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ABSTRACT

This paper presents three algorithms for minimum cos? synthesis
of an oriented communication net, The realization technique is
developed using the min-cut max-flow theorem. The algorithms are
able to handle higher order terminal capacities compared to previous
methods. Necessary and sufficient conditions are given for the
application of the algorithms, which are suitable for computer

implementation.
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I, INTRODUCTION

The application of the theory of graphs to the analysis of
communication nets is natural in the sense that one may consider the
various stations of a communication net as vertices and the channels
of communication net as branches (lines drawn between these vertices).
Every branch has associated with it a nonnegative number called
the branch capacity which indicates the maximum amount of information
that can pass through the branch, A communication net must have
large enough branch capacities such that all message requirements
can reach their destinations simultaneously,

In many practical applications, the maximum allowable communication
from ‘station 1 to station j and the maximum allowable communication
from station j to station i may be different, For representing such
a system, oriented branches must be used, resulting in an oriented
graph. Therefore, the branch capacity matrix and the terminal
capacity matrix become assymzetrical,

The purpose of this paper is to investigate a synthesis method
for oriented communication nets, The necessary conditions and a
realization method for up to three=by=-three matrix are given by
Teng and Chien [2), The necessary conditions and realization methods
for four~by=-four matrix are presented in this paper. These ideas
may easily he extended to higher-order cases, The method given here
is based on the max-flow min=cut theorem [7) and can be adapted for
computer solution, Related flow chart for computer programing will

be given later in +this paper,



II. THEORETICAL DEVELOPMENT

Several authors have worked on communication nets and terminal
capacity matrices, lMethods for the synthesis of oriented or
nonoriented communication nets are given in references [2, 3, 5, 6,

Ty 8, 10, 12], Properties of the terminal capacity matrix, the
max-flow min-cut theorem and several methods for analyzing communication

nets are presented in this section,

A, PROPERTIES OF TERMINAL CAPACITY MATRIX
1, Oriented Communication lNet

The terminal capacity matrix is always partitionable into
submatrices and submatrices on the diagonal are again partitionable
until each stbmatrix 'pecomes a one=by-one matrix,

THEOREM 1 [1), Partitioning of a terminal capacity matrix, if
t1 correéponds to a minimum cut Sy cutting all directed paths from
subgraph A to subgraph B, and if t2 corresponds to another minimum
cut S, cutting all directed paths from Aq to Ay (both subgraph of A),
then S, cannot be a minimum cut of any two subgraphs of B wnless
to=t4 and if S, is also a minimum cut cutting all directed paths
from some B3 to 134 (both nonempty subgraphs of B), tpen there exist
at least two more cuts with the same minimum value t.

THEOREM 2 [1)., Let tij(i,j=1, 2, ceceeey Ny ifd) be any

element of a terminal caﬁacity matrix; then

tyy = min(ty,, tkj) (2-1)

and i,J,k-l,Z,u--o, I, i*j
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THEOREM 3 [1]. T' is the terminal capacity matrix of graph

. )
G and T" is, the terminal capacity matrix of graph G". Let,

G = G' +G" (in terms of edge matrices)  (2-2)

and

T =t 41" (2-3)

Then T is the terminal capacity matrix of graph G if and only if
for each ordered node pair i and j there exists a cut for all three
graphs G, G' and G,
2. Nonoriented Communication Net
A terminal capacity matrix of a communication net is always
partitionable into the submatrices as in oriented case.
The maximal=flow capacity from node i to node j is equal to

the maximal-flow capacity from node j to node i.

CORROLLARY 1 [1]. Let S be the minimum cut-set which
"
separates graph G into subgraph ¢' and G , the terminal-capacity t is
not changed when all edges in G" are shorted, provided that i and}

are both in G'.

B, THE MAX=-FLOW MIN=-CUT THEOREM

The max=-flow min-cut theorem is formulated by Ford and Fulkerson [7).
It can be used to obtain maximum flow in a network.

THEOREM 4 [7). For an oriented network the maximal-flow from
node nq to node n, is equal to the minimum cut, which cuts all directed
paths from n4 to n,e.

For finding maximal flow of an oriented network, the following

procedure may be used with the aid of the theorem given above.



a) Select a pair of vertices. Determine a path sﬁ;h that all
forward edges are not saturated (f<c) and all reverse edges have
nonzero flow, BHepeat it if f = c,

b) Let Af, be the minimum of all the differences (c=f) for forward
edges and Af2 be the minimum of all the differences for reverse edges.
Increase the flow of the forward edges by an amount Af = min(Af1,Af2),
and decrease the flow of reverse edges by an amount Af,

c) Repeat (a) and (b) until no more paths exist as described

in step (a).

C, SYNTHESIS OF NONORIENTED COMMUNICATION NETS

Several authors have investigated methods for realizing nonoriented
communication nets. In this section, the method of Mayeda [3), Wing
and Chien [5], Gomory and Hu [6] will be briefly presented.

Mayeda's method is based on the realization of communication nets
using a branch capacity matrix which is obtained from a termiral
capacity matrix, The realization is accomplished by partitioning
the terminal capacity and the branch capacity matrices properly.

Suppose that the terminal capacity matrix of a comnunication net

is partitioned as

Tar ) T(41)

W i e (2-4)

1 (1
)i ™
]
Let N1 and Na1 be the subnets correspending to T1 and Ta1’ respectively.

Partition the branch capacity matrix in thg following form

Ca1 1 C(s1) .
R (2-5)
Oen) %
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It can be seen that the rows and the columns of Cq, Ca1’ and C(t1)
have the same arrangement as the rows and the columns of T4, Ta1’

& T(t1), respectively, the branches whose branch capacities appear

in C(t1) are those which are connected between any vertex in N1 and

any vertex in Nyy. Theny ¥, 1n T4y i3 equal to the sum of all

elements (branch capacities) in C(t1)'
t, = Sum of all elements in C(t1) (2=6)

Let a principal partitioning process be applied to the resultant

submatrix T , in Eq. (2-4).

[T )0
e [ e "
I T2t1) ET1 ]

Let the branch capacity matrix in Eq. (2-5) is partitioned as

a2 1%02) 15,

C= cf;z) T e, (2-8)

where the rows and columns of C_,, C,, and C(t2) in (2-8) have the
same arrangement as the rows and columns of T.or Tos and T(tg) in
(2=7), respectively.

t, is equal to any element in T(tg) and can be written as

2

t, = Sum of elements in C(tg) + min (Sum of elements in C(t1)a2'

2
Sum of elements in C(4,) ) (2-9)
2



Let V(Ck) be the sum of all elements in the submatrix C Then

kl

(2-9) can be expressed as

t, = v(c(t?_)) + min {v(c(t1)a2), V(C(t1)2)} (2-10)

Suppose a principle partitioning process is applied to T in
(2-7).

i ! | ) -
T L0
Ten! B m
' ?(t2) VT (2-12)
R e | == E———
T(t1) T

| 31505 § SCaas ] Sas
Ctts) 1% 1 C(s2)3 'C(t1)3
Cm [oF-7-=Toi===q ===~ e e (2-12)
_S?int-@@lz' ...... (M2
°(#1)a3 | C?ﬁ)stccw)z E

Let N1, NE’ N3 and Ii_, be the subnets consisting of the vertices

a3
associated to the rows (and the columns) of Tyr Tps T3s and T.3

respectively. Also let N(S.), and N(S.), be the subnets obtained

3)1 3)2

from the net N by removing every branch in the corresponding cut set

d .
S3 of 'l'.3 where N(S5)1 contains N,z an N(S.), contains Ny The

3)2

subnets N, and N, can be in either N(85)1 or N(SB)Z' Hence N(83)1

and N(S3)2 is the one of the following four subnets.
1) N(SB)1 contains N_; and N(S3)2 contains Ny, N, and Ns.

2) N(SB)1 contains N ; and N, and I\I(SB)2 contains N, and Ny.

10



3) N(Ss)1 contains N 5, N, and N(s3)2 contains N, and Ny,

4) N(S3)1 contains N 5, N, and N,, and N(S3)2 contains N only.

Thus the corresponding cutset S3 of t3 is one of the following four
cutsets,

CASE 1) Sa consists of the branches which are connécted between
any vertex ih Na3 and any vertex in one of N1, N2 and N3.

CASE 2) S, consists of the branches which are connected between

b

any vertex in either Na3 or N1 and any vertex in either N2 or NB'
CASE 3) Sc consists of the branches which are connected between

any vertex in either NaS or N2 and any vertex in either N1 or N3'

CASE 4) Sd consists of the branches which are connected between

any vertex in any one of Na3’ N1 and N2 and any vertex in N3'

The branch capacities of the branches, which are connected between
any vertex in N(S3)1 and any vertex in N(SB)Z’ are the elements in C at
the intersection of Set=1 and Set=2. Set=1 is the rows representing

the vertices of N(S and Set=2 is the columns representing the

31

vertices of N(SB)Z' Therefore, the cutset S, [mentioned above in
CASE 1] is the set of elements of C which are the intersections of
the rows of Ca3 (representing the vertices in Na3) and the columns

of Cqy Cy and 03 (representing the vertices in Nys Ny and N3) in

2
(2-12).

v(sa) = V(C(t3)) + v(c(tz)a2 + v(c(t1)a3) (2-13)

The cutset Sb (mentioned above in CASE 2] is the set of elements of C

which are the intersections of the rows of Ca}' and C1 (representing

the vertices in N_, and N1) and the columns of C, and C3 (representing

3
the vertices in N, and NB) in (2-12).

11
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V(Sy) = VC(5)) + V(C(tg)a3) + V(C(eq)5) + VIC(ty),) (2-14)

Likewise the values of S, and S, (mentioned above in CASE 2 and

CASE 3) are
V(sc) = V(C(t3y) + v(c(t1)33) + v(cztz)B) + v(c(t1)2) (2-15)
V(sy) = V(Cqes)) + V(Czt2)3) + V(02t1)3) (2-16)

t3 is the minimum value of v(sa), v(sb), v(sc) and v(sd), t5 is equal to

ty - V(C(t5)) + min {V(C(t2)a3) + V(C(t1)a3). V(C(t2)a5) + V(Czt1)3)
* V) TCe)as) * T(O(s2)3) + V(1)) V(C(z2),)

+ v(czt1)3)} (2-17)

From (2-17) V(C(tB)) can be find and also the subgraph H; can be
formed.,

We can apply the principal partitioning process to ’I‘a5 in (2-11),
and by continuing the same procedure the branch capacity matrix can
be obtained, The number of the steps depends on the order of T.

1. Method of Elementarv latrices

e e T —— I —————————)

The method of elementary matrices [1], [5] requires a maximum
of #n(n~-1) branches, where n is the number of nodes. Elementary

terminal capacity matrix can be put into the following form

P -
d t > t5 I T
t.‘ t5 . . L) 4 tn_1 (2-18)
T - t2 t2 - t3 L4 . o . tn-1
ne1 tn-1 e tn-1 3004 & |

Where t1 2t2 2t3 zooonaoooocoo ztn_1

12



Every elementary terminal capacity matrix is guaranteeg to be
realizable [3].

Figuie 2=1 realizes an elementary terminal capacity matrix of
order n with minimum total edge=capacity.

If a terminal capacity matrix T of order n is partitionable as

- ' -
: to to % lonlls to
T :to to L] [ o to
1 1 o P o o o
'. ® [ ] [ ) L]
)
e e i T NN
to to o o t° : (2-19)
IR
[o] Q T
; 2
L] o o [ ] o [ '
|
to to 0 0 O to :
- ) -

wherg t_ = mini’j (tij) and T, and T, are elementary terminal-capacity
matrices of order k and n=k respectively, T can be realized by a net
as shown in Fig. 2«2, The two "linking" branches a and b can be
placed between any two pairs of nodes. If the T matrix is partitionable
into T1, T2, eees g Tp elementary terminale-capacity matrices,
realization is shown in Fig. 2=3. The number of branches required
for this realization is at most 2n-p=2, where p is the number of
elementary terminal-capacity matrices in a given T,

Example 1, The realization of following terminal capacity

matrix is given in Fig. 2-4.

= -
v &
'—B
C)
n

|

]

-t
QR
.---‘--
]

I O
'
- )
o & o
ol & oo
'
o O & o
'
o Nl & o

T a 4 4 4 :(:) E (2-20
4 4 4'10
[, - | Ky
4 4 416 68 6
) M 6
4 4 416 6,80 "
4 4 4l6 6l6 6@ I

»
L



Fig. 2=1 Realization of Elementary Terminal Capacity hatrix

te te
o——T o e -'i-—o
te t
. A L, i
Tl O— —0 Tj O0— —0 Tp

Fig. 2=3 Realization Through Combination of Elementary liets

14
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Fig. 2-4 Realization of Eq. (2-20)

2. Method of Successive Expansion

The method of successive expansion (5] employes relatively few
edges. The number of edges required by this method is exactly P'+n-1.
where P' is the index of partitionirng and n is the nunber of nodes. The
index of partitioning is the number of operations necessary tc
partition the matrix T into a form in which every diagonal submatrix
is either of order two=by=two or one=byeone.

In this method, first, the diagonal submatrices of the first
partition are treated as nodes to form a ring, with each ring elemens
equal to %to, nhalf of the capacity of first partition. To realize
each diagonal submatrix, a new ring is formed and each branch in the
new ring will have a capacity of §t1 except one branch, which has a
capacity of é(t1-t°) and this branch is shared by the new ring and
the origiral ring as shown in Fig. 2=5. Each svbmatrix is treated
as above except one case in which the submatrix is of order two so
that the two branches of the new ring may be combined to form one

branch.

15



Fig. 2-5 Combination of Ring Structures in the Process of Realization

Example 2. Realization of following terminal capacity matrix

is given in Fig. 2-6.

(@ 8 6! 4 4 Lilk K
8@ 614 L Lkl
S 6@ bl
p. | WY h:® 10 6:u 4 (2-21)
L b 410 O 6.4 4
b h 6 6@ b
Y
IR uisd
o
5 7 ¢
3 &
(a) (b)

Fig. 2-6 a) Realization of diagonal submatrices.
b) Realization of T matrix.

16



3. Decomposition of Terminal Matrices
With the method of decomposition of terminal matrices [6]

the terminal capavity matrix can be written as

Tm= T1 + Tu ¢ (2-22)

where tu is uniform element in Tu and it is equal to the minimum
element of % 1,5 Zero elements of T1 indicate where the minimum
?

cut=set will be in the realization of T1. Minimum cut sets of the
realization of Tu correspond to the minimum cute=sets of the realization

of T1. T matrix can be written the sum of uniform matrices, as

T = ZTu_ (2'23)
1

The Tui's are realized and combined in such a way that all their
minimum cut-sets correspond to each other,
Example 3, We shall realize the following T matrix with the

method described above,

+3
]

3
3
3 (2-24)
5

17



(2=25)

(2=25)

(2-27)

(2-28)

Realization of each Tui matvix is given in Fig, 2-~7 and realization

of the T matrix is given in Fig. 2-8,

18



@
€)
(b)
@/®
®
@ ®
() (d)

Fig. 2-7 Realization of Tul in (a), Tu2 in (b), Tu3 in (¢) and Tuh

in (d)

®

Fig. 2-8. Realization of T matrix

19



ITI, SYNTHESIS OF ORIENTED COMMUNICATION INET

Several methods are investigated by Resh [8], Frisch and Sen [9],
Tang and Chien [2], Hu and Gomory [12], Chou and Frank f1o] for
realizing oriented communication nets, The method of Tang and Chien is
glven in the next section., It applies to a three=by-three terminal
capacity matrix, In this paper the technique for the realization of
& four-by-four terminal capacity matrices and its extension to

higher-order tercinal capacity matrices will be given,

A, SYNTHESIS OF TERMINAL CAPACITY MATRIX Il THREE=-NODE CASE

The terminal capacity matrix is partitioned as

R o Gl i
T . R ONIEY (3-1)

?
T =T +Tc

| o [~ | | 1
@-;--:L @1t
' A 7 el 7= u D
TR Bt21:@{t23 b (M@
G b= Btianrre

t [] |

RN £ 1%
AL g L1!1:@-

'
wheretij-tij-t1zo for 1 4

20



To realize T', we first realize the two-by=two subn;;,trix (containing
nodes 1 and 2) as in Fig, 3=-1a, Since the first row in ’I" contains
zero entires the only comnection between the subgraph shown in
Fig, 3=-1a and node 1 should be from nodes 2 and 3 to node 1 as shown
in Fig, 3=1b with branch capacities x and y, In oxrder to realize o'
as in Fig, 3=1b the Mm cut requirements for T must be satisfied,

We can obtain the following equations.

min [ (xry)y (wrtys) ] = o), (3-2)

atn [ (x+y), (v4t3,) | = 8, (3-3)
or

X = max [(té1-t;5),(t;1-y)] ' (3=4)

y = max [ (83,5, (83,x) | (3-5)

If we represent equations (3~4) and (3-5) on the x-y plane, we obtain
two curves as shown in Fig, 3=2, The intersection of these curves is

o '
(.co,yo) where, 17 %39 = $5q,

%o = tpq=tps (3~6)

Yo = max [(t;1-t;2),(t;1-t;1+t;3)] (3-7)
if t;1 2 t;1,

o) S [(t;1't;3)'(t;1't;1*t;2)] (3-8)

Vo = tst3p - | (3-9)

21
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The realization of constant matrix Tc is a graph with constant
cuts, It is either a cycle oriented in either direction, or twe
cycles oriented in different directions, Minimum cuts of T, ' and

Tc are idential, then conditions are satisfied in Theorem-3 ,

ts t2s

Fig, 3-1, Realization of T'

py

Eq.3-5

tlsc' tln

Eq -(3 '4)

Fig, 3-2, Curves of Equations (3-4) and (3-5)

22



Fig, 3=3, Realization of a Constant ilatrix

Example 4, The following T matrix is to be realized:

= |51@5 (3-10)
314 ®
We may write:
@i a2
Tl 41 = 11+ [202 (3-11)
11209 220

t
The realizations of T and T o are in Fig, 3=4a and b, The final

realization of T is in Fig, 3=5.

Fig, 3=4, Realizatiors of 7' and T o matrices

23



Fig, 3=5, Tas final realization of T matrix

B, SYSTHESIS OF TZRITINAL CAPACITY MATRIX IN FUUR-!ODE CASE
The terminal capacity matrix of an oriented communication net

containing four nodes can be partitioned as

1
© (’2“)125 I
t ' t t
T = .1;.2.1-7 --;-.1---.1- (3-12)
31 %321 t34
]
b1 b2l b3 @

The form of the realization is given in Fig, 3=-6, whers t; L

24



Fig, 3=-6, The form of the realization of T matrix

In order to use the algorithms which will be given later in this
section, the terminal capacity matrix must bz in one of the following

three forms,

Form (1) 1:3 41 Pty < t4

. t32 < t41 3 t32 < t42

Form (2) b3y < 5o 4 b5y < 4o

<

t,. <
41 ~ ¢ 42

32 ¥ ¥4
Forn (3) t31 < t32 3 t31 < t41

t4 < t52 H t42 4

Form (1) can be realized with Algorithm-A to be given later in
section 3-B-1, Form (2) and Form (3) can be realized with Algorithm-3B
and Algorithn=C to bz given later in sections 3=B=2 and 3=B=3,
respectively, If the terminal capacity matrix is not in one of
these forms, its rows and columns may be rearranged and put into the

form of one of them,

25
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The following conditions are necessary for the realization of a
foureby=four terminal capacity matrix, using the algorithns given

later,

] [ ]
t51 zt21 +t34+t1 .

]
t32 2 t12 + t34

1]
t41 2 t43 + t21

t42 > t43 + t12

1, Algorithm A
1) Determine x and y by writing the following equations, with

the aid of Fig., 3=T:

tyy = nin [(x+y+t;4), (x+t‘;_1+t;4+t1)] (3=13%)
; ' -
ts, = nin '_(x+y+t34), (y+t12+t34)_| (3-14)

Which we obtain
X = max [(-y+t “tr )y (baq=tl =t! =t )] (3-15)
5170340 (839702970544
y = max | (mxrts,mtd,)y (B5pmt,mt3,) | (3-16)

2) There are several sets of equations for deiermining z and Xk,
choose proper case, use related equations and apply to Fig, 3=3 for
obtaining z and k,

CASE 13 x+y < t43
tyy = min [(x+y+z+k), (x+z+t;_,1)] (3=17)

typ = min [(x+y+z+k), (y+k+t1 2)] (3-18)

26



Which we get

Z = max [(-k+t41-x-y), (t41’x‘t51)]

ks

max [(-Ht 42"3"'3 )y (t 42':!"t1 2)]

CASE 2: x+y > t43

-

de

xzt43
tyy = 2in [(z+k*t45), (z+t43+t;1)]
]
z = max [(-k+t41-t43), (t41-t43-t21)]
:|:<‘l:43
£,y = nin [(z+k+t45), (aretly) |

z = max [(-k+t41-t45), (t4,-x-t;1)]

¥z Y
k = max L(-2+t42-t43). (t42‘t43't12)_|
¥ <ty

typ = min [(z+k+t43). (k+y+t13)J

k = max [(-Mt42-t45). (t42-}’-t12)]
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tatet,

R

Eq(3-16)

j= - - -

>
X

..t’. -'l.
S EqQ3-15)

Fige 2=7 "Curves" of (3-15) and (3-16)

tli. l&i ll!

or

a{y'lli

bk

..ke Eq (3-20)0r(3-26) or,

(3-29

Fig. 3-8,

2
Rg_ l__ah- EQ(-19)or,(3-22) or,
tu'—""tu (3-24)

"Curves" of (3=19) or (3=22) or (3-24) ané (3=20) or

(3=26) or (3-28)
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Proof of Algorithm=A: Assume the form of realization as given
in Fig, 3-6, Using the maxe-flow minecut theorem the followinz equations
can be written,

t3; = min [(x+y+z§k) (x+zet) 1) (x+y+t54) (x+t +t 1)] (3=29)

t;, = min [(x+y+z+k) (yeket,,), (x+y+t34) (y+t12+t34) | (3=30)
tgq = min [(x+y+z+k).(z+k+t 43),(x+z+t51),(z+t43+t21 ) ) (3-31)
o = min [(x+y+z+k),(z+k+t 4300 (roket, 2),(k+t43+t12)1 (3-32)

Algoritha=-A applies under the following cases, t31 <t 41 and

tyy and Then, from equations (3-29) through (3-32)

t42’ t32 < 420

we can state that

(a) x+y+z+k can not be min-cut for t31 and t32 because it is
in t41 and t42.

(v) x+z+t21 and y+k+t,, can not be min-cut for tyy and 5,
respectivaly because they are in t 41 and t 42 respectively,
Then, the following two equations are obtained from (3=29) and (3-30)

for t5, and byt
t5y = min [(x+y+t; BRI 4+t1)] (3-33)
t5, = nin [(x+y+t;4).(y+t12+t§4)] (3-34)
Ve obtain
x = max [ (ywtyy-t},), (8515, =43,%,) | (3-35)
y = max [ (vt )y (bt potl) | (5-36)

We can solve the above two equations for x and y or w2 may use a

graphical solution for obtaining x and y.
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For the determination of z and k, there are two cases to te
oonsidered; (1) x+y s ty3 and (2) x+y > tyz0 These cases will give
different sets of equations.

Case=1) when x+y S t 430 automatically both x and y € %,

So z+x+t;1 £ 2+t 43+t;1, then z~|»'t:43+t;1 is eliminated from (3-=31).
Also x+y+z+k € z+k+t 43 because t 43 2 x+y, then z+k+t 43 is eliminated
from (3-31) because it can not be min-cut for tyqe Thus, (3=31)

beconmes

t,, = min [(x+y+z+k),(z+z+t51)] (3-37)

41

We can apply the same logic to the equation (=32)s x4y € % 43
soys t43, then 2kt 5 and k+t45+t12 are eliminated froa (3=32),

where (3=32) becomes

typ = min [(x+y+z+k),(y+!:+t12)_] (3=38)
from which we get

2 = max [ (<ketyqmiey) g (t,42t1,) | (3-39)

41 AN b3

k = max [ (~z+t,,mx=y), (6, ,=y=t;,) ] (5-40)
The solution for x and y is found as before, In order to obtain z and k
we can use a graphical solution using (3-39) and (3-40).

Case 2) When x+y >%,5y we can eliminate x+y+z+k from

(3=31) and (3=32) because x+y+z+k > Z+k+t 43 then it can not be min~cut

for t41 and t42. Thus equations (3=31) and (3-32) become
t4q = min [ (z#kat5) (8,040, ), (eezat),) | (3-41)
tyo = min [(z+k+t45),(k+t43+t12),(k+y+t12)] (5-42)
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In this case x & t43 ani y -‘Zt 39 and the right=hand sides of

4
equations (3=41) and (3=42) are affected as followss:

x2t,; elininates x+zty, from (3-41)

x<t,; eliminates z+t);+t 21 from (3~-41)

43
¥z, eliminates key+t,, from (3-42)
¥y <t,3; eliminates kit,s+t,, from (3-42)
and each case will give a set of equations for determining z and k,
Example 5, We shall realize the following terminal capacity

matrix with using Algorithme=A,
'@ 613 3
2.8 3..3. -
&= 1o 11 @ (5-43)
12 1317 @

1) Applying the numerical values to (3-15) and (3-16) the

following equations are obtained:

max [ (=y+1),(2) ] (5-44)
y = max [ (=x+3),(2) | (3~45)

With the above equations and using Fig, 3=9, x=2 and y=6 are obtained,

2) x+y=8 > t,3=7 then Case-2, also x < t,;=7 then Case 2b

3

and y <t 43--7 then Case 23, Applying the numerical values to (3-24)
and (3-28) the following equaiions are obtaineds

nax (145 (9) ] (3-46)

k = rax [ (~2+6),(1) | (3-47)

3



With above equations and using Fig, 3=10, z=8 and k=1 are obtained,

Realization of T is given in Fig, 3-11,

sk :
N
ZI'
\Kel (3-47)
=

Z

\(3-46)

Fig, 3=9 Fig. 3=10

Fig, 3=-11, Realization of T matrix in (3-43)
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Example 6, We shall realize the following terminal capacity

matrix,

(3-48)

The terminal capacity matrix can be put into Form=1 with

changing row 3 by row 4,

Realization of (3=49) can be done with AlgorithmeA.

1) x = max [ (-y+7),(3)]
y = max [ (=x+7),(2) |
x=4 and y=3 are obtained frcm Fig, 3-12.

2) x+y=7 > t,

(3=49)

(3=50)

(3=51)

o= ary 2 < - ne -2 < 1
3 5 and x t4) then Case=Cb, ¥y t43 then

Case~2d, Applying the numerical values to (3=24) and (3-28) the

following equations are obtained,
2 = max [ (-k+d), (3) |
k = max [ (-2+6),(3)]

z=3 and k=4 are obtained from Fig, 3-13,

33
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1y tk
\

=

2 ——(3-53)

\ >
\ z

3-52)
Fig, 3=12 Fig. 3=13

Fig, 3=14, Realization of T matrix in (3-48)

2, Algorithn=3
1) Determine x and z by writing the follcwing equations with

the aid of Fig, 3-15:

t5y = min [ (eezrtg,), (utpertg,et,) | (3-54)
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81 = min [(eearty,), (ast50t5,) ] (3-54)
Which we obtain
X = max [(-z+t31-t;1), (t -t -t34-t1)J (3-55)

Z = max [(-}:4-'!:41-1;51), (t41 43" 21)_' (3-5¢€)

2) There are several sets of equations for determining y and k,
choose proper cases and use related equations, Use Fig, 3=-16 for

obtaining y and k,
CASE=1: x+z $t12
t;, = min [(x+y+z+k), (x+y+t; 4)_| (3-57)

t,, = min [ (oyezek), (z+k+t43)] (3-53)

42
from which we get
y = max [ (<rbg,mxa), (8,x-t3,) | (5-59)

k = max [(-y+t42-x-z) ) (t42-z-t43)] (3-€0)

CASE=2: x+2 > t12

a X 21:12
t5, = min [ (yirty ), (y+t12+t;4)] (3-61)
y = max [(cbbgomtyy)y (b5mtmt5,) ] (3-62)
be x <'I:12
t5, = min [ (yeisty,), (x+y+tl4)] (3-43)
YRSk [('k*t32‘t12)' (t*z'x't34)] (3-64)
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Ce
P

t =
42 min [(y+k+t12), (k+t12 43)_]
k = MN3axX -'
[( y+b4pmb10)s (typty -t43)J
de 2<¢ %

t,, = min [(y+k+t 2), (z+k+t 3)]

42
kK =
max [(-y+t4o-t12), (t -z-t43)J

AZ

N\

ot 1, X.,Z, £Q.(3-56)

b trtgt, \Eq.(3- 55)

Fig, 3= ] "
g. 3=15., "Curves" of (3=55) and (3-56)
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tu."E-tu i Eq.(3-60) or, (3-66)0r,
bty i (3-63)
I
ts X t3e %y
or
s het E q.(3-59er, (3-62)or,
- (3-64)

Fig, 3=16, "Curves" of (3=59) or (3-62) or (3-€4) and (3-¢0)
or (3=-66) or (3-68)

Proof of Algorithm=3: Algorithm-3 applies in the following
cases, 5, <15, and t,,, 1, < t3, and t),. From equations (3=29)
through (3=32) we can state thats

(a) =x+y+z+k can not be minecut for t31 and t41 tecause it is

in t., and ¢

42°
(v) x+y-n-’c3 4 304 24kt can not be min-cut for %5 and t,,

32

respectively, because they are in t32 and ¢ 42 respe:iively,
Then the following two equations are obtained from (3-29) and (3-31)

for t31 and t41:
t5 = min [(x+z+t;1), (x+t;1+t;4+t1)] ’ (3-69)
t,y = nin [(x+ut;1), (z+t43+t;1)] (3-70)
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from which we get
[} ! ]
x = max [ (-z+t5,-t3,), (t31-t21-t34-t1)] (3-71)

7 = max [(-x+t41-té1), (t41-t43-t;1)] (3-72)

We can solve the above two equations for x and z or we may use a
graphical solution for obtaining x and z.

For the determination of y and k, there are two cases to be
considered: (1) x+z < ty, and (2) x4z > ti,o These cases will give
us different sets of equations,

CASE=1, Vhen x+z < t12, automatically x s t12 and z S t12.

So y+x+t;4 s y+t12+t;4 and kszttys  kaby 4%,z then y+t12+t;4 and

k+t ave eliminated from (3-30) and (3-32) rcspectively, Also

12%%43
X+y+2+k < ytk+t, 5y then y+k+‘t:12 is eliminated from (3=30) and (3-32)

because it can not be min-cut for t52 and t42. Thus, (3=30) and

(3=32) become

t52 = min [(x+y+z+k), (x+y+t;4):| (3-73)
t42 = nin [(x+y+z+k), (z+k+'b43)] (3-74)
Which we obtain
1]
y = max [ (-kstgpmnmz), (b55mxmt3,) | (3-75)
k = max [(-y+t42-x-z), (t42-z-t43)] (3-76)

x and z are found before, In order to obtain y and k we can use a

graphical solution using (3=75) and (3-76).
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CASE~2, VWhen x+z > t12, we can eliminate x+y+z+k fron
(3-30) and (3-32) since x+y+z+k > y+k+t,, and it can not be min-cut

and t

for t In this case x € ty, and z < 3,5+ Following the

32 42°
same reasoning given in the proof of Algorithm A, equations (3-30)

and (3-32) become
t32 = min [(y+k+t12), (y+t12+t;4), (y+x+t;4)] (3=17)

typ = min [ (yeirty )y (g etys), (uvzst)s) | (3-78)

' '
y+1;1 2+1;3 4 or y+x+1:3 4 and k+t12+t 43 or k+z+t 43 are eliminated from
(3=77) and (3-78) respectively, and each case will give a set of

equations for determining z and k,
Example 7, We shall realize the following terminal capacity

matrix,

G 4 (3=79)

The terminal capacity matrix is in Form-2, then realization

can be done with Algorithm-B,
1) x = max [ (~2+8), (4)] (3-50)
2z = max [(-x+7), (4)] (3-81)
The solution of above equation is obtained from Fig, 5=17, %=4 and
z=4,
2) x+z=8 > ty,=5y X< t,, and z < ¢,, then Case 2b and d.

With the numerical values in (3-64) and (3-68), the following equations

are obtained:
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y = max [ (-+5), (5)] (3-62)
k = max [ (47+5), (3)] (5-83)

From Fig, 3=-18, y=5 and k=3, Realization of the T matrix is given in
Fig, 3=19,

[ % 4 ak

_\ ﬁj? Eq.(3-83)

Y
Eq.(3-82)

Fig. 3-17 Fig. 3-18

Fig, 3-19, Realization of T-matrix in (3=79)
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3. Algorithm C
1) Determine x and k from the following equations,

't L0
X = t31"t21-u54-t1 (3-84)

k = ty,mt,smty (3-85)

2) Determine y and z by writing the following equations with
the aid of Fig., 3=20:

t32 = min [(x+y+z+k) ’ (y+k+t1 2) . (x+y+t; 4) " (y+'l:1 2+t; 4)] (3-86)

tyy = min [(x+y+z+k),(z+k+t 43) ,(x-»-z+'l:;1 ), (24t 43+t;1 )] (3-87)

Which we get

]
¥ = max [(-z+t52-x-k),(tsz-k-tm).(t32'x"t34)’(t52't1 2't;4) ]

(3-88)

2 = max [(-y+t41 -x-k) 9(t41 'k‘t45) ’ (t41 -x-t;1 ) ’(t41 -t45-t."21 )]

(3-89)
A

Eq.(3-89)

>
tik-t, y
% \Eq. (3-88)

Fig, 3=20, "Curvee" of (3-88) and (3-89)
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Proof of Algorithm-C: Algorithm-C applies undé;: the following
cases, t31 < t32 and t41, t42 < t32 and 1:41. From equations (3=29)
through (3-32) we can state that

(a) x+y+z+k can not be min-cut for t3y and t,, because it is

in t., and ¢

41°
(v) x+y+t;4 and x+z+t;1 can not be min-cut for t;.l because

32

they are in t32 and t 41 respectively.
(c) y+k+t,, and z+k+t,; can not be min-cut for t,, because they

are in t32 and ¢ 41 respectively,

Then the following two equations aze obtained from (3-29) and

(3-32).

tyy = X+t 1+t34 | (3-90)
, Bgo = g (3-91)
then
% = gttty (5-92)
tyo=ty 5=ty (3-93)
For the determination of y and z, the following equations
are used,

t32 = min [(x-!~y+z+k),(y+k+t12),(x+y+t;4),(y+t12+t;4):l (3-94)
tyq = min [(x+y+z+k),(z+k+t 43),(x+z+t51),(z+t45+t'21)] (3-95)

Which we obtain
¥ = max [(-z+t ~xek) (B35t )y (B5,=xt3, ) (5,8 o= 34)]

(3-96)
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z = max [(-y+t41-x-k).(t41-1<-t43)o(t41"“t."a1)'(t41‘t43't;1)]

(3=97)

x and k are obtained before, then in (3-96) we have three expressions
(55mk=typy tzp=%-ty, and t32-t12-t;4) which belong to the constant
side of (3=96), Choosing the maximum of the above three expressions
two are eliminated, Also in (3-97) choosing the maximum of the
constant expressions two are eliminated., After the above simplifications
two equations are obtained for determining y and z.

Example 8,: We shall realize the following terminal capacity

matrix,

5
O

Ed)
—b
Ul

[CI )
LN

(3-98)

O Oy \n

o]
=N

L

The terminal capacity matrix is in Form=3, then the realization

can be done using Algorithm«C,

1) x=0, k=i
2) ¥ = max [(~2+10),(7),(8),(4) ] (3-99)
2 = max [ (-4+8),(4),(6),(2) | (3-100)

which we can write
y = nax [ (~2+10),(8) | (3-101)

z = max [(-y+8),(6)] : (3=102)

From Fig, 3-21 y=8 and z=6 are obtained, The realization of T matrix

is given in Fig, 3-22,
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Fig, 3=21 Fige 3=22, Realization of T matrix

4, Dominant Submatrix Partitioning of T Matrices

The realization technique for the low=order case can be applied
to the higher order T matrix if it can be partitioned, by rearranging
the nodes, in the following manner:

a) Each submatrix corresponding to a sub=collection of nodes
lying along the diagonal line is square,

b) The row of connection node in each diagonal submatrices
contains elements with values no smaller than the value of any element
in the column of T matrix after treating each diagonal xubmatrix as a
node, where each column corresponds to a node which stands for
diagonal submatrix, A connection node is a node in each diagonal
submatrix which provides connection with the rest of the net,

¢) The colum of a connection node in each diagonal submatrix
contains elements with values no smaller than the value of any element

in the row of T matrix after treating each diagonal submatrix as a
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node, where the row corresponds to a node which stands for diagonal

submatrix, .

These conditions are referred to as the "dominant conditions" of a
T-matrix,

A T-matrix satisfying the dominant conditions is realizable
if [13s

1) Treating these submatrices along the diagonal line as nodes,
the matrix T is realizable,

2) Each submatrix along the diagonal line is realizable,

Example 9: We shall realize the following terminal capacity
matrix,

= - om| (3-109)

The T-matrix may be written as

101
T ?@-@%’J (3-104)

A, B, C and D are the diagonal submatrices in the original T-matrix,
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The realization of the T matrix is shown in Fig, 5=24, where
A, B, C and D are the vertices, The realizations of A, B, C and D
were done in Example 5 through 8 respectively., The firal realization
of the T-matrix is shown in Fig., 3=25,

The realization of (3-102) can be obtained using Algorithm-C.

1) x=0, k=1
2) y = max [ (~2+4),(4) ] (3-105)
2 = nax [ (<y+4),(4)] (3-106)

From Fig., 3=23 y=4 and z=4 are obtained.

AZ

Fig. 3=23
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IV. CONCLUSION

The realization of a terminal capacity matrix with oriented
branch capacities is very complicated when the number of nodes becomes
large., The techniques given in this paper will be useful for solving
more complex communication system problems in practice, The given
method can be extended to cover higher order cases without difficulty.
The technique presented is effective for the following reasons:

(a) The number of nodes in a subnet is increased compared to that in
earlier methods, (b) Easy for hand calculation, (c) Adaptable to
computer programing, The following problems are suggested for further
studicss

1) To oh*ain a necessary »nd sutficient condition which is easy
to check on a given terminal capacity matrix.

2) To adapt the realization techniques for the nonuniform
cost function with minimum cost.

3) Write a computer program for the flow chart presented in

this paper.
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