequential manner where each subtest
reuses all or part of the data considered in previous subtcsts. The
previous data used by each subtest may be determined bv random selection
from the totality of data considered by the preceding subtest. The over-
all test is significant whenever anv one subtest is significant and is
not significant when all subtests are not significant and a maximum
number of subtests have heen made.

Permissible subtests are permutation tests whose statistics are

symmetric in the totalityv of the previous data used. Bv considering
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only this class the subtests are independent, thus the significance e
level of each subtest is not affected by the outcomes of preceding
subtests,

fome 0f the desirable properties of the sequential significance
test for quality control uses are: (1) the data considered may be
multivariate, (2) the test permits legitimate reuse of previous data,
(3) the permissible subtests are independent providing accurate evalua-
tion of significance levels, (4) the random selection of previous data
at each subtest Jevel can be effectively used to emphasize the more
recent data, and (5) the permutation-randomization approach vields
subtests that are generally applicable.

In Chapter III the new proposcd method of forming multivariate
two-sample tolerance tests is introduced. This method vields tests that
have a permutation basis and satisfv the requirements for subtests in
the sequential significance tests proposed in Chapter II. A well known
existing method is shown to be a special case of the proposed method.
The data required by the proposed method need not be independent random
samples but must have a symmetric joint null distribution. Also, any
univariate two-sample tolerance test can be considered as a multivariate
two-sample tolerance test. These include all run and rank tests.

The construction process of forming tolerance regions for the
proposed method is outlined in Chapter IV. This process is a system-
atically staged procedure for establishing a set of tolerance regions

for the two-sample problem. Certain svmmetric information is avajlable

for use at ecach stage. This information basically includes knowledge
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of the combined observed vector values as long as they are not identi-
fied with the population from which they were taken. This information
accumulates as the process continues providing an excellent source for
determining the shapes of the desired tolerance regions. Thus, the
desired tolerance regions can be constructed with the goal of making
the selected test statistic as significant as possible.

Some suggested techniques for applying the proposed method of
forming multivariate two-sample tolerance tests are presented in Chapter
V. Also included, are certain practical considerations for using the
new construction process effectively and for selecting appropriate uni-
variate tests. A general outline of a suggested operational procedure
is included.

Certain areas of possible application of the sequential signifi-
cance test using subtests formed by the proposed method are considered
in Chapter VI. Most of the discussion is devoted to applications in the
medical field.

The last chapter, Chapter VII, contains statements of the basic

theory verifying the results claimed for the proposed method of forming

multivariate two-sample tolerance tests. The important results are
stated in the form of a theorem and ccrollary. Because of its unusual
length, the proof of the theorem has been relegated to the appendices.

All other results claimed are verified in the discussion.




CHAPTER 11

QUALITY CONTROL TESTS

Sequential random’-.ation tests for univariate one-way analysis of
variance have been developed by Walsh [15] and [16]. Presented here, is
an analogous extension of Walsh's tests using multivariate data. Such
tests possess desirable pronerties waking them directly applicable to
quality control uses.

A class of sequentind significance tests which consist of a pre-
specified numher of subfests is developed. Each subtest in the sequence
reuses all or part of the total data used in the .icceding subtest in a
manner which establishes independence among al: subtests.

The data are taken in sets representing independent (finite) random
samples1 of multivariate observations which, under the null hypothesis,
are from the same unknown, but partially—continuous2 distribution. Each
subtest is a two-sample test using as one population sample (previous
data) a set of data vectors randomly chosen3 from the totality of oh-

servation data vectors used in the preceding subtest and as its second

1 3 . . ;
It suffices to require the combined observations to have a sym-
metric joint null distribution.

2 . . )

A random vector is defined to have a partially-continuous distri-
bution if at least one component of the random vector has a continuous
marginal distribution.
3The previous data for any two-sample subtest may then include the
totality of observation data used in the previous subrest,

b




population sample (new data) osue ol the rewiiniung wnused data sets. The A
subtests are performed senquentially until either significance is obtained
at a subtest level or a specificd maximum number of subtests have been
made. Significance for the overall test is obtained only vhen a subtest
in the sequence proves significant. Thus, the overall test will not be
significant if, and only if, all subtests in the sequence are not sig-
nificant., Exact significance levels can be obtained by using appropriate

randomization-permutation probability modecls and subtest statistics

possessing a special propertv which insure independence between subtests.
Perhaps the most desirable fcature of these tests is their ability
to legally use (in a probabilistic sense) data of preceding subtests.
The outcomes of the preceding subtests in manv similar sequential tests
nrocduces 2 conditional effect on the significance level of succeeding
suvhtests; however, in the tests studied here, the subtests are indepen-
“2nt and no susch conditional cffects exist among them. Therefore, if
a;,az,...,ok dorrto the signi©iconce levels of the k subtests composing

the overall test, the significance level, a, of the overall test can

be computed directly:
k

o = 1- T (1-oa,).
i=1 *
Another feature, which is highly desirable in applied sequential quality
control tests, is the ability to maintain a limited control of the em-
phasis placed on preceding data sets at each subtest stage. This is

accomplichnd by properly selecting the sizes of cach new data set used

in the sequence and the size of the previous data set obtained by random-

ization at each subtest stage. Repeated randomization of the preceding




data will emphasizc the most recent dara sets, while no randomization,

that is,using all the preceding data, will tend to deemphasize the most
recent data sets.,

A third feature is that the randomization-permutation model yields
subtests of geperal applicability which may be one or two-sided tests
and can be criented toward many forms of the alternative hypothesis.

The randomization coi:ribution %n the model insures, under the null
hypothesis, that the observations selected as previous data at cach sub-
test stage constitute a random sample from the population representing
the totality of data used in the previous subtest. If no significance
is obtained at the subtest stage, the previous and new data sets used
are combined and represcent a random sample from the population yielding
the combined data. This combined dat . sct becomesz the data available
for randoniz:tion (if anv) defining the previous data set for the next
subsequent subtest. The process is continued until either significance
is obtained at some subtest level or a specified number of subtests have
been made.

The permutatiou model is used to establish the conditior 1 prob-
ability spaces on which the distribution of each subtest statistic is 3
determined. If the observed vectors are ordered in some definite but
arbitrary manner (e.g. the order in which they were obtained) then the
sample space, induced by the permutation model, constitutes the set of
all permutations of the observed vectors. Under the null hypothesis,

the probability of any permutations is the same. The permutation sample

space associated with 1 (wo-samrle preblem can be reduced by considering




the set of all possible assignments of the ordered osserved vectors into

two sets; one of size equal to the new data set and the other whose size
corresponds to the pr vious data set. Then, under the null hypothesis,
all possible assignments made in this manner are equally-likely,

Now, any function, symmetric in the totality of observed vectors,
is clearly a constant on all points of the associated permutation sample
space. That is, under any hypothesis, this function is a constant with
probability one. Therefore, the function, a statistic, is indenendent
of any other statistic defined on the same permutation sample space.

This fact motivates the method used for selecting appropriate subtest
statistics having the property that the subtest significance level is
not conditionally affected by the outcomes of previous subtests,

For each two-sample subtest consider the class of statistics which
are symmetrical in the totality of observed vectors defined by the pre-
vious data set. Then, for any fixed set of observed vectors constituting
a possible ordering of the new data set, the value of such a statistic
remains unchanged over all permutations of the observed vectors in the
previcus data set. Also, for any fixed ordered set of observed vectors
in the new data set, this statistic is defined on the permutation sample
space obtained from the previous data set and on any permutation sample
space ccnstructed on a set of observed vectors contained in or containing
the previous data set.

In order to verify that this class of statistics possess the property
that in the sequential process each subtest statistic is independent of

the -esults of the preceding subtests, two mutvally exclusive cases are

are considered.
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First consider a sequence of subtests where at cach subtest stage

the previous data was taken to be the totality of data used in the pre-

ceding subtest. That is, none of the previous data sets defined at each
subtest stage were obtained by randomization. The totality cf data used
for each subtest is then a proper subset of the totality of data used in
the next subsequent subtest. Thus, any permutation of the observed vec-
tors that could occur for any preceding subtest corresponds to a subtest
of the permutations of the observed vectors in the previous data set.
For any fixed order of observed vectors in the new data set the subtest
statistic, by choice, is a constant over all permutations, thus all sub-
sets of permutations, of the observed vectors in the previous data set,.
Therefore, the subtest statistic is a censtant, with probabilitv one, on
each permutation sample space of the preceding subtests, and is inde-
pendent of the permutation observed for each preceding subtect. Since
the outcome of a subtest is determined by the actual permutation of vec-
tors observed, then the subtest statistic is independent of the outcome
of all preceding subtests.

Now, consider a subtest whose previous data ret was obtained by
randomization - randomly selecting a subset from the totality of data
used in the preceding subtest. Since the new data sets obtained after
randomization are independent of the data sets used prior to the random-
ization, it is only necessary to show that the previous data set is in-
dependent of all outcomes of the preceding subtests. To verify this, it

suffices to consider only those preceding subtests occurring after the

most recent previous subtest using randomization, for induction can be
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used to justify the remainder of the assertion. Verification then fol-
lows, since the totality of observation vectors in the preceding subtest
is not affected by any permutations that could occur or any subsets of
them. Thus, the :ubtest statistic is independent of the outcomes of
these preceding subtests.

If randomization is used in the next following subtest to obtain
its previous data set the above verification holds. However, if the
next subsequent subtest does not use randomization, the situation is
essentially the same as that cited in the first case. The proof then
follows by induction.

The sequential significance test description given by Walsh [16])
for the univariate case is analogous foir the multivariate case. However,
in this paper, the number of obhserved vectors in each new data set is
permitted to be one or more provided the first data set used is of suf-
ficient size to insure that the desired significance levels of all sub-
tests and the overall test can be obtained (or approximately obtained).
In like manner, for exact and approximate permutation tests, the deter-
mination of sharp lower bounds for the subtest significance levels, and
the considerations on the sample sizes used in each subtest discussed by
Walsh also hold for the multivariate use as well. This material has
been thoroughly and clearly presented in the above reference.

To establish a sequential significance test, having all the proper-

ties outlined above, would first require finding appropriate two-sample

multivariate subtests. These subtests not only should be selected to




cmphasize the alternative hypotheses, but be feasible in application.
That is, under the permutation model, the null distribution of the sub-
test statistic should cither be well approximated by some known distri-
bution or eacily determined. The two-sample tasts considered in this
parer are based on tolerancz regions. It will be shown that a two-sam-
ple tclerance tes“ has a2 permutation basis =nd the associated test sta-

tistic is symetric in the observations in both samples separately.

Thus all two-sample tolerance tests are permissible as subtests.




CHAPTER III

MULTIVARIATE TWO-SAMPLE TOLERANCE TESTS

A new method of forming two-sample tolerance tests is proposed. As
an introduction to this method an existing method is presented first.

The existing method is a special case of the new proposed method. The
basic difference between them is the manner in which tolerance regions
are formed. The new method is shown to overcome several of the major
disadvantages common to the existing method. Both methods yield tests
that are suitable as subtests in the quality control tests presented in
the preceding chapter.

The same basic philosophy is used in both Qethods to form two~sample
tolerance tests. A test is fundamentally esnéblished on a set of toler-
ance regions. The number of observations from one population falling
within each tolerance region is counted. These frequency counts are then
used to determine the outcome of the test.

The existing method ({19],[ 1], and [ 3]) requires that the data
be two independent random samples. One of these samples is used to con-
struct a set of disjoint nonparametric tolerance regions. The other
sample is reserved for determining the region frequency counts. The con-~
struction process used to establish the tolerance regions ([17],[13],[12],

and {9 ]) is a systematically staged procedure (referred to here as the

“standard one-sample process').




in the first stage tie sample snace ie partitioned into two disjoint
tolerance regions, called blocks. This is accomplished by choosing some
real-valued function whose null distribution is continuous and selecting
some order statistic on the set of function values defined on the sample.
These choices can be based on any independent information that is avail-
able prier to taking the observations. The value of this order statistic
and the obtserved vector yielding it is all the additional information
permitted ({6 ],[71,[ 81, and [9]). The function equated to this given
value of the chosen order statistic defines a cut on the sample space
nroducing two blocks. This partitioning also separates the sample into
o nonditionally independent subsamples [ 3]. Using this limited in-
“ovma*t on, one of the two blocks formed is considered for division in the
z2con? stage, The above process is repeated only for the subsample of
Viee-cztfons associated with the chosen block. However, the function
“xv3 devel ‘v “ho second stage may differ from the function selected at
kh: 77v-+ stage level but its null distribution must also be continuous.
The chosen block is then partitioned into two new blocks. Thus, by the
end of the second stage three disjoint blocks have been formed. Again
the only new permissible knowledge are the values of the order statistics
~1d the obscrved vectors vielding them. The process is continued umntil
the desired number of tolerance regions or blocks has been obtained. The
content of the tolerance regions can be determined by the number of unused
observations lying within them. If the process were continued until all

observaticns were used to define cuts (each time producing two new blocks)

~1c resulting blocks are called basic blocks or statistically equivalent
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blocks. Thus, tho Ller™s ohratned corliev in the process would consist
of a fixed number of basic blocks. A more common measure of tolerance
region content is the number of basic blocks contained within the toler-
ance region.

Finally, after the desired number and basic block contents of the
tolerance regions have been established on the first sample, the corres-
ponding set of frequency counts on the observations in the second inde-
pendent sample are made yielding the outcome of the test. The null dis-
tribution of the test statistic is determined from the joint null dis-
tribution of the block frequency counts. Tlis latter distribution has
becen established ([18] and [191]).

All tests based on this method have a permutation basis. This
fact is shownr by the corollary given in Chapter VII. The corresponding
test statistics are symmetric in the totality of sample observations on
which the blocks were defined; also, they are symmetric in the totality
of sample observations used to determine the block frequency counts.
This means that any two-sample test obtained by this method can be used
as a subtest in the previous chapter. Furthermore, either the '"previous"
or "new' data set can be used to define the tolerance regions.

Unfortunately, this existing method has a major disadvantage;
namely, the limited freedom in selecting the shapes of the tolerance
regions so as to emphasize the alternative hypotheses of interest. At
each stage in the above process only a small amount of knowledge was
available on which to choose the shapes of the cutting functions. No

knowledge or consideration of the second sample data was used. By com-

bining both sets of observations and considering only certain permissible
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information (mainly symmetric) o vast amount of knowledge can be obtained
on which to hase the  hanes of tolerance regions.  This concept is ex—
plored bv the next sehiod.

The propased new method of forming two-sample tolerance tests re-
quires onlv that the two cets of data have a symmetrieal joint null dis-
tributicen. Both sets of observatione are used to construct a set of dis-
joint telerance regions on one of the tun sets of cohenrvations. The
process of constructing the tolerance region is similar to thn standard
one-sample precess bhut 2ilars knowledge of all ohoeovved vectors exaluding
their scet association (i.e. bnowledpe of rhe observations within cach of
the two original data ¢ete 38 forbidden). This construction procedure
will be referred to as *he "peneralized block conestruction process for
the two-cample problem” or vimply as the F% procese.

Firat, onc of the twun data sete i¢ designated as the set on which

the tolerance regions (o> blocks) +i11 he formed [This set will be referred

to as the "designated sct"]. Prior to the formation of any blocks on the
samplce space a certain amount of information is available. This includes
all information which is symmetric with respect to the totalitv of random
vectors vielding the combined set of ohservations. Thus, knowledge of
the observed vector values is permitted as long as all vectors are not
associated (or identificrd) with ecither of the two data sets. This means
that the totality of tha unidentified ohserved vectors can he "looked-at"
and trcated numericn]iy and/or graphically in anv manner. Any function
defined on any subset of the combined set of unidentified observations

would be symmetric infortiation permitted. All of this information plus




any independent information available prior to taking the observations
can then be used to sclect the first stage cutting function. This func-
tion must be real-valued and must either have a emmtinuous null distri-
bution or be sec.ected in such a way as to guarantee that it will never
pass through more thaii one observed vector for all the values in its
range.  The location of the cut is then determined by selecting some
order statistic on the set of function values defined on the designated
~et.  Culy the value of this order statistic and thic observed vector
yielding it cun be jdentified. Thus, one of the observed vectors, the
one associated with the cut, is identified and all other observations
remain unidentified. The additional information that now becomes avail-
able includes the tuo sets of uvnidentified observations falling within
the two ncw blocks formed and all information which is symmetric with
respect to hoth sets of random vectors vielding these two sets of un-
identified obscrvations. Then a block is chosen for the next stage
division (it must contain at Jeast one observation from the designaved
set). A decision must be made at this time to either reserve the remain-
ing block for possible future division at some later stage in the B%
process or to never divide it at any stage. Tf the latter decision were
made, all observations lving within the remaining bleock can be identified
with the oviginal data sets. All this information is then used to select
the next cutting functien. This process is continued imtil the desired
tolerance regions have been formed. The joint null distribution of the

block frequency counts at anv stape is the same as the corresponding

distribution determined by the standard one-sample process (sce Chapter
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VIT). Thus, @7 ¢h o . oo Dot o e 1ar possible stape
the resulting hiocks ave static tically omivalent blocks in the sense
that the deoint rull distribution of the basic block frequency counts is
the same ac rhat determined bv the standard processl.

Tn Chapter VID it is shown that any test produced by this new
method alse has a permutation basie and its associatced statistic is sym-
metric in the set of obscrvations on which the tolerance regions were
defincd aad on the set of observatious used to establish the block fre-
quency counts. Then all two-sample tolerance tests defined by this new
method ar: usabl 15 subtests in Chapter IT. Also, either the "previous"
or "nmew" data scts can be used to define the block frequency counts.

One primury advantace the 7% process has over the standard one-
sample procese s the vast amount of information made available for
forming televarece rooyons. This advantage allows one to select desir-
able shapee of rhe olerance regions <o as to make the test statistic,
previouslv chesen, as =~ignificant as possible. This is equivalent to
emphasizing the ajteriative hypotheses for which the test accentuates.

A second important advantage of the B* process is that it is not

necessary to proceed throurh all stapes once sufficient information to

1Thc term "statistically equivalent blocks,'" originally defined by

Tukey [12], actuallv referred to a set of tolerance resions obtained at
the complciion of the process described bv the first method. This con-
cept basicallv defined statistically cquivalent blocks as a set of N+ 1
tolerance repicns, formed by the first methed, wvhose joint coverages
represent the harveentric coordinates of a random point vniformly dis-
tributed in ~an Si=dimencicnal cimnlex (where, N denotes the sample size).
In this paper, staticticallv equivalent blocks will be defined as a set
of tolerance repions on ~hich the jeint null distribution of the fre-
quency counts deternined hoa eecond sample is the same as if it were
determined by 1 <ct of statistically equivalent blocks defined by Tukey.




b
evaluate tho ont cones of i e b made avariabile. Yhe process %
allows some obhoorvat jone . corntetely ddentificed at various stages.

-

For example, 7 a coavrain Mloch edither has bheen designated as a block

"never-to-bo-divided” or is a4 basie biock, then all observations lying

within are complatelv fdentificd with their original data sets. Thus,

sufficient intoreation ohent the blodk frequenev counts may possibly be

deternined eariv an the process 80 as to conclude the cutcome of the

test. !
Another advantiee 1= the data need not be indeneirdent random samples.

The correspondiny reguiverent is that rhe joint null discribution of the

combhined dnuto ooty st e o osveometric famction.

Te is ales <hoour in Coaproer TV that the standard one-sample process

[ 8

5 a special canse of the Mf owracess. This implies that the standard
process can be cxtorede s e voguiring only that the combined data have a
symmetric joint ani’ diotridhution function.

The type of tests that may be formed by either method is considered
next. Anderson [ 1] shews that aoy two-sample tolerance test adapted
for the univariate case is also directly applicable for the multivariate
case using the existing mcethod. Tests based on multivari.te data are
obtained by relating cach multivariate tolerance region to a univariate
tolerance region containing the same number of basic blocks., Since the
joint null distributicen of the bleck frequency counts is unchanged
whether the multivariate or univariate case is considered, then all uni-

variate two-sample rolerance tests arce usable. However, the joint null

distribution of the hlock frequency counts for the new method is the
| 3

same as “hat for the cxicting method; thus, univariate two-sample toler-




ance tests apply equally well to the new methodo The types of nonpara-
metric tests available for consideration include all run and rank tests
(see pages 34 through BO in reference {141). Some of these tests are
described later in Chapter VI

A detailed description of the proposed B* process is given in the
next chapter. This is followed by two chapgcrs devoted to suggested
techniques and areas of practical application. The final chapter estab~

lishes verification of all results claimed.




CHAPTER 1V

A GENERALIZED BLOCK CONSTRUCTION PROCESS, Bf
FOR THE TWO-SAMPLE PROBLEM

The process presented is a systematically staged method of con-
structing a set of distribution-free tolerance regions (blocks) for the
two-smple problem. The data consist of two sets of at least partially
continuous multivariate observations which are defined on the same sample
space. Under the null hypothesis, the tombined data must have a symmetric
joint cumulative distribution function. The sets and the observations
within eachk set are not required to be independent. At each stage in the
process specific infermation on certain subsets of the combined set of
observations is used to establish two new blocks (regions) within one of
the blocks previously formed. This information collectively increases
i as the process continues, providing a better basis on which the shapes
and locations of future blocks may be controlled. This freedom greatly
increases the ability to construct blocks so as to emphasize the alter-
native hypotheses - thereby potentially increasing the power of any “wo-

' sample tolerance test.

% The first two stages and a general stage are discussed in detail
stressing the amount of permissible information available. Some suggested
techniques for exploiting the information nhtained are presented in

Chapter V.
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p-component random veotors defined oo o sample space X. Those random
vectors must be at Ieast partrially continucus and bave a svmmetric joint
null cumulative distritation functicn. The process Bt will be demonstrated
by forming a sct of blocks (toleranc. regicns) on the observatiors on

o .
n

For convenivace, o Yew basic terms and symbols will be defined
and used throupgh the remaining text.

An observation is satd tce be identified if it can be associated
with the set of random vectors which yielded it; that is, associated with

)

either Qn or . Thus, a set of obscrvations is identified if each ob-

m
servation within the sot 1s identified.

Informatincn on a set of obscrvations ‘s said to be symmetric with
respect to a block (or union of bhlocks) if the information is unaffected
by interchanging the roles (relabeling the identities) of the random
vectors yielding the observations falling within the block(s). For

example, if Vi,V:,...,V, denote the set of random vecters vielding ob-

k
servations vhich fell within block B, then the information, 7, defined on
some set of observations which may or may not contain those in B, is

symmetric with respe-~t to B if for anv reordering (v;,v;,...,vi) of

(Vl,Vz,...,Vk) I is unchanged.

Dafinition 3

The symbols En’ Sn and ;n+ will denote the sets of observations on
1] m




0, ¢ and ' vespectively, vhere O is the combined set of ran-

n m n4n n+m

, I
dom vectors {XI,X9,...,KH, Y;,...,Yn}. Likewise, 01 vill denote the set

of random vectors in @ | virlding the set of observations o, in 0 +m
el i n

. . ! el .
which {all vithin Llock H; ar the ko0 stape “n A%, for j = 1,2,...,ktl1.

Definition 4

The svmbois 71,Z:,.0..,7 are a relabeling of the random vectors

n+m
o e ot cvrtiolw 73 73 j .
in Un+m' Also, the symhols AI,ZZ,...,Zk(j) will represent the random
..k i J J i J
5 o DG {
vectors In o and xl,ﬂp,...,ki(j) and Yl,Yz,...,Yt(j) are those random
. K R .
vectors in :j n “ and i r’ﬁm, respectivelv, defined at the kth stage.

All lower case letters x, v, and z will denote corresponding observed

vectors.

At the bepinning of the first stage all information on Sn+m which
is symmetric with respect to ¥ (considering the space, X, as a non-random
block) is permitted as well as all prior information (i.e. information
available prior to .aking the observations: previous observations, etc.).
The totality of this infermation is denoted by I;.

If at least one observation in Sn+m is identified, then any infor-

mation on O 4m is not symmetric with respect to X. For example, suppose

z* ¢ 51+m is r1dentificed with On. Ry interchanging the roles of the ran-
1 T .

~

dom vectors in S, with those in Om the information that z* is identified
with On is no longer true. Also, any information on the set 5n+m—{z*}
is not symmetric with respect to X for the same reason. Trivially then,

since Sn and o arc completely identified, their knowledge is forbidden.

3

Supposce o is unidentified, then the knowledge of the observed

n+m




vocters 8 . . . Crhrenodt teos, since any interchanging
nti
of the tolrs o 1. rados ectors in o + does net in any way affect
ntm
the valuces of the observed vector, in n]*l,und o 4 still remains un-
ntul

identificd. Similarlv, any subset of o

is unidentified and is sym-
n+imn

"

metric with respect to ¥. Furthermore, any function on any subset of
observations in o vould be symmetric with respect te X, Since the

o

sample =izes » and n would be considered as prior information, it is per-~

missible to ccelect two subsets in O tm of sizes n and m to be likely
candidates oy the sete o oand o .
n m

After 7, has been established, the next step i3 to sclect some
integer 17 - ‘1,2,...,n} and sone real-valued measurable function
gz, 7y) which either has a continuous null distribution or is chosen

such that no ties exist in the sct {Ol(z,]])lz £ }, oif possible.

o :
ntm
i 1 ! > 1 : p

Throuwelh soue independent source”, having full knowledge of o_, the

. st ; . 11 - . . N
i Tarcest value In the set wél(z,fl)!z € on} is determined. This

. * . . : .

value and the obiorved vector in o, say x7, vielding it are available
a A )

inforimation.  Suppose dyfxV,71) = 1, then the function Sy(x,I1) = oy

is used to divide the sample space ¥ into two open regions:

o o - 3
[ O ’! 1(}’.,A1) B & I

and

1 1
Trer e anformatien, that is pemitted after the blocks B, and B,

have beos @ore 0 con ot of o, x§ and the two subrets of obseyvations

_l —1 - . - . . .

0, and o contained inoo o Additional information permitted at the end
. n+4m

In this cato. an independent source could be an assistant or a




] i o . -1 -
ot stage ! also includes all informaction on Oys O, and on 0n+m

. . I . . . 1 1
(including X)) which Is svmaetric with respect to both B, and B,. That
is, any information which remains unchanged when the roles of the random
. 1 . .
vectors in O, are interchanged and also is unchanged whenever the roles
. l 0
of the random vectors in O, are interchanged. This type of information
will be defined as information which is "symmetric separately" with re-

1
spect to a sct of blocks. Now, if i; = 1, the block B, cannot contain

- . - .‘1 . . 3 3 -1
any observation in o hence o, is completely identified (although o,

[o%

- . e -1
is unidentified if n > 1), Similarly, if i, = n then o, is completely

-1

idertificd and o i umidentified for n > 1. Whenever i # 1, n (n > 2),

N

-1 -

then both o and o are unidentified. Information of this type may be
usid wlvaniageousiv an choosing the shape and possibly the location of
. . , e s 1o .
the rovt mow hloohs (eeo Chapter V). By dafinition of B, B, and ¢y, it
15 oeasy to ceduce that there are exactly i;-1 and n-i; observations in

) L

- 03 - R v . . _1
°n lving within B, and B,, respectively. Since 0,

-1
and o, are permitted

e oxact numher of observations in Bm falling within B: and B; can
o dltermine.

Aftey considering all permissible information available at the end

) 3 B

of ste-e 1, the next step is to select cither block Ry, or bluck °, for
division at the sccond stage level. The particular block chosen must
contein at least one observation in Gn' In addition, the other block
¢l

not chosen for stage 2 division must be considered. One of two actions

arce required: (1) the block is reserved for potential division at some

later stape (it rust contain at least one obscervation in SJ or (2) the




blooh seii o oo oa Ste precedss,. The raevst action does not

necessarily imply that the blodl will eventually be divided but that it
may be considered for division at cone future stape. Tf the second ac-
tion were taken, it is permissible to identifv all observations falling
within; although, some of these observations mav be in En. This action
could provide considerable information especially if there were only a

few observations in Bn and manv observations in Bm lving within. Then

a better choice of candidate sets could be made.

The next step is te determine ithe information 72 that can he used
to select the next cutting function, ¢2(z,72). The tvpe of information
permitted in 7: depends upon the action taken above. If both blocks
were considered for division, one at the second stape level and the other
at some future stage, then 7; is defined to consist of all previous in-
formation and all information on 61, 5; and 6n+m whichk is symmetric

. 1 ! . . :
separately with respect to both B, and B,. That is, the information must

. . 1 . . 1
be symmetric with respect to B, and also symmetric with respect to B,.

. . o ~1 -1 . . A |

Consider the unidentified scts o, and o_. Since all observations in o,
£

~1 ~1

and all observations in o, are unidentified, then :cav information on o

2 1

. . . 1 . . . .
is symmetric with respect to B, and is trivially symmetric with respect

-1

1 P . :
to B similarly anyv information on o,

2 is symmetric separately with .re-

1 1 -1 -1
spect to B, and B,. Then any information on any subsets of o, and o,

. . . 1 1 - *
is symmetric secparately with respect to By and B,. Trivially x| is

symmetric with respect to both blocks, Therefore, any information on any

subset of observation: in © i is permitted.
1

If the second action above were selected, then 7: dis defined to

-1 -1 -
contain all previous information and all information o,, o, and o

? n+m




which fw weoer o oo too ety the hiack chosen for division.
. . !
For discu i, -y o Liloch howere chorten for division and it was
. vl s e —1
decided that Hhlock B. would never be divided. Then the set o, can be
-1

-1
or anyv subset of o

completely ideitificd and any information on o )

2
1
is clearly syrmetric with respect to B . Also, in line with the above

-1
discussion, any intormation on the unidentified set 0, or on any subset

-1 1
of o, or on xf is symmetric with respect to B;‘ It follows then, any

-1
n given that o, is unidentified is

information on anv subset in o 1

n+
. . 1

symmetriec ith respect to B .

In summary, :, contains all previous information and all informa-
tion on anv sub:sct of oheprvations in ° tm which is symmetric when con-

&
sidering cach bloch chosen for future division.
. « 1 l . . 0]

Apain, =urnose Lleck B] were chosen for division at the second

stage level. Then, using 7~, select an integer iz ¢ {1,2,...,i1-1} and
t 3

some reatow P T e el T fyupetion da (2,72) such that either it has a

continucus nuli distriburtion or that there are no ties within the set

- -1 o . . .
{¢2(z,;2)]z « o}, Through some independent source having full knowledge
-1 - . nd x i
of olfj D the iy Targest value, cay ¢&:(x;,12) = c,, in the sct

-1 - L
{¢r(x, i) ]x - 01(1 o 1 is determined. The vector x5 and value ez con-
stitute new perpicsible information.  The cutting function ¢,(x,72) = c2

1
is ueed to obtain twe open regions in Bt

2 1 .
b= . R]!fg(x,lﬁ) < ¢yl
S odiwo ;C;(x,fg) < ¢y, $1(x,71) < e}
and ) .
B o= v Plifp(‘,7p) > cpt




Yo standardlce th cocation let B: = Bz' Then the three blocks
. 2 2 2
defined at the sccond stage are B.,B,, and B,.
1 - .
If B, were selected for division at stage 2, then i, would be
selected from the integers {1,2,...,n~i}} and an appropriate ¢,(z,T3)
function would be chosen. The vector x§ and the value ¢, would be such

that ¢2(X§,I2) = ¢ is the iznd largest value in the set {¢z(x,12)[x €

=1 -
0,V o }. The blocks formed would be

2 1
B, = {x¢ le¢2(x,12) < c2},
2 1
B, = {x ¢ B2|¢2(x,12) > es}
and 2
B1 = Bl .

The information that is available for entering the third stage (if
. ., y % . -2 =2 -2
desired) constitutes I, x3, c2, the observation sets o,, o,, and 04,

and all information on Sn which is symmetric separately with respect

+m

to all the blocks whose corresponding observation sets are not identified.
By the above definition, I; contains 71, xf, c1, and all other information

available at the begirning of the second stage.

Stage r (r < n)

At the beginning of the rth stage the totality of permissible in-

* r-1 r-1 r-1
-1 Xp-1 Spep the blocks By ', B; ""’Br .

. . -r-1 -r-1 -r-1 .
and the corresponding observation sets o, ",o0, s++0y0 sOme of which

formation consists of [

may be completely identified.
Within the set of blocks, that have not previously been designated

as "blocks never to be divided", one block is selected for division at

the rth stage. Again, this block must contain at lcast ounc unidentified
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observaticr in Cx_ Tt o the reraining blocks must be classified
1
either as 1 block considered for future division or as a block never to
r-1 r-1 r-1 .
be divided. None of the blocks B, ",B, ""’Br which has been cate-
gorized as a block never to be divided can at any stage be reclassified
as a block considered for future division.
The information Ir is defined to consist of all previous informa-
all inirormation on o or on an se o whi i -
tion and L at no m n any subset in ° 4m ch is sym
metric separately with respect to all blocks which could be chosen for
AP . th
division either at the r stage or at some future stage.
r-1 . . .
If block B, (for some j = 1,2,...,r) were chosen for division
J
th . - . . r-1
at the r stage and the number of observations in °. lying within Bj
is ej, then, using jr' select 2n integer ir in {1,2,...,ej} and a real-
valued measurable function ¢r(z,Ir) such that either it has a continuous
null distribution or there are no ties within the set {¢r(z,Ir)|z€B§_l}.
Through an independent source, the vector x: € Sn and the value ¢r(x*,Ir)
r

= ¢, are provided where c. is the irth largest value in the set

_ -r-1 - . . _
{¢r(x,Ir)|x e Oj n on}. The cutting function ¢r(x,Ir) =c_ is used to

define two necw blocks in this block BE—l:

r _ o _ ar-l .

BJ_ (x ¢ Bj |¢>r(>\,Ir) < cr}

and T r-1
= )~ >
Bj+1 {x ¢ B, |¢r(x,Ir) cr}
The remaining blocks in {Bf-l,Bg-l,...,B;-l} are relabeled as

BT = BTl for 1=1,2 j-1
P i or i=1,2,...,3
r r-1

n
=
-
Q
3
—be

il

i+ i j+l,...,x .

. st
The total permissible information available for entering the (r+l)
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. ) « o o, T T r
stage consists ot J oy x 7, Cr' the blocks Bl’Bz""’Br+1’

the correspond-
r’ r

-r —r -r

ing observation seots bi,o:,...,or+1, and all information which is sym-

. . . r
metric separately with respect to the set of all blocks in {Bf,Bz,...,

r

Br+1} having corresponding observation sets which have not been identi-

fied.

The process K* mov be continued through the nth stage if all blocks
designated ‘never to be divided" contain no observations in Sn. Or the
process may be stopped at any stage level if it has been decided that a
sufficient number of bhlocks have been obtained to properly evaluate the
two-sample tolerance ftest statistic considered. However, the test, pre-
viously selccted, may dictate the number of blocks to be formed and pos-
sibly the number of observations in Bn vhich must lie within each block
formed. Most two~sample rolerance tests are analoeogs of two-sample uni-
variate rank rests and would pessibly require the process to continue
through the nth ~+are, 1f It were not apparent at some earlier stage
that all observations in ;m have been identified.

1f the process P% were permitted to continue through the nth stage

all blocks formed B?,B?,...,Bn are called basic blocks and are equiva-

n+l
lent (in the probabilitv zense defined in Chapter III) to statistically
equivalent blocks formed bv the standard one sample block constructicn
process outlined in Chapter TTI.

Finallv, it should be noted that the standard cne-sample block

construction process is a special case of B*. Let both sects of random

vectors On and F” denote independent random samples which under the null

)

hypothesis have the same distribution function, F(x). Then the joint
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null distvibution of ¢ cvmmetric., At ecach stage r, r = 1,2,...,n

n+m

in 5* let the information Ir contain only the observed vectors xf,xf,...,
xt 1 and Cl’cz""’cr—l and all prior information available before ob-

taining the observations within the camples. Then this restzicted ver-

sion of B* is identical with the standard one-sample process.




CHAPTER V

PRACTICAL CONSIDERATIONS

Several practical techniques are suggested for effectively applying
the proposed method to forming multivariate two-sample tolerance tests.
Also included are special considerations when using univariate two-sample
tolerance tests, a suggested operational procedure, and a discussion on
the potential problem of bias associated with the quality control tests
presented in the second chapter. The terminology and notation defined in
Chapters II and IV are used in this discussion. The dimensionality of
all data vectors will be denoted by p.

A suggested preliminary procedure that should be considered before
applying the B* process (i.e. before looking at the data) begins by either
selecting an appropriate univariate two-sample tolerance test or develop-
ing a multivariate test which apparently best applied to the given problem,
The next step is to determine the number and basic block contents of the
tolerance regions to be formed. These values are defined directly by the 3
test selected for use. The third important step requires a specific des-
cription of a construction plan showing the general order or layout of
the blocks to be formed at various stages. This construction plan is not
intended to dictate the shapes of the desired tolerance regions but merely
to state a means for identifying each particular desired region once they

all have been formed by the B* process. In other words, ic is forbidden

to first construct a set of hlocks then decide on how the desired toler-




ance regions will be idewcaiicd andfor perhaps formed by a combination A

of blocks (e.g. basic blocks). The final step, which appears to only Le
required by certain tests, is to associate each desired region, identified
by the construction plan, with a unique frequency count statistic. That

is, certain tests may require that the desired regions be preassigned a

fixed order. These preliminary considerations are further discussed for
specific tests given as examples in this chapter.

Once a tolerance test has been selected the proposed operational
objective in uring the B* process is to form the desired blocks accord-
ing to the construction plan so as to make the test statistic as signifi-
cant as possible. Thus, it would appear that this objective can best be
satisfied by visually considering the set of unidentified observed vec-
tors. However, if the dimensionality, p, of the data vectors is large
an actual "look-at" the data situation may prove to be impractical as well
as confusing. To alleviate this problem the principal component tech-
nique is suggested. This technique will usually permit the analyst to
consider only a two-dimensional plot of transformed data.

The statistical method of obtaining principal components ([2],
Chapter II) can be used as a numerical technique for transforming the
original coordinate system orthogonally onto another p-dimensional co-
ordinate system. This new coordinate system is constructed by choosing
the first coordinate to have maximum dispersion among the transformed

data vecturs. The second coordinate, orthogonal to the first is chosen

to have the next largest dispersion among the transformed data, ectc.




Technically, the 1ive! nos coOzaanate as deloaed Ly oan eigenvector
associated with the largest eiyenvalue of the scatter matrix determined
from the set of observed vectors. Then the second coordinate is defined
by an eigenvector, orthogonal to the first eigenvector, associated with
the second largest ecigenvalue of the scatter matrix, etc. Thus, the
first two coordinates formed by the principal component technique des-
cribe the greatest amount of dispersion among the transformed data. This
should be a convenient and valuable aid for selecting candidate sets and
cutting functi ns.

Other numerical or statistical techniques ran also te used for this
purpose. For example, the statistical method for determining canonical
correlations ([ 2 ], Chapter 12) also provide a new coordinate system.
Actually, any continuvous transformation on the original p-dimensional
space could be connidered.

The proposed proctice of reducing the dimensionality of the multi-
variate situation by means of var.ous transformation schemes offers a
pronising approach for considering the data. However, the data charac~
teristics may also be studied by actually increasing the dimensionality
of the problem.  For example, considering the mean vectors and variance-
covariance matrices of varjious subsets of the totality of unidentified
observations could provide invaluable information for selecting the can-
didate scts and appropriate cutting functions. Also any other numerical
methods can be used to analvze the data situation., This extended freedom

can be used to further describe the generalitv of the permissible infor-

mation on the multivariate observations defined by the I'* process.




In order teo clariity one use of the proposed ncthod of forming

multivariate two-sample tolerance tests, four examples are provided.

A different test is considered in cach example. TIn these examples the
observations on Om will be used to establish the block frequency counts
determined by the blocks formed on the observations on On. All schematic

drawings used to display the data situations assumc that either p = 2 or 3

the data has been transformed so that a two-dimensional space suffices.

As the first example, suppose m = 1 and n > 1. A twr-sample toler-
ance test can be developed by establishing one tolerance region (block)
containing most of the observations on On. If the one ob-ervation on Om
(new observation) falls outside this region the null hypothesis is re-
jected, otherwise “t is not rejected.

The hasiz sleock content of this region, say n + 1 - v, depends on
the sienificancc fevel chosen for the test. The exact significance
level of this test is the aull probability that the new ohservation falls
outside the desired tolerance region. This probability is computed to be
v/(n + 1). 1If < denotes the chosen significance level of the test, then
the value of v is determined to be the smallest integer such that

v > a(n + 1).

After v has been determined, the objective of the proposed method is to
construct according to sowme plan a tolerance region of content n + 1 -~ v
on the observations on ﬁn which apparently best emphasizes any difference
between the cet of ohservations on On and the new observation. This
desired region can be constructed on one or in as many as n stages using

the B* process.

If it were considered to use only one stape to conatruct this
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region then the two blocks formed must be o content v and n + 1 - v,
respectively. In this case, the block of content v would actually be

the critical region of the test. The permissible information available
to form this first stage cut would include all information on the com-
bined observations which is symmetric with respect to 0n+m and all inde-
pendent information available prior to taking the observations. However,
this approach to forming the desiied tolerance region would not exploit
all the advantages of the B* process.

A suggested approach, which apparently makes better use of the B*
process, requires that all n + 1 basic blocks be formed in a particular
way. The objective of this approach is to form the shape of the desired
tolerance region (also determines the shape of the critical region of this
test) which best defines the difference between the new observation and
the observations on ¢ . This objective may be accomplished in the follow-
ing manner. For the first stage, select one unidentified vector as the
candidate for the new observation. This candidate may be selected as the
vector which lies the "furthest" away from the remaining n vectors.

Using these n remaining vectors for the observations on On’ determine a
real valued function which for some value in its range separates the new
observation candidate from the remaining n vectors by enclosing the n
vectors. Set iy =1 (if the value of the function is directly propor-
tional to its encloused volume) and obtain the first stage cut using this

function. This cut will define a basic block which should be located

scmewhat near the center of the empirical distribution of the observations

on 0 . Maintaining the same objective used in the first stage the process

i

Wemanins st n




may be contiauel un o (he (a0 srage.  Of course, at eacn succeodlng
stage a new observorion condidate and functions mav be chiosen differently.
However, if at any stage the new hasic block formed contains an observa-
tion, this observation must be the uew observation and the null hypothesis
cannot be rejected concluding the test. If the new observation has not
been identified by the end of the (n—v)th stage it must lie within the re-
maining tolerance region of content v + 1 and the process must continue.
Throughout these n-v stages the objective is to select cutting
functions so as to exclude the new observation candidate from the basic
blocks formed. Since more information is provided by the B* process at
each successive stage, the cutting function defined at the (n—v)th stage
should reasonablyv well represent the shape of the empirical distribution
defined by the chservations on On' A schematic drawing showing the
general appearances of the n-v cutting function is given in Figure la.
Note at this point the (n + 1 - v)th cutting function which will d~fine
the desired tolerance region has not been formed, Tt ~culd be formed
in the next stage; however, more information pertaining to the “'best"”
shape of this region can be obtained by forming v = 1 more basi~ blocks.

In the next stage the integer in+ v is set equal to v and the cut-

1~
ting function is chosen in a similar way used in obtaining the cutting
functions in the previcus n-v stages but with the new objective to in-

clude the new obscrvation candidate within the basic bleock formed. The

basic block foraed at this stage includes all peints in the sample space

lying outside the region enclosed by the cut, The same objective is used

to construct the next v - 2 basic blocks. If at any stage an observation




Figure la.

Figure 1b.




lies within the basic bl formed, this observation must be the new
observation and the null hypothesis is rejected concluding the test.

If after these n-1 stages the new observation has not been identi-
fied, the remaining region (basic block content is two) must contain
exactly two vectors. One of these unidentified vectors is some observa-
tion on C; and the other vector must be the new observation. A schematic
of this situation is given in Figure 1b showing the remaining region. At
the end of the(n-l)Stétage two reasonably well shaped cutting functions
defining the remaining region can then be used advantageously to define
the shape of the final cut.

This latter approach may not seem too practical especially if n
were very large. A similar method could be used in which blocks of
contert two or more arc considered at each stage. This method would re-
quire fewer stapes of the B* process and would yield a favorable toler-
ance region. However, regardless of the approach used it must be decided
(before cpplying the 5* process) how the desired tolerance regions will
eventually be defined and how they occur in the test statistic.

Tests of this type have direct application in the quality control
tests (Chapter 11). For example, suppose the Ffirst data sets contain n
observations and all other data sets consist of exactly one observgtion
each. If it were decided that for each subtest the critical region would
be of basic bleck content v, then the exact significance level of the jth
subtest would be v/(n+j) if no randomization were used in all subtests.

The significance level of the overall test would in this case be

v n n+k
1= QT

n

k
a=131- 1T (1-
1
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where k denotes the ma imun nuaber of subtests. From this expressica,
the +alue ~f either k, a, n, or v may be determined if the other values
are specified. For example, if v = 1 for all subtests, then the value of

k would be determined as the smallest integer satisfying

Other similar quality control tests could be established using two-sample
tests of this type.

As the next example, suppose that the Wilcoxon- Mann - ¥hitney
test [10] has been selected for application. The statistic associated

with this test is

"
M3

ryT m(n +m <+ 1)/2
i

1

where s i =1,2,...,m are the "ranks" of the observations on Om. Some
properties cf this test, considered for the univariate case, are presented
in reference [14] on pages 61 through 68. The null distribution of this
two-sample test for certain ranges of n and m are tabulated in reference
[4]. For rather large n and m the null distribution of U can be approxi-
mated by the normal distribution.

In the univariate case, this test best emphasizes alternative hy-
potheses inferring slippage in the location between the two populations.
That is, it will detect with rather high cfficiency whether one popula-
tion is statistically less than (or greater than) the other population.
This test, however, is not efficient for testing a difference in disper-

sions if the two popul...ions have nearly the same location.

To study the multivariate analogy of this test (or any other test)
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it is highly rccommended that the statistic be expressed in terms of the
appropriate block frequency counts. In the case of the Wilcoxon-Mann-
Whitney test, the ''ranks' of the observations on Om can only be det.r-
mined by basic blocks. Thus, the U statistic should be rewritten in

terms of my,mz,. the basic block frequency counts.

NS

First note that the "ranks" of the observations on 0n are

M3

my + 1, m +m + 2,...,

m, + n,
. i
i

1

Then the "ranks' of thc ohservations on Om vould be the remaining inte-

gers in the set {1,2,...,ntm}. Therefore, the sum of the ranks r, of the

-

observations on ¢, is equivalent to the difference between the sum of all
ranks in the combined set of observations on On*m and the swm of the ronks

of the observations on 0 . This gives
n

m n+a n J
Yor,= L j- 0 { = mi+j}
i=] j=1 j=1 i=1
n+l
=mnm~n - 1/2+m/2 + % jm,
f=1 ]
3
n
- = ¥
since m mn+1 j;1 mi'

Thus the U-statistic expressed in terms of the basic block fre-
quency counts simply becomes
+1
" m(nt2),
S 5 .

This implies that the vilue of U depends not only on the basic

block frequency counts but also on the way in which the blocks are ordered.
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To appropriately use the Wiicoxon—Maun-Whitn:- ¢2gt as 2 multivariatc
two-sample tolerance test, a method of ordcring the basic blocks to be
determined by the B* process must be prespecified. This additional
consider~tion could be resolved by specifying the general manner in which
the basic blocks are to be formed.

Another important consideration is the interpretation of the U~
statistic when defined on some set of pre-ordered basic blocks. 1In the
univariate case the basic blocks are determined by the order statistics
c-d are ordered in the natural way. This ordering provides the basis on
which the U-statistic was oripinally interpreted. That is, if the U-
statistic obtained a value near either its lowest or highest possible
vaiues, then this would be interpreted correctly to mean that the simple
two-sample null hvpothesis was probably not true. However, in the multi-
variate case the interpretation of the U-statistic would depend largely
~n the crdering and relative locations of the basic blocks. If the basic
blocks were ordered in any haphazard way, then any logical interpreta-
tion of various values of the U-statistic would be difficult to express.

If it were desired to interpret the U-statistic in the same concept
used in the univariate case, two situations must be considered.

First, suppose that a two-sided U-test were selected. In the multi-
variate case the alternative hypotheses to be emphasized should reflect
that the two populations differ in location in some direction in the p-
dimensional space. The following is a suggested procedure for establish-

ing and ordering the basic blocks for this two-sided U-test.

(1) Using some numerical procedure (e.g. least squares) determine
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the best rit o1t che combinca unidentified observed vectors to a straight
line. This line can be assumed to represent the "most-likely" direction
of any locatior difference between the twr populations.

{2) "¢ first stage cu. is made by a hyperplane orthogonal to the
line (cctublishied in (1)) passing through the (a) median (with respect
to the hyperplane) of the observations on On, that is. i) is selected to
be an integer nearest to (E%l).

(3) The two blocks defined -t the tirst stage are then divided
into basic blocks by forming a series of blocks radiating out from this
hyperplane. This can be accomplished by choosing cutting functions
nearest the center of the empirical distribution of the candidate vectors
for the observations on On in each subsequent stage (see Figure 2a).

This construction approach insures that the cutting functions will des-
cribe the shapes of the empirical probability surfaces of the observa-
tions on On in the "tails". The order established by the B* process

given by the subscripts in the set {B?,Bg,..., } would be a natural

n
Bn+l
basic block ordering suitable for the desired interpretation of the U-
statistic.

Now suppose that a one-sided U-test were desired. The alternative
hypotheses associated with this test in the univariate case would reflect
one population is stochastically larger (or smaller) than the other popu-
lation. In the multivariate case the alternative hypotheses could be
either that onc population is stochastically larger (or smaller) than the
othier in some direction or that the two populations differ in location

where the direction is not specified. To test the first form of the al-
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best fit straight line

hyperplane cut

Figure 2a.

Figure 2b. '
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ternative hypothesis the same procedure outlined above for the two-sided
test could be used. To test the second form of the alternative hypothe-~
sis another method is suggpested (see Figure 2b).

(1) Determine the mean vector of the candidate vectors that are
associated with the observations on On. If the candidate sets are dif-~
ficult to determine the mean vector of the totality of observed vectors
zan be used.

(2} Tn the first stage take i3 = 1 and make the first cut centered
cbout the mean vector. The shape of the cut should perhaps be determined

)

hy the empirical distribution established on the candidate set for obser-

7aticms op T
n
(3% Redefine (if necessary) the candidate set for the observations

on 7 besed on the information made available by the first stage. Then

I
0

resz1 1) and (2) for i, = 1.
(4) Centinue the procedure to the nth stage. The resulting order
N the hoein blocﬁs definad by the B* process can then be used.
T te: This last procedure does not necessarily result in concentric
cutting functions but the cutting functions will tend to radiate out from
the center of the empirical distribution of the observations on On.
2~~in, the shapes of the cutting functions determined in the latter
. .z3es of the B* process closely describe the shape of the empirical
distribution of the observations on On' That is, the differences between

the observations in the "tails" of this empirical distribution may be

emphasized by this approach.

Another approach, which appears to be better for forming these
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basic blocks for the one-sided U-test and may be considered for other
tests, scems to contradict one's natural intuition. This approach is as
follows:

(1) Using the totality of unidentified observations determine the
new coordinate system of principal components.

(2) For the first stage obtain an acceptahle real-valued function
on this new coordinate system which apparently best describes the general
contour of the empirical distribution defined by the candidate set for
the observations on On (or if not possible, on the totality of observa-
tion).

(3) Rotate this function through its center by makino appropriate
transformations and interchanging the roles of the ith principal component
with the (p- i +]_)St principal component for i = 1,2,...,[{p/2] ([x]
denotes the largest integer less than or equal to x).

(4) Sct iy = 1 and determine the first cut using this rotated
function.

(5) Repeat steps (2) through (4) setting ij =1 for j = 2,3,...,n
and possibly redefining new functions and candidatc sets at each stage.

A schematic picture of this approach is given in two-dimensions in
Figure 3.

Since the first principal component contains the greatest amount of
dispersion among the transformed observations, this component axis may
represent the most likely direction showing any differences in location

between the two populations. The second principal component axis indi-

cates the next most likely direction of location differences, etc. The







objective of this appreach is to shape the blocks in such a way so that
the least number of blocks (in the '"tail" for the one-sided U-statistie)
contain the greatest number of observations on Om. By transforming and
rotating the functions according to the above method, the chauces of
accomplishing this objective appears to be rather good for emphasizing
the alternative hypotheses.

Since this one-sided test can, in this case, be used to emphasize
general two-sided alternatives that are associated with the U-test, then
it would appear to have greater power than the two-sided test. The same
construction techniques suggested for the multivariate one-sided U-test
applies directly to the univariate case as well. Thus, all univariate
two-sided alternatives can be treated by a univariate one-sided U-test.

This example was sclected to emphasize the fact that not all ap-
propriate univariate two-sample tests can readily be applied to the
multivariate situation by disregarding the interpretation of the test
statistic and any other consideration to be imposed on the content and
use of the blocks. Some tests may be applied directly without any re-
striction on the block usage. This is shown by the next example.

Suppose that the Dixon C? test | 5] is considered for application.
In the univariate case this test is consistent and moderately efficient
for virtually all alternatives of interest. The test statistic is ex-
pressed directly in terms of the basic block frequency counts:

n+l m
c? = X [._l_.__._i.]2
i=] n+l m

A thorough description of the properties of the C? test is provided in
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reference [14) on pases 103 and 154, The null distribution of C2 is A
tabulated for some n and m in reference [ 5]. If a < 1/2 denotes the
selected significance level of the test and if nm/(n+m) > 6 and (n+m)/
(4nm) < a the null distribution of ¢? can be approximated by the chi-
square distribution. The Dixon C? test is always one-sided.

Since the C’-statistic does not depend on any preordering of the

basic blocks, then the interpretation of the C? statistic for the multi-
variate case remains unchanged from the univariate case as long as a

logical procedure for forming the blocks has been established. Thus,

large values of C? will indicate in either case that the null hypothesis
is probably not true. 1f the e¢xact form of the alternative hypothesis
cannut be specificd, it would appear that the Dixon C? test would be a
most appropriate choice.

Next, a few particular data situations are considered for applying
the C? test (or most anv other appropriate test whose statistic does not
depend on an ordering of the blocks formed).

As stated earlicr, the operational objective of the proposed method
is to construct the desired tolerance regions (blocks) by trying to make
the test statistic as significant s possible subject to the rules defined
by the 5% process and any other additional considerations. The decision
of which blocks to divile or not to divide, the choice of candidate sets,
and the selection of a cutting function at each :tage should naturally
depend on the test statistic, the set sizes n and m, and on the signifi-

cance level of the test. For example, suppose n = m = 4 and the test

. 2
significance level was chosen to be 0,10, then the Dixon € test would be




to reject the null hypothesis if €7 > 0.8, otherwise it is not rcjected.
This critical region is onlv ohtained whenever one of the five basic
blocks contain all four of the observations on Om. If the plotted un-
identified (transformed) observation vectors yielded the data situation
given in Figure 4a, then the best intuitive procedure is to select four
points lying in what appears to be a cluster as the candidates for the
observations on On, the otier points are then candidates for the obser-
vations on C%. In the fir¢t stage ta%e i; = 4 and a real-valued function
which best describes (for convenience cireles are used in Figure 4) a
boundary uabout the candidate set for On. If after establishing the first
stage cut the two blocks take the form given in Figure 4b, then all ob-
servations on ”m are clearly identified since they lie within one basic
block - then the null hvpothesis is rejected at the first stage. If the
first stage blocks take the form shown in Figure 4c, then oanly xf c~n be
identified and a sccond stage is required. A new set of candidate points
for the observations on Un are selected, perhaps those nearest the identi-
fied observation xT. A second function emcompassing these points is used
to determine the sccond stage cut {(for i; = 3). Then if the result given
by Figure 4d is obtainced the obhservations on Om lie in a basic block
rejecting the null hypothesis., 1If the result described by Figure 4e
occurred then the null hypothesis cannot be rejected. Also, if at the
first stage the resulting blocks took the general form given by Figure

4f the null hvpothesis could not be rejected. A similar approach could

be used whenever the data vielded two reasonably well defined clusters

of sizes 1 oand n.
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Figure 4a. Figure 4b.

new candidates for

o
n

Figure 4c. Figure 4d.

Figure 4e Figure 4f.
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Now supposc the data situwation yicelds one cluster of points. In
this case, it may be rather difficult to select the candidate sets. The
suggested technique for handling this situation is to first determine
the mean vector for the totality of unidentified observed vectors. Take
i) = 1 and define a first stage cutting function whose center is at the
computed mean vector, as in Figure 5a. Considering all the permissible
information available at the end of the first stage, in particular the
relative positicens of the vector x? and the remaining unidentified ob-
served vectors, it may now be possible to select the apparently "most-
likely" candidate sets. Then continue the B#* process selecting cutting
functions which tend to racdiate ocut from the center (see Figure 5b).
However, if candidate sets cannot be reasonably defined, set i = 1 and
selert the second stage cutting function to have its center at x?, etc.

0¢ course, tera are nany other data situations that could occur
{e.g. three or mor~ distinct data clusters), Similar procedures for
handling these situations could be established as long as the basic
operational objective roemains unchanged.

The final example considers the use of Mathisen's quartile test
[11]. This test is based on the frequency counts determined Ly tolerance
regions representing 25 percent regions defined by i{he observations on

On. The test requires that (n+1)/4 and m/4 are both integers. The test
statistic ic¢ given by
4

B = 16 j)_il [m, - -'3]?/<9m2)

vhere m i - 1,2,7,4 are the block frequency counts of the four 25 per-

cent regions. Some propertics ot this test are presented on page 152 of
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retevence [14]). A tabie v ovin nudd distoibution is given in reference
(11]. For certain n and m the null distribution can be approximated by
the beta distribution. In the univariate case this test emphasizes
simultancously ditfferences in location, dispersion and skewness. The
test is one-sided and is rat'er similar to the Dixon C? test for n = 3.
Since the B-statistic does not depend on anyv ordering of the blocks

(25 percent regiens) no special considerations of block orderings are
necessary. Two approaches for forming the desired regions are given.

The first approach uscs only three stages of the 3% process in the most

effective nanner, while the other approach requires all n stages.

D’z—]_ y 3(2+1)} and

The first suggested procedure is to select i,ef
choose some appropriate cutting function depending on the data situation,
This first stage cut divides the sample space into a block of content

n+1 3(nt+1 . .
A and anotier brock of contcnt»~£—~-2 . Since the desired tolerance

‘regions arc 25 7
at any later stage. By the rules defined by the B* process, all observa-
tions in this block can be identificed. This information (if not sufficient

to conclude the test) should prove extremely valuable in selecting the

sccond stage candidate sets and cutting function. In the second, the re-

.. . . . . n+1 n+1 .
maining block is bisceted by choosing 12£{~Z— s ~;~} Again, one block
+1 ) n+l .
of content i[ﬂ']ﬁ formed (the other block is of content -?z~). All obser-
+

N

vaticas in this block con be identified. A1l this information can now be
. . ) . n+l .
used to select the third stage cutting function (for i3 = —E*) to bisect
. ; n+1
the remaining block of content e

The sceond sugpested procedure is to predefine some scheme or con-

percent regions the block of content === cannot bé divided
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struction plan for forming the desired tolerance regions from basic

blocks. This scheme must bhe defined before "looking-at" the observed

data. One simple approach is to use the B¥* process by selecting cutting
functions to form hasic blocks whose centers are the apparent centers of
the candidate sets for the ohservations on On. These cutting functions

will tend to radiate out from the actual center of the observations on

b A
On, in a fashro. shoevn by Figure 5b. The Efl-, E;l , and giﬁéll' stage

cutting functions will then define the desired 25 percent telerance
regions.

The null Zistributions referenced for the above statistics were
derived wuvder e unconditional probability model. Ry the coreoliary
givon in Chapter VII, these distributions also hold for the conditional
n2yralaitior model.

5 Tormal oumttire of the suggested operational procedure can now be

71} Consider all independent information that is available prior
et ne b ohaervat ions,  This information mav include previous obser-
vations, the modal! characteristics of the underlying distributions, etc.
{2y Select or construct an appropriate two-sample tolerance test
veoemee T Cen Tt cienificance level.
(3) Carafully consider the test sratistic expressed in terms of
_-n zppropriate block frequency counts. From this, determine the number

I

“ 3 yreic Bloel rontents of the tolerance regions to be formed and any

SS0ieeanel considerations (e.g. construction plan, hlock order, etc.)

“Har may be imposed on the block usape.




(4) Interprec the test statistic for the proposed method of

rdoriog e Sloces,  The» definz the critical region of the

-
n
-
3
“a
)
3
>
3

(5) Cellect the twe observation sets.
(6) If the dizmensionality, p, of the observed vectors is greater
than twe consider pezeth’e Avmevica’ techniques for transforming the

14

data to a twoe-diwnrsional ooe=ircte eystem, Then "look-r~t" the plotted

fowe cnTaprn e Jakg antese o Thiia T o - cappleta’y v ot el

(7 oo Ty et L L 0 Le sets ter o LD

o n m

IV Ualee tho ~uTew sneclfiad by the EY ploccs., all oy ctler
R N T T S M O :"’,), a]\‘ﬁ.‘:y the ™% process con-
srveoating tha Jeefrel Vot wn me e malin P fin o wratdianic as signifi-
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The final censideration i3 devote!d to 2 notential problem that moy
arise when osins the aranoged method for determining subtests in the
quality conivel tests nresented in Chapter I1I.  This oroblem occurs from
the carrvove~ 27 DLuren “ias from preceding subtests when "leoking-at' the
corhined datn. A suhnet o the sct of the combined dnta2 of the subtest

Yacomes the arovious Cata ser of the next subsequent subiest. Thus,

xrowadpe o7 e mesvicsn (rtna, especiolly if p = 1 eor 2, may directly
inTiveopoe o ehalcl o7 candideote samples, Thie krowledge s not per-

wiee S by e U avncpes, The higs that may occur could be considerably
ol by y .

a

ar-e ralecs anprenriats =2 eaavds are taken, 1f this hias 1s no*
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eliminated the B* process is violated and the subtests are no longer /]
independent. Some suggestions for alleviating this bias are presented.
One appreach is to list (if possible) a set of fixed rules which
generally apply for all data situations that could occur at any stage in
the B* process. These rules are used to make decisions for selecting L

the candidate sets and possibly the cutting functions at each stage.

One elementary example is provided.

Suppose all new data sets, except the first data set, consists of
only one observation. Then the rule to always select, as the candidate
for the new observation, the one unidentified observation which lies the
"furthest" away from the set of remaining unidentified observed vectors.
The concept of distance in this rule may be defined by fitting, say, an
ellipsoid function to the set of all data points. Then the observed

vector yielding the largest value of this function will be the candidate

e o e e RGP ETE HGW ObE6TVation. This rule can be repeated at each stage of the
B* process us.ng only the unidentified observed vectors.
The approach of alternating or employing different analysis for

each subtest should reduce or eliminate all bias. This approach appears

to be direct and simple to apply.
In the next chapter several areas of application are discussed.

Most of thesc areas are limited to medical applications.




CHAPTER VI

SOME ARFAS OF APPLICATION

The sequential significance tests having multivariate two-sample
tolerance subtests presented in this paper apnear to be generally ap-
plicable to most quality control as well as to other testing situations.
A few specific medical applications are cited. Other areas apparently
submissive fto these tests ave listed at the end of this chapter.

The first application to be considered is the quality control of
a system used o determine the electrophoretic analysis of serum pro-
tein. This method of characteri.ing serum rr-~teii., has provided better
understanding of associated clinical disorders and in some instances
has aided in recopnizing new discases complicated by serum protein ab-

S

Electrophoretically separated serum proteins are classified in
five rather distinct groups: albumin, o3-, a-, B-, and y- globulins.
The basic results of an electrophoretic serum analysis are given by the
concentrations of these protein groups. These measurcements are usually
expressed in terms of the fractions of total protein concentration. The
systems used to obtain these measurements is influenced by scveral fac-
tors: human, mechanical, chemical, and electrical.

Present quality centrol techniques used to test the svstem opera-

tion consider caclhh of [ive wivariate measurements independently of the

other four. This method of testing would be highly questionable §f




there exist any dependent relationships among the five variables. This

would not be a problem if multivariate tests were used.

The standard method of testing the quality of this system is a 4

sequential quality control test which is very similar in structure to
that presented in Chapter II. That is, the previous data is continually
reused; however, there is no regard for independence between subtests.

A reserve bank supplies the source of serum used to conduct the quality
control tests. The serum in this bank is replenished periodically by
sampling from the excess of serum tested over previous days. The serum
samples are combined, homogeneously mixed, and frozen for preservation.
For each subtest one or two samples are taken from the serum reserve
bank and electrophoretically processed in the system. The results are
analyzed, then tested against previous results to determine if the

system is in or out of control.

Since the multivariate observations consiég of five conéiﬁuous
variables, the proposed method of forming two-sample tolerance tests
trivially holds. The test situation then appears to conform well to the
quality control test presented in the first example of Chapter V.

The next application is to clinical trials. The objective of
clinical trials is to compare the effect of some treatment (e.g. a druy)
to some standard. This standard may be described by measurements on
untreated patients or on patients subjected to a different treatment.
The m.ac'rements used for comparison are in the form of symptoms, signs,

and/or clinical findings. One approach to clinical trials is to enter

one paticent at a Li™: into '.e experiment. A set of measurements on the




treated patient is used to cempare against the standard measurements.

The sequential testing is continued until significance occurs or a
maximum number of tests have been conducted.

All measurements of symptoms and signs are usually considered
discrete; however, most clinical findings (e.g. temperature, weight,
blood chemistry, serum protein analvsis, etc.) are continuous variables.
If at least one of these continuous variables are included in the measure-
ment of treatment responsa, then the proposed mathod of forming two-
sample tolerance tests can he uvsed to determine subtests. Again, the
quality control test given in the first example of Chanter V  ecan be ab-
plied to this probhlem,

A rather common problem in medical research (similar to nroblems
in other scientific and cngineering disciplines) is cited next. Suppose

three grours of patients are involved in an experiment where each group

is subjected to a difforent treatment. From Timited independent ‘previous

knowledge, there is rcason to believe that two of these treatments, say
A and B, do not differ in their measured responses, while the third
treatment, C, response affect is cither unknown or is beliceved to differ
from the other two. The desired test procedure is to first test the
null hypothesis that treatments A and B yield the same effects, then if
this hypothesis cannot be rejected test if treatment C differs from the
combined affects of treatments A and B. If the observations, used to
measure the treatment effects, are at least partiallyv continuous, then
the sequential significance tests having the proposced multivariate two-

sample tolerance tests as its subtests can be made to apply to this

procedure.
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An extension to this problem follows. Suppose there are k (k > 3)
groups of pat-cents. Each group is subjected to a different treatment.
Then rrior to taking the observations, the treatments are ordered ac-
cording to their believed diffcrences. That is, those treatments con-~
sidered first in this ordering are assumed to produce near similar
responses, etc. Again, if the observations are at least partially con-
tinuous, the tests proposed in this paper can be used.

Some other general areas of possible application are: water and
waste treatment plant quality control, traffic studies, scientific and

engineering research, industrial quality control, market and other

sampling surveys.




CHAPTER VII
STATEMENT OF BASIC RESULTS

Two major results are presented in the form of a theorem and corol-
lary. All other basic results, some of which are direct consequences of
the theorem or corollary, are verified in an informal format.

The following theorem proves that the joint null distribution of
block frequency counts obtained at any stage in the B* process is the
same as if it were obtained by the standard one-sample process. The

proof is given in Appendix IIL.

Theorem

Let 0n = {Xl,Xz,...,Xn} and 0 = {Y;,Yz,...,Ym} be two sets of
random vectors, not necessarily independent, defined on a sample space X.
These sets are such that there is a probability one of the construction
process B* being .nique (no ties in the cutting function values) which
occurs in particular whenever the random vectors are at least partially
continuous. Under the null hypothesis, let the combined set of random

vectors O, = {Xl,Xz,...,Xn, Yl,Yz,---,Ym] have a symmetric joint cumu-

+m

lative distribution function denoted by F = F(xl,xz,...,xn, yl,yz,...,ym).
th

Given a set of r + 1 blocks {BT,BI,...,B;+1} formed at the r  stage of

the generalized block construction process,B*, on a set of observations

on On’ then the joint null distribution of MLyM2y oo™ s the respective

block frequency counts on Om’ is given hy

-60-
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r+1
- m, + k,-1 m+n
)= LGSO J

P(ml,mg,...,mr+1

for non-negative integers m, i=1,2,...,r+1 such that m;+ my+...+m =m,

r+l
Here, ki denotes the "number of basic blocks" contained within the

block BI, with ki—l being the number of observations on 0n in B:.

Corollary

The above theorem holds under the permutation probability model
whenever the sets of random vectors are such that there is probability:
one of the construction process B* being unique.

Proof of Corollary

Let {xl,xz,...,xn} and {yl,yz,...,ym} denote fixed sets of obser-
vations on On and Om’ respectively. Let S be the conditional permutation
sample space given the combined fixed set of observations {xl,xz,...,xn,
yl,yz,...,ym}. Then S is equivalent to the set of all (n + m)-tuples
obtained by permuting this given combined set of observations. Let Xi’
i=1,2,...,n represent the random vector (in the permutation model)
yielding the vector value located in the ith coordinate position and Yj’
j=1,2,...,m, denote the random vector yielding the vector value located
in the (n + j)th coordinate position in the (a + m)-tuples in S. Then
the joint null cumulative distribution of the random vectors {X;,Xz,...,xn,

Yl,Yz,...,Ym} is symmetric. Set S = X and the proof follows.

This corollary implies that any test statistic associated with a
two-sample tolerance test formed by the proposed new method has the same

null distribution whether it was considered on an unconditional or per-
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mutation probability basis. Thus, all null distributions that have been
obtained, under the unconditional model, for any appropriate two-sample
tolerance test statistic are directly usable under the permutation model.

An immediate consequence of the theorem is considered next. Sup-
pose 0n and Om are independent random samples. Then, under the null
hypothesis, their joint distribution is symmetric.

In Chapter IV it was shown that the standard one-sample process was
a special case of the B* process. Then it follows, from the above re-
mark, that the existing method is a special case of the proposed method
for ¢stablishing multivariate two-sample tolerance tests. The existing
method can then be extended to consider two data sets, not necessarily
independent, whose joint null distribution function is symmetric. Then,
from the above corollary, any two-sample tolerance test formed by the
existing method has a permutation probability basis.

It remains to show that any statistic associated with a two-sample
tolerance test formed by the proposed method is symmetric in the obser-
vations on which the tolerance regions were defined and is symmetric in
the observations used to establish the block frequency counts. This is
equivalent to sl.owing that any statistic is symmetric with respect to
both 0n and Om. It was never required at any stoge in the B* process
to associate an observation with the particular random vector yielding it.
The process only permitted an observation to be identified with the set
of observations from which it came. Then all identified observations
(in this sense), thus the set of all observations, are symmetric with

respect to both On and ﬂm. Hence, any statistic is symmetric with re-

spect to both O and 0 .
n m
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APPENDIX 1
Definition I
If V= (‘v’(l),V(z),...,V(p))T is a p-component random vector and
v = (v(l),v(z),...,v(p)) is a P x 1 vector having real components,
(1) 1) . .
tlien the event that V <v simultaneously for all i = 1,2,...,p
is represented by V < v. J

Definition II
Let V;,Vz,...,vt be a set of p-component random vectors, then the

joint cumulative distribution function of V,,Vz,...,Vt is given by

F(Vy < vy, V2 _in,...,Vt < Vt)
where v;,vz,...,vt are real component p x 1 vectors and the events

Vi < \ i=1,2,...,t arec defined in Definition 1,

Lemma I-1

Let wl,wz,...,wq be a set of p-component random vectors which are
defined on the samnle space ¥ and have a joint cumulative distribution
function

F(WI,WZ,---,W) = P(W, ,‘4 Wi, w?.iw?.ao"yw iw)’
q - q q
If F(wl,wz,...,wq) is a symmetric function on all sets {wl,wz,...,wq}

of real component p x 1 vectors, then for any set of measurable functions

]

(real or vector valued) gi(w,,wg,...,wq) i 1,2,...,k and any reorder-

ing (il,iz,...,iq) of the integers (1,2,...,q)

-63-
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< ¢ con s5eeny <
P[gl(wl)WZy"-’wq) < ;gk(wl:WZ wq) s ak]

= P[gl(wil’wiz""’wiq) =< al,...,gk(wi],wiz,...,Wiq) j_ak]

where a; is a real component vector of the same dimensionality as

gi(wl,wz,...,wq) for i = 1,2,...,k.

Proof
Let 0: (1,2,...,9) > (i;,ig,...,iq),
A= {(wl,wz,---;Wq)lél(wl,wz,---,wq) < Alyeeny

gk(wl,wz,...,wq) < a s wiCRp i=1,2,...,q},

Ay = {(wjl,wjz,...,wiq)lgl(wl,wz,...,wq) < Aypyea,
’ P .
gk\wy,vz,..ﬁ,wq)'f ak; wiER i-= 1,2,...,q},
and
Bo = {(w;,w;,...,wq)lgl(wil,wi2,...,wi ) <ay,...,

q

3 wiERp i=1,2,...,q}

(W, ,W, ,...,w, )} < a
gk 11’ ]2’ 7y — 'k

q

vhere RP is the p-dimensional euclidian space.

[t suffices to show that P(A) = P(Bo)'

P(A) = J dF(w:,w),...,wq) = [ dF(wil,\-.'].ﬁ,...,wi )

q
A A
«
since F(wl,w;,...,wq) is svmmetric.
Consider the transformation "O-'(i y © Ni for j = 1,2,...,9,
i J

then the transformation W, = Li i=1,2,...,q in the last expression,
1

This gives

i
q

A B
s; o

’ dF(wi]’wiZ,‘..,w' ) = J dF(\«'],W?,...,Wq) = P(RG)

proving the lemma.
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Lemma 1-2 .
Let N\,Wg,...,wq be a set of p-component random vectors dcfined on

a sample space // and have a svmmetric joint cumulative distribution

function, F(wl,wz,...,wq). Lot {21,22,....Zt} be a suhset of the random

vectors w,,wz,...,wq and F represent the totalitv of infermation on the

observations on W, w;,...,wq wvhich is symmetric with respect to

{ZI,ZZ,...,Zt)l. 1f g(W,”) is a measurable function on F and W = W,

for any 1 = 1,2,...,q, then the joint cumulative distribution function

of g(Z,,F), g(Zz,F),...,g(Zr,F) is symmetric.

Proof

By definition, ¥ is invariant under anv relabeling of the identities
in (Zx,Zz,...,Zt).

1f the roles of the random vectors ?.i and Zj are interchanged, the
statistic g(Zi,fD becrmes g(Zj,F) and vice versa. Then by an interchange
of the roles of the random vectors in {21,22,...,Zt], the set of statis-
tics {g(Z,,7), g(Zz,F),...,g(Zt,F)} is mapped onto itself.

Let gi(wl,w;,...,wq) = g(zi.r) , 1 =1,2,...,t in Lemma I-1 for

k = t and the proof follows.

warornation on a set of observations is defined to be symmetric
with respect te a sct of random vectors if, and only if, the information
is unchanyed by int 'reonging the roles of the random vectors. (See
Chapter IV and Appe dix 11).




APPENDIX II

Theorem

Let 0n = {xl,xz,...,xn} and Om = {Yl,Yz,...,Ym} be two sets of
random vectors, not necessarilv independent, defined on a sample space X.
These scts are such that there is a probability one of the construction
process B* being unique (no ties in the cutting function values) which
occurs in particular whenever the random vectors are at least partially
continuous. Under the null hypothesis, let the combined set of random
vectors O, = {x;,xz,...,xn, Y,,Yz,...,Ym} have a symmetric joint cumu-
lative distribution function denoted by F = F(x;,xz,.“,xn, y;,yz,...,ym).
Given a set of r + 1 blocks {Bf,B:,...,B§+1} formed at the rt" stage of
the generalized block construction process, B%¥, on a set of observations

on On’ then the joint null distribution of m;,mz2,...,m the respective

r+l’

block frequency counts on Om’ is given by

P(ml,mz,. .

r+1 (m, + k. ~1
NS}

R )}/(“‘;“)

for non-negative integers m o, 1 =1,2,...,r+1 such that m; + my +...
+ m=m and where ki denotes the''number of basic blocks''contained
within the block n;, i=1,2,...,0+1.

The formal method of proof uses induction on the number of stages

in the generalized block construction process, B*, presented in Chapter 1IV.
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The joint null distribution of the block frequency counts on 0m is
determined at each stage. This is arrived at by deriving the conditional
null distribution for the block frequency count on Om for one of the two
new blocks formed at the stage being considered given the joint frequency
counts observed at the previous stage. This proof makes repetitive ap-~
plications of Lemmas I-1 and I-2 presented in Appendix I. For conven-

ience, a few terms and symbols defined in Chapter 1V are restated.

Definition 1
An observation is said to be identified if it can be associated
with the set of random vectors which yielded it; that is, associated

with 0n or Om. Thus, a set of observations is identified if each obser-

vation within the set is identified.

Definition 2

Information on a set of observations is said to be symmetric with
respect to a block (or union of blocks) if the information is unaffected
by interchanging the roles (relabeling the identities) of the random
vectors yielding the observations falling within the block(s). For
example, if VI,V2!°",VR denotes the set of random vectors yielding ob-
servations falling within the block B, then the information, I, defined

on some set of observations which may or may not contain those in B, is

symmetric on B if for any reordering (V;,V;,...,Vi) of (V],V;,...,Vk)
1 1s unchanged.
Definition 3
The symbols o_, o, and o will denote the observations on the
n m n+m

random vectors in On, Om, and 0

respectively. Likcwise 0? will denote

n+m’
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the set of random vectors yielding the set of observations 5? which fall
within block B? at the k stage of the process B*.
Definition 4

The synbols Z1,Z2,...,2 will denote the random vectors in the

nt+tm

. J i b .
combined set On+m' Also, the symbols ZI,ZZ,...,Zk(j) will represent
R 3 b i I h)
the random vectors in Uj and Xl,Xz,...,Xi(j) and Yl’Yz""’Yt(j)

those random vectors in 0? r\0n and 0?'7 Om, respectively. All lower

will be

case symbols x, y, and z will denote corresponding obs-rved vectors.
At the first sta; - in B* all symmetric information with respect to
X is available. This includes the set of unidentified observations in

° . Then I consists of the total information available on ° which
n+m n+m

is symmetric on 0n+m'

Let i,e{1,2,...,n} = I be selected based on I). Then using I,
determine a real-valued measurable function ¢$;(Z,I;) which either has a

contiruous distribution function whenever Z € O and the random vectors

in 0n+m have the joint null distribution function, F, or was selected in

such a way that there are no ties “n the set of values {¢1(z,I1)|z€5n+m}.

cy is the i?t largest value

Let xf £ Sn be such that ¢1(r?,I1)
in the set of real numbers {¢1(x,I1)|x £ Bn}. [Note: at this point only
xf and ¢; are available information not the entire set of values
{¢1(x,T1)[x ¢ Sn}]. Now, using the cutting function ¢,(x,I1) = c; divide
the sample space X into the first stage blocks denoted by the open regions

B: = {x € X|&(x,[1) < c1} and B; = {x € X|¢1(x,71) > c1}. There are

- . 1 1
exactly iy - 1 and n - i) observatioas in o, falling within Bl and B,,

respectively.
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To determine the nuil probability that t; observations in Sm will
fall within block B: (n-t; in B;) is equivalent to determining the null
probability that exactly t, of the observed variables ¢1(yi,Il)
i=1,2,...,m have values less than c,. To evaluite this probability
it is necessary to establish the joint null distribution of the random
variables ¢1(Z:,1,), ¢1(22,Il),...,¢1(Zn+m,Il).

Appeal to Lemma I-2 (replacing the wi's with Zi's, set t = q = ntm,
and ¢,(2,I,) = g(Z,F)). Then it follows that the joint cumulative dis-

tribution of ¢:1(21,11), 01(Z2,71), ..., 01 (Z Iy) is symmetric. But this

n+m’

implies

Plo1(Z21,71) < $1(Z2,11) < ... < ¢1(Zn+m,fz)]

n_hny-[l)]

= P[¢1(2,,]1) < 01(Z3,11) < ... < $1(2

for all reorderings (Z;,Z;,...,Z;+m) of (Z1,22,...,2 ).

n+m
By the choice of ¢;(Z,7;) all such ¢1-orderings are unique with

probability one, then the null probability of each ¢;-ordering is

1/(mtn) !,

Define

$1 = Un1 @I < 012500 < e < 012, T0121,2;,.00,2

n+m)

)}

is a reordering of (Zl,Zz,...,Zn+m
Then the null probability of each element in S; is 1/(mtn)!.
- 1
The null probability of observing t, observations in on within B,
is then equivalent to the null probability of obtairing 4n element in

. . . (St -
S; which assigns the (t, + i;) ¢1~order position to On and exactly t,

of the first t; + i} - 1 ¢)-order positions to Om. This reduces to

counting the number of elements in S; which satisfy the desired event,
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since all elements in S; are equally likely. There are (T ) ways of
1

n
1_1’1

. \St ey . . . . .
and 1 (for the (t; + i,) position) random vectors 'n On to lie within

chonsing t; random vectors in Om and (i ) ways of selecting i; - 1
the first ty + 1, ¢;-order positions. Within each chosen set of t;
random vectors in Om there are t)! ways of assigning them to a fixed set
of t) ¢1-order positions; likewise, there are (i;-1)! and 1! of assign-
ing the random vectors chosen from On' The remaining {,-order positions
tp + iy + 1,...,ntm must contain m~t; and n-i, assignrments to Om and On’
respectively., The total number of ways which these positions may be
assigned is (m-t; + n-i;)!. Hence the total number of elements in S,
satisfying the desired event is

m
t)

(

)(i)‘_‘1 ) ElG-D! i mety + n=ig)!

tp + ii=1y m-t; + n-iy, ,
m.n.
( t ) ( m-ty )

Q1

Then the null probability of observing exactly t; observations in n
1
within B, is
t, + il—l)(m +n - t;
ta m - t,
(m + n)!

- 11)m3n3

(

P(t,)

1

ty + i1, ,m -t + n - i, m+n
SRR T VTG

for t, = 0,1,...,m.
The joint null distribution function for ti,t2, the frequency
1 1 i
counts in blocks B, and B,, respectively, is obtained by transforming

m-t; = ty

ty + i1-1,,t2 + n - i m+n
R T )/ (€
1 ts m

P(t1,t2) = ( )

for non-negative ti i =1,2 such that t; + t2 = m,
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In order to clarify the method of proof the joint null {requency
count distribution will be derived for the second stagne,

The complete information available ar the beginning of the second
stage consisrs of Ty, ery X7, ond Sha tua cete of midantified ohserva-
tions 6: and 5;.

At the start of stage 2, one of the two first stage blocks B:
and B;, is selected for division. This seclection is based on the infor-
mation available at the end of the first stage. Suppose B; were seiectnd
(the proof is aralogous for B;) and t; ohservations in Bm fell in B

If B; were to be decomposed at some later stage in the process Z¥,
then 7, contains all information symmetric separately with respect
;. Vorevor, if ﬁ; were never to be deccermpostd at sceme later
strze, then I contzins at least all information eymmetric with respect
to B:. This allows .72 to contain any information vhich is symmetric
with respect to B; but not on B;. For example, complete identifiecetion
of S;. This is trivially true vhen B; is a tasie block - all observa-
tions within B; have to be in Sm' Clearly I, contains all information
that was available at the end of stage 1.

Next, sclect an integer i, € J, based on I, and choose a real-
i1

-1
valued measurable function ¢,(Z,7-) which ecither has a continuous null
distribution for 7 ¢ 0; or is such that there arc no ties in the set
of values {¢2(z,I2)/z ¢ 5;}.

Let xg £ anj 5; such that ¢2(x§,7?) = ¢y is the ignd largest value
in the set [é,(x,7,)1x ¢ Bn‘“ 5:}. Again, only x3 and cp are determined.

Using the cutting function &;(x,I;) = ¢, divide the block B: into two

disjoint subsets.




o
~
fl

cz}

/

{x ¢ B:l¢z(X,I2)

and

'

B2 = {x ¢ Bi|¢2(x,Iz) c2}

It

and for standardizing notation, let B§ B;. Then there are exactly
i,- 1, i;-i,-1, and n - i, observations in Sn falling within blocks B?,
Bg and Bz, respectively.

Now, consider the conditional event, A;, that t; observations in
Sm fall within B} given c; and xf. This event is the intersection of the

following two events.

Al = {61(Z1,10) < 1y $1(2Z5,00) € €1penn (g ) < a1
1 s > 29 seey tl+il-1’ 1 1

and
1 _ 2 2 2
AZ = {¢1(ZI9I1) > (o5} ¢l(22yIl) > cl""’¢l(zn+m-t1—il’I‘) > Cl}
her {Zl Zl 7! } and {72 72 72 1 are the random
where 122250y 4o an ST TR ETT NN

1 1
vectors in 0, and 0;, respectively. Then Ay = AN A;.

For any relabeling of the identities within the set Oi:

(1) by definition I, remains unchanged,

(2) event Ai is unaffected since the set of all ¢; functions

in A: is mapped onto itself, and

(3) each ¢; function in A; is unchanged.
Hence the event A, and the null probability of Ay, is unaffected over
all such relabelings in Oi

The objective at this point is to establish the conditional null
probability of any ¢,-ordering on 0: given event A; has occurred. Since

1
the null probability of A, is not changed urder any relabeling in O,
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. 1
then it is not changed over all “»-orderings on . Therefore. it
suffices to determine the joint null prebability

1

1
. <z ..
1 ti+i-1 — Tty4i 10

1
P1 = P[Z, < z1, 2, < 22,...,7 A]

for any set of real-component vectors zp,Z2,...,%, 4i-1" Now, p; is
titly=

actually a joint probability of functions invelvinzt all random vector:

. . . . ,
in 0n+m since 1), hence ¢(Z,I,) is defined on du+m.

If p) can be shown to be symmetric in z),z2,... then the

’zt1+i1—l
joint conditional null probability

1 1 1 )
P[Z, < 23, 7, < 2Z24...,% . < . A
[ 1 S 2Zis Ap S22, 2o i -1 = Zt1+11~1 { 1]

would be a symmetric function in z,,z2,...,2 Then by applying

t+ig-1°
. . .
Lemma I-2 it can be shown that all ¢:-orderings on 0, given A; are
equally-likely. Then the determination of the frequency count distribution
within one of the two new blocks formed at the second stage given the
event Aj; can be made.
i is inde symmetric in z oo .

First, to show that p, is indeed symmetric in zi,z2, ’zt1+11‘1

an application of Lemma I-1 will be made. Using the notation established

1
in Lemma I-1 (also replacing the wi's with Z)'s and setting q = ntm) de-

fine the following K= n + m+ t; +i; - 2 functiocns:

1
Z, i=1,2,...,t1+ i‘— 1
1
1
gi(Zl,Zz,---,Z ) = Q](Z,

n+m l-tl-i]+l’11) i=ty+ig,...,2t,4+2i)-2

2 3
¢l(zi—2t1'2i1+2’]1) i=26,42i,-1,...,n+m+t +i,; -2

Appealing directly to Lemma I-1, it follows p1 is symmetric in Z1,225...,

z . . Thus the joint conditional null distribution
ti1+ix-1




-,
P[Zl Z /! !
< 2 '4 RO .l .0 d Ay
1 1, 2 LEN ‘1"‘}': I");"] i 1]
is SmeetliC in z 2 v ee gl . .
2 1542y ’ Ly +iy-1

. . A - L 1
Now apply Lemma I-2 (replacing the U 's vith the conditional Zi's
4

given Ay, set t = g = t; + 1y - 1, cned 500, 72) = o2 F))., This proves

3 . . . 3 - . I ‘
that the joint conditional null distribution of J, (. ,I5), 02(7,,72) 4004,

1
¢v2(Zt +i l,Iz) given A; is a symmetric function. Therefore, all possible
1Ty~
¢2-orderings on 0; given A} are unique (byv choice ¢: &) and equally-
likely.

i, given Ay. Then each

Let S, denote the set of all * -orderings on
element in S; has a conditional nul! probabilitv of 1/(ty+ i~ 1)! of
occurring. Then the conditional nnil nrobabhility that exactly s; obser-
vations on Om fall within Bi given that ty observai fons on Qm fell within
B: is exactly the same as the null nrobability of bserving an element
in S; which assigns the (s, + 1'_«)“‘i De—order position to On and cxactly
s) of the first sy + i; ~ 1 {;~order pesitions to Jw. By the samc type

argument used at the first stage, this probabilit hocones

Sl+i2—1)(t1*sl+i1—]—i7)/(t]+jl'l
S -2 t

P(S}[tl) = ( )

for s; = 0,1,...,t; .

Multiplying by P(t;), derived in stape 1, and sub-tituting ti-s) = s

and m - t; = s3, then the joint null distribution of sy,8:, s3, the

respective block frequency counts on .m' is
s1+iz-1, sptig-i-~-1, s 4n-i; JERT RN
P(s1,82,83) = ("0 0 ") . YO, DO

R

1,2,3 such that sy + 455 + ¢33 = m,

for non-negative integers S
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Similarly, if block B; had been chosen for division, the I, would
contain at least all information symmetric with rospect to B;. Then for
i, € In-i and ¢,(Z,I2) the aew blocks formed would be a division of B;
into B; and B§ where the first stage block B: woull be designated as Bf.
There are ij~1, i,-~1, and n-i, observations in Bn talling within the
respective blocks. Then if s;,s2,s3 denote the respective block fre-
quency count on Om’ their joint null distribution would become

(sl+il—l)(52+i2‘l)(Sg+n—iz)/(m+n)

P(s1,82,83) = s1 6a S5 0

for all non~negative integers Si’ i =1,2,3 such that s; + s, + 83 = m,

The information now available for starting the third stage in B¥

. . . . -2 =2
consists of Iy, ca, xg, and the unidentified observation sets o), o,,

-2
and o, if all blocks are to be further divided at luiter stages. Other-
wise, if the decision were made at stage 2 to never divide any one (or

2 2 2
two) of the blocks By, Bz’ B, at any later stage, then the observaiions

set(s) associated with the block(s) selected can be identified com-
pletely. This information is symmetric on the remaining blocks and
would then be made available at the start of stage 3. 1t should be not:d
also, that the information JI; contains all information available at the

start of stage 2, namely: I, ¢, x? and the unidentified observation

-1 -1
sets o, and o,.

In the rth stage (r < n) in the process F* let the blocks

r
B, BZ’.”’BH]

be formed and e i=1,2,...,r+1 denote the numbcv of observations in

i'

Sn lying within the vespective blocks. Asscrt that the joint null dis-
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tribution of MisMzseessM s the respective block frequency counts on

0m is
r+l
y = L0 M F ey

P(ml,mz,...,mr+1

for all non-negative integers m. i=1,2,...,v+]1 such that m; + my +...

+mr+1 = m. This assertion is. verified by mathematical inductiun.

The fact that this assertion holds for r = 1,2 has been shown above.

Now, assume it holds true for the (r—l)St stage and all previous stages.

Lel Bf—l, BI_I,...,Bi-l denote the blocks formed at the (r—l)St stage and

hi is the number of observations in Sn contained in block B;-l, i=1,2,...,r.

Then if $15,525¢.4,5 denote the respective block frequency counts on Om,

by assumption, the joint null distribution of $15825. 0055 is

r

P(sl,sz,...,sr) = {.I

g, Ci :ihi)}/(m;“)

for all non-negative s, i=1,2,...,r such that s; + s;3 +...+sr = .,

The information available at the start of the rth stage consists

of 7 ., ¢ ., x* _, and the two new unidentified observation sets ob-
r-1 r-1 r-1

tained on the two new blocks formed at the (r-—l)St stage. Now, Ir—l

contains all information that was available at all previous stages. In

particular, Ir—lD T o292 3»»2I22 1. Thus, if any blocks formed at rome
previous stage were chosen to never be divided in B* then the correspond-
ing identif:~d observation sets is information contained in Ir-l' Further-
more, the information on the identified cbservation sets was symmetric

with respect to all blocks which were divided at later stages, and hence,

. st
symmetric with respect to all blocks available for division at the (r-1)

th
and r stagces.,
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Now suppose block B§—L (for some j = 1,2,...,r) 1s available and 4

PR th
selected for division at the r  stage.

Then determine Ir-containing all information which is symmetric

with respect to B§—l and symmetric separately with respect to all blocks

r-1 r-1

in the set {B| °,B, ,...,Bz-l} that are intended to be decomposed at

some later stage.

Using Ir’ select ir £ Jh and a real-valued measurable function

J
¢r(Z,Ir) either having a continuous null distribution for Z ¢ 0§ ! or is

such that there are no ties within the set of values {¢r(z,Ir)|z € 5§-1}

Let x* ¢ o N 5?_1 be such that ¢ (x*,7 ) = ¢_ is the i th largest
r n 3 rr'’r T r

value in the set {¢r(x,Ir)]x € 5?-1}. The cutting function ¢r(x’Ir) =c
divides the block B§_1 into
BT = {x¢ Br_l|¢ (x,I) < c_}
b j ' r
and . -1
= { - >
Bj+l X £ Bj l¢r(X,Ir) Cr}

For consistency in notation, the remaining blocks defined at the

.
(r—l)s~ stage are relabeled:

Bi = B1 i=1,2,...,j-1
and
r _ r-1 ., _ .
Bi = Bi—l i=j+2,...,t +1

st
The event Ar— that the respective block frequency counts at the (r-1)

1
stage was S1352500058 is determined by considering the following facts.

. r-1

In the construction process B*, each block Bi i=1,2,...,r was
o s . . t :

originally established either at the (r—l)s stage or some earlier stage

by dividing some block previously established, and cach of those blocks

were formed by dividing some block established yet ecarlier, etc. For
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-1
each block BI consider conly those stages in the process B* for which

r-1
M

Then each block B;_l can be associated with a unique subset of integers

one of the two blocks newly formed at the stage contains the block B

in {1,2,...,7-1} such that each integer within the subset represents a

stage level in which two new blocks were defined (from the set of blocks

established at previous levcls), one of which contains block Br 1 If

j1 were in the subset associated with block Br -1 then either

1
C {xe x|l¢, (x,T <c, }
x |¢Jl(x jl) 51
or r-1
B,  C e Xl¢, T, > ¢, .
i tx |¢Jl(x’ Jl) ch}

. . A r-1 fo s .
Thus the subsct of integers associated with Bi can be partitioned into
two unique subsets {a;(i),a2(i),..

such that the block Bz—l is defined by

.,au(i)(i)} and {b,(i),bz(i),,_,,bv(i)(i)}

B, = lxc E!@al(i)(x,Ii) <y ¢a2(i)(x’Ii) <)’
I L T L TLC R Ul Y CO R
¢bv(j)(i)(x’ji) > va(i)(i)} for i = 1,2,...,1.

As before define 01*1 = {zf,zi,...,z§'+h.} as the set of random vectors
-1 ',

yielding obscrvations in block B , 1i=1,2,...,r. Then consider the

events defined at the (r—]) stage

- ., 1
Pk ™ e @ ts) < Cayayr o a e )(1)( o T3) < (1)

%u(d)

i
.)(Zk’Ii) > Cb

+ -
Pk ™ i el T v a

v(i)(i)

for k = 1,2,...,s, + hi and i = 1,2,...,T.
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Then the event of obtaining g observations i °n in 5i“1 is equivalent

«v the event that D, and DT hold simultaneously for k = 1,2,...,
ik ik
s + hi. This cvent can be expressed as
Si+hi
r-1 _ - +
Ay T =l g DDy e

The event of obtaining sx,sz,}..,sr observation in Sm in the blocks

Bf—l,Bg_l,...,Bi—l , respectively, is

ror-1
Ay =047

Now, consider the random vectors (z{,zg,...,z; +h ) = 0;-1 which
- 33
vield observations in B? 1. The information sets Ix,Ig,...,Ir_1 are de~

fined to be symmetric on B§-1, otherwise B§_l would not be available for

; t . , -
cutting at the PN stage. Then the ¢-functions within the events A; 1

for i = 1,2,...,r and 1 # j are unchanged over auy relabeling within

0§~1, thus the events are unchanged. The event Ag_l is mapped onto itself

r-1

by relabeling within Oj . Hence, A and the probability of Ar- is

r-1 1
unaffected by anv such relabeling within Og_l. Then the joint null
probability
h)

s.+h, hl Zs,+h ’ Ar—l
| i3

Py <z, Zg < Zpyeea,l

]

is symmecric in the vectors z1,22,...,2 by Lemma I-1l. Therefore,

i j 3

the joint conditional null cumulative distribution of Zl,Zg,...,zs +h

A,
. Then by apply-

s ,+h
]

iven A
& r

] is symmetric in the vectors z1,22,...,zs

th,

J ]
ing Lenma I-2 the joint null distribution of ¢r(zl’Ir)’ ¢r(Zg,Ir),...,

¢1(2] + ’]r) given Ar is found to be symmetric. It follows that all
s.,vhn,
J

-1

4,

possible &

r—ordurings on O;ﬂl are equally-likely. Using the same type
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argument emploved befere, St conditional null probability that m,

observations in o fall within bleck B, given the hlock frequency counts
) N -

K

ot
Sl,Sz,---.Sr determined at vhe (r-1)"" o, .re hecor. o

/mj + ir_]\ '5i—mi+hi~ir\ Sj + hi\

P(m,|s1,82,...,8 ) = K : i il
r m, 5, -m, .

] ] / ] ] / s /

form, = 0,1,...,s,.

b A
«bserve that (in terms of the notation defined for the rth stage) the

following equalities hold:

e, = hi and mooo=sy for i = 1,2,...,j-1,
- = 3 N - 1= §4 P .
e, hi-l and m. Si_1 for i j+1, , r+1
+ = 1 —1 = s 1 - 1 = 2
mj mj+1 Sj’ i i ej, and nj i (j+1

Multiplying the above conditional null probability by the joint probability

P(sl,sz,...,sr) and using the above equalities, the joint null distribu-

tion o ml.mg;...fmr+] becomes
rtl m, + ey m o+ n
MYy e e, 0l = I 1
P(mly-n-,9 ’mr+1) { I ( m )‘/( o )
i=1 i
for all non-negative m i=1,2,...,r+1 such that m; + my +...+mr+1 = m,

This completes the proof of the assertion.
Now by the definition given in Chapter IV, the basic hlock are
the n + 1 statistically cquivalent blocks obtained if the process B¥
. th e o Y
could be continucd through the n stape. In this casc, each Bi would

.o . . .= ; . Y
be further divided until all the observations in o, lying in Bj were

. r . : i T . !
consumed. Thus, if bleck B, contained ¢y observations in oL then there
i
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would eventually be e, + 1 basic blocks formed within B;. Substituting

ki =e, +1 for i=1,2,...,r+]1 in the above probability expression

gives the desired results.
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