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SUMMARY

The problems treated in this report are those forming the main theme
of Womersley's theory of arterial circulation, which pertains to the blood
flow in the arteries based upon the differential equations of liquid flow
in a thin-walled elastic tube. In particular, the problems dealt with are
those relating to: (1) wave propagation in the arterial system; (2) pulsa-
tile pressure and flow changes associated with the wave propagation; and
(3) relationship between pulsatile pressure on the one hand and the ge-
ometry ani the physical properties of the arterial system on the other.

Some of the results which follow from the quantitative relationships
of this theory are:

(1) Changes in the viscoelastic properties of the arterial wall
are impor:ant with regard to wave propagation.

(2) The flow genernted by a given oscillatory pressure gradient
does not vary greatly over a wide range of changes in additional tissue
mass and elastic congtraints of the tube.

(3) The pnase difference between periodic variations in pressure
and tube diameter is also insensitive to a wide range of variations in
tissue mass and elastic constraint.

Womersley's work indicates that the thin-walled elastic tube can be
used as a rough working model of the artery. Moreover, according to this
model a number of relationships between observable quantities such as
flow and pressure gradient, and belween pressure and tube diameter can
be deduced and verified experimentally.
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NOTATICN

A, Al’ cesy Am’ ... complex constauts defining amplitude and phase of
pressure or pressure gradient, according to context

B=E/(L - c2)

Ci, D1, Ey arbitrary constants
c complex velocity of wave propagation
cp velocity of wave propagation for a fluid of

zero viscosity

c1 velocity of wave propagation

cg group velocity

E Young's modulus of tube material

E complex constant replacing Young's modulus when there

is internal damping in the tube wall

E(%,m) standard correction for finite expansion of the tube,
expressing the effect on the average velocity of the
(34m)th harmonic of interaction between the %th and

mth harmonics

E(m,0) as above, for the interaction between the mth harmonic
and the steady flow
F(m,~m) as above, expressing the effect of the mth harmonic on

the steady flow
f frequency in cycles per second

2J1(ei3/2
Fio(a) = ai3/é§g(ai3}2)

tube wall thickness




k = h/R ratio of wall thickness to radius of tube

M modulus of applied pressure gradient
Mo(x) = |Jo(xi3/2)]
Mp(x) = |J;(x13/2)]
PN PR (Y € 7 040 N P .1,
Mp'(ay) = |1 'QLXWZJJO(M y~| = |1 - hoe
2J1(ai3/2) —1510'
\J - - = -
My’ (@) = ‘1 13723, (@13/2y| = |1 = Proe |
Mlo" = ll + nFlo((!)l
n = 2rf circulers frequency
{Y
q= ) w(2y)dy average velocity over a cross section of radius y, y < 1
J
Q volume rate of flow
| !
Qmax = IQI maximum value of Q
Qstead' Poiseuille flow corresponding to maximum value of pres-
7 sure gradient, if maintained constant
;\
3 Y radial coordinate
3
R radius of tube
t time
u radial component of fluid velocity
W longitudinal component of fluid velocity
E W steady component of longitudinal velocity
E W (section V) value of w at y=yg
{‘1
g = Jo w(2y)dy average velocity across the tube
Wy average velocity across the tubc of the steady stream
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w(i,m), Wm,0), W(m,-m) standard corrections for the effect of the
quadratic terms in the Navier~Stokes equations

= hB
Rpoc2

x (Section X) x = (5013/2)Y2
”
X real part of cp/c
Y imaginary part of ¢p/c

y = r/R, nondimensional radial coordinate

z distance along axis of tube
Subscript m quantity corresponding to tne mth harmenic
Superscript * complex conjugate of quantity
i R%n 1/2
a = (—:7ﬁ nondimensional frequency parameter

1/2
B (Section V), B = a(JLQ nondimensional parameter of the motion in the
H plasma layer

1/2 270, 2 12
B (Section X), B8 = a(l - b2) = gl - cJ%Q)
M2
Bp(Section X), By = a|l - (g%go
Yy = (312- - 1)bail/2
§g = 0g(a) - 0g (ay)
E 810 = 135° - 1) + @
VoS o _ Jolaytd/2y) L -18g
€p' (ay) = phase nf |1 To (al3/2) phase of [1 - hpe ]
Vi o __2n(aid?y | _ -187,
€19'(a) = phase of |1 a13/23, (o13/2) phase of [1 - hjge ]

€10" = phase of [1 + nFyg(a)]
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4 longitudinal displacement of tube wall

n complex constant appearing in flow formula
0 circumferential coordinate

09 (x) phase of Jg(x13/2)

0;(x) rhase ot Jl(xia/z)

A refer to equation 7-10

u viscosity of the fluid

v = g% kinematic viscosity of the fluid

E radial displacement of tube wall

p density of tube material

Po density of the fluid

o Poisson's ratio of tube material

O complex constant replacing Poisson's ratio when there is internal

damping in the tube wall
¢ negative phase of applied pressure gradient

¥ phase of iiuid pressure
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SECTION I

INTRODUCTION

The mammalian circulatory system is essentially a fluid transport system.
An important part of this system is the arterial tree, which may be considered
as a branching conduit system having the function of delivering blood to the
tissues with a minimum loss of energy.

In an analytic description of the arterial circulation, the investiga-
tion consists in determinineg the characteristics of a system composed of a
non-Newtonian fluid flowing within a branching system of tapered, distensible
tubes and subjected to phasic changes in pressure. The distribution of pulsa-
tile pressure and fiow at various locations in the system is modified by a
number of factors, und is therefore difficult to describe and predict. Some
of these factors are:

(1) ™he transient phenomena due to the mechanical action of the heart,
(2) The branching, tapering and tethering of the blood vessels.
(3) The impedance provided by the arterioles.

Application of mathematical and physical principles by several investi-
gators over the past two hundred years have contributed significantly to a
better understanding of the hemodynamic aspects of the cardiovascular system,
the development of special instrumentation, and the evaluation of experi-
mental records. A highly useful mathematical approach tc this formidable
problem wag developed primarily by J. R. Womersley and his co-workers
D. A. McDonald and M. G. Taylor.

The main value of Womersley's work lies, it is believed, in its endeavor
to outline in a simpie manner the analysis of the circulation as a system in
steady-state osciilation, based cn standard principles of fluid dynamics. The
equations of state for both the blood and the blood-vessel system are set up,
the equations are linearized, and periodic solutions in the form of Fourier
series which satisfy prescribed boundary conditions are developed. 1In
particular, his work indicates that the thin-walled elastic tube can be used
as a rough working model of the artery. Moreover, from this model a number
of relationships between observable quantities can be deduced and tested
experimentally. Womersley's theory does not take into consideration signifi-
cant taper in the tube system or nonun?formity of the physical properties of
the blood vessels.

The problems that form the main theme of Womersley's work, described in
this report, pertain to the flow in the arteries and, in particular, are
those concerned with (1) the velocity of wave propagation; (2) the pulsatile
flow and pressure changes associated with the wave propagation; and (3) the
pulsatile pressure-diameter relaticnships. Moreover, the significance of



a salient nondii-:nsional parameter, denoted by a, which is a function of the
frequency, the kinematic viscosity of the fluid and the internal radius of
the tube, I8 stressed in characterizing the motion of the fluid. The vari-
ation of this parameter at corresponding flow points in mammals is very small
and could therefore be considered as a Reynolds number for pulsatile flow.

Womersley's wor" forms an important link in the continuing chain of
understanding. We havc chosen to present his version not because it is the
most sophisticated work in this area but because within its limitations it
is a well-developed :reatment of several aspects of the arterial problem, and
suggests a cational bagis for many of the peculiar characteristics observed in
the mammalian cardiovascular system. Moreover, it has indicated directions
for further improvement in the mathematical analysis of the cardiovascular
cystem and has encouraged experimental investigations along these lines.

In this report section II begins with a highly idealized model of the
arterial system, the linearized flew of a viscous, incompressible fluid in a
straight, ripid, circular tube, in order to develop the basic concepts of the
problem. 'fhis model is then successively refined in order to study the effects
of the elasticity of the tube, the oscillatory changes in tube diameter, the
boundary layer near the walls of the arteries, the junctions and discontinu-
ities in the arterial tube system and finally, tc assess approximately the
effect of the nonlinear terms in the flow equations.

In its original form, Womersley's work is under<trandable only to spe-
cialists in t! {s particular area of research, 7T~ _.s present, expanded form,
we believe that his work would be accessible as well as of interest to a much
larger audience whto are interested in hemodynamics from the experimental as
well as the analvtical point of view.
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SECTION II

a4 ST

OSCILLATORY FLOW OF A VISCOUS INCOMPRESSIBLE
FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

INTRODUC: .ON

In this section we shall consider a very simplified model of the arterial
system, which consists essentially of the laminar flow of a viscous, incom-

pressible, Newtonian fluid in an infinitely long, uniform, rigid cylindrical

tube. Such a system is characterized in terms of the Navier-Stokes equations.
From these general equations, we shall, under the prescribed conditions,
derive the equations describing the particular flow process of interest and
obtain a solution. Moreover, we shall consider the limiting and modified
forms of the solution equation and draw some conclusions.

Next, an expression for the volume rate of flow will be determined, and
electrical analogues of flow quantities considered. In addition, the Fourier
series representation for calculating the volume rate of flow will be obtained
in terms of the pressure gradient.

Finally, the relationship between pressure gradient and the time rate

of change of pressure will be discussed.

DERIVATION AND SOLUTTION OF THE EQUATION DEFINING THE OSCILLATORY FLOW OF A
VISCOUS INCOMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

The equations governing the laminar flow of a viscous incompressiblie
fluid, expressed in cylindrical coordinates (see figure 1), are (Schlichting,
1960):

The equation of continuity of mass
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(2-1)
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Figure 1. Cylindrical Coordinates of a
Point Within the Flow Along the Z Axis
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The three dynamical equations of motion
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The assumptions made regarding the particular flow process under con-
sideration through a straight, rigid, circular tube are as follows. (See
figure 2.)

a. The radial and tangential motions of che fluid are neglected, u = 0,
v = 0.

b. The fluid velocity along the axis of the tube (the z axis) is inde-
pendent cf the distance z, %% = 0, 1.e., the value of w remains unchanged
along the tube axis.

c. w is a function of the radial coordinate, r, and time, t, w = w(r,t).

d. The fluid is subjected to a longitudinal periodic pressure gradient
%5 having the form

- %5 = A eIt oy {(cos nt + 1 sin n*) (2-5)




where A 18 a complex constant denoting the magnitude of the pressure gradient
and w = nt is the phase. The pressure gradient aiong the radial (r) and cir-
cumferential (9) directions are zero.

e. The body force F ~ (Fr’Fe’Fz) is neglected. i.e., Fr - Fe = Fz = 0,

INNER WALL OF
RIGID TUBE

T\
ﬂz_._w_.i.__

u
rYy

TUBE WALL
THICKNESS

Figure 2. Coordinate System

If we impose the¢ restrictions as specified in the assumptione (z), (b),
(c) and (e) above, we find that all the terms in the general flow equations

(2-1, 2-2, and 2-3) vanish. We are left with the following terms of equa-

tion 2-4
W _ b (a‘w |)_ug)
P 7 -5 A5k v 5
o w1k oy (dw W
° f 22 o Y R (2-6)

Equation 2-6 defines the flow process under investigation without the impo-
sition of the periodic pressure gradient as specified in equation 2-5.




Since the 1l-ngitudinal pressure gradient has the form described by equa-
tion 2-5, it follows that the longitudinal fluid velocity w, subject to this

pressure gradient, may be considered to have the form

wo=w elint (2-7)

where vy denotes the magnitude of the fluid velocity. Since, according to
assumption ¢, w is a function of r and t, we write equation 2-7 more pre-

cisely as

w = wir,t) = wl(r) eint (2-8)

Nov we combine equations 2-5 and 2-8 with equation 2-6. We note that

int int
);__utg . %[u{(ﬂg J ,_w;(f)me
wnt
T I Y4
| Y p
unt unt
rdw .oz 2 |wHl |. zdul
+ o + o T v
2 Lt
ryw . vdw @
a.‘-\- ‘{l

el

R

Since Wy Is a function of r alone, we replace the partial derivative notation

by the rotal derivative notation. Thus, equation 2-6 has the form

3 ont
3 i . - A alx, a{,
winl . ?_Q P vdu € vy dud

~d




(2-9)

We now write equation 2-9 in terms of a new independent (and nondimen-

sional) variable y = r/R. Accordingly, the first two terms in equation 2-9

may be written as

Thus, in terms of the independent variable y, equation 2-9 has the form

S 2 T
dw; Codw; _ inRow = - AR
o M

A%n ‘A o“a y (2-10)
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We observe that the physical parameter. R, n and v which characterize the
motion of the fluid appear together as a product in the form R2n/v in equation
2-10. For convenience, we denote this product by a2, Since the values of R,
n and v are always positive, we use a? (Instead of a) to emphasize that the
product R?n/v is always positive.

Note that a? = R%Zn/v is a dimensionless parameter,

[«] < [R2] . L(F) .«

717 T

Here, L and T denote dimensions of length and time. Since the value of a
depends upon the frequency n, we may say that a is a dimensionless frequency

parameter. We may also write

2 2 R%n = QR2n2 . magnitude of typical oscillatory pressure force
v pvn magnitude of typilcal oscillatory viscous force

Thus o may be considered as an oscillatory Reynolds number. If a >> 1, then
the flow may be considered as inviscid.

Setting a2 = R2n/v in equation 2-10, we have

ol““ 1 41 M

or dwy  du LiCw - - AR (2-11)

> 2 2
dwp o4 odwo _iatwp o - AR

Equation 2~1) defines the particular flow process under investigation. The
problem now is to determine the solution of equation 2-11, having the form

w., = w,{v), satisfying the specific boundary conditions to be imposed and

1 1
containing the {low parameters A, u, v, n and R.
Equation 2~11 1s a nonhomogeneous Bessel differential equation. The
vorresponding omcgeneocus differential equation is
2
d w1 1 dw1

+= -+ i3a%u; = 0 (2-12)
dy? y dy




The solution of equation 2-12 may be written in the form (Watson, 1944):
vi(y) = K1Jo(13/2ay) (2-13)

which is known as the complementary function. K1 is an arbitrary constant to

be evaluated. For the nonhomogeneous equation 2-11, we let

wl(y) = K, = constant (2-14)

Substituting equation 2-14 in equation 2-11, we obtain

AR2

13(121( = o 2D
2 "
_ AR?
i.e. Ky = -i'ag';' (2-15)

Equation 2-15 is the particular solution of equation 2-11. Thus, the complete

solution of equation 2-11 is

AR?
wi(y) = 713913/ 2ay) + L (2-16)

To evaluate the constant Kl, we impose the condition of "no slip" at

the tube wall r = R:
- -~ ——
w 0 at y R 1.

Imposing this condition on equation 2-16, we obtain

KT, (1) o AR L

orx

10
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Rewriting equation 2-16 in terws of thi. -alue of Kl we have

aly) - - ALGTA) AR
Lo J, (V) L

: ] (cg
R

Combining equations 2-7 and 2-17, we obtain the fluid velocity along the axis
of the tube

(2-17)

int
ol t) . Q=_AR: J(ﬁ/‘ﬂ
W (1' ) (1) (df/ﬂ[ ‘J‘c_(?x% (2-18)

The factor AR?/ia?u, appearing in ejuation 2-18, may be simplified for compu-

mt

tational purposes as follows. de firzt note that

Thus A R\.




A formula essentially the same as the real part of equation 2-19, when
A is real, 1s given by Egami (1944) and Lambossy (1953). The latter has also
developed a formula for the viscous drag. Lambossy and Thurston (1952), who
also investigated the problem, were concerned with the effect of fluid re-

sistance on the frequency-response of measuring instruments.

LIMITING FORMS OF THE SOLUTION OF THE EQUATION DEFINING THE OSCILLATORY FLOW
OF A VISCOUS INCOMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

We note that the longitudinal fluid velocity, w, as described by equation
2-18, is a function of the nondimensional coordinate, y and time, t. We also

observe that the value of w is dependent upon the value of the nondimensional

2. 1/2
frequency parameter o = (B;E) . For fixed values of R and v, the value of

o varies directly as the value of (@)1/2, So it is reasonable to look at the
variation of the fluid velocity, w, for smell and large values of o, i.e.,
for small and large values of n = 2nf, i.e., for small and large values of
the frequen v of oscillation, f, of the fluid.

If we include a phase lag between the oscillating pressure and the flow

generated, then the pressure gradient imposed on the fluid has the form

i (nt - )

-é_h = MQ = MQ}G(“t“?)-rLMA&V\((\t_[P)
oL
(2-20)

instead of the form given by equation ?2-5. Here, M is the magnitude of the
pressure gradient and ¢ denotes the phase lag of the flow rate behind the
pressure gradient. Accordingly, the fluid velocity, w, as described by equa-

tion 2-18, has the form

1 - J°!L3/zd‘“ on(“t—q)+i/3dﬂ(nt_47)
Jo (1"at)

a

(2-21)

12
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We will now consider the limiting forms of equation 2-21, describing the fluid -
veiocity for

Case I: Swmall values of the fluid parameter «, i.e., for small values of

the frequency of oscillation of the flowing fluid.

Cage 11: Large values of the fluid parameter o, i.e., for large values of

the frequency of oscillation of the flowing fluid.

Case I, First we consider the expansions




J’ A 3 a2 .6 4
o @)(w7)
3 2 6 4

"
»
v
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-«

Next, from the above expansirns we note that since 0 < y <1, for (ay)" << 26,
or for o << 26/% or for a << 3, the values of Jo(13/2ay) an  Jo(13/2a) may

be written approximately as

T(1%y) = - e PRTT

phy [
7 REI Y

J (L a) - |- Lo - |+ (o
[+ 11 *:

3/2
Accordingly, the term |1 - J-Q—(L/—a}i in equation 2-21 may be written as
Jo(13/2q)

oLl ey L ) L ley)
Jo (") &wim‘) ot Lo C
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for small values of a. Thus, equation 2-21 has the approximate form
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(2-22)

In equation 2-22, the part that has significance is the real part, i.e.,
the first term on the right-hand side. The imaginary part determines the

phase of the fluid velocity. Thus for small values of o the fluid velncity,
w, 1s a function of y and t and is given by

W= w(j’t) ) ‘\—:}%L kﬂ}»}wﬂknt—cﬂ

(2-23)

In equation 2-23, if we consider that
a) there is no phase lag, i.e., ¢ = 0;
b) the value of n = 2rf is zero, i.e., the frequency, f, of the vcscil-
lating fluid is zero;
then cos(nt - ¢) - cos 00 = 1 and equation 2-23 reduces to the form

2
W=y =5 0 -y (2-24)

15




In ~quation 2-24, note that the dependence of the fluid velocity on time, t,
has been eliminated, due to the restrictions ¢ = 0 and n = 0. Moreover, since
y = /R,
2 2 . 42
1-y2=1-5 =250
R R

Substituting this vaiue of (1 - y2) in equation 2-24 and simplifying, we
obtain

w = w(r) = — (R? - r?) (2-25)

In equation 2-25, note that the fluid velocity, w, is a function of the radial
coordinate, r, only.
Now, the equation describing the fluid velocity for stationary Poiseuiiie

flow in a straight, rigid, circular tube is (Schlichting, 1960):
w=w(r) = P-Laﬁﬂ?— (R2 - r2) (2-26)

where p; and p, are pressures at a distance, L, along the tube. Comparing
equations 2-25 and 2-26, we find that the magnitude of the pressure gradient,

M, corresponds to P17~ P2, Thus, equation 2-25 describes the fluid velocity
L

for stationary Poiseuille flow in a straight, rigid, circular tube.

Case II. Again we consider equation 2-18. For large values of a, we
shall use the asymptotic expansions for the expressions Jo(i3/2ay) anu
Jo(i3/2a). The asymptotic forms are

i
JO(L/}j) = %__“__i cosk:‘%_ T_;_)+ LA@&%_%)

16
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Accordingly, the factor |1 - Jo (17 “ay)

in equation 2-18 may be written as
30(13/2(1)

3 £ (0g-e viag )

.%Nh -

|__ Jo(" ‘:1) -~ _ 1 ) Q
T, (™)

?
ar

I 1A GG
-1 €

(2-27)

Thus, for large values of o, the fluid velocity, w, is obtained by combining
equations 2-18 and 2-27
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W= w( )- A e
'a't = " a l-
t/ﬂci
(2~28)
If we consider the pressure gradient to be of the form given by equation

2-20 instead of the form given by equation 2-5, equation 2-28 may be written

as

gl

|- *J%Q Q ’ ] [mknt—qﬁ\»uwknt -4 X

(2-29)

For convenience of writing, we set nt - ¢ =D and - 5& 1-y)=E
Equation 2-29 may then be written as 2

W w(yt) - EM}%‘[l— *a% QE Q‘LE}[QMD»,LAMDJ

= I‘;‘EL {(wﬂb-fl/&vn.‘)) - ‘A_%Q& {(ME+LAWF_XMD+LMMD}X
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ima

-~
(2~30)

Considering only the real part of the fluid velocity, w, described by equation
2-30, we first write it down in the form

2 % €
w - w(*&,t).; M__R_ L ng+A£“-D -‘d Q I8 teaD e b fﬂmbcmE +
/4‘,["' L L
Co1])»ﬁé~x¥i +L Ai~\1)aiév‘ii?&:l

The real part of the fluid velocity is thus

-\ E
W= w(%,t) - M_Rt[d&v\b - /Q {A&“DWE +cmDA(ME}]
Md

. }'\r\} [MMD ; ‘J*\AQE {A'W\ (D+ E)H

L )
. MR [A'm(nt—t?)—j e {M[“t"Y'%—(“ﬂB

pe
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THE MODIFIED FORM” . ¥ THE SOLUTION OF THE EQUATTON DEFINING THC OSCILLATORY
FLOW OF A VISCOUS IN:OMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

We consider equation 2-18, describing the flow velocity of an oscillatory
viscous fluid in a straight, rigid, circular tube:

ont

W w(n&t) . ABT | - Jo(fhd'ﬂ Q
' Lpa” Jo (‘3"4) (2-18)

This equation will provide velocity profiles as a function of A, R, u, o
and r. In its present form the equation is difficult for calculation purposes.
We will therefore modify it in order to obtain an expression that may be easily
calculated, and then demonstrate some of the velocity profiles. Accordingly,
we express the Bessel functions appearing in equation 2-18 in modulus and

phase form as follows.

M. (.:L) = Jo ('C%d) ‘

M. (d]) . ‘ JO (L%d*ﬂ

(<) « Phue { JO(L"M
6,(ay) - Phose {L(t”‘qw
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Thus, equation 2-18 may be w:itten as

X ce (a9) int
o g™
QP L M. (&) QL )

[ Qo(dﬂ-@o(d)] it
A M) © }Q

s M. ()
—i 8 ot
= _AE: { |.. ‘e\o Q }Q
L/J«‘

(2-31)
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Equation 2-31 may bte simplified according to the following scheme. We set

M [ (boat) s (RS ]

. [ T J,‘,cmgo]%'

tow\ £, = ﬁ.c Acn So
S

See figure 3.

Moreover

/
Mo UJ’S E‘o = l - &o (-O’Sgo
M: Ain ﬁ,o - ‘e\o Aln So

Mo An ﬁ.o = ao Aln S°

Thus

/ /
M e, 1M 4ing, = B e S, v L 4l
(2-32)
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Figure 3. Diagram Illustrating the Modulus
and Phase Form of Equation 2-18

Combining equations 2-31 and 2-32, we obtain

int
we wyt) - AR’ {M:C—o‘l e, v L M Ain f’—o}Q

c}TJ‘
e fwetye

, L(nt'ci-.o)
- AR M 2
L/ud‘
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If there is a phase lag of the flow rate behind the pressure _.adient,
and the latter is of the form given by equation 2-20 instcad of the form given

by equation 2-5, then we replace the factor Aeint appearing in equation

2-33 by the factor Mei(nt -4 + Thus from equation 2-33 we have

L(nt- 9 + €0

W wlyt) - _M/% M. @

_M____Rl MOI (o‘)(ht-@*-f..)f- LAL'V\K'nt-CP*‘Ee\

-

/Jtl

cor(nE @ +£2) + Aim{nt - ¢ + £)

———

MR M,
/u &

L
L

(2-34)

The real part of equation 2-34 describes the actual flow velocity along the

tube axis. Thus

MR M

: - M. Ain(nb-q+

W w(yh) - o Aion (nE - @ t") (2-35)
In equation 2-35, note that the factor a? occurs in the denominator and

is a factor contributing to the amplitude of the flow velocity. Clearly, as

the value of a? increases, the amplitude of the fluid velocity decreases,

i.e., the velocity profile tends to flattem out. See figure 4. Note that
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2
since a? = B;E , an increase in the value of a? is brought about by an in-

crease in the values of R and/or n. Moreover, an increase in the value of

a2 is also brought about by a decrease in the value of v,

THE VOLUME RATE OF FLOW
The volurz rate of flow, Q, :: obtained by integrating the fluid velocity,
w = w(y,t), with respect to the cross~-sectional area, S, of the tube. See

figure 5.

INNER WALL OF TUBE

RING ELEMENT

Figure 5. Ring Element of Fluid Area dS for Computing
the Volume Rate of Flow
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m’R‘J wu,t) y A‘} (2-36)
'3".0

Substituting the expression for w(y,t) from equation 2-19 into equation

2-36, we obtain

tnt

Q., O(t) . HRI[%F { [ - i/:[' (}’/&().% )}Q

(2-37)

Next, we obtain the average fluid velocity, w = w(t), according to the relation

To.ow() - %}l

where Q(t) is given by equation 2-37 and mR% is the cross section of the tube.
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Thus

int

Er._ar(t\._ ;k___{‘_ n.J.(L%d) }Q

inf o 3. (.L%d) (2-38)
3 int
2 %N
= AR % ‘ - 1 Jl (L o Q
. 2 N 7N -
pe e J, (L) (2-39)

We may write equation 2-39 in modulus and phase form according to the

following notation.

Mo (&\} = ' Jo (L%o()

09 - Phase &Jo (i%d B
M. (¢) - ‘ J\ ({3’*d)\l , 6,(¢)- Phosz {‘]‘(L’/&))j

M, (@) - ‘ 2l

) -V
L/a.d Jo (L 30\)
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See figures 6 and 7.

M; 0( a)
hlo(a)SlN 8'0(")

A E"o(a)

|- h|o(a) COS 8|o(a)

Figure 6. Diagram Illustrating the Modulus and
Phase Form of Equation 2-39
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Figure 7. Diagram Illustrating the Complex Quantity 13/2

Thus, equation 2-39 may be written as

) {,ﬁ;)(d) ent
oL o) . AR {Mm@Q }Q
L/de
L[nt + f,:o (d\]
Mo
Cp oLt
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If there is a negative phase lag ¢ between the flow velocity and the
applied pressure gradient and the latter is of the form given by equation
2-20, instead of the earlier form described by equation 2-5, then we replace
the factor Aeint in equation 2-40 by the factor Mei(nt - ¢). Thus, from equa-

tion 2-40 we have
([t - v el )]
.o - MM (90

- MR’. M' (d) Coj[ht— P+ ﬁ.lo (‘\]+ L Aln [Y\t -+ &'a/o («)

>

s'./lot

- MR M, (@) 1 o [ﬂt -9 vt @\] t A‘ﬂn[“t P+ &tloﬁ‘*\]

T
@

(2-41)

The actual average flow velocity along the tube axis is described by the
real part of equation 2-41:

w - W) . MR M;A&n [“t -9+t M]

M (2-42)




The actual volume rate of flow, Q, corresponding to the actual average
flow velocity given by equation 2-42, is

Q = Q(t) = w(t){cross~sectional area of tube}

= W(t){nR2}

“ \} ]
- ZT; Mg(a) sin [nt - ¢ + €}g(a)] (2-43)

The values of the quantities Mio, M;olaz and 510 are given in tatles I,
IT1 and III of (Womersley, 1957), for values of a ranging from ¢ = 0 to a = 10
at intervals of 0.05 in a. Womersley's tables have been extended by van
Brummeln, 1961).

In order to calculate w(t) and Q(t) for values of the parameter o greater
than 10, we may use the asymptotic expansions (McLachlan, 1961) of the modulus
Mao(a) and the phase e&o(u):

!
M) = -y L

dl—
!
£ (d) . O l 19
o (4] £ Tt ane

From equation 2-43 we note that since the maximum value of

sin [nt - ¢ + e)g(a)] is 1, we may write

.
Q. (t) = la®) | = fj;‘; Mg (2-44)

Moreover, we note that the volume rate of flow under steady, laminar condi-

tions, according to Poiseuille's formula, is

Q=Q S IR - po) (2-45)
steady  8uL ‘F! 2
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For a comparison of Q _ (t) with Q

steady’ we take the ratio of equations
2~44 and 2-45 and obtain

MAX = M c‘;'t
erenn*/ ?1/%. (b, - f)x) o ( EL-Eb_’;)

In equation 2-46, if we set the magnitude of the oscillatory pressure gradient,

MaR" M " ,
Q) = M@ . MM, (@

(2-46)

M, equal to the pressure gradient, , in Poiseuille flow, we obtain

L

Qmax(t) - §Min(a)

2-47)
2 (
Qsteady @
Qmax(t)
In equation 2-47, note that the ratio -6——-——— decreases as o increases.
steady

For the variation of Mio and eio as a function of o (i.e., as a function of
frequency, n, since a2 = R%n/v), we plot the ratio 8M10/a2 against a. See
figure 2-8. According to equation 2-47, this figure also indicates the vari-
ation of the ratio

Qmax: maximum flow due to a given harmonic pressure gradient

Qsteady: Poiseuille flow corresponding to the given pressure gradient

with a.

Unax
Q

From f.gure 8, note that as a -+ 0, -+ 1, i.e., for smaller and

steady

smaller values of the frequency of oscillation, the maximum flow due to a given
harmonic pressure gradient may be approximated by Poiseuille's formula. For
values of a greater than 1, the maximum flow due to a given harmonic pressure
gradient decreases rapidly as compared with the corresponding Poiseuille flow.

1
At a =10, Q.. = (IS)Qsteady’
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Q max

Qsteady

Qmax

Figure 8. The variaction of the ratio ———— with respect to a,

Qsteady
assuming laminar flow where the driving pressure is of
the same magnitude as the pressure gradient.

This wide variation of Qmax with respect to a, raises the question:
How much is the value of a likely to vary in different animals? If we work

with the following information:

The driving pressure 1s harmonic of frequency, n = 2nf;

2R = diame*er of the human femoral artery = 0.5 cm;
f = pulse rate = 72 per minute;
v = kinematic viscosity of blood = 0.038 stoke;

then the value of o is obtained as

_ n 1/2
« ¢ =RE )
TN L P R S
2’V 60 0.038
= 3.52
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The corresponding values of a for the rabbit and the cat are of about the
same magnitude. This indicates similarity in arterial flow in all these
animals, and shows that the oscillating flow in the great arteries in these
experimental animals and in man has the same form, and differs only in scale.
Figure 9 shows the variation of the phase lag (i.e., of 90° - eio)
between the oscillating fluid pressure and the corresponding volume rate of

flow with respect to the frequency of oscillation. Note that

) - Phae 1o 2J 0

ra J, U%d

The graph shows that the phase lag decreases with increasing frequencv, and

approaches its asymptotic value of 90° for large values of a.
PHASE LAG
o
0
1 o
20 |-
k o
E 40 |-
F ]
60 -
0
: 8ol
90 | |- | N R L l
o I 2 3 4 5 6 7 8 9 10
]
1 a
t Figure 9, The variation of phase lag between the oscillating
fluid pressure and the corresponding volume rate of
flow as a function of a.
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ELECTRICAL ANALOGUES OF FLOW QUANTITIES

It is convenient to consider the arterial circulation in a state of
ascillatory motion analogous to an electrical circuit. In accordance with
electrical terminology, if we associate steady flow with the "DPC theory" of
electricity, we may associate oscillatory fluid flow with the "a eory" of

electricity. Thus we may make the following analogies

1. Oscillating fluid pressure gradient analogous with voltage drop.

2. Oscillating fluid velocity (or volume rate of flow) ar2logous with
electric current.

3. Fluid friction per length of tube section encountered by the fluid
flow through the tube length anaiogocos with electrical resistance.

4. Elasticity of the tube wall analogous with electrical capacitance.

Consider a fluid flowing in a rigid, frictionless tube. See figure 2-10.

According to Newton's law

force = (mass)(acceleration)

dw
i.e. (pl - pz)A - m(-——dt
d
or Py - P)A=m T (%)
_ m dQ
and P1 - P2 777 §¢

Thus, if the fluid pressure gradient (p; - p,) and the volume rate of flow,

Q, are respectively analogous to the voltage drop, (e; - ep), and the current,
i, then the quantity, m/AZ, of the fluid system is analogous to the inductance,
L, of the electrical system. It follows that the model for a rigid, friction-
less tube is an inductor. 1If we include fluid friction in the fluid system,
then the model becomes a resistance-inductance series arrangement, Moreover,

if we consider the tube in the fluid system to be flexible, then the model
becomes a resistance-inductance-capacitance series arrangement. Such z model,
although it represents a first approximation to the actual physiological system,
provides some insight in regard to the parameters that govern the operation of

the actual system.
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Figure 10. Electrical 1alogue of Rigid, Frictionless Tube
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In the treatment of AC circuits, we have to consider the phase difference
between the applied voltage and the current flowing in the circuit. Analo-
gously, we may regard the oscillating arterial pressure gradient generating
a flow with a phase lag. Moreover, in electrical circuits, the complex im-

pedance Ze is the ratlo of the voltage, V, impressed on the circuit and

lec
the current, I, in the circuit,

Zelec = V/1

By analogy, we define the fluid impedance Zfluid as

_ fluid pressure gradient
fluid average fluid velocity

Z

We have noted earlier that the representations for the pressure gradient and

the average fluid velocity are respectively

_ 3P _ o l(nt - ¢) -

Y Me (2-20)
2, - !
(t) = _11:52 M) (a)ellnt =+ e1o(@)] (2-41)
Thus
L (mt —4»
Zeluid = A Q
ul , L[‘nt _q) + t_, (d)]

i
—
128
»

i1

i e (@) - Udin €] ()
R'M () | ]




e

T ]

]
>
Q.
-
')
4
e
9 9~
.
i
+
&
; N
m
o -
—~
<

FLUID

(2-48)

Moreover, we may write

Zelec = Relec + ixelec - t\e.tec + iZTTfLelec (2-49)

where R'elec’ Xelec lec

and the inductance of the electrical circuit. Comparing the right-hand sides

and Le are respectively the resistance, the reactance

of equations 2-48 and 2-49, we conclude that

Mo aim e ()
M. ()

fluid resistance =

fluid reactance

n

=

[ X
e
° -
@
e’

fluid inductance

—_———
=
=
R
{
§
Er“\

l—“
g
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In coastrast with electrical circuits (where the resistance and induct-
ance are independent of the frequency of the system), we note that both the
fluid resistance and inductance are functions of the frequency of oscillation
of the system. The variation of fluld resistance and inductance n a rigid

tube, with respect to frequency, are shown in figures 11 and 12.

FLUID RESISTANCE

}

20 40 60 80 100

Figure-il., Variation of Fluid Resistance with a?




B L

ﬁ FLUID INDUCTANCE

=0, k=0
0.6 ;5::S<T’
0l2 f  '0=025,k=0 \0'=O.5 , k=0
008 -
004 |
0 ! | 1 | | -
20 40 60 80 i00 o2

Figure 12, Variation of Fluid Inductance wiih a2

Note the linear varilation of fluid resistance with frequency for values of

o > 4, The variation of fluid inductance with frequency is small. For large

values of the frequency, the fluid inductance remains essentially constant,

The variation of fluid impedance with frequency is shown in figure 13.
Clearly, a more complete electrical analogue for the arterial circulation

in a state of oscillatory motion must also include a capacitance teo allow for

the elasticity of the tube wall.
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FOURIER SERIES REPRESENTATION FOR CALCULATING THE VOLUME RATE OF FLOW WHEN
THE PRESSURE GRADIENT IS MEASURABLE

Consider a function of time, F(t), which has an oscillatory frequency n.

We may write this function in the form

F(t) = Ab + A1 cos nt + A2 cos 2nt + ... + Am cos mnt +

Bl sin nt + B2 sin 2nt + ... + Bm sin mnt (2-50)

where Ao denotes the mean v~lue of F(t). Note that each harmonic component
of the function F(t) is represented by a pair of terms of the form Am cos mnt +

Bm sin mnt. Equation 2-50 may be written more conveniently in the form

F(t) = Ao + g (Am cos mnt + Bm sin mnt)

If F(t) represents the apolied periodic pressure gradient which has
magnitude Mﬁ for the mth harmonic and ¢, represents the negative phase lag
between the fluid velocity and the applied pressure gradient for the mt:h

harmonic, then we may represent F(t) in the form

F(t) = A + r% M_cos (mat - ¢ )

1 where \
b N X /1

CPM = ta""-! _BL“_
A

In view of &? = R?n/v  R%np/u, equation 2-43 may be written as

- ph ' )
() = BB — i (0) sin [nt - ¢ + e](e))
L Renp

[t}

(R2) ﬁ% M)o(a) sin [nt - ¢ + e}p(a)] (2-51)
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From equation 2-51, we may write down the contribution to the volume rate of

flow made by the mth harmonic in the form
L
Qm = Qm(:) = (mR?) (Mm/mnp)Mlo(am) sin [mnt - ¢m + eio(am)] (2-52)

In equation 2~52, @ is the value of the flow parameter o corresponding to the
th

m  harmonlc, i.e., uﬁl = ma;2 where o) is the value of o corresponding to the
pulse frequency.

Rearranging and expanding equation 2-52, we have

Qm = Qm(t) = (WRZ/mnp)MmMio(am) sin <[mnt + Eio((!m):] - ¢m}

which may be written as

Q (mR2/mnp) sin mat <Am[Mi0(am) cos e'lo(am)J + Bm[Mio(um) sin eio(am)_l>

<+

(7R2/mnp) cos mnt <Am[M10(ozm) sin eio(am)— - Bm[M'lo(am) cos sio(am)—l>

(2-53)
In equation 2-37, for computing the volume rate of oscillatory flow,

we have to evaluate the factor

| - 2 J-| Q.LSAOC
L "o J (%)

h
If we are concerned with the mt harmonic, we have to evaluate a correspond-

ing term of the form

Yy
ZJ| L 10(1“
) )
P, T, (o)

According to our notation, we write this as

TR / , / /
- J‘ : dw\) = M:o(dm)m f'ao (d"") +l Mlo(a‘“\ don t“’ (0( M)

" o, (13”‘0<m) (2-54)
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We note that the terms Mio(am) cos E;O(Gm) and Mio(am) sin eio(am) on the

right-hand side of equation 2-54 also appear on the right-hand side of equa-

tion 2-53. Therefore, for calculating the volume rate of flow from the pres-

sure gradient, we refer to a table of the real and imaginary parts of the

factor
l‘)ll
| - 2 J, (et

Y .3
L /> dm J; (Lh.dm)

For this purpose we use the abbreviations

C, - {12l

U, J, (7 )

REAL

= I - 2 b4' Ca3 g;
« M,

" o 2055)
{ - A
]) = { - 1 s ‘&L A, .l
™ ” —
o () |
TMALINARY
- LMJ Awn gw
& M,
!
m &
: Mw (\d“") A7 e (dq (2-56




Substituting the values of Cm and Dm from equations 2-55 and 2-56 into equa-
tion 2-53, we obtain the contribution to the volume rate of flow due to the

mth harmonic in the form
= - 2
Qm Qm(t) (7R /mnp)[AmCm + BmDm] sin mnt

2 - -
+ (7R /mnp)[.AmDm Bﬂf%i cos mnt (2-57)

Equation 2-57 may be used for calculating the volume rate of flow, Qm, when

i(ont - ¢m). The values of

the pressure gradient is known in the form Mm e
the quantities Cm and Dm are given in table 4 of Womersley (1957) for values
of o ranging from a = 0 to a = 10 at intervals of 0.05 in a.

We have obtained equation 2-57 without considering any perceptible re-
flection of the pulse wave. If such reflections are prese-t, then this equa-
tion is not valid for calculating the volume rate of flow. The effect of
reflections is considered in section VI1, "Junctions and Discontinuities."”

McDonald (1955) has made measurements of pressure gradient, figure 14,
and volume rate of flow in the femoral artery of the dog. The volume rate of
flow was obtained from the average fluid velocity across the tube, which was
measured by following the motion of a gas bubble in the artery by means of
high speed cinematography. A comparison of the observed volume rate of flow
with that calculated from equation 2-52 is shown in figure 15. The pulse fre-
quency was 3 cycles per second. The assumed values of the other pertineat
quantities were as follows:

Radius of artery - 0.15 cm

Viscosity of blood - 0.04 poise

Density of blood - 1.05 gm/cc
Using a? = B%E, a = 3.34 for the fundamental. From figure 15, unote that the
agreement between theory and experiment is good, despite the drastic nature of
the assumption used in deriving equation 2-52, namely that the artery is a
rigid tube, and that the formula contains no disposable* constants.
* o is concocted by definition according to a? = B%E-and is not a physiologi-

cal constant.
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Figure 14, Observed Pressure Gradient Over One Pulse Cycle in the Femoral
Artery of the Dog (McDonald, 1955)

ﬁQ mi /sec

CALCULATED
OBSERVED (McDONALD 1955)

] 1 1 1 1 1 R
0° 60° 120° 180° 240° 300° 360°
CARDIAC CYCLE INTERVAL
( DEGREES)

-

Figure 15. Volume Rate of Flow Over One Pulse Cycle in the Femoral Artery
of the Dog
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It will be seen in section VI, "Pressure-Flow and Pressure-Diameter Rela-
tionships," that the equations describing velocity and flow based upon the
assumption of a rigid tube may be obtained from considerations of an elastic
tube under limiting conditions of stiff constraint. Moreover, good agreement
existing between the rigid-tube equations and McDonald's (1955) results is
admissible as evidence in congidering whether the conditions of stiff con-
straint apply to the artery.

4 Q ml/sec.

6 CALCULATED

5 OBSERVED {McDONALD 1955)

4

3

2
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(DEGREES)

Figure 16. Comparison of Calculated and Observed Flow Over One Pulse Cycle
in the Femoral Artery of the Dog
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RELATIONSHIP BETWEEN THE PRESSURE GRADIENT AND THE TIME RATE OF CHANGE OF
PRESSURE

In the arterial system, if we assume that the pressure gradient is gen-
erated by a periodic cardiac pulse wave having finite velocity, there is a
local increase in pressure in the elastic tube. This local increase in pres-
sure causes a local deformation in the elastic tube which is propagated along
the tube like the wave of a plucked violin string traveling down the string.
This phenomenon is called a pressure wave. If this pressure wave, ‘enoted by

p(z,t), 18 considered to be harmonic in form, we may describe ic by

ein(t - z/¢)

p(z,t) = p_ (2-58)

where c is the velocity of wave propagation and P, is a real constant denoting
the magnitude of the pressure wave.

From equation 2-58 we note the following:

1. Pressure gradient = - %£-= - po(- %?)eln(t - z/c).
- _®
2. Rate of change of pressure with respect to time = ot
- po(in)eln(t - z/c).

Thus the pressure wave form described by equation 2-58, traveling without dis-
tortion at a velocity c, will satisfy the equation

% _123p -
yalalbs (2-59)

Equation 2-59 has the solution p = fl(z - ct) which means any analytic func-
tion whatever of the variable (z - ct). If we consider the equation

3p _ 1 3p

0z c at
we find that its solution has the form p = f2(z + ct) which again means any

analytic function whatever of the variable (z + ct).

It can be easily verified that the combined expression

p = fl(z - ct) + f2(z + ct) (2-60)
satisfies the differential equation
3%p 1 3%
Y22 T 7 3el (2-61)
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Equation 2-61 is known as the wave equation. In equation 2-60 the component
solution p = fl(z - ct) 1s known as the propagated wave and the component
solution p = fz(z + ct) 1s known as the reflected wave.

For a description of the propagated and reflected waves, we plot the
functions fl(z - ct) and fz(z + ct) at successive values of the time, t,
i.e., fort =0, t =1, t = 2, etc. We find that the function fl(z - ct)
defines a graph of fixed form advancing forward (propagated wave) along the
z-axis at the velocity c. See figure 17. Similarly, tor the function
fz(z + ct), we find that the plot as a whole of unchanging form slides back-
ward (reflected wave) along the z-axis at the velocity c. See figure 18.

The general solution p = fl(z - ct) + f2(z + ct) dimplies that the
function fl(z - ct) + f2(z + ct) defines a flow pattern of guneral forms
partly traveling forward and partly backward along the z-axis, without mutual
interference and at a velocity, c, relative to the underlying fluid flow.

From equation 2-59 we note that if we know 3p/dt and the ressure wave
velocity, ¢, then we can determine the pressure gradient, 3p/ z, and the
volume rate of flow, Q. Now, from experimental evidence, the technique re-
quired for measuring the time rate of change of pressure, 3p/d3t, is simpler
than that required for measuring the pressure gradient, 3p/3z. Thus, if the
value of ¢ is known, we may use the product of 1/c and the Fourier expansion
of 3p/3t for calculating the volume rate of flow, Q. This procedure would
imply that all the harmonic components of the pressure wave are traveling at
the same velocity, c. However, the pressure wave velocity, c, is independent
of the frequency only when we consider a circulatory system in which

1. the tube 1is perfectly elastic;

2, the fluid is inviscid;

3. the tube is so long that no reflection of the wave occurs.

Under these conditions, the pressure wave will travel without distortion.

Let the Fourier series for the flow pressure, p, have the form

p = p(t) = P, + Z(Cm cos mnt + Dm sin mnt) (2-62)
m

where the right-hand side is composed of a time independ<nt mean pressure, Py

and a sum of osciliatory components. For determining the pressure gradient,
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9p/3z, according to the method outlined in the preceding paragraph, we have to
obtain 3p/dt. From equation 2-62 we note that 3p/3t will contain only oscil-
latory components since P, is a constant. Thus, the expression for 3p/9z will
contain only jscillatory components. Therefore, according to this method of
determining 2p/9z and the volume rate of flow, Q, we are unable to check the

steady flow against the constant term in the pressure gradient.

‘ fI(Z'C')

FORWARD MOVING WAVE

Ny

Figure 17. A pressure wave having some fixed form
and moving forward with a velocity, ¢, relative to
the underlying fluid flow. Initial position of wave
at t = 0. Subsequent positions at t = 1 and t = 2,



? f2(24C')

BACKWARD MOVING WAVE

Figure 18. A pressure wave having some fixed form and
moving backward with a velocity, ¢, relative to the
underlying fluid flow. Initial position of wave at t

Subsequent positions at t =1 and t = 2,
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SECTION III

MOTION OF A THIN-WALLED ELASTIC TUBE AND VELOCITY OF THE PRESSURE WAVE

INTRODUCTION

In this section we shall first examine the longitudinal and radial forces
to which the tube is subjected and derive the equations of motion of the tube.
Next we consider the motion of the fluid with suitable approximations and
obtain expressions describing the axial and radial fluid velocity components.
Finally, from the set of equations describing the motion of the tube and of
the fluid, we obtain a so-called frequency equation which determines the
velocity of wre propagation in terms of the parameters of the tube material

and of the flu d.

THE LONGITUDINAL AND RADIAL FORCES IN THE ELASTIC TUBE
Cc1sider an element, ABCD, of a cylindrical tube of thickness h lying
between two adjacent generators, G,G, and G G4’ of the tube and two cross

172 3
sections, C.C, and C,C,, perpendicular to the longitudinal axis of the tube.

y/
See figure i9? Let g,4n and ¢ denote the component extensions of the element
of the tube along the radial, circumferential aud longitudinal directions
respectively.
From symmetry, the component extension, n, is zero. If the extensions

£ and ¢ are considered small, then Hooke's law is applicable and we may write
stress = LE(strain)

where E ‘s the linear modulus of ~lasticity of the tube material. Thus, along

the radial Adirection, we have, per unit length of the tube

Q_ & -

where £/R is the strain (change in length per unit length) along the radial

direction., Equation 3-1 may be written as

& . Q -
R hE (3-2)

This equation indicates that the dimension of Q is force per unit length.
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LONGITUDINAL AXIS
OF TUBE

CIRCUMFERENTIAL DIRECTION
(TANGENTIAL TO CURVED SURFACE)

LONGITUDINAL AXIS OF TUBE

RADIAL DIRECTION

Figure 19, TForces in Cylindrical Tube.

Note that if tbe thickness of the tube wall is assumed to be small, then
the v:lue of the radial deformation, £, may be considered to remain the same
at different points along the radius of the tube wall., Thus the strain along
the radial direction may be written as £/R. However, since the value of g
may be different at different points along the length of tue tube, and
£ = £(z,t), we have to consiaer 3£/3z as the value of the radial strain, £, at
any point along the z-axis of the tube. See figure 20.

Moreover, when we consider deformation along the length of the tube, we
observe that the value of tne deformation, gz, varies along the length of the
tube. Since 7 = £(z,t), the value of the longitudinal strain at any point
1long the z-axis of the tube is 3g/3z. Therefore, the relationship between

stress and strain along the axis of the tube, per unit length of the tube, is

Py
=BG (3-3)




e

E

Figure 20. Elastic Tube Coordinate System.

Equation 3-3 may be written as

L. L (3-4)

Equation 3-4 indicates that the dimension of P is force per unit length.

It is known from experiment that when an element of material is stretched
in the direction of its length, it undergoes a contraction along its trans-
verse section. The ratio

change in length per unit lenglh of a transverse section of material
change in length per unit length of material

is constant within the limitations of Hooke's law. This ratio is known as
Poisson's ratio and is denoted by o.

Clearly, <he longitudinal stress, P/h, causes a strain or contraction
along the radial direction. From the definition of Poisson's ratio, the
factor of proportionalicty between this longitudinal stress and radial con-

traction is 0. Thus we may write
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contraction along radial direction = o(P/hE) (3-5)

Similarly, the radial s<:ress, Q/h, causes a contraction along the longitudinal

direction and we may write
contraction along longitudinal direction = o(Q/hE) (2-6)

Thus, the total relative change in length along the radial direction, taking

contraction into account, is, from equations 3~2 and 3-5

£.09 ¢k -
R hE ~ hE (3-7)

Similarly, the total relative change in length along the longitudinal axis of

the tube, taking contraction into account, is, from equations 3-4 and 3-6

8t P _0Q -
8z hE = hE (3-8)

Solving equation 3-8 for P, we find
P = hE-%5 + 0Q (3-9)
z
Substituting the value of Q from equatisn 3-7 into equation 3-9, we obtain

P = hE 2% 4 ghE & + ¢2P
9z R

- o2y = AE. &
i.e. P(1 o) = hEL)Z + 0 R]
= - g2 L g
Bh(l - ¢ ){;Z + g R]
- k14 & -
or P = Bh[az + 0 R] (3-10)

Equation 3-10 describes the tension in the tube along the longitudinal axis.
By a similar procedure we also obtain the following equation describing

the tension in the tube along the radial direction

- £ 9z -
qQ = Bh[R +0 az] (3-11)
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THE EQUATIONS OF MOTION OF THE ELASTIC TUBE

We will now determine the equations of motion of the elastic tube along

both the longitudinal and radial directions. First consider the motion along

the longitudinal axis of the tube. According to Newton's second law, the net

force along the longitudinal direction acting on an element, dz, of tube wall

= (mass of the element, dz)(acceleration, 32¢/3t2, along the z-axis)

)4 . 3%z

[(P + Bz) P](Z’NR) = [ph(dz)Z'nR]at_2

or 3 _ 2% (3-12)
z o2

See figure 21. Note that the net force per unit length acting on the element,

dz, is (P + %5 Jz) - P. The total length along which this force acts is 27R.

The product o” therse two quantities is the net force acting on the eiement dz.

The mass of i~ ~lement dz = (density of tube material) (volume of element) =
p[h(dz)2mR].

2TR

Figure 21. Forces Acting on an Element of Tube Wall.
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For the motion of the tube along the radial direction we have, according
to Newton's second law, the net force along the radial direction acting on an

element dz = (mass of the element dz)(acceleration, 32t/at2, along the radial

direction)
2
p(27R) (dz) —'%(ZwR)(dz) = ph(dz)ZWR-%E%
2
or P —'% = ph %:% (3-13)

See figure 22.

() (27R) (a2

h |,
i/

Figure 22, Forces Acting Along the Radial Direction.
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If we take the viscosity of the fluid into account, there will be a sur-
face traction on the inner surface of the tube along the longitudinal axis of
the tube and equations 3-12 and 3~13 will have to be modified. The total

stress due to surface traction has two components. These are

ow
1) u 3t : radial component of the stress due to surface
r=R traction at the inner surface of the tube.
3
2) wu 3% : longitudinal component of the stress due to surface
r=R traction at the inner surface of the tube.

Thus, the total stress due to surface traction

= éﬂ-+'§2- (area of inner surface of tube) (3-14)
ar 9z =R

From equation 3-10, for the tension in the tube along the longitudinal

axis

P = Bh [%z’z +o %] (3-10)

we have, upon differentiating with respect to z:

) S L AN 14 -

- = Bh[azz + R az] (3-15)
32¢ 3%¢ | o 3% _

oh o2 h{azz + X 32 (3-16)

Equation 3-16 describes the motion of the tube along the longitudinal axis,
taking into account forces due to fluid pressure only. Moreover, the equation
describing the motion of the tube along the radial direction, taking into ac—

count forces due to surface traction only, is

92 9 d
oh -a-t-g - U[T()E + -a-‘-’} (3-17)
r Z r=R
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Combining equations 3-16 and 3-17, we obtain equation 3-18 which describses
the motion of the tube along the longitudinal axis due to the combined effects

of fluid pressure and surface traction

2 2 1
on 250 Jow  ou] g fo% o 0g
at or  9z],..p i3z R 3z
2 2
3%t _ u|ldw  du + Bj3%e o 38
ot2  ph|R 3y ~ dz] _ pldz R 3z
y=1
- PoVf3w o du Bi3%; o 3¢
th[ay+Raz]_ +p[322+R82 (3-18)
y=1
From equation 3-11 we write
Q. Bt , 2 -
R RIR +o o2 (3-19)
Combining equations 3-13 and 3-19, we have
32g _ _ BhjE . 3r
M =P RRY %
3%t _p _B[E 13t -
3t2 ~ ph ~ plRZ T X 3z (3-20)

Equation 3-20 describes the motion of the tube with respect to the radial

direction.
In order to tie in the motion of the fluid and the motion of the tube,

we adopt the following matching boundary conditions.

D alpeg = ulyey =3 (3-21)
2) wl g = w|y=l = %—E (3-22)

In other words, considering that the fluid adheres to the tube wall, the
values of the component fluid velocities, u and w, at the inner surface of
the tube are equal to the time rate of change of the radial and longitudinal

components of the tube displacements respectively.
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THE EQUATIONS OF MOTION GF THE FLUTD IN THE ELASTIC TUBE

The motion of the fluid in the elastic tukbe is governad by the equation
of continuity of mass and the dynamical equations of motion along the radial
and longitudinal directions.

The general form of the continuity equatioa in cyliadrical coordinates
is

3,3 2 2 = -
roo ar(poru) + as(pov) +r az(pow) 0 (3-23

Negiecting the tangential component of the fluid velocity, u, and considering

tihie flow to be incompressible, equation 3--23 reduces to the form

3 3
Frporu) +x w=logw) = 0

au ow
er por 37 T pou + el 0 = 0
or du B, W _

ar | r 0z

The general form of the equation of motion of the fluid along the radial
direction is

—— | — —

(3-25)

If we neglect the body force, the tangential effects of the motion and the

second-order effect, azu/azz, equation 3-25 reduces to the form

B du . 3w 13p, (3% 1du_u B}
ot * U or TV oz 008r+v[ T 2} (3-26)

The general form of the equation of motion of the tube along the longi-
tudinal direction is

oW ow v oW ow
°°[at tu ar + T oY tw az}

5z P arz Yy ar T2 902 T 022

2, 2 2
_Fz_gg_ u[@_g+1aw 1 3% awl (3-27)
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Neglecting the body force and the tangential effects of the fluid motion,

equation 3-27 reduces to the form

dw 8w o dw __193p pfetw 13w 3%
st Tlar vtV oo 3z T uo[arz *Tor t o2 (3-28)

THE AXTAL AND RADIAL FLUID VELOCITY COMPONENTS IN THE ELASTIC TUBE
Suppose that we are interested in a flow process whe-e all the vari-
ables concerned, namely, p, u and w, as functions of the independent vari-

ables r, z and t, have the following form

p = p(r,z,t) = py(r) Pt ~ 2/¢) (3-29)
u = u(r,z,t) = u;(r) ein(t - z/c) (3-30)
w = w(r,z,t) = -13(r) ein(t - z/¢) (3-31)

In these representations, p;, u; and w; are the magnitudes of p, u and w
respectively. These magnitudes are functions of the radius, r. Moreover,
n is a constant denoting the frequency of the forced disturbance and c
denotes the complex velocity of wave propagation.

In the above representations, equations 3-29 through 3-31, we note

that

1) as time, t, increases, the argument of the function changes;

2) if the coordinate, z, increases in such a manner that the argument
of the exponential function remains constant, i.e., if t - %-=
constant, then the phases of the functions p(r,z,t), u(r,z,t) and
w(r,z,t) are ‘ot altered.

Therefore, the representation of the tunctions described above in equa=-
tions 3-29 through 3-31 is the representation of a disturbance that travels
along the z-axis with a velocity c. A flow process which has the above
representation 1s called a plane wave, since the velocity components, u and
v, and the pressure, p, remain constant in any plane perpendicular to the
direction of propagation, z.

Consider the relationship

c = fA (3-32)
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where ¢ is the velocity of wave propagation, f 75 the frequeacy of the wave
and A is the waveiength. We take the reciprocal of both sides of equation
3-32 and multiply both sides by nR. We find that

nR/c = nR/fx = (2n£)R/£fA = 2aR/Y

This result indicates that 1f the wavelength, A, is large compared with the
inner radius of the tube, R, then the quantity nR/c is small.

From equations 3-30 and 3-31 we note that

in(t - z/¢)

uj(R) e (3-33)

=R

in(t - z/c)

w1 fR) e (3-34)

r=R

Combining equations 3-33 and 3-34 with the continuity equation 3-24, we find
that at r = R

§E[u1(R) Jin(t - z/c)] +-%[u1(R) ein(t - z/c) +'§;[w1(R) oin(e - z/c)] -0
i.e. 0+ Elégl ln(t = z/e) | w1 (R) (- %?) Jn(t - z/e) _

i.e. u; (R)/R = w; (R)in/c

i.e. u; (R)/w; (R) = inR/c (3-35)

From equation 3-35 we observe that at the inner surface of the tube, r = R,
the radial component of the fluid velocity, uj(R), as compared with the
longitudinal fluid velocity, w;(R), is of order nR/c, which is small.

We will now obtain a form for the continuity equation 3-24 with the
stipulation that u and w are given by equations 3-30 and 3-31. We note

that from
u = u(r) et - 2/e) (3-30)
we have du _ 3up ein(t - z/e) (3-36)
or or
and .% =_%+ ein(t - z/c) (3-37)
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in(t - z/¢)

Moreover, from w=w(r) e (3-31)
70 find %;l = w (- %) em(t - z/c) (3-38)

Substituting these values of du/dr, u/r and 9w/3z from equations 3-36,
3~37 and 3-38 into the continuity equation 3-24

du L u W -
Yl e 0 (3-24)

we find that

gul ein(t - z/¢) L8 ein(t - z/c) _ wlcig) ein(t - zfc) _ 0
r r c
or u, wm _dn, (3-39)

or r c

Since the magnitude of the radial component of the fluid velocity, u;, is a
function of r only, u; = uj(r), we replace the partial derivative notation

with the total derivative notation and write equation 3-39 in the form

du  w _dn (3-40)
r r C

Moreover, since y = r/R and R(dy) = dr, equation 3-40 has the form

R
() = 22 ) (3-41)

< =
gl

Next, we will obtain a special form for the dynamical equation 3-26
under the condition that the fluid parameters p, u and w are as represented

by equations 3-29, 3-30 and 3-31. From these representations we find that
Su 1 3p 3%2u v Ju

Vv .
the terms 3¢ " pg or’ VA2 ¥ or and - o U of equation 3-26 may be written
as
%g = uy(n) ein(t - z/c)
ot
1 98p_ _ 1 3P e*‘.n(t - z/c)
pg 9r pg or
32u _  32%u; in(t - z/c)
Vorz T Vo2 ©
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v du _ v 3u ein(t: - z/c)
rdr r 9r

NN in(t - z/¢)
12 u= 12 u e

Note that in equation 3-26 the terms u g—: and w -g—;l represent the inertia

terms, since they have the dimension of acceleration. Moreover, we note the

following
du _ in, in(t - z/c)
1) v = w( c) e
Thus the term w -gl;- is of order 1/c as compared with the linear terms in

equation 3-~26 and may be omitted.

2) o U U e:ln(t: - z/c) duy Jin(t - z/c)
dr dr

W) (_;_rll}_)%xr_l_ eZin(t - z/c)

Thus the term u % is of order 1/c and may also be neglected.

3) 9%2u _ . in,2 dn(t - z/c)
22”0 e

The term 932u/dz2 was omitted in equation 3-26, since it is or order 1/c2.

Accordingly, equation 3-26 reduces to the form

- - 92 -
uy (in) ein(t: z/c) _ _1_23P e:Ln(t: z/c) + 9 121] ein(t z/c)
pg or or
+ ¥ du, ein\t -z/e) _ v u ein(t - z/c)
r or r?
o_L1apy %y vy v i
or (in)u; oo 3t tve YTy =7 U1 (3-42)

Since p; and uj are functions of r only, we write equation 3-42 in the form

2
1 dp, + d“u, *_\idm N (3-43)

(in)u, = pdr " Vdrz Trdr "2 ™
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In terms of the nondimensional parameter, y = r/R, note that the terms

on the right-hand side of equation

3-43 may be written as

_ Ll 1 dp
po dr Rog dy
) d2u] - v d2%y
dr2 R2 dy2
v duy _ v dy
r dr R2y dy
v L
TTZ U T TRz W1
Thus equation 3-43 has the form
jouy = oL %P v 2wy v dyy v (3-44)
1 Rog dy ~ R2 dy2 ~ R2y dy  R2y2 !
Multiplying each term of equation 3-44 by RZ/v, we obtain
d%a 1 duy 3.2 u R dP]
oL+ =+ 1 - == 3-45
dyZ Ty dy i Bl A (3-45)

Finally, we will obtain a special form for the dynamical equation

3-28 under the condition that the fluid parameters p, u and w are as

described by equations 3-29, 3-30 and 3-31.

2
1 3p o d%w L p 3w

We note that the terms a:,

of equation 3-28 may be written as

pg 92z’ pg Ar? por dr
%%_= wiin ein(t - z/e)
1 3p 1 in, in(t - z/c)
- — T ee — - — e
Po 32z 00 pl( C)
2 2 : 2 .
Mo 3%w _ 42wy dn(t - z/c) _ v dwy in(t - z/c)
po or? Vidrz € R2 dy2 ©
21w _ v dw e1n(t - z/c) _ v dw ein(t - z/c)
po r 3r r dr R%y dy

In equation 3-28 we omit the inertia terms, u

of order 1l/c as

is omitted, since it is of order 1/c?.

form

QE'and W v
ar 3z

compared with the linear terms. Moreover, the term 32w/3z2

, since they are

Thus, equation 3-28 reduces to the

ein) = - Ao dny v ddwy v dwy }
‘«.1(1“) = 00 pl(.c) + R2 dy2 RZy dy (3-46)
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Multiplying each term of equation 3~46 by R2/v, we obtain

d%w, ldwy , .32  _ 13nR2
iz + 7 a b idalwy = o Pl (3~47)

We have seen in section II, equation 2-13, that the magnitude of the

longitudinal fluid velocity is of the form

1)= M? - (L,_._.”:* ) (2-18)
Lo Mk ) (iahot)

wo. W
' ]

—

Since the fluid is moving under the influence of the fluid pressure, p, we
may assume the magnitude, Pys of the pressure in the representation (3-29)
to have the form

p1 = A1 Jy(ky) (3-48)

where k is to be determined.
We will now obtain the solution of the dynamical equation (3-45).

With p; = A, J,(ky), we obtain from equation 3-45:

2
dowy Lo duy 3,2 -1y, < Re_ e
a2 tyay T @ - pun = s Ak (ky) ] (3-49)

Since the function Jl(ky) appears on the right-hand side of equation 3-49,

we take the form of the solution as
uy = Kl‘]l(ky) ( "50)

where Kl i3 a constan. to be determined. Substituting the right-haud side

of equation 3-50 into the nonhomogeneous equation (3-49), we obtain

Ky L7 (ky) + —;~ Iky) + (32 - S (k)] = - B gy (ke (3-51)

Adding and subtracting szl(ky) frcm the lef: uand side of equation 3-51,
we nave

1 l l 4
Ky [Jy(ky) + v Ji(ky) - P Jy(ky) + k2J)(ky) - k>J)(ky)

. 1 k
+ i3a?J (ky)] = - BA*W=J1(ky)

5
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or K00 - K2J (ky) + 1%2J, (ky)] = - -R%L‘i 3, (ky) (3-52)

since Jl(ky) is a gsolution of the corresponding homogeneous equation.

Solving equation 3-52 for Kl, we obtain

RA1k ( 1 )
m i3g2 - k2

K]=_

Thus the particular solution of equation 3-49 is

RA k 1
u] (T5z - 720 T (ky) (3-53)

u; = KyJy(ky) = -

The homogeneous equa‘:ion corresponding to equation 3-49 is

a2 1d . 1
F;%l + §'E$L + (13(12 - ;Eﬁul =0 (3-54)

The solution of equation 3-54 is

up = KpJp(ky)

where K, is a con:tant which may be written as

2

K . G

E S - s

L ()

bv analogy with the rigid tube theory, section II. Thus the scolution of

the homogeneous equation 3-54 is

.3
u - K J (k . C ;I'( L °“d)
\ ll‘a b SIS
=
J(Ld
©
This is the complementar; function.
1 The complete solution of the nonhomogeneous equation (3-49) is the

sum of the two solutions, equaiion 3-53 and the complementary function

above:
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.3I1 A ~
u = C J.gtd‘d) _ RA._& ) J.Ul‘] (3-55)
1 I u <3 A 2
Jo (L ot) / Ca -k
Next, we determine the solution of the dynamical equation (3-47).
With p, = A;J,(ky), we obtain from equation 3-47:

2 2
dwy; , 1 dw; 3,2.. - . inR _
dy? + y dy + 1°a4w; o Ay Jg (ky) (3-56)

Since the function Jo(ky) appears on the right side of equation 3-56, we

take the form of the solution as

vy = KyJy(ky) (3-57)

where K3 is a constant to be determined. Substituting the right-hand side

of equation 3-57 into the nonhomogeneous equation (3-56), we obtain

" l L 3.2 - inRzA -
Ky [3GQey) + 2 Jg(ky) + %233 (ky)] = = 2EE 3 (ky) (3-58)

Adding and subtracting kZJO(ky) from the left-hand side of equation 3-58,

we have
" 1 "
KylIg(ky) + o Jo(ky) + k2Jg(ky) = K23o(ky)
+-32J(k)]___ill&%§.1.\](k)
2
or K30 = K235 (ky) + 1323, (ky) ] = = 2EAL 5 (i) (3-59)

Solving equation 3-59 for K3, we have

ink2A, ( 1 )
cu i3q2 - k2

Ky = -
Thus the particular solution of the nonhomogeneous equation (2-56) is

inR2A1 1
i xSRI €S (3-€0)

wl = K3\10(ky) = =

AR
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The horogeneous equation corresponding to equation 3-56 is

2
d%wy 1 dwy 3,25, = ~617
dy? + y dy + 1°a4w; 0 (3-61)

The solution of equation 3-61 is
wy = K4J0(13/2ay)
where the constant, Ky, may be written in the form

C
K, =
Y7 30 (13720)

by analogy with the rigid tube theory. Thus the complementary function of

equation 3-56 is

.3/2
w; = KyJg(i3/2ay) = C1!§S%I37%§% (3-62)
0

The complete solution of equation 3-56 is the sum of the particular integral,

equation 3-60, and the complementary function, equation 3-62:

Jo(i%/2ay) _ inR2A; 1 )
Jo(13/20) o Tog7 - w2 Jo(ky) (3-63)

wy = ()

Now we refer to the equation of continuity

1 d inR
=2 = =ur 1=41
y dy (uyy) . V1 (3-41)

Note that if the representations for u; and w;, obtained in equations
3-55 and 3-63 respectively, are substituted into the continuity equat:on
(3-41), we should obtain an identity. Evaluaiing the right-hand side of

equation 3-41,

inR  _ inRC; Jo(i3/2a0y)  i2n2R3A, 1
e Y1 T T / Y
Jo (13/2q)

)T (ky) (3-64)
i3g2 - k¢
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Evaluating the left-hand side of equation 3-41,

e B R aw)

(3-65)




N

DA b

For the right-hand sides of equations 3-64 and 3-65 to be identical, we must

have:
iR ¢, jggzﬁf)’) = Cy(13/24) %lolg—z%—z-}l
and izzzﬁaAl(isuzl- 72) Jolky) = RkiA] (isazl_ w2) Jo(ky)
or K= inR
[

This is the value of k which was to be determined. See page 67.

From the relation
Jody) = Ip(y)

where Iy is the modified Bessel function of the first kind, the assumed form

of the magnitude of the pressure gradient, p;, is
inR R
P, = AJo(ky) = AT (D) = AT D = AL (D)

Moreover, from the relation

J1(1y) = 11, (y)
we find, upon inserting k = 1%3, that
. .. AnR .
N Giky) = i G2 y)
R
0. Ji(ky) = il (25)
From the relation
_ inR
ko= (o
we note that
2 12n2R2 n2R?
c2 c2
2np2
2 _ n“R
and | k2| "
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Clearly, the quantity (n2R%/c2) is small compared with (R?n/v) = a2. For
example, for the 6th harmonic of the pulse frequency of the dog, we find that
the quantity

n2R2 6
c2 104

n

and the ratio of (n?R%/c2) to the corresponding value of a2 = (R?n/v) is about
9 x 10-3, We are therefore justified in replacing the quantity 1342 - k2,
appearing in equations 3-55 and 3-63, by 1302 = (13R?n/v). Moreover, from

the expansion

L
X
%. 2 CE)
Ip(x) =1+ (5) + — 4.,
(12) (22)
we note that for small values of x, disregarding second and higher powers
of x,
Io(X) =1
or

1) = Jo(ky) = 1

Similarly, from the expansion

v @
Li(x) = 5 +———=+
T (12)(2)
we note that for small values of x, disregarding second and higher powers
of x,
L(x) =5
or
nRy, _ DRy
T ( c ) 2¢
From the earlier relations
w = wy(r) eln(t - z/e) (3-31)
u = up(r) ein(t - z/c) (3-30)
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we note that

34 oy () (- A7 talt - 2/)
B @ (- y° tnte - 2/e)

We disregarded (3%w/32?) and (32u/3z2) apvearing in equations 3-25 and 3-28

because they are of order 1/c . The approximations indicated in the preceding

paragraph are of the same degree that is implicit in omitting the second-order

terms (32w/922) and (3%u/322) from the dynamical equations 3-25 and 3-28.
Making the approximations indicated above, namely

1362 - k2 = {342 = 13k%n
\%

il
[

Jo(ky) =

in equation 3-63, we obtain

w o C L (%) A \(4)

\ | ———T

J, (") cH N ERTy

| —j—‘(:;;;;‘) t foc (3-66)

Similarly, equation 3-55, with the approximations

i3R%n
v

and
Co _ _dnR
g Cq - 13;Zac




e

assumes the form

o= mR C J(L%** ___inR A' L nRY

L@l: o J (Lahot) /L{ c 'L"'R‘ﬂ /y' T ¢

ar [C 2 d (%) %

ac RPN ] (L)IJDL‘) (3-67)

The values of the magnitudes of the velocity components w; and u; at the
inner surface of the tube, i.e., at r = R or at y = 1, is obtained by setting

= 1 in equations 3-66 and 3-67. Thus

JQ§i3/2a) A

WI'y=l =0 Jo(i3720) T e
s aH %E (3-68)
ul - 8o PR 5]
y=1 0 poc
= '2 [Clilo(a) + gﬁzl (3-69)
Fuo@ =

In equation 3-~18, describing the motion of the tube wall, we need the

value of %%l .  From equation 3-63, we find that

y=1




W _ _ o3z, J1(13/2%y) | inR2a, 1
dy Qe Et%55753¥l o e s

3wl o oog3f2, 313320 | inR24) 1
ay] Gl F @) * T on ez s 1)
y=1
3/2 2
= — 3/2 . 11%/“a inR<A, 1 inR inR
C;i a{ 5 Flo(a)] + on (i3a2)( c ) ( c )
(3-70)
where we have written
_ 2 3J 13/24
Fo(a) = 1377, Jo (13720)
. - inR
c
Ji(k) = Jl(%R)
1302 - K2 = {342
Since JI(EEE) =-% (%?) » equation 3-70 may be wricten as
i L _ L y32 1A n%? }

y=1
We will now assume that the two components of the deformation of the
tube wall, £ and ¢, have the following specific forms

ein(t - z/¢) (3-72)

E = E(Zyt) Dl

ein(t - z/c) (3-73)

= E(Z,t) B

Y
fl

where D) and E; are arbitrary constants. According to this description, the
deformation components are harmonic and have the same frequency as the repre-
sentations for p, u and w described in equations (3-29, 3-30 and 3-31,

From the deformation components of the tube wall, as described by equa-
tions 3-72 and 3-73, we shall obtain the boundary conditions for the magni-
cudes < the fluid veloci.y components u; and w;. We recall the matching
boundary conditions for the fluid velocity and the deformation of the tube

wall
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u=—;—§ at y = 1 (3-21)
W= -g—% at y =1 (3-22)
From the representation
¢ = t(z,t) = E M€ " 2/0) (3-73)
we have %E— = inE, ein(t - zle)
and 14 = inE; em(t - zic) (3-74)
ot
y=1
Moreover, we know that at the inner surface of the tube
- A
v | 1+ (3-68)
y=1 Poc
in(t - z/c¢)
and w|y=l =W e
r Ay | in(t - z/c)
= 21 zic -
LCI + pocle (3-75)
Combining equations 3-74 and 3-75, we have
A
inE; = C; + = 3-76
nky 1Y oo (3-76)
Similarly, from the representation
£ = £(z,t) = Dy iP(E ~2/e) (3-72)
we have %E— = inD eln(t - z/e)
and %% = inp, It~ 2/0) (3-77)
y=1
Moreover, w:¢ know that at the inner surface of the tube
- inR Al -
UI!y=1 = zc[chlo(Ol) + QOC} (3-69)
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in(t - z/c'
and u]ysl =u) e < Jy’l
o 1R Ay in(t - z/¢) _
—'—ZC{CIFIO(a) + poc]e (3-78)

Combining equations 3-77 and 3-78, we have

R
inD; = i—gg[chm(a) + %;-c-] (3-79)

Equations 3-76 and 3~79 describe the boundary condition.s for u, and w,.

We shall now obtain the equations of motion of the tube iﬁ termslof the
harmonic representations for the fluid velocity components u and w, equations
3-30 and 3-31, the fluid pressure, p, equation 3-29, and the tube wall de-
formation components, £ and r, equations 3-72 and 3-73. We recall the

equation of longitudinal motion of the tube wall in the form

2 2
%% _ pov|dw u Bl3%; , o 3¢ -
ot2 th[ay tR az_y=1 + p|dz2 R 82] (3-18)
From
C = Elein(t - z/c) (3~73)
we have
2 - -
%E% - izanlein(t z/c) _ _ n?_Elein(t z/c)
32 12p2 in(t - z/¢) n?E] in(t - z/c)
322 = et Eie - -t
Next, from £ = Dlejn(t - 2/e) (3-72)
we have 3& _ _ inDy ei“(t - z/c)
92 c
Moreover, from w = w(y,t,z) = wl(y)ein(t - z/e) (3-31)

78




eI PSRN

we have w = eln(t - zle)
2y 3y

Inserting the value of %%L' obtained in equation 3-71, we write
y=1

3 1 iﬂLt-Z/c)
-C.'.C‘*le(‘*\ + l,‘“xR .A_L o

g1 c* foc

I

1

&

o/

Finally, from

u = u{y,z,t) = ul(y)ein(t - z/c) (3-30)

we have

Lﬂ(‘t - l/c_)
%—(—A_ = ul(‘t)('%) Q
2 -
g 4
Lsing the value of ul(y)!y:l determined in equation 3-69, we obtain

ZV\ (t - Z/C_)

- M ACE %_ (-=)€

Cc

Since %5 is of order n?R/c?, we neglect this term appearing in equa-
y=1

tion 3-18. Substituting the results determined above into equation 3-18, we

obtain




-2

or  -n"E = fooyr [-id @)C ¢*\1R1 A,

(3-80)

This equation is associated with the longitudinal motion o: the tube wall in
terms of harmonic representations for u, w, £ and z.

Next, we will obtain the equation (3-20) describing the motion of the
tube in the radial direction in terms of the harmonic representations for the
pressure, p, equations 3-29 and 3-48, and the tube wall defcrmation components,

£ and t, equations 3-72 and 3-73. We first recall equation 2-20

9%t _p _ B E 0 3L .
5t2 " oh " o ®R2 TR 32 (3-20)

From equations 3-29 and 3-48

b = plein(t - z/c) - AlJo(ky)ein(t - z/c)
- Allo(%?)ein(t - z/c)
- A]Lin(t - z/e)
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according to the approximations considered on page 73. Moreover, from

¢ = t(z,t) = Eeln(E ~ 2/¢) (3-73)
we have .;:';.2. - - _i_(.:fl Elein(t - z/c)
Finally, from £ = E(z,t) = Dlein(t - z/c) (3-72)
we have g§§.= - nleeiﬂ(t - z/c)

Substituting the results determined above into equation (3-20), we obtain
in(t- ) o (t-24) in(t-2

_“I'D‘Q/ = I
P

or -n"D = Al - B - dn E + Du (3-81)

' — — —e e \ —=
fAh P L Re >
This equation is associated with the radial motion of the tube wall in terms

of harmonic representations for p, £ and Z.

THE FREQUENCY EQUATION

The equations 3-76, 3-79, 3-80 and 3-8l are four homogeneous equations
in the four arbitrary constants A;, C;, D; and E;. This system of equations
bas solutions different from zero if the determinant of the coefficients of
Ay, Cy, D; and E; is zero. By setting this determinant equal to zero, we
obtain an algebraic equation (3-32) for determining the wave velocity, ¢, in
terms of the elastic properties of the tube, the fluid parameters and the fre-
quency, a. The algebraic equation (3-82) in terms of ¢ or, equivalently,
equation 3-83 in terms of x 1s called the frequency equation,

Rearranging the terms in equations 3-76, 3-79, 3-80 and 3-81 in the order
Ay, C;, D} and E;, we write

fjo? +Cp + 0Dy - inE; = 0 (3-76)
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F10C; - inD; + OEl = 0 (3-79)

_&_ + OC‘ + (“‘_%JD' + LC}%% E' = 0 (3-81)

'V’n?A (A E, - ionB n e
1pfc® m_R_C chD ( )E’-

Setting the determinant of the coefficients of A;, C;, D; and E, equal to

(3-80)

zero, we have

;5:(— 1 0 -tn
"_"iz ‘.P&/':-o -n o
2ﬂc b 2C
=0 (3-82)
0 n-B rnB

iR UpraE,  —ianB (-3 )
2f R’ 2/4R fer fe
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In the fourth row, second column we note that

To simplify this determinant, ve perform elementary operations and approxi-

mations and obtain

Xz[(l - Flo)(l - 02)] - x[k(1 - FlO) + FIO(%-- 20) + 2] + 2k + Fip = 0
(3-83)

This is the so-called frequency equation in terms of the variable x.

DEDUCTIONS FROM THE FREQUENCY EQUATION
The roots of the quadratic equation (3-83) are

% = r k(i-F)- F, L-20) + 2
Q(I—EO)(|_0-1) ( ) ( )
£ {[k(l—ﬁo)+ F,o(_;-m)nJ _4(,_,:'0)('4;)(1“ F,)} \

2

‘X(l-(\") - G i L(\;-F‘O)+EO Ll—zq)n.

28
T A

where
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Now consider the second term on the right-hand side of equat 1 3-84, namely,

{T(%—E“) [ k(o-F) b (- “’)*1}- “Q-jaz?:?()ih F.,)} \*
\

\
\
\

This may be written as )

{ - “('-ﬁ‘,z%.'..«%(:a,» A B" |

or
K
¢ ) '/1. /
*
5 € (o)) |
t _Zk 4+ Fp 142 -1+Fy 142k,

Thus we may write equation 3-84 in the form

Y

%
2

T Hc‘-(.-«l)uﬂ
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where G = é_ + 0 - (3-86)
2

:+2.‘ -1
’- F (3-87)
10

We recall the foll :wing notation

and H

Fe) - 2 (%

(o Jo (La”u

M ' («) - _a J, ( 'L%ok)
) \ ‘ L%.d J; (i,3hok)

¢ (a) - Aase _ 2, (L%&) }
- () t { | o T (17)

Accordingly we write

) it;(d)
/- Ec(d) = | - :.J-,(i /; = Mlo(d>Q

i%.o( J; (i3/1°()
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and -——L—a—— = ( ! - (Ei (3~-88)
- F, () M (4)

Since cio(u) and M;o(“) are known, we note from equations 3~85, 3--86 and 3-87
that all the quantities for determining the roots of the frequency equation

are known.

L J (%)
o J) (%)

From Eo (o\)

we note that Fyp(a) is always complex.

Moreover, from equations 3-86 and 3-87 we note that since G and H are ex-
pressed in terms of (1 - Fyp) it follows that both G and H are always complex.
Finally, from equation 3-85, since x 1s expressed in terms of G and H, we
conclude that x is always complex. Therefore, the motion of the liquid is
either damped or unstable.

From equations 3-85, 3-87 and 3-88 we write

-, (a)
a

s.0) €
(‘f ) M,/o(d)

it

G

ri®

-
+ 0 ;) (3-89)

-i e, ()

(!+1£) Q - 1

I=

¢ —————————— ————

M. (9

(3-90)

We may also write equation 3-85 in the form

(l-GI)’X G Il | + [ | - (I‘U‘) -%—,. (3-91
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Note :hat the sign of tie arg x is deterriaed by the sign of the arg G and

sinc: arg G is always negative, it follows that the motion is damped.

DAMPING OF THE PULSE WAVE
We recall the substitutions x = kB/pc? and k = ph/Rpy. From these we
_ hB .1 m o _E
may write x = (ﬁszizy and since B = To o7 » Ve have

_hE 1 1
Rop 'l - 027¢2

or £ _ (l.ﬂg_)(__l_-__l_
2 2Rp0 1-02C2

X 1 hE |1

or (1 - 0-)2 (2 Rog = (3-92)

Now, the simplest expression for the velocity of propagation of a pressure

pulse is given by the Moens-Korteweg formula

_hE ,1/2

This formula is based upon the following assumptions:

1. The tube is thin-walled, i.e., h << R.

2. The fluid is incompressihle, i.e., its bulk modulus is high

compared with E.

3, The fluid is inviscad.
The first two assumpticns above,are reasonable approximations for blood in an
artery for which o/2R < 0.1. Moreover, the bulk modulus of water is from
103 to 10" times greater than E, the Young's modulus of the arterial wall.
Regarding the third assumption above, we note that the effect of the viscosity
of the fluid is great in swmall tubes and at low frequencies. However, in
tubes comparable with the larger arteries, viscosity has the effect of reduc-
ing the predicted velocity by 5-10 per cent. This is equivalent to multi-
plyiny the right-hand side of equation 3-93 by a constant ranging in value
from 0.9 to 0.95. Combining equations 3-92 .nd 3-93, we write

2
(1 -0 )2 —2—2— (3-94)

87




T ATy T NPTV ETRA R WWW

B e T S O Ry

e e

Here, cp is real and ¢ is complex. cg denotes the velocity of wave propa-
gation in an incompressible inviscid fluid enclosed in a thin-walled elastic
tube and c is the complex velocity of wave propagation.

Combining equations 3-85 and 32-94, we write

b 8

@ - ¢ [{e-ram]

C

The solutions of this equation represent two types of waves. One solutic.
of rae frequency equation represents outgoing waves in the positive z cdirec-~
tion. The other solution represents incoming waves. We counsider only out-
going waves and therefore consider the plus sign only in the avove equation.

In order to obvain ¢ from equation 3-94, e take squarc rools and write
co/c in complex form as

S L
—0)"2- = ==X - iy

where X is the real part of cp/c and may be considered as the wave speed
parameter. Y, the imaginary part of cy/c, may be considered as che wave

damping parameter. For convenience, we may write

X = Real (cg/c) = cg Real (1/c¢) ﬂ'—*"“%&—“—— = ool (3-95)
Reai (1/¢)
Thus the phase velocity of the pressure wave or the measured pulse velociry,

cy, is given by
Cl/CO = l/X

Since a vibrating system has its own inherent unit of time, nemely its

period, it is logical to refer to properties of the pressure wave "pet period’

(or over one wavelength) rather than "per second.” One characteristic on
this basis is the decay ol the pressure wave over one wavelength. Tt can be

2y

shown that the factor exp {:-X } determines the decay of the oscillatioa cver

one wavelength,
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The decay of the disturbance or the slowing of the pulse-wave velocity
must be associated with increased damping. Figure 23 shows the variation of
the damping of the wave with respect to the frequency, a. Note that the
damping is much greater for small values of a and is 100 per cent for a < 1.

In larger mammals, such vriues of damping are obtained for the fundamental
wave in vessels like the saphenous artery (in the dog, a = 0.8 to 1.0). This
is the physical basis for accounting for the disappearance of the pulse wave
in the arteriales even though their length is a small fraction of a wavelength.

The variation of the wave velocity ratio, cj/cp, with respect to the
frequency, o = R(%)l 2, is shown in figure 24. Note that the value of c;/cg
increases with the tube radius, R, ind the square root of the frequency of
oscillation, n. According to figure 24, for values of o = 3, which represents
a vessel of the size of the femoral artery, the magnitude of the wave velocity,
te] = 0.9 ¢g. In vessels of larger radius or at higher frequencies, a > 3,
the magnitude of the wave velocity, c, gradually increases to a value of about
0.95 ¢g. Thus, in the larger vessels, the slowing effect of the pulse wave

due to wviscosity is relatively small.

-2my

08 o172, k=01

07 (a0 =174, k=01

/ 0= 0, k=01
X

o
Q

Figure 23. Variation of the damping factor with respect to a.
The ordinate represents the fractisn of the wave remaining
after traveling over one wave-length. Note that the damping
is much greater for small values of o and is 100 per cent

for « < 1.
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=0, k=0.1
0.5

0.3}

Figure 24. Variation of cj/cy with respect to a. Nete that for
values of o greater thar 3, which are those of greatest practical
interest, the change in the velocity ratio, c¢j/cg, with respect
to o is quite small.

From the preceding discussion, we observe that the relation of damping
of the pulse wave, ¢, to the radius of the tube and the frequency of the wave
1s very important. The importance of the dependence of damping on the fre-
quency may be seen as follows. Consider a tube of onstant radius. Accord-
ing to figure 24, we find that in a viscous fluid the wave velocity, c,
increases with o, i.e., with the frequency of oscillation, n. From figure 23
we note that the damping of the wave per wavelength decreases wi*n a. How-

ever, with increasing frequency, the wavelength becomes shorter. Now, since
wave velocity = (wavelength) (frequzncy)

and the wave velocity changes with frequency, the net effect is that the wave-
length always decreases with frequency.

From the practical point of view, we need also to consider damping in
terms of distance, i.e., over the length of a tube. 1In table 1, values of

the velocity ratio,c,/cy, are indicated for a tube length of 10 cm for the
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first four harmonics of the pulse of the dog, in the femoral artery. These
values are obtained for . = h/R = 0.1, ¢ = 1/2 and 0 = 0. In the table, the
27Y -21Yz
X ) and f5 = exp ( ) )

with z = 10 cm. Note that the percentage damying increases with the frequency

reduction in amplitude is denoted by f; = exp =

ever though the wave velocity increases. Thus for a = 3,34, 0 = 1/2, and the
femoral artery congidered as a free elastic tube, the wave velocity ratio
|c/cg| = 0.914 and the amplitude of the wave is damped to 27.4% of its initial
value in one wavelength. This represents a damping of 5.4% in a 10-cm length.
For a = 6.67, Ic/c0| = 0.942, the amplitude of the wave is reduced to 63.67%

in one wavelength and the damping is increased to 7.5%. One would expect

that such diminuations in amplitude would have been obseryed and remarked
upon, but until more accurate observatious are available it is not possible

to say with -ertainty that this dcogree of damping is greater than that which
exists in the arterial system. In practical observations it might well be

masked by the change in shape of the pulse as it travels.
TABLE 1
The values of c¢jfcyp and damping ratics for k = 0.1 and

a tube length of 10 c¢m for the first four harmonics
of the pulse of the dug in the femoral artery.

T =% l U =0
X ¢1/co £ £ r#M“ﬁl//“'o fl. £,
| 3.34 0.914 0.274 0,946 0.842 0,132 g;glz_
4,72 0.924 0.472 0.938 0.876 0.294 0.900
5.78 0.936 0.565 5.929 0.894 0.381 { 0.883
6.67 0.942 0.636 0.925 0.906 0.442 | o 870
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It is well known that the pulse wave generated by the heart contains
harmonics of several frequencies. According to the above discussion, the
higher frequency waves will travel faster than the lower frequency waves.
Hence, the phase relations of the harmonic components will change and alter
the shape of the pulse wave by dispersion. However, at the same time, the
higher frequencies will be damped out first. Thus, as the pulse wave travels
toward the periphery, its high frequency components will vanish. For example,

the incisura of the central aortic pulse becomes damped out rapidly.

GROUP VELOCITY OF THE PULSE WAVE

Suppose the medium through which the pulse wave travels is such that
the wave velocity is a function of frequency. 1In such a medium the wave
pulses will therefore always be deformed because their different components
move with different velocities. Whenever we directly measure the velccity
of such a complex wave motion, in the sense that a measurement is made of
the time required for the disturbance to travel a given distance, we are
essentially measuring the group velocity of the wave, i.e., the velocity of
the wave profile rather than the wave velocity, c.

Earlier, we had described the motion of the fiuid at any ins:ant by
ein(t - z/c)‘ If, instead, the motion is described by ei(nt - mz), upon

comparison, we note that m = nX/cy. From the definition of the group ve-
= dn/dm, we find that 1 _ d(nX/cq) = 3£-+ (--!3-)g§

locity, e ¢y - dn co cg’dn

Since n = 2E2 dn = 2oy and dn = (ggz)da Combining these results, we
RZ * da = RZ ° R279%* & ’

find that

1]
[><
<+

- "

SRV L X %1)«&
1c.,otV/Rm d o ¢, 1Co

Ols
O
°

92




U O o S S

AT R Tl

P ... ]

Since X = ¢p/c;, this may be written as

l-

! o ) dX

c oL’ (1X> dot
or & . Qg_[ Ly (,_,_L_ dX (3-96)

Cﬁ ¢, lx ol &

In equation 3-96, the analytical torm of dX/da is unsuitable for compu-
tation. However, we note that if we consider the logarithms of X and o in-

stead (see figure 25), then

. /

9’__(‘["‘3 X) . (_).(’._zal)( - (g)c(_)_(
d (%a) (&’..) dot X/ o
Thus it is possible to estimate the magnitude of dX/da.

From figure 25, note that for those values of o which apply to the

remoral artery, 3 < a < 7,

d %X) g -~0.0,%

——

4 {#9)

3¢ <7
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Thus the difference between the group velocity and pulse velocity of the dis-
rurbance is approximately 2%, and over the range oo = 3 to a = 4 1is certainly
never more than 2-1/27%. Until accurate measurements of pulse velocity are

made over short lengths of artery, this difference is not likely to be worth

taking into account.
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Figure 25. The variation of log X with resvect to log a.
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SECTION 1V

EFFECTS OF MASS LOADING, TETHERING AND INTERNAL DAMPING

INTRODUCTION

The equations of the preceding chapter, describing the freely-moving
elastic tube, predict iongitudinal motion of the tube which is too large to
be realistic. In this section we consider a more faithful representation of
the mammalian arteries. To this end we modify the equations of motion of
the elastic tube to take iInto account the additional mass of the tube which
takes no part in elastic dcformatien, elastic constraint, since the arteries
are tethered, and internal damping, since the material of the wall is not
perfectly elastic. We also obtain expressions describing the phase velocity
of the pressure wave and its attenuation, which includes the effect of tube

wall viscosity.

TUBE WITH ADDITIONAL MASS

We have to take into account the fact that the arteries are surrounded
by a Lissue mass. To inc-~rporate this reality, we assume that the additional
tissuve mass is uniformly distributed about the tube and takes no part in the
elastic deformation. Accordingly, the inertia of the tube is increased.

In order to represent the effect of additional tissue mass, we write

effective mass of - fmass of N mass of
artery + tissue lartery tissue

For a given length, %, of tube we may write this relation as:

' = ) -
pe(H ReQ) p(hRe) + pl(thlQ, (4-1)
where Pe effective density of artery + tissue
p density of artery
Py density of tissue
H' effective thickness of artery + tissue

h thickness of artery

hl thickness of tissue
Re effective radius of artery + tissue
hl redius of tissue (added mass)
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Assuming that
1) effective density of artery + tissue = density of artery, Pe = P
2) effective radius of artery + tissue = radius of artery, Re = R,

we may write equation 4-1 as
p(H'RL) = p(hRy) + pl(th]_l)

Dividin+y through by pRR, we obtain

H:fo\t»(gé_(&(&)

(4-2)

TULE WITH ELASTIC CONSTRAINT

For a more faithful representation of the artcories in situ, we will now
take into account the fact that the tube wall with the additional tissue mass
is attached to its surroundings. We will assume that such an elastic con-
straint acts strictly in the longitudinal direction. The motion in the
radial direction will be considered unrestricted.

We recall the equation of motion of the longitudinal displacement cf
che freely moving elasctic tube (which includes the effects of fluid pressure

and surface traction) in the form

2 ( e

5‘151 - bf (3-18)

fe) v | 3w U B q
f’)m 39 " 2| TP\t R %

Tf the tube is considered to be constrained along its longitudinal axis,
then 3u/3z = 0 in equation 3-18. Moreover, if we include the effect of
mass-loading and longitudinal constraint, the equation of motion for the

longitudinal disnlacement, 7, of the tube will have the modified form
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Comparing equation 4-3 with equation 3-18, we observe the following.

1) The second factor on the left-hand side represents the "spring

(4-3)

effect" per unit mass due to the elastic constraint in the longi-
tudinal direction. Note that: force due to elastic constraint per

unit mass = spring effect per unit mass

- spring constant longitudinal displ!acement
mass of tube

natural circular frequency]? (longitudi.al displacement
of elastic censtraint of tube

mlz.

2) The modifization in the second term on the right-hand side cf
equation 4-3, as compared with the corresponding term in equa-
tion 3-18, is on account of the inclusion of the tissue mass.
We recall that when the t ibe thickness was h, the relation be-
tween the longitudinal force,P, and the corresponding disp ace-
ment which is based upon inertia concepts is of the formw

3%y _ aF
ph 32 3z

(3-12)

If the tissue mass is also taken into account, this affects the inertia of

the tube and therefore equation 3-12 has to be modifled to the form

32r 3P
v 25 8l
pH a2 3z

(4-4)

where H' is the effective thickness of the tube with ticsue mass. However,
equation 3-10, which is not based upon inertia concepts, remains unchanged
when the additional tissue mass is included. Thus, for the tube with ad-

ditional tissue me3s, we have

oy pia
= ——rs
P Bh(g?-+— R)

from which we write

o _ o 3%r 7 3%
Az B}(az2 + R az)

(3-1M




hfad i

Y

TR YR

<2 o NPT

Combining equations 4-4 and 4-5, we have

(=]

2 2
1 978 9% . g 9§
oH' 755 = Bh(3;3 + 3 37)

Q-

or

2 2
9ocL _ Bh'(a Z oy 2'250
ot2  pH''3z2 ' R 3z

We now use equation 4-3, denoting the reduced longitudinal motion of the
tube, taking into account the additional tissue mass and longitudinal con-
straint, instead of equation 3-18, describing the motion of the freely moving
elastic tube. The equation, corresponding to equation 3-80 as a result of
this replacement, is combined with equations 3-76, 3-79 and 3-8l to determine
a frequency equation corresponding to equation 3-83. Performing the algebra,
we find that the form of the frequency equation ccrresponding to equation
3-84 describing the wave velccity remains unchanged. This unchanged form is

(1 - 62)x2 +26x+H =0

where

G
{
w
N
I
a
ol Lo
+
a
|
=i-

10

(4-6)




Note that there is a difference in the description of the wall-thickness
ratio, k', for the tube with additional mass and longitudinal constrainc as
given by equation 4-6 and the definition of the wall-thickness ratio, k =
h/R, for the freely-moving elastic tube.

We may draw the following conclusions from equation 4-6:

1) 1If the frequency of oscillation of the flowing fluid is the same as
the natural frequency of the tube, n = m, then k' = H'/R = 0. This implies
that the thickness of the tube is zero, i.e., the mass of the cube is zero.
The condition n = m describes the condition of resonance.

2) 1If the longitudinal constraint is considered to be fairly stiff,
i.e., the tube is considered to be partially restrained in the lorgitudinal
direction, then m > n and the value of k' will be finite and negative.

3) 1If the longitudinal constraint is considered to be very stiff,
i.e., the tube is considered to be completely restrained in the longitudinal

direction, then m >> n and k' + - =,

In the original frequency equation

a - 02)(1 - Flo)x2 - x{2 + k(1 - FIO) 4 FIO(% - 20)} + Fig+2k=0

(3-83)
we find upon expanding and dividing by k
2
X 2x X 1 F]
(1-02)(1-F10)T—'—k--x(1-Flo) -El'lo('é'—zo') +—k-0‘+2=0
(4-7)

In equation 4-7, if we read k as k' and consider the limiting condition of
very stiff constraint described by k' + - «, we find that

-x(1 - Fjp) +2 =0

1

X
or 2" T- g (4-8)
Combining equation 4-8 with equation 3-94
0 2%, 112
= [(1 - 0%)7] (3-94)
d 2
we find that
2 2
<0 1-0907 _ - g2)2
(C) 1 - Fyp & o )2
or
1/2
2
eo _ Lo -
el Sue (4-9)
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From the earlier relation

-t f_:o (o)
' ] ( ' ) ¢ 3-88)
1= Fo @ M () e
we note that
_Len(a)
A h T2
( ! ) _ ( 1 ) Q
I o) M,
'/1 7 !
. ( l ) [(‘,o:l €0 (&) _ | dim f:_,_.,_gi)i
M. ) : b
Therefore
2L A
(.\‘_°. = X =t \/ = l -9 l
y 1- Fo )
Yy )
= { -G ] [cm ﬁ_:g_(f_“) L An &%@] (4-10)
(M) I
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From equation 4-10, we find that

Vo ,
|-(YL ol &\o kd‘\

X
\M@)

'
\/ = |-G . A E—\OLoq
! px
M\o(d)

If the amplitude of the wave is reduced in the ratio exp {- 2;—1} for each

: wavelength of travel, the damping coefficient, 27Y/X, is given by

[}
: 2;Y = 21 tan e]ggaz

1/2
If we take ¢ = 1/2, then (1 - 02) /2 g

‘/‘L !
and X = ‘% (-—'——,—— \ col &\_._‘El_(_dj
M, &)

Moreover, the phase velocity, C1s is given by

cy = Colx

N h !
or = 2 ([‘,‘w@) doc ﬁ\ol(‘*) (4-11)

1
, X B

o0
(o]
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The variation of the ratio c¢;/cy with frequency a = (B;E) is shown in

figure 26 for the values ¢ = 1/2, k' = 0, -2, -», For the same tube and fluid,
figure 27 1indicates the variation of the transmission or damping per wave-
length of the pressure wave with respect to frequency, o, as it travels through
the tube. Note that the value of the ratio ¢y/cy for the constrained tube

does rot tend to 1 as o + @, i.e., the value of c; does not tend to c( as

o + «, In fact, from equation 4-11, for o = 1/2 and with reference to the

asymptotic expansions of Mio(a) and eio(a),

€ a)
2

i

1/2
1imit~%L limit 2 Mjg(a)] / sec
a+oo0 a + o ¥3

=-€: limit [Mlo(oz)}l/2 limit sec El%LEL
V3 g > » a > o
v 2
2= (LD
/3
Cy
-
vo
C
/F ‘/PB
N o \h
o8} A
0.6 t+
04
0.2
I A WA SN ISR VNN S SUN SR | -
0] | 2 3 4 5 6 7 8 9 10 Q

Figure 26. V.riation of the phase velocity with respect to o under
the following conditions of longitudinal constraint and Poisson's
ratio: Curve A: k = 0, unconsirained tube and a = 1/2
Curve B: k = -2, tube with smail constreint and ¢ = 1/2
Curve C: k -o, completely constrained tube and o = 1/2

[ ]

NOTE: Although the asymptotic value of c; for the constrained tube
is 1.155 ¢y, chir value ic attained very slowly, and for moderate velues
of a, ¢y = ¢y approximately for all a » 4,
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Figure 27, Variation in damping of the wave velocity with respect
to o under the following conditions of longitudinal constraint and
Poisson's ratio:

Curve A: k = 0, unccnstrained tube and ¢ = 1/2
Curve B: k = -2, tube with small constraint and o = 1/2
Curve C: k = -o, completely constrained tube and o = 1/2

In figure 26, all three curves coincide for o < 2 and the curve for tie
completely constrained tube is higher than the other two curves for o > 2.
For small values of k, the variation of cj/cy with a is not sensitive to
variations in k. Moreover, from figure 26, the value of the phase velocity,
¢}, in a free elastic tube approaches the value ¢y as a + =, This is due to
the fact that for high values of a, the motion of the fluid is determined
entirely by the inertial properties, since the effects of viscosity may be
neglected. We thus have a situation which corresponds to the Moens-Korteweg
formula which describes the velocity, ¢;, of wave transmission in an incom-
pressible, nonviscous fluid, enclosed in a thin-walled elastic tube. Accord-
ing to this formula, waves of all frequencies are propagated at a constant
velocity, cp, and are not attenuated in travel along the tube.

TUBE WITH INTERNAL DAMPING

In a freely moving elastic tube, the viscous drag of the fluid would
cause the tube to move in the longitudinal direction. Since this movement
is not observed in the arteries, we must modify the equations of motion of
the tube to account for the internal damping in the wall of the tube. To

this end, we replace ctne elastic constants E and o of the tube material,
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which do not vary with the frequency of oscillation of the system, with com-
plex quantities, Ec and . which vary with the frequen: v n.
In order to obtain the appropriate representation for Ec in terms of E,

we consider the equation satisfied by longitudinal waves in an elastic bar

2 32u

32u
x2 at2

— = 3

]

where a2 = E/p. A solution of this equation is of the form

in(t-%)

ulxt) . MO

where A is an arbitrary constant. In equation 4-12, describing the longi-
tudinal propagation of waves, if we replace E (a2 = E/p) by Ec’ where EC is
complex, the imaginary part of EC must be positive if the motion is to be

damped. Accordingly, we write the elastic quantities of the viscoelastic

wall in the form

=
1}

E{1 + in(AE)] (4-13)

o]

c o[l + in(Am)] (4-14)

lo| |1 + in Ac| and since |1 + in ac| 2 1,
it follows that for o = 1/2, |oc| ¢ |o| = 1/2. As a question of principle,

since Poisson's ratio for arterial tissue is known v be almost exactly 1/2,

From equation 4-14, |0cr =

the theoretical maximum, the representation for Ous according to equation

4-14, may not be considered appropriate. However, if we write the repre-

sentation for ¢, in the form
o = gett® (4-15)
whexe & is a parameter which neasures the change in the value of o, then
inﬁ‘ |
= Ul

lo | = lo| fe

= ioI = 1/2. Of the two representations
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for oo equations 4-14 and 4-15, we shall use equation 4-14.

We shall now determine the effect of internal damping, i.e., the effect
of changes of E and o respectively to Ec and o.» on the roots of the frequency
equation 3-83, i.e., on the value of cO/c. We shall consider the following
two cases: Case I. The effect of internal damping on the roots of the
special form of the frequency equation for the limiting condition of very
stiff constraint. Case II. The effect of internal damping on the roots of
the general form of the frequency equation.

Case I. We know that one of the roots of the frequency equation is co/c.
With the modifications of E and o respectively to Ec and T.» it is clear that
<, is not affected, since it 1s a constant. However, the value of ¢ is modi-
fied. We denote this modified value of c by Co As a result, we have a new
ratio co/cc and we may write this new ratio in terms of the old ratio co/c,

as

For the limiting condition of stiff constraint, we recall that
coy? 2y X
= a-6) 7% (3-94)

Moreover, we recall that

e - BERGE

Substituting this value of x in equation 3-94 and taking p = Pys We obtain

(@]
°

(I-G‘) hE \/1= _RE "
2RPe(1-0%) 1R e’
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Now, the ratio co/c corresponds to real values of the t.be parameters

E and o and the ratio co/cc corresponds

Moreover, from the relation

"
e - ()] -

to the complex parame... 3 Ec and 0,e

W
é ( EEFJ (4~16)

we may write for the new ratio, CO/CC’ corresponding to the complex

pararetecr, Ec

C

[

Y2
Co _ 1 (\'& Ec
TC

1RY (4-17)

Taking the ratios of the corresponding sides of equations 4-16 and 4-17, we

obtain

C L ( QE)A
_c - ¢ \ 1R?P
_(_’,'2_ n g\___f::_c_ %h
C ¢ Q 1??)
& (c_o\< E ) <,-<r: (c &
¢ Cc, E;c i | - E -Ygij
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(4-18)

i
T ,-q”(“'w\ AGY]A[ , ]‘A

From equation 4-18 we have, upon multiplying and dividing the right-hand side
by (1 - 02)1/2

1A '
( ‘_0'1)‘/"' | g (1 Ll AG)} [__ !
- Fo [l—q‘ ' \-q? I+ (nAE

|l

Ce
c

h

h [ ’ G’{l - nl(h(!)lar 2N AU}
|

-g" 1-g*
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wihere we have used the binomial expansion and considered the products nAE

and nAo as small.

In equation 4-19, if we take o = 1/2, then

(1 - 02)1/2 -3
2
and
g2 =_l__
1 - g2 3
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then equation 4-19 reduces to the form
. [
~LE

i
h T3
C. 'E) | . AE . AQ
T - (‘f) ) € (8 55 (4-20)

Equation 4-20 describes the wave velocity, c, for complete longitudiral
tethering, (k' + -»), witl complex tube parameters Ec and O 0 = 1/2,
and AE and Ao considered small.

The rest of the discussion in this section follows the work of Taylor
(Taylor, 1959). For convenience, we may write equation 4-27 in the ablireviated

form: c

—f—=(x~1¥)[1-1nN]=x—nYN—i(Y+nXN)

We compare this expression for colc with complex tube parameters or tube with
viscoelastic wall with the expression for co/c with elastic wall and complete

longitudinal tethering

CO
— =X - iy
C

For the elastic case, the phase velocity is given by

a. .l
CO X

and for the viscoelastic case

T

-

Ci
Co

We find that there is an increase in the phase velocity for the viscoelastic
case as compared with the elastic case.

Moreover, the damping per wavelength for the elastic case is described by

exp {- Q%X}
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and for the viscoelastic case

[y
[ -2 M
1% (- nYN

We note an increase in damping per wavelength in the viscoelastic case as
compared with the elastic case.

The influence of tube-wall viscosity depends upon the value of o (i.e.,
the frequency) involved. See figure 28. For small values of a, the ratio
Y/X is large or near unity. Generally, since the product nN is small, the
difference in the phase velocities in the elastic and viscoelastic cases is
small., However, for large values of a, the damping per wavelength is vcry
sensitive to tube-wall viscosity, since, in this case, the value of the ratio
Y/X decreases and hence, X/Y in the numerator of the last expression above
becomes large and attenuation of the wave is increased.

0.8
- 07F k=O.,4 /
}—n
@ .
b 0.6 --.;
W D
a
; 05"'
x
& 04
o
o 03 |
n
2 P
¢ 0.z - —]
=g
x

0.l

O 1

0 | 2 3 4 5 6 7 8 9 10

FREQUENCY a

Figure 28. Transmission of the pressure wave per wavelength as a function cf
o in a viscoelastic tube inlicating different effects of the wall-viscosity
in different ranges of a. In the range o = 2 to o = 4, the variation of the
transmission per wavelength is indicated by curve AB. 1In the range a = 5 to
a = 10, the variation is described by curve CD (Taylor, 1939).
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Case II. Here we start with the general form of the frequency equation
(3-83) for the freely-moving elastic tube and introduce the parameters

<]
]

E(1 + in AE)

o(l + in Ag)

Q
L}

Q
]

0.5, k = 0.4

In a manner similar to Case I, we find that (Taylor, 1959):

(C_in (,-q*)zc_-'mm L %(SF:O-I.(;)

3 (}- F,o)[(;-q‘)x - 0.1.5]-0.'15

Equation 4-21, for the freely-moving tube with viscoelastic walls, replaces
the equation

(8] - (=)x - ()

for the freely-miving elastic tube., For convenience, we consider two special
cases:

(4-21)

(1) Ao =0
(2) nhAo

#
o
—

We find that (see figure 28):

A. The effect of i1 cluding tube~wall viscosity on the phase velocity
is negligible: For o =1, a = 2, the value of c)/cy is reduced by about 1%.
For a > 2, the value of c;/cy is Increased by less than 1%.

B. The effect of including tube-wall viscosity on damping per wavelength
is considerable. In both cases (Ao = 0, nAc = 0.1) the inclusion of iube-
wall viscosity greatly reduces transmission, i.e., increases the attenuation
of the pressure wave. We also note that the effect of tube-wall viscosity is
different in different ranges of a.

Thus, we find that the inclusion of tube-wall viscosity, by restricting

the longitudinal motion of the tube, has an effect similar to that of tether-
ing.
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SECTION V

MODIFIED FLUID EQUATIONS TO ACCOUNT FOR A PLASMA BOUNDARY LAYER

INTRODUCTION

In this section we shall first consider the fluid flowing in the freely
moving elas~ic tube to be made up of two distinct layers: an inner blood layer
bounded by an outer plasma layer. The velocity and velocity gradient of the
fluid are obtained for both layers. At the junction of the blood and plasma
layers, the viscous drags are equated to obtain matching boundary conditioms.
Finally, corresponding to the frequency equation of the freely moving elastic
tube, we obtain a modified frequency equation to account for the plasma layer
and draw some conclusions regarding the form of motion.

FLUID VELOCITY IN BLOOD AND PLASMA LAYERS

Consider the fluia flowing in the freely moving elastic tube to be made
up of two distinct layers: an inner blood layer bounded by au outer plasma
layer at the tube wall. More precisely, we specify that

1) for values of y=r/R lying in the interval 0 £ y £ yg, the fluid in
the tube is blood;

2) for values of y=r/R lying in the interval y3 £ y £ 1, the fluid in
the tube 1s plasma. (See figure 29.)

r=0,y=0 r=ro,¥=Yo r=R,y=I
'.
le—— _BLOOD LAYER PLASMA

L LAYER
/
] /
le yo ————— - - -—’b———-(l - yo) ~- - -—ﬁ/
) 1
| S ——
| /
CENTER INNER SURFACE
OF TUBE OF TUBE WALL

Figure 29. Blood and Plasma Layers in a Tube.

113




A,

We have seen earlier (equation 3-66) that the magnitude of the longi-
tudinal fluid velocity component is given by

- W C j(t ) . A (3-66)
k‘ﬂ Je[t a“)] ¢

Equation 3~66 was obtained under the condition that the fluid was blood
throughout the tube, i.e., for the region 0 S y £ 1. Now if we restrict
the region of the blood to lie within the interval 0 £ y £ yj, then the
corresponding value of w; 1s given by

W - () C J. (L dﬂ t A (5-1)
J [ 3/; ?DJ f,c

where y; is substituted for 1 in the denominator of the first term on the
right-hand side of equation 3-66.

At the boundary between the blood and plasma layers, y=yp, we shall
denote the longitudinal velocity of the blood by wy

w(4) - W
=4

The value of wp is unknown at this time. It will be determined later from
the condition that the fluid velocity must be continuous across the boundary

Y=Yy

The magnitude of the blood velocity at the boundary is obtained by
setting y=yy in equation 5-1. Thus

[+
I
?°|§>
e
-+
™

(5-2)
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Solving for the arbitrary constant, C:, in terms of the unknown, wj, we have
from equation 5-2

C . w-A

. o ?15

Substituting this value of C; in equc.ion 5~1, we obtain

W A . (w; - A J. (Lal'&‘ﬂ (5-3)
ﬂ’c fo< J,, (i,al‘oc ‘3‘)

We shall now find a solution of the differential equation describing
the magnitude of the longitudinal fluid velocity, w;, in the plasma layer,
yo 2 y 2 1. We first note that the solution describing w; was obtained
earlier in the form

oo C L% A

| +

Jo ( -L%:j f,, ¢

This solution had the following restrictive boundary condition imposed on it:
the value of w; stays finite at the center of the tube, y=0. This imposed
condition deleted a component of the velocity from the general solution of
the differential equation. This deleted component had the form

(3-66)

C K (i)
K, (’L"‘ot)

This restrictive condition at y=0 no longer applies in the plasma layer

yo £ ¥ £ 1. In the plasma layer, the boundary conditions have to be fitted
at y=yg and y=l. Accordingly, in the plasma layer, we include this deleted
velocity component and write the magnitude of the longitudinal fluid velocity

in the plasma layer as
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In equation 5~4 we have introduced a nondimensional fluid parameter, 8, for

the plasma layer by analogy with the parameter, a, in the blood layer.

In equation 3-76, the boundary condition for w; had the form

in E‘ 2 Cl + __A_._ (3-76)
=

In analogy with equation 3-76, taking equation 5-4 into account, the boundary
condition for the motion of the elastic tube in the plasma layer has the form

(n Eu - A + C; N Cs (5-5)

oC

where J, and C3 are arbitrary constants. At thie boundary between the biooa
layer and the plasma layer, i.e., at y=ygp, the longitudinal fluid velocity
in the plasma layer is obtained by setting y=yy in equation 5-4, Thus

. cw oo A, C LW C K
'(f(‘)]‘ © roc > J (s/L/s) K, (Lh.)

] jc (5-6

VELOCITY GRADIENT IN BLOOD AND PLASMA LAYERS

The velocity gradient along the tube radius, dw;/dy, in the blood layer
is obtained by differentiating equation 5-3. Thus

1]

dw | w (-1%) J(%d) _ A ( ”‘) J (L% )

EF] Pt 17T ()

d 4 Jo (L% d) oC

116




Wl

© er e e ARSI ARSI
o

(5-7)

Tn analogy with the earlier notation

we wirite

ACTIIE /"""‘“Q INCES)

! \ L')h. n Jo (.L’J/L o_'.)

According to this notation, we may write equation 5-7 in the form

0‘7‘% () o A ()( ik )
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(5-8)

Equation 5-8 describes the velocity gradient along the tube radius in the
blood layer at the boundary between the blood and plasma layers.

Differentiating the plasma fluid velocity, described by equation 5-4,

we obtaln the velocity gradient along the tube radius in the plasma layer.
Thus

dw ] -C (i ]("‘ﬂ C KB o
5, TS ()Kwﬂ)

The velocity gradient in the plasma layer at the tube wall, y=1, is obtained
by differentiating equation 5-4 and setting y=1. Thus

dw; “ ) C (v J (L%) ."/1[5 K'(Lyhﬂ_l (5-10)
aq 1. 0 )J () e K. ()

We can now determine wy and C3 in terms of the arbitrary constant C, by

1) equacing the two values of the quantity (wy - A}/pgc) from equations
5-4 and 5-6, i.e., by making the fluid velocity continuous at the boundary
between the blood layer and the plasma layer, y=yg;

2) equating the two values of the viscous drag at y=yy. For convenience
of writing, we introduce the following notation.
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With this abbreviated notation, equation 5-6 assumes the following form.
From

V. C J(L ) C3K (L A (5-6)
X J, (7%3) Ko (1)

we have

W, - A, .CEF + e e
FI > °(ﬁ3°) CSGo(ﬂ?)

Moreover, equa:cion 5-9 may be written as follows. From

dur.} . -C(" )J (33 C i ") 81 e

gy, 3. () : ko(‘c"‘ﬂ)

we have

- G(ata [ 4)(i") Kelip) K (i)
(% Ak )K(L”mﬁ

< -G RE (1) - S 1.6 36 (o)

(5-12)
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Finally, equation 5-10 has the following form. From

du; | . . Cl(iw/‘; J(i") ¢ %) k. (i) o
i ]1 )J‘o(f”/‘) 1) K. (") |

we have

(5-13)

Equating the two values of the viscous drag at the boundary, y=y,, as
given by ihe blood and plasma layers, we have from the relation

@.n] . dw
/ 4} 4= Y /e d 4 L“J“ ’

Broo) PLASMA

using equations 5-8 and 5-12,

ple(- ) 2 L ()]
LGP - Gy o6 o)
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The parameter, o, in the blood layer is defined as

Y A8 M

b



Similarly, in the plasma laser we define a parameter, B, as

>

P U Rnk
% Kol f Mo

=
5>

..
-

Thus, for the ratio of these two parameters we have

po. M

™

Using this relationship, equation 5-14 reduces to the form

G AT RACACARCAGINC

(5-15)

Combining equation 5-15 with equation 5-11,

EA&?J{QE(M%»&Q(PM SAVIERARCIACY

CE (|- (ﬂvc)} QGO(ME., (49 - G Wﬂ -0

Solving for Cj

c . -¢ um[ F () - R
G (P L F, (44 - G (P29
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Subsittuting this value of C3 into equation 5-5, we obtain from

in E' . A ; C . C3 (5-5)

G R R AT A X
G F (449 6,4 | sam
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Note that if yg + 1, i.e., if we consider thinner and thinner plasma layers,
and, in the 1limit, if all the plasma is replaced by blood, then

a =B, Fig(a) = F1o(B)

and the numerator in the inner bracket in equation 5-17 is zero. Thus,
equation 5-17 reduces to the form

% J‘j=| - Qf (3/31) . (o)

Morecver, we note that in equation

mE . A, x;{,_ AP ACT A
foe (B8 E (04 - Gol(p3) disa16)

if we let y; > 1, then the term

Similarly,

't
’-A

6, (n3)]

Thus the ratio

do !

E (A%) -1
G"(M“) 4o=
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and equation 5-16 reduces to the form

;F:-

(n E| -

Y

R Cz[ |- Fels) - Fe(a)
FL (dj) - <;m Qaa

o
(o}

l

[
"N o
o
+
™
—
-1
a 2]
L
w
e’
1
[}
7]
P
o
L
.____————-‘

i

=
-+

™

. CI[ (%) - c;,o(/s)l
fe (&) = G, (B)

MODIFICATION OF THE FREQUENCY EQUATION

In the limiting condition for a vanishing plasma layer, yg - 1, we note
that the set of equations 3-76, 3-79, 3-80 and 3-81, from which we obtained
the frequency equation for the freely moving elastic tube, remain the game,
except that in equation 3-80 the factor azFlo(a) is to be replaced by the
factor

3 Fp). fl®) - G ()
F (A - G, (9

or °k1 F;:(F*) . /SL Fio (/5 . ’5; (f*\ - (;u;(l%)
® F (4) Fo (P) - G, (p)
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or Y fio (/5) - csu,(lé}
EQ(!B)
or 0(1 Fi, (f*) |" (_0" /%)
EERACKNE
B Fie ()
where L(OL' /5) ;(—" . F. (/3) - Gao kﬂ)

F (P)

With this change in equation 3-80 we will have a corresponding change
in the factors G and H in the original frequency equation (3-83). The modi-
fied frequency equation will have the form

! /
(I—GL)’XL—).G')( +H =0

(5-18)

N (R RN 1 A
(5 ) F O : 5+L(“’ )[—-ql




DEDUCTIONs FROM THE MODIFIED FREQUENCY EQUATION

In the limiting conditions of heavy loading and stiff constraint,
k' + -», the terms in L(a,B) will have no effect on the pulse velocity and
Jamping. Although consideration of the plasma layer changes the frequency
equation, for the limiting conditions of heavy loading and stiff constraint,
the velocity of the pulse wave and the damping of the pulse wave in trans-
mission are not affected.

From equation 3-86, note that

(; = ! +lﬁ-- 3 iﬁ +1 L = 3/# h + 4
tyticy C t It
G- 4 - Fo () I-F, ()

Also

o1 . -9 Lewas-4]

d o

g o Len]ss]

+
3 I- Fy («)
_ *u )
= S———— + -i‘ + -:;.

I - Fo®)

Since G]0=1/2 = G']c=1/2’ we observe that the effect of the factor L(a,8) on
the roots of the frequency equation 3-82 is confined only to its effect on

the factor H'.

In the modified frequency equation,

(1 - 09)x%2 - 26'x +H' =0 (5-18)

128




T T, W R -

[p—— e ]

we note that

'
1) the sum of the two roots = x; + xp = I—%g;z
H'
2) the product of the two roots = x1x; = 1-52

Thus the sum of the two roots will remain the same since (1 - 02) and G' are
the same in the original frequency equation (3-82) and the modified frequency
equation (5-18). But the product of the two roots, H'/(l - 02), since it
contains H', is effected by the factor L(a,B). Since

}4 ’ = [,(1i ,/3) ! - | + 2'£
I - Fio(“) ’ - Fﬂ:@*)

we find that this effect of the factor L(a,B8) will be greatest when the

second term, 2k/[1 - Fy3(a)], is zero, i.e., when k = 0. Thus for very thin

tube walls when k = (h/R) + O,

"L L« LN
H (%) o)

The variation of the wave-velocity ratio, cj/cg, with o is shown in

figure 30. 1In view of the relation

2o
0

Qr\Jm
N

we note that for pu = ug, i.e., for no change in the viscosity of the fluid
across the cross section of the tube, we have (B/a) = 1, i.e., there is no
plasma boundary layer. If (B/a) > 1, then we are irtrodwcing a boundary
layer. Note th. relationships between the wave-velocity ratio, c;/cq, and
o as described by the two curves in figure 30, differ considerably on account
of the introduction of a plasma boundary layer.

In section IV we considered a simple mathematical model based on the
assumption of elastic constraint and obtained the variation of the wave-

velocity ratio, cj/cg, with respect to o (see figure 29). Comparing
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figures 29 and 30, we may conclude that if the model considered in section IV
proves to be inadequate for Z2.scribing the real phenomenon, then the conse-
quences of the asgumption of a boundary layer of low viscosity will have to

be explcred further.

Cy
t <
12k
Ik
1o} k=0, o=1/2, B/a=|
oot
I
il k=0, o=1/2 ,8/a=16
o7t
06|
1 ] 1 | a | ] 1 i -
05 | 2 3 4 5 6 7 8 9
a

Figure 30. Variation of the velocity ratio, c¢;/cg, with a for
1) no plasma boundary layer, B/a = 1;

2) a thin boundary layer described by B/a = 1.6.
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SECTION VI

PRESSURE-FLOW AND PRESSURE-DIAMETER RELATIONSHIPS

INTRODUCTION

In this section we shall consider the motion of the fluid over a short
section of the elastic tube when subjected to a pressure gradient which is
harmonic in time and the longitudinal space direction. We will first assume
that there is no reflected wave present and obtain the longitudinal fluid
velocity, the .verage fluid velocity and note the role of Poisson's ratio.
Next we obtain a relation between the fluid velocity and radial expansion
of the tube both in the presence and absence of a reflected wave. Finally,
we note the variation of the radial expansion with internal damping of the
tube wall,

MOTION OF FLUID IN ELASTIC TUBE

We shall investigate the details of the motion of the fluid over a
short length of the artery over which we may consider the pressure wave
velocity, ¢, as constant in value. We take the origin of the coordinate
system at the center of this short length. (See figure 31.) We recall the
assumed form of the longitudinal fluid velocity component

w = it - 2/0) (3-31)
R
where b\j“ - &_ . C' Jo (L Ld *3) (3-66)

Combinlng equations 3-31 and 3-66, and neglecting the value of z in equation
3-31
¥ (ntl
. e
W - {;\_‘ , C L=y |
oC Y
T ([0

(6-1)

Tn equation 6-1, C; is an arbitrar’ constant of integration to be evaluated
from boundary conditions. A; is the coefficient associated with the magni-
tude, p;, of the pressure, p = pj exp [in{t - z/c)], and having the form

p1 = ApJg(ky) (3-48)
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In order to relate the magnitude of the fluid pressure, A;, to the
magnitude of the longitudinal fluid velocity, w, and other known properties

of the system, we substitute equations 3-76 and 3-79 into 3-8l and solve for
the ratio C;/A;. We define this ratio according to

C, "

———

A, foc
1f we write C; = (A;/pge)n, then from equation 6-1 we obtain

int

we A e J(%9) | @ (6-2)
5 G

From equation 6-2 we note that for a given applied pressure function where

A; is known, the longitudinal fluid velocity, w, is inversely proportional
to the pressure wave velocity, c.

We will now obtain the value of n in terms of o, Fjp and x using equa-
tions 3-76, 3-79 and 3-8l. From equation

" E‘ : C‘ s AL (3-76)
e
we write tn EI = Q_'____ + i
Ac/ﬁ,c A'/’aoC
or P=n+l o
From equation
i D, . 1 iaR|C v A o
1 ¢
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we write inD, . l_z\_R[ EYI + 1]

or Q =1 R [ kN o« 1] (6-4)

b dlgena]
TR A B (e

(6-5)
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Substituting the values of P and Q from equations 6-3 and 6~4 into equation
6~5, we obtain

lé. -n
_li"Y\,R F'Y]*l R |- ,1";+1_3_9_(|+q (6-6)

——

C o i fi\ ch

This is an equation in n which we have got to simplify. Multiplying equa-~
tion 6-6 through by R we have

RYUF [ B o). ReR . Bay,, -
< '°q | PR Ph %(' ']) o

1
2

Dividing equation 6-~7 by c

(6-8)

Since k = h/R, x = kB/pc?, the quantity n?R2/c? is considered small, and
taking p = pg, we may write equation 6-8 in the form

AR B g )

which simplifies to

(6-9)

1-20 _ 2 -
20 - F,c 'x(1(T~ F‘C) Y}
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Now we shall identify the constant, A;/pgc, appearing in equation 6-2
with the corstant appearing in equation 2-19 in the simple theory of the
rigid tube. We note that although the pressure wave velocity, c, in A{/pgc

is a variable quantity, for a short length of the artery ¢ 1s considered
constant 1n value. We know that

in (- 2) in( t-24)

d & A,Jo (H) e
p ot -

-~
i

i

for small values of k. From equation 6-10 the pressure gradient is

in (t - z/c)

ob ] A‘ (-L_n) Q (6-11)
o C

If Ai is the coefficient associated with the pressure gradient in the simple
theory of the rigid tube, then

int

‘?’__'3 i A' Q (6~12)
d2 '

Comparing the coefficients in equations 6-11 and 6-12, we find that

and @&L - —A&;-




dait XY

Since a? = R?n/v where v = u/pg, it follows that
'

. A AR

- 2 \ (6-13)
inf. '»/A o

A
Por

This s the relationship between the coefficient A; in the elastic tube
tuneory and the coefficient Ai in the rigid tube theory.

Iu v 2 derivations of equations 6-14 through 6-25 below, we shall assume
that there is no reflected wave, i.e., the representation for the pressure is

of the form

in(t -~ z/c)

W2 recall that in the simpic theory of the rigid tube (section II) we
had

" int
oo b Lt
GiD l’“r Jo (L%d)

The corresponding average fluid velocity was found to be

_ 3 int
w—kneib ) "A"“ | - M\ Q
inf .La/,_ N \L (i. /xo()
int .
. A__ | - F|° kd) Q (2-38)
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Similarly, corresponding to the velocity

Y int
wooo A ’ W‘] J. ( Ca ) (@ (6-2)
ELASTIC -—'foc + T (i‘%d)

we have the average velocity in the elastic tube

it

w&msric = %—'—C [ | + q Eo (‘*)X Q (6-14)

From equation 6-14 we may write down the modulus and phase of & as
elastic

M, (4)

'H“’]me

"y

e, (4) - Mm{Hqum}

Again, in analogy with the rigid tube representation

(ER-'MD = ('\%Rz)[ M.l_:‘_;_’@ An {'ht -cf) + i,“,: (d.‘,‘} (2-42)

we may write

w o (Mﬁj M\”o () ALv\{“t- 9+ t” (d\} (6-15)
ELASTIC //4 ———;F?— ‘o
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for a pressure gradient, M cos (nt - ¢). We can thus compare the values of
Mio(a) and eio(a) for the rigid tube with Mgo(a) and eTo(a) for tne elastic
tube.

If, in the representation for the complex constant, n (equation 6-9),
we substitute for x its value obtained under the condition of stiff constraint

as glven by equation 4-8, it follows that

= 1 - F\c (d) |- 20

Fe (0) -2 Fo (#) -2

= -1 [ Eo (ﬁi) -0 }
F. (d\ - 1q

Using this value, n = -1, in equation 6-14 and comparing it with equation
2-38, we conclude chat the motion of the fluid in the elastic tube for the
limiting condition of very stiff constraint is the same as the motion of the
fluid in the rigid tube. We have thus obtained a check on the accuracy of
the analysis.

The effect of the value of o on the volume rate of flow is indicated

e

in figures 31 and 32, The variation of the ratio , i.e., the ratio

steady

of the maximum value of the oscillatory flow in either direction, lQnax"

that of the Poiseuille flow,

Q"teadvl for the same pressure gradient, with
o < Y1
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respect to a is indicated in figure 31. The variation of the phase-lag with

respect to a is shown in figure 32. These graphs may be compared with analo-

gous graphs for the rigid tube in section II.

Q max l
Q steady

Uy
Q

Figure 31, Variation of the amplitude ratio

steady

with respect to o for k = 0; ¢ = 1/2, ¢ = 0. Note that for
values of o < 1, the amplitude ratio approaches 1, i.e., there is
little deviation from Pniseuille's formula.
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PHASE LAG (90°- ¢)’

4

Figure 32. Variation of the phase lag, (90° - ¢)°, of flow with
respect to o for k = 0, ¢ = 0; 0 = 0.25 and 0 = 0,5. Note that
as o increases, the phase lag approaches 90°,

The variations of the modulus of the complex fluid impedance, the fluid
resistance and fluid inductance with respect to a? are shown in figures 33,
34 and 35 respectively. These graphs may also be compared with the cor-
responding graphs for the rigid tube in section II.

In order to obtain the value of the longitudinal fluid velocity in the
elastic tube at the tube wall, we set r = Ror y = 1 in equation 6-2 and
obtain

w

(6-16)
ELASTIC

1]
=S >
gL
N
.
o

'

140




e

anrp 2 EEHTETINO

14.0

12.0

100

8.0

6.0

4.0

?MODULUS OF COMPLEX FLUID IMPEDANCE
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Figure 33. Variation of the modulus of the complex fluid impedance with

3.0

respect to a? for k = 0; 0 =0, 0 =0.25 and o = 0.5.

FLUID RESISTANCE

i } Il i )

20 40 60 80 100

2
a

g » 2
Figure 34, Variation of the fluid resistance with respect to a“
for ko= 03 0 =0, g = 0.2% and o = 0.5,

141




f aSainigenll

Ritatog Rel S bl g iy

FLUID INDUCTANCE
=00
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0.16
().Ii!" =05
0.08}
004}
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a2

Figure 35. Variation of fluid inductance with respect to a?
for k =03 0 =0, 0 = 0.25 and o = 0.5.
We note that if we impose the condition of very stiff constraint, n = -1, in

equation 6-16, then the longitudinal fluid velocity is zero at the tube wall.

From equations 6-2 and 6-16 we note that

We Lasrrc ]3:\ i I+
t-‘t“s-:t.nsric I+ 1} F‘° (0()

If we calculate the modulus and phase of this ratio, they will demonstrate
the ratio of the magnitude of the longitudinal fluid velocity at the tube
wall to that of the average longitudinal fluid velocity in the elastic tube
and the phase difference between the two. This is indicated in table II.

) . . 1 +
The values of the amplitude and phase difference of the ratio T+ nFro (o)

emphasize the critical role of Poisson's ratio in determining the details of
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the fluid motion. The phase differences in table II are shown with their
correct algebraic sign with respect to the amplitude ratio, indicating that

the longitudinal fluid velocity at the wall, w » leads the average

elastic y=1

longitudinal fluid velocity, w The most striking point about this

effect is the magnitude of theeigz;igudinal fluid velocity at the wall, which
is greater than might be expected. It is not possible to estimate this
velocity from the experimertal results available. However, it would seem
that the attempt to find experimental means of measuring the effect would be
worth while, since it would form a critical test of the theory and would
throw light on the elestic properties of the arterial wall under dynamic

conditions.

TABLE II

Values of the amplitude and phase difference of the ratio
(1 +n)/(@ + nFyy), comparing the velocity at the wall with
the average velocity, with F;j = 0.1 and values of o cor-
responding to the first four harmonics of the pulse in the
dog's femoral artery.

o =1/2 o0 =0
N Amplitude Phase Amplitude Phase
Ratio Difference Ratio Difference
3.34 0.122 74.0° 0.527 26,2°
4.72 0.166 52.9° 0.226 16.2°
5.78 0.190 38.0° 0.145 12,6°
6.67 0.257 28.6° 0.104 10.5°
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Equation 6-16 describes the longitudinal fluid velocity at the tube wall
in elastic tubes. If we consider that the fluid adheres to the tube wall and
integrate this equation with respect to time, we will obtain the longitudinal
distance traversed by a point on the tube wall. This distance ¢ is

int

%(”'q) Q dt

int

"
——
- >
<
~———
/-\
-
5|~
~—
-
-
~—”
!

int

|=
s
=
)

int

. _ A ,+1,)Q

—

nf

(6-17)

when expressed in terms of the pressure gradient. Note that we have replaced
pg by p, since we are considering the motion of the tube wall.

Assuming k = 0.1, ¢ = 0.5, we find that the maximum value of the longi-
tudinal displacement of the tube wall is 3.92 mm. This is greater than the
diameter of the dog's femoral artery. It is reasonable to suppose that a
longitudinal extension of this magnitude would have been remarked upon, had
it been observed. The above calculation may seem unrealistic, since it is
known that the artery is not, in practice, completely free, but it does show
that the elastic constraint is not likely to be in resonance with the pulse
frequency.
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Equation 6-14 may be written in modulus and phase form as

. "
n ' ﬁ.o (d) mt

e

w ie
ELASTiC
f.

\

I
=
©

. P M: (d)Q 0 (6-18)

since py = AjJy(ky) = A; for k << 1. Since cgf/c = X - 1Y, we may write equa-
tion 6-18 in the form

i€g(®) int

b (X-)Mwe e

LRSTiC
f ¢
[] o

m&

(6-19)

Now, if we express the complex quantity (X - iY) in modulus and phase form
X - iY = |X - iY| phase (X - 1Y)

we note that the effect of the damping of the wave in transmission is to
reduce the phase-advance of flow over pressure. We may write

L[?_‘:(d)+ nt + phase (X- L\/)]
_ b \X, L\/\Mloka)e

ELASTIC ~
o Co

g,

(6-20)

Note that in the case of the rigid tube, equation 2-40, the complex quant 'ty

(X - 1Y) is not involved. Therefore, there is no change in phase for ﬁrigid
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Again, starting with equation 6-14,

int

" - %:.21“ " FW'XQ (6-14)

ELRSTIC
we write it in the following form for comparison with equation 6-20

int

w - A'O(Ez)[u")F}Q (6-21)

ic = io
ELRSTIC c

Imposing the condition of very stiff constraint on equation 6-21, i.e.,
setting

l/l
b S
Co . QI-W) (4-9)

and n = -1, we obtain
L int
- 2
W . A (““) -E\@
ELASTIC = - A e
STIFF CONSTRAINT et (" Eo)

- _A_\_ (g-q‘)‘h(l-F)‘AQ, (6-22)
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' ' ve, (a)
/L / h 2
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we may write equation 6~22 in the form
ey (%)
—_ 7 '/1 : ‘n
uIELRST(c = A_' (‘-3) M («) Q Q
bY io
. . »Co (6-23)
STIFF CONSTRAINT f

Comparing equations 6-19 and 6-23, we conclude that under the conditions of
elasticity, together with stiff constraint, the maximum phase-lead of flow
over pressure will be 45°. Note that the value of c; is not directly
measurable. If we measure the pulse velocity, c;, over a short length of
the artery, we would expect to obtain a value given by

= &0
(3} X

In terms of the measured pulse velocity, c;, equation 6-19 may be
written as

{ ('I: ('*) int

W = b (,-%Zl M‘:(‘*)Q ¢ (6-24)

ELRSTIC
ocl




and equation 6-23 may be written as

" tw (‘*) i.’ﬂt

'Eemsﬂc = A' ([i') M (d) Q Q (6-25)

STIFE CONSTRAINT ﬁC,x

These equations may be experimentally verified as follows. First, we
obtain a Fouriler analysis of the pressure, pressure gradient and fluid
velocity. Next, we abandon all preconceived ideas regarding the values of
the internal radius of the artery and the viscosity of the blood, and de-
termine the value of o that gives the best fit between pressure gradient and
fluid velocity. This can be done witheout intvroducing the pulse velocity.
Finally, we assume that, taking the same value of o, the fit of equation 6-23
to the observed flow curve could be tested, with tt> same value of cy for all
harmonics.

Now we shall include a reflected wave in the expression for the pressure.
Let the incident pressure wave be denoted by
in(t - z/cy)
Py = Ay e 1

or by = Al el(nt - kyz)

where kj = n/c;.

This incident wave is incident at the point z = 0, where a partial re-
flection and transmission takes place. In other words

P; = A ei(nt - kz) for z < 0
For the reflected wave we have

by = Ao ei(nt + ky2) for z < 0
For the transmitted wave we have

Pr = Ap ei(nt - ¥22) for z > 0

where k, = n/cp. Note that the frequency, n, remains constant. For the
resultant wave motion we write
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ap et TP Ly Al RE) e, < (6-26)

3 i(nt - koz)

p=ape

for z > 0 (6-27)
With respect to the representations 6-26 and 6-27, the following con-
tinvicy conditions are imposed:

1) the pressure, p, remain continuous at the point z = 03

2) the pressure gradient, 3p/9z, remain continuous at the point z = 0.
The continuity of p means that the amplitudes be related as

Ay + Ay = A at z = 0 (6-28)

The continuity of 3p/9z means that

1
(=)

ki(A; - An) = szT at z (6-29)

Taking the ratio of the corresponding sides of equations 6-28 and 6-29,

3 we have

' A - _k

ﬁ A1 + A2 kl

: or €2 _ A - A

ci = Ay + Ay

Thus, due to a reflected wave, the pressure is reduced according to the
ratio (Ay = A))/(A; + Ay). If tnere is no reflected wave, then

A - A =1
Al + Ay
.84, A2 = {

oy

According to the above discussion, we may write the earlier equation

n

' 1
wﬁmsnc = _A_' (‘E) Mw(d‘) Q Q (6-23)
STIFF CONSTRATNT fco *

NO REFLECTED WAVE
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in the form

-
-

A
ELASTIC —_—
STIFE CoMNSTRAINT foc" A, + A;

REFLECTED WAVE PRESENT

Thus, when a reflected wave is present we have to account for an "apparent"
velocity, c¢p,defined by

e - cf
= — (6-30)
e by

) ° \‘ »A-—\ A

The amplitudes Ay and A, appearing in equation 6-30 must be considered as
complev. gince no phase constants were included in the description of the
incilrut wave, Pps and the reflected wave, Pps above.

If we assume that the theory developed is correct, then the best use
we can make of an analysis of simultaneous recordings of pre-sure and pres-
sure gradient would be to obtain information about any reflected wave that
may be present. To test the validity of the theory itself, some means would
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have to be found for suppressing the reflected wave. One method might be to
apply a matching terminal impedance at the next junction on the distal side
of the point of measurement.

Another experimental test of the theory can be devised which is free
from this difficulty, using the relationship between pressure and radial
expansion. This is considered in the next section.

RELATIONSHIP BETWEEN FLUID VELOCITY AND RADIAL EXPANSION

Now we shall obtain a relationship between the average fluid velocity
and the radial expansion of the tube. First, for the simpler condition when
there is no reflected wave, we note that equation 3-79 may be written as

imDl - (tﬁ> A + C‘ Eo(d)B

(3-79)
2C A
= (m.?) A, A G
b oC fL Al/q%C
= (E’L‘B) A_' i+ Fo (+)
1L % C
= LY\TQ UJ;
1 ¢ ELRSTIC
(6-31)
using equation 6-14. Since the radial expansion, &, is given by
¢ = p, et - 2/0) (3-72)
we note that for small values of z ve have
int
£ =Dy e (6-32)
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Combining equations 6-31 and 6-32, we find that

int 2¢c
e
or _2_§_=_vue1nt
R c
or 26 _ %
R c

(6-33)

We will now show that equation 6-33 can be obtained directly from the

continuity equation (3-24)

]

€

du L, u _
ar + Y + 3z 0
19 . fw
ot T ar(r“) Y
Setting y = r/R, we find from equation 6-34 that
1.1 9 ow
(Ry)R ay(Ryu) i
r Mo _ 3w
° Ry 3z
= - py ¥
or u = -~ Ry Y

Integrating equation 6-35 with respect to y

from y=0 to y=1,

3= 4
- - 2
Jowa o7 (3)v4
=0 azo
‘&:] ‘a*\
ui] = -Rw ¢
}:o D 3- };O
U - - R 2 . i
S _‘.‘g FR‘J-l’
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i.e., radial fluid velocit; o1 tube wall = - % (-;—f . For no slip at the tube

wall we may write the last statement as

-3 _ _R 3w
Y 2 Oz
or W22
5 = " R 5t (6-36)
Moreover ince % -1 3
» S oz c ot (6-37)
by combining equations 6-36 and 6--37, we have
235 1w -
Rt ¢ ot (6-38)
Integrating equation 6-38 with respect to time, we obtain
2% ¥ 3¢
R <G (6-39)
New © will consider the case when the expression describing the pres-

sure contains a reflected wave. j.e., the pressure has the representation

ein(t - z/¢) in(t + z/¢)

b = A + A, e (6-40)
Then the corresponding average fluid vetocity when a reflected wave is
present 1is, in analogy with equation 6-19, given by
" . h \
i m(t - E/c) Ln(t + t/c) N LE, (dl
SN N < P hE M ()€
ELAST ¢ FC[ ! L o
©
(6-41)
Combining equations 6-39 and 6-41, we write
', n
LE ()
I O fo
> ,\/’ )
)_‘é - _i o (#) & (6-42)
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where p is given by equation 6-40. We may write equation 6-42 in the form

N \ e ()
(€)M ]

2 x®
AV

215
R i (6-43)

Since MYO and e?o are the modulus and phase of the quantity (1 + nFjg), and

2
o _ - a2y X -
== 1-0)7 (3-90)

we may write equation 6-43 as

"
!-cr
P e
s
a
~
PR
+
=
g

1
R f et (6-44)

The form of equation 6-44 is the same whether a reflected wave is present
or not.

In equation 6-44, we note that the limiting value of the quantity
% (1 + nFyy) for the case of very stiff constraint is obtained by setting

—2
1-F10.

t(enf) - ) (al-) -

Therefore, for the limiting condition of very stiff constraint, the quantity

n=-1and x = Thus

% (1 + nFyy) has actually the real value 1 and its phase is zero. See
figure 36, However, we add a small positive imaginary compoaent to account

for damping due to the viscosity of the fluid. From equation 6-44 we note

(g ete) s ()l e e xR
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IMAGINARY AXIS

Figure 36.

REAL AXIS

Small positive phase of the complex

-

N
quantity "L+ nF )

For all {inite values of k, the phase of the quantity % (1 + nFyp) is positive.

Therefore, from equaticn 6-45 we corclude t at the phase of the variation in

diameter, §, always leads the phase of the pressure, p, by a few degrees.

See figure 37,

[

a0° |+

30°

20° +

LEAD

PHASE i FERENCE

100 |-

LAC

-20°

Pigure 37. variatioa of ine phase difference (between the cyclic
variatilones in pressure and driamcter) with respect to a, for k=0

and o =0,5,
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RELATIONSHIP BETWEEN RADIAL EXPANSION AND INTERNAL DAMPING

Equation 6-44, in the 1lir1iting condition of heavy loading and stiff
constraint, i.e.,

2 +nFp) > 1

reduces to the form

28 __ P _ .2 -
R = P 1 - ¢?) (6-46)

For ¢ = 1/2, equation 6~46 reduces to the form

22 _3_p -
R 4 opeg? (6-47)
From equation 6-46 we note that
(29 phase {&} = 1 - g? phase {p}
R paco?

Thus the pressure, p, and the radial deformation, £, will be in phase at all
frequencies.

Since, for other conditions of constraint, the phase difference between
pressure, p, and radial deformation, £, is always small, equation 6-"6 does
not provide a critical means of distinguishing between them. However,
equation 6-46 does provide a test for the presence of internal damping in
the tube wall. This is shown as follows.

In analogy with equation 4-19, for the elastic tube we write

Be BGE (ool s)

(4-20)

Expanding the bracketed term according to the binomial expansion and
neglecting sz:cond~order terms, we harve
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Thus equation 4~20 reduces to the form

e . oaf 1 o inlAE Lﬁﬂ}
. ..;( ”\! { i Lﬂ\A + 3 J
L

™

l

©

(6-48)

o

M
Combining equations 6-43 and 6-48 we ohtain

’:;_%. = :_’5_(_’.).,.1>'I—'L‘Y\(AE+?§AG) (6-49

From equation 6-49 we note that if the radial expansion, &, lags behind the
pressure, p, internal damping must be present. Moreover, if the in.ernal
damping is of the simple form, as described by equation 6-49, then the amount
of phase-~lag in any harmonic will be roughly proportional to the frequency n.
If the phase-lag is large, then equation 6-49 will not be sufficiently
accurate and we mist use the exact form of (%9)2 for substitution in equation

6-49, This exact form from section IV is

O
o

l

(@]

( )l- <L£ . ql(lrinAUY I

I-F, ]| 1-a* [-q> |+ inAE
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where by analogy with equation 2-89, for the elastic tube we write
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From equation 6-50 we noiL. that

+ phase {, + 4(nAa)-i }5(7\1\0)} - phase { L+ LnLE}

Thus, the phase lag of £ behind p is of the amount

tam—’ n AE + tam in Aq

—

3+(n ag)

From this we may obtain estimates of AE and Ao by combining the results from
several harmonics.

Experimental verification of equation 6-47 can be had by referring to
the results obtained by Lawton and Greene (1956). They succeeded in obtain-
ing measurements of variation in diameter throughout the pulse cycle by
filuing the motion of very small beads sewn to the abdominal aorta of the
dog. ‘T'wo typical results (at T = 33/120 = 0,275 sec and T = 0.352 sec) for
the variation in diameter together with the corresponding variation in pres-
sure are shown in figures 38 and 39. The results of Fourier analysis up to
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the fourth harmonic are given in table III. These results are indicated in
modulus and phase form, i.e., in the form Mm cos (mnt - ¢m), n beinz the order

of the harmonic. These results show no steady increase in phase lag with
respect to frequency. The results of curve #1 seem to show a decrease in
phase lag with frequency. This may be illusory. The amplitudes of the third
and fourth harmonics are small, that of the third harmonic being less than
one-sixth of that of the fundamental, that of the fourth harmonic about 5%.
Thus the estimate of the phase lag cannot be expected to be very accurate.

It seems reasonable to conclude from these results that, although there are
irregular variations in phase between pressure and diameter, these variations
are not inconsistent with the assumption that there is no damping in the wall.
Therefore, until measurements of greater accuracy become available, the simple
form of the theory, i.e., k > -~, may be considered to be reasonably accurate.

TABLE III

Values of Fourier Coefficients of the First Four Harmonics for the
Pressure and Diameter Variations Shown in Figures 38 and 39

PRESSURE DIAMETER
HARMONIC PHASE-LAG
Mm ¢m Mm « 10-3 ¢m (DEGREES)
Curve #1
1 18.74 75.67 12.17 86.31 10.64
2 6.80 128.67 4,05 133.55 4,88
3 3.14 154.45 2.14 . 149,68 ~4.77
4 1.56 156.75 0.50 110.03 -46.72
O | 69.73 1.32
Curve #2
1 62.35 56.85 5.50
2 116.50 117.05 -0.55
3 152.85 136.98 15.87
4 124,50 122.60 1.90
L.
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Figure 38. Cyclic variation in diameter of the atdominal aorta of the dog

with respect to the pulse cycle., The observed points are joined by straight

iines,

The circles are points on a four-harmonic Fourier series fitted to

the observations. The corresponding variation of pressure with respect to
the pulse cycle is also shown,

161




Deuts g

1.232
1230
1.228
l.226
1.224
1.222
1.220
1.218
| 216

170 t—

160
150
140
130
120
1o
100
90
80
70

DIAMETER cms.

1

T =0.352 sec.

A

o

PRESSURE mm Hg

90

180

e

1

270

@

|

360
PULSE CYCLE

1

90

180

270

360
PULSE CYCLE

Figure 39. Cyclic variation in diameter of the ahdominal aorta of the dog
The observed points are joined by straight

with respect to the pulse cycle.

lines. The circles are points on a four-harmonic Fourier series fitted to

the observations.
the pulse cycle is also shown.
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SECTION VII

JUNCTIONS AND DISCONTINUITIES

From expurimental observations it is quite clear that the arterial pulse-
wave increases in amplitude and .evelops secondary waves as it travels down
the arterial tree. See figure 40. With this in view, we shall now develop
a more accurate representation of the amount of damping of the arterial pulse-
wave as it travels from the heart to the peripheries. To this end, we shall
consider the traveling prlse~wave in terms of its harmonic components and
include the presence of wave reflection at arterial junctions and discontinu-
ities. An appro—imace metihod will be indicated for estimating a reflection
coefficient as a function of the area ratio of the b.anches to the parent
rube. This coefficient will be used in estimating the reflections produced
at the iliac and coeliac junctions and at discontinuities introduced by in-
sertion of an electromagnetic flowmeter as is required in some methods for
measuring puisatile hlood flow.

THE REFLECTION COEFFICIENT

Corresponaing to equation 6-18, relating the flu.d pressure to the
average lougitudinal fluid velocity, we write

} t//
H ¢ iO(OL)
w = A' r\q (cﬂ) 421
) n 10 (7-1)
ELASTIC R,C
2
if the viscosity of the fluid approaches zero, then a? = Rvn + « and
M'L‘O(O‘) = Il + |]F10(a)! > 1
since
F_ I .h
d) < Ly (»L K o0
o ( 3 — 0 AS oA —> ,
. 3 .I - 9y
o, (7
ad o, o= ~i&l~— remains finite,
A;/OQC
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Figure 40N. Rise in the peak of the aortic and femoral pulse-pressure during
transmission in the dog. (By courtesy of Dr. R. W, Stacy)
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]
Moreover, e€jg(a) = placte {1 + nFyg(a)} = 0. Thus, if we assume that the
u
fluid is inviscid, then Mjj(a) = 1 and efb(a) = 0 2nd equation 7-1 reduces to

the form

@) - A (7-2)

elastic

We will now consider the error that is generated when we use the approximate
form of the pressure-velocity relation (equation 7-2) instead of equation 7-1.
Suppose there is a sudden reduction in the size of an artery from a
fixed radius R to a fixed radius r. See figure 41. Let a; and ap be the
values of o in the larjer and smaller tube respectively. From the relation
a? = R%n/v, we note that the value of a is directly proportional to the radius
and, since r < R}, it follows that ap < aj.

We will assume that on account of a change in the tube diameter, there
is partial transmission and partial reflection of the incident wave. It is
convenient to have the incident wave traveling to the right and the origin
of the longitudinal axis of the tube located at the junction. To allow for
a possible change of phase, we use the complex exponential rather than the
sine or cosine. The incident pressure wave traveling to the right is repre-
serted by

Ay ein(t - z/cy)

The reflected wave traveling to the €t is denoted by

Ay ein(t + z/cy)

The transmitted ressure wave travels in the positive direction in the

smaller tube and can be represented by

A Din(t - z/cy)
2 1~

Note that c¢; and c, are the wave velocities in the large and small tubes

respectively.
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] Figure 41. The incident, reflected and transmitted wave
3 at the junction of a larger and smaller tube.
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Clearly, the magnitule of the total pressure wave on the left~hand side
of the junction is

Ale1n(t - zfey) in(t + z/cy)

+ Aye
On the right-hand side of the junction, the magnitude of the pressure wave 1s

Azein(t - z/c3)

Now we shall use two conditions which exist at the junction z=0. These
are:

(1) The pressure is the same on both sides of the junction at z=0.
(2) The volume rate of flow is the same on both sides of the junction
at z=0,

Imposing these two conditions in tun, we note that since the pressure has
to be the same on both sides of the junction at the point z=0, we write

nressure on the left of junction = pressure on the right of junction

i.e., pressure due to incident wave + pressure propagated by reflected wave
= pr. ssure due to transmitted wave

ie. Alein(t - z/cy) + Auejn(t + z/cy) _ A2ein(t - z/cy) (7-3)

At the point of discontinuity, 2z=0, we 1ave from equation 7-3

nt int

int
i Aze

Ajem 7 4+ AQPL

or Ay + Ay

Ay (7-4)

Now we shall consider the elastic tube in the limiting condition of
stiff constraint. From equation 6-11 we may write the magnitude of the
average longitudinal fluid velocities in the large and small tubes as

A LinL‘°L0

————— e et

— /
w . B ( A-AN M (o)) e (7-5)
2 10 !
LARGE TUBE ﬁ, Co
/

| L L)
- . / .
UU; = E ] Al, M‘ (d\) Q

SMRLL TUBE 2 I,:’ C; . (7-6)
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In equation 7-5 for the larger tube, the magnitude of the pressure is

(A; - Ay). This follows from the fact that when considering volume rate
of flow across the junction z=0, there is a direction involved. For this
reason we must take the difference in the magnitude of the incident and
reflected pressure waves. Note also that cy and cp' are the limiting
velocities of the wave propagated in the two tubes for a = (R%n/v) + =,
i.e., for liquids of very small viscosity. For continuity of flow across

the junction, we equate the volume rate of flow on both sides and write

Q]large tube Q]small tube
i.e.,
.t
Y (-ﬁlo(f*h
1 z

N\ 13 } BV
(nR)L; &F;_CA;[Mw(d.) 4

) B ( A |M () €

CI
ﬁ ° (7-7)
Lo
) T g Lklet)
1 ! 2
R( BL_A_“ M e e . 4 ANM (‘*u) e
. 1o focs 1o
i (7-8)
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According to the Moens-Korteweg formula,
_ hE 1/2
CO - ZRpo

we will assume that in the larger tube with fixed radius R,

« —3
Co * Rj1/2

and in the smaller tube with fixed radius r,

1
co' /2

Considering the thickness, h, and the modulus of elasticity, E, to remain the
same in the larger and smaller tubes, this assumption implies that the mass
loading on the two tubes is the same., With this assumption, equation 7-8
assumes the form

R(A-ARTIM ()] @
z fe

) /
VL i't(? (dA)

(A, V’[ ’d,_
() M) @

(7-9)
Equation 7-% may be written in the form
. / p
L -
2.5 , W1 [Z'no(“*) &m("“)]
F éﬁ_:_giﬁ -{ L Mlo (d;) (;2
e
A" R MIO (&b
(7-10)
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For convenience, we denote the right-hand side of equation 7-10 by A and write

Al - Ay _ A (7-11)

Now we need an expression in terms of A for the ratio of the reflected pres-
sure wave to the incident pressure wave. Ay/A;. This ratio is known as the
reflection coefficient for the junction. From equation 7-11 we may write

the following.

Ao = (B =AW _ g (7-12)

=142 (7-13)

Taking the ratio of the left and right sides of equations 7-12 and 7-13, we
have

A?—Al"}'l\}_t:l“)\
Ay + Ay - Ay 1+

ox [CEFETTR e -1
Now from equation 7-4 we may write

Ay - Ay = Ay
and Ay = Ay = Ay
Therefore equation 7-14 becomes

Ay + Ay _ 1 =)

Ay +A; 142

Ay 1 -

or A1+ (7-13)

The modulus of the complex quantity A,/A; denotes the ratio of the amplitude

of the reflected wave to the incident wave. Its phase is

phase E%%} = phase (A,) - phase (A;)
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which denotes the change in phase of the incident wave upon reflection at
the junction.

The ratio A;/A; is known as the transmission coefficient. We obtain
the value of Ay/A; in terms of A as follows. We know that

Al - Ay
Ay

or _._AZ__._=.].-_

A - A, A

1
or Ay =‘T(A1 - Ay)
o A2 _ LA - my

Ay A A

From the expression for the reflection coefficient, we know that

Ay _1-)
Al 1+
Thus A = 1+ A
A, T T
o Al-Ay _ (140 - (1= __2)
A 10 Y
_ Ao _1(Ay - m) L[ ) _ 2
Therefore A x( Al T+ ST+

Note that if we had used the simplified form of the pressure velocity
relation as described by equation 7-2, then equation 7-10 would have the form

- 2.5
Al - Ay [I.] = (7-16)
Ap AR

Equation 7-16 may be obtained from equation 7-10 if M;O(al) = Mic(az) and

eio(ul) = eio(az), i.e., if the viscosity of the fluid is neglected.
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We may therefore look upon the factor

T A E AR T
Mo e
M., ()

appearing in equation 7-10 as a "throttling" effect due to the fluid viscosity.
The above equations can be used for the division of an artery into a

number of branches of equal size. All that is necessary is to multiply the

right-hand side of equation 7-10 by the number of branches in order to ac-

count for the larger amount of flow. See equation 7-7. Thus, for a division
into two equal branches, we have from equation 7-10

. i) e

N: 2 (f_) M e
R M|; (0(,) (7-17)

Equation 7-17 applies to the constrained tube.

Next we consider the artery as an elastic tube with egual velocities of
wave propagation on both sides of the junction, ¢y = ¢j', and obtain an ex-
pression for A. From thn condition of continuity of the volume rate of flow

across the junction we write
b
t ol
E'u) ( 0

(ﬂRl) AI“AH M,Z(dn) Q

(7-18)
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Now if ¢y = cp', then equation 7-18 may be written as
0
R [/ 4
N t [ Em Ld") - 610 (d')]

YL AA () M€
ELASTIC A, R M"' (u.\ (7-19)

o

For a division of an artery, considered as an elastic tube, into two equal
branches we multiply the right-hand side of equation 7-19 by 2 to obtain:

P [ t:; (o) - » (oh)]

[ M, ()
)amsm, il 1(%) 'F/T"L(;—‘) Q (7-20)

2
The quantity 2{%51 in equation 7-20 is the ratio of the combined area of the

branches to the area of the original tube and is called the area ratio of the
junction. This quantity has been chosen as the abscissa in figures 42-47.

In figure 42 the variatiou of the amplitude of the refl ction coefficient
A with respect to the area ratio, as described by eguation 7~17, is Indicated
for four values of o in the incident tube. Recall that equation 7-17 was
established for a tube with stiff longitudinal constraint and egual mass-
loadin: on the criginal artery and branches. Figure 43 shows the correspond-
ing variation of phase lag of the reflected wave. Figures 44 and 45 are
similar sets of curves with A as defined by equation 7-20, i.e., for an un-
constrained tube, with k=0, 0=1/2 and the wave velocities in the original
tube and branches being assumed to be equal. In figures 46 and 47 the mass-~
loading on the branches has been increased, the assumption being made that
the wave velocity is inversely proportional to the radius of the tube. See
equation 7-21.

If in equation 7-7 we assume that the wave vel-.ities vary inversely as
the tube radii,

1 .
¢ =3 and oy -

then for a division of an ar.ery, considered as a rigid tube, into two equal
branches, the expression for . is of the form
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. / 4 \1
W% [ € (d‘) &y Ld')_»

A:z(i’.)s _M_!;_gﬂ Q
'K M, () (7-21)

A AMPLITUDE RATIO

30%

20 %

IC %

>

2% . AREA RATI
fqz

Figure 42. Variation of the amplitude of the reflected wave with
respect to the area ratio for four values of a (ay = 5, 6, 8, 10)
in the incident tube. The reflected wave is expressed as a per-
centage of the incident wave at a division of the artery into two
equal branches. The tube is in the condition of limiting longi-
tudinal constraint and filled with a viccous fluid and a nonviscous
fluid, a; » =,

Vb R
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Figure 43. Variation of the phase lag of the reflected wave with
respect to the area ratio for the same conditions as in figure 42,
For the nonviscous fluid, the phase lag of the reflected wave changes
from 0° to 180° at the point where the amplitude ratio is zero.
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Figure 44, Variation of the magnitude of reflected waves with
respect to the area ratio for the freely moving elastic tube,
k=0, with the same wave velocity on either side of the junction
and o = 0.5.

176




T TR E T e T

SRS T T R R AR T

180°
I6C°
140°
120°
100°
80°
60°
40°
20°

PHASE LAG OF REFLECTED WAVE

[ { [ L 1 —

1.0 1.2 1.4 1.6 1.8 2.0
AREA RATIO

Figure 45, Variation of phase lag of reflected waves for the
freely-moving elastic tube with k=0, 0=1/2 and the same wave
velecity on either side of the junction.
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4 AMPLITUDE RATIO
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Figure 46. Variation of the magnitude of reflected waves with
respect to the area ratio for longitudinally constrained elasti:
tubes as in figure 42, but with a greater change in wave veloc.ty
between incident artery and branches. Here (ci/cy) = (r/R).
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Now we shall consider the case when each of the branches is of the same
size as the original artery, i.e., r = R. Moreover, if we impose the con-
dition that a; = ay, it follows that all the above exprescions for A reduce
to the form A = 2. From equation 7-15 for the reflection coefficient

1-2
o (-15)
it follows that for A=2
‘ A 1
K—f‘- =-3 (7-22)

4

Equation 7-22 implies that fo- the coaditions imposed, the amplitude of the
reflected wave is one~third the amplitude of the incident wave. The negative
sign indicates that the incident and reflected waves are 180° of phase.

In figures 42-47, note that all the curves are similar. The curves have
a minimum at an area ratio slightly greater than 1.0. This minimum value
occurs at a higher value of the area ratio, the greater the difference in
velocity between the original artery and the branches. Note also that as
this difference in velocity increases, the minimum point on the curve ‘s
gsharper and lower. In figure 42 the minimum point is always less than 3%,
whatever tne value of a. Although the minimum is higher for the unconstrained
tube, it is less critical.

The change in phase-lag for small variations in the area ratio is very
large near the minimum on its lower side. It may be suggestea with some
confidence, therefore, that if the increase in total area at a division
into two branches is of the order of 5%-30%, the amount of reflection will
be fairly small, but the charge in phase will depend, quite critically, on
the particular conditions.

Some enhanc.ment of the harmonic terms in the pressure is, therefore,
to be expected at each reflection as long as the increase in total area is
not too great. If the area ratio of the junction is greater than about 1.3
or 1.4, the phase-lag will be more than 90°. This would be experted to cause
"spreading" rather than "peaking' of the pulse wave.

For three or more branches, the relationships between the reflection
coefficient and the area ratio are very similar to those for two branches.
The point of minimum reflection is at a higher value of the area ratio, and
the minimum amplitude is itself higher. This follows from the greater dif-
ference between ay and o) for the larger number of branches. The change in
phase is more gradual, though still rapid on the lower side of the miniwum.
If the iliac junction in the dog i¢ treated as a division into three equal
branches, the reflection coefficient has an amplitude of 14% and the phase
change on reflectica has a lag of atout 40°. Treating the coeliac region as
a single complex junction gives an estimated amplitude of 5% and a phase-lag
of 65°. The details of the computation are shown in the followin-, subsection.
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The above examples are groisly oversimplified to be regarded as directly
applicable to reflections in the arterial system as they stand. However, they
demonstrate the existence of a condition of minimum reflection, which is opti-
num from the point of view of impedance matching at the junction and is the
condition of maximum energy transfer through it. Thes: examples also indi-
cate the way to a reconciliation of the apparent contradiction between the
damping of the pulse wave In transmission and the observed rise in systolic
maximum towards the periphery of the arterial system.

When a number of junctions are cascaded in series, the direct method of
calculation used in the following section becomes clumsy and tedious, even
for a small number of junctions. The presence of other junctions will modify
these figures profoundly, since the input impedance of a finite length of
tube is not the same as that of a tube of infinite length (Taylor, 1957;
Karreman, 1954).

EXAMPLES: THE COELIAC AND TLIAC JUNCTIONS

As an application of the preceding discussion, we will consider the co-
eliac and iliac junctions in the dog, schematically illustrated in figures
48, 4¢ and 50, with estimates of the diameter of the arteries measured in cm
and of the pulse velocity in cm/sec. For purposes of calculation, shown
below, it is not necessary that the values of the diameters and pulse veloci-
ties be exact, as long as their ratios are reasonapbly correct.

Fi- st we consider the coeliac junction shown in figure 49. Using equa-
tion 7--20, with unequal wave velocities cy aud cp' and the fact that

sum of the transmitted rlow out

incident flow in = through each of the five tubes

we find that

A= /\t' Ny £&|- p\“

L[t;;(gi)" t;:(dJi}
% > S4 ! £\ (2
= - (ﬁ-)(c°) N{;i&»
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Figure 48. Schematic of part of the arterial system of the dog with
estimates of diameter of the arteries in cm and of the pulse velocity
in cm/sec.
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Figure 49. Schematic representing the coeliac junction with di-
ameters in cm and the amplitudes Ay, ap and A, cf the incident,
transmitted and reflected waves respectively.
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Since for the branches numbered four and five we find that
1) the cross sectiors are the same, r, = rs;
2) the pulse velocity is the same, 450 cm/sec;
3) the values of the as are the same, ay, = as;

we may write the sum of the third and fourth terms on the right-hand side of
equation 7-22 as

M " ) t [ t‘\: (‘*9) - t‘: (ds\)]
25 ] o ol
() et
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Thus, from equation 7-22 we write

ente)- 6]

NIy
()5 | Rt |

M. (49 ‘-Se

(/-23)

Note that in ~quation 7-23 we have denctad the fousth and fifih branches by
the fourth branch using subscript 4., For cenvenience, we have depoted the
branch having diameter 0.7 cm as the fiftn boanch and used subscvipt 5
(instead of 6) in the last factor on the rigit-hand side of equatinn 7-23,

For the calculation of A we refer to table IV, From this table of
values, the four separate terms which make up A may be calculated first In
modulus and phase form, and also in terms of real and imaginary parts «s
indicated in table V. From table V we write

A= (0.9357) + i(0,1181)
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TABLE IV

TABULAR FORM FOR CALCULATION OF A

" R 2
Branch Diameter . | Mo (an) ' ., L
U ]
Number (cm) a Mjo €10 MIO("I) Slg(an) - e1¢0(ay) R12
1 0.85 8.5 0.883F 8.56°
2 0.45 4.5 0.7956 18.83° 0.9005 10.27° 0.2803
3 0.5 5.0 0.8127 16.37° 0.9199 7.81° 0.3460
4 0.35 3.5 0.7462 27.16° 0.8446 18.60° 0.1696
5 0.7 7.9 0.8608 10.78° 0.9743 2.22° 0.6782
3 TABLE V
1
é TABULAR FORM OF THE FOUR SEPARATE TERMS OF XA IN MODULUS
3 AND PHASE FORM, AND IN REAL AND IMAGINARY PARTS
Term Real Imaginary
Humber Modulus Phase Part Part
1 0.1402 10.27° 0.1380 0.0250
2 0.1768 7.81° 0.1752 0.0240
3 0.1592 18.60° 0.1509 0.0508
4 0.4729 2,22° 0.4716 0.0183
0.9357 0.1181
-
3
!,
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Thus the reflection coefficient has the value

(0.9357 + 1 0.1181) _ 0.0643 - i 0.1181

1~
A; 1+ 1+0.9357 +1 0.1181 ~ 1,9357 + i 0.1181

It follows that the amplitude ratio has the value

A
= 0,048
|A1 |l

and the phase lag is

-1
3 + tan

¥ 65°

These results indicate that for the model of the coeliac junction chosen here
and treated as an unconstrained tube, the reflected wave has approximately 5%
of the amplitude of the incident wave and is almost 65° behind it in phase.

Similarly, if we consider the iliac junction as a division into three
equal branches, as indicated in figure 50, we find that

s Y (o) Mal) ] €

hAiZ (6‘5)

0.7910 + t (o. luS‘o)

1%

Thus

and the phase lag is 39,53°,

The preceding results stow that for a wide

el (w)- tle9]

range of conditions, re-

flection of the pressure wave vill cause a moderate increase in amplitude of
the transmitted wave for a correspondingly moderate increase in total cross-

sectional area at the junction.
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Figure 50. Schematic rep.-.enting the iliac junction with diameters
in cm and the amplitudes & , A, and A, of the incident, transmitted
and reflected waves respeci ively.

STANDING WAVES IN ARTERIAL SYSTEM

Consider a junction or discontinuity where we asgsume that the following
conditions prevail:

1. The reflection coefficient has an amplitude of 10%, %i[ = 0.1,
14

2. There is no phase lag between the incident and reflectel pressu.=
waves.

2. The wave velocity is independent of the frequency, a, or tr size of
the tube.

For incorporating these assumptions, we let the incident wave form
traveling in the positive z-direction be described by

Aein(t - z/c)

The cor: »Honding reflected wave form traveling in the opposite direction
1+ given

1), daa(t + z/c)

{10JAe
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Thus the resultant of the incident and reflected waves is described by

Aein(t - z/e) + [.l]Aein(t + z/c¢)
10

: This expression may be written as
in(t-z/c) {m(t‘l/c,) lﬂ(tf Z/c)

(3_) Ae +({5) AC . AC

0

—~—

L

(7-24)
£ According to this expression, we may say that the transmitted wave is made
up of the following two components:

1) a component which is 9/10 of thue incident wave and

2) another component which i1s 1/10 of the resultant of the interaction
between the incident wave and the reflected vave.

Now we may write the expressior (7-24) as

o)

inf(t- Z/c) int ~inig in /.

q /& (El + L /\(?, égz + (Ez

10 10
: or
¥ in(t- 2/) int

iAQ + J_AQ CiNZE _( 4in NZ ’-_C(”YE_*LALY)Y\
E {0 10 c C C
| or
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The right-hand side of equation 7-25 represents the resultant of a wave nine-
tenths of the amplitude of the incident wave and a standing wave of one-fifth
of its amplitude.

1
ﬁ Ir. wave-guide technology this latter method of describing conditions is
well known and a method of indicating the efficiency of energy transfer is
the standing wave ratio. Since voltage is measured, it is called the voltage
standing wave ratio (VSWR). The corresponding quantity in cscillatory fluid
: flow is the pressure standing wave ratio (PSWR).
The PSWR is measured as foilows.
J
¢ 1) 1If there is no reflected wave, then measurements of the amplitude
of pressure variation would indicate the same amplitude at all
distances from the junction of tubes.
2) 1If there is a reflected wave present, then the earlier expression
1 for the resultant wave,
3
9 in(t ~ z/¢) 1}, int nz
¥ — —_ —_—
[lo]Ae + R Ae cos
2 indicates that the maxima and minima of the amplitude of the oscil-

latory fluid pressure are located half a wavelength apart.

3) 1In the extreme case of total reflection, the maxima and minima
points of the fluid pressure become nodes and antinodes. The
standing wave ratio which is defined as

maximum amplitude of wave
minimum amplitude of wave

is a measure of the efficiency of energy transfer through the
junction. In the earlier expression for the resultant wave

91, in(t - a/c) 1
[lo)Ae + {5

int nz
Ae cos :r

T

4 the efficiency of energy traasfer through the junction is measured
as follows. The maximum amplitude of the -ransmitted wave 1s
(9/10)A + (1/5)A = (11/i2).. The minimum anplitude of the trans-
1 mitted wave is (9/10)A. Thus the pressure standing wave ratio is

1 159




PO

maximum amplitude of wave _ (11/10)A -
minimum amplitude of wave (9/10)A

11
g = 1.22

If there 1s total reflection at the junction, with no tramsmission of
energy, the PSWR is infinite.

The method of measurement of the PSWR described above is useless in the
arterial system, since it would be impossible to find anywhere a length of
artery in which there would be a distance of half a wavelength free from
other junctions. There is another approach to the measurement of the rSWR
which can be used in the arteries if simultaneous measurements of prass..e
and pressurz gradient are available. This method is described below.

Let the Fourier series for the pressure and pressurc gradient be

l, - h} + Z (Cm cog mnl + szdim wmt) (7-26)

™

e 2 Pt -

i
Y
]
=
+
NS

( Amcm mnl + Bh»d'm wmnl

e ° (7-28)
i
\ ~
o . ™ (7-793
Corresponding to cg/c = X - iY, we write
£ - x - iy (7-30)
c m m

m

Whe, there 1s no reflected wave pr.sent and the pressure gradient is
related to the time rate of change of pressure according to

’ m

we have, using equation 7-29 for the left-hand side and 2quation 7-27 for
the right-hand side, together with equation 7-30,
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It follows that

)Xm'i\/ml : (m) M. N

and phase X - L\/ - [1) - L{)
™ ™ m m

Again, using equations 7-26 and 7-28 with equation 7-31, equating real
and imaginary parts, we obtain

- (7-33)
p X

(7-34)

A, - (DX +C,“Ym\,

B, < e (C X, -D.Y)

The relationship between pressure and pressure gradient in the case of
no reflected wave is obtained as follows.

From the representation of pressure
for no reflected wave
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If there is . reflected wave present, then the representation for the
pressure is

in(t - 2/) tn (£ + 24)

b- A€ + he

and the pressure yradient is of the form

in(%- %) in(t+ T'E/c)
- 2'3 - n A' Q - A Q
X3 ¢

8

In the presence of a reflected wave, the total wave at any point of the
longitudinal axis to the left of the point of reflection is composed of che
sum of the incident and the reflected waves. In terms of Fourier series,
the tota! wave is the sum of the Fourier decomposition of the original inci-
dent wave and the Fourler decomposition of the reflected wave., Earlier, we
had writter the pressure for the total wave in the form
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in(t- 21) in{+24)
b- A€ ., A€

where Al and Az are complex.

For the m"h harmonic of the total pressure wave, we may write

imn (,t - "-/c) twn (t + zlt)

b - AC . Ao

Since the coefficients A, and A, are complex, we may write them in the form

1m 2m
' 'iw'
Al =P e I for the incident wave
m m
" —il,'J"
A2 =P e 7N for the reflected wave
m w

Here Pm' and ¢m' are the modulus and phase of the amplitude of the inci-
dent wave and Pm" and wn" for the amplitude of the reflected wave. Thus the

th . .
m~ harmonic of the total pressure wave is described by the expressicn

H

-LW:\ tvn (t-—l/c) -1 U,M tmn (tf 1/c)

i h

Pe ¢ JPe e

(7-36)

As earlier, we take the origin, 2=0, at the point of reflection
(junction) and back off from the crigin o distance, ¢, 7=0, where the
total wave is present and make our measurements. Note that, at the
instant of measuring the pressure, time is frozen, t=0, and the place of
measurement is at z=-f. Substituting t=0 and z=-% into the expression
(7-36), we have
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We may denote this expression at the point of measurement by Pme-wm and wsrite

N . U . e‘
or -L(,)thmne/c -ty -tmm t)

P o ., Po

™

We may denote cals expression in modulus and phase form by Pln e-wm and write

"lwm ) -i.(,)':\,;-i.*mne/c -LH)MM-LMV\ Q/C

PO . PO LB

m
(7-37)

Similarly, for the pressure gradient, we have from the relation

inl £ 20 in(t+2£)

tn A‘Q -AQ

c >

1
W'Q/
LI

for the mth harmonic

]
‘a"’zf‘ 'E; ™ LY
A 2 "o Q
’ LY+ tmn /L‘. ) Ly, - Ltren B
- i | P C Pe
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which is obtained by substituting t=0 and z=-2 at the point and instent of
measurement. We may denote this representation of the pressu.e gradient in

modulus and phase form by Mm e-1¢m and write

. Y I e Lo, Q
g Sl vimnle ) civm-imaly

MEe . o PT:‘Q _Pe

™
(7-38)

In the presence of reflection, the ratio (Mm/Pm)(co/mn) describing the
amplitude of the mth harmonic of the pressure wave, equation 7-32, now depends
on the reflection coefficient at the junction and the distance of the point
of measurement from it.

Now we shall obtain the reflection coefficient at the junction when a
reflected wave is present. To this end, we divide equation 7-38 by equation

7-37 and obtain

i( #h““PnJ

0T ©

L

P.m

A Lo
"'Vm"’ Ln@/cm " “"LIJ“‘ -Lné/cm

he - P,

. / . _ b .
, ‘WJM +LY\0/C " ""‘J.M'Lne/cw\

P e , P e

™

(7-39)
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If we set

(Y, - th)
KK

P. in (7-40)

then from equation 7-39 we note that

u”m ~2im e/(‘.,m

. P e Q.

’

A7

" -LL,)""' -2im e_/cm
| + = Qé““’v{«\ , Q

ﬁ

O

3

(7-41)

where the numerator and denominator of the right-hand side of equation

- '
7-39 has been divided by Pm' e Ty + i!L/cm. Equation 7-41 may be written

as
_1-A
K = 1+ A (7-42)
] .
" -ty -une/cm
/
where A = . Q/

From equation 7-42 it follows that

-
{

=
f
=i

-
+
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The quantity is the reflection coefficient of the junction in

p' e—iwm'

complex form, i.e., it is the same as the quantity A4/A1 of equation 7-15

Ay . 1 (7-15)

Combining equations 7-15 and 7-43 we have

1in Q/Cm

©

|- - - K

———— s

I+ 2 I+ K

(7-44)

1f, therefore, the geometry of the junction is known, the theory can be
tested by calculating A and K and attempting to find a <, wkich is con-

gsistent for all harmonirs.

DISCONTINUITY DUE TO ELECTROMAGNETIC FLOWMETER I

There is another type of simple discontinuity which has the opposite
effect from that of a junction or a constriction, and which has an important
b practical application. Some types of electromagnetic flowmeters require the
insertion in the artery of a short length of rigid tube, or may confine the
: artery by means of a cuff. The effect of such an artifact on steady {low is
negligible., dowever, if the flow has large oscillatory components, d: ‘tortion
is introduced.
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Consider a tube, elastic for the most part, whick has in it a statiomary,

rigid portion of length L. See figure 51. Suppose

1) the incident pressure wave is describad by A ein(t-z/c) in the
elastic portion;
in(t-s/c) .
2) the reflected pressure wave is described by A, e in tie

elastic portion;
3) at the incident end of the rigid portion, z = 0;
4) at z=0 the pressure wave is described by A, eint, which is obtained

from Ay ein(t~z/c) by setting z=0;
5) at z=2% the pressure wave is described by Aj eint. This is ottained
from Ay ein(t—z/c) by setting z=f and considering %/c negligiktie,

since ¢ in the rigid portion is numerically much larger than &. This
is correct, since the transmission velocity in the rigid portion is
infinite.

For continuity of pressure across the discontinuity,

1) the transmitted pressure wave is described by Aj ein(t-z/c) and

2) A + A, = A (7-45)

For continuity of flow across the discontinuity, we must have for the
elastic-rigid-elastic tube

L C;(d) it (o) e, (o)

LAM @C L (MMM @l L (MM«
)M o M @€ k | €

>

L

(7-46)

In equation 7-46, note that the pressure gradient in the rigid portion
is (A; - A3)/%. 1In the elastic-rigid portion, the change from 1l/pc to
1/inpf, 1s on account of the farc that in the elastic portion the flow is
due to pressure and in the rigid portion the flow is due to pressure gradient.
Furthermore, since the artery is assumed to be of the same diameter througliour

(across the discontinuily), the value of a(= RJ?B is the same at all points
of the artery.
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Figure 51. Discontinuity due to either the insertion of a short
length of rigid tube into the artery or the confinement of the
artery by means of a cuff.

From equation 7-46 we write

L€ ()

b e (A M@

e 7 (7-47)
, tn e (&
| MY (3 0
10
Now A; + Ay = A, and A} - A, = A3. Subtracting, we obtain
ZAL‘=A2~A3
Using this relation in equation 7~47 we have
ot
i e (o)
[
S\ M ¢
A () b Mt e
"' ] é I (
tn

Ml (o) @
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Dividing both sides of equation 7-48 by Ay, we obtain

e (0 - 6. (0)]

!
M., ()
k() o). (149
y M, @
0
Since A —iK;-_- 1 A
we have from equation 7-49
7-50
| - eﬁl = | - 1 ( )
. 4 n
’ L -
\ M (E'lo alo)
| + (7;5. o Q/
[ne [
M.
For the limiting condition of stiff constraint, Myq'/M;o" = 1 and
€10' = €10", and equation 7-50, describing the ratio of the transmitted
wave to the incident wave, simplifies to the form
A, Lol A !
l \ ,+ Lne
2C
or _A_E = / (7-51)
A, | + L."_‘.g (91)
2¢o V C

The pressure gradient in the rigid portion, (A, - A3)/2%, may also be
found in terms of the magnitude of the incident pressure wave, A;, as follows,
From equation 7-46, for the limiting conditlon of stiff constraint, we write
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Dividing both sides by A;, we obtain

1$
T
i
T
re
1
]
I>
r3

Combining this result with ectation 7-51, we have

A,_' As . _A__._ (7-52)
Lnf[ fc |+ th( )

1Co

In equation 7-52, note that the left-hand side describes the flow in the
rigid portion (flowmeter portion), the factor A;/pc describes the incident

i

p o inl (e
2Ce ¢

flow and

[

Therefore the rate of flow as measared by the flowmeter is reduced, i.e.,

-

-

c
b

o

s
—le'
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Thus, from the flowmeter observation, we should be able to calculate what the
flow would have been, had it not been distorted by the flowmeter.

As an example, suppose the artery i3 confined in a cuff which is 15 mm
long. 1In the femoral artery of the dog, taking the wave velocity, ¢ =
450 cm/sec, and a pulse frequency of 3 cycles per second, i.e.,
n=2rf = (21)3 = 67, we find that the ratio of the amplitude of the
transmitted wave to the incident wave is

>
w

|
1]

| | L_;_\_g |+ i (6m)(1.5) [+ %lo
2 (450)
(7-53)

Since this result is good for all the harmonics, we may write

A, | (A \

iy = . and get e .
A inm ¢ (A {um
Vi I+ ‘= bl [+ =55
-

where m is the order of the harmonic. We have neglected the ratio cg/c in
equacion 7-53, since the calculation is only intended to show the order of
magnitude of the effect of introducing the cuff. For the 4th harmonic, the
reduction in amplitude is about 1% and the phase lag about 7°. Thus for this
instrument the effect of the cuff is negligible,

Tn practice, electromagnetic flowmeters have been used with flexible
plastic tubes leadiug from a severed artery in which the effective length of
the rigid insert is 15 cm or more. Table VI indicates the magnitude of the
ratio A3/Aj; and the phase lag for the first four harmonics in the femoral
artery of the doz. From the results shown in table VI we conclude that an
electromagnetic flowmeter with a rigid insert of 15 cm or more cannot repre-
sent normal conditions in the artery, Any rigid insert or cuff which confines
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TABLE VI

Thhe Amplitude and Phase Lag of the Ratio of the
Transmitted Wave to the Inciden: Wave for the
First Four Harmonics of the Pulse Wave in the

Femoral Artery of the Dog

Harmonic l%f- - Phase {QJI‘}
1 0.946 19°
2 0.847 32.15°
3 0.728 43.3°
4 0.643 51.5°

the artery, acts as a low-pass filter and introduces both phase and amplitude
Jistortion of the pulse wave., Therefore, it 1s of the greatest importance
that inserts of this kind should be kept as short as possible.

We will now show details of calculations that have to be made for cor-

rections of observations of flow with an electromagnetic flowmeter having a
rigid insert.

Suppose that the observed flow, F(t), made with an electromagnetic flow-
meter caa be represented by the Fourier series

F(e) = A  + y (8, cos mat + B sin mnt)

(7-54)
m
For the corrected flow, G(t), we write to a first approximation
5 dF
G(t) = F(r) + It (At) (7-55)

where At = &/c = amount of time it takes for the flow to travel over the
distance of measurement downstream from the origin, z=0.

Suppose that the corrected flow can he represented by

= ' os el -5
G(t) Ao + E(Am os mnt + Bm n mnt) (7-5™)
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From equations 7-54 and 7-55 we write

dF %
G(t) = F(t) + it (Z)

- Ab + E(Am cos unt + Bm sin mnt)

+ C%)X - Am(mn) sin mnt + Bm(mn) cos mnt (7-~57)
m

Equating the coefiicients of cos (mnt) and sin (mnt) appearing on the right-
hand sides of equations 7-56 and 7-57, we find that

__—
1 . £ (2 -
A.m Am + (Zn.,m(c)Bm (7~58)
' . - . :)’9_ -0\
Bm Bm (21rf)m\c)Am (7-59)

Thus, in the Fourier series for the corrected flow, equation 7-56, we use

the values of the corrected oefficients A ' and B_' as given by equations
m m

7-58 and 7-59.

DISCONTINUITY DUE TO ELECTROMAGNETIC TLOWMETER II

In another type of electromagnetic flowmeter, the artery is pressed
between the poles of the magnet. The diameter of the artery across the gap
is reduced by about 20% but left free to expand in the perpendicular direc~
tion. It is claimed that this constriction in diameter will have a trivial
effect on the rate of flow, since the cross-sectional area is reduced by
only 6%Z. Although the present theory does not take into account any effect
on the flow produced by the change in shkape due to the lateral compression
of the artery, we shall calculate the reflection produced by this order of
change in area due to the artery being pressed between the poles of a magnet.

et e o i

Accordingly, we make the following assumptions:

(1) Let the width of the pole pieces of the magnet be % cm. The pres-
sure gradient is measured over the tube length ¢.

(2) The velocity of the pressure wave is unchanged by the lateral com-
pression of the artery.

(3) The width % is so small that repeated reflections at the two ends
will be taken into account.

(4) The fluid pressure in tte absence of the constriction (duc to

E flowmeter) is given by A} Jnlr - z/ie)

(5) The origin of the longitudinal axis, z=0, is at the point of the con-
striction, i.e., at the proximal end of the narrower portion of the tube.
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Figure 52. Schematic representing the constriction
of the artery by the poles of a magnet.

We recall equation 7-10 f: ~ the reflection coefficient A

L[ (w)- bt

18 / 2
b (7) [Be)] @

(7-10)
For a 6% reduction in cross-sectional area due to the constriction,
equation 7-10 has the form
o o, 4
, 1% %[_QUK*J‘ tw(ab]
: 9| @
A= (o) M'c(”\
PROMMAL ]
Mw (d\)
(7-60)

Equation 7-60 gives the value of A at the proximal end of the narrower
portion of the tube. At the distal end of the constriction, because of
the inversion of the cross-sectional area, the value of A will be

XY oY DA I,

1

Mistal = %,
proximal
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If A) is the amplitude of the incident pressure wave and A, is the
amplitude of the reflected wave at the proximal end of the constriction
then, as earlier, we have

o mne e 4 P IS T A TR

1-2
1+

(7-15)

rle

If A3 is the amplitude of the transmitted pressure wave (transmitted through
the constriction), then from the continuity of pressure across the constric-
tion, we write

Al + Ay = Ag
Dividing through by A;, we have
Ay _ A3
1+ A - A
or 1+ 1__2‘_ Aa.
1+ A
;
ﬂ Ay __2
ot A, L+

When this transmitted pressure wave reaches the distal end of the constric-
tion, z={, its amplitude will be modified according to

N (7-61)

length of constriction traveled by wave _ &
Since t = = =
velocity of wave c

7-61 in the form

y, We write equation

.1‘e
A, - j@

} A

At the distal end of the constriction, this tiavnsmitted wave will give rise
to a reflected wave of amplitude A3 given by
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_in -int
L M) () Az 2

Here A3 represents the reflected wave from the distal end and A; is the
original incident wave. In traveling back agsin to the proximal end, this
rellected wave will be attenuated and described by

-in? -iné
. T C
L () (2)e e
\ f+ 2 1+
_ainl

a——

d

° A ( )}%)(Tlﬁ) Q

At the proximal end of the constriction, this wave will be transnitted back
into the larger tube with amplitude

-nd
e
NTEYANTEY AT (a)

The factor 2A/(1 + A) appearing above may be explained as follows. Initially,
both the incident wave and the transmitted wave were going in the same direc-
tion and we used the continuity condition
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A; + Ay = Aj

to obtain

Now, on account of reflection, we have to use the continuity condition
-A; + A, = -Aj

from which we obtain

-é-a-g -él-t-ﬂ - 1~A=2)\
o v GFR =T+

For higher orders of reflection, i.e., when the same wave has gone
through several reflections, each time the wave traverses the constriction
in both directions, it reappears at the proximal end as a reflected wave
with its amplitude reduced in the ratio

-1Ln€k

).xf ’%-i? ' Q

( |+ ))l (b)

Comparing the wave forms given by (a) and (b) above, note that the ampli-
tude of the transmitted wave at z=0, going to the right is

2
Ay

and the amplitude of the reflected wave transmitted back (returning back)
into the large tube is described by form (a’.

Since these waves are going on and on, back and forth, it follows that

if we add together all the reflected waves except the first (using this as
a reference term) we obtain a geometric progression whose first term is

-1LV\Q/C

A )3 (32) ©
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and whose common ratio is

-2ln e/c

23 (x-) @
(HXY’

We recall that the first reflected wave at the proximal end of the
constriction has an amplitude of

-ainfy,
A' ( \1+ ))( ';;l\) Q

As mentioned above, we neglect this wave in the geometric progression and
use it as the reference term,

The first reflected wave at the proximal end
of coustriction will be transmitted back into the larger tube with amplitude

-2iny,
M 350 6

This is the first term of the geometric progression. Again, when the last
wave above is reflected, its amplitude becomes

-1L7\ Q/C - 1}:1\ e/c

MaEENe | (RIER°

= (first term of geometric progression) (common ratio)
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The sum of the geometric series given by 1 —fiZ:;o;e;:tio s becomes

- Z'L'“ e/c

A (F)(5) ?ﬂ\ e
I - (){D( 73)\ Q

. *"(‘J( 1 (2-) &

We recall that the equation for continuity of flow in the constrained
tube is given by equation 7-7. Equation 7-7, under the assumption that the
mas. loading is the same for the two tubes, has the form given by equation
7-10. Now, in calculating the flow to the right of the comstriction, the
sum of all the amplitudes of the reflected terms must be subtracted from A,
the amplitude of the incident pressure wave, i.e., A; ~ (A; + sum of all the
other Ays). Here A} is the amplitude of the incident wave going to the right,
Ay 1s the amplitude of the first reflected wave to the left which was used
a: a reference term and left out. The sum of all the other Ays, i.e., the
sum of all the other reflected waves is given by the sum of the geometric
progression. The above statement may be written as

—1Ln0k

A-{-2\A A (2 17\()-!)@,
! (umj ' ‘(w)\ ('”Y’”U")Q’lmuc




JR—— e« |

For the ratio

flow in tube with the constriction
flow in tube without the constriction

-‘l.t',he/c'

I W =T 220:0€
L R P

A,

'1L“e/c

=N 2 ()€
| (‘”) (HA[ (H—AY-’).'A(’A-') Q-u“% }

-2ln e/c_

1)(1-))@ | }
('*XY— 17\(7\4\) Q—um 3

it
-
+ >
b %4

{

r\
o O
>
—

—2.Ln Q/c

{ tl: Z(X-')e }
v ’ - ; Q
| + g -rim /g

(1#3) -2 (a-1) €

it
~
>

(7-62)
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We now assume that the flowmet :r constricts the tube by only a small
iraction of its original total aiea. Accordingly we write

A=1-6

where § is small and neglect second and higher powers of § appearing in the
terms (1+A)2, 22X (A~1) of equation 7-62. Thus

22 = 2(1 - §)
1+A-1+(1-8)=2-3
2(r - 1) =2(1 -8 -~ 1) = =28
L+N)2=(Q+1-6)2=(2-8)2=14-46
A -1) =201 -68)(L =68 -1) = -26 + 262 = 28§

and the flow ratio described by equation 7-62 has the form

..1(7‘.2/c

flow catio = { % -8 - ('1S)Q
{ | -1inly
(M-LS) + 1g Q J

-’)_Z.’Y\Q/c

. a2 (i-d 6
J.(I—S/L) h(|_8>+ 2 S

- 1L~\Q/C

-2 ()/c

- (=S §€
1-5/1 1(1-53+SQ

2i2

manQ/c

(7-63)
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The first factor in equation 7-63 2y be written as

1 -8 5
L8772
2

up ts first order. In the second factor, the maximum value of e-ZinLIc

is 1. Therefore, we may write

szan

§€
1(:-8)4-542

since 6 1s swmall compared with 2,

R
2-98

m
"
o

| +

, * -1Lwﬂk

Thus, equation 7-63 reduces to the form

flow ratio =1 --% (7-64)

¥rom equation 7-64 we conclude that the effec. of the flowmeter on the
flow is very small for a slight constriction of short length.
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SECTION VIII

CORRECTION FOR THE OSCILLATORY VARIATION IN TUBE DIAMETER

INTFODUCTION

Earlier, from the point of view of motion of the liquid, we had regarded
the diameter of the tube as constant. Actually, at any instant, the cross
gsection of the elastic tube must be considered to be deformed. We make this
correction for the oscillatory variation in the tube radius in the equations
of liquid motion, assume that the lines of laminar flow expand and contract
with the artery ind neglect inertia terms and second order effects of the
lorngitudinal fluid velocity. We seek a solution of the resulting equation
with the pressure gradient, longitudinal velocity and tube deformation ex-
pressed in the form of a Fourier series. We also obtain corrections for the
interactions between the harmonic components and apply the results to arterial
flow.

HARMONIC RE’RESENTATIONS FOR %E, w, and %%

Up to this point, the volume rate of flow, Q, and the average longitudinal
fluid velocity, W, have been used freely as indicators of "flow," under the
asswaption that

Q= (TR2)§ = (nRz)gcl)—c(l + nF el (8-1)

where R denotes the constant tube radius. However, equation 8-1 is approxi-
matelv true only nce at any time the radius of the elastic tube is not R
but R+£, and £ va 1es with time. Thus, at any instant, the cross-sectional
arca due to a change, &, along the radius is

(R + £)2 = n(R? + 28R + £2) = n(R% + 2tR)
up to first order in the correction §. Moreover, we may write
m(RZ + 2ER) = 7R? + 2mER = 7R?[1 + (2§/R)]

Note that at any instant, the cross section of the tube is made up of the
constant cross section mR? and a first-order change in the cross section
2mER,
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Taking intn account the radial change, £, we may write a better approxi-
mation for the volume rate of flow as

. “Rl(u%g_)\ry . nRL(“,L_é)%%QJ‘EO)QL.,t N

Inserting the value w = %? from equation 6-33, we have

Q= 1R2(1 + B (8-3)

Even this rep!eséntatinn for Q, equation 8-3, is not fully corrected for the
oscillatory variation in the radius. In what follows, we shall allow for
this variation in the radius.

Recall the longitudinal equation of motion of the fluid when the tube
radius is considered constant

32w

v, ow dw 1 dp 3% 3% }
+ + - + 5 5= (3-28)

dw _ + 13w
at Y ar TV 5z pp 92 Vior r 9r
In equation 3-28 we change the independent variable according to y = r/R
and replace R by R+f. Moreover, we delete the inertia terms u(dw/3r) and
w(dw/3z). Furthermore, the second-order change in w, 32w/9z2, is neglected
because it is of order n2R2/c?, Thus equation 3-28 reduces to the form

low__ 1 3p 3% 13w ;

v ot p0v3z+3r+rr (8-4)
Since LX 9.._\.*_5- = M

¥ 92 12‘«3 d

oy

w3 (3£> - ) Y
and ot 3'7_ T .Rx B\a\. ’
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equation 8-4 has the form

.'._}._-ur = —.‘-— ?..I?_ . .!._ ——u-!.- + —‘- }E

y ot Y o2 R °¢ Ry 2y

w1 R W _ R
Yy

R
3 L3
/ (8-5)

Making the change from R2 to R2(1 + %%) in equation 8-5, we obtain the

ecuvation of motion of the fluild corrected for the radial expansion in the

form
32w y 13w Eo'_(l + 2-5)9.‘1 = .Iﬁ(l + 15.)_3_2 (8-6)
y2 y 3y v R73t  qu R 79z

If we seek a solution of equation 8-6 which is of the same foim as the solu-
tion of equation 3-28 for a constant radius, we can imagine the quantities
op/3z, w, and 2¢/R in equation 8-6 represented in terms of Fourier series in
n(t-z/c). As a result, the products of the Fourier series can b. multiplied
out and a set of equations representing the fluid velocity components obtained
by collecting up corresponding terms. However, the wave velocity, ¢, is not
the same at all frequencies, i.e., ¢ is a function of the harmonics m =
1,2,3,... . In other words, each harmonic in the Fourier series has a
particular c associated with it, and on multiplying two periodic terms to-
gether, there will be some exponential terms "left over,”" as it were, which
would disappear (being equal to unity) in a system with constant wave velocity.

Suppose the Fourier expansions of two functions, f; and f,, are given

respectively by
o (£ 2.

| - 2h.€

Lim(t—l/ct,
| . . Z2h € )

b »b
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then the Fourier expansion of the product of f, and f; is given by
in | E(mep)- 2 EREA

(8-7)

if ¢ = c¢c_. We call the common value of ¢ and ¢ by c .
m P m P s

for the product f;f, may be written in the form

isn t—"-/cs\
- zhe T

This representation

(8-8)

when the wave velocity is the game for different harmonics. We note that the
above represeutation, equation 8-8, has the same form as the expansions used
for the functions p, u and w in the solution of equation 3-28

We compare the two expansions, equation 8-7 for ¢_ # ¢

. and equation 8-8
for ¢_ =
m

cp,to see how far off we are in using the regular Fourier expansion
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For example, if the sum of the harmonics appearing in the two functions
f; and f; is s = m + p = 4, then the combinations of m and p which add up to
4 may be tabulated as follows:

E

SN EO
Q=N WS

Note tiat the two sets of values given by m =0, p=4 andm =4, p =0
satisfy both representations (8-7 and 8-8 above).

Let us denote the dist t valies of ¢ corresponding to the first four

harmonics by c;, cp, ¢3 aud cy. Comparing the two representations (8-7 and
8-8), i.e., taking the ratios, we find that

Lﬂ[t(m\\\»’) - 2 ("‘/CM + h/cb)]

- ]
ins | £- 2/,
0 [

and if s =m+ p = 2, with 2w = 1 and p = 1, we have

l/C_ - '/Cv

x

<
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When s =m+ p=3, withm=1and p=2or withm=2 and p = 1, we have

%, = %, "k,

0 ,

When s = m + p = 4, withm = 2 and p = 2, we have

b& - 9%

(El &

u

When s = m+ p =4, withm =1 and p = 3 or withm = 3 and p = 1, we have

k7& - %4E - 9@

4 3 '

e

Thus the quantities of interest are the following

oy

I
2 €]
N
C3 Co 21
» -1
y €2
o L3 1

From figure 24 we note the variation of cj/cp with respect to o and, in
particular, for a > 3 the variation in the value of ¢ is small. Therefore,
it is reasonable to use a simple perturbation technique, with § as the
perturhation parameter, to solve equation 8-6.

This correction of the linear solution, to provide for the finite ex-
pansion in tube diameter, is the simplest correction to be made. Moreover,
we obtain a tctter perspective for the moure important correction for the
inertia terms. Alchough, at first sight, the correction due to & may appear
less important in principle than the inertia-term correction, it may well be
equally important in magnitude, for it may cope with fairly large arterial
distentions, such as occur near the heart, without the mathematical difficulties
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that arise in the analysis of finite strain. Actually, since both corrections
aire concerned with terms of the order W/c, they are equally important. In
fact, it can be shown that for moderate values of o they are of the same order
of magnitude.

We seek a solution of equation 8-6 when the pressure gradient is repre-
sented by a Fourler series of four harmonics, together with a constant term
which will be assumed to give a Poiseuille flow, the static expansion of the
tube (which would give a tapering effect) being neglected, This is justified,
since this constant term is small, being less than one-eighth of the largest
oscillatory terms. The detailed solution will be dazveloped for two harmonics
only, since this illustrates the method adequately without wearisome repeti-
tion. Since equation 8-6 is nonlinear, we may no longer write the pressure
gradient as

32w py 4 4y eIt 4 a, 21N

ppe + uee (8~9)

and take the real part, otherwise half the interaction terms will be lost.
It is necessary to start from the pressure gradient in real form and write
down its exact complex equivalent. Accordingly, we assume that

%§'= My + M) cos (nt + ¢;) + Mp cos (2nt + ¢5) (8-10)

Next, we define Ap,A;,Ap,... by

Ag = Mg

A = %—Ml eiq)l

Ay = —;—Mz o192
Now,
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Lt (mt P, -imt
.Meeo . Meo
L L
Note that e_i¢1 and e_int are complex conjugates of ei¢1 and eint. If we
denote %% ei¢1 by A;, then %% e—i¢1 will be denoted by A}*. Thus,
M; cos (nt + ¢7) = A it 4 A% e~ int

Similarly

My cos (2nt + ¢,) = Ay eZint + A% e-Zint

Therefore, we may write equation 8-10 in the form

22 oag 4 Ay el b agk TN 4 g, @PINE 4 gk QRN (8-11)

Where we have written Ay for M. Conforming with the representation for the
pressure gradient, equation 8-11, we assume that the fluid velocity, w, and
the displacement, £, of the tube have the form

w=wy +w e1nt + wyk e’-irlt + wy eZint + wok e-21nt (8-12)
£ = £g + £ eint + g e—int + & eZint + £t e—Zint (8-13)
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Expanding the ratio %/c as if it is a pericdic function, we write

28 _ (6-33)
> -

ol

W Wik - v ok -
w1 e:Lnt: + 91 int w2 eZi.nt; + 525 2int (8-14)

wy +
=¥ ci Cl* (] CZ*

In equation 8-14 we take Wy = 0, since the zeroth harmonic (steady state
average fluid velocity) will not be affected by the elasticity of the tube
wall. With Wy = 0, we have from equation 8-14:

int -int aimt -1tnt
- % - — %
50 ,ul ,ald ,ul
C
: (8-15)

We recall

'III = A—'B—x I+ Y] Flo (‘*') (6-14)

and introduce the notation

(&

Coed - (X Af.}z. e e (o)

Thus

[

ni_E,l

S (X,-"Y. A__R \+*)Eo(°")
Co ' .;/ud‘
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Therefore, we may write equatrion 8-15 as

l'.nt - i,'\qt 1'U\t -J.i.nt

l+’:_g |+QQ+Q"_‘Q+C_’&.Q +C*Q
Co C. Co

-
Co

~imt 2imt 4 -2t

int %
= ,+.C!-°C'Q +C|Q +C:Q +C:

(8-16)
where
A L
Cos (KAL) AR 1 )
. k5 ™
L/u O(M
(8-17)
and 2= x - iy
c m
m
Passing to the limiting condition of very stiff constraint, the
expression for Cm takee the form
P ’ (
bt ()
* / /1 x e ™
> AR [a M Q
(4 z m 3 (0(,“
12%Y N d\l l* \C
L/~‘ -
(8-18)

Note that in passing from the elastic condition (where amplitude and phase
is denoted by double prime) to the limiting condition of very stiff constraint
(where amplitude and phase is denoted by single prime),
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wome[ 1 TR @)+ €@ > 160

From the above representations for the pressure gradient 9p/3z and the

quantity 1 + %—% , we have the following expression for the product (1 + %)%Iz)-
int * -int 1t % -1int
(|+lg ab =A+AQ +AQ +AQ +AQ
= | o " ' 2 L
R/ 2z
int x -l 1int —2int

+ A

=2
Co

ce.ce .ce .ce )

int -'Lnt ant

(1 ne” e e e e

% LN X -2 \,y‘t

(e A*Q'MXC 0.C0 .cC.C )

(8-19)
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Now consider the term — (1 + 26) 3 ° which occurs on the left-hand side of
equation 8-3, First note that from

ot —imt pint -t
%
uJ'=UU;+!JU;Q+WIQ +U{Q +‘*I,_Q
. int % -t e ¥ —
W . in J;Q - inWw Q + I‘LY\W;Q - 2in W Q
ot
Thus

=y
~
I
e
u‘g
"
2.
T
&
Q
|
S
x*®
N
NS—

1imt —awnt

+de‘<u§Q - wa >

Lht _Ly\t ILT\t -J.L’l'\\

+Ci1(uI;Q _w;*O_Mt)\CQ CQ CQ C*Q/

2int -2int \ int -Lnt 2tmt ~2unt

(4@ @ Jee.Cence . ce )

(8-20)

R2 5
where we have used (_\)—) (in) = ia%,
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THE LONGITUDINAL FLUID VFTZCl.TY

Combining equations 8-6, 8-19 and 8-20 and collecting corresponding
powers of eint, we obtain a set of equations for wp, wi, wi*, wy and wo¥,

The terms independent of eint give th.e equation

f | du AR R (ACATAACHAC)

\:|7:)

(8-21)

The terms containing eint result in the equation

o(:u_f. , 1 dw, +230L1\U‘ . @+R: AC +AC*+A*C1>
SR IEF / /J( o
+ Ty (— Cl u‘{vr + 1C|*w1\)

————

Co

The terms containing eZint result in the equation

- - +

dy* 1 4 /“

dw, |, o dw lﬁdgLJL . R—/\AC I\Cj
/J

|

*
o c
Dls,
O
&
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We may now obtain an approximate solution of equation 8-21, correct to
order 1/co by inserting the known forms for w;, w)*, wo and wy* on the right-~
hand side of equation 8-21. If this is done, we can carry through the inte-
gration and expregs the result in terms of functions already known. The first
term, AgRZ/u, on the right-hand side of equation 8-21 represents the usual
Poiseuille solution. Moreover, since equation 8-21 is a linear differential
equation; in the unknown wp, we may consider the contribution to the solution
from each term separately. Deleting the Poiseuille term from the right-hand

side of equation 8-21, we write the equation for the mth harmonic in the form

*

d w, AW, -P_i AMC: + A:‘CM

Q

—_— =

14 c, 4

~

* X
+ ima (W - C w
™ ™ ™
c. ™ (8-22)

We may, fcr convenience, introduce the notation

2 = 2
(am) mo

i.e., the value of a corresponding to the mth harmonic is o, = (m)l/za. We
note that equation 8-22 contains only the mth harmonic, » = 1,2,3,.... Equa-
tion 8-21 contains the first two harmonics. For equation 8-21 to contain all

the harmonics, we write it in the form

1 JLU; = AﬁEg - 12
a4y Y

AlCl*»r I\TC|+ [\1C: ¥ ,\:Cl

b8
]

_&

! |

¥ * * X %
+ A (;'-f A} (:3 R i.ol’L l.(j (: U% + 1_(?22(*&-—<ZIU§f
(
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Referring to the expression for w, equation 6-2, we write down the representa-
tions for v and wm* as

t,g=A..‘R1L ‘+ J("‘L‘ﬂ
Lp (mo(‘) (o( Y (62

'%ﬁ

A R | + Yr ‘L(d’mi' ‘ﬂ) (8-24)
ey L T ()

Inserting these values of w and wm* into the right-hand side of equation

8-22, we obtain

(8-25)

A R? A % R?
m

m
Note that the counstant terus and ————— cancel out upon in-
1n (ma?) -1p(ma?) P

sertion in equation 8-22.
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It is known that the differential equati,n

d2v
y2

o

+1d 2y -0
y dy

has the solution w = w(y) = Jo(ky)
If we set ky = (13/2am)y
and its conjugate (ky)* = (1'3/2am)y

and note that a complex function and its conjugate are linearly independent,
we may write the solutirn of equation 8-25 together with the boundary con-
ditions

in the form

(3~26)
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Equation 8-26 may be written as

*,

T Rt Aow -”]m ) t%ow‘ﬂ
‘“"'———CO,L (de/‘ ( \ | J,, klfho‘m)

YRR RO
il yH4 "‘(m T

(8-27)

To obtain the average fluid velocity, we integrate equation 8-27 and
then put it in modulus and phase form. We obtain the contribution of the
two terms in equation 8-27 to the average velocity

5 . AXC (*\)Ml;(a,“)@
LC/UO‘

AR C (M, (e
LC/Jd

(8-28)
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) AT C M enel) s s )

L

(8-29)

Now we insert the expression for u and its conjugate, C*, from equa-
tion 8-17 into equation 8-29, simplify Bud obtzin for the right-hand side
. i
i M (o(\ a (#)- £, ()

=) (2 ¥
+ phase (X + i‘/,“) + phase (- M}

For .ne limiting condition of very stiff constraint, expression 8-30 reduces
to the form

—L

(8-30)

3h

) () (“:%')KM; (dm\l o b ()

231



CORRECTIONS FOR THE INTERACTIONS BETWEEN HARMONIC COMPONENTS

Tt is possible to prepare a table of standard correction functions by
calculating the factor

5 M B
%’L "o (d’“) cod &-——-—--"° gdm\

from equation 8-31 for the full range of values of o. We denote this factor
by Efw,-m)

%

E(m, -‘M) z ‘% Mm (0(.“\ cos € (o) (8-32)
2

E(m,-m) represents the standard correction function for finite expansion
of the tube, expressing the effect of the mth harmonic on the steady flow.
Accordingly, for any given pulse form the correction to the steady term is

obtained from equation 8-31 by summing over all the harmonics. Not> that

3
I Mm 1 By ’ Cod t:o (dw\\
(I*c‘) mnp (‘f M) I
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Therefore, the correction to the steady temm is

() Z (M) E ()

C) m \mnf (8-33)
This correction will be in the same direction as the steady stream,

We now turn to the construction of the corresponding standard correction
functions denoted as follows.

E(2,m): standard correction function for finite expansion of the tube,
expressing the effect on the average velocity of the (%+m)th
harmonic of interaction between the 2th and mth harmonics.

We recall the equation for the mth harmonic

S kN * * \-* *

dw, , (dw o R (AC + A C )y imd(Cur-Cug

Ty Yo T Tap| o e
(8-22)

We may write the left-hand side of equation 8-22 as

d?w , 1 dw 2
dy? + y 3y - t(-mtm)a‘w

The equation describing the correction for the cross-effects between the
’th and mth harmonics is

=

dw . dw C(le)cw . R (AC A AC
‘3]'-‘.\& .} ( \) Co/‘ m { £

+ d‘(mclwh * QCMMQ
Co
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d%w
&z 7

n.lg.

l
y

[-%

Inserting the values of v and Wos given by

A oM L)
= /umd{\q ‘(5/;'“\

234

dw + dw (LW\) = —_R:(

|

1(z+m)a2w=-'R—2(Ac +AC)+E‘£(ma + 2Cw,)
cop m % L m co £'m m £

(8-34)



ey wepm s SRV

e o o

or

(8-35)

Now we write down a well-known result. The solution of the differential
equation

d?w  ldw ., _ AJo(Ly)
w2ty P T Sm

which satisfies the boundary conditions

w=20aty

[t}
(=)

w<o®aty

is given by

wu) ) A X M :’«L@ (8-36)
OL T (k)

This solution is valid for k # 2.

In the above, when we impose the condition that all the correction terms
vanish at the tube wall, y = 1, we are in effect making a further ayproxima-
tion., Physically, it enforces the condition that the motion of the wall is
due to the main .erms only and the correction terms have no effect. Since
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the correction terms are small, this approximation may be adequate. For com-
plete consistency, the arbitrary constants in the expressions for average
velocity which are substituted in the equation should be left "floating" and
the fully corrected solution substituted back in the equations of motion of
the tube. Tha frequency equation would then be nonlinear anc the pulse
velocity would depend on the particular form of the pressure function. The
same situation will arise if a similar method is used to calculate the inertia
term correction.

The solution of equation 8-35 according to equation 8-36 may be written
as

o f[(ﬂfm)_m]df (::-") CZA"‘YL

(8-37)



VR MR 0

The corresponding average velocity (corresponding to equation 8-37) is
obtained according to

w - f w(24) 44

Thus

[l sdlon

+ the preceding expression with £ and m interchanged.

If we use the notation

M (e ) | zJ( ten) |
] twm) QMMJ- ()/Lo(efw)
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6' (dlf‘W\) = bl\au | - 1J. ('L%O(an)

te 3 23
\ /Lo((’.«nm Jo (L hdl&m\

then in amplitude and phase form, we may write equation 8-38 as

it C L (o)

L TUAR VO R

+ preceding expression with £ and m interchanged, i.e.,

PHCA R
. ( gj)cp A (-*1”)(, | ) M (%) . _) M )8

(8-39)

This is the corvection factor for w being the effect of the 2th and mth

harmonics on the (24m)th rarmonic.

We will write this correction factor in wmore compact form by introducing
the tollowing nctation.
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(8-40)

E (Q,W\) - (- TL“W F(Q,m) + (—y]l) F{w Q) (8-41)
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We will now consider the actual (real) form of the (L+u)th harmonic. If
the pressure gradient is in real form, then the real form for the average

longitudinal fluid velocity corresponding to the (2+m)th harmonic is obtained
by writing the sum of the complex velocity and its conjugate as follows:

i.LeH'n)nt -i(efm)‘v\t

w 0 , W

€+ L+mn

We note that in equation 8-39 the factor R?/ua? may be written as

~~
S
Y

Moreover, the factors A.m and Az appearing in equation 8-39, according to

earlier defined notation, may be written as

=1 -1¢g
Ag 3 M2 e

since A.m and AE are complex quantities.

Thus, when congsidering only the real parts for the correction to the
real quantity

L(Lem)nt _i(lemint
— * -
W Q, + W ‘(Z

Lt L+ m
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corregponding to the earlier correction

() R Y(AR ) E(en

we have the correction term

e B M)

E(€m)] et (Lot « 4o+ Pl E(E)]

4
~

(8-42)
Note that
CPr
A = 1 M Q
™ 1 ™
i%
A‘e T3 hAt ¢

In order to evaluate the correction corresponding to the (¢4m)th harmonic, it
is convenient to have a table of E(2,m) in modulus and phase form,

In the elastic case, the formula for E(¢,m) is

B(%,m) = (=) [F(2,m)] + (-n) [F(m,0)] (8-41)
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For the limiting condition of very stiff constraint, since
and

the above formula for E(2,m) reduces to the form
E(2,m) = F(2,m) + F(m,R)

In the elastic case, the formula for F(2,m) is

"
t tlo (d Q)

Fle,m) = @)K)M e

¢

. L
¢ tl’ca (dlfm) LE, (d‘"‘)

M.Io (“em) 2 - M‘;(“")Q

For the limiting condition of very stiff constraint, since

" / '
9_‘3_ M (ufj g \E' [ Mm (ul)
CQ lo b}

and

6':., Q‘*e\ - ! E-/.o (“c)

the above formula for F(2,m) for the elastic case becomes
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i’{ &lcl: (de)

Lo
() el

M, (*,)€ - M€

(8-43)

The formula for F(%,-m) can be written down at once by substituting -m for
m in equation 8-43. Thus

. ; t.; (df-m) -t c‘_,; (o(,,,)
M)l M

(8-44)

The above formulas for the corrections do not apply when either ¢ = 0
or m = 0. This can be seen from equz ion 8-37. In equation 8-37, note that

when ¢ = 0, the factor ] in the denominator of the first term will

1
[ (24m)-m 1
be zero., Similarly, when m = 0, the factor TaFD =] in the denominator of

the second term is zero.
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The equation describing the effect on the nth harmonic of its own irter~
action has the form

3 2 >
dw I CURUE T VA _R Aocm (8-45)

R R e

Since the right-hand side is a constant, in analogy with the solution of
equation 2-11 we write the solution of equation 8-45 as

o RRC [ g (C%9)
Le, pma™ | J. (L”‘o(m)

é Proceeding in the same manner as we did for obtaining the correction
term (8-42) for the solution of equation 8-35, we obtain the correction for
the solution of equation 8-<5 in the form

My M
1
B E;Lmoo] [m‘;‘(,'] |E(0,0)| cos {mnt + ¢_+ phase [E(x,0)]} (8-45")

where
o .o
L &'c LO( w\) i tu—, (dm)

Em ) (oM@ Mie)e

E (8-46)

The right side of equation 8-46€ is obtained in the same manner as E(%,m) was
obtained for the soiutiovn of equation 8-35.




For the limiting condition of very stiff constraint, the expression
for E(m,0) reduces to the form

1 Geldn € (o)

E(md). EIM) € M )@

; ’
3ﬁL %% 2-lo (Q(*;)

(8-47)

APPLICATION TO ARTERIAL FLOW

We now consider the practical application of these formulas., In the
application to arterial flow, four harmonics in the pressure gradient are
usually sufficient. Taking account of four harmonics, from equation 8-23 we
write the correction to the steady term of the axial velocity as

——————

CO m._. W\Y\P

a;"; Mm F_(m)—m)

2
Since the steady term is AoR ,» We write the corrected average fluid velocity
as

L
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1f we denote the pressure gradient in real form by M; cos (nt - ¢;) then
the first harmonic of the average velocity corresponding to this pressure
gradient is, according to equation 6-15

3 MR M (@) 4in (- gie o)
, TS

or

L MM i [t €] ()
"h

The correction to this first harmonic of the average velocity, w;, is,
according to equation 8-45', given by
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Co) {Y\t -9, + bhase E ("D)]]

cor§ nt - (- )+ bhse H}
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(5,-)] = {nt (4- 9.)+ phase E(s,-ﬁj




Similarly, the ond harmonic of the average fluid velocity correspond-
E ing to a pressure gra d ntinth rmMzc (2nt - ¢3) is given by

h

o.M MO () Aiw{znt -+ L"I‘I(‘q}

]
anm f)o

and the correction to this second harmonic, ¥,, is
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The third harmonic of the average fluid velocity corresponding to a
pressure gradient in the form M3 cos (3nt ~ ¢3) is given by

I’s ) g}\}?c M"‘: (‘*3) Ain {,M‘t - % * t‘: &dh}

and the correcti-n tr this is
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The fourth harmonic of the average fluid velocity corresponding to a
pressure gradient in the form My cos (4nt - ¢,) is given by

o . M, M': (o(,) An {gnt -—q),f + 6.: kd‘hi

kn fo

and the correction to this is
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As an example of the magnitude of a typical set of corrections, a com-
plete calculation has been done for one of McDonald's experiments (Womersley,
1954) on the femoral artery of the dog. Fourier analysis of the pressure
gradient record gave

- %5 = 0.159 + 0.774 cos (nt + 0° 39')

+ 1.317 cos (2nt - 22° 45') - 0.743 cos (3nt + 26° 30')
- 0.414 cos (4nt - 16° 39')

These coefficients are in millimeters of mercury per centimeter. The con-
version constant, to bring them to absolute units, was included in the common
factor 1/npg. It is not possible to make an accurate estimate of cp until
accurate measurements of the pulse velocity have been made over short lengths
of artery, say 3 or 4 cm, over which the diameter is reasonably constant. A
rough estimate of the experimental observations gave a maximum £/R of about 67%.

Since

%%1 = l%%-lx - iYI and the maximum average velocity was 88 cm/sec, this

suggests 600 < ¢y < 700 cm/sec. The pulse velocity, estimated from records
taken on other experiments, suggested a value of ¢y of about 850 cm/sec. Two
sets of corrections have, therefore, been calculated for ¢g = 1000 cm/sec and
for cg = 500 cm/sec. These have been carried out for the limiting condition
of stiff constraint only. According to figure 53, the effect of the cor-
rection is not very marked, even for cy = 500 cm/sec. The curve for cy = 1000
is not shown. In table VII the Fourier coefficients are shown for the uncor-
rected average velocity and the two sets of corrections.

TABLE VII

Values of the Fourier Coefficients for the Calculation of the Average Velocity,
With and Without the Nonlinear Correction for Finite Expansion

Uncorrected Corrected Corrected
n co = 1000 co = 500
Coeff. of Coeff. ol Coeff. of Coeff, of Coeff. of Coeff. of
cos mnt sin mnt cos mnt sin mnt cos mnt sin mnt
1 +19.08 +33.14 20.01 32.44 20.94 31.75
2 -31.78 +14.89 -32.57 15.57 -33,37 16.25
3 ~-8.79 -10.58 -8.47 -10.69 ~-8.16 -10.79
4 -0.44 -5.86 -0.15 -5.73 0.14 -5.47
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These results indicate that, particularly during systolic flow, the maia
effect of the finite expansion of the tube on the rate of flow is the factor

-,

1+ %) when multiplying the average velocity by the cross-sectional area.

See equation 8-2.

S
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Figure 53. Variation in average velocity over one cycle in the femoral
artery of the dog, calculated from the observed pressure gradient of

figure 14. FULL LINE, without expansion correction; BROKEN LINE, with
expansion correction and ¢y = 500 cm/sec.
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SECTION IX

CORRECTIONS FOR THE QUADRATIC TERMS IN
THE EQUATIONS OF VISCOUS FLUID MOTION

INTRODUCTION

We start with the Stokes stream function and obtain a general result
which 1s used for the solution of the equations of fluid motion. As in the
preceding section, we combine the harmonic representations of the pressure
gradient and the longitudinal and radial fluid velocities with the equation
describing the fluid motion and obtain the barmonic components of the longi-
tudinal fluid velocity. We next determine the interactions between these
harmonic components and obtain the standard correction function for the effect
of the quadratic terms in the equations of motion.

A GENERAL RESULT

The correction for the longitudinal velocity due to the quadratic terms
in the Navier-Stokes equations follows the same pattern as the correction for
the longitudinal velocity due to finite expansion of the tube discussed in
section VIIT. However, there is one important difference which is indicated
below.

fonsider the equation for the longitudinal velocity

S
B__LAJ_ uB_“! Wat_‘{:-_'_?_t.’_ybw_ +y)‘_uz+y_t£
3t R g R} f. 22 PX ¥ 9 DLt
(3-11)

If we neglect the term Bzw/azz, since it is of order n?R%/c?, and write
y = r/R, we obtain

32w 13w R?03w _R23p R 3w _ R® Odw

dy? * ydy v 3t u 0z o dy Y ©-1)

If we substitute the same forms for p and w (as in section VIII) into equa-
tion 9-1, and seek a solution, we find that the functions on the right-hand
side of the resulting equations are (since they contain quadratic terms in

the velocity components) products of three Bessel functions. When we try to
solve these by the method of variation of parameters, the resulting quadra-
tures involve products of three 3essel functions which do not reduce to known
forms. To find the average velocity across the tube requires a further quadra-
ture and the amount of numerical integration required is, at first sight,

yuite formidable,
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QOur main objective is to find the =ffect of the quadratic term., u %%
and w %% » appearing in equation $-1, on the average longitudinal velocity.

Thus, there is an obvious advantage in seeking a method of solution of equa-
tion 9-1 which will give the average longitudinal velocity directly without
the calculation of the velocity profile, w = w(y), acrogs the tube. This
direct method of calculating the longitudinal velocity consists in using the
quantity defined by

q= {yw(Zy)dy (9-2)
0

which is in effect Stokes' stream function of the fluid motion.

Before deriving th: detailed equations from equztion 9-1, we prove a
general result which will be required for their solution. In analogy with
equation 2-4, consider the equation

dw  ldw .32 _ -
dy2+ydy+law—f(y) 9-3)

where f(y) is a known function of y. The corresponding equation for q is

2
y
where g(y) = f f(y) (2y)dy .
0

To show this correspondence, multiply equation 9-3 through by 2y and integrate
with respect to y. We obtain

y 2 y y
[ 2y g—}% dy + )( 2 -g-;i dy + J 13aZw(2y)dy = g(y) (9-5)
0 0 0

According to equation 9-2, the third term on the left-hand side of equation
9-5 may be written as (i3a?)q.

y
Moreover, from q = f w(2y)dy
0
we have dq _ w(2y)
dy
d ﬂzﬂ =2 QE-+ 2w
an d&y? y dy




1 dgq
Furthermore, — 7+ = 2w
“ * y dy

Thus, the first two terms on the left side of equation 9-4 may be written as

2
dq 1ldq  , dv 2w = 2y ¥ -
&2 "y dy 2y dy + 2w - 2w = 2y ay (9-6)

w oy dw AN I IR I i B
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From equations 9-6 and 9-7 we note that

2 Y 42 y
dfq _1dq _ |7 dw , dw .o, dw
dy> ydy ] dy (2y)dy + 02 iy VT ay

We wish to cbtain a solution of equation 9-4. One boundary condition,
namely, q=0 at y=0, is built into the definition of q:

y
q = f w(2y)dy
0

So the solution of equation 9-4 will be obtaired in terms of one arbitrary
constant, A.

256

B,
5
E;___________44444,




alod

anean st Sl WO

The solution of equation 9-4 under the condition q=0 at y=0 is

e AHJ(‘“U) 3]((‘;) { [3’:““} A‘j

NJ (F9) 4

Imposing the condition of no slip at the tube wall, w =0 at y = 1, the
condition for determining the value of A in equation 9-8 becomes

dq _ - -
dy 0 at y=1 (9-9)

ThlS follows from differentiating equation 9-2 with respect to y and setting
= 0. Differentiating the expression for q(y) in equation 9-8 and inserting
= 1, we find

dy I o (Ls’&)

I
pl

R
TE ] T i)

5 (4 J. )
J,(-ua)o“ (Fay) 44

H
(o]

(9-10)
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Solving for A, we have
' 1

A-iw (% ! sza()J(‘s‘*? !
SPRNGARTR (i@‘aﬂ d J

3
- 1 J(l o )
. 3h .30, % '
o /
o

We may write the expression for A in the form

1 fy 1 f1
A= - Xdy J Ydy - 3 f Ydy
0 0 0

Substituting this value of A into equation 9-8 we obtair:

v (4) - Cz‘j{JXd]J\/d‘jq»LJ\/d]}

+~3J [‘WJX“{?JY"I‘&
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At the boundary of the tube where y = — = 1, equation 9-11 reduces tc

r
R
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(9-12)

Equation 9-12 can be put into a more convenient form by using integration by
parts according to

S udv =uv - [ v du

where u = g(y)
du = d[g(y)]
y 1
_— f '(y)(2y>dyJ
0
= f(y)(2y)
1
and g(y). - [ £(y) (2y) dy
0
Moreover, dv = Jl(ai3/2y)

[Jl(ai3/2y)dy

<
]

Jo (0i3/2y)

T owi3)2
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Thus, from equation 9-12 we have, upon integration by parts
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THE HARMONIC COMPONENTS OF THE LONGITUDINAL FLUID VELOCITY

In equation 9-1 for the longitudinal fluid velocity, we use the follow-
ing harmonic representations for 3p/5z, w and u:

ot ), inlten)

2k . AL AC ,AQ

K
w - w + LU;Q + LJI 4
me( t - z/(:,,,\\) "”““(t‘ Z/C:)
¥
+wm t urw\ Q + *




In the above vepresentation, u = 0, i.e., the radial velocity component has

no steady component and is entirely periodic. v, is the steady component of

the longitudinal fluid velocity. w.,, w.*, ... are functions of y and not of
1 th

z and t. < is the complex wave velocity of the m ™ harmonic.
that the steady component of the flow just increases or decreases the amplitude

We also note

of the flow and does not affect the frequency.

After substitution into equation 9-1 and collecting powers of eint

, we

obtain the equations for the amplitudes of the harmonic components of the

longitudinal fluid velocity, w. The details are as follows:

i'ﬂ(t - 7/(‘_.) -tn (t - l/cln)

*

w: u£+u,;Q + u’, Q + s v
imn (£ - #e,) tmn (- Z/C:)
%
+ lk&n éz/ + UJ;A 4 o0

+ A(LE“ ézr + o{gii: <;1 + v
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int

, we obtain the equation for L

(9-14)

%
Co U, olufm}
R dy
*
w W
™ W - (9-15)




Similarly for the other harmonics.
As with the radial expansion correction (see section VIII), if we sub-
stitute the known forms for u and w, on the right-hand sides of equations

9-14, 9-15 and other such equations for the second, third, etc. harmonics,
they become linear equations and accordingly, the effects of the interactions
between the harmonics can be treated separately. In the next section, we
shal) write down the equations describing these individual interactions
between the harmonics.

There are four differen: forms of interactions to be considered. These
are:

1. The effect of the mth harmonic on the steady flow, denoted by W(m,-m).

2. The effect on the mth harmonic of its own interaction with the steady
flow, W(m,0).

3. The effect on the (k—m)th harmonic of the interaction between the

kth and mth harmonics, W(k,-m).

4. The effect on the (m—k)th harmonic of the interaction between the

mth and kth harmonics, W(m,-k).

Note that W(k,-m) and W(m,-k) are symmetric.
THE EFFECT OF THE mth HARMONIC ON THE STEADY FLOW

The equation describing this form of interaction is obtained from equa-
tion 9-14. Note that we may write

| w | dur ’w?_
$50%) - 518 15
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The right-hand side of equation 9-14 consists of the sum:

2
(Poiseuille flow A%B—) + (sum of all harmonic terms).

To take into account the effect of the mth harmonic only, we take only the m
terms on the right-hand side of equation 9-14.

this form of interaction is

th

Thus the equation describing

* * * c‘
(i\f'- ( 4‘1’) [\ R Gty W, | CUn AW, (9-16)
jlg\lag) ey’ o "R o
‘o Y um* dwm dwm* . .
The form of the quantities R &y and dy on the right-hand side of

equation 9-16 are obtained as follows.

U, = EQB C LJa U%‘L"ﬂ

(3-21)
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Consider the first term on the right-hand side of ccuation 9-ib:

i, (c__) AN [1 o J‘(L”&wq)
Cc \Cm W\"“"f‘ 1 ™ L%o( Jo (i%o(w)
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Consider thec second term on the right-hand side of equation 9-16:
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Thus, from equation 9-16 we have:
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In analogy with equation 8-23, we define the standard correction
function as

b8

MW (o,

Co m-nf

1
It follows that W(m,-m) = -}: JO wily)dy (9-17)
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where w is the solution of the equation

s

¢ J (L o(..\‘é) (( 30(“\‘3)
BT T

Now, we multiply both sides of equation 9-18 by y and integrate by parts %o
obtain the velocity w. We find that:

Al (e [ 4

- L(at) J(y
,m\ ( )RERL ‘3 j (R’l M) J(,(L“%dw‘)
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(9-19)

We now proceed as folliows:
1) divide equation 9-19 through by vy;
2) use the recurrence relation

Ja(ky) _ 2 Jy(ky) Jo (ky)
Y3 Tk I TV 3k

;) integrate to obtain the expression for w.



Dividing 9-19 through by y we obtain:
2\ 1 i”t; \
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Using the recurrence relation, we obtain
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Integrating with respect to y, we obtain:

- Ll e 1R

+ corniugate of above

e (D U

2| |

277




- -

We may write the above equation as

o (if‘;")(%,:mm(ti’v:) . ﬂ((hd;j))

+(‘-§'~“>(§‘m- (Z’I’> %((Llo:;,}) '(/;: Jf{i‘%%

+ conjugate of these two terms

1o st J (s )

(9-20}

In order to obtain the average velocity across the cross section of the
tube, we integrate the expression for w in equation 9-20 with respect to v
from y=0 to y=1 and obtain:

-

£~

1
W(m,-m) = = JO w(2y) dy
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together with its conjugate
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From the relation

2an(x) = xJn_.l(x) +J . (%)
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for n=1, we may write

&—
—
X
~—’
1)
———
»
d
—
a———
P4
[
}
-

or RN\ 1_(%)J.M

o («)Jx(x) _ 1_(;{)%%\

() R S

280

PN m.\)._.amﬂﬂﬂlﬂ

tia PontattAbe e ks A Wl aauad L 4l wsaL

« maarncriatlar Phaiade o £ 2 fat dn R whiote & ol AL IR

W A i ke v Ad Unbiiacd 4 2N TR AR

Eaia Gy L6 rt? L7 o Y AN M AR e

[P St ORISR A PRI SVUSE SOU U SUNe

e N




In equation 9-21, the sum of the first and th.-d terms may be written as
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The second term in equation 9-21 may be written as
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and the conjugate of this expression is

’

L)) (-me

The last term in equation 9-21 may be written as

’

eI e
= (£)(%)

ReAL

REAL

‘M ca e

Thus, equation 9-21 may be written in the form

(

(9-22)
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In the limiting condition of very stiff constraint, equation 9-22 reduces
to the form

o = T 3 ° 1

N /A , 1 I ’
+ ( X , E (M Aamy &;_gg - (M ) Aun 32:0
i) % { (M) aim e (M, ) 4 28

(9-23)

This correction, W(m,-2), fer rte quadratic terms in the Naviec-Stokes equa-
tion is in the same direction .s the steady stream. The combined effect of
this correction, W(m,-m), and che correction due to finite expansion, E(m,-m),
may be written as
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The variation of the correction T(m,-m) as a function of a is shown in
figure 54. From this figure, note that the steady flow is augmented for

all values of a less than 10, but that as o increases further, the effect

of inertia is dominant and the steady flow is hindered by the presence of
the oscillatory terms., The amount of this combined correction, T(m,-m),

for the results of McDonald's work is given in table VIII, where cg is taken
to be 10 meters/sec. In McDonald's experiment, the measured steady term was
15 em/sec. Thus, this correction is about 12%, and by no means negligible.

TABLE VIII

The Combined Correction. T(m,-m), for Wy. cg = 10 Meters/Sec

1 M .\2 Contribution
2 g (EEEO __EL__ to Wo
1 2.696 0.537 1.448
2 0.488 0.539 0.263
3 0.031 0.455 0.014
4 0.00003 -—- -

Total: 1.725 cm/sec.
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Figure 54. Variation of the Combined Correction Function to
Steady Flow, T(m,-m), with Respect to a.




THE EFFECT ON THE mth HARMONIC OF ITS OWN INTERACTION WITH THE STEADY FLOW

The equation describing the effect on the mth harmonic of its cwn inter-
action with the steady flow may be obtained by referring to equation 9-15

and considering only the mth term. This equation is

(9-24)

In analogy with the preceding subsection, th. equation for the standard cor-
rection function is

(9-25)
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Equation 9-25 is analogous to equation 9-3, where f(y) is the right-hand
side cf equation 9-25. Solving equation 9-25, we obtain the standard cor-
rection function in the form

W(m, o) = ()| [ o) qu o) |y
C..)o Jn(‘hdm) ‘A 1] ,‘a(l)& ]‘3

e [hn %) . J(i»& 1) 1y d
( )o SRy | e )\z)H

(9-26)

All the terms in these two integrals can be expresse! in terms of Jo(ai3/2)

and Jl(ai3/2). The necessary reduction formulae can be found i. Watson:

"Theory of Bessel Functions," Chapter V. It is, however, simpler and quicker
to evaluate them by direct numerical integration.

We have seen earlier that when the pressure gradient is in real form,

the radial expansion correction for the mth harmonic has the form

c_|mn
o Y

M
E(m,0) =L {_9_] mnp] |E(m, 0)| cos [mnt + ¢ + phase E(m,0)]

Similarly, for the pressure gradient in real form, the expression for W(m,0),
described by equation 9-26, must be combined with its conjugate., Thus, in
analogy with the expression for "(m,0) above, the complete interaction term

for the rnth harmonic is

MoR

W(m,0) = CO (—) (EhL0|W(m O)I cos [mnt + ¢ + phase W(m,0)]
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1 THE EFFECT ON THE (k-m)" HARMONIC OF THE INTERACIION BETWEEN THE k™ AND m'D

HARMONICS

The equation describing the effect on the (k—m)th harmunic of the inter-

s th th

action between the k= and m harmonics may be obtained by -eference to

equation §-15. This equation is

d——-). + L 4..“_{ + Lsd’. w :_R_l (Cauh dj_q_’:_'_ Cou: J_‘:U-'L
| S I R TAN U TR S

Rm™ (9-27)

I.. aralogy with the preceding subsection, the equation for the standard cor-
rection function is
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Again, the standard correction function, W(k,-m), is obtained, as earlier,
ja the form

W (k,-m) - o J[i - (’L}/&““v))]fu)(’ﬁ"l‘d

) )
ol T Y
( k-m o ‘o ( L O(h-w

where £(y) is given by the right-hand side of equation 9-28. Thus

W (k,-m) . f__{__x___ ﬂwdQ_{L; J.(i’ﬁﬁu) |
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In the first, second and third integrals ahove, we note that

(L)

and { I
%

1)(&« )l

(k- m)d-] i
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2
Moreover, since Sg_
C).
>
we write C, -
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¢, _
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0
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Finally, we note that tor the limiting condition of very stiff constraint,
the expressinn f r the correction, W(¥,-m), has the form

h -3
j[_‘%_ J (Uagy) }(df’ Jo oY)
o 3’10(& Jo (8/10(&) Jo (i‘:ih o
.3/1
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When the W(k,m) are known, the expressions for the corrected components
of the average velocity can be written down, being similar in form to equa-
tions 8-34 - 8-37, with the W(k,m) taking the place of the E(k,m). The
coefficients multiplyirg the W(k,m) in these expressions will be the same as
those multiplying the E(k,m) in equations 8-34 - 8-37, except for the W(m,0)
which will be as shown in equation 9-25. Except for the interaction with the
steady flow, therefore, the E(k,m) and the W(k,m) can be combined into a
single standard correction functjon, T(k,m). For convenience, tables of
T(k,m) over a full range of values of a up to the fourth harmonic may be
prepared.

In order to make an estimate of the magnitude of the correction for the
same experimental vz5ults as in section VIII, the values of the W(k,m) for
o = 3,34, k and m £ 4, were calculated by numerical quadrature. The trape-
zoidal rule was used for integration, one hundred ordinates being taken in
the range 0 £ vy £ 1. The values of the W(k,m) are given in table IX,

TABLE IX

Values of W(k,m) for o = 3.34

k, m YRE Yim lul ph{wW}

1, 0 0.6745 =0.4120 0.7893 -31.29°
2, 0 0.4986 -0.6424 0.8132 -52.13°
3,0 0.3961 ~0.7106 0.8135 -60.86°
4, 0 0.3369 -0.7423 0.8152 -65.59°
1,1 0.0966 0.3030 0.3180 72.32°
2, 1 0.3130 0.64%73 0.7172 64.12°
3,1 0.3110 0.6575 0.7273 64.69°
2, -1 0.2495 0.9187 ¢.0529 74.82°
3, -1 0.2782 0.4694 0.5371 58.80°
4, -1 0.2870 0.2381 0.3729 39.68°
3, -2 0.1450 1.4288 1.4361 84.20°
4, =2 0.3032 0.9189 0.9676 71.74°
4, -3 0.0261 1.7606 1.7608 90.85°
2, 2 0.2392 0.2256 0.3288 43.32°
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These values of the W(k,m) were substituted in the expressions for the
velocity components (i.e., those corresponding to equations 8-34 through
8-37 above), together with the components of McDunald's observed pressure
gradient. The resulting values of the coe{iicients in che Fourier sevie:
for the average velocity are given in tabl. X, together with the values
of the coefficients when this correction and chat for finite expansion
are combined.

TASLE X
Values of the Fourier Coefficients for the Calculation of the

Average Velocity, with and without the Inertia Term Correction,
and with the Combined Correction

Quadratic Term Combined Co~rection

Harmonic gg:g;zi::tozéy Coefficient of
cos mnt sin mnt cos_mnt sin mat
1 22.51 33.94 24.37 32.55
2 -31.56 13.92 -33.15 15.28
3 -7.35 -10,15 -6.72 -10.36
4 -0.94 -5.34 -0.36 -a.95

The average velocity, with the .. mbined correction, is shown in figure 55.
The full line shows the uncorrected average velocity, and the discrete points
are the values of the corrected average velocity, plotted at intervals of 15°.
The correction increases the predicted value of the -ystolic peak by about 5%,
and, moreover, predicts greater backflow. The differences between the cor-
rected and unco ‘rected values are small, never exceeding 7 cm/sec. Thus,
since these corrections are exaggerated, the value of ¢y (= 500 cn/sec) taken
being about two-thirds of its real value, these nonlinear corrections would
seem to be an unnecessary refinement.
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Figure 55. Variation in average velocity over one cycle in the
femoral artery of the dcg, calculated from the observed pressur-»
gradient of figure 14,

Full line: Without nonlinear corrertions.

Isolated points: With cowmbined correction for e, = 500 cem/sec.
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SECTION X

THE "EXACT" SOLUTION FOR OSCILLATORY MOTION
IN THE PRESENCE OF A STEADY STREAM

INTRODUCTION

In the major arteries, the oscillatory components of the fluid velocity
are at least as large as and very often considerably larger than the steady
stream components. A solution for the fluid velocity, taking into account tao
interaction of these two factors and called tne interaction velocity, will be
obtained in terms of a confluent hypergeometr:c function neglecting -he genera-
tion of higher harmonics. It is assumed thact the higher harmonics can be ac-
counted for by perturbation theory. Next, under the assumption that the
velocity of the steady stream is small as compared with the pressure-wave
velocity, an approximation to the above solution is obtained in terms of
Bessel functions.

THE INTERACTION VELOCITY WHEN THE STEADY STREAM VELOCITY IS SMALL COMPARED
WITH THE WAVE VELCCITY

We will assume that the pressure gradient, thz longitudinal and radial
components of the fluid velocity, may be represented respectively as follows:

- %E = Ay + A eI0(E - 2/0) (10-1)
w=wy + w ein(t - z/c) (10-2)
U=y 4 up eIM(E 20 (10-3)

Here, Ay, wy and ug are the values of the steady components of the pressure
gradient, w and u respectively. Aj, w) and u) are the amplitudes of the
oscillatory components of the pressure gradient, w and u respectively.

From the equation of continuity in the form

inR
%-é% (u; + y) = (i%—) W (3-41)
we note that
inR
F (uy » ys = (T) w1y
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and on integration

inR {7
uy = '5;'[0 w1(2y) dy

_ ok,
2¢c q1

where qi is the stream function as defined in section IX.

From the earlier expression for the longitudinal component of the fluid
velocity

TV wu,t),, %%L("Y) coy (nt - 9) (2-23)

we obtain an expression for the steady component, wy,

R2
wo =wo(y) = é%;- a-y? (10-4)

where we have used Ap as the value of M for n = 0 and ¢ = 0. At the center
of the tube, y = r/R = 0 and the value of wj is

_ AoRr?

r=0 hu

Since the average value of the steady compcnent We = (wy/2) = (AgR%/8u), we
may write equation 10-4 in the form

2
AQRZ,

wo = 2(=g3 {1 - y2) = 2up(1 - y?) (10-5)

Differentiating equation 10--5 with rvespect to y, we obtain the variation of
the steady component of the longitudinal fluid velocity with respect to the
radius of the tube

finally, we shall take ug = 0
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Substituting the values

Lm(t-z/c.\
] Ao t A‘Q (10-1)
p. )
in (£~ 2/) in(t-2k)
waou s w @ L aF (v @
in(t-2/)
U= U, + Y, (10-3)
w, = 2@ y)
(10-5)
4_% = 'lf'LI’c?
14
uo = O
into the equation for the longitudinal fluid velocity
N 1 L ~ 2
QW LW R dw | R +(g_ w dw {R)@_@
Y™ 2% y o M2z v >4 BT z
(9-1)
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we obtain, after some computations, the equation

CRIPCR R R IR Sk

(10-6)

Now, we set b% = (29g/c), and note that the third term on the right-hand side
may be written as

i (2F) () - S b (1w

The secord term on the right-hand side has-the form

K

- o\‘( ’“?) ¥, = - L® Q:j;“r\ (”‘3) 14

Since w; = w)(y), we have upon integration by purts

1

fw\ B4y = Wl j t ‘% 'y

Thus, equation 10-6 may be written in the torm

(10-7)
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The complete solution of equation 10-7 is the sum of a particular inte-
gral aud the complementary function. A particvlar integral of equation 10-7
is (refer to equations 3-16 and 3-17 of section III)

Wi = (-Mx) l - A\FR1
AL G0 T e (- )

We now find the complemeniary fraction, i.e., the solution of equation 10-7

1
\ \ 1 D - > J 1'£LL 2 A. 1 -
%,*'ﬁdﬁ*’bd(\g)w‘*hd oku“%clﬂﬁ_O
(10-8)

We write equation 10-8 in more convenient form by a change in the independent
vaciable, y, according to

x = bail/2 y2 (10-9)
and define a constant, y, by

2.1
v = bait/2G5 - 1) .
We consider the fourth term on the left-hand side of equation 10-8 with

1/2
X = br 11/2 yz, dx = baiI/Z(Zy)dy’ "d:_l}',' = Zb(lciix y ,

and lower limit: when y = 0, x = 0. We formally write x = x when y =y for
the upper limit of integration. The actual relationship is x = baill? ye

when y = y. Thus,
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and equation 10-8 may be written as

TR IS

dwi | 1 dw +'L300(l-£'1>“r\ * L.--—--——}"c Sx dw, dx - o

or

(10-10)
In equation 10-10, the product

b(lilz.32 2 B .121-—b2 _ 12,1 .
- oy e (1 - b“)w; = - bai ('T)T)Wl = - bai (;0-2- - Dwy = - yw
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Now we shall consider the derivative terms in equation 10-8. From the rela-

tion S¥L _dn1  dy dwy _ 3wy | dx
dx dy dx dy dx dy

d%w1 - (dw1 d%x + (dx) d%u) dx _ dwi ?x | ddwn 4%y
dy? dx’ dy? dx2 dy dx dy? dx? ‘dy

2
From x = bod.ll2 y2, % = bail/? (2y) g—y’z—‘ = bail/2 (2) the quantity,

2
gygl + i (dm), in 2quation 10-10 may therefore be written as

1]
Q.
kLE'
s 2 )y
g
cb
~—
Q..
E
p
51
6"/
e\”
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ol L dx
duj; Jur
b AW \
[ Ik ?1?]
= N J JUJ'
[Ix(" o ]
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Thus equation 10-10 may be written as

A dny [T ey .
4 dx [x dx 1 -y JO x(dx ) dx =0 (10-11)

Again, for convenience, we substitute

dx
in equation 10-11 and obtain
d X
A-a;(v) - YW —I vdx =0 (10-12)
0

To eliminate the integral sign in equation 10-12, we differentiate throughout
with respect to x and obtain

“5l8) -7 e

or
 du Y(‘_f_) -J =0
x> K
or
dv (-_l_ ,1\0' =0 (10-13)
dx* bLX
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This is Whittaker's form of the equation for the Confluent Hypergeometric
Function. We compare equation 10-13 with the general form of the equation
in Whittaker and Watson, page 337, 338.

kN

d W Loom
. ":;*gz.*“ }Wr—‘? (10-14)

d2* >

Identifying the symbols used in equations 10-13 and 10-14, we find that

W=v,z=x, k=~ (y/4), m=1/2 and the solution of equation 10-14 is of
the form

M (9 -2 0@ [,armk,
R, | (1m+l)

(’3_+m-£)(%+“‘fl‘) 1
2! (1m+f)(1m+z.)

or
i +m 'Z/L

Mﬁm(z) _ Zi e .‘F(M+-'iilm+';z

l

in the notation of Kummer modified by Barnes. Thus,

- X/x

M-“é ' (X) - xQ ,.;'E(I+%,l)’x> ,

'
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and therefore

dii: _ C'Q.x.lz:F. (H"% , 1,")

The second solution of equation 10-13 is not required, since dw;/dy = 0 at
y = 0. Therefore, the solution of equation 10-12 is

X =%

uIl':_ C +C' Q.:E(bt\%,z"x)o('x

.

and the value of C; must be determined by substitution in equation 10-12.
If this is done, we find that C; = (4/y)C; and

x -%
o = (4)C ,c,j A A USRI
g (10-15)
Defining a new variable
% -%p
Z°=Zo(“6,7c)= L e ,s{”a(u\%,lﬂqo{x
(10-16)

by analogy with equation 2-18, the solution of equation 10-10 satisfying the
boundary condition w) = 0 at y = 1 may be written as

(L]

(x Wi o(l), OS X)
) k }3 /Jd(n ﬂ» Zb A

(10-17)
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The expression for the average velocity, w;, is

L
CACN IR -—J‘*’.Uﬂﬂ

at any point y = r/R along the radius Changing variables from y to x
according to x = bail/2 y | dx = ba1l/2(2y) dy, dx/(2bc1l/2 y) = dy and
limits: y =0, x=0;y=1, x = bail/z(l)2 = baillz, the average velocity,
w1, taken over the entire cross section fromy = 0 toy = 1 or from x = 0 to

X = bail/z is

w,

2o
&
~
ol
-

o

Combining equatiomns

T AR . Z, (%’ x) | (10-17)
Lt (0-47) Z,,(*o,L"‘eLQr)f

and (:j:l z | quolx




we have

VA

Lol
a—f‘ = \ J A‘Rl &\ _ 'B ‘X) \Jx
taal ) par(a-4) 0(1 Ja g})
i L
= { [ AR; ] dx
-’/:. L/do( Q (>
° Al
I ]' A\Px } Zo@s/’(\ dx
bl ipaU-EY) 7 (3 %l
x A ’
= A'R | - L S Zo (‘%,‘X) OlX }
e (1-4) b ) Z (8, Bal) .
bail/2
In the integral 20—%3-%&%)172—)- dx appearing in equation 10-18,
0
we let

-

1
ON
/\

ol

\:z/
¢
oA|e
+
—
~ T
—_
+
|t
'v
R
o
>
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Thug, according to the formula for integration by parts, we obtain

)
A

Z(,%)._* ]

Z,(%, ")

A

Al »

J Z,,('éx, L”w@'g 'F'(”%””‘)J"

= Zo ¥, i.’/ld ?,) L’/lo(
( Zo (‘6, By “

L'Ade, - %4
i ! J ’XQ 15([4-1,1 X)cl'x
Zob,i’/’d )
L%otlr

\
L/id (7,

-
-~

-/
-1 JXQ :F,(‘H'?f_’)_'fx o x
Zo(“o,i'/‘a(],\ J v
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i:h = Ahizl | - 1 [;L»Eiéb
M (1-87) (Bl
o L

G EER|

=]

- \
2,8, %)

- AR { l .
L/Jc("(t*v) Zc(“é,L‘/’a&)

LA 2 (0%
cp (1-47) Zo(x,t"‘od’,)

(10-19)

/

where Zl (‘6,%3 = T/‘l"(’ (X'XQ ,E(H—%,:LIXJX
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THE INTERACTION VELOCITY WHEN THE STEADY STREAM VELOCITY IS EQUAL TO
THE WAVE VELOCITY

As an approximation, we set b = 1 in the earlier relation b2 = 2Wy/c
when the damping is very small, i.e., when the axial velocity of the steady
stream, wg (Wp = %-wo) is equal to the pulse wave velocity, c. Note that
when b = 1, we cannot use the result obtained in equation 10-19 because of
the factor (1 - b2) in the denominator. So we g-art with the original equa-

tion (10-10), set b = 1 and obtain

1
aLlu_)_', . _,_c[bJ? +L30L1J »dugy - —&Bt (10-20)
Goria e

We note that a particular integral of equation 10-20 is no more a constant,
as was obtained earlier for equation 10-10 where a particular integral was

2
= — AR
Y1 = ThaZ(l = b2) constant. If, instead of the earlier substitution,

X = bodl/2 y2, in equation 10-10 we now change the independent variable in

3/2
equation 10-20 according to x = aiz y2, we have the following re. 1lts from
equation 10-20. From the first two terms on the left-hand side of equation
ai3/2
10-20, note that with the change of variables, x = 3 y2,
al3/2
dx = ( 5 ) (2y) dy, we have
> 3h >
O_L“_ﬁ +'_‘L“1' - 1Lo‘~[')(‘_1_‘£-'11'4_.u.{‘]
o(T- B d % d x

%
- 2l d (x Ol__“‘ﬁj
dx dx
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For the third term on the left-~hand side of 10-20 we have, with the change
in variables,

zdw41

X

é 3
| ] fo(fj ax \ dwy KL ,o('*é dx
A ‘L,3Ad\ ‘a—; (Lshd ‘a\

>h
- 2l d DL__“JT A x
‘ d x
o

For the limits of integration, we formally write x = x when y =y, wne

:3/2
acitual relationship is x = %—— y2. Thus, equation 10-20 may be written as

%h b
Aw‘ AL‘J“ J = -— Al’R
(n d)olx( _‘I_ ,,J.LoLJ X _/&_

or

A m) f alw. _ . AY
X N G/"iAé\ (10-21)
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To simplify the form of equation 10-21, we write x %ﬁl -

and obtain o
vV ’ AR
d [ d I
i 37) +J & zL“'w“

or dv .V . A

kS
D
ol % L
together with the initial cor :ions:
x x=0 A‘)‘ Xz O

The solution of equation 10-22 may be written in the form

V(x) - Mewix o Nawx - A_\_E,

Applying the above initial conditions, we find that

M = __EA_LP_\_ N = O
).L”‘o(/“l
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thus V(x) o A.Rl (,.. o 'X) (10~-23)

.3
21l p
dwi _ dV
To determine w;, we refer to the earlier substitution, x = X’ and
1 dv
obtain w; = X I dx. Substituting the expression for V(x) from above,
)
i
b X
*
w . - AR - Loy x | Uy-coaxldx
1 == S
LM X

©

To obtain the average velocity, w;, we start with the earlier relationship

Vaillz
W = FE%T7§ J w; dx , substitute the value of w) obtained above and find
0
that
x RA h
w = K(il Lo A~ L&
\ BALELS —_— 1 (10-25)

Lot *

This remarkably simple result, obtained by assuming b = 1, i,e.,
2wy = ¢, is not likely to have any practical application to arterial flow.
The only place where the steady stream velocity could approach half the
pulse velocity, 2wy + ¢, would be in the thoracic aorta, where inlet con-
ditions, and possible turbulence, might well nullify the entire theory.
Moreover, since ¢ is always complex, the condition b = 1 can never exist,
except as an approximation when the damping is very small.

APPROXIMATE SOLUTION IN TERMS OF BESSEL FUNCTIONS

This approximation considers the steady stream velocity small as compared
with the pulse-wave velocity. This approximation does not compare the relative
magnitudes of the velocities of the steady stream and the oscillatory flow.
Accordingly, 1t is desirable to check the limiting form of the solution of
equation 10-18 for b = (2wy/c) » 0; i.e., for

v = bail/2Gh - 1) = ail/2@) - b) + e,
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When vy is large, equation 10-13 reduces to the normal form of Bessel's
equation

d?v X 1 _
v iy (x) v=0 (10-26)

with the solution v = x1/2J1(171/2x1/2). Rewriting this result in terms of

y as an independent variable, we obtain

A Y

é@_‘;; - C' j' (m‘ o 'L%j) (10-27)

which reduces to the solution already known for b = 0. The simplicity of
this equation suggests that we examine it for the range of values of b, over
which it would be a reasonable approximation, i.e., for what vglues of y is
the inequality, y/4x >> 1, valid. From che relation x = bail/2 y2, we note
that the maximum value of y = r/R is 1. It follows that the maximum value of
x 1s bail/2, Thus the inequality y/4x >> 1 with x = bail/2 and

Y = bail/? (55 - 1) becomes

-

Substituting b? = Z%Q , we have

wo 1.
or c << 10
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In the femoral artery, McDonald's results give wg = 15 cm/sec. The
pulse velocity, c, is not less than 450 cm/sec. Thus, for these conditioms,
wo/c = 1/30. However, nearer the heart it is to be expected that wy would
be greater than 15 cm/sec and the pulse velocity, ¢, less than 450 cm/sec.
Therefore, practical conditions seem, at best, to be beyond the range of
usefulness of the approximation. This is unduly pessimistic, for a closer
approximation may be obtained very simply by applying the method used in
section IX.

Consider the earlier equation

We set B2 = a?(1 - b2) and write (10-10) in the form

dw;

__+_'_ s W= b‘\P LdJ alUJo( (10-28)
g - ARG

Equation 10-Z8 includes the effect of the oscillatory component exhibited
by the second term on the right-hand side. The first term on the right-
hand side is the steady stream component. Note that both the terms on the
right-hand side of equation 10-28 have the same algebraic sign. Thus, for
a small steady stream flowing in the direction of travel of the pulse wave,
the amount of oscillatory flow is increased. The total flow is reduced if
the steady stream flows in the opposite direction. If we drop the second
term on the right-hand side in equation 10-28, we obtain

T Y | P
This equation is the same as equation 2-4, with B replacing o. Referring to
equations ?-4 ond 2-5, we note that we may write down its solution as

et 3
OL“_J_] +|0{w‘\+i/§1ud'._.-—A.

. A
Wy = P..‘.B_ | - J° (La/ﬂ} (10-29)
Lup” Jo (L")

317




T T R TR A TR T T T T A e e A T R E T T TR R TR TN TR

We consider equation 10-29 as the first approximate solution of equation 10-28.
In equation 10-28, since b2 = (2@y/c) < 1, i.e., the pulse wave velocity,
c, is much larger than the stream velo:ity, wy, the accuracy of the first ap-

proximate solution, equation 10-29, can be improved by taking the first ap-
proximate form for w;, namely,

w, o AR [ J. ("n9)
L J. (1"p)

forming

dw, bﬂ_R:< ) J(L »Y)
al~3 Lﬁ\/’f %}

and substituting on the right-hand side of equation 10-28. Accordingly, we
note that

. 1
-'L?)Rr otlj( ‘axdu)-l 1

3h

= -L3Lf&l L \
(W/& L
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If we write wp for the correction due to the presence of the oscillatory
components in w], we may write the equation for wp in the form

319
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Note that we do not write the term (-AjR?)/u on the right side of the above
equation, since we have already taken care of this in the first approximate
solution, equation 10-29,

It is not necessary to solve equation 10-31 for w, and then determine
Wy because we can directly obtain an expression describing w, as follows.
We note that the solution of the earlier equation

o

oL +‘5;(13+L°(1/‘ I8)

)
) - [

and f(y) is a known function of y, is

{

‘l/(“ﬂL;‘ -+ o{f— i—/—ﬂ f) 24 4

> ;L ( b2

Lk

By analogy, the solution of equation 10-31 may be written as

e |- A

] ?,1 | | \ L3/;
(B Y] b 4

*S,, o) Iéé’ﬁﬂm (t] "54) d

9, - (

(10-32)
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In equation 10-33 we use the well-known result

J *J () () 4z - z_{ (D)) - Iz\J@J

and obtain

!,

W&
i
\_,/
—_——
-

u‘

w ”/’\ JJ {Lﬁﬂ)

] *_a_"{ __) (1"5%)
U J (15)

(e L i”’/&ﬂ_} }
J’o (Lbllﬁ) Jo k'ta/lﬂ)
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The value of Wy at the tube wall is obtained by setting y = (r/R) = 1 in the
above equation. Thus

%

wx (1) m (%5 J((Ltﬂ/s)

(10-34)

MGARRAGD
Rl G )l

Expressing J3 in terms cf Jy and J; by means of the recurrence formula
J (z) = I, (z) ~J (2)
n+l z “n n-1
we have for n = 2
4
J3(2) = 7 Ja(2) - J1(2)

Accordingly, the bracketed portion of equation 10-34 may be written as
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Thus we may write

"] (L |l 2 AT Ldi o1 Ja
LU"J%__l ] (TT‘)@%/A)[({%H—' j;/’\_‘f’;/f 3 l)-?lo]

In the above equation the expression in brackets may be further reduced by
expressing J; in terms of J; and Jy according to the relation

ANOIES NO NG

and introducing the modulus and phase form for J;/Jp. We note that

M («) - l,_ L J (T

3, (%)

o) = phase - 2 (i Q

LEho( \J-a kib/).o(

CEg ()

(4% - ()Mee

-

325




Rl g .
M (d)Q . (}S)Mo(a)Q : _(1‘\(%._)

E€ (o)

2 Mm'(d) Q = (2) J.

Using the relation Jp(z) = —i— Jy(2) - Jp(z), the form above

5) 5y 30k )ik
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then the last form above may be written as

L -

[iL_ YR .S
> /5 2 J 'L%p (7.)(’:) (_3/51 (1)(5)

w|C—

Wi~

It vaa be shown that the expression

(sl niley e

is equivalent to the expression

LE, e,
Mt mMe a il
'LB/SL 3 Io ‘

Co 13 (s
> L T, (0Pp)

2

(10-36)

If there were no damping of the pulse wave in transmission, then the
pulse-wave velocity, c, would be real and the effect of substituting B for
o in the Bessel functions could be calculated from the available tables.
Since c is complex, the Bessel functions are no longer functions of 13/2,
but of a general complex argument.

If ¢; is the measured velocity of the pulse wave, then

bz-—.z_VI_Q.—-Z—-—O—oC]'——Z_‘—TJ-O_.EL._C—Q_—-Z—‘h.(-C—Q-).(E.L)
B B ¢ - c co

C (o] (3] [ Cp C1
=290, oy Ly % _4 ¥
glar X - 1) e {1-135}

Now B2 = a2(1l - b2) and if we write

802

2¢1 . 20
ac(1 cl)
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in the denominator to be neglected.
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Thus, — , + ( c ) x to first order in 2wg/ci,
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™
—
+
—.
)
o oE,l
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and p

1f the quantity 2wp/c 1is small, it is possible to derive an approxi-
mation in terms of known functions by iucing the well-known formula

o) SELH0D e

From equation 10-37 we have

forn = 0, Jo(')\l)

]
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In the earlier relation

we write

Thus, 6 = Bgk, X = B/Bp, and Az = (Bio-)z. Moreover, 1 - A2 = § =%

1 -2 5 _ . w0, Y
E552 = 1E@ a2,

331




PETTORE.

Now we consider the term M,,'(8) c1€10°(B)

(10-36). We note that
L
L, (/5)

e -2
1 /1/5 Ja ((_ hﬁ)

We wish to write the right-hand side of this equation in terms of the
parameter 8.

\
. — /
From “ne relation /5 = /50 [ |+ L ( )-_(qui) Y)( ] *
i

we note that when the imaginary part Y = 0, i.e., when damping of the pulse-
wave is absent and ¢ is real, 8 = Bp. Thus, when Y =0,

appearing in the expression

J( J (7
U 4 () e d, (1)

J ("8
P J ()

We may consider the term

T
as the first term in the expansion of Jl ( L ﬁ) in powers of Y

‘L”‘L/B Jo ('L%/S) J, (L% /5)

where Y is small. The other terms in the expansior of YA EYN
A ()

are given in equation 10-38.
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For convenience, let us denote the function of g13/ 2,

31(813/2)
B13/4Jg (B1%/°) °

Le A) >
e . Mewe e (3

"

£(813/2) =

It follows that

Consider the Taylor series expansion £(x) = f(a) + £'(a)[x - a]

where qu ) /_ _ ) J‘ ( (;5/1-/5\
U J, ()

fay = . 2 (7
B J, (£

/
't«o(ﬁ‘;) 3
! / (-3 1
Fe) - () Mme o (A
L/x. . 1o T, \
, \JG\L /Xn} )
: R Yy
<’,‘(—a\' - 1'/3 -L/so
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Thus, the expansion of 1 - 231 (813/2) may be written in the form
? B13/2J((B13/2)

. J' (L%ﬂ _ ., J| (.LBIJB‘)
2 3o () Urp J, (00)

and _ *’ -
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Putting all these facts together, we write

Sidaha

() I A (A
£3/1/5 Jo (L”I:ﬂ) ia’/x/ic Jo (LB/J-/SL)

+ L%(X) M,;(B)Q + ’ii{ ELL:Z;E 1 (10-38)

X
We shall now obtain an expression for the average fluid velocity, W, and
correct to first order in 2Wy/c by combining the two expressions (10-36) and
(10-38). Since the expression (10-36) is itself a first-order correction,
it will be sufficiently accurate to write By for B in it. Thus the corrected
average fluid velocity may be vritten in the form

Le, ()
W = LTJ’l + JJ,_ = _A_"R__l [M,;(A)Q + ()1-@3> Slo U‘,") (10-39)
'L/Sl/‘ L (
where l L &.'o Lt :c
Slo(a‘) = |+ MIOQ ( g/-i'_,_ + }—M‘OQ/ -
oh B ’ : l'c 3 >
-13_{ Ja(t /3“) _,M(%)MQ&+{J,(LIA°!
J(7) Pl UG
(10-40)
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Table XI is a table of S;((Bp) for 0 = By = 10 at intervals of 0.05.
The first four columns give the real and imaginary parts, and the modulus
and phase of S;5(3g), in that order. The iast two columns are the real

and imaginary parts of 1 - 221&59&2[;1— i.e., the quantities C and D of
8030(3013 2) T m m

section II, equations 2-55 and 2-56.

For the experimental results of McDonald, which have been previously used
as an example, the steady component of the average velocity is 15 cm/sec.
Only part of this, however, is generated by the steady component of the pres-
sure grauient. As was shown in section IX, 1.7 cm/sec of this steady com-
ponent of the average velocity is caused by interactions between the harmonic
terms, leaving 13.3 cm/sec generated by the pressure gradient. If we assume
the pulse velocity to be 450 cm/sec, we obtain

2‘70_ _ w2 1 _ 1
e = 0:06 = b7 and 57 =5 -

From a succession of trial values of Bj, therefore, we caiculate the
real and imaginary parts of the expression

6.-19_4- {1 - F19(Bp) + 0.06 S35(Bp)}

from table VIII of Womersley (1958) for each of the four harmonics. Using
these real and imaginary parts as our values of Cm and Dm in equation 2-57,

we find the value of B, for which the combined oscillatory terms will be
equal and opposite to the steady velocity at the observed point of flow
reversal. In McDonald's experiment, this observed point was at 125° of

the cycle. The best fit at this observed point was given by B8y = 2.5, cor-
responding to a = 2.58. The coefficients of the Fourier series for @ are
given in table XI.

In figure 56 we compare these calculated values with McDonald's observed
values. The ordinates in this figure are in flow units, obtained by multi-
plying the coefficients in table XI by the cross-sectional area, the value
of R taken being the same as that assumed by McDonald, i.e., R = 1.5 cm. The
fit to the observations is not improved much by using the "exact" solution.
Except for a slight increase in diastolic flow, as good a fit can be obtained
by using the simple theory with a = 2.7. See figure 56.
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TABLE X1

THE COEFFICIENTS OF THE FOURIER SERIES FOR &
CORRESPONDING TO THE FIRST FOUR HARMONICS

Coefficient of Coefficient of
Harmonic cos nt sin nt
1 21.81 20.74
2 -25.97 18.81
3 -9,73 -8.66
4 -0.28 -3.18
s Q mi/sec

L 1 )

Figure 56, Variation in Flow Over One Cardiac Cycle in the
Femoral Artery of the Dog.

Full Line: Calculated from the first-order approxi-
mation to the "exact" solution with a = 2.5.

Broken Line: McDonald's observed values.
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THE APPROXTMATE SOLUTION AND THE FREQUENCY EQUATION

If ve substitute the approximate solution for the corrected average
velocity, W, in the frequency equation, the reduced determinant would have
the form

1 - ¥30(B0) 2 1
1 x 1+ ox =0
~10 - 2 10(8) ~ox k - x + 10 (10-41)
where 1 - $10(8g) = 1 - F1g(Bg) + (‘—Z%)Sxo(ﬁo) 10-42)
-1 Aoy 4ug -
and 0 =2 (Al) - (10-43)

The last term, O, above, represents thLe viscous drag due to the steady stream.
Note that the value of O is small over the range of values of a which are of
interest. For example, in the femoral artery,

2.7 A .1
a 7, Ay 3 and 0.03

o |5
1

so that 0 < 2%6 . Even in the thoracic aorta, assuming the values %% =1,

n|o'

, since a2 = 100.

1 1
=% we find that 0O < 100

If we use the same method as in section III, for reduction of the above
determinant, we obtain the quadratic equation

(1 -02)x2 - 26"k +H" =0
1 1
1+7-0-10G - )

where ¢" = +
1 - 9

k 1
§'+O—4+

1+ 2k
B = ]
1 -1y




o Sam

For 0 = 1/2, the effect of the term i9/2 in the expression for G"
(leaving aside the substitution of ¥;5(Bg) for Fig(a), which is discussed
below) will be to reduce the imaginary part of G", and therefore to reduce
the damnping of the wave in tran mission, if the steady stream is in the same
direction as the velocity of propagation. If the steady stream is in the
opposite direction, damping will be increased. In the limiting condition
of heavy loading and very stiff constraint, (k + -»), the viscous drag of
the steady stream will have no effect, as might be expected.

The effect of substituting y;¢(B) for Fig(a) in the frequency equation
may be studied as follows for the limiting condition of heavy loading and
very stiff constraint. When k + -©, corresponding to the earlier relation,
x =2/(1 - F1p), we write x = 2/(1 - yjp) so that

2w
a-¢)qa - o)

1-02) 7= (10-44)

1 - Fig(8p) + (%%QQSIO(BO)

From equation 10-45 we may, as in section III, calculate the ratio of the
wave velocity to that of the perfect fluid, c;/cg, and the attenuation factor,

exp [~ 24,

The variation of c;/cyp for the particular value o = 1/2, k «»-= and
2%g/cy = 0.06 (as in McDonald's experiment) is shown in figure 57, with the
corresponding plot for 0 = 1/2, k =»-~ with no steady component for compari-
son. We observe that the presence of the steady stream raises the wave
velocity by 6% to 8%.

The variation of exp [- QEX] with respect to o is shown in figure 58.

We observe that the damping of the wave in transmission is practically un-
changed by the presence of the steady stream. It appears to be very slightly
increased. This effect is opposite from that predicted by Morgan and Ferrante
(1955) but in view of the widely different conditions, is not in conflict with
their conclusions.
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Figure 57,

Comparison of variation in wave velocity with o fer a steady
stream of axial velocity 64 of the wave velocity with that
for no steady stream,
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Figure 58,

Comparison of the amount of dauping in transmission,
in presence and in absence of a steady stream.
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For larger values of the factor 2%;/c, this very simple approximation
breaks down, and there would seem to be no alternative to a full-scale tabu-
lation of the required solutions of the Confluent Hypergeometric equation
aad an attack on the problem in full generality. Before this can be con-
cemplated, we need measurements of the comparative magnitude of the steady
and oscillatory components of flow in the major arteries, together with

accurate measurements of pulse velocity over short distances, in order to
delimit the ranges of the parameters.
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