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ABSTRACT 

This paper presents three algorithms for minimum cost synthesis 

of an oriented communication net. The realization technique is 

developed using the min-cut max-flow theorem. The algorithms are 

able to handle higher order terminal capacities compared to previous 

methods. Necessary and sufficient conditions are given for the 

application of the algorithms, which are suitable for computer 

implementation. 
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. 

I, imODUCTION 

The application of the theory of graphs to the analysis of 

communication nets is natural in the sense that one may consider the 

various stations of a communication net as vertices and the channels 

of communication net as "branches (lines drawn between these vertices). 

Every branch has associated with it a nonnegative number called 

the branch capacity which indicates the maximum amount of information 

that can pass through the branch. A communication net must have 

large enough branch capacities such that all message requirements 

can reach their destinations simultaneously. 

In many practical applications, the maximum allowable communication 

from'station i to station j and the maximum allowable communication 

from station j to station i may be different. For representing such 

a system, oriented branches must be used, resulting in an oriented 

graph. Therefore, the branch capacity matrix and the terminal 

capacity matrix become assymmetrical. 

The purpose of this paper is to investigate a synthesis method 

for oriented communication nets. The necessary conditions and a 

realization method for up to three-by-three matrix are given by 

Tang and Chien [2], The necessary conditions and realization methods 

for four-by-four matrix are presented in this paper. These ideas 

may easily be extended to higher-order cases. The method given here 

is based on the max-flow min-cut theorem [7] and can be adapted for 

computer solution. Related flow chart for computer programing will 

be given later in ^his paper, 
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II, THEORETICAL DEVELQPMEin1 

Several authors have worked on communication nets and terminal 

capacity matrices« Methods for the synthesis of oriented or 

nonoriented communication nets are given in references [2, 3f 5? 6, 

7f 8, 10, 12], Properties of the terminal capacity matrix, the 

max-flow min-cut theorem and several methods for analyzing communication 

nets are presented in this section, 

A, PROPERTIES OF TERMINAL CAPACITY MATRIX 

1, Oriented Communication Net 

The terminal capacity matrix is always partitionable into 

submatrices and submatrices on the diagonal are again partitionable 

until each submatrix becomes a one-by-one matrix, 

THEOREM 1 [1], Partitioning of a terminal capacity matrix, if 

t1 corresponds to a minimum cut S^ cutting all directed paths from 

subgraph A to subgraph B, and if tp corresponds to another minimum 

cut S2 cutting all directed paths from A^ to A2 (both subgraph of A), 

then S2 cannot be a minimum cut of any two subgraphs of B unless 

t2"t-j and if S2 is also a minimum cut cutting all directed paths 

from some B* to BA  (both nonempty subgraphs of B), then there exist 

at least two more cuts with the same minimum value t, 

THEORHI 2 [1], Let t. (i,G-1, 2, , n, i^j) be any 

element of a terminal capacity matrix; then 

\t  ^^ik' \J (2-l) 

and i,3,k=l,2, , n, ifa 



THEOREM 3 C1].    T1  is the terminal capacity matrix of graph 

G   and T   is .the terminal capacity matrix of graph G".    Let, 

G ■ G   + G    (in terms of edge matrices)        (2-2) 

and 

T - T   + T" (2-3) 

Then T is the terminal capacity matrix of graph G if and only if 

for each ordered node pair i and j there exists a cut for all three 

graphs G, G   and G . 

2.    Nonoriented Communication Net 

A terminal capacity matrix of a communication net is always 

partitionable into the submatrices as in oriented case. 

The maximal-flow capacity from node i to node j  is equal to 
e 

the maximal-flow capacity from node j to node i. 

CORROLLARY 1 [l]. Let S be the minimum cut-set which 

separates graph G into subgraph G and G , the terminal-capacity t is 

not changed when all edges in G are shorted, provided that i andj 

are both in G . 

B, THE MAX-FLOW MIN-CUT THEOREM 

The max-flow min-cut theorem is formulated by Ford and Fulkerson [7], 

It can be used to obtain maximum flow in a network, 

THEOREM 4 C?]. For an oriented network the maximal-flow from 

node ni to node np is equal to the minimum cut, which cuts all directed 

paths from n.. to n^* 

For finding maximal flow of an oriented network, the following 

procedure may be used with the aid of the theorem given above. 



a) Select a pair of vertices.    Letermine a path such that all 

forward edges are not saturated (f<ö) and all reverse edges have 

nonzero flow.    Repeat it if f ■ c. 

b) Let Af. be the minimum of all the differences (c-f) for forward 

edges and Af2 be the minimum of all the differences for 'reverse edges. 

Increase the flow of the forward edges by an amount Af ■ min(Af.i »AO» 

and decrease the flow of reverse edges by an amount Af. 

c) Repeat (a) and (b) until no more paths exist as described 

in step (a). 

C.    SYITOHESIS OF NONORIEI^ED COI-MJiUCATIOII NETS 

Several authors have investigated methods for realizing nonoriented 

communication nets.    In this section, the method of Mayeda l3\ Wing 

and Chien [5], Gomory and Hu [6] will be briefly presented. 

Mayeda's method is based on the realization of communication nets 

using a branch capacity matrix which is obtained from a terminal 

capacity matrix.    The realization is accomplished by partitioning 

the terminal capacity and the branch capacity matrices properly. 

Suppose that the terminal capacity matrix of a communication net 

is partitioned as 

T (2-4) 

Let 1L and N 1 be the subnets corresponding to T,.  and T ., respectively. 

Partition the branch capacity matrix in th^ following form 

(2-5) 
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It can be seen that the rows and the columns of C^, C .., and C/t N 

have the same arrangement as the rows and the columns of T-|, T .., 

(t-]), respectively, the branches whose branch capacities appear 

in C/^.x are those which are connected between any vertex in IL and 

any vertex in N .. Then, tH in T/+.\ .    i  J.    ±-L.       _ ^ n v a1       1(1) is equal to the sum of all 

elements (branch capacities) in C/^.x. 

t1 ■ Sum of all elements in C (tl) (2-6) 

Let a principal partitioning process be applied to the resultant 

submatrix T .  in Eq.   (2-4). 

I   rp 
a2    I   i(t2) j 

"T|tT)]'T7 
Tj (tl) 

■(t1) (2-7) 

Let the branch capacity matrix in Eq. (2-5) is partitioned as 

.!a2—J-i^l LC(tJ)a2 
C(rt2)  iC2   '|C(tl)2 (2-8) 

where the rows and columns of C -, C2, and C/, 2\ in (2-8) have the 

same arrangement as the rows and columns of T „, T0, and T/tp\ in 

(2-7)t respectively. 

t« is equal to any element in T/^x and can be written as 

t« ■ Sum of elements in Cz-tpN + m^n  (Sum 0^  elements in Cz-t^N ,» 
'a2 

Sum of elements in Cz-t^ ) (2-9) 

9 



Let V(Ck) be the sum of all elements in the submatrix C, . Then 

(2-9) can be expressed as 

t2 - V(C(t2)) + min {v(C(tl)a2), V(C(tl)2)} (2-10) 

Suppose a principle partitioning process is applied to T in 

(2-7). 

T - 

Ta3    i  T(t3)   i             i            1 
rh)rT3"""!T(t2)iT(*i) 
pk)" \^ I 
I ^1) "" iT1 J 

(2-11) 

Let the branch capacity matrix in (2-8) be partitioned as 

C - 

taj jl(!3jJ_C(l2_)a5j C_(tj_)a3l 
[Ch)     1 C3        i C(t2)5   1^^1)5   j 

C(tl)a3,!C(tl)3|C(i=l)2   |C1 
L                 •                i                   i                 J 

(2-12) 

Let Naj K«f N, and II , be the subnets consisting of the vertices 

associated to the rows (and the columns) of T.., T«» ^7» aI1^  ^a* 

respectively. Also let N(S2)1 and N(S,)2 be the subnets obtained 

from the net N by removing every branch in the corresponding cut set 

S, of t, where l^S,)., contains N , and N(S,)2 contains N,. The 

subnets N^ and N2 can be in either l^S,), or N(S,)2. Hence K(S,)1 

and 11(33)p is the one of the following four subnets, 

0 N(S,)1 contains N , and N(S,)2 contains 1L, N2 and N,. 

2) N(S;,)1 contains N - and 1L, and N(S,)2 contains N2 and N,. 

10 



3) N(S-)1 contains N ,, H«» and N(S,)2 contains N1 and N,, 

4) N(S3)1 contains N -,, IL and N», and N(S2)2 contains N, only. 

Thus the corresponding cutset S, of t, is one of the following four 

cutsets. 
e 

CASE 1)    S    consists of the branches which are connected between a 

any vertex in N , and any vertex in one of IL, N2 and N,, 

CASE 2) S, consists of the branches which are connected between 

any vertex in either N , or IL and any vertex in either Np or N,. 

CASE 3) S consists of the branches which are connected between 
c 

any vertex in either N , or N« and any vertex in either IL or N,. 

CASE 4) S, consists of the branches which are connected between 

any vertex in any one of N ,, IL and IL and any vertex in IL. 

The branch capacities of the branches, which are connected between 

any vertex in IJ(S2). and any vertex in M(S-)0, are the elements in 0 at 

the intersection of Set-1 and Set-2. 3et-1 is the rows representing 

the vertices of N(S,)1 and Set-2 is the columns representing the 

vertices of N(S,)0. Therefore, the cutset S [mentioned above in 
2 c a 

CASE 1] is the sot of elements of C which are the intersections of 

the rows of C , (representing the vertices in N ,) and the columns 
a^ a^ 

of C,., C2 and C, (representing the vertices in IL, IL, and N,) in 

(2-12). 

V(Sa) - V(C(t5)) + V(C(t2)a2 + V(C(tl)a3)      (2-13) 

The outset S, [mentioned above in CASE 2] is the set of elements of C 
D 

which are the intersections of the rows of C ,, and C. (representing 

the vertices in N , and IL) and the columns of Cp and C, (representing 

the vertices in IL and N,) in (2-12). 

11 



v(sb) - v(c(t3)) + v(c(t2)a3) + v(cjt1)5) + v(c[tl)2)   (2-14) 

Likewise the values of S and S, (mentioned above in CASE 2 and 

CASE 3) are 

V(SC) - V(C(t5)) + V(C(ti)a3) + V(cJt2)5) + Y(C(tl) )     (2-15) 

v(sd) -v(c(t3))+v(cjt2)5) + v(c[t1) ) (2-16) 

t, is the minimum value of V(S ), V(S, ), V(S ) and V(S,)f t^ is equal to a 

S m ^{^  + min (V(C(*2)a3) + V(C(tl)a3>' V(C(t2)a5) + ^VVj 

+ ^\^)2)> v(c(ti)a$)
+ ^c(t2)5) + nc(t1)2), v(cjt2)5) 

WWJ] (2-17) 

From (2-17) V(C/t2\) can be find and also the subgraph U, can be 

formed. 

We can apply the principal partitioning process to T , in (2-11), 
a^ 

and by continuing the same procedure the branch capacity matrix can 

be obtained. The number of the steps depends on the order of T. 

1. Method of Eleaentary Matrices 

The method of elementary matrices [l], [5] requires a maximum 

of in(n-l) branches, where n is the number of nodes. Elementary 

terminal capacity matrix can be put into the following form 

d 
'1 

t „ t „ t .. t , 
n-1  n-1  n-1  n-1 

where t1 a tg s t, 2  2 tn-l 

12 

'n-1 

n-1 

n-1 

(2-18) 



Every elementary terminal capacity matrix is guaranteed to be 

realizable [3]* 

Figure 2-1 realizes an elementary terminal capacity matrix of 

order n with minimum total edge-capacity. 

If a terminal capacity matrix T of order n is partitionable as 

11  t   . . . t 1 
I    0    0                0   1 1 ^ ^ • • • ^ 1 

T-                   '    0    0 

i   0 0         0 ,                   1 

0       0                         0                         m                             ll 2                          1 

1    *Ä *«  •   •  •  x     1                                 j 0      0                       0     1                                                1 

(2-19) 

wher^ t - min. . (t. .) and 1, and T0 are elementary terminal-capacity 

matrices of order k and n-k respectively, T can be realized by a net 

as shown in Fig. 2-2. The two "linking" branches a and b can be 

placed between any two pairs of nodes. If the T matrix is partitionable 

into T,, Tp, .... , T elementary terminal-capacity matrices, 

realization is shown in Fig. 2-3. The number of branches required 

for this realization is at most 2n-p-2, where p is the number of 

elementary terminal-capacity matrices in a given T. 

Example 1. The realization of following terminal capacity 

matrix is given in Fig. 2-4. 

T - 

[O 14 12; 4   4444] 
14    © 12 1 4     4   4   4   4 
IIJ.2—©j.f. JL A-l-iJ 
4     4     4 |© 10 [6"  6   6 
4     4     4 '10    JUjU   6__y 
4     4     4 1*6     6 [©W 
4     4     4J6     6|8©6 

[4     4     4 ! 6     6|6   6 ®| 

(J-20 

\-b 



Fig. 2-1 Realisation of Elementary Terminal Capacity Matrix 

Fig. 2-2 Combination of Elementary Nets 

k 

/v__ 
t.» 

vm 

Im ¥ -o T2   0- 

Fig. 2-3 Realization Through Combination of Elementary Hets 

14 



Pig. 2-4 Realization of Eq. (2-20) 

2, Method of Successive Expansion 

The method of successive expansion [5] employes relatively few 

edges. The number of edges required by this method is exactly P +n-1, 

where P is the index of partitioning and n is ths number of nodes. The 

index of partitioning is the number of operations necessar:,- tc 

partition the matrix T into a form in which every diagonal submatrix 

is either of order two-by-two or one-by-one. 

In this method, first, the diagonal aubmatrices of the first 

partition are treated as nodes to form a ring, with each ring element 

equal to it , half of the capacity of first partition. To realize 

each diagonal submatrix, a new ring is formed and each branch in the 

new ring will have a capacity of j>t*  except one branch, which has a 

capacity of iCt^-t ) and this branch is shared by the new ring and 

the original ring as shown in Fig. 2-5. Each submatrix is treated 

as above except one case in which the submatrix is of order two so 

that the two branches of the new ring may be combined to form one 

branch. 

15 



Fig. 2-5   Combination of Ring Structures in the Process of Realization 

Example 2.    Realization of following terminal capacity matrix 

is given in Fig. 2-6. 

[Q 8   6 
8 (?) 6 

.6. .6. ®. 

1 u u u; u ul 
u u u | u u 
k    k   k' k   u\ 

u  u  u 
u  u u 
u u u 

0 io 6; u u 
10 Q 6 I u u 
6     6 ®Iu   U 

u  u  Ü 
u u u 

i   u u:(2) 8' 
U     U   U I 8 ©I 

(2-21) 

(a) (b) 

Fig. 2-6   a)    Realization of diagonal submatrices. 
b)   Realization of T matrix. 

16 



3. Decomposition of Terminal Matrices 

With the method of decomposition of terminal matrices [6] 

the terminal capacity matrix can be written as 

T - T1 + Tu (2-22) 

where t is uniform element in T and it is equal to the minimum 

element of t. .. Zero elements of T1 indicate where the minimum 

out-set will be in the realization of T1« Minimum cut sets of the 

realization of T correspond to the minimum cut-sets of the realization 

of T1. T matrix can be written the sum of uniform matrices, as 

T.I T ui (2-23) 

The TUi
,8 are realized and combined in such a way that all their 

minimiua cut-sets correspond to each other. 

Example 5,    We shall realize the following T matrix with the 

method described above. 

T - 

©7653 
7 © 6 3 3 
6 6 @ 5 5 
3 3 5 ® 5 
3   3   3   5 © 

T matrix can be written the sum of four uniform matrices, as 

(2-24) 

T - ^ + % + % + % 

17 



©3333 
3©333 
3 3 (D 3 3 
3 3 3©3 
3 3 3 3 ®_ 

(2-25) 

v- 
©0000 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 2 
0 0 0 2 (5) 

(2-26) 

0) 3   3   0   0~l 
3©5   0   0 
3   3©oo 
o   0   0 0 0 
0    0    0    0 0 

(2-2?) 

© 1   o   o   ol 
10 0    0    0   | 
0    0 0 0    0 
0   o   o 0 0  | 
oooo© 

(2-28) 

Realization of each T  matrix is given in Pig, 2-7 and realization 
ui 

of the T matrix is given in Fig« 2-3« 

18 



*r^% 
© 

15 

& 
1.5 

1.5 

® 

(D 

(D ® 
(a) (b) 

^ ® 

(3) 

(C) (d) 

Fig . 2-7   Realization of Tu    in (a), T     in (b), T     in (c) and Tu 

in (d) 

Fig. 2-8.    Realization of T matrix 
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III.    STOTHESIS OF OP.ISMTED COMI'IUIIICATION IIBT 

Several methods are investigated by Resh [8], Erisch and Sen [9]| 
c 

Tang and Chien [2], Hu and Gomory [12], Chou and Erank [10] for 

realizing oriented communication nets.    The method of Tang and Chien is 

given in the next section.    It applies to a three-by-three terminal 

capacity matrix.    In this paper the technique for the realization of 

a four-by-four terminal capacity matrices and its extension to 

higher-order ter ainal capacity matrices will be given. 

A.    SYHTHESIS OF TERPHNAL CAPACITf MA.THIX III THREE-NODE CASE 

The terminal capacity matrix is partitioned as 

T 

© 
t21 , '©'T^T 
'51 '32 I 

i 

(5-1) 

It can bo written as the sum of two matrices, T and T 

T - T + T. 

I® I *1 ©1^1 t1 

hiii©] ^ 1    Tc - .lu®!!1. r~— -|~ — -y  I '    I " 

L         •         '         - 
\! ^i I® 

where t' " "tij - "t-j ^ 0  for i / j 

20 



To realize T , we first realize the two-by-two submatrix (containing 

nodes 1 and 2) as in Fig, 3-1 a. Since the first row in T contains 

zero entires the only connection "between the subgraph shown in 

Pig, 3-1 a and node 1 should be from nodes 2 and 3 to node 1 as shown 

in Fig, 3-1b with branch capacities x and y. In order to realize T 

as in Pig, 3-1b the minimum cut requirements for T must be satisfied. 

We can obtain the following equations. 

min[(x+y), (x+tj3)] - t^ (3-2) 

niiii[(x+y), (y+tyj-t^ (3-3) 

or 

x - max [(t^-t'jMt^-y)] (3-4) 

y « max [(t^-t^Mt^-x)] (5-5) 

If we represent equations (3-4) and (3-5) on the x-y plane, we obtain 

two curves as shown in Fig,  3-2,    The intersection of these curves is 

(x0,y0) where, if t'., a t^, 

xo" ^r*^ ^"6) 

y0 - max [(t^-t^Mt^-t'^t^)] (3-7) 

ift^t^, 

x0 » max [(■t2i-t23)»Ct2rt5l+t52^J ^"8^ 

21 



The realization of oonstant matrix T   is a graph with constant 

cuts.    It is either a cycle oriented in either direction, or two 
• i 

cycles oriented in different directions.   Minimum cuts of T, T   and 

T   are idential, then conditions are satisfied in Theoren-3 . 

iU 

t; 32 

Fig,  5-1,    Realization of T ml 

t'- t' Ea.(3-5) 

Eq.(3-4) 

Fig. 3-2, Curves of Equations (3-4) and (3-5) 

22 



Fig« 3-5. Realization of a Constant Matrix 

Example 4» The following T matrix is to be realized; 

T 

[01 2    21 
| 5!©T 
[3i4©J 

(3-10) 

We may write; 

T ■ T   + T 

(P]o_o 
101 
l!2© 

L     ) 

®2 2 

2©2 

2  2© 
(3-11) 

The realizations of T and T are in Fig, 3-4a and b. The final 
c 

realization of T is in Fig. 3-5. 

©czb^d) 
Fig« 3-4« Realizations of T and T matrices c 
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Fig, 3-5.   The final realization of T matrix 

B,     SYSTHESIS OP TSSrUNAL CAPACITY MATRIX IK POUR-NODE CASE 

The terminal capacity matrix of an oriented coiimunication net 

containing four nodes can be partitioned as 

|©   \z 
KM© *1     *! 

1*41   \Z 
©     '54 
*43® 

(5-12) 

The form of the realization is given in Pig, J-^f where ■t:i4"
,ti-«~'''i* 

24 



Fig« 3-6» The form of the realization of T matrix 

In order to use the algorithms which will he given later in this 

section, the terminal capacity matrix must be in one of the following 

three forms. 

Form (1) t51 < t41 ; t^ <  t^ 

t32 < ^1 t  t52 < t42 

Form (2) t^ < t^ | t^ < t^ 

41 < t32 *  ^l < t42 

Form (3) t51 < t?2 ; t^ < t41 

^2 <  ^2 » i:42 < ^1 

Form (l) cai be realized with Algorithm-A to be given later in 

section 3-B-1» Form (2) and Form (3) can be realized with Algorithm-B 

and Algorithra-C to bs given later in sections 3-B-2 and 3-B-3t 

respectively. If the terminal capacity matrix is not in one of 

these forms, its rows and columns may be rearranged and put into the 

form of one of them. 
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The following conditions are necessary for the realization of a 

four-by-four terminal capacity matrix, using the algo.7ith.7.3 given 

later« 

^l ^ ^1 + ^4 + ^ 

t32 ^ t12 + t34 

^1 a t43 + ^1 

^2 ^ \3 + t12 

1« Algorithm A 

1) Determine x and y by writing the following equations, with 

the aid of Pig. 3-7: 

t51 - min [(x+y+t^), (x+*21+t34fV] {Wl) 

t52 - min [(x+y+t'4), (y+t^+t^)] (3-14) 

Which we obtain 

x - max [(-y+t51-t*4), (t^-t^-t^-t^J (3-15) 

y - max [(-x+^-^t C*^^"*^] ^-16) 

2) There are several sets of equations for determining z and k, 

choose proper case, use related equations and apply to Fig« 3-d for 

obtaining z and k* 

CASE 1: x+y < t-, 

t41 - min [(x+y+z>k)t (x+z+t^)] (3-17) 

t42 - min [(x+y+z+k), (y-»-k+t12)] (3-18) 
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Which we get 

s - max [(-k+t41-x-y), (t^-x-t^)] (3-19) 

k - max [(-w-t^-x-y), (t42-y-t12)] C5-20) 

CASE 2: x+y > t., 

a. x^t^ 

t41 - ain [(■♦kft43)t (z+t^+t^)] (3-21) 

■  - max [(-k+t41-t43)f (t^-t^-t^)]        (3-22) 

h. x < t43 

t41 - Bin [(z+k+t45), (a+x+t^)] (3-25) 

z - aax [(-k+t41-t45). (^r^JlO C5"24) 

c y ^ t43 

t42 - min [(z+k+t45)t (k+t43+t12)] (3-25) 

1c - max [(-^t42-t43)t (t42-t43-t12)J        (3-26) 

4. y<t43 

t42 - min [(z>k+t43). (k+y+t12)J (3-2?) 

k - max [(-^t42-t43)f (t42-y-t12)J (3-28) 
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Eq (3-/6) 

Eq(3-/5) 

Fiff. 3-7.   "Curves" of (5-15) and (5-16) 

kg     Eq (3-2oW3-Z6) or. 
(3-?« 

^"U. 
^(3-/9)0^(3-22; or, 

(3-24) 

Pig# 5-Q.    "Cun'ea" of (5-19) or (5-^2) or (5-24) and (5-20) or 

(3-26) or (5-28) 
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Proof of AlgorlthnHAt   Assums the form of realization as given 

in Fig« 5-6#    Using the nax-flow sin-cut theoren the follovlne equations 

can be written, 

t31 - min [(x+y+zfk),(x+w-t^),(x+y+t^,(x^t'^tJ4+t1)] (5-29) 

t32 - min [(x+y+a+k), Cy+k+t12),(x+y+t^, (y+t12+*^)] (3-50) 

t41 - min [(x*y+^k)t(a+k+t45)t(x+a+tj1)f(«.t45+tj1)] (5-31) 

^2 - «ia [(x+y+z+k),(z+k+t45)t(y+k+t12),(k+t43+t12)] (5-52) 

Algorith-a-A applies under the following cases, t-1 <t,. and 

t-g, t,2 < t41 and t.2. Then, fron equations (5-29) through (3-52) 

we can state that 

(a) x+y+z+k can not be min-cut for t71 and t-0 because it is 

in t.4 and t.. . 

(b) x+z+tl- and y+k+t12 can not be ain-cut for t,1 and t,« 

respectively because they are in t.1 and t-^ respectively. 

Then, the following two equations are obtained from (5-29) and (5-50) 

for t51 and t,2x 

t31 - min [(x+y+t'4),(x+t'1+t34+t1)] (5-55) 

t32 - min [(x+y+tj4),(y+t12+t^4)] (5-54) 

We obtain 

x - max [(-y+t31-t'4),(t31-t*1-t*4-t1)] (5-55) 

y - max [(-«^-t^fr^-t^-t^)]   ^ (5-56) 

We can solve the above two equations for x and y or we may use a 

graphical solution for obtaining x and y. 
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For the determination of z and kv there axe two cases to te 

considered; (l) x+y * t., and (2) x+y > t.,. These cases will give 

different sets of equations« 

Case-1) when x+y * t.^t automatically both x and y < t.,. 

So z+x+tl- * *¥^A^Z\9 tiien z+t45+*21 is elimina"ted fron (5-31). 

Also x+y+z+k < a+k+t., because t., ^ x+y, then z+k+t., is eliminated 

ftfom (3-31) because it can not be min-cut for t....    Thus, (3-31) 

becomes 

t41 - min [(x+y+z+k) .(x+a+t^)] (3-57) 

We can apply the sane logic to the equation (5-32)«    x+y < t,, 

so y < t.,, then z+k+t., and k+t.,+t12 
are eliminated fraai (3-32), 

where (3-32) becomes 

t42 - min [(x+y+z+k),(y+^t^jj (3-3a) 

from which we get 

z - max [(-k+t^-x-y^t^-x-t^)] (5-39) 

k - max [(-z+t42-x-y),(t42-y-t12)] (3-40) 

The solution for x and y is found as before« In order to obtain z and k 

we can use a graphical solution using (5-59) and (5-40)« 

Case 2) When x+y >t.,, we can eliminate x+y+z+k fr^n 

(5-51) and (3-52) because x+y+z+k >z+k+t.- then it can not be min-out 

for t.1 and t.p» Thus equations (5-31) and (5-52) become 

t41 - min [(z+k+t45),(zi+t45+t21),(x+a+t21)] (3-41) 

t42 - min [(z+k+t45),(k+t43+t12),(k+y+t12)] (5-42) 
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In this case x ^ t,, and y ^"t.,, and the ri^vt-hand sides of 

equations (3-41) and (>-42) are affected as follows: 

z^t., eliminates x+z+t21 from (3-41) 

x<t-, eliminates z+t.^+t^ from (3-41) 

y 2 t., eliminates k+y+t12 from (3-42) 

y < t., eliminates k+t.5+t12 ffcoa (3-42) 

and each case will give a set of equations for determining z and k. 

Example 5» We shall realize the following terminal capacity 

matrix with using Algorithm-A* 

'© 6|3 3 

10 11 jd) 6 

12 13 17 @ 

(3-43) 

l)   Applying the numerical values to (3-15) and (3-16) the 

following equations are obtained: 

x - max [(-y+7),(;-)] 

y - max [(-x+3),(2)J 

(3-44) 

(3-45) 

With the above equations and using Fig. 5-9t X"2 and y»6 are obtained« 

2) x+y^8 > t.,-7 then Case-2, also x < t.,-7 then Case 2b 

and y < t.,-7 then Case 2d» Applying the numerical values to (3-24) 

and (3-28) the following equations are obtained: 

z « max [(-l>5)f(9)] 

k - max [(-a+6)f(l)J 

(3-46) 

(3-47) 
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With above equations and using Fig« 3-10» z»8 and k«1 are obtained« 

Realization of T Is given in Fig« 3-11« 

I ^ 

\ 

N 

:   \ 

\      ■ 
\    x 

Fig« 3-9 Fig« 3-10 
(3-4b) 

Fig. 3-11« Realization of T matrix in (3-43) 
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Eicample 6,    We shall realize the following terminal capacity 

matrix« 

r® 
4 

5 I2  2"] 
©;2   2 

"9" 

L8 
11 P) 5 
8!5 ©J 

(3-48) 

The terminal capacity matrix can be put into Form-1 with 

changing row 3 by row 4# 

(3-49) 

© 3 12 2 
4 ©!2 2 

"8'"8"<|)'3 

9 11  "5 © 

Realization of (3-49) can be done with Algorithm-A, 

1) x - max [(-y+7),(3)] (3-50) 

y- max[(-x+7),(2)] (3-51) 

x»4 and y«3 are obtained from Pig, 3-12, 

2) x+y=7 > ^Axn5 and x <'b4- "then Ca3e-2b, y< t., then 

Case-2d, Applying the mamerical values to (3-24) and (3-28) the 

following equations axe obtained, 

z - max [(-k+4),(5)J (3-52) 

k - max [(-z+6)t(3)] (3-53) 

z-3 and k-4 are obtained from Pig, 3-13» 
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. (3-53) 

3-52) 

Pig. 3-12 Pie. 5-13 

Pig. 3-14. Realization of T matrix in (3-46) 

2, Alporitto-B 

1) Determine x and z by writing the following equations with 

the aid of Pig. 3-15« 

t31 - mln [(x+z+t^), (x+t^+t^+t.,)] (3-54) 
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t41 - min [(x+z+t^), («"t^+tg-i)] (3-54) 

Which we obtain 

x - max [(-z+t^-t^), C^jr^r^-*!)] (5-55) 

z - max [(-x+t4rt'1), (t41-t4rt^)] (3-50 

2) There sure several sets of equations for determining y and k, 

choose proper cases and use related equations. Use Fig. 3-16 for 

obtaining y and k, 

CASE-1: x+z ^ t12 

t32 - min [(x+y+z+k), (x+y+t^)] (3-57) 

t42 - min [(x+y+z+k), (z+k+t^)] (3-53) 

from which we get 

y - max [(-k+tjg-ae-z), (t$2-x-t^4)J (5-59) 

k - max [(-y+t42-x-z)t (t42-z-t43)] (3-60) 

CASE-2:    x+z > t12 

a, x ^ t12 

t32 - min [(y+k+t12), (y+t^+t^)] (3-61) 

y     - max [(-k+t52-t12), (t^-t^-t^)] (3-62) 

b, x <t12 

tjg - min [(y+k+t12), (x+y+t!4)J (3-53) 

y     -»ax[(-k+t32-t12), (t^-x-t^)] (3.64) 
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o.    z a t 12 

t42 - min [(y+k+t12)f (k+t12+t43)_ 

k    - max [(-y+t42-t12), C^a"*^"^?^ 

d,    z < t 

t42 - min [(y+k+t12), (z+k+t43)_ 

k     - max [(-y+t42-t12), (t42-z-t43)_ 

(3-65) 

(3-66) 

(3-67) 

(3-68) 

V VJUI 
•A Eq.C3-56) 

Eq.(3-55) 

Pig. 3-15.    ,,C\irvesM of (3-55) and (3-56) 
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' ■ ■ ■ ■  

Eq.(3-6o)o^t3-66>rJ 
(3-6?) 

Eq.(3-59JorJ(i3-62)or, 

(3-64) 

Fig. 3-16. "Curves" of (3-59) or (3-62) or (3-64) and (3-60) 

or (3-66) or (3-68) 

Proof of Algorlthn-B; Algorithm-3 applies in the following 

cases, t,1 
<^-z2  a21^ ^A2f ^M  < ^^2 an^ *42* •^rom ©«l^ations (3-29) 

through (3-32) we can state that: 

(a) x+y+z+k can not be min-cut for t,.. and t... "because it is 

in t,2 and t^g. 

(b) x+y+t,. and z+k+t., can not be min-cut for t,.. and t... 

respectively, because they are in t,2 and t.0 respe itively. 

Then the following two equations are obtained from (3-29) and (3-31) 

for tz, and t..: 31    41 

t31 - min [(x+z+t^), (x+t21+t34+tl)] 

t41 - min [(x+z+t*.,), (z+^j+^i)] 

(3-69) 

(3-70) 
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from which we get 

x - max [(-z+t^-t^), (t51-
t2rt34-ti)J        (3-71) 

z - max [(-x+t^-t^), (t^-t^-tg.,)] (5-72) 

We can solve the above two equations for x and z or we may use a 

graphical solution for obtaining x and z. 

For the determination of y and k, there are two cases to be 

considered:    (1)    x+z s t12 and (2)    x+z > t-«*    Tbese cases will give 

us different sets of equations, 

CASE-1.    When x+z s t1p, automatically x s t12 and z s: t12, 

t i i 
So y+x+t,,  ^ y+t12+t74 and k+z+t., ^ k+t-p+t.^i then y+t.^+t,.  and 

k+t12+t., are eliminated from (3-50)  and ($-32) respectively.    Also 

x+y+z+k ^ y-hk+t.p, then y+k+t^ is eliminated from (3-50) and (5-$2) 

because it can not be min-cut for t^p and t.p.    Thus,  (3-30) and 

(3-52) become 

t32 = min [(x+y+z+k),  (x+y+t^)] (3-73) 

t42 = min [(x+y+z+k),  (z+k+t^)] (3-74) 

Wliich we obtain 

y = max [(-k+t^-x-z), (t^-x-t^)] (3-75) 

k = max [(-y+t42-x-z), i*^'*'1^] (3-76) 

x and z are found before. In order to obtain y and k we can use a 

graphical solution using (3-75) an^ (3-76), 
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CASE-2,    When x+z > t12, we can eliminate x+y+z+k fron 

(3-30) and (3-32) since x+y+z+k > y+k+t12 and it can not be ain-crt 

for t,2 and t.g.    In this case x ^ t12 and z ^ t^.    Following the 

same reasoning given in the proof of Algorithm A, equations (3-30) 

and (3-32) become 

t32 - min [(y+k+t^), (y+t^+t^), (y+x+t*4)] (3-77) 

t42 - min [(y+k+t12)f (k+t12+t43), (k+z+t^)]       (3-78) 

y+t^+t,, ox y+x+t,. and k+t1p+t., or k+z+t., are eliminated from 

(3-77) and (3-78) respectively, and each case will give a set of 

equations for determining z and k. 

Example 7# We shall realize the following terminal capacity 

matrix. 

T - 

"© 5 [3 3 
4__©i_5 _3 
9" 10 I® "4 
_8 10 I 3 (2 

(3-79) 

The terminal capacity matrix is in Form-2, then realization 

can be done with Algorithm-B, 

1) x -max[(-z+8)l (4)] (5-80) 

z -inax[(-x+7)t (4)] (3-81) 

The solution of above equation is obtained from Fig. 3-171 X"4 a^d 

Z"4# 

2) x+z»8 > t,.2"5f x-< t12 and z < t-« tben Case 2b and d* 

With the numerical values in (3-64) and (3-68), the following equations 

are obtained: 
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y - max [(-k+5), (5)] 

k - max [(-y+5), (3)] 

(3-82) 

(3-63) 

Prom Fig« 5-18, y5 and k»3. Realization of the T matrix is given in 

n«. 3-19. 

we. 3-17 

Eq(3-8l) 

♦ k. 

\ 

V 

we. 3-18 

1^3  £q.(3-83) 

 *) 

Eq.O-«) 

Pig. 3-19. Realization of T-matrix in (3-79) 

40 



3. Algorithm C 

1) Detexoine x and k from the following equations. 

x - tj^^M"*! 

lc " Uz'^'^z 

(3-84) 

(3-85) 

2) Detexoine y and z by writing the following equations with 

the aid of Fig. 3-20: 

t32 - min [(x+y+z+k)f(y+k+t12)l(x+y+t54)l(y+t12+t*4)J   (3-86) 

t41 - min [(x+y+z+k),(z+k+t45),(x+z+t^),(z+^j+t^)]   (3-87) 

Which we get 

y - max [(-z+t32-x-k)l(t52-k-t12),(t52-x-t34)t(t52-t12-t*4)] 

(3-88) 

z ■ max [(-y+t41-x-k) .(t41-k.t43), (t^-x-t^ ) .(t^-t^ )] 

(5-89) 

^Z 

t^r^i*ti 

Eq.(3-89) 

ttfk-t,. 
Eq.(3-88) 

Pig. 3-20. "CurveE,, of (3-88) and (3-8?) 
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Proof of Algorlthm-C; Algorithm-C applies under the following 

cases, t,1 < t^2 ai1^ t.*t  t.2 < t,2 and t.1# From equations ($-29) 

through (3-32) we can state that 

(a) x+y+z+k can not be mln-cut for t,1 and t.p because it is 

in t,2 and t^. 

(b) x+y+t,, and x+z+tp-i can not be min-cut for t?*  because 

they are in t,2 and t... respectively, 

(o) y+k+t12 and z+k+t,, can not be min-cut for t.p because they 

are in t™ and t... respectively. 

Then the following two equations a;?e  obtained from (3-29) and 

(3-32). 

t31 " x+t21+t34+t1 ^'90^ 

V " k+t43+t12 ^-^ 

then 

x - t51-t'1-t;4-t1 (3-92) 

k - t42-t43-tl2 ^'9^ 

For the determination of y and z, the following equations 

axe used« 

t52 - min [(x+y+z+k)f(y+k+t12),(x+y+tj4),(y+t12+t54)J (3-94) 

t41 - min [(x+y+z+k),(z+k+t^),(x+z+t21),(z+t^+t^ )] (3-95) 

Which we obtain 

y - max [(-z+t32-x-k)t(t52-k-t12)f(t32-x-t'4),(t52-t12-tj4)J 

(3-96) 
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z - max [(-y+t^-x-^.Ct^-k-^^.Ct^-x-t'^.Ct^-^j-t^)] 

(5-97) 

z and k axe obtained before, then in (5-96) we have three expressions 

(tj.p-k-t.jp, ■t32~x"t^4 ar1^ t;52"*12~*54^ which telong to the constant 

side of (3-96)« Choosing the maximum of the above three expressions 

two axe eliminated. Also in (3-97) choosing the maximum of the 

constant expressions two are eliminated. After the above simplifications 

two equations are obtained for determining y and z, 

Example 8«: We shall realize the following terminal capacity 

matrix« 

T 

© 3|2 2 

5 (2)l 2 2 

8 11 j2)5 
9 8 j 4 Q 

(3-98) 

The terminal capacity matrix is in Form-3f then the realization 

can be done using Algorithm-C. 

1) x-0, k-1 

2) y - max [(-z+10)f(7)f(8),(4)] (3-99) 

z - max [(-y+8)f(4),(6)f(2)] (3-100) 

which we can write 

y - max r(-z+10),(8)J 

[(-y+8).(6)] z B max 

(3-101) 

(3-102) 

From Fig. 3-21 y«8 and z»6 are obtained. The realization of T matrix 

io given in Pig, 3-22, 

43 



*z 

y=8,zs6 

r      i      •■ -    *      ■       t—i 

Fig.  3-21 Pig, 3-22,    Realization of T matrix 

4»    Dominant Subnatrix Partitioning of T Katrices 

The realization technique for the low-order case can be applied 

to the higher order T matrix if it can be partitioned, by rearranging 

the nodes, in the following manner: 

a) Each submatrix corresponding to a sub-collection of nodes 

lying along the diagonal line is square« 

b) The row of connection node in each diagonal aubmatrices 

contains elements with values no smaller than the value of any element 

in the column of T matrix after treating each diagonal xubmatrix as a 

node, where each column corresponds to a node which stands for 

diagonal submatrix,    A connection node is a node in each diagonal 

submatrix which provides connection with the rest of the net, 

c) The column of a connection node in each diagonal submatrix 

contains elements with values no smaller than the value of any element 

in the row of T matrix after treating each diagonal submatrix as a 
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node, where the row corresponds to a node which stand- for diagonal 

submatrlx« 

These conditions are referred to as the "dominant conditions'* of a 

Tnnatrlx. 

A T-matrix satisfying the dominant conditions Is realizable 

If [l]i 

1) Treating these submatrlces along the diagonal line as nodes, 

the matrix T Is realizable, 

2) Each submatrlx along the diagonal line is realizable* 

Example 9: We shall realize the following terminal capacity 

matrix« 

f®   6   3   31                     I 
1   5   ©1   3 ' 

10   IT © 6 '          1           '           1 
i2 i3 Y0;              ! 

1 

i         2        ' 9  IT m a           i 
i                     ;8    8   501 

1 

•                         '8    10      3   (g) 

2        : 

5          ;         4          |          2 Wi1 
8   TT   ©    5 

I 9   s T (g 

(3-105) 

The T-matrix may be written as 

(5-104) 

s 4ir@ 

A, B, C and D are the diagonal submatrlces in the original T-matrix« 
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The realization of the T matrix Is shown In Fig« 3-241 where 

A, B, C and D are the vertices* The realizations of A, 3, C and D 

were done In Example 3 through g respectively« The final realization 

of the T-oatrlx Is shown In Fig» 3-23« 

The realization of (3-102) can be obtained using Algorithm-C. 

1) x-0, k-1 

2) y -max[(-z+4),(4)] (3-105) 

z « max (-y+4)f(4) (3-106) 

From Fig. 3-23 y"4 and z-4 are obtained. 

AZ 

Fig. 3-23 



Fig. 3-25,    Realization of T-matrix, 
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5«   How Chart for Computer Prograamlng 

li» «"jl I »'321 
*&*!«» ^jtt^jtt, 

\        ti,, <.t32    ] 

t^ < t<,i 
131 <ti»2 
tjz^t*! 

^■«((-y+tj.-ti),(WrVr^)) 
y^mMc((-x-»t3f U)t(tJt-t,2-t3V)) 

x*-max((-«♦tjrtjl),(tj.-t/.-t^-t,)) 
«4-m«c((-X4t4-t«),(t,,,-ytj, )) 

-^(^^.2   ) 
«*-inÄX( (-k+t^-x-y), (t4rx-t«()) 
k*-Bax( (-z»t42-x-y) t (^z-y-t(2)) 

y«-m*x( (-k*t,rx-B), (t,f x-tj^)) 
k vBtfx((-y<-t4f x-g), (t^f B-t4?)) 

1 I 

k*-m>x( (-aH^-Q t (y V t)2) t (yy. t,g)) 

1 
y^-maxj (-k*t jrU (W Vt|4), (Wx-tjO) 
k^m>x( (-y»V t,2) t (t^t,,-^), (yg-t, 3)) 

1 
r-yti.-tfc.t, 

» ' 

y*.iux((-.+t,rx-k),(Vk-tl2)t(tjrx-tM)t(tjfta-t;4)) 
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IV. COIICLUSIOH 

The realization of a terminal capacity matrix with oriented 

branch capacities is very complicated when the number of nodes becomes 

large« The techniques given in this paper will be useful for solving 

more complex communication system problems in practice« The given 

method can be extended to cover higher order cases without difficulty« 

The technique presented is effective for the following reasons: 

(a) The number of nodes in a subnet is increased compared to that in 

earlier methods, (b) Easy for hand calculation« (c) Adaptable to 

computer progranins» The following problems are suggested for further 

studies: 

1) To obtain a necessary und sufficient condition whioh i.3 easy 

to check on a given terminal capacity matrix, 

2) To adapt the realization techniques for the nonunifona 

cost function with minimum cost. 

3) Write a computer program for the flow chart presented in 

this paper. 
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