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SUMMARY

The problems treated in this report are those forming the main theme
of WomersLey's theory of arterial circulation, which pertains to the blood
flow in the arteries based upon the differential equations of liquid flow
in a thin-walled elastic tube. In particular, the problems dealt with are
those relatirg to: (1) wave propagation in the arterial system; (2) pulsa-
tile pres3ure and flow changes associated with the wave propagation; and
(3) relatLonship between pulsatile pressure on the one hand and the ge-
ometry ani the physical properties of the arterial system on the other.

Some of the results which follow from the quantitative relationships
of this theory are:

(1) Changes in the viscoelastic properties of the arterial wall
are imporl:ant with regard to wave propagation.

(2) The flow generited by a given oscillatory pressure gradient
does not vary greatly over a wide range of changes in additional tissue
mass and elastic constraints of the tube.

(3) The pnase difference between periodic variations in pressure
and tube diameter is also insensitive to a wide range of variations in

tissue mass and elastic constraint.

Womersley's work indicates that the thin-walled elastic tube can be
used as a rough working model of the artery. Moreover, according to this
model a number of relationships between observable quantities such as
flow and pressure gradient, and between pressure and tube diameter can
be deduced and verified experimentally.
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NOTATION

A, A1, ... , A, ... complex constauts defining amplitude and phase of
pressure or pressure gradient, according to context

B - EM(1 - a2)

C1 , DI, El arbitrary constants

c complex velocity oE wave propagation

co velocity of wave propagation for a fluid of
zero viscosity

c1 velocity of wave propagation

c g group velocity

E Young's modulus of tube material

E complex constant replacing Young's modulus when there
EL is internal damping in the tube wall

E(Z,m) standard correction for finite expansion of the tube,

expressing the effect on the average velocizy of the

(Z+m)th harmonic of interaction between the zth and

mth harmonics

E(m,O) as above, for the interaction between the mth harmonic
and the steady flow

E.(u,-m) as above, expressing the effect of the mth harmonic on

the steady flow

f frequency In cycles per second

( 2J1 (ai3/2

a•i3 /2j 0 (ai 3 /2)

h tube wall thickness

ho W y
=M0 (c•)

hi 0  2MI(a)
aM0o(a)



I

k = h/R ratio of wall thickness to radius of tube

M modulus of applied pressure gradient

Mo(x) = IJo(xi3/2)I

MI)= J(xi3/2)

M~~cy) 1- I2i = ~1 - hoe-igO

Mi~'(o~)= 1 21 - loe3/2G

M1o" 1 + nFIo(c()I

n = 2rf circLI1 , frequency

f y
q = f w(2y)dy average velocity over a cross section of radius y, y < 1

j0

Q volume rate of flow

Qmax Q1 maximum value of Q

Qsteady Poiseuille flow corresponding to maximum value of pres-
sure gradient, if maintained constant

r radial coordinate

R radius of tube

t time

u radial component of fluid velocity

w longitudinal component of fluid velocity

wo steady component of longitudinal velocity

wo (section V) value of w at y=YO

(1

=jO w(2y)dy average velocity across the tube

WO average velocity across the tubL of the steady stream

L xi



W(Lm), W(m,O), W(m,-m) standard corrections for the effect of the
quadratic terms in the Naviei-Stokes equations

hB
Rp oc

x (Section X) x- (hc13/2)y2

4

X real part of co/c

Y imaginary part of co/c

y = r/R, nondimensional radial coordinate

z distance along axis of tube

Subscript m quantity corresponding to the mth harmonic

Superscript * complex conjugate of quantity

R2 n 1/2
a M (---) nondimensional frequency parameter

S1/2
a (Section V), 0 = a(-) nondimensional parameter of the motion in the

0o plasma layer

8 (Section X), a = a(1 - b2)1/2 a i 1/2

c

1/2

$o(Section X), 0o M a 1 - (2w0) 2

S(by 1)bail/2

6= 0o(a) - 00 (ay)

6 10 = 1 350 - )l + O0

' = phase if 1 - JO(ayi3/2) phase of [1 - hoe-gO (Y) =phae ofi -Jo(ai3/2)

e10
1 (a) = phase of 1 - ai 3 / 2J 0(ai 3 / 2 ) phase of [1 - h10 e

Fl0" = phase of [1 + nFl 0(a)]

xli



longitudinal displacement of tube wall

ri complex constant appearing in flow formula

0 circumferential coordinateI0(x) phase of Jo(xi3/2)

0 1(x) phase oi J,(Xi3/2)

X refer to equation 7-10

I'viscosity of the fluid

V kinematic viscosity of the fluidPO

radial displacement of tube wall

p density of tube material

P0 density of the fluid

o Poisson's ratio of tube material

ac complex constant replacing Poisson's ratio when there is internal

damping in the tube wall

negative phase of applied pressure gradient

phase of iluid pressure

xiii



SECTION I

INTRODUCTION

The mammalian circulatory system is essentially " fluid transport system.
An important part of this system is the arterial tree, which may be considered
as a branching conduit system having the function of delivering blood to the
tissues with a minimum loss of energy.

In an analytic description of the arterial circulation, the investiga-
tion consists in determining the characteristics of a system composed of a
non-Newtonian fluid flowing within a branching system of tapered, distensible
tubes and subjected to phasic changes in pressure. The distribution of pulsa-
tile pressure and flow at various locations in the system is modified by a
number of factors, and is therefore difficult to describe an( predict. Some
of these factors are:

(1) The transient phenomena due to the mechanical action of the heart.

(2) The branching, tapering and tethering of the blood vessels.

(3) The impedance provided by the arterioles.

Application of mathematical and physical principles by several investi-
gators over the past two hundred years have contributed significantly to a
better understanding of the hemodynamic aspects of the cardiovascular system,
the development of special instrumentation, and the evaluation of experi-
mental records. A highly useful mathematical approach to this formidable
problem was developed primarily by J. R. Womersley and his co-workers
D. A. McDonald and M. G. Taylor.

The main value of Womersley's work lies, it is believed, in its endeavor
to outline in a simple manner the analysis of the circulation as a system in
steady-state oscillation, based on standard principles of fluid dynamics. The
equations of state for both the blood and the blood-vessel system are set up,
the equations are linearized, and periodic solutions in the form of Fourier
series which satisfy prescribed boundary conditions are developed. In
particular, his work indicates that the thin-walled elastic tube can bc used
as a rough working model of the artery, Moreover, from this model a number
of relationships between observable quantities can be deduced and tested
experimentally. Womersley's theory does not take into consideration signifi-
cant taper in the tube system or nonun 4 formity of the physical properties of
the blood vessels.

The probloms that form the main theme of Womersley's work, described in
this report, pertain to the flow in the arteries and, in particular, are
those concerned with (1) the velocity of wave propagation; (2) the pulsatile
flow and pressure changes associated w4th the wave propagation, and (3) the
pulsatile pressure-diameter relationships. Moreover, the significance of



a salient nondi-'•.nsional parameter, denoted by a, which is a function of the
frequency, the kinematic viscosity of the fluid and the internal radius of
the tube, is stressed in characterizing the motion of the fluid. The vari-
ation of this parameter at corresponding flow points in mammals is very small
and could therefore be considered as a Reynolds number for pulsatile flow.

Womersley's work forms an important link in the continuing chain of
understanding. We havcr chosen to present his version not because it is the
most sophisticated work in this area but because within its limitations it
is a well-developed :reatment of several aspects of the arterial problem, and
suggests a rational basis for many of the peculiar characteristics observed in
the mammalian cardiovascular system. Moreover, it has indicated directions
for further improvement in the mathematical analysis of the cardiovascular
system and has encouraged experimental investigations along these lines.

In this report section II begins with a highly idealized model of the
arterial system, the linearized flow of a viscous, incompressible fluid in a
straight, rigid, circular tube, in order to develop the basic concepts of the
problem. This model is then successively refined in order to study the effects
of the elasticity of the tube, the oscillatory changes in tube diameter, the
boundary layer near the walls of the arteries, the junctions and discontinu-
ities in the arterial tube system and finally, to assess approximately the
effect of the nonlinear terms in the flow equations.

In its original form, Womersley's work is under~randable only to spe-
cialists in t is particular area of research. T- _Ls present, expanded form,
we believe that his work would be accessible as well as of interest to a much
larger audience vto are interested in hemodynamics from the experimental as
well as the analytical point of view.

2



SECTION II

OSCILLATORY FLOW OF A VISCOUS INCOMPRESSIBLE
FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

INTRODUC'i .ON

In this section we shall consider a very simplified model of the arterial

system, which consists essentially of the laminar flow of a viscous, incom-

pressible, Newtonian fluid in an infinitely long, uniform, rigid cylindrical

tube. Such a system is characterized in terms of the Navier-Stokes equations.

From these general equations, we shall, under the prescribed conditions,

derive the equations describing the particular flow process of interest and

obtain a solution. Moreover, we shall consider the limiting and modified

forms of the solution equation and draw some conclusions.

Next, an expression for the volume rate of flow will be determined, and

electrical analogues of flow quantities considered. In addition, the Fourier

series representation for calculating the volume rate of flow will be obtained

in terms of the pressure gradient.

Finally, the relationship between pressure gradient and the time rate

of change of pressure will be discussed.

DERIVATION AND SOLUTION OF THE EQUATION DEFINING THE OSCILLATORY FLOW OF A
VISCOUS INCOMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

The equations governing the laminar flow of a viscous incompressible

fluid, expressed in cylindrical coordinates (see figure 1), are (Schlichting,

1960):

The equation of continuity of mass

au + u +Lv aw 0 (2-1)
Tr r +30 z 0-)



p

Figure 1. Cylindrical Coordinates of a
Point Within the Flow Along the Z Axis

4
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The three dynamical equations of motion

!L i_ ýU (2-2)

f+ ( L + "r+ )'L

-[ ° , u"• r •,. ,_.,+,

2. (2-3)

+ +' + L- +

"LLL"--F + U --_ + 8" +

The assumptions made regarding the particular flow process under con-

sideration through a straight, rigid, circular tube are as follows. (See

figure 2.)

a. The radial and tangential motions of the fluid are neglected, u = 0,

V = 0.

b. The fluid velocity along the axis of the tube (the z axis) is inde-

pendent cf the distance z, L = 0, i.e., the value of w remains unchanged

along the tube axis.

c. w is a function of the radial coordinate, r, and time, t, w = w(r,t).

d. The fluid is subjected to a longitudinal periodic pressure gradient

having the form
- A e = A (cos nt + i sin nt) (2-5)
3z



where A is a complex constant denoting Ehe magnitude of the prebsure gradient

and w - nt is the phase. The pressure gradient along the radial (r) and cir-

cumferential (9) directions are zero.

e. The body force F - (F FOFz) is neglected, i.e., F - Fe a Fz O.
rr

Aju T IINNER WALL OF
Air,y R RIGID TUBE

W R
j

z

STUBE WALL
THICKNESS

Figure 2. Coordinate System

If we impose -he restrictions as specified in the assumptions' (a), (b),

(c) and (e) above, we find that all the terms in the general flow equations

(2-1, 2-2, and 2-3) vanish. We are left with the following terms of equa-

tion 2-4

-x LAY 4- 1 -.

or -

-- N -f __ ) (2-6)

Equation 2-6 defines the flow process under investigation without the impo-

sition of the periodic pressure gradient as specified in equation 2-5.

6



Since the lngitudinal pressure gradient has the form described by equa-

tion 2-5, it follows that the longitudinal fluid velocity w, subject to this

pressure gradient, may be considered to have the form

int
w=w e (2-7)

where w1 denotes the magnitude of the fluid velocity. Since, according to

assumption c, w is a function of r and t, we write equation 2-7 more pre-

cisely as
.- in t

w w(r,t) w (r) e (2-8)

Nov we combine equations 2-5 and 2-8 with equation 2-6. We note that

L'1t

VYtt

vVntA 1e
LII t•

;•-r d U-

Since w is a function of r alone, we replace the partial derivative notation

by the total derivative notation. Thus, equation 2-6 has the form

ý_A t i-nt

to * 7



or UrA + 2 rdw

or + (2-9)

We now write equation 2-9 in terms of a new independent (and nondimen-

sional) variable y r/R. Accordingly, the first two terms in equation 2-9

may be written as

u p _ , w,

£ui, -d + +

Thus, in terms of the independent variable y, equation 2-9 has the form

4E, + I -

8



We observe that the physical parameter. R, n and v which characterize the

motion of the fluid appear together as a product in the form R2 n/v in equation

2-10. For convenience, we denote this product by a2 . Since the values of R,

n and v are always positive, we use a2 (Instead of a) to emphasize that the

product R2 n/v is always positive.

Note that a2 = R2n/v is a dimensionless parameter,

SL /T

Here, L and T denote dimensions of length and time. Since the value of a

depends upon the frequency n, we may say that a is a dimensionless frequency

parameter. We may also write

a2 = R2n PR 2 n2 . magnitude of typical oscillatory pressure force

V pvn magnitude of typical oscillatory viscous force

Thus a may be considered as an oscillatory Reynolds number. If a >> 1, then

the flow may be considered as inviscid.

Setting a2  R2 n/v in equation 2-10, we have

or + A Ru, +i 7w - (2-11)

Equation 2-I1. dtfines the particular flow process under investigation. The

problem now is to determine the solution of equation 2-11, having the form

W, = wl(Y)' satisfying the specific boundary conditions to be imposed and

containing the flow parameters A, p, v, n and R.

Equation 2-11 is a nonhomogeneous Bessel differential equation. The

corresponding omogeneous differential equation is

d~! 1 dwl
+ - - + i 3a2 w, 0 (2-12)

dy 2  ydy

9



The solution of equation 2-12 may be written in the form (Watson, 1944):

wj(y) - KiJO(i3/2ay) (2-13)

which is known as the complementary function. K1 is an arbitrary constant to

be evaluated. For the nonhomogeneous equation 2-11, we let

w1 (y) = K2 = constant (2-14)

Substituting equation 2-14 in equation 2-11, we obtain

1aK AR2
S~i 3ct2 K2 = -

i.e. K2  AR2  (2-15)

Equation 2-15 is the particular solution of equation 2-11. Thus, the complete

solution of equation 2-11 is

w1 (y) = vlJ 0 (i 3 / 2 ay) + AR2  (2-16)

To evaluate the constant KI, we impose the condition of "no slip" at

the tube wall r = R:

w = 0 at y - =1.
R

Imposing this condition on equation 2-16, we obtain

•.I + . x

or

LoýA J, M (O/1 ~)

10



Rewriting equation 2-16 in terms of thi, alue of K1 we have

L .AR I (LVLO()

+1

__. (L JL (A

(2-17)

Combining equations 2-7 and 2-17, we obtain the fluid velocity along the axis

of the tube

AJA (j I C O -) I ( 2 - 1 8 )

The factoL AR2 /ia 2p, appearing in equation 2-18, may be simplified for compu-

tational purposes as follows. We ficz~t note that

oc ,- - 2f

Thus AR" A

:':and JO• 'L i) e 2,

11



A formula essentially the same as the real part of equatiou 2-19, when

A is real, is given by Egami (1944) and Lambossy (1953). The latter has also

developed a formula for the viscous drag. Lambossy and Thurston (1952), who

also investigated the problem, were concerned with the effect of fluid re-

sistance on the frequency-response of measuring instruments.

LIMITING FORMS OF THE SOLUTION OF THE EQUATION DEFINING THE OSCILLATORY FLOW

OF A VISCOUS INCOMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

We note that the longitudinal fluid velocity, w, as described by equation

2-18, is a function of the nondimensional coordinate, y and time, t. We also

observe that the value of w is dependent upon the value of the nondimensional
.R2 n. 1/2

frequency parameter a = - ) . For fixed values of R and v, the value of

a varies directly as the value of (n) 1 / 2 . So it is reasonable to look at the

variation of the fluid velocity, w, for small and large values of a, i.e.,

for small and large values of n = 2irf, i.e., for small and large values of

the frequen r of oscillation, f, of the fluid.

If we include a phase lag between the oscillating pressure and the flow

generated, then the pressure gradient imposed on the fluid has the form

(2-20)

instead of the form given by equation 2-5. Here, M is the magnitude of the

pressure gradient and 4 denotes the phase lag of the flow rate behind the

pressure gradient. Accordingly, the fluid velocity, w, qs described by equa-

tion 2-18, has the form

(2-21)

12
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We will now consider the limiting forms of equation 2-21, describing the fluid

velocity for

Case I: Small values of the fluid parameter a, i.e., for small values of

the frequency of oscillation of the flowing fluid.

Case II: Large values of the fluid parameter a, i.e., for large values of

the frequency of oscillation of the flowing fluid.

Case I. First we consider the expansions

-I.+ -- + .- _ _ _" -" +

111-

S,- 
_ _ _ _ _ _

162. 1- 4

0, +. . .

1322

r 13



.3 .

= (- 0 .)o- + ±.. ....

/ i L o.• d.
T +2.,

Next, from the above expansions we note that since 0 < y ~.1, for Cay)4 << 26,

or for a <e 26/4, or for a << 3, the values of jo(i3/2ay) an jo(i3/2a) may

be written approximately as

O.3 C9. +.

0 2 2.

Accordingly, the term 1 - Jn(1 3 / 2ay) in equation 2-21 may be written as
J 0 (13/2a)

0 4 + L~ L Ck __14

14



for small values of a. Thus, equation 2-21 has the approximate form

(2-22)

In equation 2-22, the part that has significance is the real part, i.e.,

the first term on the right-hand side. The imaginary part determines the

phase of the fluid velocity. Thus for small values of a the fluid velocity,

w, is a function of y and t and is given by

44J L 2-3

In equation 2-23, if we consider that

a) there is no phase lag, i.e., 0 = 0;

b) the value of n c2f is zero, i.e., the frequency, f, of the oscil-

lating fluid is zero;

then cos(nt - 4) - cos 00 1 and equation 2-23 reduces to the form

w w(y) = MR2  y2 ) (2-24)4p

15



In equation 2-24, note that the dependence of the fluid velocity on time, t,

has been eliminated, due to the restrictions * = 0 and n - 0. Moreover, since

y - r!R,

r2 R2 -- r2
1 -y2F = i--M RZ

Substituting this value of (1 - y2 ) in equation 2-24 and simplifying, we

obtain

w = w(r) = -u (R 2 - r 2 ) (2-25)

In equation 2-25, note that the fluid velocity, w, is a function of the radial

"coordinate, r, only.

Now, the equation describing the fluid veiocity for stationary Poiseuile

flow in a straight, rigid, circular tube is (Schlichting, 1960):

w = w(r) = p1 - P2 (R2 - r 2 ) (2-26)
4-pL

where P! and P2 are pressures at a distance, L, along the tube. Comparing

equations 2-25 and 2-26, we find that the magnitude of the pressure gradient,

M, corresponds to P1 - P2 Thus, equation 2-25 describes thp fluid velocity
L

for stationary Poiseuille flow in a straight, rigid, circular tube.

Case II. Again we consider equation 2-18. For large values of a, we

shall use the asymptotic expansions for the expressions Jo(i3/2cy) anU

j 0 (i3/2a). The asymptotic forms are

1

16



,j e,

J (O4)- 2 ____

Accordingly, the factor 1 - J0(i3/2ay) in equation 2-18 may be written as
Jo(i3/2a)

I-'hJo,•

(2-27)

Thus, for large values of a, the fluid velocity, w, is obtained by combining

equations 2-18 and 2-27

17
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(2-28)

If we consider the pressure gradient to be of the form given by equation

2-20 instead of the form given by equation 2-5, equation 2-28 may be written

as [ _-,, -• ,•},']

(2-29)

For convenience of writing, we set nt - = D and - -__ (1 - y) = E./7
Equation 2-29 may then be written as

18



d,+Ai)+ CMI t ~ 4~

(2-30)

Considering only the real part of the fluid velocity, w, described by equation
2-30, we first write it down in the form

"'- = Lau , /.,,M,,% ,,.Yet tc

The real part of the fluid velocity is thus

M+E

Mf. ,V-16. C_ -D E) i)

19



THE MODIFIED FORMK F THE SOLUTION OF THE EQUATION DEFINING THE OSCILLATORY

FLOW OF A VISCOUS INCOMPRESSIBLE FLUID IN A STRAIGHT, RIGID, CIRCULAR TUBE

We consider equation 2-18, describing the flow velocity of an oscillatory

viscous fluid in a straight, rigid, circular tube:

uAJr LeY~C -L OL' )](-8

This equation will provide velocity profiles as a function of A, R, a x

and r. In its present form the equation is difficult for calculation purposes.

We will therefore modify it in order to obtain an expression that may be easil)

calculated, and then demonstrate some of the velocity profiles. Accordingly,

we express the Bessel functions appearing in equation 2-18 in modulus and

phase form as follows.

20
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Thus, equati.on 2-18 may be w:itten as

M-( dM• --I

AR Q

(2-31)

where M___ and 8
Mo ck2)

21



Equation 2-31 may be simplified according to the following scheme. We set

0 L 0z~ 0

- __________ . See figure 3.

~- C01 0o

Moreover

/

0f-

N o~. ~ o

Thus

+ /

o o o(2-32)



ILO hoSIN S0

•00
j- hoCOS 80

Figure 3. Diagram Illustrating the Modulus
and Phase Form of Equation 2-18

Combining equations 2-31 and 2-32, we obtain

U' urAM ' t M•

Sto ' t

06

10CC

(2-33)
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If there is a phase lag of the flow rate behind the pressure _Ladient,

and the latter is of the form given by equation 2-20 instead of the form given
by equation 2-5, then we replace the factor Aeint appearing in equation

2-33 by the factor Mei(nt . Thus from equation 2-33 we have

0M
2.

(2-34)

The real part of equation 2-34 describes the actual flow velocity along the

tube axis. Thus

In equation 2-35, note that the factor a2 occurs in the denominator and

is a factor contributing to the amplitude of the flow velocity. Clearly, as

the value of a2 increases, the amplitude of the fluid velocity decreases,

i.e., the velocity profile tends to flatten out. See figure 4. Note that

24
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sine a =R 2 n

since a2  - , an increase in the value of a2 is brought about by an in-

crease in the values of F and/or n. Moreover, an increase in the value of

a 2 is also brought about by a decrease in the value of v.

THE VOLUME RATE OF FLOW

The volure rate of flow, Q, : obtained by integrating the fluid velocity,

w - w(y,t), with respect to the cross-sectional area, S, of the tube. See

figure 5.

INNER WALL OF TUBE

RING ELEMENT

Figure 5, Ring Element of Fluid Area dS for Computing
the Volume Rate of Flow

26
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VI UJO(2-36)

5

Substituting the expression for w(y,t) from equation 2-19 into equation

2-36, we obtain

Q Q3t2- Ik J" kc (2-37)

Next, we obtain the average fluid velocity, w = w(t), according to the relation

where Q(t) is given by equation 2-37 and frR2 is the cross section of the tube.

27



Thus

LAJ~ ~0t J( /2O ) (2-38)

iJC' L III cj J. ( tii'N4) J(2-39)

We may write equation 2-39 in modulus and phase form according to the

following notation.

M' Ot

M, CL iL28

28



10aMI(11

0 ~ i -(= '%) -01 (t\

g10  15 9(d)+ Q q) ?vat(0) Gc' 0

See figures 6 and 7.

M mi:
Iola, ~h 1(a) SIN 81 (a)

6,10 (a)

I - h 10(c) Cos 8 Ida)

Figure 6. Diagram Illustrating the Modulus and
Phase Form of Equation 2-39
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21 1S~450

Figure 7. Diagram Illustrating the Complex Quantity i 3/ 2

Thus, equation 2-39 may be written as

ML ct (2(40

30
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If there is a negative phase lag * between the flow velocity and the

applied pressure gradient and the latter is of the form given by equation

2-20, instead of the earlier form described by equation 2-5, then we replace

the factor Ae in equation 2-40 by the factor Mei~nt - ). Thus, from equa-

tion 2-40 we have

ColL [nt -f +

2 to

(2-41)

The actual average flow velocity along the tube axis is described by the

real part of equation 2-41:

S(2-42)

31



The actual volume rate of flow, Q, corresponding to the actual average

flow velocity given by equation 2-42, is

Q - Q(t) - w(t){cross-sectional area of tube}

- W(t) {nR 2 }

MITR4 I

-a2 M1 0 (c) sin [nt - + ej 0 (a)] (2-43)

The values of the quantities M'0 , M1 0 /a 2 and ejo are given in tables I,

II and III of (Womersley, 1957), for values of a ranging from a = 0 to a = 10

at intervals of 0.05 in a. Womersley's tables have been extended by van

Brummeln, 1961).

In order to calculate w(t) and Q(t) for values of the parameter a greater

than 10, we may use the asymptotic expansions (McLachlan, 1961) of the modulus

M'10(a) and the phase 'i 0 (a):

M 1(0') __ +10 C4 (

10 ( cO4 L

From equation 2-43 we note that since the maximum value of

sin [nt - p + e;O (a)] is 1, we may write

ax(t IQ(t)I MiT R M

ax(t) = =---M 1 0  
(2-44)

Moreover, we note that the volume rate of flow under steady, laminar condi-

tions, according to Poiseuille's formula, is

Q steady =- - P2) (2-45)
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For a comparison of Omax(t) with Qsteady' we take the ratio of equations

2-44 and 2-45 and obtain

In equation 2-46, if we set the magnitude of the oscillatory pressure gradient,

M, equal to the pressure gradient, Pl-P in Pieil lw eoti

M aax(t)

In equation 2-47, note that the ratio decreases as a increases.
Psteady

Q M

For the variation of M10 and €0as a function of a (i.e., as a function of

frequency, n, since a2 = R2 n/v), we plot the ratio 8M1 0 /a 2  against a. See

figure 2-8. According to equation 2-47, this figure also indicates the vari-

ation of the ratio

sax: maximum flow due to a given harmonic pressure gradient

Qstad: Poiseuille flow corresponding to the given pressure gradient

with a.
Qmax

From figure 8, note that as a -* 0, -stad "1, i.e., for smaller and

steadyd

smaller values of the frequency of oscillation, the maximum flow due to a given

harmonic pressure gradient may be approximated by Poiseuille's formula. For

values of a greater than 1, the maximum flow due to a given harmonic pressure

gradient decreases rapidly as compared with the corresponding Poiseuille flow.

At a 10, Rax = (

33 ststdd

smllr alesofth feqeny f sclaton te axmu fowdu t 33ie



Qmax
osteady!

1.0

0.8

0.6

0.4

0.2

0 I 2 3 4 5 6 7 8 9 10
a

Figure 8. The variation of the ratio %ax with respect to a,Qsteady

assuming laminar flow where the driving pressure is of
the same magnitude as the pressure gradient.

This wide variation of Qmax with respect to a, raises the question:

How much is the value of a likely to vary in different animals? If we work

with the following information:

The driving pressure is harmonic of frequency, n = 2rf;

2R = diameter of the human femoral artery = 0.5 cm;

f = pulse rate = 72 per minute;

v = kinematic viscosity of blood = 0.038 stoke;

then the value of a is obtained as

a• = R(n) 1/2
n 1/2

0 )(27T x 72 1 1
2 60 ~00P

= 3.52
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The corresponding values of a for the rabbit and the cat are of about the

same magnitude. This indicates similarity in arterial flow in all these

animals, and shows that the oscillating flow in the great arteries in these

experimental animals and in man has the same form, and differs only in scale.

Figure 9 shows the variation of the phase lag (i.e., of 900 - e10)

between the oscillating fluid pressure and the corresponding volume rate of

flow with respect to the frequency of oscillation. Note that

C' ('~~~) 2JU 3 ;() 1

The graph shows that the phase lag decreases with increasing frequency, and

approaches its asymptotic value of 900 for large values of a.

PHASE LAG

00
0

2020 -
40

04 -
60

8809o0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

a

Figure 9, The variation of phase lag between the oscillating
fluid pressure and the corresponding volume rate of
flow as a function of a.
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ELECTRICAL ANALOGUES OF FLOW QUANTITIES

It is convenient to consider the arterial circulation in a state of

oscillatory motion analogous to an electrical circuit. In accordance with

electrical terminology, if we associate steady flow with the "PC theory" of

electricity, we may associate oscillatory fluid flow with the "A eory" of

electricity. Thus we may make the following analogies

1. Oscillating fluid pressure gradient analogous with voltage drop.

2. Oscillating fluid velocity (or volume rate of flow) arilogous with

electric current.

3. Fluid friction per length of tube section encountered by the fluid

flow through the tube length anaiogoq with electrical resistance.

4. Elasticity of the tube wall analogous with electrical capacitance.

Consider a fluid flowing in a rigid, frictionless tube. See figure 2-10.

According to Newton's law

force = (mass)(acceleration)

i.e. (PI - P 2 )A m( d

or (P1 - P 2 )A m d (Q)

and P1 - P2 A2 dt

Thus, if the fluid pressure gradient (P1 - P2) and the volume rate of flow,

Q, are respectively analogous to the voltage drop, (el - e 2 ), and the current,

i, then tbh quantity, m/A2 , of the fluid system is analogous to the inductance,

L, of the electrical system. It follows that the model for a rigid, friction-

less tube is an inductor. If we include fluid friction in the fluid system,

then the model becomes a resistance-inductance series arrangement. Moreover,

if we consider the tube in the fluid system to be flexible, then the model

becomes a resistance-inductance-capacitance series arrangement. Such a model,

although it represents a first approximation to the actual physiological system,

provides some insight in regard to the parameters that govern the operation of

the actual system.
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FLUID SYSTEM

"" AVERAGE FLUID VELOCITY
p :INLET P2 : OUTLET

PRESSURE m:MASS OF FLUID PRESSURE
A:CROSS SECTION OF TUBE

(P P2) A = m
12 dt

ELECTRICAL SYSTEM

ie I -d r--ý ý e 2

eI- e. = Ld

Figure 10. Electrical ialogue of Rigid, Frictionless Tube
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In the treatment of AC circuits, we have to consider the phase difference

between the applied voltage and the current flowing in the circuit. Analo-

gously, we may regard the oscillating arterial pressure gradient generating

a flow with a phase lag. Moreover, in electrical circuits, the complex im-

pedance Zelec is the ratio of the voltage, V, impressed on the circuit and

the current, I, in the circuit,

Zelec = V/I

By analogy, we define the fluid impedance Z flud as

fluid pressure gradient
fluid average fluid velocity

We have noted earlier that the representations for the pressure gradient and

the average fluid velocity are respectively

-_ = Me'i(nt - p) (2-20)3z

•(t) = MR2 M1O' )ei[nt - + 10()] (2-41)iJ•2

Thus

Zfluid 

[

MZ2__ Md')L/Ao'

CMLgo

L I Co~ 10(o. 10 3y

10
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FLu.b - I oIf,(, + 10 yoZr'"' 'RL M"

(2-48)

Moreover, we may write

Zelec = Relec + iXelec R eiec + 127fLelec (2-49)

where R elec Xelec and Lelec are respectively the resistance, the reactance

and the inductance of the electrical circuit. Comparing the right-hand sides

of equations 2-48 and 2-49, we conclude that

fluid resistance = M (O)

II
fluid reactance =

fluid inductance (j.. _______

too

u knf~(39

IOI

39
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In coaistrast with electrical circuits (where the resistance and induct-

ance are independent of the frequency of the system), we note that both the

fluid resistance and inductance are functions of the frequency of oscillation

of the system. The variation of fluid resistance and inductance n a rigid

tube, with respect to frequency, are shown in figures 11 and 12.

FLUID RESISTANCE

3.0

2.0 -a-=O k=O _,--"* (=0.25 , k=O

"a-0.5, k=O
2.0

I0

0 ... II I I , I

20 40 60 80 100 a2

Figure-il. Variation of Fluid Resistance with a2
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FLUID INDUCTANCE

0-=0, k:O

0.16

0.12 -- .-0.120-=025, =O 0=0. k=O

0.08

004

0 I I I I

20 40 60 80 100 2

Figure 12. Variation of Fluid Inductance wiLh a2

Note the linear variation of fluid resistance with frequency for values of

a > 4. The variation of fluid inductance with frequency is small. For large

values of the frequency, the fluid inductance remains essentially constant.

The variation of fluid impedance with frequency is shown in figure 13.

Clearly, a more complete electrical analogue for the arterial circulation

in a state of oscillatory motion must also include a capacitance to allow for

the elasticity of the tube wall.
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FOURIER SERIES REPRESENTATION FOR CALCULATING THE VOLUME RATE OF FLOW WHEN
•HE PRESSURE GRADIENT IS MEASURABLE

Consider a function of time, F(t), which has an oscillatory frequency n.

We may write this function in the form

F(t) = A + A cos nt + A2 cos 2nt + ... + Am cos mnt +

B1 sin nt + B2 sin 2nt + ... + Bm sin mnt (2-50)

where A denotes the mean value of F(t). Note that each harmonic component
0

of the function F(t) is represented by a pair of terms of the form A cos mnt +m

B sin mnt. Equation 2-50 may be written more conveniently in the form
m

F(t) = AO + I (Am cos mnt + Bm sin mnt)
m

If F(t) represents the applied periodic pressure gradient which has

magnitude M for the mth harmonic and 4m represents the negative phase lagm th
between the fluid velocity and the applied pressure gradient for the m

harmonic, then we may represent F(t) in the form

F(t) A+ Mm cos (mnt -M)

m

where

pA ta~i-1BY

In view of a 2  R2n/v R2 np/ii, equation 2-43 may be written as

Q(t)= M0(a) sin [nt - 4 + 0(a)
R2 np

= (TrR2) -ý!- M1 0 (a) sin [nt + c10(a)] (2-51)

43
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From equation 2-51, we may write down the contribution to the volume rate of
th

flow made by the m harmonic in the form

Q 7 ,t) = (7R2)(M'/mnP)Mj0(a ) sin [mnt - m + E10(am) (2-52)

In equation 2-52, am is the value of the flow parameter a corresponding to the

mth harmonic, i.e., a2 . ma1
2 where a, is the value of a corresponding to the

mpulse frequency.

Rearranging and expanding equation 2-52, we have

= Qm(t) = (TR 2/mnp)MmM1O(am) sin {[mnt + lO(am)] -

which may be written as

% = (nR 2 /mnp) sin mnt ýA M'O(a) cos i0o(am + B LMIO(cI) sin eo(a0

Am 1M' 0(m) (m)- IM' 1 (•)mdl

+ (iTR2 /mnp) cos mnt {A [M'(a) sin ci0 (a - B[M1O() cos l0

(2-53)

In equation 2-37, for computing the volume rate of oscillatory flow,

we have to evaluate the factor

"_ ý 0ý J (t h-o)

If we are concerned with the mth harmonic, we have to evaluate a correspond-

ing term of the form

According to our notation, we write this as

M.1 _,. ,C. , M,

Sto010 (2-544)
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We note that the terms Mlo(a ) cos c'o(a ) and M'O(a ) sin e'O(a ) on the
m 1 m 1 m I m

right-hand side of equation 2-54 also appear on the right-hand side of equa-

tion 2-53. Therefore, for calculating the volume rate of flow from the pres-

sure gradient, we refer to a table of the real and imaginary parts of the

factor

J,

Ot

For this purpose we use the abbreviations

C Tr%

L 3/L ot Yn Jo Ot
REAL

co
OL

M

ý2-35)

D, J, -(%''1/3. iL rA

A"

io (2-56\,



Substituting the values of C and D from equations 2-55 and 2-56 into equa-m m

tion 2-53, we obtain the contribution to the volume rate of flow due to the
th

m harmionic in the form

m- (t)-(OR2/mn)[AmCm+ BmDm] sin mmptL mm m l
+ (7rR2/mnp)[AmDm- BmCm1 cos mnt (2-57)

Equation 2-57 may be used for calculating the volume rate of flow, %, when

the pressure gradient is known in the form M ei(mnt - ým). The values ofm
the quantities Cm and Dm are given in table 4 of Womersley (1957) for values

of c ranging from c = 0 to a = 10 at intervals of 0.05 in a.

We have obtained equation 2-57 without consideiing any perceptible re-

flection of the pulse wave. If such reflections are preselt, then this equa-

tion is not valid for calculating the volume rate of flow. The effect of

reflections is considered in section VII, "Junctions and Discontinuities."

McDonald (1955) has made measurements of pressure gradient, figure 14,

and volume rate of flow in the femoral artery of the dog. The volume rate of

flow was obtained from the average fluid velocity across the tube, which was

measured by following the motion of a gas bubble in the artery by means of

high speed cinematography. A comparison of the observed volume rate of flow

with that calculated from equation 2-52 is shown in figure 15. The pulse fre-

quency was 3 cycles per second. The assumed values of the other pertinent

quantities were as follows:

Radius of artery - 0.15 cm

Viscosity of blood - 0.04 poise

Density of blood - 1.05 gm/cc
U si n c2 R 2 n

Using a2 = j, ci = 3.34 for the fundamental. From figure 15, note that the

agreement between theory and experiment is good, despite the drastic nature of

the assumption used in deriving equation 2-52, namely that the artery is a

rigid tube, and that the formula contains no disposable* constants.

* i is concocted by definition according to a2 = R2 n and is not a physiologi-
V

cal constant.
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Figure 14. Observed Pressure Gradient Over One Pulse Cycle in the Femoral
Artery of the Dog (McDonald, 1955)
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Figure 15. Volume Rate of Flow Over One Pulse Cycle in the Femoral Artery
of the Dog
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It will be seen in section VI, "Pressure-Flow and Pressure-DIameter Rela-

tionships," that the equations describing velocity and flow based upon the

assumption of a rigid tube may be obtained from considerations of an elastic

tube under limiting conditions of stiff constraint. Moreover, good agreement

existing between the rigid-tube equations and McDonald's (1955) results is

admissible as evidence in considering whether the conditions of stiff con-

straint apply to the artery.

Q mi/sec..

6 CALCULATED

5 OBSERVED I.McDONALD 1955)

4

3 '

I /I '4," "

I f- 'O

oo 600 1200 1800 2400 3000 3600
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(DEGREES)

Figure 16. Comparison of Calculated and Observed Flow Over One Pulse Cycle
in the Femoral Artery of the Dog
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RELATIONSHIP BETWEEN THE PRESSURE GRADIENT AND THE TIME RATE OF CHANGE OF
PRESSURE

In the arterial system, if we assume that the pressure gradient is gen-

erated by a periodic cardiac pulse wave having finite velocity, there is a

local increase in pressure in the elastic tuhe. This local increase in pres-

sure causes a local deformation in the elastic tube which is propagated along

the tube like the wave of a plucked violin string traveling down the string.

This phenomenon is called a pressure wave. If this pressure wave, denoted by

p(z,t), is considered to be harmonic in form, we may describe ic by

p(z,t) = p ein(t - z/c) (2-58)

where c is the velocity of wave propagation and p0 is a real constant denoting

the magnitude of the pressure wave.

From equation 2-58 we note the following:

- in in(t - z/c)
1. Pressure gradient . p( -T)e

2. Rate of change of pressure with respect to time =

at

= Po (in)ein(t - z/c)

Thus the pressure wave form described by equation 2-58, traveling without dis-

tortion at a velocity c, will satisfy the equation

_ 22 = 1 22 (2-59)
3z c at

Equation 2-59 has the solution p = fl(z - ct) which means any analytic func-

tion whatever of the variable (z - ct). If we consider the equation

az c at

we find that itn solution has the form p = f 2 (z + ct) which again means any

analytic function whatever of the variable (z + ct).

It can be easily verified that the combined expression

p = fI(z - ct) + f 2 (z + ct) (2-60)

satisfies the differential equation

12 I_ (2-61)
)Z2 c 2 3t2
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Equation 2-61 is known as the wave equation. In equation 2-60 the component

solution p - f 1 (z - ct) is known as the propagated wave and the component

solution p - f 2 (z + ct) is known as the reflected wave.

For a description of the propagated and reflected waves, we plot the

functions fI(z - ct) and f 2 (z + ct) at successive values of the time, t,

i.e., for t - 0, t - 1, t - 2, etc. We find that the function fl(z - ct)

defines a graph of fixed form advancing forward (propagated wave) along the

z-axis at the velocity c. See figure 17. Similarly, tor the function

f 2 (z + ct), we find that the plot as a whole of unchanging form slides back-

ward (reflected wave) along the z-axis at the velocity c. See figure 18.

The general solution p = fI(z - ct) + f 2 (z + ct) implies that the

function fI(z - ct) + f 2 (z + ct) defines a flow pattern of g•:neral forms

partly traveling forward and partly backward along the z-axis, without mutual

interference and at a velocity, c, relative to the underlying fluid flow.

From equation 2-59 we note that if we know ap/3t and the ressure wave

velocity, c, then we can determine the pressure gradient, 3p/ z, and the

volume rate of flow, Q. Now, from experimental evidence, the technique re-

quired for measuring the time rate of change of pressure, 3p/3t, is simpler

than that required for measuring the pressure gradient, ap/az. Thus, if the

value of c is known, we may use the product of 1/c and the Fourier expansion

of ap/3t for calculating the volume rate of flow, Q. This procedure would

imply that all the harmonic components of the pressure wave are traveling at

the same velocity, c. However, the pressure wave velocity, c, is independent

of the frequency only when we consider a circulatory system in which

1. the tube is perfectly elastic;

2. the fluid is inviscid;

3. the tube is so long that no reflection of the wave occurs.

Under these conditions, the pressure wave will travel without distortion.

Let the Fourier series for the flow pressure, p, have the form

p = p(t) = Po +(Cm cos mnt + Dm sin mnt) (2-62)
m

where the right-hand side is composed of a time independent mean pressure, po,

and a sum of oscillatory components. For determining the pressure gradient,
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,p/az, according to the method outlined in the preceding paragraph, we have to

obtain ap/at. From equation 2-62 we note that ap/at will contain only oscil-

latory components since p is a constant. Thus, the expression for 3p/az will

contain only )scillatory components. Therefore, according to this method of

determining Dp/Dz and the volume rate of flow, Q, we are unable to check the

steady flow against the constant term in the pressure gradient.

fi(Z-ct)

FORWARD MOVING WAVE

t=l

/ \ ".

the underlying fluid flow. Initial position of wave
at t = 0. Subsequent positions at t = 1 and t = 2.
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BACKWARD MOVING WAVE

t=lI

z

Figure 18. A pressure wave having some fixed form and
moving backward with a velocity, c, relative to the
underlying fluid flow. Initial position of wave at t =0.
Subsequent positions at t = 1 and t = 2.
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SECTION III

MOTION OF A THIN-WALLED ELASTIC TUBE AND VELOCITY OF THE PRESSURE WAVE

INTRODUCTION

In this section we shall first examine the longitudinal and radial forces

to which the tube is subjected and derive the equations of motion of the tube.

Next we consider the motion of the fluid with suitable approximations and

obtain expressions describing the axial and radial fluid velocity components.

Finally, from the set of equations describing the motion of the tube and of

the fluid, we obtain a so-called frequency equation which determines the

velocity of wr-e propagation in terms of the parameters of the tube material

and of the flu d.

THE LONGITUDINAL AND RADIAL FORCES IN THE ELASTIC TUBE

Ccisider an element, ABCD, of a cylindrical tube of thickness h lying

between two adjacent generators, G1G2 and G3 G of the tube and two cross

sections, CIC2 and C3 C,4 perpendicular to the longitudinal axis of the tube.

See figure 19. Let ý, n and ý denote the component extensions of the element

of the tube along the radial, circumferential aiLd longitudinal directions

respectively.

From symmetry, the component extension, n, is zero. If the extensions

F and C are considered small, then Hooke's law is applicable and we may write

stress = E(str i.i)

where E *s the linear modulus of elasticity of the tube material. Thus, along

the radial direction, we have, per unit length of the tube

S= E(•) (3-1)h R

where M/R is the strain (change in length per unit length) along the radial

direction. Equation 3-1 may be written as

E = ___ (3-2)
R hE

This equation indicates that the dimension of Q is force per unit length.
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LONGITUDINAL AXIS
OF TUBE

CIRCUMFERENTIAL DIRECTION
(TANGENTIAL TO CURVED SURFACE)

LONGITUDINAL AXIS OF TUBE

RADIAL DIRECTION

Figure 19. Forces in Cylindrical Tube.

N3te that if the thickness of the tube wall is assumed to be small, then

the v;lue of the radial deformation, ý, may be considered to remain the same

at different points along the radius of the tube wall. Thus the strain along

the radial direction may be written as C/R. However, since the value of

may be different at different points along the length of the tube, and

S= C(z,t), we have to consioer Dý/Dz as the value of the radial strain, C, at

any point along the z-axis of the tube. See figure 20.

Moreover, when we consider deformation along the length of the tube, we

observP OKAL the value of ttie deformation, i, varies along the length of the

tube. Since ý = ý(z,t), the value of the longitudinal strain at any point

ilong the z-axis of the tube is Dr/9z. Therefore, the relationship between

stress and strain along the axis of the tube, per unit length of the tube, is

P = E(-") (3-3)h ýz
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Figure 20. Elastic Tube Coordinate System.

Equation 3-3 may be written as

2L - P (3-4)

az hE

Equation 3-4 indicates that the dimension of P is force per unit length.

It is known from experiment that when an element of material is stretched

in the direction of its length, it undergoes a contraction along its trans-

verse section. The ratio

change in length per unit length of a transverse section of material
change in length per unit length of material

is constant within the limitations of Hooke's law. This ratio is known as

Poisson's ratio and is denoted by a.

Clearly, the longitudinal stress, P/h, causes a strain or contraction

along the radial direction. From the definition of Poisson's ratio, the

factor of proportionaliry between this longitudinal stress and radial con-

traction is a. Thus we may write
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contraction along radial direction = a(P/hE) (3-5)

Similarly, the radial s-:ress, Q/h, causes a contraction along the longitudinal

direction and we may write

contraction along longitudinal direction - a(Q/hE) (2-6)

Thus, the total relative change in length along the radial direction, taking

contraction into account, is, from equations 3-2 and 3-5

R hEQ - h2 -P(3-7)
R hE hE

Similarly, the total relative change in length along the longitudinal axis of

the tube, taking contraction into account, is, from equations 3-4 and 3-6

2L = P - hE (3-8)
az hE hE

Solving equation 3-8 for P, we find

P = hE 21 + Q (3-9)
az +a

Substituting the value of Q from equati)n 3-7 into equation 3-9, we obtain

P = hE 2 + ahE + a2P
az R

i.e. P(l - o2) = hE + y

= Bh(l - o2 ) + a

or P= Bha+ a (3-10)

Equation 3-10 describes the tension in the tube along the longitudinal axis.

By a similar procedure we also obtain the following equation describing

the tension in the tube along the radial direction

Q = Bh[ý + a 3 (3-11)
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THE EQUATIONS OF MOTION OF THE ELASTIC TUBE

We will now determine the equations of motion of the elastic tube along

both the longitudinal and radial directions. First consider the motion along

the longitudinal axis of the tube. According to Newton's second law, the net

force along the longitudinal direction acting on an element, dz, of tube wall

(mass of the element, dz) (acceleration, a2 C/at 2 , along the z-axis)

(P + -) - PJ(2fR) = [ph(dz)2nR] 23z at2

or ph (3-12)
ýz t 2

See figure 21. Note that the net force per unit length acting on the element,

dz, is (P + L ) - P. The total length along which this force acts is 21rR.

The product o' those two quantities is the net force acting on the element dz.

The mass of :l.• lement dz = (density of tuibe material)(volume of element)

p [h(dz)2TrR].

, [(p+ .P _p] 2"7rR)

h

Figure 21. Forces Acting on an Element of Tube Wall.
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For the motion of the tube along the radial direction we have, according

to Newton's second law, the net force along the radial direction acting on an

element dz (mass of the element dz)(acceleration, 32E/at 2 , along the radial

direction)

p(2wR)(dz) - 0(2irR)(dz) - ph(dz)2wR c
R 3t2

or p - R= oh D2a (3-13)

rR at 2

See figure 22.

(2-vR) (dZ)

p (2"wR) (dZ)

27rR
I) -

2"wR i -/

/
/

7//
/

dZ
h

Figure 22. Forces Acting Along the Radial Direction.
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If we take the viscosity of the fluid into account, there will be a sur-

face traction on the inner surface of the tube along the longitudinal axis of

the tube and equations 3-12 and 3-13 will have to be modified. The total

stress due to surface traction has two components. These are

1) P LW radial component of the stress due to surface
r=R traction at the inner surface of the tube.

2) p L longitudinal component of the stress due to surface
3z r=R traction at the inner surface of the tube.

Thus, the total stress due to surface traction

S + u (area of inner surface of tube) (3-14)

Tr+TIr=R

From equation 3-10, for the tension in the tube along the longitudinal

axis

P = Bh + a C (3-10)

we have, upon differentiating with respect to z:

- BhL3z2 + D (3-15)

oh Bh[@2+ (3-16)
Dt2 = z2 Ra-zj

Equation 3-16 describes the motion of the tube along the longitudinal axis,

taking into account forces due to fluid pressure only. Moreover, the equation

describing the motion of the tube along the radial direction, taking into ac-

count forces due to surface traction only, is

ph'2d m + (3-17)
5t2 9 r=R

:• 59



Combining equations 3-16 and 3-17, we obtain equation 3-18 which describes

the motion of the tube along the longitudinal axis due to the combined effects

of fluid pressure and surface traction

poh a2c - • + 1 + Bh +

at2  h[ y + R az
;t2 ~ ~ y~ Plr+auI La 2 Rlz•

-2ohR1aw +R + L (3-18)

ph[R 3y az 1 y=l p az R zl

From equation 3-11 we write

_= RhR + (3-19)

Combining equations 3-13 and 3-19, we have

ph ; + a3
at2 - R[R+

+ h -a (3-20)
at2 ph p i z-

Equation 3-20 describes the motion of the tube with respect to the radial

direction.

In order to tie in the motion of the fluid and the motion of the tube,

we adopt the following matching boundary conditions.

1) U1 r=R ul =Ii (3-21)rR y=' at
2) w(_s = wl (3-22)

r=R y=l at

In other worda, considering that the fluid adheres to the tube wall, the

values of the component fluid velocities, u and w, at the inner surface of

the tube are equal to the time rate of change of the radial and longitudinal

components of the tube displacements respectively.
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THE EQUATIONS OF MOTION OF THE FLUTD IN THE ELASTIC TUBE

The motion of the fluid in the elastic tube is governed by the equation

of continuity of mass and the dynamical equations of motion along the radial

and longitudinal directions.

The general form of the continuity equatioa in cylindrical coordinates

is r 2-t+ a(P0 ru) + -- (pov) + r - (po0 w) = 0 (3-23
at ýr 0a

Neglecting the tangential component of the fluid velocity, u, and considering

the flow to be incompressible, equation 3-23 reduces to the form

r(POrU + r (pow) = 0

or por -r+ POU + por •z=0

0 u 9 Xw

Or Tr+ + T • = 0

The general form of the equation of motion of the fluid along the radial

direction 

isP0• + u _ v 2 -•
1 Tlt D r30 r a

F p + •[• +iu 1 I 2 u 2 av +2u (3-25)
Dr 2r r3r L r2r2+ r 2r + 2z2J 2

If we neglect the body force, the tangential effects of the motion and the

second-order effect, a 2 u/ýz 2 , equation 3-25 reduces to the form

U+ u L+w Lu.

[. . + 2r-u + Lu (3-26)
t ýr az p Dr + r ar __ 2 1

The general form of the equation of motion of the tube along the longi-

tudinal direction is

ra + U r +x 3- + w -

Pta@r r ýi az]

Sj D2w I Dw 1 3 2w2D
z - z L•r--- + r r + T2 302+ z (-7
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Neglecting the body force and the tangential effects of the fluid motion,

equation 3-27 reduces to the form

aw w aw 1 ki Mp+ 3 I.L1w z22W
at + r wz PO az uo L-r+ r +r Z2] (3-28)

THE AXIAL AND RADIAL FLUID VELOCITY COMPONENTS IN THE ELASTIC TUBE

Suppose that we are interested in a flow process whe:e all the vari-

ables concerned, namely, p, u and w, as functions of the independent vari-

ables r, z and t, have the following form

p = p(r,z,t) = pl(r) efin(t - z/c) (3-29)

u = u(r,z,t) = ul(r) eiin(t - z/c) (3-30)

w = w(r,z,t) = •,l(r) ein(t - z/c) (3-31)

In these representations, Pl, ul and w, are the magnitudes of p, u and w

respectively. These magnitudes are functions of the radius, r. Moreover,

n is a constant denoting the frequency of the forced disturbance and c

denotes the complex velocity of wave propagation.

In the above representations, equations 3-29 through 3-31, we note

that

1) as time, t, increases, the argument of the function changes;

2) if the coordinate, z, increases in such a manner that the argument

of the exponential function remains constant, i.e., if t - c =c

constant, then Ihe phases of the functions p(r,z.t), u(r,z,t) and

w(r,z,t) are 'iot altered.

Therefore, the representation of the tunctions described above in equa-

tions 3-29 through 3-31 is the representation of a disturbance that travels

along the z-axis with a velocity c. A flow process which has the above

representation is called a plane wave, since the velocity components, u and

\q, and the pressure, p, remain constant in any plane perpendicular to the

direction of propagation, z.

Consider the relationship

c = fX (3-32)
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where c is the velocity of wave propagation, f 4 the frequency of the wave

and A is the wavelength. We take the reciprocal of both sides of equation

3-32 and multiply both sides by nR. We find that

nR/c = nR/fA = (21tf)R/f = 2-rR/)

This result indicates that if the wavelength, X, is large compared with the

inner radius of the tube, R, then the quantity nR/c is small.

From equations 3-30 and 3-31 we note that

ul = u1 (R) ein(t - z/c)U uw(R) e (3-33)
r=R

wl = ltR) in(t -z/c) (-4

lr=R

Combining equations 3-33 and 3-34 with the continuity equation 3-24, we find

that at r = R

a -[ul(R) ein(t - z/c) +[I(R) e in(t - z/c) + L[(R) in(t z/c) = 0

ul(R i~ -z/)in in(t -zc

i.e. 0 + uR ein(t - z/c) + wl(R)(- L_) e =- z/c) 0

i.e. ul(R)/R = wl(R)in/c

i.e. uI(R)/wI(R) = inmR/c (3-35)

From equation 3-35 we observe that at the inner surface of the tube, r = R,

the radial component of the fluid velocity, ul(R), as compared with the

longitudinal fluid velocity, wi(R), is of order nR/c, which is small.

We will now obtain a form for the continuity equation 3-24 with the

stipulation that u and w are given by equations 3-30 and 3-31. We note

that from

u = ul(r) ein(t - z/c) (3-30)

we have au = au1 ein(t - z/c) (3-36)
-=r e3r

and = in(t - z/c) (337)
r r
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Moreover, from w = w1 (r) ein(t - z/c) (3-31)

VP find LW in ein(t - z/c) (3-38)3z " c( =)(-8

Substituting these values of Du/ar, u/r and 3w/az from equations 3-36,

3-37 and 3-38 into the continuity equation 3-24

au u 3w
+r +i + -L 0 (3-24)Tr r 3z

we find that

ulr ein(t - z/c) + ULe - z/c) wj(in ) ein(t - z/c) = 0
er r -w(-)e-

3__u uj.in
or ar +r in = 0 (3-39)

Since the magnitude of the radial component of the fluid velocity, ul, is a

function of r only, ul = ul(r), we replace the partial derivative notation

with the total derivative notation and write equation 3-39 in the form

dul + u -_ in 0 (3-40)
r r c

Moreover, since y = r/R and R(dy) = dr, equation 3-40 has the form

1 d inR
Y Ty(uly) = w1  (3-41)

Next, we will obtain a special form for the dynamical equation 3-26

under the condition that the fluid parameters p, u and w ate as represented

by equations 3-29, 3-30 and 3-31. From these representations we find that

the terms au _ 32u V•pu and - u of equation 3-26 may be written
at, p e 3 r vr' 5 7r2 ' *r rr

as

au ul e in(t - z/c)-t= u ein

.12 1 i e ein(t - z/c)

ro ir PO nr

a2u V 2y e in(t - z/c)
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v au =_ a eiin(t - z/c)
rar 3 r Dr

SV in(t - z/c)
r2u = T2 ulI e

Note that in equation 3-26 the terms Uau and w.L represent the inertia

terms, since they have the dimension of acceleration. Moreover, we note the

following

) au in e in(t - z/c)

Thus the term w •z is of order i/c as compared with the linear terms in

equation 3-26 and may be omitted.

au in(t - z/c) duL in(t - z/c)2) u Tr = ul e dr

= inR du, 21n(t - z/c)
r ec w ( dr

au

Thus the term u Tr is of order 1/c and may also be neglected.

3) a2 u in 2 in(t - z/c)
az2 -(- ) e

The term a2u/az 2  was omitted in equation 3-26, since it is or order 1/c 2 .

Accordingly, equation 3-26 reduces to the form

in(t - z/c) I 1 PL in(t - z/c) aU ein(t - z/c)
ul(in) e - _ ar e + V r2L

+ aul ein(t - z/c) _ ul ein(t - z/c)
r 3r r

1 P1  32U, +. aui Vor (n ~ i apL 2u + • Vu ___ - 3-2
or iar ar 2  r ar r2 u1  (3-42)

Since Pl and ul are functions of r only, we write equation 3-42 in the form

1 dpL + . d2u1 _ , y duL vP0 dr dr 2  r dr 2 (3-43)

65

L,



In terms of the nondimensional parameter, y = r/R, note that the terms

on the right-hand side of equation 3-43 may be written as

1 dp1  I dpl
p0 dr Rpo0 dy

V_ dul V d 2 uL

dr 2  R2 dy2

*_dul v dul
r dr R2 y dy

- -Ul = - R2y2

Thus equation 3-43 has the form

iud1- L + v d 2 u +y dul (3-44)inul = - R0 dyl R 2 dy2 R2y dy L y27 u'I44

Multiplying each term of equation 3-44 by R2 /V, we obtaii

d2••+ + i 3 a2 u1 - u = RdP(345)

d y y v dy

Finally, we will obtain a special form for the dynamical equation

3-28 under the condition that the fluid parameters p, u and w are as

described by equations 3-29, 3-30 and 3-31. We note that the terms a,

_ iL� -_•- _2w and _ _ of equation 3-28 may be written as
P0 az' P0 ar2  p0r 3r

=w w1 in eiin(t - z/c)
S•at

_ ip 1 _ in ein(t - z/c)
P0 az P - c

_P_ a 2 w d2 wL ein(t - z/c) v dv 4WL ein(t - z/c)
p0 ar= dr 2  R2 dy 2

11 LLw v dw1 ein(t - z/c) _ v dwl ein(t - z/c)

p0 r ar r dr R2y dy

In equation 3-28 we omit the inertia terms, u ýr and w •z , since they are

of order I/c as compared with the linear terms. Moreover, the term ý2W/Dz2

is omitted, since it is of order i/c 2 . Thus, equation 3-28 reduces to the

form I in + v d2 wyL \ dW (3-46)
wl(in) =- 0-0 P ) T RTy 2dy- + R2y dy

66



Multiplying each term of equation 3-46 by R2 /V, we obtain

ddw 3 i 3 nR2d _w----L÷ i3,,2w, = -- P (3-47)

dy 2  y dy c P1

We have seen in section II, equation 2-13, that the magnitude of the

longitudinal fluid velocity is of the form

AR'___ (2-18)

Since the fluid is moving under the influence of the fluid pressure, p, we

may assume the magnituie, pI, of the pressure in the representation (3-29)

to have the form

Pl = AjJ 0 (ky) (3-48)

where k is to be determined.

We will now obtain the solution of the dynamical equation (3-45).

With p, = AJ 0 (ky), we obtain from equation 3-45:

d2 uil +!dul + (i 3m2  i R
dy2  + dy - 1)u- = R4- AlkJ 1 (ky)] (3-49)

d y2 ydy y2I Pi

Since the function J 1 (ky) appears on the right-hand side of equation 3-49,

we take the form of the solution as

ul = KiJl(ky) (-50)

where K1 is a constan, to be determined. Substituting the right-haud side

of equation 3-50 into the nonhomogeneous equation (3-49), we obtain

1 1j 1 k)
Kl [,T','(ky) + y J,(ky) + (i3c 2 - -)JI(kY)] RAk Jl(ky) (3-51)

y y

Adding and subtracting k2J,(ky) frcni the lef'. ,and side of equation 3-51,

we nave

K,[J"(ky) + - J;(ky) - • J 1 (ky) 4 k 2 j 1 (ky) - k2 J 1 (ky)

r3-i 3a 2 Jt(ky)] RAJL JI(ky)
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or Kt[O - k2J,(ky) + 1 3a2 j,(ky)] RAlk Jj(ky) (3-52)

since J 1 (ky) is a solution of the corresponding homogeneous equation.

Solving equation 3-52 for K,, we obtain

K - RAjk ( 1
P i 3 a 2 - k2)

Thus the particular solution of equation 3-49 is

Ul = KiJ 1 (ky) = _ RA'k 1 Jj(kY) (3-53)
)1 1a - k2~ 1 k)(-3

The homogeneous equa:ion corresponding to equation 3-49 is

dy 2  1du-y dy (i312 _ 1\ul = 0 (3-54)

The solution of equation 2-54 is

u= K2JI(ky)

where K2 is a con.;tqnt which may be written as

1< CI.
2.

by analogy with the rigid tube theory, section II. Thus the solution of

the homogeneous equation 3-54 is

L o,

J. (jh(LO)

This is the complementarý function.

The complete solution of the nonhomogeneous equation (3-49) is the

sum of the two solutions, equation 3-53 and the complementary function

above:
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Next, we determine the solution of the dynamical equation (3-47).

With p, = A1 J 0 (ky), we obtain from equation 3-47:

d2wl + d•l + i3wI = - nR2 AIJ0(ky) (3-56)dy2 y dy c11

Since the function J (ky) appears on the right side of equation 3-56, we

take the form of the solution as

wi = K3 J 0 (ky) (3-57)

where K3 is a constant to be determined. Substituting the right-hand side

of equation 3-57 into the nonhomogeneous equation (3-56), we obtain

,,J"k + 1, ~ 2 (k) inR2 A1  0k)(-8

K3[J0(kY) + J 0 (ky) + 32j(ky)] i J(ky) (3-58)

Adding and subtracting k2 J 0 (ky) from the left-hand side of equation 3-58,

we have

K3 [J"(ky) + L J0(ky) + k2 J 0 (ky) - k2 J 0 (ky)
0 y

+ i3a 2 J 0 (ky)] = inR 2 Ai J0(kY)

or K3 [0 - k 2 J0(ky) + i3 2J0(k' = - inR 2 A, J0(kY) (3-59)

Solving equation 3-59 for K we have

K3 inR2Aj 1
K3  cp i3a2 - k2ý'

Thus the particular solution of the nonhomogeneous equation (3-56) is

w K =-30(Y inR 2 A1  1WI (.31 ci R k2)JO(ky) (3-60)
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The horogeneous equation corresponding to equation 3-56 is

d2wl +1 dWl + i 3 . 2w1 = 0 (3-61)
dy 2  y dy

The solution of equation 3-61 is

w, = K4J0(i3/2ay)

where the constant, K4, may be written in the form

K4 = C732aY

by analogy with the rigid tube theory. Thus the complementary function of

equation 3-56 is

w1 = K4 J 0 (i3/2ay) = C Jn(i3/2aY) (3-62)J 0 (i 3 T/2 a)

The complete solution of equation 3-56 is the sum of the particular integral,

equation 3-60, and the complementary function, equation 3-62:

= - inR 2 AL 1 JO(ky) (3-63)W (=/ Clc-J c11 (i3a2 - k2')J

Now we refer to the equation of continuity

Ti (uly) = _RI (3-41)

Note that if the representations for ul and wl, obtained in equations

3-55 and 3-63 respectively, are substituted into the continuity equation

(3-41), we should obtain an identity. Evaluai-Ang the righL-hand sidf of

equation 3-41,

inR inRC1 j 1(i3 / 2Cty) i 2 n 2 R 3A1  1 y-- J = )J(kY) (3-64)
c J 0 (i3/2ha) c2-i i 3a 2 - k2
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Evaluating the left-hand side of equation 3-41,

u + U,

c J1,(O ,") - _3/_ J,(, A
( 

PA

CjO' ~ ~ ~ d- P__ -~ ~

(3-65)
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For the right-hand sides of equations 3-64 and 3-65 to be identical, we must

have:

inR Jndi3/2ay) Jn(i3/2av)

c Jo(i3/ 2ca) =C 2 (i3 Jo(i3/ 2 a)

or C9 .inR

and 12n2R 3A (32 1  k2) J 0(ky) i J(ky)a dc :213 , - k2 JO ky (i~ a - k2) J ( Y

inR
or K =i

C

This is the value of k which was to be determined. See page 67.

From the relation

J 0 kiy) = 10(y)

where I0 is the modified Bessel function of the first kind, the assumed form

of the magnitude of the pressure gradient, Pl, is

inRy __nr

PI = A IJ 0 (ky) = AIJ 0 ( c ) = AlI0( ) = A 1 I 0 (• -)

Moreover, from the relation

J 1 (iY) = i1l(y)

inR
we find, upon inserting k = - , thatC

inRy

ml(iky) =ill(--n- y)

0o Jl(ky) = il(nc)

From the relation

k inR
c

we note that
= i 2 n 2 R2  n2R2

2 C2 c 2

and 
jk 2 1 - n2R2

C2
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Clearly, the quantity (n 2 R2 /c 2 ) is small compared with (R2 n/v) a a2. For

example, for the 6th harmonic of the pulse frequency if the dog, we find that

the quantity

n2 R2  6
C2  104

and the ratio of (n2 R2 /c 2 ) to the corresponding value of a2 = (R2 n/v) is about

9 x 10-3. We are therefore justified in replacing the quantity i3a2 - k2,

appearing in equations 3-55 and 3-63, by i 3c 2 = (i 3 R2n/v). Moreover, from

the expansion x 4
Io(x) = 1 + ()x + (2..

(12)(22)

we note that for small values of x, disregarding second and higher powers

of x,

10 (x) = 1

or

I0(r-) = J 0 (ky) = I
c

Similarly, from the expansion
(•2

11 (x) 
+ X

2 (12)(2)

we Liote that for small values of x, disregarding second and higher powers

of x,
Ii(x) =x2

or

I (nRy) - nRy
c 2c

From the earlier relations

w = wl(r) e in(t - z/c) (3-31)

u = ul(r) eiin(t - z/c) (3-30)
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we note that

32w in 2 in(t - z/c)
3z2  wl(r)(- -

a2u in 2 in(t - z/c)
;Z2 ul(r)(- -) e

We disregarded (3 2 w/az 2 ) and (a 2 u/9z 2 ) appearing in equations 3-25 and 3-28

because they are of order 1/c . The approximations indicated in the preceding

paragraph are of the same degree that is implicit in omitting the second-order

terms (3 2 w/3z 2 ) and (9 2u/az 2 ) from the dynamical equations 3-25 and 3-28.

Making the approximations indicated above, namely

13a2 - k 2  i3a2 i 3 R2 n
V

J 0 (ky) 1

in equation 3-63, we obtain

UrY C 30 * 4 ) - L 2 ( ~ ) i

II -/

Jo____,

j, (j C.~) fC(3-66)

Similarly, equation 3-55, with the approximations

3 - k2  3 - i 3 R2 n

V

Jl(ky) c• n i (EY)

and

inR
C 7 i 3--4rx(
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assumes the form

Ll1~ (3 J, VwRj A, RA

dA/ C i''C
t-C / Ij

O-R C'1 Er ~JOL ,_

,C . L 3/ 1. ( 3 - 6 7 )

The values of the magnitudes of the velocity components w, and uI at the

inner surface of the tube, i.e., at r = R or at y = 1, is obtained by setting

y 1 in equations 3-66 and 3-67. Thus

c1J0(i3/2n) A

W1 y = C1 J0 (i32Ia) + A0 c

= C1 + AL_ (3-68)
poc

inR[ .C2J,(i3/20) + A0C

Ul l 2cI i3/2aJo(i 3 / 2 a) A0  c

CFj (a) + A-- (3-69)2 pocJ

2.1 (i3/2ci)
where F10 (a) = 3 2aJ(i3 2)i32j(i3/2a)

In equation 3-18, describing the motion of the tube wall, we need the

value of -Lw1 From equation 3-63, we find that
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aw C1i3/2CtJ T Oh1Q tsy) inR2A, 1 )k1 k
T- JO - 312CJ0(i1(x)+ c- k2)kjl(ky)

-y Cj3/2c JI(i3/2a) inR2Ac 1(iJI21-

J0(J
3/2a) C11 '13OL2 - k2)k1(k)

y=l

=, ii'/2aT132/F2a inR2AI) 1 in R inR

(3-70)

where we have written

F10 (ct) - 2 Jl1(3/2a)
F3F20)= J0 (i 31 2 a)

inR
C

inR
J 1 (k) = J -)

i 3 a 2 - k2 =i32

miR. i nRSince Jli(-) , equation 3-70 may be written as

•w_• CIi3•2i () +. Al L~2R2

Y -= - 2. 0 3 a2 F 2(3-71)

2 F(c)+2 poc c 2

y=l

We will now assume that the two components of the deformation of the

tube wall, C and ý, have the following specific forms

= (z,t) = D, ein(t - z/c) (3-72)

S= (z,t) = El ein(t - z/c) (3-73)

where D, and El are arbitrary constants. According to this description, the

deformation components are harmonic and have the same ftequency as the repre-

sentations for p, u and w described in equations (3-29, 3-30 and 3-31.

From the deformation components of the tube wall, as described by equa-

tions 3-72 and 3-73, we shall obtain the boundary conditions for the magni-

cudes of the flila velocty components ul and w1 . We recall the matching

boundary conditions for the fluid velocity and the deformation of the tube

wall

76



U = at y = 1 (3-21)at

W = 2_ at y = 1 (3-22)at

From the representation

= ý(z,t) = El ein(t - z/c) (3-73)

we have 3 = inE 1 ein(t- z/c)
S•at

•tl ~ ~in(t -zc

and = inEi - zic) (3-74)
at y=l

Moreover, we know that at the inner surface of the tube

w1  = C1 j+ _ (3-68)
y=l P1c

and w1 Y= w, ein(t - z/c)
Sy=l

r + Alc lein(t - z/c) (375)
L1 p0 cJ

Combining equations 3-74 and 3-75, we have

inE 1  C1 A-I (3-76)
Poc

Similarly, from the representation

=(z,t) = D, ein(t - z/c) (3-72)

we have inDI eif(t - z/c)
at

and = inD 1 e (3-77)
at y=l

Moreover, we know that at the inner surface of the tube

ul = -i-R- [CIF 1 0 (00 + (3-69)

y=l00
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and U] Ul ein(t -

SinRrF(a) + A ]ein(t - z/c) (3-78)2-cj 1F0• p0cJ(-8

Combining equatJons 3-77 and 3-78, we have

inD1 m-¶cCIF1 0 (a) + (3-79)2c~

Equations 3-76 and 3-79 describe the boundary condition,i for uI and w1 .

We shall now obtain the equations of motion of the tube in terms of the

harmonic representations for the fluid velocity componelits u and w, equations

3-30 and 3-31, the fluid pressure, p, equation 3-29, and the tube wall de-

formation components, ý and ý, equations 3-72 and 3-73. We recall the

equation of longitudinal motion of the tube wall in the form

i_ ýL =•~ P-a-u + .02 L2 + cr2- (3-18)
3t2 phR Wy =Iz y Pl z2  R 3zs(1

From
Fo Elein(t - z/c) 

(3-73)

we have

2 i2n2Ee in(t - z/c) a2Ejein(t - z/c)
_t2 = n e_

D_2 i 2 n 2  in(t - z/c) _ _ n2-E in(t - z/c)
-z2 E le 

e- c

Next, from Dle nt - zDc) (3-72)

we have _ _ inal ein(t - z/c)
3z C

Moreover, from w = w(y,t,z) wl(y)e in(t - z/c) (3-31)
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we have aw =aw ein(t - z/c)
ay ay

Inserting the value of a obtained in equation 3-71, we write
Yy=l

i." (t-,1 o)

I . %2..

Finally, from

u = u(y,z,t) = ul(y)ein(t - z/c) (3-30)

we have

-A - I = I T.)

bsing the value of ul(Y)Iy= determined in equation 3-69, we obtain

L ~c1F~(')+ A.\

Since 3uý is of order n2 R/c 2 , we neglect this term appearing in equa-
3zy=l

tion 3-18. Substituting the results determined above into equation 3-18, we

obtain
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•TE 1Q ,' I ,• •'A

f A,) +~

or' +L 'n Ž AJ

or -nLPi Co

+• B.L -)' E -- n

(3-80)

This equation is associated with the longitudinal motion oZ the tube wall in

terms of harmonic representations for u, w, E and r.

Next, we will obtain the equation (3-20) describing the motion of the

tube in the radial direction in terms of the harmonic representations for the

pressure, p, equations 3-29 and 3-48, and the tube wall defcrnation components,

Sand ý, equations 3-72 and 3-73. We first recall equation 3-20

2 h - ( + Z I) (3-20)

q2 ph pR2 R 3z

From equations 3-29 and 3-48

p = plein(t - z/c) AlJO(ky)Oin(t - z/c)

SAl0(RnR)ein(t - z/c)

= A]Lin(t - z/c)
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according to the approximations considered on page 73. Moreover, from

C= (z,t) El ein(t - z/c) (3-73)

e hin - in(t - z/c)we have .•=__

3z 
c r1

Finally, from = (z,t) = D1 ein(t - z/c) (3-72)

we have n2Dj_-i_ n2- ein)
at2

Substituting the results determined above into equation (3-20), we obtain

or -M A [D 1 (3-81)

This equation is associated with the radial motion of the tube wall in terms

of harmonic Eepresentations for p, F and 1.

THE FREQUENCY EQUATION

The equations 3-76, 3-79, 3-80 and 3-81 are four homogeneous equations

in the four arbitrary constants A,, C1 , D, and El. This system of equations

has solutions different from zero if the determinant of the coefficients of

A,, C1 , DI and El is zero. By setting this determinant equal to zero, we

obtain an algebraic equation (3-82) for determining the wave velocity, c, in

terms of the elastic properties of the tube, the fluid parameters and the fre-

quency, a. The algebraic equation (3-82) in terms of c or, equivalently,

equation 3-83 in terms of x is called the frequency equation.

Rearranging the terms in equations 3-76, 3-79, 3-80 and 3-81 in the order

A1 , C1 , D1 and El, we write

A' + C1 + 0D1 - inEl 0 (3-76)
P0c
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inf R inR2pR Al + -i- Fj 0 Cj - inDj + 0E1 = 0 (3-79)

•.•A, _ oC •,o L, •ITD, C.i -'E

Setting the determinant of the coefficients of A1, CI, D1 and El equal to

zero, we have

f-2 p 0-J2

-( 0

AO (3-82)

jcc

2f cc 2.

v--n'-R -L.ARf8
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T

In the fourth row, second column we note that

_3_2p__ ip0Rn-FI
0 = 2 F19

2phR. ph

To simplify this determinant, we perform elementary operations and approxi-

mations and obtain

- Fl 0 )(l - a 2 )] - x[k(l - Fl 0 ) + Fio(I- 2a) + 2] + 2k + Fl0  0

(3-83)

This is the so-called frequency equation in terms of the variable x.

DEDUCTIONS FROM THE FREQUENCY EQUATION

The roots of the quadratic equation (3-83) are

or

0) (3-84)

where

- _ +
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Now consider the second term on the right-hand side of equat a 3-84, namely,

Thin may be written as

{ G- F-0i- I )( 1 1 F,.) 0

or

Thus we may write equation 3-84 in the form

S-&

(G G 14 (3-85)
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I

where G T - (3-86)

and 1 1 (3-87)

We recall the foll'wing notation

F cL) - J* L~0 )
d.• J0 (i"C)

3/° OL j ( MAat

Accordingly we write

I

85 L (d)

85



and e (3-88)

F- , Mo,( /

Since c40(a) and M10 (c) are known, we note from equations 3-85, 3-86 and 3-87

that all the quantities for determining the roots of the frequency equation

are known.

From Jo () --

we note that Fl 0 (a) is always complex.

Moreover, from equations 3-86 and 3-87 we note that since G and H are ex-

pressed in terms of (1 - Fl 0 ) it follows that both G and H are always complex.

Finally, from equation 3-85, since x is expressed in terms of G and H, we

conclude that x is always complex. Therefore, the motion of the liquid is

either damped or unstable.

From equations 3-85, 3-87 and 3-88 we write

-i IIo (0t)

G /_ _ ( d -)+ r 9 ( 3 -8 9 )

10

H e_ _ _ f (3-90)

We may also write equation 3-85 in the form

G(3-91
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Nate that the sign of t ie arg x is deterr~iaed by the sign of the arg G and

sinc.- arg G is always negative, it follows that the motion is damped.

DAMPING OF THE PULSE WAVE

We recall the substitutions x = kB/Pc 2 and k = ph/Rp0 . From these we
hB 1 E

may write x ( )-0-_ and since B = i--- ,we have
Rpo c

hE 1 1
x Rp0 1 - a2 C2

orx lhE 1 1
2 2 Rpo 1-(_2T

or (I - o-2) = (1 hER)•1 (3-92)

Now, the simplest expression for the velocity of propagation of a pressure

pulse is given by the Moens-Korteweg formula

=(hE )1/2

Co 2Ro 0  (3-93)

This formula is based upon the following assumptions:

1. The tube is thin-walled, i.e., h << R.

2. The fluid is incompressible, i.e., its bulk modulus is high

compared with E.

3. The fluid is Inviscid.

The first two assumptions above,are reasonable approximations for blood in an

artery for which ,/2R < 0.1. Moreover, the bulk modulus of water is from

103 to 104 times gr.ýater than E, the Young's modulus of the arterial wall.

Regarding the third assumption above, we note that the effect of the viscosity

of the fluid is great in small tubes and at low frequencies. However, in

tubes comparable with th= larger arteries, vi3cosity has the effect of reduc-

ing the predicted velocity by 5-10 per cent. This is equivalent to multi-

plying the right-ha'id side of equation 3-93 by a constant ranging in value

from 0.9 to 0.95. Combining equations 3-92 Lnd 3-93, we write

2
(1 - 02) C (3-94)

8?



Here, cp is real and c is complex. co denotes the velocity of wave propa-

gation i an incompressible inviscid fluid enclosed in a thin-walled elastic

tube and c is the complex velocity of wave propagation.

Combining equations 3-85 and 3-94, we write

f]

The solutions of this equation represent two types of waves, One solutiron

of tae frequency equation represents outgoing waves in the positive z eirec-

t.Lon. The other solution represents incoming waves. We consider only out-

going waves and therefore consider the plus sign only in the above equation.

In order to obtain c from equation 3-94, ,e take squarL, roots and write

co/c in complex form as

(1 - o2)= cj = X - iY
c

where X is the real part of c 0 /c and may be considered as the wave speed

parameter. Y, the imaginary part of c0 /c, may be considered as -he w'ave

damping parameter. For convenience, we may write

X = Real (c 0 /c) = co Real (1/c) - - 0/c (3-95)

Real (U/c)
Thus the phase velocity of the pressure wave or the measured pule velocity,

cl, is given by
c

1 /c
0 = I/X

Since a vibrating system has its own inherent unit of time, name]y its

period, it is logical to refer to properties of the pressure wave "pct period'

(or over one wavelength) rather than "per second." One characteriSti( oTI
this basis is the decay o; the pressure wave over one wavelength. It can be

shown that the factor exp {-} determines the decay of the oscilhatiotx over

one wavelength.
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The decay of the disturbance or the slowing of the pulse-wave velocity

must be associated with increased damping. Figure 23 shows the variation of

the damping of the wave with respect to the frequency, a. Note that the

damping is much greater for small values of a and is 100 per cent for a < 1.

In larger mammals, such viues of damping are obtained for the fundamental

wave in vessels like the saphenous artery (in the dog, a = 0.8 to 1.0). This

is the physical basis for accounting for the disappearance of the pulse wave

in the arteriales even though their length is a small fraction of a wavelength.

The variation of the wave velocity ratio, cl/c 0 , with respect to the

frequency, a = R(n) , is shown in figure 24. Note that the value of cl/c 0

increases with the tube radius, R, md the square root of the frequency of

oscillation, n. According to figure 24, for values of a = 3, which represents

a vessel of the size of the femoral artery, the magnitude of the wave velocity,

I!C = 0.9 c0 . In vessels of larger radius or at higher frequencies, a > 3,

the magnitude of the wave velocity, c, gradually increases to a value of about

0.95 co. Thus, in the larger vessels, the slowing effect of the pulse wave

due to viscosity is relatively small.

08 zl/2, k=O

0 7 1 /4, k=O I

.- 0, k= I

/

90I0

Figure 23. Variation of the damping factor with respect to a.
The ordinate represents the fractibn of the wave remaining
after traveling over one wave-length. Note that the damping
is much -,rat'r for small values of a and is 100 per cent
for 1 .
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0.5
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Figure 24. Variation of cl/c 0 with respect to a. Note that for
values of c greater that 3, which are those of greatest practical
interest, the change in the velocity ratio, cl/c 0 , with respect
to a is quite small.

From the preceding discussion, we observe that the relation of damping

of the pulse wave, c, to the radius of the tube and the frequency of the wave

is very important. The importance of the dependence of damping on the fre-

quency may be seen as follows. Consider a tube of onstant radius. Accord-

ing to figure 24, we find that in a viscous fluid the wave velocity, c,

increases with c, i.e., with the frequency of oscillation, n. From figure 23

we note that the damping of the wave per wavelength decreases wln ca. How-

ever, with increasing frequency , the wavelength becomes shorter. Now, since

wave velocity = (wavelength)(frequuncy)

and the wave velocity changes with frequency, the net effect is that the wave-

length always decLeases with frequency.

From the practical point of view, we need also to consider damping in

terms of distance, i.e., over the length of a tube. In table 1, values of

the velocity ratio, ci/c 0 , are indicated for a tube length of 10 cm for the
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first four harmonics of the pulse of the dog, in the femoral artery. These

values are obtained for . h/R = 0.1, = 1/2 and a = 0. In the table, the
-27rY -21rYz

reduction in amplitude is denoted by f, exp (-j--) and f 2 = exp

with z = 10 cm. Note that the percentage damVing inereases with the frequency

even though the wave velocity increases. Thus for a = 3.34, a = 1/2, and the

femoral artery considered as a free elastic tube, the wave velocity ratio

Ic/c0l = 0.914 and the amplitude of the wave is damped to 27.4% of its initial

value in one wavelength. This represents a damping of 5.4% in a 10-cm length.

For a = 6.67, Ic/cal = 0.942, the amplitude of the wave is reduced to 63.6%

in one wavelength and the damping is increased to 7.5%. One would expect

that such diminuations in amplitude would have been obspred and remarked

upon, but until more accurate observations are available it is not possible

to say with :ertainty that this dcgree of damping is greater than that which

exists in the arterial system. in practical observations it might well be

masked by the changc in shape of the pulse as it travels.

TABLE I

The valut. of ci/co and damping ratios for k = 0.1 and
a tube length of 10 cm for the first four harmonics

of the pulse of the c,,g in the femoral artery.

c1 /Co f! f2  C1/C 0 f,

3.34 0.914 0.274 0.946 0.842 0.132 0.917

4.72 0.924 0.472 0.938 0.876 0.294 0.900

5.78 0.936 0.565 0.929 0.894 0.381 0.883

6.67 0.942 0.636 0.925 0.906 0.442 0 870
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It is well known that the pulse wave generated by the heart contains

harmonics of several frequencies. According to the above discussion, the

higher frequency waves will travel faster than the lower frequency waves.

Hence, the phase relations of the harmonic components will change and alter

the shape of the pulse wave by dispersion. However, at the same time, the

higher frequencies will be damped out first. Thus, as the pulse wave travels

toward the periphery, its high frequency components will vanish. For example,

the incisura of the central aortic pulse becomes damped out rapidly.

GROUP VELOCITY OF THE PULSE WAVE

Suppose the medium through which the pulse wave travels is such that

the wave velocity is a function of frequency. In such a medium the wave

pulses will therefore always be deformed because their different components

move with different qelocities. Whenever we directly measure the velccity

of such a complex wave motion, in the sense that a measurement is made of

the time required for the disturbance to travel a given distance, we are

essentially measuring the group velocity of the wave, i.e., the velociLy of

the wave profile rather than the wave velocity, c.

Earlier, we had described the motion of the fluid at any ins,-ant byin~t -z Ic)i(nt - mz)
ein(t - z/c). If, instead, the motion is described by e , upon

comparison, we note that m = nX/cO. From the definition of the group ve-1 _ dnX/c) _ n )dX

locity, C = dn/dm, we find that _c = d(nX/cO) _L + ( n "
g g c0 CO dO)n

fidtatc 2v dn 2ctv 2cxv
Since R, •=-- and dn (-•-)dc. Combining these results, we

find that

_ (R dX X ý4X2
CC 0  2 C . /2 C0  k~C 0  do.
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Since X = c0 /c 1 , this may be written as

- - : , [ ( x)'Z ] 3-°

or C_ f4 (3-96)

In equation 3-96, the analytical torm of dX/da is unsuitable for compu-

tation. However, we note that if we consider the logarithms of X and a in-

stead (see figure 25), then

X)/

IX
Thus it is possible to estimate the magnitude of dX/da.

From figure 25, note that for those values of a which apply to the

femoral artery, 3 < a < 7,

d(e•X)J -9

F 93



and the ratio

Cd

CO13 ( i.7 -~ .I

Thus the difference between the group velocity and pulse velocity of the dis-

turbance is approximately 2%, and over the range a - 3 to a - 4 is certainly

never more than 2-1/2%. Until accurate measurements of pulse velocity are

made over short lengths of artery, this difference is not likely to be worth

taking into account.

94



log X

0.4-

000, k=O.I
0.3

o 1/4, k=0.1

0 - or - 1/2, k=O.I

0.l

0 0.1 0.3 0.5 0.7 0.9 .O log a

Figure 25. The variation of log X with respect to log a.
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SECTION IV

EFFECTS OF MASS LOADING, TETHERING AND INTERNAL DAMPING

INTRODUCTION

The equations of the preceding chapter, describing the freely-moving

elastic tube, predict longitudinal motion of the tube which is too large to

be realistic. In this section we consider a more faithful representation of

the mammalian arteries. To this end we modify the equations of motion of

the elastic tube to take into account the additional mass of the tube which

takes no part in elastic dcfirmation, elastic constraint, since the arteries

are tethered, and internal damping, since the material of the wall is not

perfectly elastic. We also obtain expressions describing the phase velocity

of the pressure wave and its attenuation, which includes the effect of tube

wall viscosity.

TUBE WITH ADDITIONAL MASS

We have to take into account the fact that the arteries are surrounded

by a Lissue mass. To inc-rporate this reality, we assume that the additional

tissue mass is uniformly distributed about the tube and takes no par' in the

elastic deformation. Accordingly, the inertia of the tube is increased.

In order to represent the effect of additional tissue mass, we write

effective mass of= (mass of] (mass of]
artery + tissue =artery J +tissue

For a given length, 9,, of tube we may write this relation as:

Pe (H'R eZ) = p(hRZ) + pl(hlRlt) (4-1)

where Pe effective density of artery + tissue

p density of artery

Pl density of tissue

H' effective thickness of artery + tissue

h thickness of artery

h thickness of tissue

R effective radius of artery + tissuee

K radius of tissue (added mass)
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Assuming that

1) effective density of artery + tissue = density of artery, pe =P

2) effective radius of artery + tissue = radius of artery, R = R,e

we may write equation 4-1 as

p(H'RE) = p(hRt) + pI(hlR, )

Dividin', through by pRk, we obtain

(4-2)

TUE WITH ELASTIC CONSTRAINT

For a more faithful representation of the arteries in situ, we will now

take into account the fact that the tube wall with the additional tissue mass

is attached to its surroundings. We will assume that such an elastic con-

straint acts strictly in the longitudinal direction. The motion in the

radial direction will be considered unrestricted.

We recall the equation of motion of the longitudinal displacement of

Lhe freely moving elastic tube (which includes the effects of fluid pressure

and surface traction) in the form

r )
•-• u + + (3-18)

If the tube is considered to be constrained along its longitudinal axis,

then Du/3z = 0 in equation 3-18. Moreover, if we include the effect of

mass-loading and longitudinal constraint, the equation of motion for the

longitudinal disnlhcement, r, of the tube will have the modified form
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Comparing equation 4-3 with equation 3-18, we observe the following.

1) The second factor on the left-hand side represents the "spring
effect" per unit mass due to the elastic constraint in the longi-
tudinal direction. Note that: force due to elastic congtraint per
unit mass = spring effect per unit mass

. nspriný constant) (longitudinal dispjacement)
mass J i of tube

= (natural circular frequency)2 (longitudi. al displacement1

= of elastic cnstraint J I of tube J

=m2 •.

2) The modifization in the second term on the right-hand side cf
equation 4-3, as compared with the corresponding term in equa-
tion 3-18, is on account of the inclusion of the tissue mass.
We recall that when the r ibe thickness was h, the relation bp.
tween the longitudinal force,P, and the corresponding d±sp dce-
ment which is based upon inertia concepts is of the form

ph (3-L2)
at.2  az

If the tissue mass is also taken into account, this affects the inertia of
the tube and therefore equation 3-12 has to be modified to the form

pH _,~

H - ;-4)

where H' is the effective thickness of the tube with ti'sue mass. However,
equation 3-10, which is not based upon inertia concepts, remains unchanged
when the additional tissue mass is included. Thus, for the tube with ad-
ditional tissue nM3s, we have

P = Bh(z- + )
ýz R

from which we write

Z Bf C + 2 ) (4-5)
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Combining equations 4-4 and 4-5, we have

pH' a Bh(•_M2+
at 2  a32 Raz

or

a2C Bh ÷ 2
at 2 

-pH'( az2 -RE az

We now use equation 4-3, denoting the reduced longitudinal motion of the
tube, taking into account the additional tissue mass and longitudinal con-
straint, instead of equation 3-18, describing the motion of the freely moving
elastic tube. The equation, corresponding to equation 3-80 as a result of
this replacement, is combined with equations 3-76, 3-79 and 3-81 to determine
a frequency equation corresponding to equation 3-83. Performing the algebra,
we find that the form of the frequency equation ccrresponding to equation
3-84 describing the wave velocity remains unchanged. This unchanged form is

(1 - G2 )x 2 + 2Gx + H = 0

where

~+ G

2.

F

I 10

(4-6)
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Note that there is a difference in the description of the wall-thickness
ratio, k', for the tube with additional mass and longitudinal constrainc as
given by equation 4-6 and the definition of the wall-thickness ratio, k =

h/R, for the freely-moving elastic tube.

We may draw the following conclusions from equation 4-6:

1) If the frequency of oscillation of the flowing fluid is the same as
the natural frequency of the tube, n - m, then k' - H'/R = 0. This implies
that the thickness of the tube is zero, i.e., the mass of the cube is zero.
The zondition n - m describes the condition of resonance.

2) If the longitudinal constraint is considered to be fairly stiff,
i.e., the tube is considered to be partially restrained in the lorgitudinal
direction, then m > n and the value of k' will be finite and negative.

3) If the longitudinal constraint is considered to be very stiff,
i.e., the tube is considered to be completely restrained in the longitudinal
direction, then m >> n and k' ÷ - -.

In the original frequency equation

(1 - o2)(l - Fl 0 )X2 - x{2 + k(l - Fl 0 ) + Flo - 2a)} + Fl0 + 2k = 0

(3-83)
we find upon expanding and dividing by k

2L2 2x xl-F0(1 - o21 F - _ _ (-F)- 2 Fl(- - 2a) + F + 2 = 0

(4-7)

In equation 4-7, if we read k as k' and consider the limiting condition of
very stiff constraint described by k' + - -, we find that

-x(l - Fl 0 ) + 2 = 0

or - = (4-8)
2 1 - Fl0

Combining equation 4-8 with equation 3-94

O 02[(1 - 1/2 (3-94)

we find that

(co)2_ I 2 = _ 2 2

Si-F 1 0  2 F 2

or 12 /2

c = (I a) (4-9)
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From the earlier 
relation

' /'0
we note that

c~oj L tn J

0l

Therefore

C,

c FOL

, 0 ( 0__ 
10 (4-10)
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From equation 4-10, we find that

SIf the amplitude of the wave is reduced in the ratio exp {-W-XY for each

Swavelength of travel, the damping coefficient, 2TrY/X, is given by

'21__Y =27r tan C0a

X 2

(~/ V-o3 /2

If we take a = 1/2, then (1 a 2)I/ 2 --2

'00

Moreover, the phase velocity, cl, is given by

cl = c01X

oO to 2-o (4-11)

If e ak/2 t h (-, - -2102



21/2
.Rn.

The variation of the ratio cl/c 0 with frequency cc is shown in
V

figure 26 for the values a = 1/2, k' = 0, -2, --. For the same tube and fluid,

figure 27 indicates the variation of the transmission or damping per wave-

length of the pressure wave with rs3pect to frequency, a, as it travels through

the tube. Note that the value of the ratio cl/co for the constrained tube

does rot tend to 1 as c a •, i.e., the value of cl does not tend to co as

cE ÷ . In fact, from equation 4-11, for a = 1/2 and with reference to the

asymptotic expansions of MI0(c) and 41o(c),

limit c .=limit _-2 [M10 (a) ]/2sec :0a

2 limit [Ml 0 (0t)]/2 limit sec

S-2- M! (i)

-C,

CoC

1.0

0.8 
A

0.6

0.4

0.2

0 I 2 3 4 5 6 7 8 9 10 a

Figure 26. V•.riation of the phase velocity with respect to a under

the following conditions of longitudinal constraint and Poisson's
ratio: Curve A: k = 0, unconstraintA tube and a = 1/2

Curve B: k = -2, tube with smail constr.int and o = 1/2
Curve C: k = -- , completely constrained tube and u = 1/2

NOTE: Although tho asymptotic value of c1 for the constrained tube
is 1.155 c0, .hir value is attained very slowly, and for moderate velues
of a, cl = co approximately for all a > 4.
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0 I 2 • 4 5 6 8 9 10

Figure 27. Variation in damping of the wave velocity with respect
to a under the following conditions of longitudinal constraint and

Poisson's ratio:
Curve At k - 0, unconstrained tube and a = 1/2
Curve B: k = -2, tube with small constraint and a 1/2
Curve C: k = --, completely constrained tube and a 1/2

In figure 26, all three curves coincide for a < 2 and the curve for the

completely constrained tube is higher than the other two curves for a > 2.
For small values of k, the variation of cl/c 0 with a is not sensitive to
variations in k. Moreover, from figure 26, the value of the phase velocity,
cl, in a free elastic tube approaches the value co as a ÷+o- This is due to
the fact that for high values of a, the motion of the fluid is determined
entirely by the inertial properties, since the effects of viscosity may be
neglected. We thus have a situation wbich corresponds to the Moens-Korteweg
formula which describes the velocity, co, of wave transmission in an incom-
pressible, nonviscous fluid, enclosed in a thin-walled elastic tube. Accord-
ing to this formula, waves of all frequencies are propagated at a constant
velocity, co, and are not attenuated in travel along the tube.

TUBE WITH INTERNAL DAMPING

In a freely moving elastic tube, the viscous drag of the fluid would

cause the tube to move in the longitudinal direction. Since this movement

is not observed in the arteries, we must modify the equations of motion of

the tube to account for the internal damping in the wall of the tube. To

this end, we replace Lne elastic constants E and a of the tube material,
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which do not vary with the frequency of oscillation of the system, with com-

plex quantities, E and a , which vary with the frequent , n.

In order to obtain the appropriate representation for E in terms of E,

we consider the equation satisfied by longitudinal waves in an elastic bar

92uX2u = a2 32u

where a 2 = E/p. A solution of this equation is of the form

U ~xt) (4-12)

where A is an arbitrary constant. In equation 4-12, describing the longi-

tudinal propagation of waves, if we replace E (a 2 = E/p) by Ec9 where Ec is

complex, the imaginary part of E must be positive if the motion is to bec

damped. Accordingly, we write the elastic quantities of the viscoelastic

wall in the form

E = ERl + in(AE)] (4-13)c

c = a[l + in(Ary)] (4-14)

From equation 4-14, locI' = Jul I + in Auj and since Ii + in AoI - 1,

it follows that for a = 1/2, Icl -IJl = 1/2. As a question of principle,

since Poisson's ratio for arterial tissue is known to be almost exactly 1/2,

the theoretical maximum, the representation for oa,, according to equation

4-14, may not be considered appropriate. However, if we write the repre-

sentation for a in the formS~C
S~in6

C = ,oe (4-15)

where 6 is a parameter which measures the change in the value of a, then

III c l ýe 0 ein 6I Jul

In pa;rticular fol 12 1/2 c= c ul = 1/2. Of the two representations
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for ac, equations 4-14 and 4-15, we shall use equation 4-14.

We shall now determine the effect of internal damping, i.e., the effect

of changes of E and a respectively to Ec and a c, on the roots of the frequency

equation 3-83, i.e., on the value of c /c. We shall consider the following

two cases: Case I. The effect of internal damping on the roots of the

special form of the frequency equation for the limiting condition of very

stiff constraint. Case II. The effect of internal damping on the roots of

the general form of the frequency equation.

Case I. We know that one of the roots of the frequency equation is c /c.
With the modifications of E and a respectively to E and a,, it is clear that

c
c is not affected, since it is a constant. However, the value of c is modi-

o

fied. We denote this modified value of c by cc . As a result, we have a new

ratio c /cc and we may write this new ratio in terms of the old ratio co/c,

as

c

For the limiting condition of stiff constraint, we recall that

2 ( - o2) 2i (3-94)

Moreover, we recall that

Substituting this value of x in equation 3-94 and taking p = p , we obtain

106



{

Now, the ratio c /c corresponds to real values of the t.tbe parameters

E and a and the ratio co0/c c corresponds to the complex parame.., 3 E c and aC.

Moreover, from the relation

C (4-16)

we may wdite for the new ratio, c/C c, corresponding to the complex

paran.eter, Ec

C

Taking the ratios of the corresponding sides of equations 4-16 and 4-17, we

obtain

C )

cc C IRf

or
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C O tii I'E~tYtE)
I -- F_ .+ E .F_

r
-n h [ I(-18)

From equation 4-18 we have, upon multiplying and dividing the right-hand side

by (i - a2)1/2

q,-/• + ] /

Co (i-Eo j I-u- 1- I-t"&n I+ E 1n

'4-- ___-_• 2l-•I -(

2.A
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Flo

Kh- Nis

"(4-19)

where we have used the binomial expansion and considered the products nAE

and nAa as small.

In equation 4-19, if we take a = 1/2, then

(I - 02)1/2 f-2
2

and I2 3
i-0•=3SLoreover, from equation 3-88, if we write

10L
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then equation 4-19 reduces to the form

+_ k3 (4-20)
MID)

Equation 4-20 describes the wave velocity, c, for complete longitudival

tethering, (k' ÷ - witl complex tube parameters Ec and ac, a - 1/2,

and AE and Aa considered small.

The rest of the discussion in this section follows the work of Taylor

(Taylor, 1959). For convenience, we may write equation 4-29 in the abbreviated

form: c
0_ .= (X - iY)[1- in N] = X - nYN - i(Y + nXN)
c

We compare this expression for c /c with complex tube parameters or tube with

viscoelastic wall with the expression for c /c with elastic wall and complete

longitudinal tethering

c0
-= X - il
c

For the elastic case, the phase velocity is given by

co X

and for the viscoelastic case

C, - I
cc X 'ýI-

We find that there is an increase in the phase velocity for the viscoelastic

case as compared with the elastic case.

Moreover, the damping per wavelength for the elastic case is described by

exp f- --n•.
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I
and for the viscoelastic case

We note an increase in damping per wavelength in the viscoelastic case as
compared with the elastic case.

The influence of tube-wall viscosity depends upon the value of a (i.e.,
the frequency) involved. See figure 28. For small values of c, the ratio
Y/X is large or near unity. Generally, since the product nN is small, the
difference in the phase velocities in the elastic and viscoelastic cases is
small. However, for large values of a, the damping per wavelength is very
sensitive to tube-wall viscosity, since, in this case, the value of the ratio
Y/X decreases and hence, X/Y in the numerator of the last expression above
becomes large and attenuation of the wave is increased.

0.8

S0.7 k=0,~4
o- 0.5

W0.6
_j
W D

S05

400.4

0. L
0

z

S0.1-

0 I 2 3 4 5 6 7 8 9 10
FREQUENCY a

Figure 28. Transmission of the pressure wave per wavelength as a function of
a in a viscoelastic tube inlicating different effects of the wall-Aiscosity
in different ranges of a. In the range a = 2 to a = 4, the variation of the
transmission per wavelength is indicated by curve AB. In the range a = 5 to
a = 10, the variation is described by curve CD (Taylor, 1959).
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Case II. Here we start with the general form of the frequency equation
(3-83) for the freely-moving elastic tube and introduce the parameters

E = E(l + ina E)

ac M (l + in Ac)

a = 0.5, k 0.4

In a manner similar to Case I, we find that (Taylor, 1959):

( If. ( 1  )-L'~ ~ (5f-F .6)
M ~ (I- Ilo)4(-_Q1)x 0. o451]-o.75

(4-21)

Equation 4-21, for the freely-moving tube with viscoelastic walls, replaces
the equation

for the freely-miving elastic tube. For convenience, we consider two special
cases:

(1) AG 0

(2) nAa 0.1

We find that (see figur- 28):

A. The effect of ii cluding tube-wall viscosity on the phase velocity
is negligible: For a = 1. a - 2, the value of cl/c 0 is reduced by about 1%.
For a > 2, the value of c,/co is increased by less than 1%.

B. The effect of including tube-wall viscosity on damping per wavelength

is considerable. In both cases (Aa = 0, nAa = 0.1) the inclusion of iube-
wall viscosity greatly reduces transmission, i.e., increases the atteiiuation
of the pressure wave. We also note that the effect of tube-wall viscosity is

different in different ranges of a.

Thus, we find that the inclusion of tube-wall viscosity, by restricting

the longitudinal motion of the tube, has an effect similar to that of tether-
ing.
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SECTION V

MODIFIED FLUID EQUATIONS TO ACCOUNT FOR A PLASMA BOUNDARY LAYER

INTRODUCTION

In this section we shall first consider the fluid flowing in the freely
moving elas-ic tube to be made up of two distinct layers: an inner blood layer
bounded by an outer plasma layer. The velocity and velocity gradient of the
fluid are obtained for both layers. At the junction of the blood and plasma
layers, the viscous drags are equated to obtain matching boundary conditions.
Finally, corresponding to the frequency equation of the freely moving elastic
tube, we obtain a modified frequency equation to account for the plasma layer
and draw some conclusions regarding the form of motion.

FLUID VELOCITY IN BLOOD AND PLASMA LAYERS

Consider the fluia flowing in the freely moving elastic tube to be made
up of two distinct layers: an inner blood layer bounded by an outer plasma
layer at the tube wall. More precisely, we specify that

1) for values of y=r/R lying in the interval 0 : y i y0 , the fluid in
the tube is blood;

2) for values of y=r/R lying in the interval Yo : y ! 1, the fluid in
the tube is plasma. (See figure 29.)

r=O, y=O r •ry= Yo r =R,y= I

BLOOD LAYER - PLASMA
LAYER

CENTER INNER SURFACE
OF TUBE OF TUBE WALL

Figure 29. Blood and Plasma Layers in a Tube.
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We have seen earlier (equation 3-66) that the magnitude of the longi-
tudinal fluid velocity component is given by

Jo [+ A, (3-66)

Equation 3-66 was obtained under the condition that the fluid was blood
throughout the tube, i.e., for the region 0 6 y 6 1. Now if we restrict
the region of the blood to lie within the interval 0 < y -< y0 , then the
corresponding value of w1 is given by

Sh.

W~') C1  L~i) A1 (5-1)
Jo [-3

2o.A%] c

where Yo is substituted for 1 in the denominator of the first term on the
right-hand side of equation 3-66.

At the boundary between the blood and plasma layers, y=y 0 , wo shall
denote the longitudinal velocity of the blood by w0

10 
0

The value of w0 is unknown at this time. It will be determined later from
the condition that the fluid velocity must be continuous across the boundary
Y=Y0'

The magnitude of the blood velocity at the boundary is obtained by
setting y=yo in equation 5-1. Thus

At
PC " (5-2)
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Solving for the arbitrary constant, C-, in terms of the unknown, w0 , we have
from equation 5-2

C1

Substituting this value of C1 in equation 5-1, we obtain

U.r At A, Al J L 53

We shall now find a solution of the differential equation describing
the magnitude of the longitudinal fluid velocity, wl, in the plasma layer,
yo y : 1. We first note that the solution describing w1 was obtained
earlier in the form

C - ( ) (3-66)

This solution had the following restrictive boundary condition imposed on it:
the value of w, stays finite at the center of the tube, y=O. This imposed
condition deleted a component of the velocity from the general solution of
the differential equation. This deleted component had the form

K. ( . VI),Ko

This restrictive condition at y=0 no longer applies in the plasma layer
S y 1. In the plasma layer, the boundary conditions have to be fitted

at y=y 0 and y=l. Accordingly, in the plasma layer, we include this deleted
velocity component and write the magnitude of the longitudinal fluid velocity
in the plasma layer as
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Ur.- A C JC3~ K, ( /31')1 Fl - + I... ....... . . (5-4)

In equation 5-4 we have introduced a nondimensional fluid parameter, 0, for

the plasma layer by analogy with the parameter, a, in the blood layer.

In equation 3-76, the boundary condition for w, had the form

Cl C AI (3-76)

In analogy with equation 3-76, taking equation 5-4 into account, the boundary
condition for the motion of the elastic tube in the plasma layer has the form

E C 3  (5-5)
foc

where C2 and C3 are arbitrary constants. At the boundary between the bloo6
layer and the plasma layer, i.e., at y=y 0 , the longitudinal fluid velocity
in the plasma layer is obtained by setting y=yo in equation 5-4. Thus

f~c+ C J0(~>~J 4 3 K("~JC ro C LC'K )
(5-6)

VELOCITY GRADIENT IN BLOOD AND PLASMA LAYERS

The velocity gradient along the tube radius, dwj/dy, in the blood layer
is obtained by differentiating equation 5-3. Thus

a L( J. A.116
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arc

(5-7)

In analogy with tbe earlier notation

t 1, .')

we write

According to this notation, we may write equation 5-7 in the form

d -, r Lj ( ) O P E0 (1 tAF c

Moreover,

- -, US(4F q)t ki-
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3.0

(5-8)

Equation 5-8 describes the velocity gradient along the tube radius in the
blood layer at the boundary between the blood and plasma layers.

Differentiating the plasma fluid velocity, described by equation 5-4,
we obtain the velocity gradient along the tube radius in the plasma layer.
Thus

The velocity gradient in the plasma layer at the tube wall, y=l, is obtained
by differentiating equation 5-4 and setting y=l. Thus

-3 (- L0 0&

We can now determine w0 and C3 in terms of the arbitrary constant C2 by

1) equacing the two values of the quantity (w0 - A,/p0c) from equations
5-4 and 5-6, i.e., by making the fluid velocity continuous at the boundary
between the blood layer and the plasma layer, Y=Ys;

2) equating the two values of the viscous drag at Y=Ye. For convenience
of writin te itroduce the following notation.
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313 /3 .

ki\

JL (j/a.1 gI
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With this abbreviated notation, equation 5-6 assumes the following form.

From

_ -C j 0( 3  +Ck 0  L>3'J ;3i;37 (5-6)

we have

Moreover, equation 5-9 may be written as follows. From

4U-c,( ) /,( 3>o c ", ,, 'o (5-9)

we have

3/3

- -q " " i/1

(5-12)
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Finally, equation 5-10 has the following form. From

dmCit(L ) - ,(5-10)

we have

54

Equating the two values of the viscous drag at the boundary, y=y 0 , a-
given by Lhe blood and plasma layers, we have from the relation

8LoOb PLPSMA

using equations 5-8 and 5-12,
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or

The parameter, a., In the blood layer is defined as
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Similarly, in the plasma layer we define a parameter, R, as

. %.,,
I

Thus, for the ratio of these two parameters we have

r oQ ,AAo

Using this relationship, equation 5-14 reduces to the form

IioA ii FA. +L GoI t

(5-15)

Combining equation 5-15 with equation 5-11,

or

pC F

Solving for C3

C3 C F1
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I
Subsittuting this value of C3 into equation 5-5, we obtain from

P-. o(A• Fto (o Fic~(•
CC c C3 V

Moreover, substituting this value of C3 into equation 5-13 we obtain from

du iI (5-13)

•" 1..

C-- .•, J •-YJJ -o• ,o. r 1~o__,
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I!
Note that if yo - 1, i.e., if we consider thinner and thinner plasma layers,
and, in the limit, if all the plasma is replaced by blood, then

a = 8, FIO(a) = Flo($)

and the numerator in the inner bracket in equation 5-17 is zero. Thus,
equation 5-17 reduces to the form

Moreover, we note that in equation

if we let yo ÷ 1, then the term

(( /3

Similarly,

Thus the ratio
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and equation 5-16 reduces to the form

A, 3C
C' 2where C ~')-a ~

Fi-(t G,10I0)
MODIFICATION OF THE FREQUENCY EQUATION

In the limiting condition for a vanishing plasma layer, yO "o 1, we note
that the set of equationa 3-76, 3-79, 3-80 and 3-81, from which we obtained
the frequency equation for the freely moving elastic tube, remain the same,
except that in equation 3-80 the factor a2F10 (ct) is to be replaced by the
factor

F~ G,. (/3)

o ~ Flo

d," Flo (d, . to • (o {) 1
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Fo(Oa )
or-

F ;0 (As) I

or F0 (d,) L(~,A

Fo (d,) - G,° ()

where L ( F. (c)

With this change in equation 3-80 we will have a corresponding change
in the factors G and H in the original frequency equation (3-83). The modi-
fied frequency equation will have the form

- -.'- (5-18)

where

Flo (d. ) + E,

(C- FF. ((L
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DEDUCTIOWJ FROM THE MODIFIED FREQUENCY EQUATION

In the limiting conditions of heavy loading and stiff constraint,

k' 4 -W, the terms in L(a,8) will have Do effect on the pulse velocity and

lamping. Although consideration of the plasma layer changes the frequency

equation, for the limiting conditions of heavy loading and stiff constraint,

the velocity of the pulse wave and the damping of the pulse wave in trans-

mission are not affected.

From equation 3-86, note that

cj '÷-~ + + + +
~1 2. F V) i

Also

•-• I- /~o(,)

- 5/4

+ -

-Fo (ot ~ 2 4

Since G)a=1/2 ]o=1/2_ we observe that the effect of the factor L(a,i) on

the roots of the frequency equation 3-82 is confined only to its effect on

the factor H'.

In the modified frequency equation,

(1 - 02 )x 2 - 2G'x + H' = 0 (5-18)
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I

we note that
2G'

1) the sum of the two roots x, + X2= i

H'

2) the product of the two roots = xlx 2 = Hi -

Thus the sum of the two roots will remain the same since (1 - a2) and G' are

the same in the original frequency equation (3-82) and the modified frequency

equation (5-18). But the product of the two roots, H'/(l - 02), since it

contains H', is effected by the factor L(c,O). Since

L4 +

we find that this effect of the factor L(a,ý) will be greatest when the

second term, 2k/[l - F1 0 (c)], is zero, i.e., when k = 0. Thus for very thin

tube walls when k = (h/R) ÷ 0,

,- F, oI]

The variation of the wave-velocity ratio, cl/c 0 , with a is shown in

figure 30. In view of the relation

• _ 2

we note that for p = V0, i.e., for no change in the viscosity of the fluid

across the cross section of the tube, we have (S/a) = 1, i.e., there is no

plasma boundary layer. If (0/0) 1, then we are ir.trod icing a boundary

layer. Note tbh' relationships between the wave-velocity ratio, cl/c 0 , and

a as described by the two curves in figure 30, differ considerably on account

of the introduction of a plasma boundary layer.

In section IV we considered a simple mathematical model based on the

assumption of elastic constraint and obtained the variation of the wave-

velocity ratio, cl/c 0 , with respect to a (see figure 29). Comparing
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figures 29 and 30, we may conclude that if the model considered in section IV

proves to be inadequate for '5ý.scribing the real phenomenon, then the conse-

quences of the assumption of a boundary layer of low viscosity will have to

be explcred further.

CI

Co

-j• 1.2

1.1

1.0 k=O , = 1/2 , R//a= I

0.9

0.8 k 0o , ,= 1/2 , P/ a = 1.6

0.7

0.6

0.5
I 2 3 4 5 6 7 8 9

a

Figure 30. Variation of the velocity ratio, cl/cO, with a for

1) no plasma boundary layer, R/a = 1;

2) a thin boundary layer described by B/c = 1.6.
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SECTION VI

PRESSURE-FLOW AND PRESSURE-DIAMETER RELATIONSHIPS

INTRODUCTION

In this section we shall consider the motion of the fluid over a short
section of the elastic tube when subjected to a pressure gradient which is
harmonic in time and the longitudinal space direction. We will first assume
that there is no reflected wave present and obtain the longitudinal fluid
velocity, the ýverage fluid velocity and note the role of Poisson's ratio.
Next we obtain a relation between the fluid velocity and radial expansion
of the tube both in the presence and absence of a reflected wave. Finally,
we note the variation of the radial expansion with internal damping of the
tube wall.

MOTION OF FLUID IN ELASTIC TUBE

We shall investigate the details of the motion of the fluid over a
short length of the artery over which we may consider the pressure wave
velocity, c, as constant in value. We take the origin of the coordinate
system at the center of this short length. (See figure 31.) We recall the

assumed form of the longitudinal fluid velocity component

w =wle in(t - z/c) (3-31)

where _, + ___o___ (3-66)

Combining equations 3-31 and 3-66, and neglecting the value of z in equation
3-31

F h C1 e0n (6-1)

In equation 6-1, C1 is an arbitrary constant of integration to be evaluated
from boundary conditions. A1 is the coefficient associoted with the magni-
tude, Pl, of the pressure, p = Pl exp [in(t - z/c)], and having the form

P, AIJ 0 (ky) (3-48)
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In order to relate the magnitude of the fluid pressure, A,, to the
magnitude of the longitudinal fluid velocity, w, and other known properties
of the system, we substitute equations 3-76 and 3-79 into 3-81 and solve for
the ratio Cj/Aj. We define this ratio according to

A1  - I

If we write C1 , (Al/p 0c)n, then from equation 6-1 we obtain

Lkit

JX (6-2)~*

From equation 6-2 we note that for a given applied pressure function where
A1 is known, the longitudinal fluid velocity, w, is inversely proportional
to the pressure wave velocity, c.

We will now obtain the value of q in terms of a, Fl0 and x using equa-
tions 3-76, 3-79 and 3-81. From equation

(3-76)

we write LTn E, C,

or P = n + 1 (6-3)

From equation
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we write inn~ ~ +1A,/ -C lo

or 
(6-4)

From equation

-'L ~.f(iT:i D Alj- (3-81)

-CJ
we write

ot bb, B E
Aipc

or

L YJ( 
6 - 5 )
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Substituting the values of P and Q from equations 6-3 and 6-4 into equation
6-5, we obtain

R 1 - -_ (6-6)

This is an equation in n which we have got to simplify. Multiplying equa-
tion 6-6 through by R we have

,(i,°i) (6-7)

Dividing equation 6-7 by c

I F nF I ~, tf'1 R 13

Since k = h/R, x - kB/pc 2 , the quantity n2 R2 /c 2 is considered small, and
taking p = p0, we may write equation 6-8 in the form

[ iL + 9

which simplifies to

(6-9)
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Now we shall identify the constant, Al/p 0 c, appearing in equation 6-2

with the constant appearing in equation 2-19 in the simple theory of the
rigid tube. We note that although the pressure wave velocity, c, in A1 /p 0 c
is a variable quantity, for a short length of the artery c is considered
constant in value. We know that

A 0_.
t /C (6-10)

for small values of k. From equation 6-10 the pressure gradient is

r I

(6-11)

If Al is the coefficient associated with the pressure gradient in the simple
theory of the rigid tube, then

-A' (9, (6-12)

Comparing the coefficients in equations 6-11 and 6-12, we find that

1(12) A,

and _ - Al
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Since a2 = R2n/v where v = p/P, it follows that

h IR . 3,(6-13)

This 's the relationship between the coefficient A, in the elastic tube

theory and the coefficient A! in the rigid tube theory.

IU CB derivations of equations 6-14 through 6-25 below, we shall assume

that there is no reflected wave, i.e., the representation for the pressure is

of thq form

p = Alein(t - z/c)

Wa recall that in the simpi. theory of the rigid tube (section II) we

had

1219

The corresponding average fluid velocity was found to be

- (2-38)
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Similarly, corresponding to the velocity

[r + V. o (f)Lc& Ja L~ (6-2)

we have the average velocity in the elastic tube

ELAýTi f L0(O) (6-14)

From equation 6-14 we may write down the modulus and phase of Welastic as

"I,

I OA, F( (L

Again, in analogy with the rigid tube representation

R~D r~i~ [M10 (CA)J A.w ITnt + (d.) (2-42)

we may write

..LA.STiL_ \ 03
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for a pressure gradient. M cos (nt - *). We can thus compare the values of

M'I0(c) and e1o(a) for the rigid tube with Ml0 (a) and ElO(a) for the elastic

tube.

If, in the representation for the complex constant, n (equation 6-9),

we substitute for x its value obtained under the condition of stiff constraint

as given by equation 4-8, it follows that

F,o -(d°-)-
I I

-d

Using this value, n = --l, in equation 6-14 and comparing it with equation

2-38, we conclude chat the motion of the fluid in the elastic tube for the

limiting condition of very stiff constraint is the same as the motion of the

fluid in the rigid tube. We have thus obtained a check on the accuracy of

the analysis.

The effect of the value of a on the volume rate of flow is indicated
1%ax

in figures 31 and 32. The variation of the ratio Isa , i.e., the ratio
Jýsteady

of the maximum value of the oscillatory flow in either direction, l0.axl, to

that of the Poiseuille flow, IQstedy! for the same pressure gradient, with

138



respect to a is indicated in figure 31. The variation of the phase-lag with

respect to a is shown in figure 32. These graphs may be compared with analo-

gous graphs for the rigid tube in section II.

SQ rQmox

Qsteady

1.0 a-- = 0".5 k-0

0.8 - o-=0.25, k=O

0.6

0.4

0.2

0 I 2 3 4 5 6 7 8 9 10
a

Figure 31. Variation of the amplitude ratio Qsteady

with respect to a for k = 0; a = 1/2, a = 0. Note that for
values of a < 1, the amplitude ratio approaches 1, i.e., there is
little deviation from Poiseuille's formula.
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PHASE LAG (MO'- )

20r

•o" • jao-o5, kno

40@~~c a•r 0o,. 25, k-zO

80°0 ,kO

0 I 2 3 4 5 6 7 8 9 10 a

Figure 32. Variation of the phase lag, (900 - 0)0 , of flow with
respect to a for k = 0, a = 0; a = 0.25 and a = 0.5. Note that
as a increases, the phase lag approaches 900.

The variations of the modulus of the complex fluid impedance, the fluid
resistance and fluid inductance with respect to a2 are shown in figures 33,
34 and 35 respectively. These graphs may also be compared with the cor-
responding graphs for the rigid tube in section II.

In order to obtain the value of the longitudinal fluid velocity in the
elastic tube at the tube wall, we set r = R or y = 1 in equation 6-2 and
obtain

[ (6-16)
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MODULUS OF COMPLEX FLUID IMPEDANCE

2 0.25,k=O

14.0-

12.0

10.0 aO5,k

8.0- ( z0 ,k=

6.0-

4.0-

2.0-

0 1II

0 20 40 60 80 100 a2

Figure 33. Variation of the modulus of the complex fl~uid impedance with
respect to a~2 for k 0; a = 0, a = 0.25 and a 0.5.

FLUID RESISTANCE
3.0

2.00.

20 40 60 80 100
2

Figurce 34. Variation of the fluid resistance with respect to a 2

fclr k =0; a 0,0= 0. 25 ad a 0. 5.



FLUID INDUCTANCE

a=0.0

0.16 -_ C=0.25

0.12- 0"=0.5

0.08

0.04

1I I I I 1

0 20 40 60 80 i00
a2

Figure 35. Variation of fluid inductance with respect to a2

for k = 0; a = 0, a = 0.25 and a = 0.5.

We note that if we impose the condition of very stiff constraint, 9 = -1, in

equation 6-16, then the longitudinal fluid velocity is zero at the tube wall.

From equations 6-2 and 6-16 we note that

tJYLASIS. C I+ 'I

If we calculate the modulus and phase of this ratio, they will demonstrate

the ratio of the magnitude of the longitudinal fluid velocity at the tube

wall to that of the average longitudinal fluid velocity in the elastic tube

and the phase difference between the two. This is indicated in table II.

The values of the amplitude and phase difference of the ratio 1 +1 + nF10 (a)

emphasize the critical role of Poisson's ratio in determining the details Af
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the fluid motion. The phase differences in table II are shown with their

correct algebraic sign with respect to the amplitude ratio, iudicating that

the longitudinal fluid velocity at the wall, welastici . leads the average

longitudinal fluid velocity, Welastic* The most striking point about this

effect is the magnitude of the longitudinal fluid velocity at the wall, which

is greater than might be expected. It is not possible to estimate this

velocity from the experimertal results available. However, it would seem

that the attempt to find experimental means of measuring the effect would be

worth while, since it would form a critical test of the theory and would

throw light on the elhstic properties of the arterial wall under dynamic

conditions.

TABLE II

Values of the amplitude and phase difference of the ratio
(1 + n)/(l + nF10 ), comparing the velocity at the wall with
the average velocity, with Fl0 = 0.1 and values of a cor-
responding to the first four harmonics of the pulse in the
dog's femoral artery.

a= 1/2 a 0

Amplitude Phase Amplitude Phase
Ratio Difference Ratio Difference

3.34 0.122 74.00 0.527 26.20

4.72 0.166 52.90 0.226 16.20

5.78 0.190 38.00 0.145 12.60

6.67 0.257 28.60 0.104 10.50
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Equation 6-16 describes the longitudinal fluid velocity at the tube wall
in elastic tubes. If we consider that the fluid adheres to the tube wall and
integrate this equation with respect to time, we will obtain the longitudinal
distance traversed by a point on the tube wall. This distance C is

t

0

"int

L6it

-- A, + )2(6-17)

when expressed in terms of the pressure gradient. Note that we have replaced
Po by p, since we are considering the motion of the tube wall.

Assuming k = 0.1, a = 0.5, we find that the maximum value of the longi-
tudinal displacement of the tube wall is 3.92 mm. This is greater than the
diameter of the dog's femoral artery. It is reasonable to suppose that a
longitudinal extension of this magnitude would have been remarked upon, had
it been observed. The above calculation may seem unrealistic, since it is
known that the artery is not, in practice, completely free, but it does show
that the elastic constraint is not likely to be in resonance with the pulse
frequency.
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Equation 6-14 may be written in modulus and phase form as

UY A, M (,( e"
ELIS1iC 1

M j(L (6-18)

since p, = A1 J 0 (ky) = A, for k << 1. Since c0 /c = X - iY, we may write equa-
tion 6-18 in the form

to OL"ai) Z~t

"( 
0

EMSD. rc e •C-- (6-19)

Now, if we express the complex quantity (X - iY) in modulus and phase form

X - iY = IX - iYI phase (X - iY)

we note that the effect of the damping of the wave in transmission is to
reduce the pha.e-advance of flow over pressure. We may writej/

(6-20)

Note that in the case of the rigid tube, equation 2-40, the complex quant'ty
(X - iY) is not involved. Therefore, there is no change in phase for wrigid
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Again, starting with equation 6-14,

l t
UT ~ (6-14)

ELLRSiC. +

we write it in the following form for comparison with equation 6-20

L~tL

WLSI At F (6-21)

Imposing the condition of very stiff constraint on equation 6-21, i.e.,
setting

/2
C. (4-9)

and n = -1, we obtain

Lkyr

STiFF Cot4STRJINT I°'° ( F-7o)

-I J/(6-22)
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Since I]II

ltn

ELASTkF A TON ST (6-23)

Comparing equations 6-19 and 6-23, we conclude that under the conditions of

elasticity, together with stiff constraint, the maximum phase-lead of flow
over pressure will be 450. Note that the value of cl is not directly

measurable. If we measure the pulse velocity, cl, over a short length of

the artery, we would expect to obtain a value given by

SX

In terms of the measured pulse velocity, cl, equation 6-19 may be

written as

II

ELASTiC foci to (6-24)
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and equation 6-23 may be written as

L~ELASTIC ( 10IIj(-5
STiFF CONSTPA•iT c C,X

These equations may be experimentally verified as follows. First, we
obtain a Fourier analysis of the pressure, pressure gradient and fluid
velocity. Next, we abandon all preconceived ideas regarding the values of
the internal radius of the artery and the viscosity of the blood, and de-
termine the value of a that gives the best fit between pressure gradient and
fluid velocity. This can be done without introducing the pulse velocity.
Finally, we assume that, taking the same value of c, the fit of equation 6-23
to the observed flow curve could be tested, with t1• same value of co for all
harmonics.

Now we shall include a reflected wave in the expression for the pressure.
Let the incident pressure wave be denoted by

in(t - z/cl)

* or Pl A1 ei(nt - kjz)

where kI = n/cl.

This incident wave is incident at the point z = 0, where a partial re-
flection and transmission takes place. In other words

Pl = A1 ei(nt - kjz) for z < 0

For the reflected wave we have

PR = A, e "~t+ ~) for z < 0

For the transmitted wave we have

A i(nt - kqz) fo
PT = A T e i~t -k for z > 0

where k2 = n/c 2 . Note that the frequency, n, remains constant. For the
resultant wave motion we write
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i(nt - klZ) i(nt + klz)p=Al e 1 + A2 e for z < 0 (6-26)

p = A ei(nt - k2 z) for z > 0 (6-27)

With respect to the representations 6-26 and 6-27, the following con-
tinuicy conditions are imposed:

1) the pressure, p, remain continuous at the point z = 0;

2) the pressure gradient, ap/az, remain continuous at the point z = 0.

The continuity of p means that the amplitudes be related as

A1 + A2 = AT at z = 0 (6-28)

The continuity of 3p/az means that

kl(A1 - A-) = k2AT at z = 0 (6-29)

Taking the ratio of the corresponding sides of equations 6-28 and 6-29,

we have

Al + A2  kj

or EZ Al -- A2
c1  Al + A2

Thus, due to a reflected wave, the pressure is reduced according to the
ratio (Ai - A2 )/(Aj + A2 ). If tiiere is no reflected wave, then

Al - A,
Al + A2

. e. , A2 = 0

According to the above discussion, we may write the earliei equation

FLN4eri c 2 (6-23)

SrIFF coW;rRAiNT CO 10

NO R.EFLECTED WAVE
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in the form

REr-FLCT/ED WAVE PA9E5E£NT
I

2 2.
9FFF~' CoNT01h4

Thus, when a reflected wave is present we have to account for an "apparent"

velocity, Co',defined by

CO A , (6-30)

The amplitudes A, and A2 appearing in equation 6-30 must be considered as

comple-,° since no phase constants were included in the description of the

incil]z•t wave, PI9 and the reflected wave, p R1 above.

If we assume that the theory developed is correct, then the best use

we can make of an analysis of simultaneous recordings of pre, sure and pres-

sute gradient would be to obtain information about any reflected wave that

may be present. To test the validity of the theory itself, some means would
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have to be found for suppressing the reflected wave. One method might be to
apply a matching terminal impedance at the next junction on the distal side
of the point of measurement.

Another experimental test of the theory can be devised which is free
from this difficulty, using the relationship between pressure and radial
expansion. This is considered in the next section.

RELATIONSHIP BETWEEN FLUID VELOCITY AND RADIAL EXPANSION

Now we shall obtain a relationship between the average fluid velocity
and the radial expansion of the tube. First, for the simpler condition when
there is no reflected wave, we note that equation 3-79 may be written as

Y) ] •o- + C, F• (3-79)

1'o

ELASriC
(6-31)

using equation 6-14. Since the radial Pxpansion, •, is given by

S= D e in(t - z/c) (3-72)

we note that for small values of z we have

D1 eint (6-32)
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Combining equations 6-31 and 6-32, we find that

in finN] _

int = 2cJ W1

or 2Rc ie
R c

or 2_ - i7w (6-33)
R c

We will now show that equation 6-33 can be obtained directly from the
continuity equation (3-24)

3..u +u + w
u +.a + L= 0 (3-24)

or 1 a(ru) = - - (6-34)
r ar 3z

Setting y r/R, we find from equation 6-34 that

3w(y)- Y(Ryu) - -
R 3z

u aw

or u = y zw

3w

or u =- Ry (6-35)

Integrating equation 6-35 with respect to y from y=O to y=l,

LALa A:

1a
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i.e., radial fluid velo(t oi tube wall For no slip at the tube

wall we may write the last statement as

U 8-= R T'
a Rt 2

or 3•w _ 28_•(6-36)

Moreover, since -(
Oz C at (6-37)

by combining equations b-36 and 6-37, 4e have

R2 t = •t(6-38)
R at cat

Integrating equation 6-38 with respect to time, we obtain

9!__ H (6-39)
R c

No,,, will consider the case when the expression describing the pres-
sure contains a reflected wave. i.e., the pressure has the representation

in(t - z/c) ein(t + z/c) (6-40)p = A]e • + Az 6-0

Then the corresponding average fluid velocity when a reflected wave is
present is, in analogy with equation 6-19, given by

Y1( t - 1/0 ,t 4 , •. I

ELJAS7,c LIL
(6-41)

Combining equtaions 6-39 and 6-41, we write

3 10
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where p is given by equation 6-40. We may write equation 6-42 in the form

II (6-43)

Since MI0 and clo are the modulus and phase of the quantity (1 + rFio), and

2f. (1 02) (3-90)C2 2

we maý write equation 6-43 as

R f.C (6-44)

The form of equation 6-44 is the same whether a reflected wave is present
or not.

In equation 6-44, we note that the limiting value of the quantity
x2 (1 + qF10) for the case of very stiff constraint is obtained by setting

2

-1 and x = 1 - Fl0  Thus

Therefore, for the limiting condition of very stiff constraint, the quantity
x
2 (1 + nF1 0) has actually the real value 1 and its phase is zero. See

figure 36. However, we add a small positive imaginary compoaent to account

for damping due to the viscosity of the fluid. From equation 6-44 we note

that
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IMAGINARY AXIS

!• - X ( 1 ++ 71 Flo )

IREAL AXIS

Figure 36. Small positive phase of the complex

quantJ tv + r-

For all finite values of k, the phase of the quantity 2 (1 + nFjo) is positive.

Therefore, from equation 6-45 we corclude t .at the phase of the variation in

diameter, F, always leads the phase of the pressure, p, by a few degrees.

See figure 37,

PHASE DJ FERENCE

40'

300

20-

I 2 -3 4 5 6 7 8 9 10

I00

..J

- 20'

l'igure 37. ,ariatLoi of Lr,'r •hise differEnce (between the cyclic
varij Iono in pressure and diamp.ter) with respect to a, for k=O
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RELATIONSHIP BETWEEN RADIAL EXPANSION AND INTERNAL DAMPING

Equation 6-44, in the liiting condition of heavy loading and stiff
constraint, i.e.,

2 (1 + -F1o) 1

reduces to the form

2= (1 - a2 ) (6-46)
R p0 c 0 2

For a = 1/2, equation 6-46 reduces to the form

.a = __..P_2_(6-47)
R 4 o0 c0

2

From equation 6-46 we note that

pae G l 2J phase {p}R ) phase { p•} = 2

Thus the pressure, p, and the radial deformation, ý, will be in phase at all
frequencies.

Since, for other conditions of constraint, the phase difference between
pressure, p, and radial deformation, ý, is always small, equation 6-,6 does
not provide a critical means of distinguishing between them. However,
equation 6-46 does provide a test for the presence of internal damping in
the tube wall. This is shown as follows.

In analogy with equation 4-19, for the elastic tube we write

'I.

CC

(4-20)

Expanding the bracketed term according to the binomial expansion and
neglecting s.:cond-order terms, we haie
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Lt -n4

I

I
Thus equation 4-20 reduces to the form

-N (6-48)

Combining equations 6-43 and 6-48 we obtain

3_ - (6-Ln

From equation 6-49 we note that if the radial expansion, ý, lags behind the

pressure, p, internal damping must be present. Moreover, if the in~ernal

damping is of the simple form, as described by equation 6-49, then the amount

of phase-lag in any harmonic will be roughly proportional to the frequency n.

If the phase-lag is large, then equation 6-49 will not be sufficiently
co 2

accurate and we m'ist use the exact form of (S-) for substitution in equation
C

6-49. This exact form from section IV is
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where by analogy with equation 2-89, for the elastic tube we write

I-F k "

Thus the exact form for (--.)2 with a 1/2, is

ti N,

10

Substituting this representation for (ac)2 in equation 6-43, we find that
C

4 LC I Ii

II
0C C (6-43)

-•\foc 3 3

(6-50)
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From equation 6-50 we n0L_ that

.- + L 2. t~o f L n

3(1) -3_

Thus, the phase lag of • behind p is of the amount

-I -I

Lain f E , tacyl 2- _n

3 +-(v 1n &)

From this we may obtain estimates of AE and Aa by combining the results from
several harmonics.

Experimental verification of equation 6-47 can be had by referring to
the results obtained by Lawton and Greene (1956). They succeeded in obtain-
ing measurements of variation in diameter throughout the pulse cycle by
filming the motion of very small beads sewn to the abdominal aorta of the
dog. Two typical results (at T = 33/120 = 0.275 sec and T = 0.352 sec) for
the variation in diameter together with the corresponding variation in pres-
sure are shown in figures 38 and 39. The results of Fourier analysis up to
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the fourtb harmonic are given in table III. These results are indicated in
modulus and phase form, i.e., in the form M cos (mnt - *m), n being the order

of the harnonic. These results show no steady increase in phase lag with
respect to frequency. The results of curve #1 seem to show a decrease in
phase lag with frequenry. This may be illusory. The amplitudes of the third
and fourth harmonics are small, that of the third harmonic being less than
one-sixth of that of the fundamental, that of the fourth harmonic about 5%.
Thus the estimate of the phase lag cannot be expected to be very accurate.
It seems reasonable to conclude from these results that, although there are
irregular variations in phase between pressure and diameter, these variations
are not inconsistent with the assumption that there is no damping in the wall.
Therefore, until measurements of greater accuracy become available, the simple
form of the theory, i.e., k ÷-•, may be considered to be reasonably accurate.

TABLE III

Values of Fourier Coefficients of the First Four Harmonics for the
Pressure and Diameter Variations Shown in Figures 38 and 39

I
PRESSURE DIAMETER

HARMONIC - PHASE-LAG

M ým M X 10- 3  m (DEGREES)

Curve #1

1 18.74 75.67 12.17 86.31 10.64

2 6.80 128.67 4.05 133.55 4.88

3 3.14 154.45 2.14 149.68 -4.77

4 1.56 156.75 0.50 110.03 -46.72

CONSTANTTENT 69.73 1.32TERM

Curve #2

1 62.35 56.85 5.50

2 116.50 117.05 -0.55

3 152.85 136.98 15.87

4 124.50 122.60 i.90
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DIAMETER

T 0.275 sec
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Figure 38. Cyclic variation in diameter of the atdominal aorta of the dog
with respect to the pulse cycle. The observed points are joined by straight
lines. The circles are points on a four-harmonic Fourier series fitted to
the observations. The corresponding variation of pressure with respect to
the pulse cycle is also shown.
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DIAMETER cmrI. T 0.352 sec,
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Figure 39. Cyclic variation in diameter of the abdominal aorta of the dog
with respect to the pulse cycle. The observed points are joined by straight
lines. The circles are points on a four-harmonic Fourier series fitted to
the observations. The corresponding variation of pressure with respect to
the pulse cycle is also shown.
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SECTION VII

jUNCTIONS AND DISCONTINUITIES

From experimental observations it is quite clear that the arterial pulse-
wave increases in amplitude and _evelops secondary waves as it travels down
the arterial tree. See figure 40. With this in view, we shall now develop
a more accurate representation of the amount of damping of the arterial pulse-
wave as it travels from the heart to the peripheries. To thi3 end, we shall
consider the traveling pvlse-wavo in terns of its harmonic components and
include the presence of wave reflection at arterial junctions and discontinu-
ities. An appro-imace method will be indicated for estimating a reflection
coefficient as a function of the area ratio of the b~anches to the parent
rtie. This coefficient will be used in estimating the reflections produced
at the iliac and coeliac junctions and at discontinuities introduced by in-
sertion of an electromagnetic flowmeter as is required in some methods for
measuring pulsatile blood flow.

THE REFLECTION COEFFICIENT

Corresponding to equation 6-18, relating the flus.d pressure to the
average linLitudinal fluid velocity, we write

'I 0

UY A, Mo
E. ILASTIC -0 

(7-1)

if the viscosity of the fluid approaches zero, then a2 R2nd
V

II

M,0 (a') 1 + ,IF, 0(c)I ÷ 1

since

F 3/ 0 AS

~c- remains finite.
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Figure 40. Rise in the peak of the aortic and femoral pulse-pressure during
transmission in the dog. (By !ourtesy of Dr. R. W. Stacy)
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Moreover, e10 (a) = place {1 + nF1 0 (a)} = 0. Thus, if we assume that the
I/ I

fluid is inviscid, then M1 0 (a) = 1 and e0o(a) = 0 and equation 7-1 reduces to

the form

rd1 A -(7-2)

elastic

We will now consider the error that is generated when we use the approximate

form of the pressure-velocity relation (equation 7-2) instead of equation 7-1.

Suppose there is a sudden reduction in the size of an artery from a

fixed radius R to a fixed radius r. See figure 41. Let al and a2 be the

values of a in the larger and smaller tube respectively. From the relation

a2 = R2 n/v, we note that the value of a is directly proportional to the radius

and, since r < 3, it follows that a2 < al.

We will assume that on account of a change in the tube diameter, there

is partial transmission and partial reflection of the incident wave. It is

convenient to have the incident wave traveling to the right and the origin

of the longitudinal axis of the tube located at the junction. To allow for

a possible change of phase, we use the complex exponential rather than the

sine or cosine. The incident pressure wave traveling to the right is repre-

sented by

A1 e in(t - z/cl)

The reflected wave traveling to the ft is denoted by

AL, ein(t + z/cl)

The transmitted ressure wave travels in the positive direction in the

smaller tube and can be represented by

A2 ein(t - z/c2)

Note that c, and c2 are the wave velocities in the large and small tubes

respectively.
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LARGER TUBE

SMALLER TUBE

- "- r -.. •ZAXIS

I I

in (t+ z/c,) in (t+Z/c,)

A4e - Aze
REFLECTED TRANSMITTED

PRESSURE WAVE PRESSURE WAVE
INSIDE LARGER TUBE INSIDE SMALLER TUBE

in (t-z/,,)
INCIDENT 0Ae

PRESSURE WAVE
INSIDE LARGER TUBE

L=O AT JUNCTION OF LARGER
AND SMALLER TUBES

Figure 41. The incident, reflected and transmitted wave
at the junction of a larger and smaller tube.
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Clearly, the magnitu-le of the total pressure wave on the left-hand side
of the junction is

Ale in(t - z/cl) + A~ein(t + z/cl)

On the right-hand side of the junction, the magnitude of the pressure wave is

A2ein(t - z/c 2 )

Now we shall use two conditions which exist at the junction z=O. These
are:

(1) The pressure is the same on both sides of the junction at z=O.
(2) The volume rate of flow is the same on both sides of the junction

at z=0.

Imposing these two conditions in tu'n, we note that since the pressure has
to be the same on both sides of the junction at the point z=0, we write

uressure on the left of junction z pressure on the right of junction

i.e., pressure due to incident wave + pressure propagated by reflected wave
= pr, ssure due to transmitted wave

SAlein(t - z/cl) + A4ein(t + z/cl) . A2ein(t - z/c 2 ) (73)i.e., A(7-Ae A)

At the point of discontinuity, z=O, we iave from equation 7-3

Aleint + A4eint = A2 eint

or Al + A4 = A2  (7-4)

Now we shall consider the elastic tube in the limiting condition of
stiff constraint. From equation 6-11 we may write the m3gnitude of the
average longitudinal fluid velo-jti.es in the large and small tubes as

I' . L 0 ((,)

- )[3 (7-5)
L1ARGE ruBE I 10

L E / K- (7-6)
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In equation 7-5 for the larger tube, the magnitude of the pressure is

(A1 - A4 ). This follows from the fact that when considering volume rate

of flow across the junction z=O, there is a direction involved. For this

reason we must take the difference in the magnitude of the incident and

reflected pressure waves. Note also that c0 and co' are the limiting

velocities of the wave propagated in the two tubes for a = (R2n/v) - -,

i.e., for liquids of very small viscosity. For continuity of flow across

the junction, we equate the volume rate of flow on both sides and write

Q'large tube -Qsmall tube

i.e.,
I

r M 'o 0

(7-7)

or. _ ,

(7-8)
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According to the Moens-Korteweg formula,

cO h[2 1/2

we will assume that in the larger tube with fixed radius R,

i
C0 • RI-•

and in the smaller tube with fixed radius r,

,o 0/

Considering the thickness, h, and the modulus of elasticity, E, to remain the
same in the larger and smaller tubes, this assumption implies that the mass
loading on the two tubes is the same. With this assumption, equation 7-8
assumes the form

JI

XCu 
(o)

10

(7-9)

Equation 7-9 may be written in the form

(7-10)
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For convenience, we denote the right-hand side of equation 7-10 by X and write

Ai - A4 (7-11)
A2

Now we need an expression in terms of X for the ratio of the reflected pres-

sure wave to the incident pressure wave. A4 /A1 . This ratio is known as the

reflection coefficient for the junction. From equation 7-11 we may write

the following.

A2 - (Al - A4) =i-A (7-12)
A2

A2 + (Al - AQ = 1 + X (7-13)
A2

Taking the ratio of the left and right sides of equations 7-12 and 7-13, we
have

A2 - Al + A4 1 - X

A2 + Al - A4  1 + A

or (A2-AD+A4 1- (7-14)

or (A2 -A 4 ) + Al 1 + X

Now from equation 7-4 we may write

A2 - A1 = A4

and A2 - A4 = Al

Therefore equation 7-14 becomes

A4, + A4 I - X
A1 + A1  1 + X

or L 1 - (7-15)

The modulus of the complex quantity A4/AI denotes the ratio of the amplitude

of the reflected wave to the incident wave. Its phase is

phase l = phase (A) - phase (A,)
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which denotes the change in phase of the incident wave upon reflection at
the junction.

The ratio A2 /A 1 is known as the transmission coefficient. We obtain

the value of A2 /A1 in terms of A as follows. We know that

Al- Az4 -

A2

orA2 orAl - A4 X

or A2 = -(A 1 - A4 )

or A2 = L3AL - A41

From the expression for the reflection coefficient, we know that

A4 1 -X
A1  1i+A

Al 1 + A

Thus A, I + X

or A - A4 = (1 + X) - (I- X)_ 2X

Therefore A I - A 2X 2
A1  A1  = X1---+-J = + A

Note that if we had used the simplified form of the pressure velocity
relation as described by equation 7-2, then equation 7-10 would have the form

A2  - 2.5 = X (7-16)

Equation 7-16 may be obtained from equation 7-10 if M1 0 (al) = M1 0 ( 2 ) and

F10(0i) = 61 0 (02 ), i.e., if the viscosity of the fluid is neglected.
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We may therefore look upon the factor

appearing in equation 7-10 as a "throttling" effect due to the fluid viscosity.

The above equations can be used for the division of an artery into a
number of branches of equal size. All that is necessary is to multiply the
right-hand side of equation 7-10 by the number of branches in order to ac-
count for the larger amount of flow. See equation 7-7. Thus, for a division
into two equal branches, we have from equation 7-10

, (7-17)

Equation 7-17 applies to the constrained tube.

Next we consider the artery as an elastic tube with equal velocities of

wave propagation on both sides of the junction, co = c 0 ', and obtain an ex-

pression for X. From the condition of continuity of the volume rate of fl-w

across the junction we write

I,

CO C 172
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Now if co = co', then equation 7-18 may be written as

70

ELAr, ic 1 (7-19)

For a division of an artery, considered as an elastic tube, into two equal
branches we multiply the right-hand side of equation 7-19 by 2 to obtain:

ELASTI(. 1 14.i2~ ~Od2 o (7-20)

ro 2

The quantity 2(T2 in equation 7-20 is the ratio of the combined area of the

branches to the area of the original tube and is called the area ratio of the
junction. This quantity has been chosen as the abscissa in figures 42-47.

In figure 42 the variation of the amplitude of the reflction coefficient
X with respect to the area ratio, as described by equation 7-17, is indicated
for four values of a in the incident tube. Recall that equation 7-17 was
established for a tube with stiff longitudinal constraint and equal mass-
loadin:1 on the original artery and branches. Figure 43 shows the correspond-
ing variation of phase lag of the reflected wave. Figures 44 ond 45 are
similar sets of curves with X as defined by equation 7-20, i.e., for an un-
constrained tube, with k=O, o=1/2 and .he wave velocities in the original
tube and branches being assumed to be eqaal. In figures 46 and 47 the mass-
loading on the branches has been increased, the assumption being made that
the wave velocity is inversely proportional to the radius of the tube. See
equation 7-21.

If in equation 7-7 we assume that the wave vel-,,ities vary inversely as
the tube radii,

1 and Co
R C0  r

then for a division of an artery, considered as a rigid tube, into two equal
branches, the expression for ,. is of the form
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M (7-21)

AMPLITUDE RATIO

30%

20%
•I=5

tC % Cr1 =8II
0 CD

1.0 1.2 1.4 1.6 1.8 AREA RATI
R2

Figure 42. Variation of the amplitude of the reflected wave with
respect to the area ratio for four values of a (a, = 5, 6, 8, 10)
in the incident tube. The reflected wave is expressed as a per-
centage of the incident wave at a division of the artery into two
equal branches. The tube is in the condition of limiting longi-
tudinal constraint and filled with a viszous fluid and a nonviscous
fluid, ai ÷ c.
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1 0 PHASE LAG OF REFLECTED WAVE

180

1200 - //-1 1 6

900°a

600-

300

200

1.0 1.2 1.4 1.6 1.8 AREA RAT'O

Figure 43. Variation of the phdse lag of the reflected wave with
respect to the area ratio for the same conditions as in figure 42.
For the nonviscous fluid, the phase lag of the reflected wave changes
from 00 to 1800 at the point where the amplitude ratio is zero.
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AMPLITUDE RATIO

30%-

20% - a=5

10%-

1.0 1.2 1.4 1.6 1.8 2.0 AREA RATIO

Figure 44. Variation of the magnitude of reflected waves with
respect to the area ratio for the freely moving elastic tube,
k=O, with the same wave velocity on either side of the junction
and o 0.5.
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PHASE LAG OF REFLECTED WAVE

1800 °

16C° -- a 1=10

140 0 - a = 8
1200MOO --

1000 6

800 a, =5
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400

200
I I I I

1.0 1.2 1.4 1.6 1.8 2.0
AREA RATIO

Figure 45. Variation of phase lag of reflected waves for the
freely-moving elastic tube with k=O, a=1/2 and the same wave
velccity on either side of the junction.
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AMPLITUDE RATIO

25%

a1 -5
20%

al -'6

10% a, =•10

1.0 1.2 1.4 1.6 1.8
ARE.A RATIO

Figure 46. Variation of the magnitude of reflected waves with
respect to the area ratio for longitudinally constraineO elasti-
tubes as in figure 42, but with a greater change in wave veloc..ty
between incident artery and branches. Here (cl/c 2 ) = (r/R).
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PHASE LAG OF REFLECTED WAVE

t

180 10

1500- 10

1200- al-8

900- a1=6

6 0 C11 =5
0

*Ito 0

1.0 1.2 1.4 1.6 1.8
AREA RATIO

Figure 47. Variation of phase lag of reflected wavLs with
respect to area ratio for the longitudinally constrained
elastic tubes as in figure 42-, but with greater change in
wave velocity b,-,twe,!n incident artery and branches. Here

(c11c2) (riR).
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Now we shall consider the case when each of the branches is of the same
size as the original artery, i.e., r = R. Moreover, if we impose the con-
dition that al = a2 , it follows that all the above expressions for X reduce
to the form X = 2. From equation 7-15 for the reflection coefficient

A4 1 - X •(7-15)

Al 1  + X

it follows that for X=2

A__ 1 (7-22)
Al 3

Equation 7-22 implies that fo: the coaditions3 imposed, the amplitude of the
reflected wave is one-third the amplitude of the incident wave. The negative
sign indicates that the incident and reflected waves are 1800 of phase.

In figures 42-47, note that all the curves are similar. The curves have
a minimum at an area ratio slightly greater than 1.0. This minimum value
occurs at a higher value of the area ratio, the greater the difference in
velocity between the original artery and the branches. Note also that as
this difference in velocity increases, the miniwum point on the curve 7s
sharper and lower. In figure 42 the minimum point is always less than 3%,
whatever the value of a. ldthough the minimum is higher for the unconstrained
tube, it is less critical.

The change in phase-lag for small variations in the area ratio is very
large near the minimum on its lower sideý. It may be suggestea with some
confidence, therefore, that if the increase in total area at a division
into two branches is of the order of 5%-30%, the amount of reflection will
be fairly small, but the charge in phase will depend, quite critically, on
the particular conditions.

Some enhanc.,ment of the harmonic terms in the pressure is, therefore,
to be expected at each reflection as long as the increase in total area is
not too great. If the area ratio of the junction is greater than about 1.3
or 1.4, the phase-lag will be more than 900. This would be experted to cause
"spreading" rather than "peaking" of the pulse wave.

For three or more branches, the relationships between the reflection
coefficient and the area ratio are very similar to those for two branches.
The point of minimum reflection is at a higher value of the area ratio, and
the minimum amplitude is itself higher. This follows from the greater dif-
ference between a2 and al for the larger number of branches. The change in
phase is more gradual, though still rapid on the lower side of the minii:um.
If the iliac junction in the dog i- treated as a division into three equal
branches, the reflection coefficien' has an amplitude of 14% and the phase
change on reflectica has a lag of about 400. Treating the coeliac region as
a single complex junction gives an estimated amplitude of 5% and a phase-lag
of 650. The details of the computation are shown in the fallowin',` subsection.
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The above examples are groisly oversimplified to be regarded as directly
applicable to reflections in the arterial system as they stand. However, they
demonstrate the existence of a condition of minimum reflection, which is opti-
mum from the point of view of impedance matching at the junction and is the
condition of maximum energy transfer through it. These examples also indi-
cate the way to a reconciliation of the apparent contradiction between the
damping of the pulse wave in transmission and the observed rise in systolic
maximum towards the periphery of the arterial system.

When a numbek of junctions are cascaded in series, the direct method of
calculation used in the following section becomes clumsy and tedious, even
for a small number of junctions. The presence of other junctions will modify
these figures profoundly, since the input impedance of a finite length of
tube is not the same as that of a tube of infinite length (Taylor, 1957;
Karreman, 1954).

EXAMPLES: THE COELIAC AND ILIAC JUNCTIONS

As an application of the preceding discussion, we will consider the co-
eliac and iliac junctions in the dog, schematically illustrated in figures
48, 4¶? and 50, with estimates of the diameter of the arteries measured in cm
and of the pulse velocity in cm/sec. For purposes of calculation, shown
below, it is not necessary that the values of the diameters and pulse veloci-
ties be exact, as long as their ratios are reasonably correct.

Fi st we consider the coeliac junction shown in figure 49. Using equa-
tion 7-20, with unequal wave velocities co and co' and the fact that

incident flow in = sum of the transmitted rlow out
through each of the five tubes

we find that

ALM
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450 cm /sec 450 cm/sec

350 cm/sec 250 cm/sec

S0.4 cm 0.35 cm 0.5 cm

0.3 cm

0.0.35 c 0.8cm 0.9 c 1.15cm0.3 cm 0.4 cm 0.35 cm-" \

S50 cm/sec 450 cm/sec

Figure 48. Schematic of part of the arterial system of the dog with
estimates of diameter of the arteries in cm and of the pulse velocity
in cm/sec.

3ud BRANCH 0. .5 4th BRANCH

AA

A INCIDENT WAVE I
0.85 " 4- ~-- A 0.7

_._ TRANSMITTED A

A "REFLECTED WAVE WAVE

11'.11 BRANCH AA 50 BRANCH

- 0.45 10.35 "--

2n-d BRANCH- 4' BRANCH

Figure 49. Schematic representing the coeliac junction with di-
ameters in cm and thEý amplitudes Al, .12 and A4 cf the incident,
transmitted and reflected waves re3pectively.
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Thto (7-22)

Since for the branches numbered four and five we find that

1) the cross sectiors are the same, r4  5
2) thle pulse velocity is the same, 450 cm/sec;

3) the values of the ns are the same, n4 = 5

we may write the sum of the third and fourth terms on the right-hand side of

equation 7-22 as

It

'S o1 
8 3



Thus, from equation 7-22 we write LO

)I ) 
M

101C~~

U7-23)

Note that in ?quation 7-23 we have denoted the fo'urth and fifth b ,/nhcsb
the fourth branch using subscript 4. For convpnience, we have- eenoted the
branch having diameter 0.7 cm as the fifteL 6Waich and used subscript 5
(instead of 6) in the last factor on the rig'ht.-hand side of equati,)v 7-23.

For the calculation of X we refer to table IV. Fromi this tahle 0.f
values, the four separate terms which make up A may be calculated first. In
modulus and phase form, and also in terms of real and icmaginary at
indicated in table V. From table V we write

X (0.9357) + i(0.1181)
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TABLE IV

TABULAR FORM FOR CALCULATION OF A

" ~R2

Branch Diameter M10(an) n--n

Number (cm) o MI0 E10 Ml0 () n) - £70(a1) R1
2

1 0.85 8.5 0.883Y 8.560
2 0.45 4.5 0.7956 18.830 0.9005 10.270 0.2803
3 0.5 5.0 0.8127 16.370 0.9199 7.810 0.3460
4 0.35 3.5 0.7462 27.160 0.8446 18.600 0.1696
5 0.7 7.9 0.8608 10.780 0.9743 2.220 0.6782

TABLE V

TABULAR FORM OF THE FOUR SEPARATE TERMS OF X IN MODULUS
AND PHASE FORM, AND IN REAL AND IMAGINARY PARTS

Term Modulus Phase Real Imaginary
Nutmber Part Part

1 0.1402 10.270 0.1380 0.0250

2 0.1768 7.810 0.1752 0.0240

3 0.1592 18.600 0.1509 0.0508

4 0.4729 2.220 0.4716 0.0183

0.9357 0.1181
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Thus the reflection coefficient has the value

1-. = - (0.9357 + i 0.1181) 0.0643 - i 0.1181
AI  1 + A 1 + 0.9357 + i 0.1181 1.9357 + i 0.1181

It follows that the amplitude ratio has the valueIA4
- = 0.048

and the phase lag is
tan-1 0.118_1+ tan- 0.1181• ~65

0.0643 1.9357

These results indicate that for the model of the coeliac junction chosen here
and treated as an unconstrained tube, the reflected wave has approximately 5%
of the amplitude of the incident wave and is almost 650 behind it in phase.

Similarly, if we consider the iliac junction as a division into three
equal branches, as indicated in figure 50, we find that

l (4)

5*0' (M15

0-7110O + 'L( 0. 1L. TO)

Thus A = 0.1418

and the phase lag is 39.53'.

The preceding results siow that for a wide range of conditions, re-
flection of the pressure wave vill cause a moderate increase in amplitude of
the transmitted wave for a correspondingly moderate increase in total cross-
sectional area at the junction.
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0.G5 A2 :TRANSMITTED WAVE 0.40.05' i

A4 :R'REFLECTED WAVE

Figure 50. Schematic rerz'-enting the iliac junction with diameters
in cm and the amplitudes A , A2 and At4 of the incident, transmitted
and reflected waves respeciively.

STANDING WAVES IN ARTERIAL SYS'TEM

Consider a junction or discontinuity where we assume that the following
conditions prevail:

1. The reflection coefficient has an amplitude of 10%, - 0.1.
A, A

2. There is no phase lag between the incident and reflectel pressut-
wave s.

3. The wave velocity is independent of the frequency, a, or th Sie uf
the tube.

For incorporating these assumptions, we let the incident wave form
traveling in the positive z-direction be described by

in(t - z/c)
Ae

The corz )onding reflected wave form traveling in the opposite direction
i.' given

(1lAein(t + z/c)
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Thus the resultant of the incident and reflected waves is described by

Ae in(t - z/c) + 1 A eoin(t + z/c)

This expression may be written as

10 ..

(7-24)

According to this expression, we may say that the transmitted wave is made

up of the following two components:

1) a component which is 9/10 of the incident wave and

2) another component which Is 1/10 of the resultant of the interaction
between the incident wave and the reflected wave.

Now we may write the expression (7-24) as

•. ~ - 'Ic) t - - I. I

_A. + LA [e e
10 10

or

1(8 
'-n)

A Ae + 1Ae f T C .L4.Y l Co~Y + Ld-)V
10 10 LCCc

or
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or + A
10 5 C

(7-25)

The right-hand side of equation 7-25 represents the resultant of a wave nine-
tenths of the amplitude of the incident wave and a standing wave of one-fifth
of its amplitude.

In wave-guide technology this latter method of describing conditions is
well known and a method of indicating the efficiency of energy transfer is
the standing wave ratio. Since voltage is measured, it is cal!Ld the voltage
standing wave ratio (VSWR). The corresponding quantity in oscillatory fluid
flow is the pressure standing wave ratio (PSWR).

The PSWR is measured as foilows.

1) If there is no reflected wave, then measurements of the amplitude
of pressure variation would indicate the same amplitude at all
distances from the junction of tubes.

2) If there is a reflected wave present, then the earlier expression

for the resultant wave,

r0Ae in(t - z/c) + [5)Aeint Cos nz

indicates that the maxima and minima of the amplitude of the oscil-
latory fluid pressure are located half a wavelength apart.

3) In the extreme case of total reflection, the maxima and minima
points of the fluid pressure become nodes and antinodes. The
standing wave ratio which is defined as

maximum amplitude of wave
minimum amplitude of wave

is a measure of the efficiency of energy transfer through the
junction. In the earlier expression for the resultant wave

0]Aein(t - lA) r int nzS /)+ J Ae cos-

the efficiency of energy tramsfer through the junction is measured
as follows. The maximum amplitude of the -ransmitted wave is
(9/10)A + (1/5)A = ('l/iQ)A. The minimum amnlitude of the trans-
mitted wave is (9/10)A. Thus the pressure scailding wave ratio is
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maximum amplitude of wave (11/1O)A ii1=-=1.22
minimum amplitude of wave (9/10)A 9

If there is total reflection at the junction, with no transmission of
energy, the PSWTR is infinite.

The method of measurement of the PSWR described above is useless in the
arterial system, since it ,vould be impossible to find anywhere a length of
artery in which there would be a distance of half a wavelength free from
other junctions, There is another approach to the measurement of the OSWR
which can be used in the arteries if simultaneous measurements of ptass-..e
and pressure gradient are available. This method is described below.

Let thE Fourier series for the pressure and pressure_ gradient be

I- + o C (7-26)

+ P X - Y (7-27)

+ A O -M (7-28

Co~rresponding to co/c =X -iY, we wrl.,tk

-ý X -iY (7-30)c m m
m

Whe, there is no reflected wave present and the pressure gradient is
related to the time rate of change of pressure according to

_D•P = - ýp (7-31)3z c ýt

we have, using equation 7-29 for the left-hand side and equation 7-27 for
the right-hand Aide, together with equation 7-30,
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CoM

CO

It follows that

Xw~tM ( 0 'M (7-3 2)

and phase yr IyTF (7-33)

Again, using equations 7-26 and 7-28 with equation 7-31, equating real
and imaginary parts, we obtain

m ( - D ) (7-35)

The relationship between pressure and pressure gradient in the case of
no reflected wave is obtained as follows. From the representation of pressure
for no reflected wave
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zL% (t /11

we h~~ve ~ I

If there is 4. reflected wave present, then the representation for the
pressure is

and the pressure gradient is of the form

Ln t +~

In the presence of a reflected wave, the total wave at any point of the
longitudinal axis to the left of the point of reflection is composed of che
sum of the incident and the reflected waves. In terms of Fourier series,
the total wave is the sum of the Fourier decomposition of the original inci-
dent wave and the Fourier decomposition of the reflected wave. Earlier, we
had writter. the pressure for the total wave in the form
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where A, and A2 are complex.

For the m'h harmonic of the total pressure wave, we may write

Since the coefficients A and A2m are complex, we may write them in the form

A P' ei m for the incident waveim m

A Po ei 4m for the reflected wave2m 1-1

Here P m' and ým ' are the molulus and phase of the amplitude of the inci-

dent wave and P " and ta" for the amplitude of the reflected wave. Thus the
th m

m harmon.c of the total pressure wave is described by the expression

P III

(7-36)

As earlier, we take the origia, z=O, at the point of reflection
(junction) and back off from the origin _ distance, %, 7=', wherp thp
total wave is present and make oar measurements. Note that, at the
Instant of measuring the pressure, time is frozen, t=O, and the place of
measurement is at z=-k. Substituting t=O and z=-k into the expression
(7-3A), we have

Y c i -ye
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We may denote this expression at the point of measurement by Pme-i*m and write

1 _ 4' -i*n

or -Y + i % Ic ,-I
I

e + PC

We may denote cais expression in modulus and phase form by P e-i#m and writem

(7-37)

Similarly, for the pressure gradient, we ha.ve from the relation

S • A Q J
for the mth harmonic

V I, V - ,
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which is obtained by substituting t=O and z=-1 at the point and instant of

measurement. We may denote this representation of the pressuLe gradient in

modulus and phase form by M e-iJm- and write
m

I -L , of

(7-38)

In the presence of reflection, the ratio (M /P m)(c /mn) describing the

amplitude of the mth harmonic of the pressure wave, equation 7-32, now depends

on the reflection coefficient at the junction and the distance of the point

of measurement from it.

Now we shall obtain the reflection coefficient at the junction when a

reflected wave is present. To this end, we divide equation 7-38 by equation

7-37 and obtain

M Vh

' li•/,, -, - ••••
-L4

(7-39)
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If we set

MC
(7-40)

then from equation 7-39 we note that

K--- P~i Q~LYii

1+ CM
(7-41)

where the numerator and denominator of the right-hand side of equation

7-39 has been divided by P ' eiýlm + i/Cm. Equation 7-41 may be writtenm

as

K I-A (7-42)
1 +A

- , - n /c

where

From equation 7-42 it follows that

A I-K
1 +K
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or ) c i-K(

p " -im"

The quantity P is the reflection coefficient of the junction inp ' e-i~m

complex form, i.e., it is the same as the quantity A4 /A1 of equation 7-15

A4  - (7-15)

A,
Combining equations 7-15 and 7-43 we have

(7-44)

If, therefore, the geometry of the junction is known, the theory can be

tested by calculating X and K and attempting to find a c which is con-

sistent for all harmonics.

DISCONTINUITY DUE TO ELECTROMAGNETIC FLOWMETER I

There is another type of simple discontinuity which has the opposite
effect from that of a junction or a constriction, and which has an important
practical application. Some types of electromagnetic flowmeters require the
insertion in the artery of a short length of rigid tube, or may confine tile
artery by means of a cuff, The effect of such an artifact on steady flow is
negligible. However, if the flow has large oscillatory components, d: 'tortion
is introduced.
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Consider a tube, elastic for the most part, which has in it a stationary,

rigid portion cf length 2. See figure 51. Suppose

1) the incident pressure wave is describ!d by A, ein(t-z/c) in the

elastic portion;

2) the reflected pressure wave is described by A4 ein(t-;./c) in tihe

elastic portion;

3) at the incident end of the rigid portion, z = 0;
inmt

4) at z=0 the pressure wave is described by A2 e , which is obtained

from A2 ein(t-z/c) by setting z-O;
int5) at z-k the pressure wave is described by A3 e This is obtained

from A3 ein(tz/c) by setting z2 and considering 1/c negligibie,

since c in the rigid portion is numerically much larger than Z. This

is correct, since the transmission velocity in the rigid portion is

infinite.

For continuity of pressure across the discontinuity,

1) the transmitted pressure wave is described by A3 ein(t-z/c) and

2) A1 + A4 - A2  (7-45)

For continuity of flow across the discontinuity, we must have for the
elastic-rigid-elastic tube

10( 10

(7-46)

In equation 7-46, note that the pressure gradient in the rigid portion
is (A2 - A3)/k. In the elastic-rigid portion, the change from 1/pc to
"i/inpt, is on account of the farxc that in the elastic portion the flow is
due to pressure and in the rigid portion the flow is due to pressure gradient.
Furthermore, since the artery is assumed to be of the same diameter throu-1,out

(across the discontinuýi'y), the value of a(= R 7) is the same at all points
of the artery.

198



1

- ELASTIC RIGID

iNCIDENT WAVE
IN ELASTIC TUBE TRANSMITTED WAVE

IN RIGID TUBE

RELECTED WAVE
IN ELASTIC TUBE

Z=O 14 - =I

Figure 51. Discontinuity due to either the insertion of a short
length of rigid tube into the artery or the confinement of the
artery by means of a cuff.

From equation 7-46 we write

N- -A, M" (a)_ (7-47)

Now A, + A4 = A2 and A1 - A4 = A3. Subtracting, we obtain

2 A4 = A2 - A3

Using this relation in equation 7-47 w,? have

ic 110(7-4F)

( 01
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Dividing both sides of equation 7-48 by A4, we obtain

M,0 (04

Since l . Ai - AL.1

A1  Al A1

we have from equation 7-49

-�i_ (7-50)

For the limiting condition of stiff constraint, M10 '/M 10 " = 1 and
clo' = e10 ", and equat3on 7-50, describing the ratio of the transmitted
wave to the incident wave, simplifies to the form

A, /+

or A3 - (7-51)

'Ce

The pressure gradient in the rigid portion, (A 2 - A3 )/k, may also be
found in terms of the magnitude of the incident pressure wave, A,, as follows.
From equation 7-46, for the limiting condition of stiff constraint, we write
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Dividing both sides by A,, we obtain

Combining this result with ect-ation 7-51, we have

(7-52)

1CO
In equation 7-52, note that the left-hand side describes the flow in the

rigid portion (flowmeter portion), the factor Ai/pL describes the incident

flow and o ne

Therefore the rate of flow as measatred by the flowmeter is reduced, i.e.,
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Thus, from the flowmeter observation, we should be able to calculate what the
flow would have been, had it not been distorted by the flowmeter.

As an example, suppose the artery 13 confined in a cuff which is 15 mm
long. In the femoral artery of the dog, taking the wave velocity, c
450 cm/sec, and a pulse frequency of 3 cycles per second, i.e.,
n - 21Tf - (21)3 - 6!, we find that the ratio of the amplitude of the
transmitted wave to the incident wave is

+ I -+ '

(7-53)

Since this result is good for all the harmonics, we may write

(A,) and get
IQ 1oo

where m is the order of the harmonic. We have neglected the ratio co/c in
equaion 7-53, since the calculation is only intended to show the order of
magnitude of the effect of introducing the cuff. For the 4th harmonic, the
reduction in amplitude is about 1% and the phase lag about 7'. Thus for this
instrument the effect of the cuff is negligible.

T n praztlce. electromagnetic flowmeters have been used with flexible
plastic tubes leadiiug from a severed artery in which the effective length of
the rigid insert is 15 cm or more. Table VI indicates the magnitude of the
ratio A3/A 1 and the phase lag for the first four harmonics in the femoral
artery of the dog. From the results shown in table VI we conclude that an
electromagnetic flowmeter with a rigid insert of 15 cut or more cannot repre-
sent normal conditions in the artery. Any rigid insert or cuff which confines
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TABLE VI

The Amplitude and Phase Lag of the Ratio of the
Transmitted Wave to the Inciden. Wave for the
First Four Harmonics of the Pulse Wave in the

Femoral Artery of the Dog

Harmonic A1  as
m Al____Al_

1 0.946 190

2 0.847 32.15*

3 0.728 43.30

4 0.643 51.50

the artery, Pcts as a low-pass filter and introduces both phase and amplitude
distortion of the pulse wave. Therefore, it is of the greatest importance
that inserts of this kind should be kept as short as possible.

We will now show details of calculations that have to be made for cor-
rections of observations of flow with an electromagnetic flowmeter having a
rigid insert.

Suppose that the observed flow, F(t), made with an electromagnetic flow-
meter caa be represented by the Fourier series

F(t) = A0 + I (A cos mant +Bm sin mnt) (7-54)
m

For the corrected flow, G(t), we write to a first approximation

dF
G(t) = F(t) + (At) (7-55)

where At = 9/c amount of time it takes for the flow to travel over the
distance of measurement downstream from the origin, z=0.

Suppose that the corrected flow can be represented by

G(t) = A + P(A' ,os mnt + B' Ein mnt) (7-5',)
0 m m

m
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From equations 7-54 and 7-55 we write

G(t) = F(t) + dF

= A + J(A cos rnt + Bm sin mnt)
m

+ (-,=)I Am(in) sin innt + B (iNn) cos innt (7-57)

Equating the coefficients of cos (innt) and sin (mnt) appearing on the right-
hand sides of equations 7-56 and 7-57, we find that

A ' = A + (21rf`m(z)B(-
Sc (7-58)

Bi' - B - (21rf)i5m()A (7-59)
in i c in(79

Thus, in the Fourier series for the corrected flow, equation 7-56, we use
the values of the corrected oefficients A m' and B ' as given by equations

7-58 and 7-59. i m

DISCONTINUITY DUE TO ELECTROMAGNETIC 7LOWMETER II

In another type of electromagnetic flowmeter, the artery is pressed
between the poles of the magnet. The diameter of the artery across the gap
is reduced by about 20% but left free to expand in the perpendicular direc-
tion. It is claimed that this constriction in diameter will have a trivial
effect on the rate of flow, since the cross-sectional area is reduced by
only 6%. Although the present theory does not take into account any effect
on the flow produced by the change in stape due to the lateral compression
of the artery, we shall calculate the reflection produced by this order of
change in area due to the artery being pressed between the poles of a magnet.

Accordingly, we make the following assumptions:

(1) Let the width of the pole pieces of the magnet be i cm. The pres-
sure gradient is measured over the tube length Z.

(2) The velocity of the pressure wave is unchanged by the lateral com-
pression of the artery.

(3) The width Z is so small that repeated reflections at the two ends
will be taken into account.

(4) The fluiO pressure in tle absence of the constriction (due to
in(r - z/c)

flowmeter) is given by Aj e

(5) The origin of the longitudinal axis, z=O, is at the point of the con-
striction, i.e., at the proximal end of the narrower portion of the tube.
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_ _ _ CONSTRICTION OF ARTERY

Figure 52. Schematic representing the constriction
of the artery by the poles of a magnet.

We recall equation 7-10 f- the reflection coefficient A

(7-10)

For a 6% reduction in cross-sectional area due to the constriction,
equation 7-10 has the form

(7-60)

Equation 7-60 gives the value of X at the proximal end of the narrower
portion of the tube. At the distal end of the constriction, because of
the inversion of the cross-sectional area, the value of X will be

Adistal X

proximal
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If A1 is the amplitude of the incident pressure wave and A4 is the
amplitude of the reflected wave at the proximal end of the constriction
then, as earlier, we havye

A -- -- (7-15)Al1  + X
If A3 is the amplitude of the transmitted pressure wave (tranEmitted through
the constriction), then from the continuity of pressure acrosp the constric-
tion, we write

A1 + A4  A3

Dividing through by Al, we have

1 + A 3
A1  A1

or 1 + = Al
I+X A1

or A.3 2
A1  + X

When this transmitted pressure wave reaches the distal end of the constric-
tion, z=Z, its amplitude will be modified according to

A3  2 AI(2) e (7-61)

Since t= llength of constriction traveled by wave -
velocity of wave c

7-61 in the form

At the distal end of the constriction, this tiaosmitted wave will give rise
to a reflected wave of amplitude A3 given by
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Here A3 represents the reflected wave from the distal end and A1 is the
original incident wave. In traveling back again to the proximal end, this
£eflected wave will be attenuated and described by

L
"- lol

or

At the proximal end of the constriction, this wave will be transn.itted back
into the larger tube with amplitude

it (a)

The factor 2)/(1 + X) appearing above may be explained as follows. Initially,
both the incident wave and the transmitted wave were going in the same direc-
tion and we used the continuity condition
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Al + A4 = A3

to obtain

A li _ + A _ 2
A1  Al 1 + X

Now, on account of reflection, we have to use the continuity condition

-Al + A4 - -A3

from which we obtain

_& ( - 2X
A1  Al 1 +X +X

For higher orders of reflection, i.e., when the same wave has gone
through several reflections, each time the wave traverses the constriction
in both directions, it reappears at the proximal end as a reflected wave
with its amplitude reduced in the ratio

( '~ (b)

Comparing the wave forms given by (a) and (b) above, note that the ampli-
tude of the transmitted wave at z=O, going to the right is

1  2

and the amplitude of the reflected wave transmitted back (returning back)
into the large tube is described by form (a'.

Since these waves are going on and on, back and forth, it follows that
if we add together all the reflected waves except the first (using this as
a reference term) we obtain a geometric progression whose first term is
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and whose common ratio is

We recall that the first reflected wave at the proximal end of the
constriction has an amplitude of

As mentioned above, we neglect this wave in the geometric progression and
use it as the reference term. The first reflected wave at the proximal end
of cotLstriction will be transmitted back into the larger tube with amplitude

A,(..Ž9)( L±)(±,) C2

This is the first term of the geometric progression. Again, when the last
wave above is reflected, its amplitude becomes

--10 2. 1

= (first term of geometric progression) (common ratio)
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The sum of the geometric series given by i - common ratio t becomes

We recall that the equation for continuity of flow in the constrained

tube is given by equation 7-7. Equation 7-7, under the assumption that the
mas•. loading is the same for the two tube3, has the form given by equation
7-10. Now, in calculating the flow to the right of the constriction, the
sum of all the amplitudes of the reflected terms must be subtracted from A1,
the amplitude of the incident pressure wave, i.e., A1 - (A4 + sum of all the
other A4 s). Here A1 is the amplitude of the incident wave going to the right,
A4 is the amplitude of the first reflected wave to the left which was used
a• a reference term and left out. The sum of all the other A4 s, i.e., the
sum of all the other reflected waves is given by the sum of the geometric
progression. The above statement may be written as

21 1L."0/c

A (10
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For the ratio

flow in tube with the constriction
flow in tube without the constriction

At4(we write + ("A)(A% 
jlVh

,+ 1) "1 (' 1-1) • -,

-. z n e/c-

01t 1
-I L -A

-
--

5x

(7-62)
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We now assume that the flowmet -r constricts the tube by only a small
fraction of its original total aiea, Accordingly we write

where 6 is small and neglect second and higher powers of 6 appearing in the

terms (+1) 2 , 2X(X-1) of equation 7-62. Thus

2X : 2(1 - 6)

1 + X -- 1 + (1 - 6) = 2 - 6

2(X - 1) : 2(1 - 6 - 1) = -26

(1 + X)2 : (1 + 1- 6)2 : (2 _ 6)2 -- 4 - 46
- 1) = 2(1 - 6)(1 - 6 - 1) = -26 + 262 -26

and the flow ratio described by equation 7-62 has the form

flow ratio=( 2  C.. i
(4-4S' + 2.

, 1Si <2
t .~ - 2

(7-63)
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The first factor in equation 7-63 t ay be written as

6 2
2

up tn first order. In the second factor, the maximum value of e-21nt/c

is 1. Therefore, we may write

-+ 2-/

since 6 is small compared with 2. Thus, equat.on 7-63 reduces to the form

flow ratio = 1- (7-64)

From equation 7-64 we conclude that the effei-. of the flowmeter on the
flow is very small for a slight constriction of short length.
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SECTION VIII

CORRECTION FOR THE OSCILLATORY VARIATION IN TUBE DIAMETER

INTRODUCTION

Earlier, from the point of view of motion of the liquid, we had regarded
the diameter of the tube as constant. Actually, at any instant, the cross
section of the elastic tube must be considered to be deformed. We make this
correction for the oscillatory variation in the tube radius in the equations
of liquid motion, assume that the lines of laminar flow expand and contract
with the artery md neglect inertia terms and second order effects of the
lorngitudinal fluid velocity. We seek a solution of the resulting equation
with the pressure gradient, longitudinal velocity and tube deformation ex-
pressed in the form of a Fourier series. We also obtain corrections for the
interactions between the harmonic components and apply the results to arterial
flow.

HARMONIC RE'RESENTATIONS FOR 2-z w, and 2&
az' R

Up t. this point, the volume rate of flow, Q, and the average longitudinal
fluid velocity, i, have been used freely as indicators of "flow," under the
assuaption that

Q = (irR 2 )i = (ITR2)A-•cl + nFl0)eint (8-1)

poc

where R denotes the constant tube radius. However, equation 8-1 is approxi-
mately true only ice at any time the radius of the elastic tube is not R
but R+•, and & va ies with time. Thus, at any instant, the cross-sectional
area due to a change, ý, along the radius is

(R + ý)2 = n(R 2 + 2CR + E2) = u(R 2 + 2ER)

up to first order in the correction ý. Moreover, we may write

ir(R2 + 2ER) = rR2 + 2nrR = 7R2 [1 + (2CiR)]

Note that at any instant, the cross section of the tube is made up of the
constant cross section frR2 and a first-order change in the cross section
2irTR.
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Taking intn account the radial change, ý, we may write a better approxi-
mation for the volume rate of flow as

Q (8-2)

Inserting the value P = from equation 6-33, we have

ahv

Q = nR2 (1 + c)W (8-3)

Even this reptesentation for Q, equation 8-3, is not fully corrected for the
oscillatory variation ia the radius. In what follows, we shall allow for
this variation in the radius.

Recall the longitudinal equation of motion of the fluid when the tube
radius is considered constant

3w + w 3w 1 2_ + r2W 1i w a2w
at ar Tz P0 rz r2  r r + (3-28)

In equation 3-28 we change the independent variable according to y = r/R
and replace R by R+ý. Moreover, we delete the inertia terms u(aw/3r) and
w(w/Wz). Furthermore, the second-order change in w, 32 w/az 2 , is neglected
because it is of order n2 R2 /c 2 . Thus equation 3-28 reduces to the form

1 aw 1 3R + 2 w 1 aw
a t P0 v 3z -3rT+ r -r (8-4)

Since -_

Sand L?-~r. I-i
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equation 8-4 has the form

+ _L
i t )r-a"

or

W&r -ýU LA

(8-5)

Making the change from R2 to R2 (l + -1) in equation 8-5, we obtain the

eouation of motion of the fluid corrected for the radial expansion in the
form

2w + 1 Lw R2  +2)3w =2(l (8-6ýTy2 3 y V (i 3 't p RI 3 'z 86

If we seek a solution of equation 8-6 which is of the same fomn as the solu-
tion of equation 3-28 for a constant radius, we can imagine the quantities
3p/3z, w, and 2ý/R in equation 8-6 represented in terms of Fourier series in
n(t-z/c). As a result, the products of the Fourier series can b, multiplied
out and a set of equations representing the fluid velocity components obtained
by collecting up corresponding terms. However, the wave velocity, c, is not
the same at all frequencies, i.e., c is a function of the harmonics m =

1,2,3,..... In other words, each harmonic in the Fourier series has a
particular c associated with it, and on multiplying two periodic terms to-
gether, there will be some exponential terms "left over," as it were, which
would disappear (being equal to unity) in a system with constant wave velocity.

Suppose the Fourier expansions of two functions, fj and f 2 , are given
respectively by
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then the Fourier expansion of the product of fl and f 2 is given by

S '(8-7)

I+ o

if cm c C. We call the common value of c and c by c . This representationp m p s

for the product ff 2 may be written in the form

St Z/ (8-8)IS,

when the wave velocity is the same for different harmonics. We note that the
above representation, equation 8-8, has the same form as the expansions used

for the functions p, u and w in the solution of equation 3-28.

We compare the two expansions, equation 8-7 for c M c and equation 8-8
m p

for cm = c ,to see how far off we are in using the regular Fourier expansion.
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For example, if the sum of the harmonics appearing in the two functions
f, and f 2 is s = m + p = 4, then the combinations of m and p which add up to
4 may be tabulated as follows:

m p

0 4
1 3
2 2
3 1
4 0

Note t'Lat the two sets of values given by i = 0, p = 4 and m 4, p - 0
satisfy both representations (8-7 and 8-8 above).

Let us denote the dist t values of c corresponding to the first four
harmonics by cl, c2 , C3 atd c4 . Comparing the two representations (8-7 and
8-8), i.e., taking the ratios, we find that

L -n t -n+

and if s =m + p= 2, with ,a i and p = 1, we have

K - I/c,

VC
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When s m + p = 3, with m = 1 and p = 2 or with m = 2 and p = 1, we have

When s m + p = 4, with m = 2 and p = 2, we have

4a CL

CWhen s =m + p =4, with m = 1 and p =3 or with m =3 and p 1 , we have

Thus the quantities of interest are the following

1 - 1
C2  Cl

2) 3 2 _ 1
C3  C2 C1

1 _13)
C4 C2

4 3 14)
c4 C3  Cl

From figure 24 we note the variation of cl/c 0 with respect to a and, in
particular, for a > 3 the variation in the value of c is small. Therefore,
It is reasonable to use a simple perturbation technique, with ý as the
perturbation parameter, to solve equation 8-6.

This correction of the linear solution, to provide for the finite ex-
pansion in tube diameter, is the simplest correction to be made. Moreover,
we obtain a bctter perspective for the more important correction for the
inertia terms. Although, at first sight, the correction due to • may appear

less important in principle than the inertia-term correction, it may well be
equally important in magnitude, for it may cope with fairly large arterial
distentions, such as occur near the heart, without the mathematical difficulties
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I
that arise in the analysis of finite strain. Actually, since both corrections
aie concerned with terms of the order r/c, they are equally important. In
fact, it can be shown that for moderate values of a they are of the same order
of magnitude.

We seek a solution of equation 8-6 when the pressure gradient is repre-
sented by a Fourier series of four harmonics, together with a constant term
which will be assumed to give a Poiseuille flow, the static expansion of the
tube (which would give a tapering effect) being neglected. This is justified,
since this constant term is small, being less than one-eighth of the largest
oscillatory terms. The detailed solution will be daveloped for two harmonics
only, since this illustrates the method adequately without wearisome repeti-
tion. Since equation 8-6 is nonlinear, we may no longer write the pressure
gradient as

2- a A0 + A, eint + A2 e +2 ..n (8-9)Dz

and take the real part, otherwise half the interaction terms will be lost.
It is necessary to start from the pressure gradient in real form and write
down its exact complex equivalent. Accordingly, we assume that

-- M0 + M1 cos (nt + ýI) + M2 cos (2nt + p2) (8-10)3 z

Next, we define A0 ,A1 ,A 2 ,... by

A0 = M0

A, = e Mi1

2 i•

A2 = 1 M2 2

Now,

VIt tvt.2

220



+

Note that e-i1 and e-ilt are complex conjugates of ei~1 and eint. If we

denote e- by Al, then e- il will be denoted by Al*. Thus,
2 2

M, cos (nt + 01) = A, eint + A,* e-int

Similarly

M2 cos (2nt + 02) = A2 e 2 1nt + A2 * e- 2int

Therefore, we may write equation 8-10 in the form

OP = A0 + Al emt + A1 * e-int + A2 e 2 int + A2 * e 2 int (8-11)

Where we have written A0 for M0 . Conforming with the representation for the
pressure gradient, equation 8-11, we assume that the fluid velocity, w, and
the displacement, E, of the tube have the form

w = w0 + wI eint + w1 * e-int + w2 e 2 int + w2 * e- 2 int (8-12)

= CO + El eint + &i* e-int + ý2 e 2 int + C2* e-2int (8-13)
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Expanding the ratio i/c as if it is a periodic function, we write

2_E _ (6-33)

R c

ff e int + - m.. t + ýZ 2int + k.1 e-2int (8-14)
c1 Cj* C2 c2"

In equation 8-14 we take i0 - 0, since the zeroth harmonic (steady state

average fluid velocity) will not be affected by the elasticity of the tube

wall. With wO 0, we have from equation 8-14:

TC C2. C

(8-15)

We recall

k- F a (6-14)

and introduce the notation

C - o 1 _ (x _-+, A1 0o

Thus
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Therefore, we may write equation 8-15 as

-L-nt

I+ + 2CQ 2 C ,2 _ C (2
kCO cc cc C,

CtC2

(8-16)

where

C (X-Y) t2

(8-17)

and c X -iy

c m m

Passing to the limiting condition of very stiff constraint, the
expression for C takes the formm

(8-18)

Note that in passing from the elastic condition (where amplitude and phase
is denoted by double prime) to the limiting condition of very stiff constraint
(where amplitude and phase is denoted by single prime),
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and phase +IFoI

1 
1

From the above representations for the pressure gradient ap/az and the

quantity 1 + we have the following expression for the product (1 +--R a

LR a

Vl1t n-Lt 'Ait -. LYt \

+ A(2 +<e )ce +Cc +Cc ice

+±jA 2* )(2c +cc +qc2 +qC )
(8-19)
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Now consider the term2 (1 + 2) awNer tV , which occurs on the left-hand side of
equation 8-3. First note that from

LUs =(U + w (2 + u 2Q + LY + LziQ
[uY- +• i •~ •2t - Wt

2 I

Thus

1~t

-(-V)I LoLL" I ).2Av~A

-+ )
+~~~~~~i~ *l'( I C( i

caII.

(8-20)

where we have used (--)(in) = ic 2 .
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THE LONGITUDINAL FLUID VV TSLTY

Combining equations 8-6, 8-19 and 8-20 and collecting correspondingint
powers of e , we obtain a set of equations for w0, wl, wl*, w2 and w2*.

The terms independent of e int give t$,e equation

dujr, +~~~_ (AC

+ ~ -k Q A Y , t I ( c x k W . )

(8-21)

intThe terms containing e result in the equation

The terms containing e result in the equation

,Cw • ,)

4- Lc dý
C.
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We may now obtain an approximate solution of equation 8-21, correct to

order 1/co by inserting the known forms for w1, wl*, w2 and w2 * on the right-

hand side of Pquation 8-21. If this is done, we can carry through the inte-

gration and express the result in terms of functions already known. The first

term, AoR2 /p, on the right-hand side of equation 8-21 represents the usual

Poiseuille solution. Moreover, since equation 8-21 is a linear differential

equation, -n the unknown w0 , we may consider the contribution to the solution

from each term separately. Deleting the Poiseuille term from the right-hand

side of equation 8-21, we write the equation for the mth harmonic in the form

(A In (IA_

c ( • (8-22)

We may, frr convenience, introduce the notation

(a m)2 = ma2

i.e., the value of a corresponding to the mth harmonic is m= (m)1/2a. We

note that equation 8-22 contains only the mth harmonic, ir = 1,2,3 ..... Equa-

tion 8-21 contains the first two harmonics. For equation 8-21 to contain all

the harmonics, we write it in the form

± -~ Kc 3  ±...) + •o c> -c<d +•. •

(C?,LA C ,) .3
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Referring to the expression for w, equation 6-2, we write down the representa-
tions for w and w * as

m m

0 3

*2.

Oft + I (8-24)

mm
isertiong thsinuso madwm it h rgthn ieo equation8-2

8-22, we obtain

U1 _r J .(0 ( ,., L~

(8-25)

A R2  A *R2

Note that the constant temias i~ma and -iimc) cancel out upon in-

sertion in equation 8-22.
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It is known that the differential equatlmn

d2 w + 1 dw+ k2  = 0

d2+y--dy

has the solution w = w(y) = Jo(ky)

If we set ky= (13/2CLm)y

and its conjugate (ky)* = (i-3/2a )y

and note that a complex function and its conjugate are linearly independent,

we may write the solution of equation 8-25 together with the boundary con-

ditions

w 0 = 0 at y = l

w0 < 0 at y = 0

in the form

+ _M_ _ _

(3-26)
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Equation 8-26 may be written as

u~~~r~~~ CCLAC- J(81ý

AA CIAL T1 k.

C0

(8-27)

To obtain the average fluid velocity, we integrate equation 8-27 and
then put it in modulus and phase form. We obtain the contribution of the
two terms in equation 8-27 to the average velocity

1~ 10

R I 
I 

t'D(,

oM

L C0 /u OL,.

(8-28)
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or

Ex = C (.MLKc~~.'K~ L

(8-29)

Now we insert the expression for m and its conjugate, C*, from equa-
tion 8-17 into equation 8-29, simplify atd obtain for the rig~t-hand side

MCo X) -L1ý M'~ M ( col{ I c~-L(

+ ~X+LL> ~&.(-h)3 (8-30)

For Lne limiting condition of very stiff constraint, expression 8-30 reduces
to the form

21 (8-31)
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CORREC'IONS FOR THE INTERACTIONS BETWEEN HARMONIC COMPONENTS

It is possible to prepare a table of standard correction functions by
calcu _'ting the factor

from equation 8-31 for the full range of values of a. We denote this factor
by E(ra,-m)

E(m,-m) represents the standard correction function for finite expansion

of the tube, expressing the effect of the mth harmonic on the steady flow.

Accordingly, for any given pulse form the correction to the steady term is

obtained from equation 8-31 by summing over all the harmonics. Not? that
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Therefore, the correction to the steady term is

(s;)Z (EZ~w~m)(8-33)

This correction will be in the same direction as the steady stream.

We now turn to the construction of the corresponding standard correction
functions denoted as follows.

E(km): standard correction function for finite expansion of the tube,
expressing the effect on the average velocity of the (.-Hn)th

harmonic of interaction between the kth and mth harmonics.

We recall the equation for the mth harmonic

TZ -i~ (M~ 'CM+~
(8-22)

We may write the left-hand side of equation 8-22 as

d2 w I dw

dy2 + y -dy L(-m+m)c•
2w

The equation describing the correction for the cross-effects between the

9th and mth harmonics is

II
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or

d2w dw ) a2 -R2 AC + a2(mCw +Cw)
y dy COPm co

(8-34)

Inserting the values of wm and w,, given by

x - I i ý'~u

Ae I +I
e A - I L('j-W

into equation 8-34, we obtain

223

+~ h - '-.1

+~OL LL ý/ Ack(n T( 3 ~-
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or

orA

(8-35)

Now we write down a well-known result. The solution of the differential
equation

d2w + dw k2  AJ0 (ky)d-+y2 y y + k~w+ d + w -J 0(2.)

which satisfies the boundary conditions

w = 0 at y = 1

w < -at y = 0

is given by

UY (8-36)

This solution is valid for k # i.

In the above, when we impose the condition that all the correction terms
vanish at the tube wall, y = 1, we are in effect making a further approxima-
tion. Physically, it enforces the ccndition that the motion of the wall is
due to the main -erms only and the correction terms have no effect. Since
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the correction terms are small, this approximation may be adequate. For com-
plete consistency, the arbitrary constants in the expressions for average
velocity which are substituted in the equation should be left "floating" and
the fully corrected solution substituted back in the equations of motion of
the tube. The. frequency equation would then be nonlinear ane the pulse
velocity wouid depend on the particular form of the pressure function. The
same situation will arise if a similar method is used to calculate the inertia
term correction.

The solution of equation 8-35 according to equation 8-36 may be written
as

J 0  L C'Ko23 J6 (O%

[ - ( h- ~-J 0( 3'~~ 1](8-3 7)
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The corresponding average velocity (corresponding to equation 8-37) is
obtained according to

Thus

23/1

-rJ 1 ______ k4 (8-38)

+ the preceding express~on with Z. and mi interchan~ged.

If we use the notation

M (* '11 ( 'X e .)

( t <

I3



i
3

/3. 1k4 J OC

then in amplitude and phase form, we may write equation 8-38 as

+ preceding expression with Z and m interchanged, i.e.,

+ (OC.A) , 
3,'o+ -)

(8-39)

This is the correction factor for w- being the effect of the k th and mth
harmonics on the (z-im)th narmonic.

We will write this correction fa'.tor in more compact form by introducing

the following notation.
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I s I

(8-40)

((f,) F 8-41
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x~ ,• kf1 F (d

240

I +1~(

After some simplification, the right-hand side of equation 8-39 may be written
in the f orm

or 
1tR
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We will now consider the actual (real) form of the (L4u)th harmonic. If
the pressure gradient is in real form, then the real form for the average

longitudinal fluid velocity corresponding to the (14m)th harmonic is obtained
by writing the sum of the complex velocity and its conjugate as follows:

1i ( +M) nt -I

We note that in equation 8-39 the factor R2 /Va 2 may be written as

Moreover, the factors Am and A z appearing in equation 8-39, according to

earlier defined notation, may be written as

A 1 Me 1 mm = 2Mm

A i-M e-iot

since A and A£ are complex quantities.

Thus, when considering only the real parts for the correction to the
real quantity
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corresponding to the earlier correction

we have the correction term

(8-42)

Note that

L 4

AM

In order to evaluate the correction corresponding to the (Z+m)th harmonic, it
is convenient to have a table of E(Z,m) in modulus and phase form.

In the elastic case, the formula for E(Z,m) is

E(k,m) = (-n)[F(Z,m)] + (-nz)[F(m,Z)] (8-41)
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For the limiting condition of very stiff constraint, since

nm

and

11 -1- ,

the above formula for E(Z,m) reduces to the form

E(Z,m) = F(Z,m) + F(m,l)

In the elastic case, the formula for F(k,m) is

1I

C I

F ,' ( X I. ) - M,'1,O -

t M10 ( -)C1-

(8-40)

For the limiting condition of very stiff constraint, since

U 1 1/1

and

the above formula for F(Z,m) for the elastic case becomes
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to,~ (Otw M 'M1J L 0 (0(eM) Q

(8-43)

The formula for F(Z,-m) can be written down at once by substituting -m for
m In equation 8-43. Thus

M, .

{M10(t~2Q 0
to(

(8-44)

The above formulas for the corrections do not apply when either k 0

or m = 0. This can be seen from equa ion 8-37. In equation 8-37, note that1
when Z = 0, the factor in the denominator of the first term will
be zelo. Similarly, when m = 0, the factor [(1+)-9 in the denominator of

the second term is zero.
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The equation describing the effect on the mth harmonic of its own inter-
action has the form

_r +rck - (8-45)

Since the right-hand side is a constant, in analogy with the solution oi
equation 2-li we write the solution of equation 8-45 as

C,~J A r kj ( 3/1LO4 ")

Pvoceeding in the same manner as we did for obtaining the correction
term (8-42) for the solution of equation 8-35, we obtain the correction for
the solution of equation 8-45 in the form

0m0 0E(lnO)l cos {mnt + 4m + phase [E(r,O)]} (8-45')
cO (mnpoj (M]00 m

where

(8-46)

The right side of equation 8-46 is obtained in the same manner as E(k,m) was
obtained for the solution of equation 8-35.
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For the limiting condition of very stiff constraint, the expression
for E(m,O) reduces to the form

it. (oý

2. 10 0

'/2.

(8-47)

APPLICATION TO ARTERIAL FLOW

We now consider the practical application of these formulas. In the
application to arterial flow, four harmonics in the pressure gradient are
usually sufficient. Taking account of four harmonics, from equat-in 8-23 we
write the correction to the steady term of the axial velocity as

A.

Co V~

AO R2

Since the steady term is , we write the corrected average fluid velocity
as

4

Sco ",", =1 )Y V\ r

(Ao• . I_ _ M ._.lJ E ,~-
(8-48)
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If we denote the pressure gradient in real form by M, cos (nt - *i) then
the first harmonic of the average velocity corresponding to this pressure
gradient is, according to equation 6-15

I - 10

or

M- oI f, t (" )

The correction to this first harmonic of the average velocity, w7, is,
according to equation 8-45', given by
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Similarly, the second harmonic of thE average fluid velocity correspond-
ing to a pressure gradient in the form M2 cos (2nt - ý2) is given by

LI M l II L 14

and the correction to this second harmonic, ;2, is
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The third harmonic of the average fluid velocity corresponding to a
pressure gradient in the form M3 cos (3nt - *3) is given by

H II

and the correctf-n tn this is
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The fourth harmonic of the average fluid velocity corresponding to a

pressure gradient in the form M4 cos (4nt - 04) is given by

M~ M Akn4~4IQ I

• to

and the correction to this is

(Cc, 4n 4-nPO
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As an example of the magnitude of a typical set of corrections, a com-
plete calculation has been done for one of McDonald's experiments (Womersley,
1954) on the femoral artery of the dog. Fourier analysis of the pressure
gradient record gave

- •P = 0.159 + 0.774 cos (nt + 0* 39')

az

+ 1.317 cos (2nt - :2* 45') - 0.743 cos (3nt + 260 30')

- 0.414 cos (4nt - 160 39')

These coefficients are in millimeters of mercury per centimeter. The con-
version constant, to bring them to absolute units, was included in the common
factor I/npo. It is not possible to make an accurate estimate of co until
accurate measurements of the pulse velocity have been made over short lengths
of artery, say 3 or 4 cm, over which the diameter is reasonably constant. A
rough estimate of the experimental observations gave a maximum E/R of about 6%.

Since = -Lw Ix - iYJ and the maximum average velocity was 88 cm/sec, this
R co

suggests 600 < co < 700 cm/sec. The pulse velocity, estimated from records
taken on other experiments, suggested a value of co of about 850 cm/sec. Two
sets of corrections have, therefore, been calculated for co = 1000 cm/sec and
for co = 500 cm/sec. These have been carried out for the limiting condition
of stiff constraint only. According to figure 53, the effect of the cor-
rection is not very marked, even for co = 500 cm/sec. The curve for co = 1000
is not shown. In table VII the Fourier coefficients are shown for the uncor-
rected average velocity and the two sets of corrections.

TABLE VII

Values of the Fourier Coefficients for the Calculation of the Average Velocity,
With and Without the Nonlinear Correction for Finite Expansion

Uncorrected Corrected Corrected
co = 1000 co= 500

Coeff. of Coeff. u2 Coeff. of Coeff. of Coeff. of Coeff. ofSm
cos mnt sin mnt cos mnt sin mnt cos mnt sin mnt

1 +19.08 +33.14 20.01 32.44 20.94 31.75

2 -31.78 +14.89 -32.57 15.57 -33.37 16.25

3 -8.79 -10.58 -8.47 -10.69 -8.16 -10.79

4 -0.44 -5.86 -0.15 -5.73 0.14 -5.47
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These rebults indicate that, particularly during systolic flow, the main

effect of the finite expansion of the tube on the rate of flow is the factor

(1 + 2E-) when multiplying the average velocity by the cross-sectional area.

See equation 8-2.
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Figure 53. Variation in average velocity over one cycle in the femoral
artery of the dog, calculated from the observed pressure gradient of
figure 14. FULL LINE, without expansion correction; BROKEN LINE, with
expansion correction and co = 500 cm/sec.
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SECTION IX

CORRECTIONS FOR THE QUADRATIC TERMS IN
THE EQUATIONS OF VISCOUS FLUID MOTION

INTRODUCTION

We start with the Stokes stream function and obtain a general result
which is used for the solution of the equations of fluid motion. As in the
preceding section, we combine the harmonic representations of the pressure
gradient and the longitudinal and radial fluid velocities with the equation
describing the fluid motion and obtain the harmonic components of the longi-
tudinal fluid velocity. We next determine the interactions between these
harmonic components and obtain the standard correction function for the effect
of the quadratic terms in the equations of motion.

A GENERAL RESULT

The correction for the longitudinal velocity due to the quadratic terms

in the Navier-Stokes equations follows the same pattern as the correction for
the longitudinal velocity due to finite expansion of the tube discussed in
section VIII. However, there is one important difference which is indicated
below.

rjnsider the equation for the longitudinal velocity

•,,__= u--, +_+÷
+ U• + 4_ +

(3-i1)
twe-getthe term' ý2wvi,2' sic t~~ 2R2/c2

Twe snce is of order n and write
y = r/R, we obtain

a 2w l aw R2 3w R2 ap R 3w R2  aw- + - =-_+- u + -- w- (9-1)
y ay V at 1 az V ay V 3z

If we substitute the same forms for p and w (as in section VIII) into equa-
tion 9-1, and seek a solution, we find that the functions on the right-hand
side of the resulting equations are (since they contain quadratic terms in
the velocity components) products of three Bessel functions. When we try to
solve these by the method of variation of parameters, the resulting quadra-
tures involve products of three 3essel functions which do not reduce to known
forms. To find the average velocity across the tube requires a further quadra-
ture and the amount of numerical integration required is, at first sight,
' 1dite formidable.
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Our main objective is to find the effect of the quadratic term-, uw

and w aw, appearing in equation 9-1, on the average longitudinal velocity.

Thus, there is an obvious advantage in seeking a method of solution of equa-
tion 9-1 which will give the average longitudinal velocity directly without
the calculation of the velocity profile, w = w(y), across the tube. 1T•s
direct method of calculating the longitudinal velocity consists in using the
quantity defined by

q = w(2y)dy (9-2)
J0

which is in effect Stokes' stream function of the fluid motion.

Before deriving tht detailed equations from equation 9-1, we prove a
general result which will be required for their solution. In analogy with

equation 2-4, consider the equation

dy2 1 y _ i3a 2 w = f(y) (9-3)

where f(y) is a known function of y. The corresponding equation for q is

d2 q _ 1 da + i 3ct2 q = g(y) (9-4)
dy2 y dy

where g(y) f f(y)(2y)dy.

To show this correspondence, multiply equation 9-3 through by 2y and integrate
with respect to y. We obtain

fy 2y d-w dy + IY2 d- dy + 1i3a 2w(2y)dy = g(y) (9-5)

0y~~ dy2 + y gfy)0 0P 0

According to equation 9-2, the third term on the left-hand side of equation
9-5 may be written as (i3 a2 )q.

Moreover, from q = f w(2y)dy

we have dq = w(2y)dy

and d2 2y dw +2w
dy2 = d~ dy
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Furthermore, - y 2w
Thus, the first two terms on the left side of equation 9-4 may be written as

d2q __- - 2y +2-2w 2y (9-6)
dy2 y dy dy +2dy

According to integration by parts,

Ju (1 
-- 41

0

orJ- J (9-7)

From equations 9-6 and 9-7 we note that

dy2  y dy f dy2  d
dy2- 0d•w (2y)dy + J2 y dy =2y dw

We wish to obtain a solution of equation 9-4. One boundary condition,
namely, q=O at y=O, is built into the definition of q:

q = w(2y)dy

0

So the solution of equation 9-4 will be obtained in terms of one arbitrary
constant, A.
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The solution of equation 9-4 under the condition q=O at y=O is

ImJ, 1 (9-8)

Imposing the condition of no slip at the tube wall, w = at y 1, the
candition for determining the value of A in equation 9-8 becomes

dy = 0 at y = 1 (9-9)dy

This follows from differentiating equation 9-2 with respect to V and setting
w = 0. Differentiating the expression for q(y) in equation 9-8 and inserting
y = 1, we find

dJ ] A i"C4

31 NA.~ I

00

+ c

(9-10)
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Solving for A, we have

:1•

We may write the expression for A in the form

A A- dy Ydy - S Ydy

0 0 0

Substituting this value of A into equation 9-8 we obtain:

3/L3

oo J

00
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~J(~JXdj p
B f

00

4 0

- ~ [~ ~iv~iNP ~ '. ~tj)Jckj1~
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At the boundary of the tube where y = 1, equation 9-11 reduces to

I

J,( ( J I•OI " il

II

(9-12)

Equation 9-12 can be put into a more convenient form by using integration by

parts according to

f u dv = uv - f v du

where u = g(y)

du = d[g(y) 3

= *'J "(y) (2y)dy]

= f(y) (2y)

and g(y) = J f(y) (2y) dy
y=0 a0

Moreover, dv Jf(i3/2y)

v = dJ (ai3/2y)dy

-
-I 

j0
y3/~

ci3/2J)
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Thus, from equation 9-12 we have, upon integration by parts

-( -t

3/.1. IA "' ]"

0

o O() (9-13)
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THE HARIMNIC COHPONENTS OF THE LONGITUDINAL FLUID VELOCITY

In equation 9-1 for the longitudinal fluid velocity, we use the follow-
ing harmonic representations for 3p/5z, w and u:

t- -i-)(t

+ k= o+ ..

i•mt- / -</, •t- 2/ct)0 +-

1_/" -
Y1 

-t - 71C

0 I

L - U° +UI- + U+,,

+,YY,(t- z/.c) -w't (t -Y/C%)

02 + +
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In the above representation, u0 = 0, i.e., the radial velocity component has

no steady component and is entirely periodic. w0 is the steady component of

the longitudinal fluid velocity. wl, Wl*, ... are functions of y and not of

z and t. cm is the complex wave velocity of the mth harmonic. We also note

that the steady component of the flow just increases or decreases the amplitude

of the flow and does not affect the frequency.
int

After substitution into equation 9-1 and collecting powers of e , we

obtain the equations for the amplitudes of the harmonic components of the

longitudinal fluid velocity, w. The details are as follows:

•,-_ W + U, + , ..

.,t- /- -,,y-/•t>w e + W 4<,i.(t- -En (

+ d __. + +
'23
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Collecting corresponding powers of e int, we obtain the equation for w 0

1 ..-w du _ -.1 .. e.ud ,_ co u1

_, Co ...... , Rc~ C0IrR, N
cc+c~ _ R t" % R c 0  jJWa

+ + R-.vCO Or1

C. -- 01 1 TF0 UJ U'r

(9-14)

Similarly, the equation for w is:

+ 26
CO {Cv% 4 J(1~T oil4A
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Similarly for the other harmonics.

As with the radial expansion correction (see section VIII), if we sub-

stitute the known forms for urm and wm on the right-hand sides of equations

9-14, 9-15 and other such eqdations for the second, third, etc. harmonics,
they become linear equations and accordingly, the effects of the interactions
between the harmonics can be treated separately. In the next section, we
shall write down the equations describing these individual interactions
between the harmonics.

There are four differenc forms of interactions to be considered. These
are:

1. The effect of the mth barmonic on the steady flow, denoted by W(m,-m).

2. The effect on the mth harmonic of its own interaction with the steady
flow, W(m,O).

3. The effect on the (k-m)th harmonic of the interaction between the

kth and mth harmonics, W(k,-m).

4. The effect on the (m-k)th harmonic of the interaction between the
th kthW(m-.

m and k harmonics, W(m,-k).

Note that W(k,-m) and W(m,-k) are symmetric.

THE EFFECT OF THE mth HARMONIC ON THE STEADY FLOW

The equation describing this form of interaction is obtained from equa-
tion 9-14. Note that we may write

26I +
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The right-hand side of equation 9-14 consists of the sum:

(Poiseuille flow AoR2) + (sum of all harmonic terms).

To take into account the effect of the mth harmonic only, we take only the mth

terms on the right-hand side of equation 9-14. Thus the equation describing
this form of interaction is

C- U +• - (9-16)

u u* dw dw*m m d m
The form of the quantities R ' R 'd and m on the right-hand side of

equation 9-16 are obtained as follows.

S -- I K4 + (3-21)

L 2 L7
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Consider the first term on the right-hand side of cruattcon 9-16;

2. I 2

VI'

, -w •,

Jo(t •J)
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Consider thc second term on the right-hand side of equation 9-16:

c~L JC41

Ck J(,
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Thus, from equation 9-16 we have:

~fJ,( 1 ) H L 'J,( 3 )1
vv,'ci(3/'1L %J*4 h)-

LI -c(___ _ _ 1

A- A

c 1, 1,f 'A, Lc) ]

3/-L 3/'.

- c ( _ __ _ _ _

-< 
'K%

+, L~ 3J (I L I r
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J0~L~o')2. h~_ __ _

c~QLa ) I Ck(~

J/. . C~

MEAL 1L CA JO

In analogy with equation 8-23, we define the standard correction
function as

It follows that W(m,-m) = f w(2y)dy (9-17)
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where w is the solution of the equation

~ VnI ( 0(/L

Now, we multiply both sides of eciiation 9-18 by y and integrate by parts toobtain the velocity w. We find that:

4j (-i t ,IC) ' (.43) •1! K' J•'1"• (L •"'•rjg j-
0J, ( OA Cim)

J_ _j , ( 9 1 8 )

No, e ulipy ot sds f q~aton9-8 y ndinegat b pr74ý-



REAL ~Jo ( IC4 1.) fJO'w 1%
3 -3A

+ L ja j o. -M

We now proceed as follows:

1) divide equation 9-19 through by y;

2) use the recurrence relation

J2(ky)_ 2 J(ky) Jo(ky)
Y 3O(k) k Jo(k) - y Jo(k)

j) integrate to obtain the expression for w.
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Dividing 9-19 through by y we obtain:

.1b

EAL W\(-o<L)) • 4o [ 0t h-,< 1
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i2EL LIT h ' L a

Integrating with respect to y, we obtain:

O'L

+ co•, 4ugate of above

+ (7i(- I
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We may write the above equation as

2.

YAA

(6IL0 J , (C ',

+ conjugate of these two terms

.1 ~ 3/

J0 (i'•-5 4 (L-J(%' 3
(9-20)

In order to obtain the average velocity aLross the cross section of the
tube, we integrate the expression for w in equation 9-20 with respect to v
from y=O to y=l and obtain:

W(m,-m) - w(2y) dy
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Thus,

W(

÷4 C,
L D

CK Cý

together with its conjugate

C6 J/. (9-21)

2E9 J L o/ 
L
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From the relation

2nJ n(x) xJ(x) n+l(x)

for n=l, we may write

joo

or (K8

or -

Ii'o

~~O~ 80I-



In equation 9-21, the sum of the first and th.-d terms may be written as

M~~ t o V

II

L CA

C to
i(-)(.)(c)Mj2.°.

and the conjugate of this result is

The second term in equation 9-21 may be written as

Cý) CC
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and the conjugate of this expression is

The last term in equation 9-21 may be written as

I

r

10 10

Thus, equation 9-21 may be written in the form

II

10 +

( ) I
+ r~ ( )M1  CalJ

4 to

C 10

*I- L k.a•

(9-22)
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In the limiting condition of very stiff constraint, equation 9-22 reduces
to the form

+,Y K M') -~-K to~ _

(9-23)

This correction, W(m,-o), for tl'e quadrdtic terms in the Navier-Stokes equa-
tion is in thA same direction _s the steady stream. The combined effect of
this correction, W(m,-m), and che correction due to finite expansion, E(m,-m),
may be written as

I

-• - Lco \ (Y. + E
,F3 M coi 3 + I CM f- + to

+ 10
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The variation of the correction T(m,-m) as a function of a is shown in
figure 54. From this figure, note that the steady flow is augmented for
all values of a less than 10, but that as a increases further, the effect
of inertia is dominant and the steady flow is hindered by the presence of
the oscillatory terms. The amount of this combined correction, T(m,-m),
for the results of McDonald's work is given in table VIII, where co is taken
to be 10 meters/sec. In McDonald's experiment, the measured steady term was
15 cm/sec. Thus, this correction is about 12%, and by no means negligible.

TABLE VIII

The Combined Correction., T(m,-m), for 00. co = 10 Meters/Sec

1 M 2 Contribution
)2 T to w0

1 2.696 0.537 1.448

2 0.488 0.539 0.263

3 0.031 0.455 0.014

4 0.00003 ......

Total: 1.725 cm/sec.
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T (m,-m)
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Figure 5A. Variation of the Combined Correction Function to
Steady Flow, T(m,-m), with Respect to a.
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thh
THE EFFECT ON THE mh HAMNIC OF ITS OWN INEERACTION WITH THE STEADY FLOW

.•The equation describing the effect on the m th harmonic of its own inter-

action with the steady flow may be obtained by referring to equation 9-15

and considering only the mth term. This equation is

du~~~r Lx Ui~r~V r R ( U,) Ar(.) XL

C d4 ccr

(9-24)

In analogy with the preceding subsection, th:. equation for the standard cor-
rection function is

28

161

+ J I

(9-25)
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Equation 9-25 is analogous to equation 9-3, where f(y) is the right-hand
side of equation 9-25. Solving equation 9-25, we obtain the standard cor-
rection function in the form

I

o t CA Jo Ckot,

V. 0 LLM ThJ.

(9-26)

All the terms in these two integrals can be expressedj in teLms of Jo(fii3/2)

and Jl 1 i3/2). The necessary reduction formulae can be found i, Watson:
"Theory of Bessel Functions," Chapter V. It is, however, simpler and quicker
to evaluate them by direct numerical integration.

We have seen earlier that when the pressure gradient is in real form,

the radial expansion correction for the mth harmonic has the form

1m f M )
E(m,O)= Ico MI•-•]i- IE(m,O)I cos [mnt + m + phase E(m,O)]

c 0  mP1 Jýmnp I m

Similarly, for the pressure gradient in real form, the expression for W(m,O),
descrI~bed by equation 9-26, must be combined with its conjugate. Thus, in
analogy with the expression for r(m,O) above, the complete interaction term

for the mth harmonic is

i- (MO.2) (_4n)cW(m,0)I cos [aint + m + phase W(m,O)]
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THE EFFECT ON THE (k-M)tb RAMONIC OF THE INTERACTION BETWEEN THE kth AND mth
HARMONICS

The equation describing the effect on the (k-m)th harmunic of the inter-

action between the kth and mth harmonics may be obtained by "eference to

equation 9-15. This equation is

d(4 C )

Cc (9-27)

Ii, aaiogy with the preceding subsection, the equation for the standard cor-
rection function is

2288

C 1 ~~ 3/1 ,

L~ tq J(L c ) ____

-3 ) I J '('~h& (-8



Again, the standard correction function, W(k,-m), is obtained, as earlier,

in the form

where f(y) is given by the right-hand side of equation 9-28. Thus

J3Q t__ I__

Jo (• . •)Jo (O"0. 1J
G. LI

289 1.0 -- A

+ f L

3/1i

L oJ (Lb/ 0( in
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In the first, second and third integrals above, we note that

00.

and L ____

'L cy.

Moreover, since C. w..(

we write C(3)
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,o (Cý

10.1ý

Finally, we note that tor the limiting condition of very stiff conqtraint,
the expression fir the correction, W(Q,-m), has the form

L

Ia

__J 4 " ,, .•
31 3 h.

jo ( _'"_C4 _(L CA

J. L 3 / 09
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7

When the W(k,m) are known, the expressions for the corrected components
of the average velocity can be written clown, being similar in form to equa-
tions 8-34 - 8-37, with the W(k,m) taking the place of the E(k,m). The
coefficients multiplying the W(k,m) in these expressions will be the same as
those multiplying the E(k,m) in equatiotns 8-34 - 8-37, except for the W(m,O)
which will be as shown in equation 9-25. Except for the interaction with the
steady flow, therefore, the E(k,m) and the W(k,m) can be combined into a
singlei standard correction fDnctJon, T(k,m). For convenience, tables of
T(k,m) over a full range of values of a up to the fourth harmonic may be
prepared.

In order to make an estimate of the magnitude of the correction for the
same experimental r'z!'-s as in section VIII, the values of the W(k,m) for
a = 3.34, k and m 1 4, were calculated by numerical quadrature. The trape-
zoidal rule was used for integration, one hundred ordinates being taken in
the range 0 g y _ 1. The values of the W(k,m) are given in table IX.

TABLE IX

Values of W(k,m) for a = 3.34

km W RE Wim _JW_ ph{W}

1, 0 0.6745 -0.4100 0.7893 -31.290
2, 0 0.4986 -0.6424 0.8132 -52.130
3, 0 0.3961 -0.7106 0.8135 -60.860
4. 0 0.3369 -0.7423 0.8152 -65.590

1, 1 0.0966 0.3030 0.3180 72.320
2, 1 0.3130 0.64cl 0.7172 64.120
3, 1 0.3110 0.65-5 0.7273 64.690

2, -1 0.2495 0.9197 G.Q529 74.820
3, -1 0.2782 0.4694 0.5371 58.800
4, -1 0.2870 0.2381 0.3729 39.680

3, -2 0.1450 1.4288 1.4361 84.200
4, -2 0.3032 0.9189 0.9676 71.740

4, -3 0.0261 1.7606 1.7608 90.850
2, 2 0.2392 0.2256 0.3288 43.320
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These values of the W(km) were substituted in the expressions for the
velocity components (i.e., those corresponding to equations 8-34 through
8-37 above), together with the components of McDunald's observed pressure
gradient. The resulting values of the coefficients in zhe Fourier serieo
for the average velocity are given in tab]. X. together with the values
of the coefficients when this corre.ction and chat for finite expansion
are corbined.

TABLE X

Values of the Fourier Coefficients for the Calculation of the
Average Velocity, with and without the Inertia Term Correction,

and with the Combined Correction

Quadratic Term Combined Correction
Harmonic Correction Only. Coefficient of

Coefficient of

cos mnt sin mnt cos mnt sin mat

1 22.51 33.94 24.37 32.55

2 -31.56 13.92 -33.15 15.28

3 -7.35 -10.15 -6.72 -10.36

4 -0.94 -5.34 -0.36 -q.95

The average velocity, with the ,'mbined correction, is shown in figure 55.
The full line shows the uncorrected average velocity, and the discrete points
are the values of the corrected average velocity, plotted at intervals of 150.
The correction increases the predicted value of the -ystolic peak by about 5%,
and, moreover, predicts greater backflow. The differences between the cor-
rected and unco'rected values are small, never exceeding 7 cm/sec. Thus,
since these corrections are exaggerated, the value of co (= 500 cn,/sec) taken
being about two-thirds of its real value, these nonlinear corrections would
seem to be an unnecessary refinement.

2
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Figure 55. Variation in average velocity over one cycle in the

femoral artery of the dog, calculated from the observed pressure

gradient of figure 14.

Full line: Without nonlinear corrc-tions.

Isolated points: With combined correction for c 500 cm/sec.
2
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SECTION X

THE "EXACT" SOLUTION FOR OSCILLATORY MOTION
IN THE PRESENCE OF A STEADY STREAM

INTRODUCTION

In the major arteries, the oscillatory components of the fluid velocity
are at least as large as and very often considerably larger than the steady
stream components. A solution for the fluid velocity, taking into account th.Ž
interaction of these two factors and called tne interaction velocity, will be
obtained in terms of a confluent hypergeometr..c function neglecting "he genera-
tion of higher harmonics. It is assumed that the higher harmonics can be ac-
counted for by perturbation theory. Next, under the assumption that the
velocity of the steady stream is small as compared with the pressure-wave
velocity, an approximation to the above solution is obtained in terms of
Bessel functions.

THE INTERACTION VELOCITY WHEN THE STEADY STREAM VELOCITY IS SMALL COMPARED
WITH THE WAVE VELCCITY

We will assume that the pressure gradient, th2 longitudinal and radial
components of the fluid velocity, may be represented respectively as follows:

- •p = A0 + A, ein(t - z/c) (10-1)ýz

w = w0 + w, ein(t - z/c) (10-2)

u = u0 + ul ein(t - z/r) (10-3)

Here, A0 , w0 and u0 are the values of the steady components of the pressure
gradient, w and u respectively. Al, wl and ul are the amplitudes of the
oscillatory components of the pressure gradient, w and u respectively.

From the equation of continuity in the form

1d (ul . y) R (-n-) w, (3-41)
y dy c

we note that

d(uI . y = (--•-) wly
dy 6

2't6



and on integration

uy = 2"-" wj(2y) dy

inR

where q, is the stream function as defined in section IX.

From the earlier expression for the longitudinal component of the fluid
velocity

I- W3rny (2-23)
4/A

we obtain an expression for the steady component, w0 ,

= WQ(y) = A-R2 (1 - y2) (10-4)

where we have used A0 as the value of M for n 0 and 4 - 0. At the center
of the tube, y = r/R = 0 and the value of w0 is

AoR
2

"70Ir=0 - 4

Since the average value of the steady compcnent wc (w0 /2) (AoR 2 /8p), we
may write equation 10-4 in the form

= 2(AoR2•)(1 - y2 ) = 2i40 (1 Y 2) (10-5)

Differentiating equation 1.0-5 with respect to y, we obtain the variation of
the steady component of the longitudinal fluid velocity with respect to the
radius of the tube

dwo 4•0y
dy

Finally, we shall take u0  0
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Substituting the values

(10-1)

0 =

U UO+ (2(10-3)

(10-5)

into the equation for the longitudinal fluid velocity

(9-1)
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we obtain, after some computations, the equation

(10-6)

Now, we set b2  (2w0 /c), and note that the third term on the right-hand side
may be written as

The secord term on the right-hand side has, the form

Since w, = w1 (y), we have upon integration by p'irts

Thus, equation 10-6 may be written in the torm

I(0

- _-

/" (10-7)
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The complete solution of equation 10-7 is the sum of a particular inte-
gral aimd the complementary function. A particular integral of equation 10-7
is (refer to equations 3-16 and 3-17 of section III)

- I fti1\ F1

We now find the complemenLary fnction, i.e., the solution of equation 10-7

+_ +L (

(10-8)

We write equation 10-8 in more convenient form by a change in the independent

va,'_• ble, y, according to

x = bai"/2 V2 (10-9)

and define a constant, y, by

y - b~ 2b-1I)

We consider the fourth term on the left-hand side of equation 10-8 with

x = bril/ 2 y 2 , dx bail/ 2 (2y)dy, 1 2baid/2Y

and lower limit: when y = 0, x 0. We formally write x = x when y = y for

the upper limit of integration. The actual relationship is x = bci/ 2 y2

when y = y. Thus,
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0

and equation 10-8 may be written as

U"I + r

or

-[+ + C _)•

In equation 10-10, the product

bic b 3a2(i b2)Wl bail 2( - - buil 2( _ )W = _ ywI
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Now we shall consider the derivative terms in equation 10-8. From the rela-

tion dw_1 Lhi_ . dy we have dw_-_- =. wl . dx anddx dy dx dy dx dy

d2 wi dwi, d2 x dx d2wl dx =dw d2 x d2 wi dx 2
d-y•• W • yd y •

S dx 2 dy dx d / dy2

From x =balh/2 y2  y AL bail (2y) - bai12 (2) the quantity,

d2wi + Y d), in squation 10-10 may therefore be written as
ly2 + y -dy-

+ L~b"4 Qt 7~j+LAŽ

(- *'-A 0ýA') 4 d

L 'ýt L " +
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and - 4 ~

+

0(1I 1 + Ax
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Thus equation 10-10 may be written as

Ix
4 L Ix Owl] - . o1)dx 0 (.-01

L x dx(01)

Again, for convenience, we substitute

V Xdwi
Vf dx

in equation 10-11 and obtain

4 d (v) - ywI - v dx =0 (10-12)
0

To eliminate the integral sign in equation 10-12, we differentiate throughout
with respect to x and obtain

T-(4uCt -A

or

or

"o + (10-13)

304



This is Whittaker's form of the equation for the Confluent Hypergeometric
Function. We compare equation 10-13 with the general form of the equation
in Whittaker and Watson, page 337, 338.

L+ -+ t 4 0 (10-14)
L. v. I2.-2

Identifying the symbols used in equations 10-13 and 10-14, we find that

W - v, z - x, k - - (y/4), m - 1/2 and the solution of equation 10-14 is of
the form

7-A

+ _ _ _ _ _ _ _ _ -

L~ +

+ +

or

in the notation of Kummer modified by Barnes. Thus,

- F +
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and therefore

-,y

The second solution of equation 10-13 is not required, since dwl/dy = 0 at

y = 0. Therefore, the solution of equation 10-12 is

and the value of C2 must be determined by substitution in equation 10-12.

If this is done, we find that C2 = (4/y)Cl and

f ' (10-15)

0

Defining a new variable

XA

o=o F÷, +• d)

0

(10-16)

by analogy with equation 2-18, the solution of equation 10-10 satisfying the

boundary condition wl = 0 at y = 1 may be written as

Lk~ T, ,,

(10-17)
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The expreasion for the average velocity, r!, is

I

0

at any point y = r/R along the radius Changing variables from y to x

according to x = bail/2 y , dx = bail/2(2y) dy, dx/(2bcil/2 y) = dy and

limits: y = 0, x = 0; y= 1, x f btil/2(1)2 = bcil/2, the average velocity,

wi, taken over the entire cross section from y =0 to y =1 or from x =0 to

x = bail/2 is

£ 4

0

Combining equations

-6LPO(C,- ) Zo(C , ('10-1)

and __ 1 x
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we have

00

S(10-18)

bL2il/2

In the integral f o(~bail/2) dx appearing in equation 10-18,

0
we let

t0 8
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IxI
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Thus, according to the formula for integration by parts, we obtain

IL)' oft) t)

- 1 -

_____ ')t
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THE INTERACTION VELOCITY WHEN THE STEADY STREAM VELOCITY IS EQUAL TO
THE hAVE VELOCITY

As an approximation, we set b - 1 in the earlier relation b2 = 2w0/c

when the damping is very small, i.e., when the axial velocity of the steady
1

stream, wo (•0 = w0 ) is equal to the pulse wave velocity, c. Note that

when b - 1, we cannot use the result obtained in equation 10-19 because of

the factor (1 - b 2 ) in the denominator. So we start with the original equa-

tion (10-10), set b 1 1 and obtain

SL (10-20)

We note that a particular integral of equation 10-20 is no more a constant,
as was obtained earlier for equation 10-10 where a particular integral was

= AjR 2 b = constant. If, instead of the earlier substitution,

x = bcil/2 y2 , in equation 10-10 we now change the independent variable in

10-2 acordng o x=j13/2 2eu3/2 y we have the following re ilts from
equation 10-20. From the first two terms on the left-hand side of equation

a13/210-20, note that with the change of variables, x = 2i '

(j13/2
dx (-)(2y) dy, we have

otf1 etC(

j o 1
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r
For the third term on the left-hand side of 10-20 we have, with the change
in variables,

II

(jf

0

For the limits of integration, we formally write x = x when y = y. iixe
•i3/2

actual relationship is x = y2 . Thus, equation 10-20 may be written as

tx

Y. 6

or

__ - - . (10-21)

0 313
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To simplify the form of equation 10-21, we write x dwl dV
dx dx

and obtain

0

or ci' (10-22)

together with the initial cor 'ions:

II 1 •- oJ JK

The solution of equation 10-22 may be written in the form

Applying the above initial conditions, we find that

23
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thus Vx_____(10-23)iV

dwi = dV
To determine wl, we refer to the earlier substitution, x dx Tdx ' and

obtain Wl = i• dx. Substituting thE expression for V(x) from above,

x . -

U A11 (10-24)~ ~~ic~si~k
UY

0

To obtain the average velocity, ý7, we start with the earlier relationship

"Oail/2

w bail!2 J w, dx s,sibstitute the value of wl obtained above and find

tb at

-- (10-25)

This remarkably simple result, obtained by assuming b = 1, i.e.,
N40 = c, is not likely to have any practical application to arterial flow.
The only place where the steady stream velocity could approach half the
pulse velocity, 2NO + c, would be in the thoracic aorta, where inlet con-
ditions, and possible turbulence, might well nullify the entire theory.
Moreover, since c is always complex, the condition b = 1 can never exist,
except as an approximation when the damping is very small.

APPROXIMATE SOLUTION IN TERMS OF BESSEL FUNCTIONS

This approximation considers the steady stream velocity small as compared
with the pulse-wave velocity. This approximation does not compare the relative
magnitudes of the velocities of the steady stream and the oscillatory flow.
Accordingly. it is desirable to check the limiting form of the solution of
equation 10-18 for b = (2• 0 /c) -÷ 0; i.e., for

Y = bodl/2(l~b _ 1) = 0(il/2(I)-b)÷l

""b52 ) - b)
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When y is large, equation 10-13 reduces to the normal form of Bessel's
equation d2v

v = 0 (10-26)dx2 4x

with the solution v - x1/2J 1 ("y1/2x1/2). Rewriting this result in terms of

y as an independent variable, we obtain

d ux, C(10-27)

which reduces to the solution already known for b = 0. The simplicity of
this equation suggests that we examine it for the range of values of b, over

which it would be a reasonable approximation, .. e., for what vqlues of y is
the inequality, y/4x >> 1, valid. From che relation x = bail/ 2 y2 , we note
that the maximum value of y = r/R is 1. It follows that the maximum value of
x is bcil/2. Thus the inequality y/4x >> 1 with x = bail/2 and

Y bail/2 b 1) becomes

Substituting b2  o we havec

or w < 1<<
c 10
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In the femoral artery, McDonald's results give 0 = 15 cm/sec. The
pulse velocity, c, is not less than 450 cm/sec. Thus, for these conditions,
wo/c = 1/30. However, nearer the heart it is to be expected that w0 would
be greater than 15 cm/sec and the pulse velocity, c, less than 450 cm/sec.
Therefore, practical conditions seem, at best, to be beyond the range of
usefulness of the approximation. This is unduly pessimistic, for a closer
approximation may be obtained very simply by applying the method used in
section IX.

Consider the earlier equation

+L~ L LitJ L d (10-10)

We set a2 =2(l - b 2 ) and write (10-10) in the form

Lai _ L Lty L 01, joi (10-28)

Equation 10-28 includes the effect of the oscillatory component exhibited
by the second term on the right-hand side. The first term on the right-
hand side is the steady stream component. Note that both the terms on the
right-hand side of equation 10-28 have the same algebraic sign. Thus, for
a small steady stream flowing in the direction of travel of the pulse wave,
the amount of oscillatory flow is increased. The total flow is reduced if
the steady stream flows in the opposite direction. If we drop the second
term on the right-hand side in equation 10-28, we obtain

al ~L(LLr J

This equation is the same as equation 2-4, with 3 replacing a. Referring to
equations ?-4 -rnd 2-5, we note that we may wcite down its solution as

. (_ L\ 'u3 (10-29)
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We consider equation 10-29 as the first approximate solution of equation 10-28.

In equation 10-28, since b2 = (2w 0 /c) < 1, i.e., the pulse wave velocity,
c, is much larger than the stream velozity, w0 , the accuracy of the first ap-
proximate solution, equation 10-29, can be improved by taking the first ap-
proximate form for wl, namely,

forming

and substituting on the right-hand side of equation 10-28. Accordingly, we

note that

R2 L~c. ( J1

- 0
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i0t

L -'

Ck L /3
~~1 3/.)

Jo (•"•'

If we write W2 for the correction due to the presence of the oscillatory
components in wl, we may write the equation for w2 in the form

dL. + L L•

(10-31)
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Note that we do not write the term (-AlR2 )/h on the right side of the above
equation, since we have already taken care of this in the first approximate
solution, equation 10-29.

It is not necessary to solve equation 10-31 for w2 and then determine
w2 because we can directly obtain 3n expression describing w2 as follows.
We note that the solution of the earlier equation

w h e r e ' (

and f(y) is a known function of y, is

(L0

By analogy, the solution of equation 10-31 may be written as

34 (10-32)
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In equation 10-33 we use the well-known result

and obtain

LAYA

.32-

icI ((3)
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The value of w2 at the tube wall is obtained by setting y = (r/R) = 1 in the

above equation. Thus

Expressing J3 in terms of J 2 and J1 by means of the recurrence formula

3 (z) 2n J (z) - J (z)

n+1 z n n-i

we have fo- n = 2

j3(z) = 4 - Jl(z)

Accordingly, the bracketed portion of equation 10-34 may be written as

j! () J, (L)2
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Thus we may write

1]/ý -ý - O

In the above equation the expression in brackets may be further reduced by
expressing J 2 in terms of J1 and Jo according to the relation

2

J2(Z) = z J1 (z) - Jo)

and introducing the modulus and phase form for J1/Jo. We note that
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10 (CA) Q . (i MI'

I0

10 (2)

Using the relation J 2 (z) W J 1 (z) 1 Jo(z), the form abovez

may be writtei. P-

i 0) I+~,Z)
326-
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If, for convenience, we write

, / - N _

(p'%) 6 ,- 2(?J., k.ti'7)

.J,

my Jo (L3/a,&1 )

/3 27
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then the last form above may be written as

4L L3 3

It a'aa be shown that the e.cpression

A- ' (10-35)
Lo/k 0 JJU/3k3)oJ. LJI\

is equivalent to the expression

/ 10

L (10-36)

If there were no damping of the pulse wave in transmission, then the
pulse-wave velocity, c, would be real and the effect of substituting 8 for
a in the Bessel functions could be calculated from the available tables.
Since c is complex, the Bessel functions are no longer functions of 13/2,
but of a general complex argument.

If cl is the measuired velocity of the pulse wave, then

b2 = 2wo = 2 wo ci = 2 S- c1 = 2wo . . (Si)
c c1  c c1  c co c1  c Co

20o . (X - 1 = 2W - Y
Cl ~ ~ ~ { (- iy() c

Now a2 = 2( b 2 ) and if we write

a02 a2(l _ 2_O)
Cl
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then 2. C(&)IoF

~('(, 2J) =('~~L 2. JY

- +I _ to first order in 2N0/c,

Cr

I S =- - -- -,-

C',

S!.- 2•-Y 2(-J \ 1' I "- termis containing c1 2i

in the denominator to be neglected.
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Thu - I ÷ i ~oto first order in 27io/ci,

and +-~~' A*i~

If the quantity 2wo/c is small, it is possible to derive an approxi-

mation in terms of known functions by ucing the well-known formula

j (10-37)

T 0

From equation 10-37 we have

for n = 0, 1

330



F!0r T

for n =1, Tn z 0~ 2 1 Tnj~i[(i~

ooO

J 

n

t {J,() Z J-

In the earlier relation

we write

Thus, B = 80X, A = /, and Xz = (-)z. Moreover, I - 2= o Y and
O 2Cl X2

)z 2 i(- 2-)ci33
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Now we consider the term MIO' (8) eie10U() appearing in the expression

(10-36). We note that

!3

jj09 ,Jo

We wish to write the right-hand side of this equation in terms of the
parameter 80.

From ".ne relation = 1 -

we note that when the imaginary part Y = 0, i.e., when damping of the pulse-
wave is absent and c is real, 8 = 80. Thus, when Y = 0,

J, (.L% 3) _ J, (% •/o)

"~L JOI 'J
We may consider the term .,.

as the first term in the expansion of I in powers of Y

where Y is small. The other terms in the expansio of

are given in equation 10-38.
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For convenience, let us denote the function of 81 3 / 2 ,

jl(a13/2)

f(a13/ 2 ) 1 jo(8i/) . It follows that

Consider the Taylor series expansion f(x) = f(a) + f'(a)[x - a]

where 
2. J"

33D



Thus, the expansion of 1 - 2J 1 (81 3 / 2 )
8312J 0 (8i312) may be written in the form

2. L/3 12 J1  L3'

Mo IO t"•

(\J\O
-LC,

- 5 to first order,

and \_/
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Putting all these facts together, we write

i- '° ,J (L"
+ . +k Y J(8() (10-38)

We shall now obtain an expression for the average fluid velocity, ', and
correct to first order in 2 0o/c by combining the two expressions (10-36) and
(10-38). Since the expression (10-36) is itself a first-order correction,
it will be sufficiently accurate to write aO for a in it. Thus the corrected
average fluid velocity may be iritten in the form

+ _'_A + lo(10-39)

where

=,C ' 1 , + .,4÷ 1 . .-

10 5 ~O0

(10-40)
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Table XI is a table of SIO(BO) for 0 o 0 10 at intervals of 0.05.
The first four columns give the real and imaginary parts, and the modulus
and phase of S 1 0 (i0), in that order. The last two columns are the real

and imaginary parts of 1 2J1(Boi3/2)
80 J0 (8 0 i3/2) i.e., the quantities C and Dm of

section II, equations 2-55 and 2-56.

For the experimental results of McDonald, which have been previously used
as an example, the steady component of the average velocity is 15 cm/sec.
Only part of this, however, is generated by the steady component of the pres-
sure grauient. As was shown in section IX, 1.7 cm/sec of this steady com-
ponent of the average velocity is caused by interactions between the harmonic
terms, leaving 13.3 cm/sec generated by the pressure gradient. If we assume
the pulse velocity to be 450 cm/sec, we obtain

2'70 = 0.06 = b2 and 1 1
cj 1 -b 94

From a succession of trial values of 80, therefore, we caiculate the
real and imaginary parts of the expression

1 {l - FI 0 (B0 ) + 0.06 S10 (8O)}

from table VIII of Womersley (1958) for each of the four harmonics. Using
these real and imaginary parts as our values of C and D in equation 2-57,mn m

we find the value of 80 for which the combined oscillatory terms will be
equal and opposite to the steady velocity at the observed point of flow
reversal. In McDonald's experiment, this observed point was at 1250 of
the cycle. The best fit at this observed point was given by B0 = 2.5, cor-
responding to a = 2.58. The coefficients of the Fourier series for 9 are
given in table XI.

In figure 56 we compare these calculated values with McDonald's observed
values. The ordinates in this figure are in flow units, obtained by multi-
plying the coefficients in table XI by the cross-sectional area, the value
of R taken being the same as that assumed by McDonald, i.e., R = 1.5 cm. The
fit to the observations is not improved much by using the "exact" solution.
Except for a slight increase in diastolic flow, as good a fit can be obtained
by using the simple theory with a = 2.7. See figure 56.
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TABLE XI

THE COEFFICIENTS OF THE FOURIER SERIES FOR i

CORRESPONDING TO THE FIRST FOUR HARMONICS

Harmonic Coefficient of Coefficient of
cos nt sin nt

1 21.81 20.74

2 -25.97 18.81

3 -9.73 -8.66

4 -0.28 -3.18

71 Q m I/sec

6

5

4

3

0 600 1200 1800 ,/2400 3000 3600

-2--

Figure 56. Variation in Flow Over One Cardiac Cycle in the
Femoral Artery of the Dog.

Full Line: Calculated from the first-order approxi-

mation to the "exact" solution with a = 2.5.

Broken Line: McDonald's observed values.
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THE APPROXIMATE SOLUTION AND THE FREQUENCY EQUATION

If we substitute the approximate solution for the corrected average
velocity, 4, in the frequency equation, the reduced determinant would have
the form

1 - ýI00(B0) 2 1

1 x l+ax =0

~1
-i0 - 'I0(Uo) -ax k - x + iS (10-41)

where 1 - 4I0(60) = 1 - F1O(8O) + (zwO)So(00) '10-42)

ci

and 1= - (k) 4_k (10-43)

The last term, 0, above, represents the viscous drag due to the steady stream.
Note that the value of 0 is small over the range of values of a which are of
interest. For example, in the femoral artery,

A2 = 7 and 0.03
' Al 8 c

1 A0

so that 0 < 4 Even in the thoracic aorta, assuming the values Lo = 1,

= we find that 0 < - , since a2 = 100.
c 4 100

If we use the same method as in section III, for reduction of the above
determinant, we obtain the quadratic equation

(1 - G2 )X 2 
- 2G"x + H" = 0

1 1 1

where G" = 4k•1- 2 k 4 iT1 - ý10 +2+ 4- +

H" = 1 + 2k
1 - io 1
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For a = 1/2, the effect of the term i0/2 in the expression for G"
(leaving aside the substitution of Pi0(8o) for Fl0 (a), which is discussed
below) will be to reduce the imaginary part of G", and therefore to reduce
the damping of the wave in tranrmission, if the steady stream is in the same
direction as the velocity of propagation. If the steady stream is in the
opposite direction, damping will be increased. In the limiting condition
of heavy loading and very stiff constraint, (k + -- ), the viscous drag of
the steady stream will have no effect, as might be expected.

The effect of substituting *10( 8 ) for F1 0 (a) in the frequency equation
may be studied as follows for the limiting condition of heavy loading and
very stiff constraint. When k + -•, corresponding to the earlier relation,
x - 2/(1 - Fl 0 ), we write x - 2/(1 - *10) so that

(1 - G2 )(1 - No)

)c (10-44)

1 - F10 (8O) + ( 2 lw)Slo(ao)
ci

From equation 10-45 we may, as in section III, calculate the ratio of the
wave velocity to that of the perfect fluid, cl/c 0 , and the attenuation factor,

exp x[ .

The variation of cl/c 0 for the particular value a = 1/2, k --- and
2o0/cl = 0.06 (as in McDonald's experiment) is shown in figure 57, with the
corresponding plot for a = 1/2, k - with no steady component for compari-
son. We observe that the presence of the steady stream raises the wave
velocity by 6% to 8%.

The variation of exp [- 2] with respect to a is shown in figure 58.
x

We observe that the damping of the wave in transmission is practically un-
changed by the presence of the steady stream. It appears to be very slightly
increased. This effect is opposite from that predicted by Morgan and Ferrante
(1955) but in view of the widely different conditions, is not in conflict with
their conclusions.
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Figure 57. Comparison of variation in wave velocity with a for a steady
stream of axial velocity 6/. of the wave velocity with that
for no steady stream.

340



e-27y/x

0.9

0.8

0.6-

0.5 K= -O, b"=0.06

0.4

0.3

0.2
0.1

0 1 2 3 4 5 6 7 8 9 I0

Figure 58. Comparison of the amount of dauping in transmission,
in presence and in absence of a steady stream.

341



For larger values of the factor 2 0 /c, this very simple approximatiot
breaks down, and there would seem to be no alternative to a full-scale tabu-
lotion of the required solutions of the Confluent Hypergeometric equation
a&d an attack on the problem in full generality. Before this can be con-
cemplated, we need measurements of the comparative magnitude of the steady
and oscillatory components of flow in the major arteries, together with
accurate measurements of pulse velocity over short distances, in order to
delimit the ranges of the parameters.
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