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ABSTRACT

An experimental investigation was made of the modulation of an
acoustic staiing-wave field due to trapped, cavitation-induced hubbles.
Maximm acoustic pressures generated are on the order of 0.1 bar. It
is verified that bubbles driven below resonance are trapped just abwwvz
pressure artinodes of the standing-wave field; bubbles driven above reso-
nance, just above nodes. Maximum mcdulation percentages of the standing-
wave field by bubble scattering are found to be in the neighborhood of up
to 12s8. Modulaticn noise spectrum levels are recorded ard are found to
decrease from 2.5 Hz to 100 Hz with slopes ranging from -3.2 to -5.4 @B/
octave. less than 1% of the modulaticn noise energy lies in the region

above 100 Hz.
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I. INTRODUCTION

This paper concerns the effects of cavitation-induced bubbles in ampli-
tude modulating a medium intensity (fram about 0.02 bar (mns) to about 0.15
bar (mms)) standing wave field. The bubbles, after generation, are trapped
at the nodes or anti-nodes of an acoustic standing wave field, and at suffi-
ciently high driving levels dance arcund. Because all of the bubbles gene-
rated are grouped fairly clesely in size around that value which would be

- resonant -at the exciting field frequency, they act as good sound scatterers.

The constant generation, growth in size, dancmgabmxtardeventualescape
of the trapped bubbles causes the scattered acoustic energy to modulate
randomly the exciting carrier signal. The purpose of this research was to
measure the frequency spectra for this randcm modulation signal.

Preliminary to Gevelcment of these spectra, howewver, it was necessary
to investigate the nature of the standing wave field, which led directly
into another interesting and as yet little explored area, namely, the nature
of individsal bukble moticn or dynamics. It was felt that a description
(largely qualitative due to eguipment aud time limitations) of individual
and aggregate bubble behavior would be useful, both as an area for study in
itself and as providing a possible clue to the nature of the cbserved sound
spectra.

Thus, the investigation resolved itseif into three broad areas, navely,
the nature of the standing wave field, the develcopwent of the scattersd
noise modulation spectra, and the nature ard characteristics of bubble motion

within the field.
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Mtlnighquiteabitofr&searchhadheencuﬂ:ctedmcavitatim
hubbles and cavitation noise, the above areas have been relatively
unexplc ed. In sciee early observations, Boyle (Ref. 1) and Hopwood
(Ref. 2) demonstrated that bubbles tend to collect at the pressure nodes
of ¢ vertical standing wave pattern. Somewhat later, Blake (Ref. 3)
showed that bubbles would also ccllect at pressure anti-nodal positicns,
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provided that the resonance freuaency of the bubble is greater than that
of the applied sound field. Elie: (Ref. 4) proviced a theoretical
explanation for the trapping prcess @nd calculated the minimam pressure
amplitude required to trap a bukole. Strasberg and Benjamin {Ref. 5)
observed that if the applied ficld were strong encugh, the trapped

hubbles would dance about erratizally.
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II. THEORY

This section contains a theoretical discussion of the standing wave-
field and of certain aspects of bubble dynamics. A rigorous treatment
of the exceedingly camplex modal structure within the tank and of the
minute erratic motions of the visible bubbles under the influence of the

FRLIOU A A e Ao 8 LR s 1 2 g7

acoustic field is beyond the scooe of this paper. Therefore, the following

assunptions are made:

1) The presence of pressure release boundaries at all surfaces. This
is true at the water surface, but only approximately so at the sides and
botton of the tank, which are of thin gless.

2) Perfect perpendicularity of the tank sides, and that the water
surface is parallel to the tank bottam, neither of which is exactly true.
3) The ron-existence of any discrete lines in the spectrum of the

‘noise modulation signai. In fact, rone were detected; hovever, weak

_ - frequency camponents may have been present.
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= A. THE STANDDNG WAVE FIELD

The fellowing discussion follows that in Morse (Ref. 6). Ve oconsider

a rectangular tank measuring 60 am by 35 an in length and width respec-

tively, axd filled to a depth of 17 cm with water. A rectangular coordinate

system is established as in Figure 1 below.
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The wave equation in rectangular coordinates is

3%p + 3%p + 32?": 3% 1)

a2 a2 322 2 at?

where X%, ¥y, and z are spatial coordinates, end p is acoustic pressure.
Solutions to Equation (1) are of the fom

P=psinluz+ o, )sin{o, L4g )sn'(~ + ¢ )exp(-znifr) (2)

~}
wheref=-—[m2+wyz+u2] and ¢ ¢yand¢ are determined by the
boundary conditions. If we assuwe that all boundaries are pressure
release, the 4's are all zero and we have
= 3 X ysinfe i 2y =0=i £+ 3

P= pasm(”xé' )sm(..:y% )s.n(uzc)..)@( 27ift) (3)

where w, = -n&n, n& 1,2,3¢.4. Srm.larly. we have u y =§

=E = where m, = 1,2,3.... Them, 18, m, are related by
z2 My Tyer 1y

* f-——r?"—) +gli) +(—)1 @)

Each of these solutions describes a free vabration mode of the enclosure.
Thus the wavelength measurcd alsng any axis must at all tines ne greater

than %, as can he demonstrated by substituting values for m , mY and B,
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and calculating the equivalent A N, and )‘z' The Jowest frequency mode
allowed in the tar} zcirresponds to t;*e (111) mede, vhere the triplet of
: A . A mwbers represzant . my mz) respectively. 2Applying (4), we have the
result that this mode corresponds to a frequency of 4.18 KHz. Below
this frecuency there can exist no standing wave structure in the tank. °

3 b discrate frequencies abowe this cutcff, resonant medes can exist,

g .
A e eguen . ies being detexmived by the triplet (mx my mz). Thus the

K- fii i serral Jre; omcies above the (i) modz, in asoanding order, are

thas:: corre: v -wig to the tripiets (211}, (311), (121), (221), (321),

R

{131), (411), etc.

A. . gher fregquancies, the number of modes that can exist within a
give_h frecue- 2y band bectmes greater and greater. If we treat the W

Wyr 0y as carponents of a three dimensitnal veccor in fremuency space it
can be shown that the mmber of rodes AN contained within a frequency band

dr is given hy

AR A A vy
e

. dnf2V (5)
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sc that for cur particular tank of water bzingy ensonified with a 30 Kz
Thus,
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sinusoidal signal, we should have &N = 12 for a 6f of 100 H=.
within a 0.3% frequency spread arouné 30 Ki: ve should have about 12
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‘ possible modes of vibration. :
' The dnvmg transducer forces vibrations in the tank, with the result q
: ' that a1 modes of vibration can be excited, buat those nodes lying closest K
i . to the exciting frequency are more strongly excited then those further 3
; . from it. The relative amount of energy present in any node depends upon ;
the Q of the system, whete Q is defired by E
e=g ()
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vhere £ is the exciting frequency and
and f2 are the lower and upper frequencies, respectively, at which E

5
4 system such as our

thin acoustic pressure awplitude is down by 3 dB.
tank, with a relatively high Q {(Q = 200-500) , will have most of the
vibrational energy concentrated in only a few of the allowed modes
grouped around the exciting frequency. The lower the Q of the system,
g ‘ on the other hand, the more evenly will the energy be distributed over
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a larger number of allowed modes.

B. BUBELE DYNAMICS
A bubble located in a standing wave acoustic field will experience

a net force from that field. 'This force is due to spatial pressure vari-
ations within the field. If bubble pulsation and acoustic pressure are
out of phase, that is, if the bukble graws smaller as accustic pressure

£ ’ increases, then the bubble will tend to be driven toward a pressure
: antinode. \ If the reverse condition holds, with bubble size and acoustic
pressure being in phase, the bubble will tend to be driven toward a
pressure node. Theése phenamena may be utilized to trap bukbles at

relatively staticnary positions in an acoustic si:anding wave field. It
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can be shown (Ref. 7) that the minimm acoustic prassure amplitude at an
antinode necessary to trap a bubble in a standing wave field in the 2z
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direction is given by
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where £2 = pwiRe? and is equal to 1.0 at resonance,
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Rc is the equilibrium radius of the huble,
d is a dampiny temm dependent on the contributions dae to heat
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n is a nurber between 1.0 and 1.4, depending on whether the bhubble
oscillation process is essentially isothermal or adiabatic,
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and p . refers to the pressure ampiitude (Zero-to-Peak) at a pressure

h
i

antinode of the wave field.
In the above result, we have assumed that the wavelength in the z direction

has its smallest possible value, -‘-f:- » Then (7) gives us the minirum pres-

sure at an antincde at which a bubble will be trapped in the acoustic field
against the force of buoyancy. Figures 2 and 3 give minimum trapping pres~
sure vs bukble sizec for same typical frequencies. The significance of these

figures is to fix a rough minimun value of the pressure amplitudes at the
anti-modes in the system during the experiment. At a given frejuency, the
acoustic pressure necessary to trap a bubble has minimum values just above
and below rescuiance, and increases as we move away from rescnance in either
direction. B2Bubbles driven below rescnance will be trapped, relative to the

z axis, just above pressure maxima, while bubbles driven above rescnance

will be trapped just above pressure nodss.

Regarding the trapping process, it is interesting to note that if a pure
modal state or covbination of modal states could exist within the tank, there

AR

could be ne trapping at freguencies higher than resonance, since modal posi-

A L

tions within the tank would be vertical and horizental intersecting planes,

2

ity

and bubbles, once driven to a vertical plans, would experience no further
Hovever, due probably to the

s
hiY

Kereremin

vertical acoustic force, and would escape.
absorbtion of acoustic energy at the walls and various perturbation effects,

such as the presence of the transducers (the driving transducer measured about

SLG I

3 am in diameter and 4 am in length), aid non-parallelness of the boundaries,

the theoretically predicted vertical nodal planes were not detected in the
Thus, bubbles could be

soend £ield, about which more will be said later.
trapped above rescnance.
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ITYI. EXPERIMENTAL PROCEDURE

The arrangament of equipment was campletely straightforward and is
illustrated in Figure 4. The sine wave fram the signal generator was
amwplified and used to drive a PZT-4 transducer. A varicble inductor wes
connected in series to kalance the capacitance of the transducer and
provids a mora effective irpedance match with that of the amplifier.

The acoustic signzl was received on a small 1/8" diameter cylindrical
probe hydrogghone, given 40 dB of awplification, passed through a 60 Hz
filter, then either viewed directly or passed throwgh a rectifier and
detector and fed to a 1/3-ociave frequency analyzer. Late in the experi-
ment it was discovered that a significant amount of the carrier was being
leaked through the detector, so an additional low-pass filter, a Kronh-Heit
active type, was installed after the detector.

The transducers were installed in a standard 15 gallon fishtank,
measuting;ﬁo x 35 x 30 an in length, width, and height respectively, and
filled to a depth of 17 cm with water. The driver was clamped permanently
in ane oorner ¢! the tank and not t;uched through the experiment, viile
the receiving transducer was mounted on a sliding carriage that permitted

it to cover most of the tank, at least horizontally, with facility.

A. MEASUREMENT OF NCISE

The receiving hydrcphone was calibrated at the start of the experiment
by direct corparison with a calibrated laboratory standard. All pressure
amplitudes calculated during the course of the experiment were figured
directly from the results of this calibration. At the close of the experi-

ment, the receiving hydroghone was recalibrated. The results of the two
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calibrations were within 20t. 7Tn guneral, the pressure measurements con-
tain the largest percentage errors of any of the guantities calculated
during the expariment. ‘Their accuracy (pressure amplitude measurerents)
is estimated at * 20%.

A typical unfiltered signal, taken directly from the hydrophone (after
40 @B of amplification) is illustrated in Figure 5. Our main interest
lay not in the carrier but rather in the irreqular amplitude modulation
of the carvier.

Aftexr the ramovai of any 60 Hz oaréonent present, the signal was
passed through a detector, basically a low-pass filter and rectifier, with
a -3 dB point of about 1200 Hz. What remains is the amplitude modulation
signal as pictured in Figure 6.

Very little could be conjectured about the frequency spectom of the
amplitude modulation signal before it was analyzed, so it was fed into a
GR 119 wave analyzer, an instxument with a practical low frequency cutoff
of about 20 Hz. It was soon apparent that by far the oreatest percentage
of the energy in the noise signal iy kelow that frequency. Therefore,
the GR 119 was replaced with a GR 1564 octave band analyzer, vhich has a

low-frequency cutoff of 2.5 Hz, and the noise measurements vere made on
that. As opposed to the GR 119, which had a constant width gate (3,10 or
50 Hz), the GR 1564 was capable of operating in a 1/10 or 1/3 octave mode;
the latter moda was used in the experiment. Howover, the GR 119 was used
during several runs (using the 3 Hz gate) to search for discrete camponents
in the noise signal.
The 1/3 octave band level readings cbtained were corrected to spectrum

level using the conversion:

SPICTRUM LEVEL (dB) = BAND LEVEL {dB) - 10 leog af
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CARPIER SIGNAL

CARRIER FREQ = 29.751 Kz
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where Af is he frequency spread of the band in questiom. Spectrm level
is then the average amount of energy per hertz Landwidth that one measures
in any band. The GR handbook has a table of Af values for the 1/3 octave

band used in the experiment.

B. OBSERVATION OF BUBBLE MOTION

The original experiment was not set up for the puwrpose of investigating

hubble dynamics within the tank, and the apparatus and general setup did
‘not iend themselves to the taking of precise, quantitative data in this area.
However, the bubbie dynamics proved so interesting in itself that it was
decided to include a section describing, qualitatively, bubble effects, and
sare rough calculations of hukble size as related to trapping pressures.

The hubble generation and trapping process was observed through the tank,
side illuninated against a black backcloth. This system provided excellent
oontrast and good viewing.

A hubble's size was detexmined from its velocity of ascent through the
water by using Stokes' Law. The assumption was made that the bubbles'
shapes remained spherical as they rose, and no attempt was made to apply
enmpirical corrections to Stokes' law calculations, since these corrections
were small conpared to the error in determining the bubble's positien and
its time of rise. The procedure used was to let the bubble field stabilize
for a few minutes, then to select a laubble, and by holding a ruler extemally

against the tank, determine its vertical position. Parallax errors vere
reduced to as small a value as possible by eyrball. The sound field was
then rapidly shut off; a stopwatch being stirted at the same time. The
hubble's time of ascent to the surface was then detemined, the velocity

thereby calcalated, and Stokes' Law, in the following form, employed to find
hakble radius:
17
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where v, -the kinematic viscosity, = 0.0093 poise, appropriate for 23°C
g = 980 an/sec
pu = bubble velocity
R = hubble radius in am

A plot of R vs ¢ is given in Figure 7 below.

125 STOKES' 1A PREDICTION Of
BUBBLE SIZE VS VELOCITY
KINEMATIC VISQOSITY = 0.0003 POISE
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C. CALCULATION OF Q
Typical values for Q were calculated by tuning the frequency generator
to get a relative peak in the carrier signal, then fine tuning it to locate
. the -3 dB points. This procedure is valid only as leng as a single mode is

present over the range of frequencies in guestion; that is, from the acwer
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3 dB point to the higher 3 dB puunt. Typical values for this frequency
spread ranged fraa 50 iz to 250 Hz. Refer vo Table 1. Our previous cal-
culations, however, indicat~ that at 30 ¥z, we should expect about 12
vibrational modes per 100 Hz bandspread. In actuality, although some
modes were extremcly close together, too close to permmit a calculation Q,
there were numerous modes, which, to the eye, appeared to be the only
significant mode present over a bandspread of several hundred hertz, and
thus pemitted ~alculating values for Q. It is not understood vhy so
many fo the thecretically possible model configurations are absent, or at
least, unmeasurable.

D. MEASUREMENT OF MODULATION PERCENTAGE

Modulation percentage, as defined here, is the ratio of the ms fil-
tered modulation signal ¢o the mms modulated carrier. The ms filtered
modulation voltage was measured on the GR-1564 octave band analyzer, using
the all-pass band. During measurerents of modulation percentage, the
hydiophone was located at a position :m the sound field where the carrier

was a relative maximumm.

E. TiEASUREFENT OF PRESSURE AMPLITUDE

The receiving hydrophone was calibrated by carparison with a laboratory
standard. The receiving signal, regardless of further proces 1, was
given 40 dB of amwplification. The actual receiving hydrophone sensitivity
was 0.0 volt (xrms) = 0.016 bar (mns). However, all scales on the grarhs
included herein represent actual meter readings, that is, with the addition
;>f 40 dB amplification. Therefore, we have that 1.0 volt (mws) = 0.0i6

bar (oms).
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A. AOOUSTIC WAVE FIELD
- . The sound field, in spatial configuraticn, when prebed along a line
- parallel to one of the boundaries at frequencies above the low-frecuency
cutoff, demonstrated the expected sinusoidal pattern. At relatively low
frequencies the mode shape came ciose to agreeing with: the theoretical

description of a pure mode. At higher frequencies however, the mode shape

appeared to be the sum of several modes of oscillation. Typical field j

pattems are shown in Figure 8 and 9. These patterns were made at low

i, o34

driving levels so that the effect of modulation noise was minimal. The

o el

expected sinusoidal shape is evident, although the differing heights of
the various peaks indicate the presence of more than one mode in the tank. v

Note also that at no node does the acoustic pressure awplitude go to zero,

indicating that the walls of the tank are not true non-absorptive pressure

. ket i 2 s R

release boundaries.
An atterpt was made to construct the (11l1) mode within the tank,
without success. The lowest obtainable modal configuration was the (311) E

* - mode, at a measured 5.3 Hiz. _
’ It is difficult to give representative values of Q. As the frequency 3
generator was swept over a range of frequencies from, say, 10KHz through
40 Kz, with the receiving hydrcphone placed at an arbitrary spot in the

tank, there were cbserved hundreds of stronger and weaker resonances. Many

ERAT

of these resonances were 50 close to each other that the separation between

“‘WF;‘“M*‘%“‘/’%P‘“"‘M‘%M’*"*‘ RN

b 144 e

them vas less than the frequency spread necessary to measure the -3 dB

points. Ssveral rescnances at various frequencies are tabulated in
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Table 1 kelow. The three values at each fiequency correspond to
different positicns in the tank. For a given mode, then, the values for

Q do not differ by more than about 20%.

TABLE 1:

Representative Values of Q

Frecquency (KHz)
25.711

27.050

30.207

31.271

32.543

of

54
69
60

120
105
136

163
170
191

130
132
144

102
115
121

Q.

474
372
429

226
258
198

197
178
158

240
254
218

319
282
269

In the theoretical calculations it was dutermined that there should

exisl about 12 possibie modes within a 100 Hz band centeved at 30 Kiz.
fact, only two or three are cbservable.

Changing the positions of the

sending or receiving hydrophones did not increase the muvber of cbserved

modes at a given frequency.

B. MODULATION SPECTRLY

Figure 6 shows a typical output signal, taken directly from the

receiving hydrophone, and given 40 dB amplification. Here vin = 70 volts

{xms) which corresponds to the maximum driving levels used during the

expacinent. Cavitation was severe and the bubble field was stabilized.
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The low frequency modulation is apparent. Figure 10 shows a representa-
tive unfiltered carrier frequency spectrim, with 40 B of amplification.
Here we are also driving at a high level, and the modulation percentage
is about 10%. The lower hurp in Figure 10 is a measure of the 60 Hz
noise interference in the cutput signal frum the amplifier, vhile the
upper hamp is the carrier signal and its noise modulation products on
either side.

Measurements of the modulation percentage indicate that at the maxi-
rnm driving levels used, the modulation pevcentage was on the order of
8-123. The filtered modulation signal corresponding to the uniiltered
signal in m;mre 6 is shown in Figure 7. The vartical sensitivity of
the CRO has been increased to better Jelineate the signal. Reference to
the horizontal sweep time rate indicated that a large amount of the
signal's energy iies at very low frequencies (less than 10 Hz).

’Iypicai noise modulaticn spectra are shown in f‘igures 11, 12, ard 13.
As can be seen, the spectrum level in every case diminishes in magnitude
from the lower o the higher frequencies. In no cage did ths amount of
energy in the modulaticn spectrum ahove 80 Hz amount to as much as 1% of
the total energy in the rectified signal. One apparent discrepancy evi-
dent in Figures 11, 12, a.d 13 is the fact that the total energy of any
signal measured was 2-3 dB greater than the sum of the individual bands-
added together. The only explanation offered is that this could be an
idiosyncrasy of the GR 1564 or miglit be a consistent error in data
recording, namely, a conciant lower-than-actual reading of the dB meter.
This could amount to a considerable crror in the summation of 17 bands,

which was the number ased. During measurvcient of these moduiation spéctra,
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the maximun carrier mms pressure amplitudes were typically in the order
of up to 0.04 bars. The percentage modulation was typically fram 4% to
12% ot positions of maximum carrier amplitude.

C. BUBBLE DYNAMICS

As mentioned earlier, bubble trapping ccocurs at pesitions just above
either vertical nodes or antinodes, depending on whether the bubble reso-
nance frequency is lower or higher than the accustic exciting field fre-
quency. The lowest frequancy at which travpirg occured was 5.8 KHz. At
this frequency, the vertical pressure anplitude prorile consisted of nodes 7
at the surface and bottom of the tank and an antinude in the midile. Thus,
only bubbles beiow resonance were trapped {just above an aniinode). At
sufficiently hich driving levels, the hukbles bsyan to grow (by rectified
diffusion) and finally escaped to the surface. The time fram trapping to
final escape, at this frecuency, was on the order of 15-30 secands at the
highest driving levels used.

At the driving frequencies used for nwost of the study, that is, above
aboit 25 Kz, the vertical pressure pattern was no longer a single half-
wave, but several half-waves, thus permitting nodal as well as anti-nodal
trapping. In fact, the hicher the driving frequency, the shorter the time
time period a giver' hukble would stay small encesh to be trapped in an
anti-noczl positicix. ;t frequencies above 30 KHz, the time period between
observed bubble generation (Gue to cavitaticn) ard the juwp fram an anti-
radal to a nodal trapped position was not more than several tenths of a
second and could not be guantitatively measured with the availsble equiprent.
Buktbles trar: = above their rescnance freguency (that is, at nodal positions),
were generally stable, and depending on tie driving voltage anplitude, would
ruintain their positions for several minutes at a time.
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The number of trapped bubbles in the tank at a yiven idiv: was Qopei-
dent upon the driving frequency, driving voltage ampiitude, and the length

‘ oft.ing:thefieldhadbeenactivateé. At an estimate, the nmumber varied
between 15 and 50 lubbles. Generally, there seemed to be no preferred

nodal or antinodal positions, and the trapping process occured fairly uni- q
- formly-throughout the tank. Quantitatively, the all-pass noise modulata.a
b signal was measured for severzl different frequencies and driving lewvels,

) as a function of receiving probe position. Under no carbination of driving _i
| frequency and anplitude did the variation within the tank exceed 2 dB.
Given a trapped bubble at a fixed freguency, the increase in its motion E
~ at higher driving levels was quite marked. At lover levels, the trapped
bubbles vere almost staticnary, merely undergoing small excursions sbout an
equilibrium position. As the driving voltage was increased, the mction
becare more violent, £ellowing an ellipsaidal path. At the highest driving
2 levels cbtainable, the hubble motion amounted to excursions of as much as
a centimeter (estimated by eye). At these levels, the acoustic pressure

amplitude amounted to on the order of 0.15 bar (oms).

E D. MEASURED BUBELE SIZES
A Bubble sizes calculated throoth application of Stches® Law revealed that
.ﬁxgsnallestmeasured. trapped kubble had a radius of SSmi:crons, in an -
exciting field of 30.744 Xiz. Rescrance size at this frequency was 104

microns. Thus, at a given frequency, there was a large variation in ukble

size on each side of rcsonance.
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V. OGRCZLSIONS

1. Bubbles trapped in a stationary acoustic field cause scattering of
accustic energy and can anmplitude modulate the ensonifying acoustic field.
2. Bubbles can be trapped below and above resonance, near arxr.x-maes

and nodes of the standing wave field, respestively.

3, Carrier signal pressure amplitudes of about 0.07 bar (rms) produced
severe bubble motion.

4. At pressure amplitudes ranging up to about .04 bar (xms) , the
amplitude modulation percentage was about 8-123 when bubbles were present.
S. Forﬂ:efrequenciesaﬁpmsxmes&served, the modulation spectra
lgvelsduetothesmtteredmise decreased with increasing frequency, -
with slopas ﬂsatrange@fran3.2dBtos.4dBperoctave. ovex a range

of frequencies frem 2.5 Hz to 100 Hz.
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