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1I AbSTRACT

Two new developments, multivariate sequential sigii ficance tests and a method of
forming multivariate two-sample tolerance tests, are proposed. The sequential signif-
icance test considered is a fixed-length succession of two-sample subtests where each
subtest reuses some or all of the data for preceding subtests. By proper choice of
the subtest statistics and use of a permutation basis the subtpsts are made independen

The class of multivariate two-sample tolerance tests developed by the proposed
method are directly applicable as subtests in the sequential significance tests. The
proposed method is based on a new technique of constructing tolerance regions for the
two-sample problem. Subject to certain mild limitations the analyst may actually
look at the combined observed vector values in order to construct the desired tolerance
regions. This advantage can be used effectively in choosing the shapes of the toler-
ance region3ý so as to emphasize the alternative hypotheses associated with the selected
test statistic. The only requirements are that the joint null distribution of the
combined data be a symmetric function and that the observations be such that the pro-
posed construrtitin pr-cess is unique with probai.iLty one.
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CJ IAtT)TVP T

Proposed are a class of sequential sipnificance tests of limited

length and a method of formi ng multivariatxvc-,mnle to],.rance tests.

The sequential si•gni'caice test strllied js condIIctord as a finitn sic-

cession of certain multivariate tw.,o-samnTe permutation subtests. Thc

two-sample tolerance tests produced by the proposed method satisfy the

required properties as subtests. The seauential significance test

using these two sample tolerance subtests can be practjcallv applied in

multiariate quality control.

The sequential significance tests are discussed in Chapter II.

The data considered are independent sets of random samples which, under

the null hypothesis, are from the same multivariate population. Two-

sample subtests are performed in a sequential manner where each subtest

reuses all or part of the data considered in previous suhtcsts. The

previous data used by each subtest may he determined ,by random selection

from the totality of data considered by the preceding subtest. The over-

all test is significant whenever innv one subtest is significant and is

not significant when all subtests are not significant and a maximum

number of subtests have been made.

Permissible subtests are permutation tests whose statistics are

symmetric in the totality of tho previous data used. By considering

-l-]-



only this class the subtos;ts arr- independent, thus the significance

level of each subtest is not affected by the outcomes of preceding

subtests.

some o. the desirable properties of the sequential significance

test for quality control uses are: (1) the data considered may be

multivariate, (2) the test permits legitimate reuse of previous data,

(3) the permissible subtests are independent providing accurate evalua-

tion of significance levels, (A,) the random selection of previous data

at each subtest level can be effectively used to emphasize the more

recent data, and (5) the permutation-randomization approach yields

subtests that are generally applicable.

In Chapter III the new proposed method of forming multivariate

two-sample tolerance tests is introduced. This method yields tests that

have a permutation basis and satisfv the requirements for subtests in

the sequential significance tests proposed in Chiapter II. A well known

existing method is shown to be a special case of the proposed method.

The data required by the proposed method need not be independent random

samples but must have a symmetric joint null distribution. Also, any

univariate two-sample tolerance test can be considered as a multivariate

two-sample tolerance test. These include all run and rank tests.

The construction process of forming tolerance regions for the

proposed method is outlined in Chapter IV. This process is a system-

atically staged procedure for establishing a set of tolerance regions

for the two-sample problem. Certain symmetric information is available

for use at each stage. This information basically includes knowledge
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of the combined observed vector values as long as they are not identi-

fied with the population from which they were taken. This information

accumulates as thre process continues providing an excellent source for

determining the shapes of the desired tolerance regions. Thus, the

desired tolerance regions can be constructed with the goal of making

the selected test statistic as significant as possible.

Some suggested techniques for applying the proposed method of

forming multivariate two-sample tolerance tests are presented in Chapter

V. Also included, are certain practical considerations for using the

new construction process effectively and for selecting appropriate uni-

variate tests. A general outline of a suggested operational procedure

is included.

Certain areas of possible application of the sequential signifi-

cance test using subtests formed by the proposed method are considered

in Chapter VI. Most of the discussion is devoted to applications in the

medical field.

The last chapter, Chapter VII, contains statements of the basic

theory verifying the results claimed for the proposed method of forming

multivariate two-sample tolerance tests. The important results are

stated in the form of a theorem and corollary. Because of its unusual

length, the proof of the theorem has been relegated to the appendices.

All other results claimed are verified in the discussion.



CHAP' LR 11

QUALITY CONTROL TESTS

Sequential random'.ation tests for univariate one-way analysis of

variance have been developed by Walsh [15] and [16]. Presented here, is

an analogous extension of Walsh's tests using multivariate data. Such

tests possess deRirable ,rlerties maki-g tl"em directly applicable to

quality control uses.

A cl.2ss of !equent•ifl significance tests which consist of a pre-

specified number of subrests is developed. Each subtest in the sequence

reuses all or part of the total data used in the oeceding subtest in a

manner which establishes independencQ among all 5'lbtests.

The data are taken in sets representing independent (finite) random

samples of multivariate observations which, under the null hypothesis,

2
are from the same unknown, but partially-continuous distribution. Each

subtest is a two-sample test using as one population sample (previous

data) a set of data vectors randomly chosen3 from the Lotality of oh--

servation data vectors used in the preceding subtest and as its second

1It suffices to require the combined observations to have a sym-
metric joint null distribution.

2A random vector Is defined to have a partially-continuous distri-

bution if at least one component of the random vector has a continuous
marginal distribution.

3 The previous data for any two-sample subtest: may then include the
totality of observation data used in the previous subtest.



population sample (new data) D ot the rea.liniig ,nused data sets. The

subtests are performed sequentially until either sipnificance is obtained

at a subtest level or a specified maximum number of subtests have been

made. Significance for the overall test is obtained only when a subtest

in the sequence proves significant. Thus, the overall test will not be

significant if, and only if, all subtests in the sequence are not sig-

nificant. Exact significance levels can be obtained by using appropriate

randomization-permutation probability models and subtest statistics

possessing a special property which insure independence between subtests.

Perhaps the most desirable feature of these tests is their ability

to legally use (in a Drobabilistic sense) data of preceding subtests.

The outcomes of the preceding subtests in many similar sequential tests

n'oduces n conditional effect on the significance level of succeeding

qThtests; ho-,'ever. in the tests studied here, the subtests are indepen-

rnt and no sih- conditional effects exist among them. Therefore, if

al,a2,.... ,1 k the signiricnnce levels of the k subtests composing

the overall test, the significance level, a, of the overall test can

be computed directly:

k
a i NI (1I- a i)

Another feature, which is highly desirable in applied sequential quality

control tests, is the ability to maintain a limited control of the em-

phasis placed on preceding data sets at each subtest stage. This is

accomplirheýd bv propcrly selecting the sizes of each new data set used

in the srqicnvýe ,nfl the size of the previous data set obtained by random-

ization at each subtest stage. Repeated randomization of the preceding



data will emphasize the most reccnt d st., ';ets, while no randomization,

that is,tusing all the preccding data, will tend to deemphasize the most

recent data sets.

A third feature is rhat the randomization-permutation model yields

subtests of general applicability which may be one or two-sided tests

and can be oriented toward many forms of the alternative hypothesis.

The randomization co:i-rib.tion tn the model insures, under the null

hypothesis, that the obsewvations selected as previous data at each sub-

test stage constitute a ran(tom sample from the population representing

the totality of dta used in the previous subtest. If no significance

is obtained at the subtest stage, the previous and new data sets used

are combincd and represent a random sample from the population yielding

the combined data. This crm,,;Iincd' dat set becomes the data available

for randonriz tion (if any) Jefining the previous data set for the next

subsequent subtest. The process is continued until either significance

is obtained at some subtest level or a specified number of subtests have

been made.

The permutationi model is used to establish the conditio- I prob-

ability spaces on which the distribution of each subtest statistic is

determined. If the observed vectors are ordered in some definite but

arbitrary manner (e.g. the order in which they were obtained) then the

sample space, induced by the permutation model, constitutes the set of

all permutations of the observed vectors. Under the null hypothesis.

the probability of any permutations is the same. The permutation sample

space associated with '!.' LWo-sam'le problem can be reduced by considering
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the set of all possible assignments of the ordered o.,served vectors into

two sets; one of size equal to the new data set and the other whose size

corresponds to the pr vious data set. Thea, under the null hypothesis,

all possible assignm(tits made in this manner are equally-likely.

Now, any function, symmetric in the totality of observed vectors,

is clearly a constant on all points of the associated permutation sample

space. That is, under any hypothesis, this function is a constant with

probability one. Therefore, the function, a statistic, is ini'Žnu2rdcent

of any other statistic defined on the same permutation sample space.

This fact motivates the method used for selecting appropriate subtest

statistics having the property that the subtest significance level is

not conditionally affected by the outcomes of previous subtests.

For each two-sample subtest consider the class of statistics which

are symmetrical in the totality of observed vectors defined by the pre-

vious data set. Then, for any fixed set of observed vectors constituting

a possible ordering of the new data set, the value of such a statistic

remains unchanged over all permutations of the observed vectors in the

previcus data set. Also, for any fixed ordered set of observed vectors

in the new data set, this statistic is defined on the permutation sample

space obtained from the previous data set and on any permutation sample

space ccnstructed on a set of observed vectors contained in or containing

the previous data set.

In order to verify that this class of statistics possess the property

that in the sequential process each subtest statistic is independent of

the :esults of the preceding subtests, two mutually exclusive cases are

are considered.



First consider a sequence of iubtests where at each subtest stage

the previous data was taken to be the totality of data used in the pre-

ceding subtest. That is, none of the previous data setF defined at each

subtest stage were obtained by randomization. The totality ef data used

for each subtest is then a proper subset of the totality of data used in

the next subsequent subtest. Thus, any permutation of the observed vec-

tors that could occur for any preceding subtest corresponds to a suibtest

of the permutations of the observed vectors in the previous data set.

For any fixed order of observed vectors in the new data set the subtest

statistic, by choice, is a constant over all permutations, thus all sub-

sets of permutations, of the observed vectors in the previous data set.

Therefore, the subtest statistic is a censtant, with probability one, on

each permutation sample space of the preceding subtests, and is inde-

pendent of the permutation observed for each prcceding subtert. Since

the outcome of a subtest is determined by the actual permutation of vec-

tors observed, then the subtest statistic is independent of the outcome

of all preceding subtests.

Now, consider a subtest whose previous data ret was obtained by

randomization - randomly selecting a subset from the totality of data

used in the preceding subtest. Since the new data sets obtained after

randomization are independent of the data sets used prior to the random-

ization, it is only necessary to show that the previous data set is in-

depen'dent of all outcomes of the preceding subtests. To verify this, it

suffices to consider only those preceding subtests occurring after the

most recent previous subtest using randomization, for induction can be



used to justify the remainder of the assertion. Verification then fol-

lows, since the totality of observation vectors in the preceding subtest

is not affected by any permutations that could occur or any subsets of

them. Thus, the tubtest statistic is independent of the outcomes of

these preceding su'itests.

If randomization is used in the next following subtest to obtain

its previous data set the above verification holds. However, if the

next subsequent subtest does not use randomization, the situation is

essentially the same as that cited in the first case. The proof then

follows by induction.

The sequential significance test description given by Walsh [16)

for the univariate case is analogous foi the multivariate case. However,

in this paper, the number of observed vectors in each new data set is

permitted to be one or more provided the first data set used Is of suf-

ficient size to insure that the desired significance levels of all sub-

tests and the overall test can be obtained (or approximately obtained).

In like manner, for exact and approximate permutation tests, the deter-

mination of sharp lower bounds for the subtest significance levels, and

the considerations on the sample sizes used in each subtest discussed by

Walsh also hold for the multivariate use as well. This material has

been thoroughly and clearly presented in the above reference.

To establish a sequential significance test, having all the proper-

ties outlined above, would first require finding appropriate two-sample

multivariate subtests. These subtests not only should be selected to



Lmphasize the alternative hyputheses, but be feasible in application.

That is, under the permutation model, the null distribution of the sub-

test statistic should either be well approximated by some known distri-

bution or eaily determined. The. two-sample tests considered in this

paver are based on toleranc.•- regions. It will be shown that a two-sam-

ple tclerancc tes: has a permutation basis and the associated test sta-

tisti,: is syrm:etric in .-he observations in both samples separately.

Thus all two-sample tolerance tests are permissible as subtests.



CHAPTER III

MULTIVARIATE TWO-SAMPLE TOLERANCE TESTS

A new method of forming two-sample tolerance tests is proposed. As

an introduction to this method an existing method is presented first.

The existing method is a special case of the new proposed method. The

basic difference between them is the manner in which tolerance regions

are formed. The new method is shown to overcome several of the major

disadvantages common to the existing method. Both methods yield tests

that are suitable as subtests in the quality control tests presented in

the preceding chapter.

The same basic philosophy is used in both methods to form two-sample

tolerance tests. A test is fundamentally established on a set of toler-

ance regions. The number of observations from one population falling

within each tolerance region is counted. These frequency counts are then

used to determine the outcome of the test.

The existing method ([191,[ 1 ], and [3 ]) requires that the data

be two independent random samples. One of these samples is used to con-

struct a set of disjoint nonparametric tolerance regions. The other

sample is reserved for determining the region frequency counts. The con-

struction process used to establish the tolerance regions ([171,[131,[12],

and [9 1) is a systematically staged procedure (referred to here as the

"standard one-sample process").

-11-
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in the tirst stage Oic Sanpie .zpac-! iP' 1'rt itioned into two disjoint

tolerance regions, called blocks. This is accomplished by choosing some

real-valued function whose null distribution is continuous and selecting

some order statistic on the set of function values defined on the sample.

These choices can be based on any independent information that is avail-

able Prior to taking the observations. The value of this order statistic

and the observed vector yielding it is all the additional information

permitted ([ 6 ],[ 7 ],[ 8 1, and [ 9 1). The function equated to this given

value of the chosen order statistic defines a cut on the sample space

producing two blocks. This partitioning also separates the sample into

:*-'o :oneitionally independent subsamples [ 3 ]. Using this limited in-

Monal'o, one of the two blocks formed is considered for division in the

con,. stage. The above process is repeated only for the subsample of

f-:,:--tfons associated with the chosen block. However, the function

-?r'Kt he second stage may differ from the function selected at

- •tage level but its null distribution must also be continuous.

The chosen block is then partitioned into two new blocks. Thus, by the

end of the second stage three disjoint blocks have been formed. Again

the only new permissible knowledge are the values of the order statistics

--id the observed vectors vieldin- them. The process is continued until

the desired number of tolerance regions or blocks has been obtained. The

content of the tolerance regions can be determined by the number of unused

observations lying within them. If the process were continued until all

observations were used to define cuts (each time producing two new blocks)

"tc resulting blocks are called basic blocks or statistically equivalent
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blocks. Thus, th%, bic i ii 0 ,•', :,,rlier in t, r would consist

of a fixed number of basic blocks. A more common measure of tolerance

region content is the number of basic blocks contained within the toler-

ance region.

Finally, after the desired number and basic block contents of the

tolerance regions have been established on the first sample, the corres-

ponding set of frequency counts on the observations in the second inde-

pendent sample are made yielding the outcome of the test. The null dis-

tribution of the test statistic is determined from the joint null dis-

tribution of the block frequency counts. Thls latter distribution has

been established ([18] and [191).

All tests based on this method have a permutation basis. This

fact is shown by the corollary given in Chapter VII. The corresponding

test statistics are symmetric in the totality of sample observations on

which the blocks were defined; also, they are symmetric in the totality

of sample observations used to determine the block frequency counts.

This means that any two-sample test obtained by this method can be used

as a subtest in the previous chapter. Furthermore, either the "previous"

or "new" data set can be used to define the tolerance regions.

Unfortunately, this existing method has a major disadvantage;

namely, the limited freedom in selecting the shapes of the tolerance

regions so as to emphasize the alternative hypotheses of interest. At

each stage in the above process only a small amount of knowiedge was

available on which to choose the shapes of the cutting functions. No

knowledge or consideration of the second sample data was used. By com-

bining both sets of observations and considering only certain permissible



information (miiny .1;ymflCL ii , vas,'; amotunt of kncwl edge can be obtained

on which to hs•. th,, of': tol,-:1nce re;;'e)ns. This concept is ex-

plored by the next- . i•, ,

The n'nooeced ncv: m,-etho<d of for:iJng two-samplpe tolerance tests re-

quires only that the. twio :,:t; of data ha-e. a symmetrical joint null dis-

tribution. Both ýoars r)- o1bservatio,! Ore used to construct a set of dis-

joint tolerance regions On one of the two sets oF MIti rvations. The

process of constructing' thf, tolerance region is similar to thre standard

one-sample isroce.ss- hit' :.11 know1,odr. o4- all oeh!o,',ed vectors excl.uding

their S-e t C-; ociatI1 ,.e, nowleJe of the obseri.::Lons within each of

the two orfiPinal dat; .- i, jl- forbidd,,n). This construction procedure

will be referred to '1e "'-oneralizod hlock constr-ction process for

the tlvo-sa•rnle problemni" 1 - nly a-- thb- F* process:.

Flirs:t, one. of 'h- r ', dit o st is: (i ' designr-ted as the set on which
r

the tolerw:-c reg io:; (t- bhlocks) !.-`11 he formed [This set will be referred

to as tho "designated ]. Prior to the formation of any blocks on the

sample space a certain s,,ount of infomnation is available. This includes

all information which is symmetric with respect to the totality of random

vectors yielding the come, inod set of observations, Thus, knowledge of

the obsenrved vector values is permirted ns long as all vectors are not

associated (or identifi,-,) with either of the tvo data sets. This means

that the. totality of thie tnidenti fied observed vectors can he "looked-at"

and treated numerically and/or graphic-olly in an' manner. Any function

defined on any subset- of the combined sot of unidentified observations

would be syiuletric infor ,tf ion pe rrmitted. All of this information plus



rr
any independent informit4uji available prior to taking the observations

can then be ised to stlect the first stage cutting function. This func-

tion must he real-valued and must either have a CfntiLluous null distri-

bution or be se-ected in such a w.iay as to guarantee that it will never

pass through more tha;. one observed v•ector for all the values in its

range. The location of the cut is then determined by selecting some

order statistic on the set of function values defined on the designated

.,et. ,.ly t-he valtio of this order statistic and tl,,- observed vector

yielding it cin b , identified. Thi•s, one of the observed vectors, the

one associated with the. cut, is identified and all other observations

remain unidentified. The additional information that now becomes avail-

able includes the two sets of unidentified observations falling within

the two new hlocKs formed and all information which is symmetric with

respect to bothl sets of random vectors yielding these two sets of un-

identified observations. Then a block is chosen for the next stage

division (it must contain at least one observation from the designaced

set). A decision must be maide at this time to either reserve the remain-

ing block for possible future division at some later stage in the B*

process or to never divide it at any stage. If the latter decision were

made, all observations lyving within the remaining bloclk can be ident.ifjed

with the o'iginal data sets. All this information is then used to select

the next cutting, function. This process is continued until the desired

tolerance regions havy, b[,ein formed. The joint null distribution of the

block frequency coxunts at any :stae is the snme as the corresponding

distribution determined by the standard one-sample process (see Chapter



VII)f Thuý ; '- , .:.. ,t.!', 1,t posoible stape

the resitltin; h:.;,,:;t;t, tiicallv ,.il-va1Y-nt blocks in the sense

that the 1oint m i tribtin o.f the basic block frequency counts is

1
the same ar- 0i-:t ,.,terrmlnl bh the standard process

In Chapt(er VI1 it is shown that any test produced by this new

method also hu; .- permutation basis and its associated statistic is sym-

metric in the set of obs, ervations on which the tolerance regions were

defincd add on the set of observations used to establish the block fre-

quency count.:. Then a1l two-sample tolerance tests defined by this new

method ar:, u -i. .; suibtests in Chapter IT. Also, either the "previous"

or "new" data sets can be used to define the block frequency counts.

One pri.ir-' advanta-e the P* process has over the standard one-

sample proct.w.. var, l•r v.t amount of information made available for

forT-,.inf, toler-n, r.n. This advantage allo'.,s one to select desir-

able shlip,-e of ,, n,:-c, reion? so as to make the test statistic,

previouslv chosen, .s:ir..nificant ,s possible. This is equivalent to

empnlasi.zinM th,' r]tiw' hiiprttieses tor wdhich the test accentuates.

A second import.nv advantage of the P" process is that it is not

necessary to prcocri throuph all stnces once sufficient information to

The term "statisticn]lv equivalent blocks," originally defined by

Tukey [12], actually referred to a set of tolerance regions obtained -t

the compltLion of th,• process described by the first method. This con-
cept basicallv definod statisticallv equivalent blocks as a set of N + 1
tolerance r, iin',, for.ied b,, the( first method, w.hose joint coverages
represent tb, -.;urC('t-?ic coordinates of a random point iniformly dis-
tributed in .11 1-diinPi en.] siim :ex (where, N denotes the sample size).
In this pnapr, ,;tati t ir;ll\ erpiu•,aent: blocks x.will be defined as a set
of tol eran se rt;: i• ('Ii " i the joCint nill dit.t.ribut.ion of the fre-

quency counts det .r: .ii,! a second sample is the same as if it were
determined by -lot of .t.itis ttjc;lely equivalent hbocli:s defined by Tukey.

LMM



evaluatte t Ite 'ito ;~~:u!IKI. ~OO

allows s.ome oh,,,rvat i, c :.')1 •t-1lv idleni fied at variuus stages.

For exampl-, 1 a c- ii •- I i.,-- I,-;; !oon designated as a block

nevro- .... . ; 1 C h lok altl, n ] observations lying

within are lor.•]1 e I x' ,in : ficd \.,itt: their original data sets. Thus,

sufficient in:r :': t ,,w ,',c,•'.t , t i e frequency c ,:'i, may possibly be

determined I8!% i\ nt Th•,v-; !i 3S to conclido the outcome of the

test.

Annthe r adv,-:-:8:, c', ,he ata iood not be ijndpom: dIent random samples.

The corre,-pon2i-,- is ,h••, n s th2 rho joint null d H:rihutien of the

combi-icO d't;. :t - ":n i , :' ,;Yriotric function.

It i- au: ,,.,.-: 1, C'.-, . UV tPiiat: the st-andard one-sample process

is a 5-Ci0) c:',' : .:' 'co'S. rhis impiie s that the standard

procesc" ca . .: , r i . r inn on lv that- thie comTi ned dat a have a

symmetric :icJ n, ftriuti on function.

The typo o(it:- t. thzat oav be formed by either method is considered

next. Anderson r 1 1 l,.: that any two-sample tolerance test adapted

for the univariate iaisc is also directly applicable for the multivariate

case using the, oi2: ing method. Tests based on multivarite data are

obtained by rclatin,, ,' ach ui utivariate tolerance region to a univariate

tolerance region cont lining the same number of basic blocks. Since the

joint null distribution of the block frequency counts is unchanged

whether the nmlti,,'ariite or univariate case is considered, then all uni-

variate two-swample tolerance tests are usable. However, the joint null

distribution of the Mock, frequency counts for the new method is the

same as hat for thlt cxi:-tin;g method; thus, univariate two-somple toler-



ance t st-; apply 01e"il lv we! to th' u., h,. 'fa" types of nonpara-

metric tests available for ( onsid(1ratio:n inclmde ill run and rank tests

(see pages 34 through 80 in refere,'e f1•41). Some of these tests are

described later in Chapter VI.

A detailed description of the proposed P?* process is given In the

next chapter. This is follorod by two chapters d<vt to suggested

techniques and areas of practical application. The final chapter estab-

lishes verification of all results claimed.

L_
I1



CHAPTER IV

A GENERALIZED BLOCK CONSTRUCTION PROCESS, B ,

FOR THE TWO-SAMPLE PROBLM'

The process presented is a systematically staged method of con-

structing a set of distribution-free tolerance regions (blocks) for the

two-saimple problem. The data consist of two sets of at least partially

continuous multivariate observations which are defined on the same sample

space. Under the null hypothesis, the combined data must have a symmetric

joint cumulative distribution function. The sets and the observations

within eacl set are not required to be independent. At each stage in the

process specific information on certain subsets of the combined set of

observations is used to establish two new blocks (regions) within one of

the blocks previously formed. This information collectively increases

as the process continues, providing a better basis on which the shapes

and locations of future blocks may be controlled. This freedom greatly

increases the ability to construct blocks so as to emphasize the alter-

native hypotheses - thereby potentially increasing the power of any 'o-

sample tolerance test.

The first two stagcs and a general stage are discussed in detail

stressing the amount of permissible information available. Some suggested

techniques for exploiting the information obtained are presented in

Chapter V.

| -19-



_ 1  ,. .. d -- IY , ,, -,Y h, two sets of

p-component rando.,:i ",,r, ,tin d ,I l , :I;nO I ;pao X. Th-se random

vectors must he at le~int pArt iýlly Lcut inuotis and bave a synmmetric joint

null cumilat i vo dis t r i Lut it n unct io ,. The process h* will be demonstrated

by forming a set of Mio-ko. (otleran,, regic.tas) on the observations on

n

For ConVC1Hi''1CL , a Iew bisic terms and. -jymbols .:ili be defined

and used througlh tiht rei.mainini; text.

Definit ion 1

An observation is said tu be identified if it can be associated

with the set of r:ador. vector., which yielded it; that is, associated with

either 2 or ihie, I set of obse rvations is jdentif ed if each ob-n l

servation within tli,, ý,.t is identified.

Definition 2

Informati,-n on a set of observations "s said to be symmetric with

respect to a block (or union of blocks) if the information is unaffected

by interchanging the roles (relabeling the identities) of the random

vectors yielding the observations falling within the block(s). For

example, if V 1 ,V 2 ,...,V denote the set of random vectors yielding ob-

servations which fell withli block B, then the information, I, defined on

some set of observations which may or may not contain those in B, is

syimnetric with respe-L to B if for anx, reordering (VI,V ,... ,V) of

(Vl,V 2 , ... ' ,k) I is unchanged.

Definition 3

The symbols o , oM and on+m will denote the sets of observations on

": . .. .... .... .. . | lm m m i m• m ,,, ufriM -- a m- ...m



On . re•ip., iv.lv, where C is thtt combined set of ran-
n m, .1 n+rni

dom vectors {X 1 ,Y.Y,....,Y . Likewise, 0) will denote the set0 .1 -k.

of random vcclor,; in 0 ,irldinp, the set of observations o0 in 0

k 01
which faI vithl Iblocl½ V;J at t-h k stage 'n P*, for j = 1,2,...,k+l..J

Defini tior 4

The svmbo, 1",1 ,... ,Z n+ are a relabeling of the random vectors

in '-0 Also, the svm),ols Zj ,. will represent the random
n+m 'k(j)

vectors in 6. and x ,X and Y 'Y .. , are those random1 Xl'"• ... (j) IY• ... t(j) a e to e rn o

vectors in J m• " reseectivelv, defined at the k stage.1 11 j ni

All lower cas,., letters x, v, and z will denote corresponding observed

vectors.

S t a

at the l'",2i'ni:Th of the first stage all information on on+m which

is sYTT.2!etric with respect to X (considering the space, X, as a non-random

block) is permitted as well as all prior information (i.e. information

available prior to caking the observations: previous observations, etc.).

The totality of this information is denoted by 11.

If at least one observation in o is identified, then any infor-

mation on o is not symmetric with respect to X. For example, suppose

Z* C on+m is idcntificd with 0n. By interchanging the roles of the ran-

dom vectors in 0 with those in 0 the information that z* is identified
n m

with 0 is no longer triie. Also, any information on the set o {z*}n n+m-

is not symmetric with respect to X for the same reason. Trivially then,

since o annd o are completely identified, their knowledge is forbidden.

Suppose On+m is unidontified, then the knowledge of the observed



-. t t .inc any interchanging

of th lol, ' •: , i ,ctrS in , J toes not in any way affectn+m

thle Val tics• Of i. thse r•[,:'v,_ "0 I(•t or': it and.11 oIC n~ stil1 remains un-

identi ficd. Si,,milarly, any ;oib;,et of o n ; iunidentified and is sym-

metric wit-h rl.n>'t to .. Furthermore, any function on any subset of

obsenralions ii (I vould be ! yometric with re.cpect to A., Sincf the

sample sizeo:; r : In n would be con.,idered as prior information, it is per-

mis;ible t , to .'.s .ubSts in on+m of - i zc; n and Tl to be 1 ikely

canl i d, 1 t t, , t -c t s o anl o.
1) m

;tfter . IS . .hn estab] -shed, the next step i:; to select some

inter1 -1, ,...,n} and s.onc real-valued mctasur;ible function

,,.u W (1,-1)_ w5hii LL , ki a continuous null distribution or is chosen

such that no t-.s -is;t in the set {r 0(z,7)z H n+11}, if possible.

T intpeiidn.t source 1 , baving full Ikow) edge of o n, the

i• a,:,,'t .f1:... ill t Ie :e ,(z',r1) .. 1 -z c. } is determined. Th is
nn

value ,nud tI., aor.,;vi. ,'Octr in on, sayv :1 , yielding, it are available

infori-,at ion. " '..):,, . (x7,7) cl, then the function .,.•(>:,I ) = l

is uje- to ( I! t ii ",1I , ;ptlc( " into two opel rem ons:

,.. i ( ,i) ,

and

,I(x,; I) c

"thE 5 12'." l II• 1.t *. I t is pen'itted after thck blocks B1 and B 2

h.,) :. I " : of i' , x-" and titi' t-wo .tio )tkt s of ohnervations
-i -!

01 and I,':- , ill Addit ion;il in foerat ion permitted at the end

I t' .li I : dependent ,sodrirn could ihe 11- , t ant or a
di~' i.
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et Stage .1 au.1 (ALnc t 'hc; alI information on o0, 02, and on o

(jinclIIding x whicli is sv"n!etric with respect to both B and B2 . That

is, any infori-ation which rceiiains unchanged when the roles of the random

vectors in 'i art! interchanged and also is unchanged whenever the roles

of the random vectors in •, are interchanged. This type of information

will be defined as information which is "symmetric separately" with re-

spect to a set of blocks. Now, if il = 1, the block BI cannot contain

-1 -1
any observation in o , hence o1 is completely identified (although o,

-1
is unidentifiod tif n > 1). Similarly, if il = n then o2 is completely

iderto "1 ", ,. ndenttified for n > I. Whenever i 1  1 , n (n > 2),

then both and o arc unidcntified. Information of this type may be

[ '. n•tu. ine r r: Thoosing the shape and possibly the location of
I 1

S2.... t a-..: W ..- ('c.- Chiapter V). By enfinition of B 1, B2  and cl, it

, ey t, deduce ,that there are exactly il-I and n-il observations in

-1 -1 -I
0 lying within I and 1,2, respectively. Since o, and o2 are permitted

n

- 1 1
H ...- ',e:.:,ct ninb•er of observations in o falling within B and B can

m 2

Stage 2

Aftor considerini' all p-rTmiis.ihlbe information available at the end

1 1
of 1tc-e !, tue next step* is to select cither block R o," block 7, for

division at the sccond s-tage level. The particular block chosen must

contijn at lcas;t one ob.rervatjon in o In addition, the other block
1~1

not choo;en for stage 2 divisiOTo mutt be considered. One of two actions

are requi red: (1) the block is reserved for potential division at some

later stage (it rust contain at least one observation in o or (2) the



- : .: ct, " . ,.' t ac:tionl does not

necessarilv imply that the h ,,, will eventually b~e divided but that it

may be considered for d lvi! ion t-t sc futuro, stag:e. If the second ac-

tion were taken, it is, permistsible to, identifv all observations falling

within; although, some of Lhe.;i, obs,-r,-itions may be in o . This action.

could provide cons iderable information especially if there were only a

few observations in o and many observations in o lying within. Thenn1 m

a better choice of candidate sets could be made.

The ne-ct s;tep is to determine kthe information T, that can '2 used

to select the next cutting function, ýv(z,T 2 ). The type of information

permitted in T7 depends upon the action taken above. If both blocks

were considered for division, one at the second stage level and the other

at some future stage, then 12 is defined to consist of all previous in-

- 1 -1 - -
formation and all information on 01, 02 and on+m which is symmetric

separately with respect to both B1 and B12 That is, the information must
1 1

be symmetric with respect to B and also symmetric with respect to B2 .
-12- I - I . - I

Consider the unidentified sets o0 and 02. Since all observations in o

-1 -1
and all observations in o2 are unidentified, then ..iv information on 01

is symmetric with respect to B1 and is trivially symmetric with respect

1 -- 1
to B2 , similarly anv information on 02 is symmetric separately with .re-

1 1 -I -1
spect to B and 13 Then any informiation on any subsets of o, and o,

1 2 '*

is symmetric separately with respect to B 1 and B Triviillv x isI 2 1

symmetric with respect to both blocks. Therefore, anv information on any

subset of observation, in 01 is permitted.

If the second actionT above were selected, then T- is defined to

--I -1 -
contain all previous; informat ion and all information 0,, 02 and on+m

n 0mOMNR
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.. 0_, ,,• , h!•,'( (cho 1,t for (1i vision.

For di. : . * ,: were c. liulin for divi sion and it was

I -1
decided that h,,c 1woul never I,.. divided. Then the set o2 can be

-1 -1
completely cid,.tifirjd and any inforraiation on o or any subset of o2

22

is clearlv svr:etric with respect to B,. Also, in line with the above

-1
discussion, any intormation on the unidentified set o0 or on any subset

of oI or on ::: *; . ;ymmetric with respect to B . It follows then, any

-1 1-11
information on any, subset :in o 1+ given that o1 is unidentified is

symmetric -'ith respeoct to B

In sumrr-_rv, ,, contains all previous information and all informa-

tion on any -f ob-orvat:ions in 0n+m which is symmetric when con-

sidering cach :-- .1-chosecn for future division.

Again.2 :.'ock B were chosen for division at the second

stage level. I Ten m - 7, select an integer i 2 c {l,2,...,ij-l} and

so ,:c . .. --.. .. , uncti en 0? (z,72) such that either it has a

continuous 5,ul >t ribut ion or that there are no ties within the set

""(Z : ,: Timhroujth some independlent source having full knowledge

of o. f o , the i.,n rgest value, -aIN 7(x*,12) = c?, in the set

X,(x, T2) 0, n iFf detennned. The vector x, and value c2 con-

Stitute , -P'( -- J'.ilL' informnation. The cutting funct:on i12(X,12) = C2

is usod to oltLi:i two op 11i regions in B11
2 1l ,
2 < C2i}

"(x>, [2) 2 c?, (x, 7 1) < ci}

and
2 ,

C 2 1' i<x(I,7c)I
=- ,x : :.;" ] ,( >', T ,) C ? , 4 ,i( x ,J 1 ) " cm )



2

10o ,t.aod.-irdi ...c. -•, ,tion I et BI = B2 T'ihn the three blocks

2 2 2
defined at the second staeel are B' 1, ,,, and B3

If B, were seloctLLd for division at stage 2, then i 2 would be

selected from the inttg'rF; {l ,2,...,n-ij) and an appropriate W2(z,1 2 )

function would be chosen. The vector x2 and the value c2 would be such

that 2(X*,2) = 12 C2s te i 2 nd largest value in the set {42(x,1 2 ) x C
-1

02 o 0. The blocks formed would ben

2 1
B2 = {x CB212(x,12) < c2} ,

2
B = {x C B2 I 2 X,1 2 ) > c2} ,

and 2 1
B1 = B

The information that is available for entering the third stage (if

-Z -2 -2

desired) constitutes 12, x2, c2, the observation sets o0, 02, and o3,

and all information on On+m which is syrmnetric separately with respect

to all the blocks whose corresponding observation sets are not identified.

By the above definition, 1;ý contains 11, x1i, cl, and all other information

available at the begirning of the second stage.

Stage r (r - n)
th

At the beginning of the r stage the totality of permissible in-

r-1 r-1 r-1
formation consists; of Irr-l' xr-l Cr-l' the blocks Br B2 B r

-r-1 -r-1 -r-1
and the corresponding observation sets 01 ,02 ... ,or some of which

may be completely identified.

Within tle set of blocks, that have not previousl1 been designated

as "blocks never to be divided", one block is selected for division at

ththe r stage. Again, this block mrust contain at least one unidentified



observa: I .C n P I, rtsfeiii~ing bhock,, inust be clat•sified

either as i bluck eonsidcied for future division or as a block never to

r-1 r-1 r-1
be divided. None of the blocks BI ,B 2  B which has been cateSr
gorized as a block never to be divided can at any stage be reclassified

as a block considered for future division.

The information I is defined to consist of all previous informa-r

tion and all information on on+m or on any subset in on+m which is sym-

metric separately with respect to all blocks which could be chosen for

th
division either at the r stage or at some future stage.

r-1
If block B. (for some j = 1,2,....,r) were chosen for divisionJ

th r-1at the r stage and the number of observations in o lying within Brn j

4s e., then, using select nn integer i in {l,2,...,e.} and a real-
3 r r j

valued measirable function • (ZI') such that either it has a continuous

null distribution or there are no ties within the set {r(Zr)Izo0r-1.

*j
Through an indeponlent source, the vector x r c on and the value r (x*,!r)

th
= c are provided where c is the i largest value in the setr r r

{r(XIr)IX J -.0 W o }. The cutting function r(x,I) = c is used to
Br-1

define two new blocks in this block r.
J

B = r-I 1ýr(XI <r)
r r rl1 ( rB r. tx f B )- , < c
jj'r r r

and Bjr = {x c B.-l~ r(X,ITr) > Cr }

r-l. r-1 r-l
The remaining blocks in (B ,BB ,. r

1 2 r

B.r B.r- for i = 1,2,....,j-1
i 1

B+r B r-l for i = j+l,...,r.

1+1 IB

The total permissible information available for entering the (r+l)st
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r r r

stage con:;t.t Of Jr' X r C r, Lh blocks B1,B2.B r+I, the correspond-

ing observation sets o,oz,...,o r+I and all information which is sym-
r r

metric separately with respect to the set of all blocks in {B, Bp,...,

Bir ) having corresponding observation sets which have not been identi-
r+l

fied.
th

The process m,)%., be ,ontinued through the n - stage if all blocks

designated "never to be divided" contain no observations in o . Or the
n

process may be stopped at .ny stage level if it has been decided that a

sufficient number of blocks have been obtained to properly evaluate the

two-sample tolrance test statistic considered. However, the test, pre-

viously .olcctcd, 11,jv dictate 0'he number of blocks to be formed and pos-

sibly the number of observations in o which must lie within each block

formed. Mosti two-snook' tolerance tests are analogs of two-sample uni-

variate rank ;esis ,nr would possibiv require the process to continue

through the n h o.., l if it wore not apparent at some earlier stage

that all observations in o have been identified.

th
If the process il' were permitted to continue through the n stage

nn n
all blocks formed ,,, B 4,.]. ,B i are called basic blocks and are equiva-

lent (in thr probability' 50Pnse dcefined in Chapter III) to statistically

equivalent blocks formed by the standard one sample block construction

process outlined in Chapnter TTT.

Finally, it should be noted that the standard one-sample block

construction process iýs a special case of 3*. TLet both sets of random

vectors 0( and ." denote independent random samples which under the null
n hie

hypothe.sis hav. the same dis triibuition funct ion, F(x) . Then the joint
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null distributioin of Cv-nimetric. At each t-tage r, r = 1,2,...,n
n+ln

in B* let the information I contain only the observed vectors x*,x,
r1 2

1and ec2,...,cr_ 1 and all prior information available before ob-

taining the observations within the camples. Then this restricLed ver-

sion of B* is identical with the standard one-sample process.



CHAPTER V

PRACTICAL CONSIDERATIONS

Several practical techniques are suggested for effectively applying

the proposed method to forming multivariate two-sample tolerance tests.

Also included are special considerations when using univariate two-sample

tolerance tests, a suggested operational procedure, and a discussion on

the potential problem of bias associated with the quality control tests

presented in the second chapter. The terminology and notation defined in

Chapters II and IV are used in this discussion. The dimensionality of

all data vectors will be denoted by p.

A suggested preliminary procedure that should be considered before

applying the B* process (i.e. before looking at the data) begins by either

selecting an appropriate univariate two-sample tolerance test or develop-

ing a multivariate test which apparently best applied to the given problem.

The next step is to determine the number and basic block contents of th-

tolerance regions to be formed. These values are defined directly by the

test selected for use. The third important step requires a specific des-

cription of a construction plan showing the general order or layout of

the blocks to be formed at various stages. This construction plan is not

intended to dictate the shapes of the desired tolerance regions but merely

to state a means for identifying each particular desired region once they

all have been formed by the 73* process. In other words, iL is forbidden

to first construct a set of blocks then decide on how the desired toler-

-30-
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ance regions will Lc id-...l uiu and/or perhaps for-med by a combination

of blocks (e.g. basic blocks). The final step, which appears to only be

required by certain tests, is to associate each desired region, identified

by the construction plan, with a unique frequency count statistic. That

is, certain tests may require that the desired regions be preassigned a

fixed order. These preliminary considerations are further discussed for

specific tests given as examples in this chapter.

Once a tolerance test has been selected the proposed operational

objective In u ing the B* process is to form the desired blocks accord-

ing to the construction plan so as to make the test statistic as signifi-

cant as possible. Thus, it would appear that this objective can best be

satisfied by visually considering the set of unidentified observed vec-

tors. However, if the dimensionality, p, of the data vectors is large

an actual "look-at" the data situation may prove to be Impractical as well

as confusing. To alleviate this problem the principal component tech-

nique is suggested. This tcchnique will usually permit the analyst to

consider only a two-dimensional plot of transformed data.

The statistical method of obtaining principal components ([21,

Chapter II) can be used as a numerical technique for transforming the

original coordinate system orthogonally onto another p-dimensional co-

ordinate system. This new coordinate system is constructed by choosing

the first coordinate to have maximum dispersion among the transformed

data vecturs. The second coordinate, orthogonal to the first is chosen

to have the next largest dispersion among the transformed data, etc.
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associated with the karge:;t ei,;envalue of the scatter matrix determined

from the set of observed oectors. Then the second coordinate is defined

by an eigenvector, orthogonal to the first eigenvector, associated with

the second largest eigenvalue of the scatter matrix, etc. Thus, the

first two coordinatesF formed by the principal component technique des-

cribe the greatest amount of dispersion among the transformed data. This

should be a convenient and valuable aid for selecting candidate sets and

cutting functi s..

Other numerical or statistical techniques can also Fe used for this

purpose. For example, the statistical method for determining canonical

correlations (f 2 1, Chapter 12) also provido a new coordinate system.

Actually, any contireous transfornation on the original p-dimensional

space could he, con I fdtred.

The proF,: ( cti,,, of red'icing the dimensionality of the multi-

variate situation bv mean,; of vay ous transformation schemes offers a

promising appFocrh for considering the data. However, the data charac-

teristics may also be studied by actually increasing the dimensionality

of the problem. For example, considering the mean vectors and variance-

covariance matrices of various subsets of the totality of unidentified

observations could provide invaluable information for :;electing the can-

didate sets and appropriate cutting functions. Also any other numerical

methods can be used to nnalyze the data situation. This extended freedom

can be used tro furthfr describe the generality of the permissible infor-

mation on the mult i,,,ari ate observat ions defined by the P* process.

[J



In order te cLiril iy ;:ie use of trhe proposed noethod of forming

multivariate two-sainple tolerance tests, four examples are provided.

A different test is con.;idered in each example. Tn these examples the

observations on 0 will be used to establish the block frequency countsm

determined by the blocks formed on the observations on 0 . All schematicn

drawings used to display the data situations asstrn.e that either p = 2 or

the data has been transformed so that a two-dimensional space suffices.

As the first example, suppose m = 1 and n > 1. A twr-sample toler-

ance test can be developed by establishing one tolerance region (block)

containing most of the observations on 0 . If the one ob-ervation on 0n m

(n,-w observatiun) fAlls outside this rrgion the null hypothesis is re-

jected, ot-cr'wise :t is not rejected.

The has/' •-ock content of this region, say n + I - v, depends on

the slgnif. .'-:,_ clvo, cbcm,on for the Lest. The exact significance

level o thiis test is the ,ýill probability that the new observation falls

outside the dcsired tolerance region. This probability is computed to be

v/(n + 1). If :' denotes, the chosen significance level of the test, then

the value of v is determined to be the smallest integer such that

V > a(n + 1).

After v has been determined, the objective of the proposed method is to

construct according; to some plan a tolerance region of content n + 1 - v

on the observat ion,- on 0 which apparently best emphasizes any differencen

between the ret of ob,;ervations on 0 and the new observation. This

desired region c-in be constructed on one or in as many as n stages using

the B* procv:;.;.

If it were con,:iderd to use only one stage to conotruct this



region then the two blocks Iormied mumst be ol contitn v and n + 1 - v,

respectively. In this case, the block of content v %ould actually be

the critical region of the test. The permissible information available

to form this first stage cut would include all information on the com-

bined observations which is symmetric with respect to 0 n+m nd all inde-

pendent information available prior to taking the observations. However,

this approach to forming the desiied tolerance region would not exploit

all the advantages of the ,* process.

A suggested approach, which apparently makes better use of the B*

process, requires that all n + 1 basic blocks be formed in a particular

way. The objective of this approach is to form the shape of the desired

tolerance region (also determines the shape of the critical region of this

test) which best defines the difference between the new observation and

thp obscrrvations on 0 . This objective may be accomplished in the follow-n

ing manner. For the first stage, select one unidentified vector as the

candidate for the new observation. This candidate may be selected as the

vector which lieq the "furthest" away from the remaining n vectors.

Using these n remaining vectors for the observations on 0 n, determine a

real valued function which for some value in its range separates the new

observation candidate from the remaining n vectors by enclosing the n

vectors. Set ii = 1 (if the value of the function is directly propor-

tional to its enclosed volume) and obtain the first stage cut using this

function. This cut will define a basic block which should be located

sc-newhat near the center of the empirical distribution of the observations

on 0 . Maintaining the same objective used in the first stage the processa
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may b , ont int i: , w : " . ge. Of course, at eac e -

stage a new obeieii - ,to ;mn! functions rra., bt, chosen differently.

However, if at any n.tl,;e tl:e net: basic block formed contains an observa-

tion, this observation must be the iiew observation and the null hypothesis

cannot be rejected concluding the test. If the new observation has not

been identified by the end of the (n-v)th stage it must lie within the re-

maining tolerance region of content v + 1 and the process must continue.

Throughout these n-v stages the objective is to select cutting

functions so as to exclude the new observation candidate from the basic

blocks formed. Since more information is provided by the BV, process at

each successive stage, the cutting function defined at the (n-v)th stage

should reasonably well represent the shape of the empirical distribution

defined by the observations on n . A schematic drawing showing then

general appearances of the n-v cutting function is given in Figure la.

Note at this point the (n + 1 - v)th cutting function which will define

the desired tolerance region has not been formed. Tt (I)E. d formed

in the next sta,e; however, more information pertaining to the "best"

shape of this region can )e obtained by forming v - I more ba,ic blocks.

In the next stage the integer i n+lv is set equal to v and the cut-

ting function is chose, in a similar way used in obtaining the cutting

functions in th,. previcous n-v stages but with the new a)bjective to in-

cludo the neia.' oefcsrvation candidate within the basic block formed. The

basic bloek fr;-u,(.! :ot tfli, stage includes all points in the sample space

lying outsid, tY, cg'fion enclosed bh,' the cut. The same objective is used

to construct thc n,:-:t v - 2 basic blocks. If at any stage an observation
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lies within thu 1a.,;c i Orn. ,, this obs;ervation must be the new

observation and the null hypothpsis is rejected concluding the test.

If after these n-i stages the new observation has not been identi-

fied, the remaining region (basic block content is two) must contain

exactly two vectors. One of these unidentified vectors is some observa-

tion on 0 and the other vector must be the new observation. A schematic
n

of this situation is given in Figure lb showing the remaining region. At

the end of the (n-i) stage two reasonably well shaped cutting functions

defining the remaining region can then be used advantageously to define

the shape of the final cut.

This latter approach may not seem too practical especially if n

were very large. A similar method could be used in which blocks of

content two or more arc considered at each stage. This method would re-

quire fewer stages of the B* process and would yield a favorable toler-

ance region. However, regardless of the approach used it must be decided

(before a'pplying the -* process) how the desired tolerance regions will

eventually be defined and how they occur in the test statistic.

Tests of this type have direct application in the quality control

tests (Chapter II). For example, suppose the first data sets contain n

observations and all other data sets consist of exactly one observation

each. If it were decided that for each subtest the critical region would

be of basic block content v, then the exact significance level of the jth

subtest would be v/(n+j) if no randomization were used in all subtests.

The significance level of the overall test would in this case be

k k v n n + k
an+j 1 - Mj=l n+v V
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whore k denotes the ra.-, imio;, ,t.bher of subtests. From this expressicA,

the tluo- Pither k, ca, n, or v may be determined if the other values

are specified. For example, if 1Y = I for all subtests, then the value of

k would be determined as the smallest integer satisfying

k> .- n.

Other similar quality control tests could be established using two-sample

tests of this type.

As the noxt example, suppose that the Wilcoxon- Mann - Whitnoy

test [10] has been selected for application. The statistic associated

with this test is
m

Ii = >•r. - m(n + m + 1/12
i=l

where ri, i = 1,2,...,m are the "ranks" of the observations on 0 . Some1 m

properties of this tcst, considered for the univariate case, are presented

in reference [14] on pages 61 through 68. The null distribution of this

two-sample test for certain ranges of n and in are tabulated in reference

[ 4 ]. For rather large n and in the null distribution of U can be approxi-

mated by the normal distribution.

In the univariate, case, this test best emphasizes alternative hy-

potheses inferring slippage in the location between the two populations.

That is, it will detect with rather high efficiency whether one popula-

tion is statistically loss than (or greater than) the other population.

This test, howewver, is not efficient for testing a difference in disper-

sions if the two popul.Jons have nearly the same location.

To study the multivariate analogy of this test (or any other test)



it is highly rcco~mmended that, the statist Ic -h expressed in terms of the

appropriate block frequency counts. In the case of the Wilcoxon-Mann-

Whitney test, the "ranks" of the observations on 0 can only be det.r-m

mined by basic blocks. Thus, the U statistic should be rewritten in

term, of mI,m2,...,mn+l, the basic block frequency counts.

First note that the "ranks" of the observations on 0 are
n

n
M-- I, ml + M2 + 2,..., • m. + n.

Then the "r.inks" of the observations on 0 would b,: the remaining inte-

gers in the set {l,2,. .. ,n-m}. Therefore, the stun of the ranks ri of the

observation-, on 0 is equivalent to the difference between the sum of all

ranks in the ronihined sot of observations on 0 and the stum of thp ranks

of the observ-ation!; on 0 . T'his givesn

m n1T, n j
x ri - • { I + j)

i=I j--l 1=1 i=.i

n+l

=m(m - n - 1)/2 + nm/2 + Y j m.
j=i j

n

since m -m = nM..I
j=1

Thus the 1'-.t.atistie expressed in terms of the basic block fre-

quency counts simply becomes

n+1
nr(n+2)

This implies; thmt the v;.lue of V' depends not only on the basic

block frequency cotion t; htit ;il:;o on the way in which the blocks are ordered.



To appropriatuly uL. thm Wiicoxon-Maiin-Whit: tzt as s mnultivarlatc

two-sample tolerance test, a method of ordering the basic blocks to be

determined by the B* process must be prespecified. This additional

conslder'tion could be resolved by specifying the general manner in which

the basic blocks are to be formed.

Another important consideration is the interpretation of the U-

statistic when defined on some set of pre-ordered basic blocks. In the

univariate case the basic blocks are determined by the order statistics

ý(-d are ordered in the natural way. This ordering provides the basis on

which the U-statistic was oripinally interpreted. That is, if the U-

statstic obtafneO a value near either its lowest or highest possible

values, then this would be interpreted correctly to mean that the simple

two-sample null hypothesis was probably not true. However, in the multi-

var'iate case the interpretation of the U-statistic would depend largely

-n the ordering and relative locations of the basic blocks. If the basic

blocks were ordered in any haphazard way, then any logical interpreta-

tion of various values of the U-statistic would be difficult to express.

If it were desired to interpret the U-statistic in the same concept

used in the univariate case, two situations must be considered.

First, suppose that a two-sided U-test were selected. In the multi-

variate case the alternative hypotheses to be emphasized should reflect

that the two populations differ in location in some direction in the p-

dimensional space. The following is a suggested procedure for establish-

ing and ordering the basic blocks for this two-sided U-test.

(1) Using some numerical procedure (e.g. least squares) determine



the best iL 0l LtiCe comtblJtit unidentified observed vectors to a straight

line. This line can te assumed to represent the "most-likely" direction

of any locatior difference between the twr populations.

,2• ',c first stage cu. is made by a hyperplane orthogonal to the

line (2..b izhcd in (1)) passing through the (a) median (with respect

to the hyperplane) of the observations on 0 that is. ii is selected to

be an integer nearest to (n+-

(3) The two blocks defintd -f- the tirst stage are then divided

into basic blocks by forning a series of blocks radiating out from this

hyperplane. This can be accomplished by choosing cutting functions

nearest the center of the empirical distribution of the candidate vectors

for the observations on 0 in each subsequent stage (see Figure 2a).n

This construction approach insures that the cutting functions will des-

cribe the shapes of the empirical probibility surfaces of the observa-

tions on 0 in the "tails". The order established by the B* processn

given by the subscripts in the set {Bn,B n,...,Bn I} would be a natural1 2 n+1

basic block ordering .zuitable for the desired interpretation of the U-

statistic.

Now suppose that a one-sided U-test were desired. The alternative

hypotheses associated with this test in the univariate case would reflect

one population is stochastically larger (or smaller) than the other popu-

lation. In the multivarinte case the alternative hypotheses could be

either that one population is stochastically larger (or smaller) than the

other in -.ome direction or that the two populations differ in location

where the direction is not specified. To test the first form of the al-
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ternative hypothesis the same procedure outlined above for the two-sided

test could be used. To test the second form of the alternative hypothe-

sis another method is suggested (see Figure 2b).

(1) Determine the mean vector of the candidate vectors that are

associated with the observations on 0 . If the candidate sets are dif-n

ficult to determine the mean vector of the totality of observed vectors

zan be used.

(2) T'n the f'.rst stage take il = I and make the first cut centered

c 'j out the mean vector. The shape of the cut should perhaps be determined

by the empirical distribution established on the candidate set for obser-

(3) 7edefine (if necessary) the candidate set for the observations

n base' on the Information made available by the first stage. Then

'elu f l,' and (2) for i 2 = 1.
th

(4) Continte the procedure to the n stage. The resulting order

t*f t'e hcU': olocks defined by the B* process can then be used.

"7 te: This last procedure does not necessarily result in concentric

cutting functions but the cutting functions will tend to radiate out from

the center of the empirical distribution of the observations on 0
n

!--in, the shapes of the cutting functions determined in the latter

S_- ges of the B* process closely describe the shape of the empirical

distribution of the observations on 0 . That is, the differences betweenn

the observations in the "tails" of this empirical distribution may be

emphasized by this approach.

Another approach, which appears to be better for forming these
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basic blocks for the one-sided U-test and may be considered for other

tests, seems to contradict one's natural intuition. This approach is as

follows:

(1) Using the totality of unidentified observations determine the

new coordinate system of principal components.

(2) For the first stage obtain an acceptable ceal-valued function

on this new coordinate system which apparently best describes the general

contour of the empirical distribution defined by the candidate set for

the observations on 0 (or if not possible, on the totality of observa-n

tion).

(3) Rotate this function through its center by maki• appropriate

transformations and interc!ianging the roles of the 1th pritncipal component

with the (p- 1 +1)st principal component for i = 1, 2 ,...,[p/ 2 1 ([x]

denotes the ]Lrgo;St integer less than or equal to x).

(4) Set i. = I and determine the first cut using this rotated

function.

(5) Repeat steps (2) through (4) setting i. = 1 for j = 2,3,...,n
J

and possibly redefining new functions and candidate sets at each stage.

A schematic picture of this approach is given in two-dimensions in

Figure 3.

Since the first principal component contains the greatest amount of

dispersion among the transformed observations, this component axis may

represent the most likely direction showing any differences in location

between the two populations. The second principal component axis Indi-

cates the next mo!;t likely direction of location differences, etc. The
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objective of this approach i.- to shape the blocks in such a way so that

the least number of blocks (in the "tail" for the one-sided U-statistic)

contain the greatest number of observations on 0 . By transforming andm

rotating the functions according to the above method, the chances of

accomplishing this objective appears to be rather good for emphasizing

the alternative hypotheses.

Since this one-sided test can, in this case, be used to emphasize

general two-sided alternatives that are associated with the U-test, then

it would appear to have greater power than the two-sided test. The same

construction techniques suggested for the multivariate one-sided U-test

applies directly to the univariate zase as well. Thus, all univariate

two-sided alternatives can be treated by a univariate one-sided U-test.

This example was selected to emphasize the fact that not all ap-

propriate univariate two-sample tests can readily be applied to the

multivariate situation by disregarding the interpretation of the test

statistic and any other consideration to be imposed on the content and

use of the blocks. Some tests may be applied directly without any re-

striction on the block usage. This is shown by the next example.

Suppose that the Dixon C2 test J 5 ) is considered for application.

In the univariate case this test is consistent and moderately efficient

for virtually all alternatives of interest. The test statistic is ex-

pressed directly in terms of the basic block frequency counts:

n+l mic 2 1= i [ 1 ] i 1 2

i=1 n+l m

A thorough description of the properties of the C2 test is provided in

I J



147--

reference 114) on page-s 1)3 and 154. 'Ihe null di'airibution of C2  s

tabulated for some n and m in reference r 5 1. If a < 1/2 denotes the

selected significance level of the test and if nm/(n+m) > 6 and (n+m)/

(4nm) < a the null distribution of C2 can be approximated by the chi-

square distribution. The Dixon C 2 test is always one-sided.

Since the C -statistic does not depend on any preordering of the

basic blocks, then the interpretation of the C statistic for the multi-

variate case remains unchanged from the univariate case as long as a

logical procedure for forming the blocks has been established. Thus,

large values of C2 will indicate in either case that the null hypothesis

is probably not true. If the exact form of the alternative hypothesis

cannot be specified, it would appear that the Dixon C2 test would be a

most appropriate choice.

Next, a few particular data situations are considered for applying

the C2 test (or most any other appropriate test whose statistic does not

depend on an ordering of the blocks formed).

As stated earlir, the operational objective of the proposed method

is to construct the desired tolerance regions (blocks) by trying to make

the test 6tatistic as significant ; possible subject to the rules defined

by the Z0* process and any other additional considerations. The decision

of which blocks to divide or not to divide, the choice of candidate sets,

and the selection of a cutting function at- each !,tage should naturally

depend on the test statistic, the set sizes n and m, and on the signifi-

cance level of the test. For example, suppose n = m = 4 and the test

significance level was chosen to Ie 0.10, then the Dixon C2 test would be



to reject the nulL hypothLSP. if C'_-, 0.8, otherlse it is not tujected.

This critical region is only obtainod whenever one of the five basic

blocks contain all four of the ob:;ervations on 0 . If the plotted un-

identified (transformed) observation vectors yielded the data situation

given in Figure 4a, then the best intuitive procedure is to select four

points lying in what appeirs to he a cluster as the candidates for the

observations on 0n, the ot'ier points are then candidates for the obser-

vations on 0 . In the firnt stage take ii = 4 and a real-valued functionm

which best describes (for convenience circles are u:sed in Figure 4) a

boundary about the candidate set for 0 . If after establishing the first
n

stage cut the tu blocl.s4 take the form given in Figure 4b, then all ob-

servations o:- are clearly identified since they lie within one basicm

block - then the imli hYpothesis is rejected at the first stage. If the

first stage blocks take the form qhown in Figure 4c, then only x* cn be

iceentified and1 a second stage is required. A new set of candidate points

for the observations on are selected, perhaps those nearest the identi-n

fied observatica x. A second function emcompassing these points is used

to determinn, the second stage cut (for i2 = 3). Then if the result given

by Figure 4d is obtained the observations on 0 lie in a basic block

rejecting the null hypothesi.-. If the result described by Figure 4c

occurred then the null hypothesis cannot he rejected. Also, if at the

first stage tht. resuiting blocks took the general form given by Figure

4f the null hypothe,; is coid d not he rejected. A similar approach could

be used whenever the data vielhded two reasonably well defined clusters

of size.; i and m.
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Now suppo.,;e tIU data Ai Lt.At iOn yields one cluster of points. In

this case, it may be rather difficult to select the candidate sets. The

suggested technique for handling this situation is to first determine

the mean vector for the totality of unidentified observed vectors. Take

il = 1 and define a first stage cutting function whose center is at the

computed mean vector, as in Figure 5a. Considering all the permissible

information available at the end of the first stage, in particular the

relative positions of the vector x* and the remaining unidentified ob-

served vectors, it may now be possible to select the apparently "most-

likely" candidate sets. Then continue the P* process selecting cutting

functions which tend to raCiate out from the center (see Figure 5b).

However, if candidate sets cannot be reasonably defined, set i 2 = 1 and

seleet the second stage cutting function to have its center at x1 , etc.

Of course, !.Yro ct( rfany other dnta situations that could occur

(e.g. three or 7or- dýist.nct data clusters). Similar procedures for

handling these situations could be established as long as the basic

operational objectivo remains unchanged.

The iinal ex:amp]e considers the use of Matlhisen's quartile test

[11]. This test is based on the frequency counts determined 'y tolerance

regions repre.;enting 25 percent regions defined by Oie observations on

O . The test requires that (n+])/4 and m/4 are both integers. The testn

statistic iý given by

4

B = 16 X [mi - E]?/( 9 m2)
1=1

where mi., i - 1,2,",4 are the block frequency counts of the four 25 per-
1

cent regions. Son•. properties ci this test are presented on page 152 of
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reierite [14]. A t, , . tli:;tIl'uIniuu i-. iiven in reference

[11]. For certain n and m the null distribution can be approximated by

the beta distribution. In the univariate case this test emphasizes

simultaneously dilfcrcnce,, in location, dispersion and skewness. The

test is one-sided and is rat' or similar to the Dixon C2 test for n = 3.

Since the B-statistic does not depend on an;,, rordering of the blocks

(25 percent region:;) no special considerations of block orderings are

necessary. Two approaches for forming the desired regions are given.

The first appronctt ois i tloy threc stages of the '* process in the most

effective manner, while the other approach requires all n stages.
,n+l 3(n+l) }an

The first suggested procedure is to select ifnt{ - , and

choose Smie aporopriate Cutting function depending on the data situation.

This first .tW_ cut divides the sample space into a block of content

and anot.i, .r !!,okk of content 3( .) Since the desired tolerance4- 4
... . .......-..... n+l

regions aire 25 p"--rcent regions the bF lck -of content '-" cann6tbe diI-d. .

at any later st;!go. By the rules defined by the /3* process, all observa-

tions in this block can be identified. This information (if not sufficient

to conclude the test) should prove extremely valuable in selecting the

second s;tag;to candtidaite sets and cutting function. In the second, the re-
105ii n+l n+l} Agi onblc

maining bloil: is bi sercted by ch4oosing - . Again, one 2 "ck

of content -/+- is fornmd (the othter block is of content --+--). AI1 obtser-

42

vat ions in th i., ýI i;. v) h, e idnt i fied. All this information can now be

used to selet, t e the thuird stage crtt ing functtionI (for i3 = --4--) to bisect

n+l1
the remn;iiin inp, b]()(1- of con tent -

2

Thes cn t7gpesttld procedure is to predc f ine ,;ome scheme or con-



struction plan for fonniing tim desired tolerance regions. from basic

blocks. Thi,; s-hbene muv;t he defined before "looking-at" the observed

data, One .;iuol, approach is to use the B* process by selecting cutting

function!; to form basic blocks whose centers are the apparent centers of

the candidate sets; for the observations on 0 . These cutting functionsn

will tend to Y;id iate out from the actual center of the observations on
n+l n+I 3_(n__)

O , in o. faz;-c o,, Aicvn by Fipure 5b. The -h-1 n and 3(n--) stage
n 44 ' 2 ' 4

cutting functioný! will then define the desired 25 percent tolerance

regions.

"2ICh nuil 2i:;tr'!!.titons referenced for the above statistics were

dcrivc '.,'" ie. uncoiiit. ional probability model. By tbe corollary

:i'.%- -L- Chantcer VII. those di tributions also hold for the conditional

r (1:- ".(1, C.

"o!mal oI, I ire of tilt suggested operational procedure can now be
-------------------------- .....-- -- - -- -

(1) Crnsidwr all independent information that is available prior

, z '-ryat...ns. IThis i.nforoati may include previous obser-

vations, thli odal characteristics of the underlying distributions, etc.

2;'2 ,•1:ct or construct an appropriate two-saimple tolerance test

igoif Icance level.

(3) o,:aefIIl], conide'r the test statistic expressed in terms of

..- ,i ppropriato bloc& frequency counts. From this. determine the number

1.. ic 1 ocl e 1 n,,nt.' of the tolerance regions to be formed and any

r" - i . i,.t 1' (e.g. construction plan, block order, etc .

r'i ,1'av he irlp ,r fd (In the block usage.



(4) Inturpre*_ thie te~st statistIc for the proposed methaod of

us-n 9~1 (~-' 0 " r t' -, r 1'Ne eeZ .LI '- C ical reg~ion o1.] tIIC

(5) Collec- K-c- two 'bservatio" sets.

(6) If thed~esin 1  y p, of the observed vectors is greater

t'-r t-.c cnsierpc-z7cj C' w'-i'j',c1 ýschniques for transfotrini the

datla t,: a tw- r'--;z'c o F jtem. Then "o -r"the nilotted

0 CS ?"C.J )V the TFý --. .:y ,

- . 2 '~l .anni'v f-c' > process con-

C ~cas signifi-

rrýctýs evaluate

The( final co-.- -1cria or i,: Oev-ýe( fo a' 'oront~i problem Mn~r'rV

a-4rse w'ý-'2n' -,-nnosc' me-~wd f-or determining su'htests in the

quality cont-'0 tes )rr.-srnr_ 41n ChaTtC~r I1. I'll 4 Sroblem occurs from

tie C0rVOVC- * 'tr',ips from nreceocing subtests Vic- "' onkin--at' the

cov'W,-.nce 0 ca t - A : c-; -~ `1 sc- o' Cite co-'Žfrcc3 (';tn or tie subtest

-,",e te Cr'o~ arc sec- of the next siuhsec'ucnt su'21-est. Thus ,

-~-~v---~ U-t~e Cnecio
1 1

V if p,= or 2, may directly

~0-,p~c- - .'~: - ~ cr.~U~esarri~les. Thiis krowledige 4- rot per-

C- -. * ,4 that, may occur coi 01 1 Ihe considerably

2r-' n'e' rr !-~ '''"lC' (, tnL-n. if tlhis ' ý~s nlo'
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eliminated the BI process is violated and the subtests are no longer

independent. Some suggestions for alleviating this bias are presented.

One approach is to list (if possible) a set of fixed rules which

generally apply for all data situations that could occur at any stage in

the B* process. These rules are used to make decisions for selecting

the candidate sets and possibly the cutting functions at each stage.

One elementary example is provided.

Suppose all new data sets, except the first data set, consists of

only one observation. Then the rule to always select, as the candidate

for the new observation, the one unidentified observation which lies the

"furthest" away from the set of remaining unidentified observed vectors.

The concept of distance in this rule may be defined by fitting, say, an

ellipsoid function to the set of all data points. Then the observed

vector yielding the largest value of this function will be the candidate

.......... . forth- b-F -n .... T-'srule-can be repeated at each stage of the

B* process us-ng only the unidentified observed vectors.

The approach of alternating or employing different analysis for

each subtest should reduce or eliminate all bias. This approach appears

to be direct and qimple to apply.

In the next chapter several areas of application are discussed.

Most of these areas are limited to medical applications.

4



CHAPTER VI

SOME AREAS OF APPLTCATION

The sequential significance tests having multivariate two-sample

tolerance subtests presented in this paper apnear to be generally ap-

plicable to most quality control as well as to other testing situations.

A few specific medical applications are cited. Other areas apparently

submissive to these tests are listed at the. end of this chapter.

The first application to be considered is the qunality control of

a system used '-:o deteniiine the eloctroplioretic analysis of serum pro-

tein. This method of characrori,;ng serum rr-teI;,_ inas provided better

understanding of associatod clinical disorders and in some instances

has aided in r(-cognizin•ý' net, di-eases complicated by serum protein ab-

--- no matt-ri(,s. ........... -- -- - - - - - --

Electroplioreticallv separated serum proteins are. classi fied in

five rather distinct grouips: albumin, Cti-, (Y- ý-, and y- globulins.

The basic resuilts of an electrophoretic seruim analysis are given by thle

concentrations;. of these protein groups. These measuirements are usually

expressed in terns of the fractions of total. protein concentration. The

systems usecd to obtain thesýe mieasuremients is influenced by several fac-

to rs: hu~man, mechanical, chemical, and electrical.

Present qual ity control techniques used to test the system opera-

tion, consider o'c tffv ilt iN';triate menasuremont-s indepenldent ]v of the

other fouir. Ihsmethod of testi ng 1i'oul d bo h h vcuesti onnahi eif

-56-
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there exist any dependent relationships among the five variables. This

would not be a problem if multivariate tests were used.

The standard method of testing the quality of this system is a

sequential quality control test which is very similar in structure to

that presented in Chapter II. That is, the previous data is continually

reused; however, there is no regard for independence between subtests.

A reserve bank supplies the source of serum used to conduct the quality

control tests. The serum in this bank is replenished periodically by

sampling from the excess of serum tested over previous days. The serum

samples are combined, homogeneously mixed, and frozen for preservation.

For each subtest one or two samples are taken from the serum reserve

bank and electrophoretically processed in the system. The results are

analyzed, then tested against previous results to determine if the

system is in or out of control.
.~ ~ ~ ~ ~ ~ ~ . .....-- - - - - - - * ~ . .....-

Since the multivariate observations consist of five continuous

variables, the proposed method of forming two-sample tolerance tests

trivially holds. The test situation then appears to conform well to the

quality control test presented in the first example of Chapter V.

The next application is to clinical trials. The objective of

clinical trials is to compare the effect of some treatment (e.g. a drug)

to some standard. This standard may be described by measurements on

untreated patients or on patients subjected to a different treatment.

The m,.czlrements used for comparison are in the form of symptoms, signs,

and/or clinical findings. one approach to clinical trials is to enter

one patient at a Li!- into '.le experiment. A set of measurements on the



treated patient is used to co'mpare agains;t the standard measurements.

The sequential testing is continued until significance occurs or a

maximum number of tests have been conducted.

All measurements of symptoms and signs are usual.y considered

discrete; however, most clinical findings (e.g. temperature, weight,

blood chemistry, serum protein analysis, etc.) are continuous variables.

If at least one of these continuous variables are included in the measure-

ment of treatment response, then the nronosed met-hod o' forming two-

sample tolerance tes-; can be used to determine subtests. Again, the

quality control test given in the first example oe utinter 17 can be au-

plied to this problem.

A rather common pnohlcm in medical research (similar to nroblems

in other scientific and engineering disciplines) is cited next. Stppose

three groups of patients are involved in an experiment where each group

is subjected dto a differ ent treatment. ...... T r-oririmfted independehtf-pvious

knowledge, there is reason to believe that two of these treatments, say

A and B, do not differ in their measured responses, while the third

treatment, C, response affect is either unknown or is believed to differ

from the other two. The desired test procedure is to first test the

null hypothesis that treatments A and B yield the same effects, then if

this hypothesis cannot be rejected test if treatment C differs from the

combined affects of treatments A and B. If the observations, used to

measure the treatment effects, are at least partially continuous, then

the sequential significance tests having the proposed multivariate two-

sample toleranco tests as its subtests can be made to apply to this

procedure.
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An extension to this problem follows. Suppose there are k (k > 3)

groups of pat 2nts. Each group is subjected to a different treatment.

Then prior to taking the observations, the treatments are ordered ac-

cording to their believed differences. That is, those treatments con-

sidered first in this ordering are assumed to produce near similar

responses, etc. Again, if the observations are at least partially con-

tinuous, the tests proposed in this paper can be used.

Some other general areas of possible application are: water and

waste treatment plant quality control, traffic studies, scientific and

engineering research, industrial quality control, market and other

sampling surveys.



CHAPTER VII

STATEMENT OF BASIC RESULTS

Two major results are presented in the form of a theorem and corol-

lary. All other basic results, some of which are direct consequences of

the theorem or corollary, are verified in an informal format.

The following theorem proves that the joint null distribution of

block frequency counts obtained at any stage in the B* process is the

same as if it were obtained by the standard one-sample process. The

proof is given in Appendix II.

Theorem
Let 0n = {Xl,X 2 ,...,Xn} and 0m = {Y 1 ,Y2 ,..,Y m} be two sets of

random vectors, not necessarily independent, defined on a sample space X.

These sets are such that there is a probability one of the construction

process B* being -nique (no ties in the cutting function values) which

occurs in particular whenever the random vectors are at least partially

continuous. Under the null hypothesis, let the combined set of random

vectors 0 = {Xi,X 2 , ... ,X, YI,Y 2 ,...,Y I have a symmetric joint cumu-
n4-f-no m

lative distribution function denoted by F = F(xl,X2,...,x n, YY2,...,Ym).

r r r th
Given a set of r + 1 blocks ..... ., r } formed at the r stage of

the generalized block construction process,B*, on a set of observations

on 0n, then the joint null distribution of ml,m2,...,mr+I, the respective

block frequency counts on Om, is given by

-60-
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P(m,m,...,mr
1 ) = { (m. + ki-1)/(m + nS:Mi mi m

for non-negative integers mi., i = 1,2,...,r+l such that ml+ m2+...4-mr+lnm.

Here, ki denotes the "number of basic blocks" contained within the

r rblock Bi, with k.-l being the number of observations on 0n in B;.

Corollary

The above theorem holds under the permutation probability model

whenever the sets of random vectors are such that there is probabilityI

one of the construction process B* being unique.

Proof of Corollary

Let {X1,X2,. ... ,Xn} and {yl,y2,...,ym} denote fixed sets of obser-

vations on 0 and 0) , respectively. Let S be the conditional permutationn m'

sample space given the combined fixed set of observations {xl,x2,. .. ,Xn

Y*Y2a,...,Ym}. Then S is equivalent to the set of all (n + m)-tuples

obtained by permuting this given combined set of observations. Let X,

i = 1,2,...,n repres;ent the random vector (in the permutation model)

yielding the vector value located in the i th coordinate position and Yi,

j = 1,2,...,m, denote the random vector yielding the vector value located
th

in the (n + j) coordinate position in the (a + m)-tuples in S. Then

the joint null cumulative distribation of the random vectors {XI,X 2,. .. ,Xn,

Y1,Y,...,Ym} is symmetric. Set S = X and the proof follows.

This corollary implies that any test statistic associated with a

two-sample tolerance test formed by the proposed new method has the same

null distribution whether it was considered on an unconditional or per-
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mutation probability basis. Thus, all null distributions that have been

obtained, under the unconditional model, for any appropriate two-sample

tolerance test statistic are directly usable under the permutation model.

An immediate consequence of the theorem is considered next. Sup-

pose 0 and 0 are independent random samples. Then, under the nulln mn

hypothesis, their joint distribution is synmnetric.

In Chapter IV it was shown that the standard one-sample process was

a special case of the B* process. Then it follows, from the above re-

mark, that the existing method is a special case of the proposed method

for establishing multivariate two-sample tolerance tests. The existing

method can then be extended to consider two data sets, not necessarily

independent, whose joint null distribution function is symmetric. Then,

from the above corollary, any two-sample tolerance test formed by the

existing method has a permutation probability basis.

It remains to show that any statistic associated with a two-sample

tolerance test formed by the proposed method is symmetric in the obser-

vations on which the tolerance regions were defined and is symmetric in

the observations used to establish the block frequency counts. This is

equivalent to s>Jwing that any statistic is symmetric with respect to

both 0 and 0 . It was never required at any stzrge in the 7l* processn m

to associate an observation with the particular random vector yielding it.

The process only permitted an observation to be identified with the set

of observations from which it came. Then all identified observations

(in this sense), thus the set of all observations, are symmetric with

respect to boti 0 and 0 . Hence, any statistic is symmetric with re-
n m

spect to both 0 and 0 .n m
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Definition I
If V = (V(1)V (2),... V(p) )T is a p-component random vector and

v = (v v .,v(P)T is a p x I vector having real components,

then the event that V M < vi simultaneously for all i = 1,2,...,p

is represented by V < v.

Definition II

Let VI,V 2 ,...,V be a set of p-component random vectors, then the

joint cumulative distribution function of VI,V 2 ,...,Vt is given by

I'(V < V, V 2 < v 2 ,...,Vt < Vt)

where vI,v2,. ..- vt are real component p x I vectors and the events

V. < v. i = 1,2,... ,t are defined in Definition 1.1 -

Lemma I-i

Let W1 ,W2 ,....,Wq be a set of p-component random vectors which are

defined on the samn]e space W' and have a joint cumulative distribution

function

F(Wl,W2, .... w ) (IM <wl, W2. < w2,..,W q < Wq

If F(wl,w 2 ,...,w q) is a symmetric function on all sets (wl,w 2 ,...,w q

of real component p x 1 vectors, then for any set of measurable functions

(real or vector valuied) g (WiW ,.. W q) i = 1,2,...,I< and any reorder-

qq
ing (i, 2 .. i)of the integers 12..A
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- Ptg1(,W2, ,Wq), .ý al. W. k ) _ ai,. --,W qw < kW.

1f,( ilo 12s . q ql .. gk(i 9 i '.'Wi <ak

where a. is a real component vector of the same dimensionality as

g. (Wl,W2,. ..,W q) for i = 1,2,.. .,k.

Proof

Le o: {(1,2,. ..,w)- )[i~wi2 2... , )i q
A fW1)2)- -ýWq )11W ý2. . Wq < al . ,

Fgk(wxvW2-. .. w qW < a k; w icRp i =1,2,...,l

A {(w.,w.,., .. ,w ) Igl(Wl9W2,. .,w) < a1,,...,

ql ii i2'

q

It sufice to sho.w tha P(A) P(,2..

q 
q

since F~jw , . .i~ .w %.. ),w is sra 1,.

Consider th .,t ) aw..fonaiR 1: fo 1 j, 1.,2 .- q

t7heno t\ i the pfo-dial si on 1 W.cld a 1,,..qi telscepesin

Th t gvsufie oso htPA (

P F(A = i (Wi v. . .1 .,) dF(% Iw2 ,w q 0.,w

A B

.1 J

thevng the leransfna. o . 1.1=12. , ntels xrsin
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Lemma T-2

Let 141,t42,...,W he a set of p-component random vectors dcfined onq

a sample space ;.' and have a symmetric joint cumulative distribution

function, "(wl,712,...,w ). Let {Z 1 ,Z 2 , .... - be a subset of the random

vectors W, ,W2 .  J14q and F represent the totality of information on the

observations on W1, W2,... ,Wq which is symmetric with respect to

{Z 1 ,Z 2 ,...,Zt) . If g(W,F) is a measurable function on F and W = 1 ,

for any i = 1,2,...,q, then the joint cumulative distribution function

of g(ZI,F), g(Z 2 ,F),.... ,g(Z ,F) is symmetric.

Proof

By definition, F is invariant under any relabeling of the identities

in (Z 1 ,Z 2 ,...,Z t).

If the role, of the random vectors Z. and Z. are interchanged, the
1

statistic g(i,o") becnmes g(Z.,F) and vice versa. Then by an interchange

of the roles of the random vectors in {Z 1 ,Z 2 ,...,Z t, the set of statis-

tics {g(Z 1 ,F), g(Z 2 ,F),...,g(Zt,F)} is mapped onto itself.

Let gi(Wi,- , 0..,W q) =g(ZiF) , i = ],2,...,t in Lemma 1-1 for

k = t and the proCof follows.

I

tlrorvi.'Aion o- a set of observations is defined to be symmetric

with respect to a set of random vectors if, and only if, the information

is unch~ijnod Ir. ,t rin ingint the roles of the random vectors. (See

Chapter I.' and Appe tii:: 1I).



APPENDIX II

Theorem

Let 0n = {Xl,X 2 ,...,Xn} and 0m = {Y1,Y2,..,Y m} be two sets of

random vectors, not necessarily independent, defined on a sample space X.

These sets are such that there is a probability one of the construction

process B3* being unique (no ties in the cutting function values) which

occurs in particular whenever the random vectors are at least partially

continuous. Under the null hypothesis, let the combined set of random

vectors 0n+m = {X!,X 2 ,. • .,Xn, Y1,Y 2,. .... ,Y} have a symmetric joint cumu-

lative distribution function denoted by F = F(xl,x 2 ,. .. ,x, Yl,Y2,...,ym
r r r thGiven a set of r + 1 blocks {B, ,B 2 ... Br+1 formed at the r stage of

the generalized block construction process, B*, on a set of observations

on 0 n, then the joint null distribution of ml,m2,.. . ,mr4 1 , the respective

block frequency counts on Om, is given by

P~m1 ,m21 .... ,mr+ 1 ) = { (mi +k ) i}) + n)

for non-negative integers mi., = 1,2,...,r+l such that MI + m2 +...

+ M m and where k. denotes the"number of basic blocks"contained

r
within the block Br, i 1,2,...,rfl.

Proof

The formal method of proof uses induction on the number of stages

in the generalized block construction process, B*, presented in Chapter IV.
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The joint null distribution of the block frequency counts on 0 is

determined at each stage. This is arrived at by deriving the conditional

null distribution for the block frequency count on 0 for one of the twom

new blocks formed at the stage being considered given the joint frequency

counts observed at the previous stage. This proof makes repetitive ap-

plications of Lemmas I-i and 1-2 presented in Appendix I. For conven-

ience, a few terms and symbols defined in ChapterTVare restated.

Definition 1

An observation is said to be identified if it can be associated

with the set of random vectors which yielded it; that is, associated

with 0 or O . Thus, a set of observations is identified if each obser-

vation within the set is identified.

Definition 2

Information on a set of observations is said to be symmetric with

respect to a block (or union of blocks) if the information is unaffected

by interchanging the roles (relabeling the identities) of the random

vectors yielding the observations falling within the block(s). For

example, if Vl,V 2 ,...,Vk denotes the set of random vectors yielding ob-

servations falling within the block B, then the information, I, defined

on some set of observations which may or may not contain those in B, is

symmetric on B if for any reordering (V;V,. ... ,VY) of (VI,V 2 ,...,Vk)
k

1 is unchanged.

Definition 3

The symbols o o., and o will denote the observations on the

random vectors in 0, 0m, and 0 respectively. Likewise 0. will denote

I . .... . I .. . .... .. . . ... i . . ...... n , = , = ,1
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the set of random vectors yielding the set of observations o. which fall
k3

within block B . at the k stage of the process B*.J

Definition 4

The symbols Zi,Z 2 ,...,Zn+m will denote the random vectors in the

combined set 0 Also, the symbols Zj,Zj,. Zj will represent
n+m 1 "2 k(j)

ýk j.
the random vectors in 0 and XX,'...,XI and Y•,Y,)will be

those random vectors in 0k nfO and Ok n o , respectively. All lower
. n j

case symbols x, y, and z will denote corresponding obs: rved vectors.

At the first stat• in B* all symmetric information with respect to

X is available. This includes the set of unidentified observations in

on-f. Then I1 consists of the total information available on on+m which

is synmnetric on 0nq~n

Let i 1Cfl,2,...,n} = J be selected based on I1. Then using Ii,n

determine a real-valued measurable function ý1 (Z,Il) which either has a

contiruous distribution function whenever Z c On+m and the random vectors

in 0n+m have the joint null distribution function, F, or was selected in

such a way that there are no ties 4n the set of values {•I(z,Ii)IzO n+m}.

St
Let x* E on be such that ci(-*,Ii) = cl is the is largest value

in the set of real ninnbers {•ýI(x,lI)Ix C 0 }. [Note: at this point only
n

x* and cl are available information not the entire set of values

{$i(X,II)Ix c o }]. Now, using the cutting function 4I(x,Il) = cl dividen

the sample space X into the first stage blocks denoted by the open regions

1 I 1
B1 = {x c Xlfd(x,ii) < ci} and B2  {x c XJOpi(x,Ii) > cl). There are

1 1

exactly il - 1 and n - il observatioas in on falling within B1 and B2 ,

respectively.
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To determine the nmii probability that ti observations in o will
m

fall within block BI (m-tl in BI) is equiv:ilent to determining the null

probability that exactly ti of the observed variables 01(yi.,Ii)

i = 1,2,...,m have values less than cl. To evalucite this probability

it is necessary to establish the joint null distribution of the random

variables 0 1(ZI,II), 4I(Z 2 ,1 1 ),....-,(Z n+mI).

Appeal to Lemma 1-2 (replacing the W.'s with Z.7's, set t = q = n+m,

and 0 1(Z,1I) = g(Z,F)). Then it follows that the joint cumulative dis-

tribution of (l(Z 1 ,1l), l(Z2,- 1 ),. ..... n+m'I) is symmetric. But this

impl1PS

P[ WiZz19r1) <ý WZ2,11) < . < • (Zn+m,/i)j

P[WlZ'l,l1) < ýI(Z2',II) < ... < wlZn+m,11)]

, I
for all reorderings (ZI,Z 2 ,...,Z' ) of (ZI,Z2,...Z )

By the choice of 4I(Z,Ii) all such (h-orderings are unique with

probability one, then the null probability of each (h-ordering is

1/(m+n)!.

Define
SI Q~"I) ýIz ! I

S;=([(Zr) < 1i(Z,1 ) < ... < •1(Z'n+m ,1)I(i,,..Zn+m)
is a reordering of (ZI,Z 2 ,... Zn+)}

Then the null probability of each element in S1 is l/(nr-n)!.
- 1

The null probability of observing ti observations in o within B,m

is then equivalent to the null probability of obtaining -tn element in

S1 which assigns the (ti + ii)st (h-order position to 0 and exactly tjn
of the first t, + il - 1 (h-order positions to 0 . This reduces to

in

counting the number of elements in Si which satisfy the desired event,
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since all elements in S1 are equally likely. There are (m ) ways of
ti

choosing ti random vectors in 0 and (i n wsgm - ways of selecting i1 - 1

and 1 (for the (tl + il)st position) random vectors n 0 to lie withinn

the first ti + il ýI-order positions. Within each chosen set of ti

random vectors in 0 there are ti! ways of assigning them to a fixed setm

of t, ý 1-order positions; likewise, there are (il-l)! and 1! of assign-

ing the random vectors chosen from 0 . The remaining ' 1 -order positionsn

ti + ii + 1,...,n+m must contain m-t, and n-il assignments to 0 and 0 ,m n

respectively. The total number of ways which these positions may be

dssigned is (m-ti + n-il):. Hence the total number of elements in Si

satisfying the desired evenit is

( )( l llm X n1 tl:'(il-l).' l!(m-ti + n-il)'

= tj + il-l )( m-ti + n-i I)m,n.,

tr m-ti

Then the null probability of observing exactly ti observations in o

within BI is
t! + il-l (m + n - tL - i)n,

P(t 1 ) = ti m- t
(m + n) .

tt + il-l)Mm - tl + nt- i)/(m + n)

ti m -It m

for ti = 0,1,...,m.

The joint null distribution function for tl,t2, the frequency

1 1

counts in blocks BI and B2 , respectively, is obtained by transforming

m - tI = t2

P(tlt 2 ) tt + i-ll t 2 + n - il)M(m + n)
t I t2 m

for non-negative t. i = 1,2 such that tI + t2 = in.
I
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In order to clarify the method of proof the joint null frequency

count distribution will bh derived for the second stage.

The complete information available at the beginning of the second

stage consists & . ,:1 x'. , , - .-. or - observ1.-
-1 -1

tions 01 and o2.

At the start of stage 2, one of the two first stage blocks B1

and B., is selected for division. This selection is based on the infor-

mation available at the end of the first stage. Suppose B1 were selectn,

(the proof is analogous for B2) and t) observations in o fell i.n B,
1

If B2 were to be decomposed at some later stage in the process .:*.

then 12 contains al] information symmetric separately with respect

to '1 ann B,. !'o-..'c r, i were never to be decc7pos_:d at scrne later

strge, then 12 contains at least all information =v:...tric with respert

to B1. Th.s allows -7- to contain any information v'-ich is symmetric

with respect to B1 but not on B2. For example, complete identificrtion

of o0. This is trivially true when B I is a tL isic block - all observa-
2* 2

tions within Bhave to be in o. Clearl 12 contains all information

that was available at the end of stage 1.

Next, select an integer i2 c J based on 12 and choose a real-

valued measurable function <)2 (Z,1 2 ) which either has a continuous null

distribution for Z E: 01 or is such that there are no ties in the set

of values {P2(z,I 2 )/z c 0ol.

- nind
Let x2 Onfl 01 such that , 2 ) c2 is the i 2  largest value

in the set {f 2 (y,,T,•)x F. 0 r) .1. Again, only x and c 2 are determined.

Using the cutting function ,2(x,J2) = C1, divide the block BIl into tv.•o

disjoint subs ts.
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B2 = {x C B'J4 2 (x,I 2 ) < CA

and
B2 = Nx c B 2 (x,I 2 ) > C21

2 1

and for standardizing notati6n, let B3 = B2 . Then there are exactly

i 2 - 1, il-i2-1, and n - i2 observations in 0 falling within blocks B2n 1'

B2 and B3 ,2 respectively.

Now, consider the conditional event, A,, that t, observations in

o fall within BI given cl and xI. This event is the intersection of the

following two events.

A' = {4i(ZlII) < cl, Wi(Z•,I,) < c3,.... Z < c

and
2i 2 2

A' = ({ý,I(ZIi),I) > Cl,..,@lZnJm)tl CO
2 1 2 n4m-t I-ii

1 1 2 2 } t2
where {ZI,Z 2 , ... ,Z and {Z,Z 2 ,...,Z are the random

t1+i1-l

vectors in 01 and 02, respectively. Then A1 = Aln A1.

I

For any relabeling of the identities within the set 0,:

(1) by definition I, remains unchanged,

(2) event Al is unaffected since the set of all 4, functions

in A1 is mapped onto itself, and1

(3) each 'Pz function in A2 is unchanged.

Hence the event Ai, and the null probability of Al, is unaffected over

all such relabelings in 0

The objective at this point is to establish the conditional null
I

probability of any 4 2 -ordering on 0, given event Al has occurred. Since

the null probability of A 1 is not changed ur Jer any relabeling in 0,1
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then it is not changed over all ,•-vrd.•rings on 0 Therefore. it

suffices to determine the joint null probab [i itv

1 1

P1 = PIZ _ < Z1, Z2 < Z2,-..,Z < z
tl~i-l -t1+11-1l

for any set of real-component vectors zl,'22,...,z Now, p1 is

actually a joint probability of functions involvinvý all random vector-

in 0 since I,, hence ý 1 (Z,I 1 ) is defined on 0)

If p, can be shown to be symmetric in Zl,Z2,... ,Zt +il-l then the

joint conditional null probability

P[Z < z!, z < Z2,. t+i 1-1 -< z

would be a symmetric function in Z1,Z2,...,z t+i._j. Then by applying

Lemma 1-2 it can be shown that all ý,2 -orderings on 01 given A, are

equally-likely. Then the determination of the frequency count distribution

within one of the two new blocks formed at the second stage given the

event A) can be made.

First, to show that p, is indeed symmetric in Z1,Z2,...,Ztl+il_1

an application of Lemma I-1 will be made. Using the notation established

in Lemma I-I (also replacing the W.'s with Z 's and setting q = n+m) de-

fine the following K n + m + ti +il - 2 functions:

Z i=l,2,...,tl+ il- 1

g i. ( Z l , Z 2 , . . ., Z n ) = 1 ( 7 i ~ 7~ + , 1 ~ ~ 1, . 2 + i -

2
ý (Z i_2t ,_2i,+2'11) i=2t •+2i,-], .... n4m+t l+i l-2

Appealing directly to Lemma I-1, it follows pi is symmetric in ZI,Z2,...,

z tl+i_1. Thus the joint conditional null distribution



P[ZI_< Z, Z2"

/

is symmetiic in zIz2,...,t _

Now apply Lemma 1-2 (replacinor tt. '.'s ,iti he conditional Z .'si ~1
given Al, set t = q = tl + ii - ,, :-nc .::Ci,."2 ) +'..'). This proves

that the joint conditional null di!tribution of 1,2), ý2(72,r2 12

h2 (z r 2 ) given A, is a svmi•ictric function. Therefore, all possible

ý2-orderings on 01 given A1 are unique .hy choice • ,2) and equally-

likely.

Let S 2 denote the set of all ,-irdt.inc' on I given A1 . Then each

element in S 2 has a conditional nu I pio')ib• itv of I/(tI+ i 1 - 1) of

occurring. Then the conditional n,:1i ,iLiv tCi t exactly -. 1 obser-

vations on 0 fall within B giJ,'rvn t ltj t o!. r'zm: >• on 9 fell withinm in-

B1 is exactly the same as the null ,roh boIlity of ,vocrying an element

in S2 which assigns the (si + i,) -Ordor pooi 'n to 0 and) exctly
n

s, of thp first s1 + i 2 - I .o-orc.r peF:it ions t,, ,' . By the same type

argument used at the first sta.re, hibs prohabilit 1,ecoMOS.

P (s 1 1t I) = (s l+ i2- 1) ( t M-,+ - - :) / t 1•+ 1 1- 1

S1 12.l-0l]l

for s, = 0,1,...,t,

Multiplying by P(t1), derivcI in ,tn!l,. I, 01(d .i, ' iftiting ti-si = S7

and m - t1 = S3, then the joint null di,-trihut ion of , s3, the

respective block frequency count.Lq on i n

P(s 1 ,s 2 ,s 3 ) = (s1+- -)(.,i- -)( 4• I n)

for non-negative integers ,. , I." 1+,,3 :u~i tI Fl + 42 + S3 I= .
I
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Similarly, if block B had been chosen for division, the 12 would
I

contain at least all information symmetric withi ri-pect to B . Then for

i2 C I. and 0 2 (Z,1 2 ) tbe aew blocks formed woulli be a division of BI
n-1

2 2 f 2
into B2 and B3 where th, first stage block B1 woil! be designated as B1.

There are il-1, i 2 -1, and n-i2 observations in o nalling within the

respective blocks. Then If s1,s2,s3 denote the respective block fre-

quency count on Om, their joint null distribution would become

P(SI,S 2 ,S 3 ) = (Sl+ilIl) (s2+i2-I) (s3+n-i2)/( m+n)
S] S2 S3 m

for all non-negative integers si, i = 1,2,3 such ihat sl + S2 + S3 = m.

The information now available for starting the third stage in B*
-2 -2

consists of 12, c2, x2, and the unidentified observation sets -2 02

-2
and o3 if all blocks are to be further divided at Izt-er stages. Other-

wise, if the decision were made at stage 2 to nevLr divide any one (or

2 2 2
two) of the blocks BI, B2 , 113 at any later stage, then the observations

set(s) associated with the block(s) selected can be identified com-

pletely. This information is symmetric on the rer:aining blocks and

would then be made available at the start of stagc 3. It should be not •d

also, that the information 12 contains all inforr.ia ihin available at the

start of stage 2, namely: I1, cl, x* and the unidentified observation

-' -1
sets o0 and 02.

th
In the r stage (r < n) in the process P* ]et the blocks

r

be formed and el, i = 1,2,...,r+l denote the numbh r of observations in

0 lying within the respective blocks. Assert that the joint null dis-
n
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tribution of mlm2,...)M r+1, the respective block frequency counts on

0 is
m r+l

P(mi,mz ,...,mr 1 ) P il ( i + e'))/( m+n"

for all non-negative integers mi., i = 1,2,...,r+l such that m, + m2 +...

+m-r+ = m. This assertion is. verified by mathematical inductiun.

The fact that this assertion holds for r = 1,2 has been shown above.

Now, assume it holds true for the (r-l)st stage and all previous stages.

LeL r- Br-1 ,Br-1 denote the blocks formed at the Ur-i)st stage and
B B2  r..BS

r-l ~ ,2 .rh is the number of observations in on contained in block Bi r , ,..l,

Then if sl,s2,.. ,sr denote the respective block frequency counts on 0,

by assumption, the joint null distribution of SI,s2,...,Sr is

r

P(s1,s2,....,sr r il s + hi)}/(mnm )

for all non-negative s. , i = 1,2,...,r such that S1 + S2 +...+S -M.1 r

th
The information available at the start of the r stage consists

of Il c , x~r ,and the two new unidentified observation sets ob-

tained on the two new blocks formed at the (r-i)st stage. Now, Ir-1

contains all information that was available at all previous stages. In

partictilar, Ir-l Ir-2 ,, ,I2DIl. Thus, if any blocks formed at iome

previous stage were chosen to never be divided in B* then the correspond-

ing identif'-d observation sets i,% information contained in I r-l Further-

more, the information on the identified observation sets was symmetric

with respect to all block!; which were divided at later stages, and hence,

symmetric with respect to all blocks available for division at the (r-l)st

th
and r s tage.



-77-

Now suppose block Br-i (for some j = 1,2,...,r) is available and]
th

selected for division at the r stage.

Then determine I -containing all information which is symmetricr

with respect to Br-I and symmetric separately with respect to all blocks
i

r-1 r-1 r-1in the set {B1  ,B 2  ,... ,B r that are intended to be decomposed atr

some later stage.

Using I , select ir c Jh. and a real-valued measurable function

3 Z or-1
ýr(ZIr) either having a continuous null distribution for Z c or is

-r-

such that there are no ties within the set of values {•(Z,I) 0 -r-l

Let x°' n 0r- 1 be such that •r(X*,Ir) = c is the i th largest

)xC:-r-i
value in the set fr(x, I)IX c o. 0 . The cutting function r (X,I r) er r r

divides the block Br-l into
J

Br= tx C B r'1 (x,I) < c}

and Br = {x n r- }xIB+i BIA ]rXr) > cr
j~ x r r r

For consistency in notation, the remaining blocks defined at the

(r-1)st stage are re]abeled:

r -I i r-l 1,2,...,J-I
1 1

and
Br = r-I
B r B r-i i =j + 2,...,r + 1

1 i-l

The event Ar_ that the respective block frequency counts at the (r-l)st

stage was S1,S2,...,sr is determined by considering the following facts.

* r-l
In the construction process P , each block B. i = 1,2,...,r was

1

originally established either at the (r-l)st stage or some earlier stage

by dividing some block previously established, and each of those blocks

were formed by dividing some block established yet earlier, etc. For
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each block B. consider only those stages in the process B* for which
i

r-l
one of the two blocks newly formed at the stage contains the block B-I

Then each block B r can be associated with a unique subset of integers
-

in {l,2,...,r-l} such that each integer within the subset represents a

stage level in which two new blocks were defined (from the set of blocks

r-1
established at previous levels), one of which contains block B.-. If1

j, were in the subset associated with block B. then either1

B r-C {x c X1j4' (xI ) < c.
1 :1 ii Ji 3

or Br-I C {x C Xl• l (X,I, ) > c. "

i ii 31 Ji

Thus the subset of integers associated with B. can be partitioned into1

two unique subsets {al(i),a2(i),...,a UMi(i)} and {b 1 (i),b 2(i),.,b V()(

such that the block B r-l is defined byi

1 •I 1
r-l --I)< ,4 (x,)-T
S alau M(i)(', 1 i)(i) a2 M i a2(i)'>'"

au~'m(xT ) Cau(i), b(i) (xIi) >cbl(i)"'

'u(i)

b (i) (x i ) > c} (i)M for i = 1,2,...,r.

v(i) i v(i) i

As before define r+ = {7. i Zi I as the set of random vectors
r 1 1

yielding observation. in block B. , i 1,2,...,r. Then consider the
1

events defined at the (r-1)st stage

-oi ' aIi
D (( I)) ... a.(i)(Z u/i)

Dik a(i) (k. i a(i)' a u(i) M

and
+ = {k e, i (Z ' i) > (i) l .... 9%v i) i)(Z k Id > CbV (i)

for k 1,2 ... ,s. + h and i = 1,2,. .. ,r.

11
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Then the event of obtaining s. observations i,, o in i-i is equivalent1 m

0 the event that D and D, hold simultaneously fur k = 1,2,...,
ik ik

s. + h.. This event can be expressed as
1 1

s.+h.
r-l 1 I +

A. n [D nfD
i k=kl i,k i,k

The event of obtaining sl,s2,.. .,sr observation in o in the blocks
r-l r-I r-l

BI , B2 . , respectively, is

-iiAr-1 J1i i "

Now, consider the random vectors (Zi s+ Or-1 which

yield observations 4n B.-. The information sets II2,...,Ir_1 are de-rde-

r-l r-1fined to be symmetric on B. , otherwise B would not be available forJ3 3
th Ar-i1

cutting at the r stage. Then the ý-functions within the events AI
1

for i = 1,2,...,r and i # j are unchanged over auy relabeling within

r-1 r-l
0. , thus the events are unchanged. The event A is mapped onto itself1 3
by relabeling within 0 Hence, Ar- and the probability of Ar_1 is

r-1
unaffected by any such relabeling within 0. . Then the joint null

I

probability

PL < Z -, < z ',...z hj < +h ' AI - 2 - s.i+h.- s +h r-

is syrr,-Lric in the vectors ZlZ2,..,Z s +hj by Lemma I-1. Therefore,

the joint ,fonditional null cumulative distribution of Z•, , 2 sJ+hJ

given Ar-] is symmetric in the vectors ZI,Z2,...,Zs.+h.. Then by apply-

ing Iem•a 1-2 the joint null distribution of r (Zi),J r 2'r,

I, (s.+h.') given ArI is found to be symmetric. It follows that all

po!";ible ' -ord(erings on 0 are equally-likely. Using the same typer
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argumkent emp loyd bef(r,, , !f.,t Vdi ti on, I null ,r ,):1I I it. y that r,

observations in o fall x~ h~ n hlcwe P. givci'e Lth 11lock frequency counts

Sis2,. ,s determined at r-he (r-1)Yb
M -I j. , _Mý,-. 1 ý,.ct', +

P(mjisi,s> ... ,sr) = i \ " ( +

for m = 0,1,..... j,

th
,bserve that (in terms of the notation defined for the r stage) the

following equalities hold:

e. = h. and I.I s. for i =

e. = h and m. S for i = j+l.. .,r+l,1 i-i i = i-I

Ii + Ij+ = s., ir-1 = e., and . i rj + r , r j+l

Multiplying tht above conditional null probabil ity hy the joint probability

P(sl,s 2 ,..*,sr) and using the above equalities, the joint null distribu-

tion o0 , .... mi becomes

r+l m. +e.
P(m 1 ,m:,... ,mr ) = { ji ( Ira 1)}/(m + nl)

7i f l

for all non-negative mi., i 1,2,...,r+1 such that 1l1 + M2 +...+mr+l = M.
1 +

This completes the proof of the assertion.

Now by the definition given in Chlapter IV, the tbasic bloc are

the n + 1 statistically equivalent blocks obtained if the process P*
thr

could be continued throuigh the n stage. In thi5 cas', each B.r would

be further divi ded unt iI all the obse rvations in lying in were

r
consumed. Thus, if blo(k B. containred e . ohsecrvatins In o then there

I -I - I I - I . . . . . im ,ini . , -,l
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r
would eventually be e. + 1 basic blocks formed within B.. Substituting

k. = ei + 1 for i = 1,2,...,r+l in the above probability expression

gives the desired results.
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