THE BIAEFRTMEEAT FLITER
com compacts FSomr-6480
peorect ro:
COMTPACTCR.

ENOEN TIMLI
PROTEN EUPDULEOS:
suemsinin bate

NR-015-801
Figh Altitudo Obeorvatory of Harvard Daiversity and Univeraity of Colorado, Eoulder, Coloredo.

Strailea of Solar Corona
Joim W. Evans Walter Orr Roberts

10 December 1948

SPECIAL NORE:

This report sumarizes the results of a long-extended sories of investigations conducted by Dr. Evans at the High Altitude Obeerrajory. His work kas been done in addision to his contract uctivities undor AMc contract LI9-122 ac-17 and OIR contract 780nm-64601. It is impdesiblo to consider this research the direct result of either contract, yet both contribated in part, to the suphort which the High Altituic Observatory has given Dr. Evana. in addition, the results of the report are directly pertinent to cots contracta, so that this roport is belig subrattod to the full distiribution listo of both contracting agencies. A titio poge cppropriato to oach contracting agencs procedec this page.

In eddition, this roport will be distributed freely from the Figh Alititude Observatory with no titile pese. The report will also apreer shorily as a paintinhod uticle, probebly in the Joumal of the optical Societr of Aserica.

Abstract

Tha basic principles of birefringent filtor operation are briefly disusised and reforencos given to papers which discuss the theory. Off-3xis offects are investigated as well as fleld of viow IImitations, and mothets for extording the field of vic: aro considerod. Tho split clement filter is described; it uses only half as mary polarizers as a sonvontionn filtor, after tho first polar iuntion. Wave longth ediustmont possibilities are oveluatad for conventional and oplit elewent Ejiters. The usefulness of various cryotal watorials is msnifionod. Finelly, the polarisation interfercosetcr is discuesed as o, woy of eccorplishing the narrou-band trensmizsion of on imposoibiy thick birofringent flltor clanont, severnl poosibie forms of interferometer are mentioned.:

ovicine
Page
I. Basic Birefringent Filter Design
A. Introduction 2
B. The Simple Bireiringent Filter 2
C. Off-Adis Effecte in Simplo Filtera 8
D. Ly-tob idia Flald Filters I4
II. Recent liodifications of the Birefringent FHlter
A. The Split Elenent Filter 18
B. Filter of Adjuetablo Wavo Longth 22
III. Matorials and Applications
A. Materiala irr Birefringent Filters 33
B. Polariaing Interferameior Filtors34
IV. References 38
$\geqslant * * *$
This is a pre-publication information copy of this report. Please do not publish abstracts or excerpts or otherwise repronuse this article or parts of it without consulting the author.
I. BASIC BIFEFRINGENT FILTER DESIGMS

A. Introduction

During the past few years the birafringent filtor has proved an effective tool in astronomical research. Its utility, however, is not conflired to astronouy and the purpese of the present paper is partiy to bring it to the attantion of imvestigators in otber fields.

Briefly, the ifrefringent fflter serves the purpose of a morcochrouator over an extencioi ilield. It can be designed to transmit a wave iength bani of any desired width (down to a fraction of an angatrom) contered at any selected vave length. It is used vary moch liks ars ordinary glase or gelatin filter in of ther a collimatod ir a converging beam of iigit, but uith some limitation in field sise or focal ratin, depending on type of construction, material, and band vidth.

The invention of the ifrefringout filter is one of the many importapt oontributions of the French astronomer, Bermard Iyot ${ }^{10}$, in inaterumental astronowy. He first pubLished the basic principles of its operation in 1933. Obuan 2^{2} indapendentily invented the filter, and in 1938 constructed une flrst one to be used for solar observations, with a transelsaion band about 40 angatroms wide centered on the Haline. With it he succeeded in seeing and photographing the brighter promenonces, although it was ovident that a moch sharper band would be necessary for the best results.

In a later paper Lyot 3^{n} has given a very complete diacussion of the history, theory, and construction of birefringent filters. For the benefit of readers to whom his papers are not readily available, the present paper reviews anough of the elementary theory to suffice for the design of filters of any feasible characteristics. The remainder of the paper is a discussion of newer developments which serve to aimplify the construction of the filters and extend their field of usefulness.
B. The Simple Airafringent Filter

Sereral forms of the blrefringent. filter are possible, differing in width of field and complesity of construction. They all depemi, horsver, on the interfermee of polarised Iight transmitted through layems of birefringent crystal in the direction perpendicular to the plane of the optic ax:\%,
if the crystal is biaxial, or any direction perpendicular to the optic axis if the crystal is miaxial.

Since we can regard the miaxial crybtal as a degenerate Beaxial crystal, most of the folloving aiscussions will consider only the blaxial case. Let ϵ and ω be the extraordinary and ordinary indices or refraction of any miaxdal arystsi 1 and a, β, γ be the amallest, interwediate, and greatest principal indices of refraction of a blaxial crystai, respectively, any expression for a biaxial crystal is valia for a maiasial crystal if one of the following pubsititutions is made:

$$
a=i, \quad \beta=\pi, \quad \gamma=\varepsilon \quad \text { if } \in=\omega>0
$$

$\boldsymbol{0 r}$

$$
c_{0}=\epsilon, \beta=\omega, \quad \gamma=\omega \quad \text { if } \in-\omega<0
$$

Finless otherwise spocificd the diroctions of vibration \%if 1ight for uhich the refractive indicee are α, β and $\%$ efill be referred to as the a-axia, β chitian an γ wads.

T".e quantity μ is definea by

$$
\mu=r-a
$$

The term "rotardation" will be used to ixcicate a peth difforence in terms of wave langths.

Ior brevity, tie diwaction of vikreition of light trensm mitited br a polarizer (prism on filn) ufll be referred to es the exis of the rolarizer.

Conolder a blocle of sone birefringont crystal, bl in Pigure 1, cut with its suxiaces nomel to its β-axirs. Let light plone polarized at an angle or 45° to the c-exis onter the crystal aiong the β-exds. In the crystel the light cividos fato two componentr polerized with vibuatione pricislal to the
 On energing from tine crystal the two componenta heve therefore a relative retaxiation of ris sivas by:

$$
\begin{equation*}
n_{1}=\frac{Q_{1}}{n} \mu \tag{2,1}
\end{equation*}
$$

 and a la the waite length of the Inglt.

If ney the Tight traverees a palarivec, PI, (whioh may No aither a fifcol or ainilar prism, or a filin polarizer) with its axis parallal to the vibration plane of the entering light, the two components interfere. The transmission, T_{1}, of the B1, P1 combination is:

If white light traverses the combination, the spectrum of the ausergent light consists of regularly spaced alternate buright and dark bands at wave lengtins where 31 is alternately integral ard balf integral. The transmisaica as a funotion of wave length is ropresented by curve a, FH gure 2 .

The wave leagth interval botween succoseive bright bands is ixversely proportionel to the thleknoss of tha crysial. It is given approximataly by setting $\Delta n=1$ in the equations

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda}=\frac{\Delta n}{n} \frac{1}{\frac{\lambda}{\lambda}-\frac{\partial \lambda}{\partial \lambda}-1} \tag{2.3}
\end{equation*}
$$

Ve zor cia a cocond exyatel, by, and a polarizer pp oriented perallal to b_{1} and p_{1}. If $d_{2}=2 i_{1}$, the trazemiesion of the $b_{2}, 72$ corioinaition, Fepresented by sucve b, Ilewre 2, iss

$$
\begin{equation*}
T_{2}=\cos ^{2} \pi n_{2}=\cos ^{2} \pi 2 n_{1} \tag{2.4}
\end{equation*}
$$

 showi in ensve C, Figure 2, is thereforat

$$
\begin{equation*}
T_{12}=\cos ^{2} \pi n_{1} \cos ^{2} \pi 2 n_{1} \tag{2.5}
\end{equation*}
$$

a infin crystal alemant b_{3}, with $d_{3}=2 s_{2}$; fallosed by the polariver, P3, has individual transaisaion shown in curve d. The transmiesion of the assenbly, bl to p3, is then represonted of curve 0, Figure 2.

It is ovident that further cryetal elemonts and polamizers can be eddod. The result is the basic type of birefringent filiter shich will be tormed tho simple filter. It is comprised of e serios of units, each conalsting of a plane parallel birefringent alemant. (bielement) fallowed by a polarizor. All b-flements have swfacea notmai to thoir β-acess and are monnted with their a -axos parallel. All polamivecrs have thefr azes parallel to the vibration plane of the entering polarized light at 45° to tho α-axer. The thicinness of the kth b-elenent ie anch that

$$
\begin{equation*}
n_{n}=2^{1-1} n_{1} . \tag{2.6}
\end{equation*}
$$

a) $b_{1} p_{2}$;
b) $b_{2} p_{2} ;$
c) $b_{2} p_{1} b_{2} p_{2}{ }^{3}$
a) $x_{3} p_{3}$;
o) $b_{2} p_{1} b_{2} p_{i} b_{3} p_{3}$

The spectrum of light treansmitted by the filter comsists of a sorios of videly spaced narrow bunds. Their soparation is equil to the coparation of the trancmisaion masime of the thimsst elempat alone, shile their affective width is the half width of the maxima of the thickest element alcuis. For palarized entering light, the transmisain of a fyltor of $\&$ belemonts (neglecting absorption in the materfal of the filter) laz

$$
T=\cos ^{2} \pi m_{1} \quad \cos ^{2} \pi 2 n_{1} \ldots \cos ^{2} \pi^{1}-1_{n_{1}} \quad \text { (2.7) }
$$

The quantity n_{1} mast, cf corrse, be an integer at the wave Iength of the desired transmiasion band. Ita magnitude should be mall enough to soparate the adjacent bands aufficiently to permit the isalation of the selected band by means of ardinary filtors.

It can readily be shown that the total transmission of flux in an equal energy spectrivin is 2-1, Negardleas of the width and sepparation of the hands, the total residual flux transmitted between successive prisoipal mavima in a filter vithl> 3 is a substantiallv constani fraction (about 0.il) of the Ilux transadtted in a single band.

The filter at the Climax, Calcredo rta:iow of the High Altitude Obearvatory of Harvari Unirecsity aind the Oniveraity of Calorado has been in satilafactory operation in the obsisp. vation of solar prominences aince carly 1943. It is a simple filter of ais quartz elements with $n_{7}=23$, n6 $=736_{p}$ $d_{1}=1,677 \mathrm{~mm}$ and $d_{6}=53.658 \mathrm{~mm}$ and has a frensmisalem bavi of offective wiath 4.1 angatroce centered on the 110 Iind of hydrogen ($\lambda 6563$) st an operating tomperature of $35.5^{\circ} \mathrm{C}$. Its purpose is to aliminate the overpowering acattered light, (contimons epectrun) near the limb of the em while atili treansaitting the $F a$ emission from the mrominences, which are otherrise completely invisible.

In practice, a filtor should eithor be cemented or im mersed in ofl to avoid multiple reflections. Initial polarisation is usually obtainod by momting a poilarizer in front of the first b-aleuent with ito axis parallel to the axse of the other polarizers.

In any birarmigent crjstal both the geomotricel dimereions and μ are functions of temparature. Tha reanlt is a moll shift in the wave lengths of the transmission madina when the temperature cinanges. In quartz, fris instance, $\frac{\Delta \lambda}{\Delta \gamma}=-0.66$ angatiom per degree contigrade in the red.

Hence the vemperature of the filter ranst be contralled with sufficient accurecy to leop the maxingm excursions af wave length uithin tolerable limits, A istal renge of two tenibs of the effective kerd widin is arall ewough fos moat praiposes.

C. Ofi Axis Effects in Siriplo FY7ters

It is avident that when light trrivensos a siuple ffitur. at an angle to the instmenantal axis; the lichi pith through the hirafringent material and the vaiscity citiforsnse of the fast and sloy wares are altersd. Thu fiffact is eisind; to alter the value of I_{1} in equetior (2.7).

Iyot has salculated the off axis effeot sor ligit incidint in the two principal planes normal te the a art r-asis in 1 a blatial cryatal cut with its surfaces normel ti the faxio. Altbergh the equations are not ornot, elirce tormo of the fourth and hiecher degroes in ϕ (the ancle of incidenco) are noglected, tho aproosdmation is exacilent for the modeante argles of inciceres encountorod in the uso of ifltors.

Iyot'a equaticms can be very aimaiy generalized to give the off exis effocte for light incidett in eny plane normal to the aurface of the crystal (arss parallel, thorofore, to tho β-axds). Fleme 3 reprosente a kiock of biaxial crystal with its a, β and r-ases in the directions indicated. Let polarizod light with vikretions in a plano at 450 to tho a-axio antor the cryetal in tho direction (ϕ, Θ). Horo ϕ s.c ting angle of incidence and θ is the aufurth of the incident plano measured fren the a-axis. The lifin" emorges frem the erystel in the diroction (\varnothing, Θ) in tro polarized corronents ulth vitraticns rery closely parailel to the a and r-axes. They have a relative retardation, n, which is to be dotarinnod as a imetion of ϕ, θ, and n_{c} (where ${ }^{2} 0$ is the returdation for light entering the crystal from the cirectiou $\phi=0$).

A consideration of the isochroutic surfaces of biaxial crystals 4^{4} Ieuda to the conclusion thet the equations of the cruves of constent retardation, 2 , (written in terms of 86 anc θ) repreesut inpgrivilac if terms in the fourih and highor powars of \varnothing are neglected. Their transverse ases are along the a-axis for $\frac{n_{0}}{n_{0}} \gtrless 1$ and along the r-axis for $\frac{n_{0}}{n_{0}} \leqslant 1$ for crystals in wich cr $-F^{2} \geqslant 1$. The asymptotes aro the Innes

$$
\begin{equation*}
\tan ^{2} \theta=\frac{a}{r} \tag{3.1}
\end{equation*}
$$

Lyot's equations give the squares of the aemintranswaree axes, which ares

$$
\begin{align*}
& ⿻_{0}^{2}=\left(x_{0}-1\right) \frac{Y}{x} \text { in the plane } \theta=0 \\
& \sigma_{2}^{2}=\left(\frac{x}{2}-1\right) \frac{a}{K} \text { in tix piane } \theta=\frac{T}{2} \tag{3.2}
\end{align*}
$$

whore

$$
\begin{equation*}
k=\frac{\alpha \gamma-\beta^{2}}{2(r-\alpha) \beta^{2}} \tag{3.3}
\end{equation*}
$$

We have, therefore, sufficient information to defteryera ioph seth of hyperbolsa, wifich can be reppesentea by a mingla equations

$$
\begin{equation*}
n=n_{0}\left[1+\phi^{2} k\left(\frac{\cos ^{2} \theta}{r}-\frac{\sin ^{2} \theta}{a}\right)\right] \tag{3.4}
\end{equation*}
$$

The exact expression isr n in indaxial erywtele sa seadify derrived by a streightionmard application of liuggens' miseeficis and analytic gecmetry. Consider a plens parallal masaial caryatal in a rectangular x, y, z coordinats syatan rith the origin in the firnt amface. Let it be oxisuted sith ita momo fricas normal to the s-adis. Let the maxds be parallel to the oryatal optio ads (1.0., parallal to tho a-axiy in regative crystale or to the r-axis in pooitive cryotrin). Chooce whitt. of time and ciatanco to make the valowity of light in apsee unity. The equation of an entering plane light wave is thens

$$
\begin{equation*}
a z+b y+a y-t=0 \tag{3,5}
\end{equation*}
$$

shere a, b_{μ} and 0 are the direction cobines of the normal to the save fromt and t lis the time.
 initiates a secardery mavaiet which exparder into an alispanis with the equation:

$$
\begin{equation*}
5 x^{2} x^{2}+m_{x}^{2} y^{2}+y^{2} x^{2}-t^{2}=0 \tag{3,6}
\end{equation*}
$$

whore 5 , Ind vare reciprocaly of the welvoltise along tha x, y and z directions, roapitetivulije

At a given instant, that ruxtign as the flace who with is inside the cryetal coincides with a winng tanetert to the

$$
\begin{equation*}
x_{1} \zeta^{2}+y_{2} n^{3}+x_{y} y^{2} \ldots 4 x \tag{3,7}
\end{equation*}
$$

The lines of intersection of the planes of equations (3.5) and $(3,7)$ with the first axfface of the crystal are respectivaly:

$$
\begin{equation*}
a x+b y=t=0, \quad z=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{y} \zeta^{2} x+y_{1} y^{2} y-t^{2}=0, \quad x=0 \tag{3.9}
\end{equation*}
$$

These two lines must coincide, Hences

$$
\begin{equation*}
x_{1}=\frac{a}{\zeta^{2}} t y \quad y_{1}=\frac{b}{\eta^{2}} t \tag{3.10}
\end{equation*}
$$

Since z_{1} must be a point on the eilipsoid of equetion (3.6), we fint for zl:

$$
\begin{equation*}
s_{I}=\frac{t}{v} \sqrt{1-\frac{a^{2}}{\xi^{2}}-\frac{r^{2}}{\eta} \frac{1}{2}} \tag{3.11}
\end{equation*}
$$

Equations (3.10) and (3.12) define the path of a ras through the origin.

Let d be the thicimess of the crysial in the z direction. The time, t_{1}, when a roy through the origin reaches the second surface 19, then:

$$
\begin{equation*}
t_{1}=\frac{d v}{\sqrt{1-\frac{z^{2}}{b^{2}}-\frac{b^{2}}{y^{2}}}} \tag{3.12}
\end{equation*}
$$

On errerging from the crystal the plane wave is parallel to the entering wave, with the equation:

$$
\begin{equation*}
a x+b y+c z-(t-\Delta)=0 \tag{3.13}
\end{equation*}
$$

At time, ty, this plane must contain the point (xI, $\sqrt{\prime}, \mathrm{d})$. Hence

$$
\Delta=t_{1}-\left(a x_{1}+b y_{1}+c d\right)
$$

The aistence, p, of the plane wa a of equation (3.13) from the origin is therefore:

$$
\begin{equation*}
p=t-\Delta=t-t_{1}+a x_{1}+b y_{1}+d d \tag{3.14}
\end{equation*}
$$

α_{0}, Erom cquations (3.10) per (3.12):

$$
\begin{equation*}
p=t-d\left[v \sqrt{1-\frac{2^{2}}{\zeta^{2}}-\frac{b^{2}}{\eta^{2}}}-c\right] \tag{3.15}
\end{equation*}
$$

Hor, for the extraominary uave

$$
\zeta=\omega, \quad \eta=v=\epsilon
$$

and for the oxdinary wave

$$
\zeta=\eta=V=\omega
$$

Hence, the distences of the extracrinary enca owinary vaves from the origin after their trevorsal of tha cryatal can be urittnn, respectively:

$$
\begin{align*}
& p_{\epsilon}=t-d\left[\epsilon \sqrt{1-\frac{a^{2}}{\omega^{2}}-\frac{b^{2}}{\epsilon^{2}}}-c\right] \tag{3.16}\\
& z_{w}=i-d\left[\omega \sqrt{1-\frac{a^{2}+b^{2}}{\omega^{2}}}-c\right]
\end{align*}
$$

The iutardation, n, is oinoly $\frac{P_{\omega}-P_{\epsilon}}{\lambda}$, or:

$$
\begin{equation*}
n<\frac{n_{b}}{\epsilon-\omega}\left[\epsilon \sqrt{1-\frac{a^{2}}{\omega^{2}}-\frac{b^{2}}{\epsilon^{2}}}-\omega \sqrt{1-\frac{a^{2}+b^{2}}{\omega^{2}}}\right] \tag{3.17}
\end{equation*}
$$

Equation (3.17) is the exact axpriesion for the off axis ovfect in undorini crystale. It is roudily reduced to the nowe conveniont apmoximation cis oquation (3.4). Expancing the raterle, and woglectivg fourth and higher powers of a

$$
\begin{equation*}
n=\frac{n_{s}}{\varepsilon-\omega}\left[\epsilon-\omega-\frac{\varepsilon a^{2}}{2 \omega^{2}}=\frac{1}{2 \epsilon} b^{2}, \cdot\left(a^{2}+b^{2}\right)\right] \tag{3.18}
\end{equation*}
$$

The dilraction conines an bs apieosel in tams of 0 and θ by the trincionstions

$$
a=\sin \phi \sin \theta^{\prime} \quad b=\sin \phi \cos 6^{*}
$$

hare

$$
\theta^{\prime}=\theta \quad \text { if } \quad-\omega>0
$$

and

$$
S^{\prime}=0+\frac{\pi}{2} \quad \text { if } \epsilon-\omega<0
$$

Equation (3.18) becomes, thess:

$$
n=n_{0}\left[1+\frac{x^{2}}{2 \omega}\left(\frac{\cos ^{2} \theta^{2}}{\epsilon}-\frac{\sin ^{2} 2^{2}}{12}\right]\right.
$$

 crystals.

 crystals ane considered.
 isochromatic surfaces in the derivation of on s does not lead to an exact result, since tiers sire daxdyad of the inexact asenaption that the two components ax lift
 cal paths.

The maximum permissible angle of trotidenee in the cimex filler in the $\theta=\frac{\pi}{2}$ plane is

$$
\varnothing=0.025 \quad \text { radian }
$$

If we require that over the field

$$
\left|n-n_{0}\right| \leqslant 0.1
$$

for the thickest belenent.

D. Luotis Hion Fiald Finters

The maxisen total inux from a ghyen ligit givuse thet sam be eqpeessed through a filtser is roughiy rroportioxal to ihe

 of ayailaile binatringent cryotals, and it ia tharstore typorm taut to find mann for obtaining large ftelits. ita mont obo wious aforise is to flud a bisefringent material for uhicit \&
 which zan mailatile in useful sizes of optical quaifiy, thes io a jeclioter possituility which should be investigated further.

Lyot** hes deacribed three vide flala filtare sith conpormi alemesets mede or availeblo matarials. They will be cefarreci to as Lyot'a flrst type; socond type, and thirif trys tillters.

The first tope filter differs from tino simple filtor in having aach b-alerent divided into two equal halves by a mert perpexiticular to the β-axis. The second half of sach elo-
 two coripamente aze aroesed. A ryilf wave plate is inserted Betuesa the coxprovienta uith its amaxis at 45° to the a-asmes of the thes. it seryes to notete the pianos of polarisation 90". Hight which enterg the first component fron the direction

$$
\begin{aligned}
& n=\frac{\lambda}{2}\left[n(\phi, \theta) * n\left(\phi, \theta+\frac{\pi}{2}\right)\right] \\
& =\frac{1}{Q^{2}} \pi\left[1+\phi^{2} k\left(\frac{\cos ^{2} \theta}{\gamma}-\frac{\sin ^{2} \theta}{\alpha}\right)\right] \\
& +\frac{1}{2} a_{v}\left[1+\omega^{\alpha} k\left(\frac{\sin ^{2} \theta}{r}-\frac{\cos ^{2} \theta}{a}\right)\right]
\end{aligned}
$$

∞

$$
\begin{equation*}
\mathfrak{a}=a_{a}\left[2+\frac{z^{2}}{2} \frac{k}{2}\left(\frac{1}{\gamma}-\frac{1}{4}\right)\right] \tag{4,1}
\end{equation*}
$$

Inotis flrat trye filter, unifike the alrule filter, can be naed onjy over a suall range of wave lengths. If the rave length difiers greatily fron the optision for which the half wave plates are maie, the residual light between transulission bands inerzases at the expeni:e of light in the bands. The adied realiual Iight appears superposed on the fleld in the form of faint hyperboile iningos very similar to the fringes produced by the equivalent sinplio filiter. The fringes are lines of constant reteriation, a^{2}, given by

$$
\begin{equation*}
n^{\prime}=\frac{n_{0}}{2} \leqslant \phi^{2}\left(\frac{1}{r}+\frac{1}{\alpha}\right) \cos 2 \theta \tag{4,2}
\end{equation*}
$$

If, horrover, the filiter is sither angi for one weve length
 the different spectral repions, fty pariomance is ifight setisiectory. Tifis is one of the many inazknces whore the deralopment of an achroratic half wave plate would be very x

Let mi and a_{2} be the retardationg aue to the simet ant gecond compononts for 14 ght exterimg from ting dirgeticn: φ ax 0 . The retariation for tho assembled elenent is theme

$$
\begin{aligned}
& \left.n=r_{1}\left[I+\phi^{2} x_{1} \frac{\cos ^{2} \theta}{H_{1}}-\frac{\sin n^{2}}{0_{1}}\right]\right] \\
& +n_{2}\left[1+x^{4} k_{2}\left(\frac{\cos ^{2} \theta}{r_{2}}-\frac{8 \sin ^{2} \theta}{a_{2}}\right)\right] \\
& n a_{0}+\phi^{2}\left[\cos ^{2} \theta\left(\frac{n_{1} k_{1}}{r_{1}}+\frac{n_{2} k_{2}}{r_{2}}\right)-\sin ^{2} \theta\left(\frac{n_{1} x_{1}}{x_{1}}+\frac{n_{2} k_{a}}{a_{y}}\right)\right]\left(\alpha_{0} y^{2}\right)
\end{aligned}
$$

where now

$$
n_{0}=n_{1}+n_{2}
$$

It fe erident that while the coufficient of ϕ^{2} carrot to ratho to varian by any chotco of n_{1} and n_{2}, we can obtain atroulus fituroa by alivinting θ. The condition for thin ift

$$
\begin{equation*}
\frac{a_{1}}{n_{2}}=\frac{\frac{1}{r_{2}}+\frac{1}{n_{2}}}{\frac{1}{r_{1}}+\frac{1}{n}} \tag{4,5}
\end{equation*}
$$

$$
\begin{equation*}
n=n_{0}+\phi^{2}\left(\frac{n_{1} x_{1}}{r_{1}}+\frac{n_{i} k_{2}}{r_{2}}\right) \tag{4.6}
\end{equation*}
$$

The esorase type stitare caxi be ased over a wide raxge of

 Rach b-alement constiate of throe birofringent conponsntes. Two of the contransmis ery of the same material and are nounted ufth thadr a-smes croqued. The thiri is of a differemt birefritugent raikerial $x+1$ it is valua oppoaito in sien to the 1 velue for the first two cortrangnts. It is mounted with its a axis parallal to that of one of the efrst two. By a propere shotice of thiciknesses it it aluayg possible to make in conotent over the vinole flald wititn the accuracy of equstion (3.4).

Lst $a_{1}, \beta_{1}, \gamma_{1}$ and $\alpha_{4}, \beta_{2}, \gamma_{2}$ bo the rafractive indices x the cryatale comporing the aingie conponent and the two arossed couprinentet, respectivaly. The crystais mast be soo lected to sattasy the ooradition

$$
a_{1} r_{2}>r_{1} a_{2}
$$

Lot na be tine retarisitioni of tise singize component, and no and no the retardsticme of the two ccruwnentso of the same inierlal. Lot the a-axes of the e oun is compaxients of in the $\theta=0$ plane, and tho a-exis ox the exmponents in the $\theta=\frac{\pi}{2}$ plane.

$$
\begin{align*}
\therefore= & {\left[1+\phi^{2} k_{1}\left(\frac{\cos ^{2} \theta}{r_{1}}-\frac{\sin ^{2} \theta}{c_{1}}\right)\right] } \\
& +n_{b}\left[1+\phi^{2} k_{2}\left(\frac{\cos ^{2} \theta}{r_{2}}-\frac{\sin ^{2} \theta}{a_{2}}\right)\right] \tag{4+7}\\
& =m_{c}\left[1+\phi^{2} k_{2}\left(\frac{\sin ^{2} \theta}{r_{2}}-\frac{\cos ^{2} \theta}{a_{2}}\right)\right]
\end{align*}
$$

If we aet $n_{a}+n_{b}-n_{c}=n_{0}$, and require that the coefficient of ϕ^{2} varish, we firdy

$$
\begin{align*}
& n_{a}=\frac{n_{0}}{A} k_{2}^{2}\left(\frac{1}{a_{2}}-\frac{1}{r_{2}}\right) \\
& n_{b}=\frac{n_{0}}{1} k_{1} k_{2}\left(\frac{1}{r_{1} r_{2}}-\frac{1}{a_{1} a_{2}}\right) \tag{4.8}\\
& n_{c}=\frac{n_{0}}{2} k_{1} k_{2}\left(\frac{1}{a_{1} r_{2}}-\frac{1}{r_{1} a_{2}}\right)
\end{align*}
$$

where

$$
\Lambda=\left|\begin{array}{lll}
\frac{k_{1}}{r_{1}} & \frac{k_{2}}{a_{2}} & \frac{k_{2}}{r_{2}} \tag{4.9}\\
\frac{k_{1}}{r_{1}} & \frac{k_{2}}{r_{2}} & \frac{k_{2}}{a_{2}} \\
1 & -1 & 1
\end{array}\right|
$$

The retardation of the assamilea element for any direction (ϕ, θ) is then

$$
\begin{equation*}
n=n_{e}+n_{b}-n_{c}=n_{0} \tag{4.10}
\end{equation*}
$$

The third type filter I Ike the second type, can be used over a wide range of wave lengths. The coefficient of ϕ^{2}, however, will generally vanish accurately at only one wave length.

In designing a wide angle filter it is not usually necessary to make the tilimer elements compound. Their transmission bands are $s 0$ broad that the slight shift is wave length for of axis rays is negligible in comparison. If the higher order compound elements are bade of two materials, however, it may not poemBible to use transmission banda in vilely separated regions of the spectrum, because the dispersions of different materials are generainy not strictly proportional. If the r th aisment is the thickest simple element, $\frac{\operatorname{nr}+1}{n_{r}}$ - 2 at oily one wave length.

The folloring sections are dernotse to the tbocry of varlous nodifleations of biseiviaront fitors bizoh havo boon rem centry developer.

A. The Spijit Eicmont Filtar

The split aiewant filter resamiles Lyot's firgt type filia ter, and whares itf wide sield elsractoristics. The hall wave pletes, however, are replaced oy hirafringent olements, and suscessive poiarisers are erossed. After the initial polarm izetion, it requires only helf as many polarizers as the equivalont simple rinter. The result is a considarable reduction in absorption and scattered light is filln polenizara are used, or a notahle raving in bulls and expense if polarizing prisms are usse.

The split slement filter has flready been described briofly 5^{5}. A noxe deiailed account of its theory is giren here.

A single unit of the split elenont fylter (wisch would be mounted betreen crossed polarisera) is shoun achematically in Figure 4o The x, y and zoexses conetitute a reciangular coordinate ervetem: The positive r and amaxes in the sy plane bieect the angles between the positive π ard y and the positive I and negative if directions, respectively. The uit consists of a aplit elesient with componente m and q, and a aimple element, p, sandwicied between m and q, They are all mounted sith β-assas parilial to the z-axis. The γ-axss are aligned parallel to the x, x and y directions, reopectively, in the m, p and q componente, Lest the thichenessee of n, p and q be $d_{m o} d_{n}$ and d, and let the unit of tire be the ribration period of the light。

Assume that the ontering light is polarized in ihe r plano, The transmiasions of the unit for amerging lighe polarized in ting r plane and s plane are to be determined.

The viaration of the entertug lifht 1as

$$
\begin{equation*}
x=a \operatorname{ain} 2 \pi t \tag{5,1}
\end{equation*}
$$

This can be renclved along the x and y directions, getving:

$$
\begin{align*}
& x=\frac{a}{\sqrt{2}} \sin 2 \pi t \\
& y=\frac{a}{\sqrt{2}} \sin 2 \pi t \tag{5,2}
\end{align*}
$$

Birefringent conponents of a single unit of a split element

In traversing In, a phase difference is introduced and the vibration of the emerging light is

$$
\begin{align*}
& x_{m}=\frac{a}{\sqrt{2}} \sin 2 \pi\left(t-\alpha_{m} r\right) \\
& y_{m}=\frac{a}{\sqrt{2}} \sin 2 \pi\left(t-\alpha_{m} \sigma\right) \tag{5.3}
\end{align*}
$$

The resultant disturbance along the r and a axes iss

$$
\begin{array}{ll}
x_{m}=a \cos \pi n_{m} & \sin 2 \pi t \\
x_{m}=a \sin \pi n_{m} & \cos 2 \pi t \tag{5.4}
\end{array}
$$

where

$$
t^{\prime}=t-\frac{\alpha_{n}}{2 \lambda}(\alpha+\gamma)
$$

In the traversal of p, an additional phase difference is introduced:

$$
\begin{align*}
& s_{p}=a \cos \pi n_{m} \quad \sin 2 \pi\left(t_{1}-\frac{\alpha_{p}}{\lambda} \gamma\right) \\
& s_{p}=a \sin \pi n_{m} \quad \cos 2 \pi\left(t-\frac{d_{p}}{\lambda} a\right) \tag{5.5}
\end{align*}
$$

Reariving this vibration along the x and y axes and adding the phase difference due to transmission through q, we obtain:

$$
\begin{align*}
& x_{q}=\frac{a}{\sqrt{2}} \quad \cos \pi a_{a} \quad \sin 2 \pi\left(t^{\prime}-\frac{d_{p}}{\lambda} r-\frac{d_{q}}{\lambda} a\right) \\
& \cdots \frac{a}{\sqrt{2}} \operatorname{ein} \pi a_{i n} \cos 2 \pi\left(t-\frac{d_{p}}{\Lambda} a-\frac{d_{q}}{\lambda} a\right) \tag{5,6}\\
& \text { Yo } \frac{a}{\sqrt{2}} \text { cos } \pi n_{m} \sin 2 \pi\left(t-\frac{d p}{\lambda} \gamma-\frac{d_{g}}{\lambda}\right)
\end{align*}
$$

this Gibsetion siome the 15 ent 5 axies

vibare

$$
\dot{w}^{1 \prime}=t-\frac{a_{m}+a_{a}}{2 \lambda}(\alpha+\gamma)
$$

 mado of oumal tiflesnenatas. hease

$$
m_{3}=y_{3}
$$

In list

$$
\pi_{y} s 2 n_{x}=2 x_{0}
$$

aquationa (5.8) rectuca toos

the compound elements depends upon whether or not $\frac{n_{l}}{h_{l}} \circ \frac{\gamma-\alpha}{\gamma}$ is greater or less than 1. If the aimple elementa linit the field, they can, of course, be made compound in any of Lyot's three type3.

The trassmiasion of an astembled spilit alament filtor oonposed of tiro-alement units botween erosesd polarimers iss

$$
\begin{equation*}
T=\sin ^{2} \pi n \quad \sin ^{2} \pi n_{2} \ldots \sin n^{2} \pi n_{2} \tag{5.10}
\end{equation*}
$$

Since trensmission bends cecur oniy at waps longths for which all the n's ma hali integral, the n's cansot be simply prom portional to tibo porrors of 2 , If we lat $r=n^{9}+\frac{1}{2}$ at tho wave leagth of a perticular band, the best we can do is to eralee the valces of n^{\prime} properticmal to the powcres of 2. Thus

$$
x_{5}=2^{2-1} n_{1}+\frac{1}{2}
$$

The transeisaion an then do uritten

$$
\begin{equation*}
T=\cos ^{2} \pi n_{1}^{\prime} \cos ^{2} \pi 2 n_{1}^{2} \ldots \cos ^{2} \pi 2^{2-1} n_{1} \tag{5.12}
\end{equation*}
$$

Onfortmately equetion (5.17) can be strictig ralid at only one wave lanith, and the usafilness of the filter is rostricted to a linded spactral region in the neighborhood of that wave leagth. This in a second inetance whre accronutic half ravo plates would be bandy. If the z th eleacnt of the filter woro ande to give a retardation $n!=2 \pi-1 n_{1}^{\prime}$, the addition of an achronatic half vave plate (tuo rianter weve piaces for oplit elecente) woild setisif equation (5.11) at all que lengtho.

The thought will doubtless havo cecurred to the reader that the middle element in each mit of a split alcuent filter could itaele be oplit, axd a third elcesan inserted botwean the halvos. Tinis pian does rot work theoretically, and eo Sar no arrangenent has boen found which allows wore than two elerwats in a unit batricen cuccessivo polarizers.

B. Filters of Adjuctahle Have Length

It is obviocs that the usaininess of the birerringent filter is enomocusily onfanced if a trenscisasion marimam can be aijusted to esanter on any desired wave leogth. Tho fine adjustnent resulting from the control of temperature is generalily quite ineciequito as it has a range of oaly a fow angstrons (although iyot foumd that with the afd of temperature control. it is possible to teing no leas than six of the maxina of a quastz fllter into coinsidences ith linee of mejor importance in the solar spectrum).

The obvicus method of controlling the rave leagth of the tracmatsetion bands is bremeans of elements of variable thioknoss, made of pairs of wedges which can be edjusted with rem apect to each other like the componsants of a Bablinot compensator. It is thee possible to set

$$
n_{f}=\text { an intoger }
$$

and

$$
n_{1}=2^{r-I_{n}},
$$

at any ahosen wave Iength. Such an arrangement is perfentiy feesithe cnd works equaliy wall at all mave lengths. In the spilit almment IIlter, both halvos of the eplit element must, of cormea, be adjustable, since $n_{\text {pi }}-p_{n}=0$. The range of variation in thiciness noed be colly eurfleiont to shift the principal transuiseion madim of the filter through a range equal to thodr separation. With a proper chofce of wedge angles, 111 the novable wedges can be mounted and edjusted an a single unit.

Althocgh theoretically ercellent, the variable thicloneas filter recuires considerable nechanical refinement, and one wodge in cach alemant nuat have an aperture much larger tikan the instrusental apartwre (a mattar of importance in filters of large apertwo). The use of phace ahfiftera for wave length adjustreent is sivpler and, for most pryoson, equally satisfactory. If achronatio phase chifters san be devised, they will giv raeults as theoretically perfoct as variable thicknese.

Suppoce wequip ach b-ilement of a filter sith a phase whifter which penzite the addition of a swall contrallable phase aiffercince, $2 T \xi$, to the phase differecoce, $21 n$, introm duced by the b-aicusect. The transudsaico of she fliter is then

$$
\begin{equation*}
T=\prod_{x=1}^{x-1} \cos ^{2} \pi\left(n_{r}+\xi\right) \tag{6.1}
\end{equation*}
$$

Again, with the split sleasent filter, the added phase difference must be divided equally betroasn the two haives of tha oplit elemants to ksep $n_{m}-D_{q}=0$. 1 transmissicn maxisum of the ellter can then be centipred on any given vave langth, λ, vy aifusting 5 mitil $n \rightarrow 5$ is an integer for each olenent. "This is quluay posaibla if ξ can be adjusted over the range to $+\frac{1}{\text { y }}$. If the phese ahifter io achromatic, i.e., ξ is indopendent of wave length at a given sotting, the rearilt is merely a shift of the transuisaion curve of the initer alcng the

Feproduced from best available copy.

spectrum and its performance is equally good at all wave length settings. If, on the other hand, 5 is a fumetion of wave length, the specinge of the travienission marima of a given element are altered. Hence tine ralation positions of the trensmission mexima and minims of the different alezants depart more and more from exact superpositon as the vave length cepents from λ_{1}. The result is an inerease in the rosidual light transul.ttod in tho intorvals botween principal rexdich of the fi?ter is $\left|\lambda-\lambda_{1}\right|$ increasos.

Lyet 3" and Billing 6^{63} have boin made munerical cal.culations of tito adaltionsl residuai light resulting from the ue of non achromatic phace shifters. They soncluded that orer a reascmable yave length range (which can readily be isolated with plas or gelatine illters) the ingrease in readual 1ight is nogiligible. Tho sdjuatment of wave longth aith phasc shiftecs is therefore a pracifeal possibility whether the pinae aninters are acimomate or not.

Several foume of variable phase shif'ters have boen proposed.
Iyot 3" made aicmente of variable thicinness like those dem seribed above for the verieble thichnesa filter, but with the difference that the range of adjustront of retardation was reatricted to ono wave lengtin.

Billinge ${ }^{6 / 4}$ rade an oxcerimantal filtor ulth photo alcotic phese shifters composed of cheots of polyoingl butyzate under eijustable tension.

Wiale both theec arrangersenta give a satisfactory wave length adjustant, they are tedicus to use. Ordinarily each eloceant mast bo incifidually adjusted. The alternative is a complicated mecimical syncimonization of the adjustments of all the elessents, which would nako operation with a single contril feasiblo. Without acme guch arrangersent it would be inposoible to vary the wava leugtli contuinuously.

A much more promising approach is the use of tho olectro optical phase shiftcrea discuceed by Eillings ${ }^{\prime \prime}$. A plate of the miadial cyystal amonium ai hydirogen phosphate ($\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$), lonom commerriaily as FR, sci perpenifcular to the optio axif son mounted betwecn transparert electrcdea, becomes biaxial and exdibits a retardation when a potential difference is applied to the eleotrodes. The ratardation ise proportional to the potontial difference ami is independent of the thifoness of the PN plato. A Piltor mado with a Billings plate added to each alement (is each half of the split olemente in the oplit alecent filter) couic ke adjusted electricaliy, and the
problem c "ncimonizing the piase sinfts of succossive alements woul. (ren tivaly sinpie. At the present writing Dr. Billings is actively engraged in the dersolopncat of such eiectrically trmable filters.

All ifres tuming mathods have one ijificalty in conmm. It is immacticahie to puah the phase ahift beyond a vary limited renge. If a range from - 7 to $+\pi$ is adopted, a contimouss veriation of wave length involves a diacontimous adjustmer: of each phase shifter, The thase ahift mur progress manothly fram - II to $+\pi$ (at a rate proportional to the thicicness of the associated b-alemant) and then jump back to $-T$. For most purposes therw may be no serious disedvantage in this. If, howevir, the filtic is to be used for spectrophotometric work, for emample, it may be vary difflcult to avoid a apurious bump in the filter transmiasion every time a phase sinfíter passes a poins of discontimuity, even with the alectriceil tuaing. For such special purposes phase shifters cemposed of rotating fractional wave plates can be used. Thoy have alrusady been described briefly 5°. A filler account rinelr shemy is given here.

The specifle problen is to deviee a resilnation of fractional wave plates which will alter the phabe difference between the vibretions along two mutually peryendif.culas azes, x and y, by any chos on amount, without altoring their amplitudes. At a given vave s.angth this is equivalent to a varieale thickeose of birefingent mateuial wit. its r axis along the x or y direction. Such an arrangement is shown at a, Flgure 5. It consistes of two quarter wave plates. The firct is fixsod with Its γ-asis along the r axis (at 45° to the r-axis). The second can be rotated around the instrumental axis. At a givon setting ita γ-axis lies along the r^{\prime} direction at angle P to the x direction,

The vibration of the light enter a_{0} the system is generally represented by

$$
\begin{align*}
& x=b \sin 2 \pi t \\
& y=c \sin 2 \pi(t+\infty \tag{6,2}
\end{align*}
$$

Resolving tinis vioration along the r and s axes nd adding a phase ctiffererce at $\frac{7}{2}$ introduced by the flust quarter wave plate, we cistain for the emerging ribrations

$$
\begin{align*}
& x=\frac{b}{\sqrt{2}} \sin 2 \pi t+\frac{c}{\sqrt{2}} \sin 2 \pi(t+\sigma) \\
& s=-\frac{b}{\sqrt{2}} \cos 2 \pi t+\frac{c}{\sqrt{2}} \cos 2 \pi(t+\sigma) \tag{6.3}
\end{align*}
$$

Resolving this vibration along the I^{2} and s^{\prime} axes and adding another phase difference of $\frac{7}{2}$ introduced by the aedond quarters wave plate, we obtains

$$
\begin{align*}
& r^{\prime}=\frac{b}{\sqrt{2}} \sin [2 \pi t-\rho]+\frac{c}{\sqrt{2}} \sin [2 \pi(t+\sigma)+\rho] \\
& s^{\prime}=\frac{b}{\sqrt{2}} \sin [2 \pi t-\rho] \sim \frac{c}{\sqrt{2}} \sin [2 \pi(t+\sigma)+\rho] \tag{6.4}
\end{align*}
$$

Finally, if se resolve this vibration along the x^{*} and y^{i} axes, at an angle of $P+\frac{\pi}{2}$ to the x and y axes, we obtain for the taverging Vibrations

$$
\begin{align*}
& x^{\prime}=b \sin [2 \pi t-\rho] \\
& y^{\prime}=c \sin \left[2 \pi(++\infty)+p_{+} \pi\right] \tag{6.5}
\end{align*}
$$

A comperisuia of equations (6.2) with (6.5) shows that while the emerging amplitudes alcug x^{\prime} and y^{\prime} are the same as the entering emplitades along x and y, the phase difference has ben increased from $2 \pi \sigma$ bo $2 \pi \sigma^{\circ}+2 \rho+\pi, 1 . e_{0}$, the phase shift, $2 \pi \xi$, is

$$
\begin{equation*}
2 \pi \xi=\pi+2 \beta \tag{6.6}
\end{equation*}
$$

Obviously the piss difference can be set to any dealred value by adjusting ρ.

This two element phase shifter has the disedmatsge that the x^{\prime} and y^{\prime} axes rotate with the second quarter wave plate. For some applifeaitions this is no inconvenience but in others it readers this phase shifter useless. The x^{\prime} and y^{i} axes can bo restored to parallelism with the x and y axes by the addition of a rotatable half wave plate, which has the property of reflecting any polarization filguro in ito Y-axis.

The rost comvenient syetem, shown at b, Figure 5, consiote of tro fixse gierter wave plates trith the rotatable half wave plate sandrichoe bobreen tham. Suppose the γ-axes of both qua:ter mere platas are in the r dircction, while the r-axis of the her move plato is along the udirection at an angle y to the r dirgetion.

The viration emorging fron the Jingt quartor wave plato is Eiven by aquaticn (6.3). Sesolvirg this vibration along the $:$ and ∇-axes, and adding a phese difference of π, we obtain for the vionation merging from the half wave plates

$$
\begin{align*}
& u=\frac{b}{\sqrt{2}} \sin [2 \pi t-\psi]+\frac{c}{\sqrt{2}} \sin [2 \pi(t+\sigma)+\psi] \tag{6.7}\\
& v=\frac{b}{\sqrt{2}} \cos [2 \pi t-\psi]-\frac{c}{\sqrt{2}} \cos [2 \pi(t+\sigma)+\psi]
\end{align*}
$$

Resolving this vibration again along the r and s axes, and acding a phase difference of $\frac{f^{\circ}}{2}$, we obtain for the vibration cmerging row the second quarter wave plate:

$$
\begin{align*}
& r=\frac{b}{\sqrt{2}} \sin [2 \pi t-2 \psi]+\frac{c}{\sqrt{2}} \sin [2 \pi(t+\sigma)+2 \psi] \tag{0}\\
& s=\frac{b}{\sqrt{2}} \operatorname{cin}[2 \pi t-2 \psi]+\frac{c}{\sqrt{2}} \sin [2 \pi(t+\sigma)+2 \psi]
\end{align*}
$$

ancily, rasol ing this vibration along the orifinal x and y ares, ve find

$$
\begin{align*}
& x=b \sin [2 \pi t-2 \psi] \\
& y=c \sin [2 \pi(t+\pi)+2 \psi] \tag{6,9}
\end{align*}
$$

The phase shet, introcuced by the throe eloment gybera is, therrione

$$
\begin{equation*}
2 \pi 5=4 Y \tag{6.10}
\end{equation*}
$$

The peincipal acrentege in the use or fractional wave plate phese onifters in binofringent silters is in the possibility of a contincous variation of vave lopech rithout discontinuitien: in the aciswant of the moving plements. Since \mathcal{P} or y can be incrossed m decreaced indefinitoly, 2 it ξ is not reptricted as it is in tar other types of phase shifters discussed above.

It shosid be noted that the fractional wave plate phaes shifter is in a ounse achromatic, since \mathcal{S} is independent of the wave lengti for a given value of ρ or ψ - a very desirable property (sea the diccussion folloming equation 6.1), With ordinary quartor and half wave plates, however, this advantoge
in somethat illusory. Their uesfinness is limited to the rather restricted region of the spectrum where their retardations are very close to quarter wave and half wave. This is another application where the dosirability of achromatic frectional wave plates is evident.

If continuity of adjustmont over a large range of the spociarm is a necessity, the fractiunal wave plates thenselves could be made adjustable. The addition of an filectro optical Billings plate to each fractional vave plate rould perhaps be tho simplest method. A relatively moderate potential applied to the Billings plate would then adjuet the retardation accurately to a half meve or quarter wave at the rave length of the transmission bard of the filter. This seams a rather desporate meacure, howevor.

The construction of the fractional wave plate phese shifters is considerably simplified when they are used in birefringent filters. Some of the quarter wave plates simply take the form of an addition to the thickness of the birafringent alements. In instances where the γ-axis of a quarter wave plate is parallel or perpendicular to the axis of an ircediately following polarizer, it is ovident that the polarizer utilizes only one component of the vibration emerging from the quarter wave plate. The $\frac{\pi}{2}$ phase difference therefore serves no real purpose, and the quarter wave plate can be omitted.

Consider firgt an olement of a simple filter. Suppose the b-element, oricated with its p-avis along the x direction, is follarod by a quarter wavo plate fith its r-ads along the r direction. If me let $b=c \frac{a}{\sqrt{2}}$, $t=t^{\prime}-\frac{d}{\alpha \lambda} \mu$, and $\sigma=\frac{d}{\lambda} \mu$, equation (6.3) foz the vibra tion emerging from the quarter wave plate reduces to:

$$
\begin{align*}
& x=a \cos \pi n \sin 2 \pi t \tag{6.11}\\
& s=a \sin \pi n \sin 2 \pi t
\end{align*}
$$

This is a linear vibration at an angle of Ir n to the raxis. Te can onit the secord quartor wave plate and let the light onter a polarizer rith its plans of polarization at anple p to the r axis. The transmisoion of the assembly is then

$$
\begin{equation*}
\gamma=\cos ^{2}(\pi n-\rho) \tag{6.12}
\end{equation*}
$$

By adjusting P (i.c., by rotating the polarizer) until $n_{\lambda}-\frac{\delta}{K}=$ an integer, we can sst $\boldsymbol{T}=1$ for and chosen wave length.

Lyot has utilized this device to effrect a slight shift in the wave longth of the transmission band of his filter.

He used a quarter wave plate with the last (thickest) element, and provided for the rotation of the final polarizer. The same method can be applied to the whole filter, however.

An adjustable sjmple birefringent filter would consist, then, of a series of units shown at a, Figure 6, each composed of a polarizer, a birefringent element with its γ-axis at 45° to the axis of the polarizer, and a quarter rave plate with its r-axis parallel to the axis of the polarizer. The three parts of each unit remain fixed with respect to each other, but the unit itself must be rotatable around the instrumental axis. The angle \mathcal{R} is then the ancle betreen the r-axis of the r th quarter ware plate and the axia of the imediately folloming polarizor. The birefringent elements have the same thickness as in the non-adjustable filter. The transmission of the whoie iss

$$
\begin{equation*}
r=\cos ^{2}\left(\pi n,-\rho_{1}\right) \cos ^{2}\left(\pi 2 n,-\rho_{2}\right) \cdots \cos ^{2}\left(\pi 2^{\mu-1_{n}}-\beta\right) \tag{6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}=2^{x-1} \rho_{1} \tag{6.14}
\end{equation*}
$$

Since the ralues of P are proportional to the powars of 2 , it is a relatively simple matter to devise a rear train by which the wave length of the transmission band can be adjusted with a single control knob. A continuous variation of wave langth now involves no discontinuity in the adjustment of the various units, since ρ can be made to increase or decrease indefinitely.

Uatters are somewhat more complicated in the split element filter. The wide field characteristics depend upon the m and q comjonents being crossed. Hence the phase shifts must be accomplished without ang relative rotation of the two. Various arrangements are possible, some of which involve rotation of the center p-elements, or rotation of the unit as a whole with respsct to the polarizers, or both. However, the untt shown at b, Figure 6 , is as simple as any.

The orientation of each element is indicated in the diagram by the short line above it for the fixed elements, or by the symbol Yas or Yp for the adjustable half wave platos. The angle $\frac{1 \text { ma }}{2}$ of Y is the angle betreen the r-axis of the half wavis plate and the γ-axis of the preceding quarter wave plate. The second quarter wave plates following m and p are indicated as an addition to the thicknesses of p and q, while that following q has been omitted, since its r-axis would se parallel to the axis of the following polarizer. The transmission of a split element filter composed of such units is

$$
\begin{equation*}
T=\prod_{r=1}^{r=2} \cos ^{2}\left(\pi n_{r}-2 \psi_{r}-\frac{\pi}{2}\right) \tag{6.15}
\end{equation*}
$$

$\theta=0 \quad \dot{P}_{1}$

$$
P \text { - POLARIZER }
$$

$$
\theta \text { - Position angle of }
$$

$$
\begin{gathered}
\rho_{1}+\rho_{2} \quad \rho_{1}+\rho_{2}+\rho_{3} \\
\tau=\prod_{r=1}^{r=3} \cos ^{2}\left(\pi n_{r}-\rho_{r}\right) \\
\rho_{r}=2^{r-1} \rho_{1} ; \quad n_{r}=2^{r-1} n_{1}
\end{gathered}
$$

$$
\frac{P-P o n a r i z e r}{4}-\text { Quarter Wave PLate } \quad \tau=\prod_{r=1} \cos ^{2}\left(\pi n_{r}-\rho_{r}\right)
$$ Unit about OP

a

$$
\tau=\cos ^{2}\left(\pi n_{m q}-2 \psi_{m q}\right) \cos ^{2}\left(\pi n_{p}-2 \psi_{p}\right)
$$

FIGURE 6
a) Simple filter of three cisments with quarter wave plate phase shifters.
b) One uni of a split oloment filter with fractional wame plate phase shifters.

It should be noted bere that the built-in quarter wave plates which are added to the thiclonesses of the p and $q-$ elements are not included in the calcuiation of n for these elements.

The values of ψ_{r} should be proportional to n_{r} in equation (6.15). Hence if $n_{r}=2^{r-1}\left(n_{1}-\frac{1}{2}\right)+\frac{1}{2}$ as in the nonadjustablo split element filter, the ψ 's are proportional to large odd numbers, and the problem of synchronizing the rotations of the half wave plates becomes complicated (but not at all impossible). If, on the other hand, the n's are made proportional to the powers of two, the phase changers can compensate for the subtraction of $\frac{1}{2}$ from each valus of n in addition to their normal function. Then

$$
\begin{equation*}
n_{r}=2^{r-1} n_{1} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \psi=\frac{\pi}{2}+2^{r-1}\left(2 \psi, \frac{\pi}{2}\right) \tag{6.17}
\end{equation*}
$$

Since a rotation of the zero point from which angle ψ is measured to $\frac{\pi}{7}$ reduces this equation to

$$
\begin{equation*}
2 \gamma_{y}^{\prime \prime}=2^{r-1}\left(2 \gamma_{1}^{\prime}\right) \tag{6.18}
\end{equation*}
$$

it is evident that the variable parts of the ψ 's are proportional to the powers of two, and the problem of synchronization becomes relatively simple.

The synchronization of the other types of phase shifters (variable thickness, photo elastic, or electro optical) is similarly simplified in a split element filter by constructing it rith n's proportional to powars of two. Equations (6.14) and (6.17) apply if we substitute $\Pi \xi$ for $2 \boldsymbol{\psi}$.

A final remark about filters of adjustable wave length seems worth while. The birefringent elements need not be made to any exact thicknesses as in the fixed wave length filters. It. is desirable, but not necessary, to preserve the relation $\mathrm{n}_{\mathrm{r}}=2 \mathrm{r}^{-1} \mathrm{n}_{\mathrm{n}}$ as closely as possible since the synchronization of the various adjustraents is then easier. There is no necessity, however, for n_{1} to be an integer for any specified wave length. This simplifies the construction somewhat. If $\mu \leq 0.03$ the thicknesses of tine elements can be adjusted with sufficient accuracy by mechanical measurements alone. The error tolerance in thickness is inversely proportional to μ and is about ± 0.001 的 for $\mu=0.03$ 。
\because Materials for Birofringeni Filters
For the benefit of potential builders of birefringent filters a brief discussion of available eaterials is given below. It must be emphasized that the list given is esctainly far from complete. The author simply lists materials which have come to his attention and aither have been successfully used, or look promising. linfortinately, lack of tine has prevented a really thorough search for suitable and availabis materials, and it would be surprising if sone very useful ones had not been overlooked.

Sone of the desirable properties of crystals for birefringent filters are a large value of μ with a small tomprature coefficient; a hich degree of hardness, chemical stability, and insolubility in water; high transparency in the region of the spectrum for which the filter is to be used; and availability in large pieces of higi optical quality.

For filters fith band widths of 3 angstroms or more quartz is an ideal material. It is excellent on all counts except for its rather small value of $\mu(=0,00 \%)$. The birefringent elements of all the astronomical filters now in operation are made of quartz except for the firal element of Ivot's filter, which is calcite.

Calcite would be excellent for elements of large n-values if it were readily available in large sizes. UnCortunately it is so difficult to obtain that its general use in filtars is probably impossibla. inile it is not as easily ground and polished as quartz, it presents no raal difficulty. $\mu=0.17$.

Gypsum occurs naturally in large crystals and should be readily available. Its bireiringence is similar to that of quartz, and it should be useful in the same places. Unfortunately, it is quite soft and might be difficult to polish. $\mu=0.00 \mathrm{q}$.

Arsmonium di-hydrogen phosphate has excellent optical characteristics, althoug it is sensitive to pressure and must be mounted with care. It is available in large sizes. Its optical working has proved rather difficult, though not impossible, and its high solubility in water necessitates careful protection from atmospheric moisture. $\mu=0.04 .5$.

Ethylene diamine tartrate has promising optical characteristics accompanied by the disadvantages of high solubility in water and sofiness. The author knows of no attempts to polish it, but it nould probably be quite difficult. It is available in large sizes. $\mu=3.084 \beta$

Sodivm nitrate has a larger μ value than calcite, and should be useful for elements of large n-valises. However, it is very soluble in water and difficult to work. At present it is not available in large sizes xith the recessamy homo genaity. $\mu=0.25$.

I. Folariving interfermetar filters

An account of birefringent filiters should not bu closed without same mention of the polarizing intarferometer, a drrice ricich has the effect of an lapossibly thick birefringent element. Yt offers the posaibility of filiters of very hiph resoiution with band widths in the range of humdrediths or thousandths of an angstrots. The advantages of the polarizing over the usual forms of inierferometers is in the possibility of an accurate and stable control of the wave lengths of transmission maxira (by means of phase shifters), and a high light efficieney.

The essential feature of the polarizing interferometer is that the emerging light consists of two soherent sets of waves whish differ in phass (due to a path difference) and are polarized at right angles to each other. The effect is similar to that of a birefringent element, and a series of polarizing interferometers can be used exactly like a series of birafringent elements to construct a filter. The wave length of the transmission band can be controlled mith adjustable phase shifters, and interferometers can be sandwiched between birefringent elements to form split elament units.

The advantage of the polarizing interferomater over a simple birefringent olement is that very large values of a can be obtained in a comparatively compact element. The saving in bulk may not be important, but the difficulty of obtaining birefringent material in very great thicknesess is. An element of calcite, for instance, must be about eleven times as thick as a path difference in glass. The principal disadvantage is the expense of construction conmon to $2 l l$ interferoneters of the split amplitude class. The field is small for large values of n, and while it is theoretically quite simple to make a birefringent field compensator, it is impractical because the thickness of birefringent material required nollifies the advantape of compactness.

Lany forns of polarizing interferomoters are possible. One type which is well adapted for the construction of filters is shown at a, Figure 7. It is a modified solid Uichelson interfer ometer $w i h_{1}$ a polarizing beam splitter. It consists of two glass prisus, A and F, with a very thin slip, b, of sodiun , treas (or other highly birmfrugent material) cemented between them with its optic axis norial to the surface. If the angles are properly

EICTRE 7
a) One form of polarizing intorferometer..
b) IHigh resolution filter composed of polarizing interferometers and birefringent elements.
chosen, the b-layer totalij; raflects the light vibrating in the plane of the drawing and ransmits the light vibrating at right angles to it. A spacer elemant, C, introduces a path difference. Surfaces S and T are silvered or aluminized. Ifght which enters in the direction 0S, emerges in the reverse diriction, 50 , in two composents polarized at right angles, with a phase diffarence given by:

$$
\begin{equation*}
2 \pi n=4 \pi \frac{\mu^{\prime}}{\lambda} d_{c} \cos \phi \tag{7.1}
\end{equation*}
$$

where μ is the refractive index and Φ is the angle of incidence on S and T. The prism P (constructed like A, B) has the double function of polarizing entering light and separating out the desired part of the emerging light. It is shown in an incorrect oriantation for simplicity in drawing. Actually prisra P is rotated about the OS direction, to bring its axis to an angle of 45° to that of prism AB. The transmission of the whole assembly for light emerging in the I direction is then

$$
\begin{equation*}
T=\sin ^{2} \pi n_{0} \tag{7.2}
\end{equation*}
$$

The remainder of the ifight emerges along SO.
The most serious difficulty in the construction of such an interferomster is the optical roriding and cementing of the b-layer to the required accuracy. The orientation of the S and T surfaces with respect to each other is not so critical, since a slight misaligrsent can be compensated by a thin wedge of birefringent maicilal between prism P and the interferometer:

One method of using polarizing interferometers coubined with birefringent elemients in a filter is show schematically at b, Figure 7. Between each polarizer, P, and the following interferometer, I, is a b-element, which constitutes the m (for entering $1 i_{i} h t$) and q (for emerging light) couponents of a split element. The interforometar then takes the place of the p component. Betrean successive polarizers are purely birefringent split elemant units. The assembly includes 4 interferometers, 4 polarizing prisms and 10 b-elements. The interferometers and b-elohents should be equipped with phase shifters (not shown). As an example, the interferometers might have retardations of 245,$760 ; 122,860 ; 61,440 ; 30,720$; and the b-elemonte, retardations from 15360.5 to 30.5 at $\lambda=5000$ angs trons. The system would transmit bands of about 0.01 angstrom effective Fidth, spaced about 150 angstroms apart. By adjustine the phase shifters a selected band could le made to scan the spectrum.

If the light transmitted by the filter is received an a photoelectric cell, its outprut gives a high resolution spectrophotometric curve of the entering light.

Such a fiIter sould be provereh 2 e to 3 grating specurigrian \therefore gpectrophotawatric pizposes, decausa, in spite cit its
 be dasigned to trancit samathing lite 1000 tises 25 man light -a antiter of considsrable importance trien suci six \quad : bands are used, even ie solar studies.

IT. Referonces

 p. 377 (19ca)
 $30=3$ 3 $\because 365047$

