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ABSTRACT

This thesis consists of essays on several aspects of the
problem of algebraic simplification by computer. Since simpli-
fication Is at the core of most algebraic man!pulations, effi-
cient and effective simplification procedures are essential to
building useful computer systems for non-numerical machematics.
Efficiency Is attained through carefully designed and engineered
algorithms, heuristics, and data types, while effectiveness is
assured through theoretical considerations,

Chapter 1 is an introduction to the field of algebraic ma-
nipulation, and serves to place the following chapters in per-
spective.

Chapter 2 reports on an original design for, and program=
ming implementation of, a pattern matching system intended to
recognize non-obvicus occurrences of patterns within algebraic
expressions. A user of such a system can "teach" the computer

new simplification rules,

Chapter 3 reports on new applications of standard mathema-
tical algorithms used for canonical simplification of rational
expressions, These applications, in combinations, allow a
computer system to contain a fair amount of expertise in several

areas of algebraic manipulation.



Chapter 4 reports on a new, practical, canonical simpli-
fication algorithm for radical expressions (i.e. algebraic ex-
pressions including roots of polynomials)., The effectiveness of
the procedure is assured through proofs of appropriate properties

of these simplified expressions.

Chapter 5 Is a brief summary and a discussion of potential

research areas.

Two appendices describe MACSYMA, a computer systemn for
symbolic manipulation, an effort of some dozen researchers

(including the author) which has served as the vehicle for this
work,



PREFACE

This thesis describes a number of contributions to the art
and science of manipulating algebralc expressions hy computer.
A1l the experiments were performed using MACSYMA, a computer
system for symbolic manipulation of algebraic expressions now
under development at the Massachusetts Institute of Technology's
Project MAC. The contributions to MACSYMA of some 12 people are
detailed in (31). My contributions are as follows,

I designed and programmed the rationai function package,
the radical simplifier, the semantic matching subsystem, "SoLVE",
the rational "substitution" and "coefficient" routines, and
portions of the supervisor and top-level simplifier. I also
designed and implemented a major revision of the polynomial
package incorporating the fast modular rreatest common divisor
algorithm (3). This revision makes possible the implementation of

the much improved factorization algorithm now in progress (2).

Previous theses which describe parts of MACSYMA or its
logical predecessors ((3n), (35)) have included LISP (32)
listings of the programs used, At this point it is becoming
impractical to include such listings, constituting several
hundred printed pages. Furthermore, such publication is of
doubtful usefulness since listings and an operational system will
be available in the near future to a community of users through the ARPA
computer network. The system presently occupies some 110,000 36-

bit computer words and will undoubtedly continue to Frow,
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Chapter 1 - Introduction
liany persons who are not conversant with mathematical
studies Imagine that because the business of
(Babbage's Analytical Engine) Is to give Iits results
in numerical notation, the nature of Its processes
must consequently be arithmetical and numerical,
rather than algebraical and analytical. This Is an
erruor. The engine can arrange and combine Its
numerical quantitlies exactly as If they were letters
or any other general symbols; and in fact it might
bring out Its results in algebralc notation, were
provisions made accordingly.

--Ada Augusta, Countess of Lovelace
(18u4) ((26), p. 1)

During the past decade, developments in computer hardware
and software have started to accomplish what Lady Lovelace
envisioned over a century ago. By dealing with algebraic
expressions, equations, and functions in terms of their symbolic
representations, without reference to specific numerical values,
computers are alding working scientists and engineers facing a
variety of non-numeric mathematical tasks. Yome of the problems
and potentials of algebraic manipulation by computer, and Its
most central process, simplification, are the topics of this
thesls,

1l.1. Algebraic Manipulation

To illustrate the difference between numeric and symbolic
processing, consider a FORTRAN program which, given A, LU and C,
can apply the quadratic formula to approximate the roots of

2
Ax +Bx+C = 0, A, B and C must, of course, have numerical values
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at run-time. Thils Is strictlyv numerical processing. If A had as
Its run-tine value the expression "Q," B had value "(-PeQ-1),"
ana C had value "P," the FORTRAN program would be useless.
Nevertheless, by applying the quadratic formula symbolically, the
two roots,

“(-PQ=-1) ¢ SQRT(P2020 2PQ+1-4pPQ)
------------..-------;-a----------------------
can be represented. By further efforts, this expression can be
reduced to

(1+PQ +£(1-7p0(Q)
-----------;-a----------

or the two values P and 1/Q. Une computer system for algebralc
manlipulation system, MACSYMA, which Is now under development at
M.1.T's Project MAC (31) and Is the test-bed for most of the work
described in this thesis, can be coaxed Into performing this cal-
culation through the following dialogue. The llnes labelled Ci
are typed by the user, those labelled DI and El by the MACSYMA
system, (This, along with most of the other examples In this

thesls consists of a file produced directly by MACSYMA which was

later merged with the remalinder of the text,)
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(C1) EXP:QeX#22-(1¢P2()eX =@

2
(01) QX =(PC+1)X+P=y

(C2) SOLVE(EXP,X)e@

SOLUTIUN

(e2) -
Q

(E3) X=p

(D3) (E2,E3)

it should be emphasized that all of the work described here
Is wedded to MACSYMA by convenience, not necessity. The tech-
niques which are considered are of interest because of their
relevance to mathematical problem solving In general, and to
algebraic manipulation by computer most particularly. Although
details of implementation wil) differ, the algorithms presented
here should be useful in a number of computer systems now under
development (1). Since it serves as a concrete base for
comparing our techniques with those of other systems, we will
make frequent references to MACSYMA; however, the philosophy and
algorithms, rather than the prograins themselves are really the
topics of Interest. Uetalls of the implementation have been
included when they serve to illustrate particular points in

dealing with problems of algebraic manipulation.
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1.2, Algebralc Manipulation by Computer:
Prospects and Realltles

I fully agree with R. W. Hamming that '"the purpose of
computing Is insight, not numbers." ((38), p. viii).
Mathematical analysis has traditionaliy been preferable to
nunerical anproximation techniques because the result!ng exact
syuwbollic answers often represent a more direct path to insight
than sets of approximate numbers. in the search for insight into
mathematical and physical problems, difficult analytical and
algebralic tasks should be delegated to computers Just as diffi-
cult numerical tasks have been delegated In the past. | belleve
that computers can serve an Important function in analysis analo-
gous to the role they have come to serve both in bringing
numerical analysis to its present state of refinement, and in

producing answers to real problems.

An algebraic manipulation system Is able to rapidly and
reliably "massage" expressions orders of magnitude larger than
ones comfortabiy handled by humans. For example, computers have
demonstrated their facility in handling numbers, hundreds of
digits in length, and equations requiring several pages for
display.

These advantages are falrly obvious. Unfortunately,
attempts to harness these advantages have often ignored a number
of major problems (detalled below) which must be tackled in order
to provide useful services to working mathematicians. Most of

the early "systems" and "1anguages" for algebraic manipulation,
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having falled to consider these problems, disappeared shortly
after their introduction. In many cases, the relevant problems
were not yet recognized, much less solved., An unfortunately
large nunber of newer efforts in algebraic manipulation systems
have fallen into the same traps (e. 8., (32)) and have not recog-
nized the significant contributions of many of the researchers of
the past ten or so years. Some have taken the attitude that a
slightly more flexible prograaning language is all that is needed
to suddenly open up the realm of algebraic wanipulation capa-
bilities. These researchers (most often prograrming language
designers) should examine their clalms in the light of thgﬁ
Formula Algol (37) experience:; namely, that language feaﬁﬁres
alone, regardless of their variety, do not make a usefqi
algebraic manipulation system. Algorithms (23) and daéa
structures are riost important, and unless these are carefully
considered, researchers entering the field will continue to
repeat the mistakes of others; they will stand on the feet,
rather than the shoulders, of the earlier contributers,

We do not wish to embark on a survey of algebralc
manipulation systems since there are several easily accessible
references. One Is the exhaustive annotateu bibliography of the
field begun by Jean Sammet and continued by John llyman (42).
dince many of the listed papers are of historical interest only
(even many recent ones, for the reasons given above), a rore

selective source on recent work is a better introduction to the
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field. W.A. martin, in (30), critically surveys the progress in
algebraic manipuiation systeins up to 1967. Max Engeli. in (11),
gives his vicws on achievements and problems in the field to
1968. it is an indication of the rapidity of change in the field
that some of the break-throughs mentioned by Engeli have been
eclipsed by rmore recent developments. (Specificelly, calculating
factorizations and greatest common divisors can now be done much
faster than by using methods mentioned by Engeli.) Perhaps the
most useful index to the field to this time is the "Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation"
(March, 1971) (1). it is a collection of tutorial and research
Papers describing important current work in most areas of the
field. Chapters 2 and 3 of (his thesis were presented at this

symposium in slightly different forms (14) (31),

1.3. Problems and Goals

To some extent the major problems in algebraic manipulation
depend on one's viewpoint, The broad view Is to look at
algebraic manipulation as a problem in artificial intelligence,
the eventual goal being the construction of an expert
mathematician (e.g. see (31))., The view taken here is much more
limited, but can be considered as a prelininary to the broader
problem, We wish to provide a too! capable of performing a wide
range of services for a mathematician or engineer. These can

perhaps best be envisioned as a spectrum of facilities ranging
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from a fancy desk=calculator, to (in some specific areas) an
expert problem solver,

The system has facilities for Indefinite precision integer
and rational number a-ithmetic and finite field (modular (9))
arithmetic, in addition to the usual floating=point facilities of
a modern digital computer. It has the ability to perform all
elementary cperations on multivariate polynomials and ratlional
functions. It is capable of factoring polynomials, finding their
greatest common divisors, calculating partial fraction
expansions, derivatives and integrals of rational functions. It
can perfor:a routine substitutions, transpositions, etc, It
incorporates the most efficient algorithms available, and may
have several methods for performing a task, providing different
types of efficiency, or efficiency over a wider domain than is
possible with a single method.

As we understand larger classes of functions and oper-
atlons, the practical power of the system will be axpanded.
Radlcal expresslons (e.g. roots of polynomials) constitute one
class which has been added to MACSYMA by this author, Recent
addlitlons Include inequalities, polynomlal arithmetic over finite
flelds, and power serles generation and manipulation,

Further along the spectrum toward an expert mathematiclan,

we can envision an ideal system as follows. It understands
scientific notations and can he taught speclal notations., It Is

clever at presenting results In easily readable form. It can
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understand instructicns (e.g. an algorithm presented as an Algol
procedure) and follow them precisely. it can learn new nethods
for solving problems, but it already knows how to apply a large
number of procedures (algorithmic and heuristic) which are useful
for solving differential equations or sets of linear equations,
finding indefinite or (lwproper) definite integrals, limits, etc.
it has large amounts of da:a (e.g. tables, textbooks, sinpli=
fication rules) at its disposal, and can be told to modify them
for particular purposes. it will (if required) save all its
calculations, and keep track of generated data for future
references, 1t will (if required) provide additional information
(e.g. timing data, Intermediate results, pro:edures used) about
the methods applied to solve the problem. It will work
interactively with the user, or perform long calculations
(correctly) in its "master's" absence. it understands enough
about the problem domain to detect inconsistencies Iin its

instructions and will balk &+ meaningless expressions or

operations (e.g. divison by zero). It can numerically evaluate
expressions and produce plots of functions.

e do not pretend that this view is, In fact, a listing of
sufficient components of a modern algebraic manipulation system,
nor do we claim that any Implementation of such features will
model the Internal structure of a mathematician., \le do feel,
however, that the facilities noted above are important goals for

a system like MACSYMA, Furthermore, a reasonable number of these
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goals have either been achieved, or are being approached.

MACSYHA is a large hierarchical computer system run in an
interactive, time-shared environment, The real-time response of
such a system is, we believe, necessary if a computer is to
assume the role of a mathematical assistant., The user interacts
with HACSYMA through its supervisor, a program which accepts
character strings in a language resembling Algol =60, These
character strings are parsed into LiSP (33) s-expressions and
passed to the programming language evaluator. This, along with
the general simplifier, forms the heart of the systew. The
supervisor calls upon the rest of the resources of the system in
carrying out the requests of the user,

Host corviands invoke specific command programs which in
turn draw upon the lower level routines to evaluate, process,
sinplify, and otherwise produce an answer, which is then returned
to the supervisor. The supervisor displays the answer in a two-
dimensional textbook=-=1ike format, and waits for the next user
command, Generally some side effects will also occur, corres=
ponding to the assignment of values to variables, the definition
of programs, the setting of switches affecting future systen
behavior, etc. Uther available side-effects include additional
displays of expressions of interest and X-Y plots of numerical
values. The commands draw on a wide range of facilities oriented
about the several aata types within HACSYMA., These facilities

include algorithms for setting up and manipulating variable-
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dimensioned arrays of symbolic elements, algorithms for
performing definite and indefinite integratlioan, algorithms for
calculating limits of functions of a real variable, algorithms
for the efficient manipulation Af power series, polynomials, and
rational functions. Additionally, a subsystem for the intro-
duction of pattern-directed transformations on algebraic expres=
sions Is included. Appendix |, The Language and Commands of
MACSYIMA, offers specific examples of the forms in which these
facilities are avallable. At present, the desk-calculator end of
the spectrum is approximated by the facilities in MACSYMA while
the more esoteric components are approximated only in some quite
specific areas. Figure 1.1 indicates, in basic outline, the
present components of MACSYIMA and their interdependencies. The

rectangles indicate subsystems which are still under development.

l.4. Specific Goals of the Thesis

This thesis is primarily a discussion of several
facilities, designed and implemented by the author, which augment
the abilities of I1AC>YiMA, and In several cases, provide capabil-
ities unique among current algebralc manipulation systems.
Chapters 2 and 3 are concerned vwith the engineering of better
algebraic manipulation systems, while chapter 4 presents the
theoretical basis for some of the algorithms.

Chapter 2 discusses a user-level semantic matching

capability, as implemented in MACSYMA. This subsystem consti-
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compiler, Through this facllity a user can specify new Infor-
mation and algorithms to the system in a manner which Is conclise,
general, and straightforward. By simple top-level cormands to
the semantic matching subsystern, new programs are compiled and
adjoined to the basic structure of the system.

By taking advantage of the semantic properties of algebraic
expressions, diverse expressions are recognized as occurrences of
the sane pattern. For example, a semantlc pattern for "quadratlc
in x" matches both 3#x#+2+l and (x+1)*(x+G),

Patterns are created hy declaring variables to satisfy
predicates, and then composing, out of these variables, expres-
sions which serve as templates for the pattern matching process.
Efficiency Is achieved by compiling programs corresponding to
each pattern.

Specific examples show how this recognition capablility is
used In augnenting simplification rules and in writing algorithms
for the solution of differential equations.

Uther systems with related capahilities are compared with
regard to their implementations and natching strategies.

Chapter 3 Is concerned with expanding the usefulness of
algebraic manipulation svstems by taking advantage of canonical
simplification programs. in this case we refer speclificaily to
the rational function and radical canonical forn facilities.
First the data types and basic facilities are described, and then

a nurniber of new results are presented. The vase with which these
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can be used is a result of a critical design decision that algo-

rithms (regardless of their origin) should be able to interact
easily with the special data types available in MACSYMA. The new
facilities include a routine to solve for a variable in an
equation which is more powerful (in a practical sense) than that
of any other system; programs which are more sophisticated in
their ability to substitute values for sub-expressions which
occur implicitly in a larger expression; and programs, used
extensively for pattern matching, capable of finding "coef-
ficients" (suitably defined) in an expression,

Chapter 4 describes our radical canonical simplification
algorithm, With this, many algorithms can be successfully applied
to larger classes of expressions than had previously been
possible. The theoretical results behind the approach are
developed, and compared to the work of Caviness (5) and others.
The simplification proce&ﬁre itself is shown to be quite
practical (in contrast to Caviness'), and for many purposes, at
least as useful. Extensions to exponential and logarithmic
situations are pointed out and those which can be implemented at
reasonable cost have been added to the algorithm,

Chapter 5 summarizes the current capabilities, both
theoretical and practical, of computer aids to non-numerical
mathematics, and then discusses research problems which appear at
this moment to be both interesting and important from our point

of view,
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The twc main appendices serve as documentation for parts of
the MACSYMA system. They are not intended to be complete, since
MACSYMA will be in a continual state of development for at least
several years. Appendix | describes the outward view of some of
the MACSYMA commands. Appendix |l describes the MACSYMA rational
function package in sufficient detail to make its transfer to
other LISP systems simple, The rational function package is of
particular interest in that it is self-contained, and sufficient

for many polynomial "crunching'" tasks. It includes a number of
particularly efficient algorithm:, and may be of interest to
mathematicians who prefer to dispense with the amenities provided

by a total system in order to make more core storage available.
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Chapter 2
The User-Level Semantic llatching Capability in MAGSYMA

2.0 introduction and Overview

When corplex algorithms are coded in an algebraic manipula-
tion language, it is sometinmes advantageous to supplement the
command language with a pattern recognition capability. in
effect, a pattern recognition facility sirulates the action of a
human mathematician who, by examining the structure of a fornula,
decides on his next step. it is to our advantage to make this
recognition capability relatively independent of the particular
style in which the forrula is expressed. in particular, such
details as whether products are distributed over sums or not,
should, in some cases, be irrelevant to the matching process.

Consider the problem of solving linear differential equa-
tions with constant coefficients. Cefore we can apply our
knowledge in any generally useful manner, we must he able to
recognize when a given expression is an equation, a differential
equation, a linear differential equation, and a linear
differential equation with constant coefficients. Because pattern
matching can perform this type of decision-making which might
otherwise require human intervention, it is an important adjunct
to a computer-aided mathematical laboratory. Uften, only when the
computer can recognize a given pattern and its components, can it

proceed to the next step in processing. Furtherriore, pattern-
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matching capabilities are essential to building useful additions
to a mathematical laboratory. Through pattern matching, new sim-
pliflcation rules can he described, non-standard transformations
can he made, and algorithms extended.

This chapter describes pattern matching facilities designed
and implemented by the author for NACSYMA., Comparisons with
other systems with regard to both implementation and strategy are

included, as are many examples.

Patterns can be considered lexical entities, as in SNOBOL
(12)., Inside an algebraic manipulation system, such arbitrary
strings of characters, e.g. /A+)(=X+*, are rarely useful. The
input=line editor of MACSYMA and the parser's lexical routines
are the only portions of the system concerned with more-or-less

arbitrary strings of characters.

Patterns can be considered syntactic entit'es, as In FANOUS

(16) or ALBIT/S (8). Although syntactic correctness Is necessary,

it is not sufficient for algebraic expressions to be meaningful,
For example, 0++0 (using FORTKAN notation) is syntactically
correct, but semantically unclear. A syntactic pattern for
"quadratic in x" would match expressions of the form

asxe*2 ¢+ hex ¢+ c, but might fail to match the expressions xs*2

and (x ¢+ 1)*(x + 6), which are, however, quadratic functions of

X,
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Patterns can be considered semantic entities, given a
suitable context. ¥e will be concerned primarily with the context
and semantics of algebraic expressions. A semantic pattern for
"euadratic in x" should match 3ex«*2 + 4 or (x + 1)«(x + £), but
should not match asx«*2 + bex + sin(x), which is not a quadratic

function of x.

The notion of using the semartics of an algebraic expres-
sion requires explanation, Some properties of ordinary addition
and multiplication can be usefully included in the design of a
program intended to recognize algebraic expressions as instances
of more general patterns. For exanple, knowledge of the fact
that addition Is cormutative and has identity 0 and the fact that
multiplication Is commutative and has identity 1, clearly
fuproves the probability of finding a mapping between parts of a
pattern and instances of that pattern in an expression.

in addition to these elementary properties, it is particu=
larly useful for us to work with the fact that for any poly-
nomial, P, a unique form can be derived such that the coefficient
of any variable in P to some integer power can be found. Over a
larger class of expressions, a simplified form will often display
this characteristic of having "obvious" coefficients with respect
to sub-parts of the expression.

We will refer to these, and similar properties of algebraic

expressions as semantic properties. Uy the use of the semantic
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notions already mentioned, a pattern A+*X+B might be matched to
the expression X, with A matching 1, and B matching 0,

Additional semantic notions become riore difficult to choose
(and implement in a systematic fashion). For example, interpre-
tations involving exponents rwust be carefully restricted to avoid
conflict. Thus, if the pattern A+*+«B is to natch the expression
1, either A is 1 and B is undeterriined or B is 0 and A is non=-
zero, some (somewhat arbitrary) decisions concerning acceptable
values for A and B are necessary. [ACSYMA riakes such a decision,
which is described in the first appendix to this chapter.

lle have chosen to implement the arithmetic interpretations
of our matching programs using basically these semantic notions.

A less elaborate interpretation would prevent us from
matching a pattern A*X+8 to the expression X, with A matching 1
and B natching 0,

A 1ore expansive interpretation of the possibilities leads
into difficulties: allowing the coefficient of X*+3 in the
expression X«*2 to be 1/X; allowing 2+*n to match the expression
0 with n matching negative infinity, etc.

The exact limits chosen for any given Implenientation's
ability to enlarge upon the elemental syntactic statement of a
pattern has been, and will, no doubt, continue to be largely
pragmatic,. Furthermore, it is our belief that any attempt to
produce a concise formalism for a pattern matching interpreter is

bound to unnecessarily 1init the power of the implementation.,
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Those matching formalisms cannot take advantage of the many
useful, but non-systematic "tricks" which can be cleanly added to
a pattern matching programn. Therefore we will continue to take a
pragmatic approach to semantic pattern matching, and try to
reveal the reasoning behind our design features, and the methods
used to irmplement them.

e will refer to those pattern rnatching programs with
facilities which take into account at least the basic properties
of addition and rultiplication, as serantic,

Historically, Slagle's SAINT (43) and lioses' SiN (35) were
the first demonstrations of a significant application of semantic
pattern matching: large classes of expressions were mapped into
forms with known integrals. Other, rnore general applications,
some of which are detailed below, range from adding new opera-
tions and simplifications to an algebraic manipulation systen, to
recognizing and solving special cases of differential equations.

The facilities used for pattern rmatching by Slagle and
ioses were not user-oriented, By contrast, the programs described
here give the IIACSYNA user a powerful and sophisticated semantic
matching capability, and the tools by which he can introduce
these capabilities into the command level of the system and into
his wn programs. Of the other algebraic manipulation systems
currently in use, It appears that only Hearn's REDUCE (19) has a
user-level natching facility. REDUCE glves the user (through the

LET cormiand) a linmited matching facility which is considerably
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restricted in its power by its emphasis on efficiency. For
example, patterns which are sums are not permitted. FAMOUS (16)
and Formula Algol (37), neither of which is currently in use,
provided matching facilities, which (as we shall see in section
8), were syntactic, rather than semantic in approach.

In sections 1 to 4, methods for defining patterns in
HACSYMA are described, largely through examples. Section 5
discusses MACSYNA's ilarkov algorithm-style (pattern-replacement)
programning facility. Section 6 considers the problem of
introducing new simplification rules into MACSYMA efficiently and
effectively, Section 7 demonstrates how these techniques can be
used to introduce rules for non-commutative multiplication., Sec-
tion 8 critically examines the pattern-matching facilities of
SCHATCHEN, REDUCE, FAIOUS, and Formula Algol, and compares them
to MACSYMA's facility., Questions of strategy and implementation
are considered. Section 9 considers applications of pattern
matching to solving differential equations. Section 10 suggests
other areas of usefulness in rathematics and man-machine
communication. These sections are supplemented by appendices to
this chapter: Appendix | contains precise, extended definitions
of the matching procedures; Appendix Il includes an example of a
match program as compiled by the system; Appendix 11| considers
the problem of defining classes of expressions over which
matching prccedures can be considered effective -- that is, under
what circumstances a pattern match can determine membership in

fornally defined classes of algehraic expressions.



2.1. Predicates and Declarations

An Intultive pattern for a quadratic In x Is
Asxxx2 + Bex ¢+ C vhere A, B, and C are pattern variahles which
can rmatch numbers or other expressions free of the variable X. In
addition, A rnust not match zero, otherwise linear expressions
would be Included in the domain of the pattern.

Clearly we must he able to insist that variables in a pat-
tern have certain characteristics (e.g. are nonzero or are free
of x); that is we pust be able to make the success of a match
dependent on the matched values satisfving predicates.
Predicates (for our purposes) are prograns which return either
TRUE or FALSE. In practice, we consider anything other than FALSE
as TRUE., Patterns themselves are predicates since they return
FALSE If applied to a non-matching expression. Predicates can
take any number of arguments (usually at lesst one) and can be
defined In LISP, (in which HACSYMA itself Is written) or in the
HACSYNA programaing language, which resembles Algol 60,

FREEOF(X,Y) is a predicate with two arguments, X and Y,
which answers the questlion, "Does the expression Y depend expli-
citly on the varfable x?" Thus FRECOF(A,A*+2+B) 's FALSE;
FREEVUF(A,C+SIN(D)) Is TRUE. TRUE(X) Is a predicate which is
always TRUE. This is useful because it Is convenient to allow

some varliables to match anything. [INT(X) Is TRUE when X Is an

integer.
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FREEOF, TRUE, and INT are already defined in the standard
HACSYHA system. We might define NONZERO by the program:
NONZERO(X):= IF X=0 THEN FALSE ELSE TRUE(.

The function SIGHUM(X) returns =1, 0 or +1 respectively if
X<0, X=0, or X > 0, SIGNUI', we should note, expands its
argument using MACSYMA's rational function routines (see Chapter
3). This produces a form which is canonical over rational func~-
tlons (up to the order of the variables) and allows us to
uniquely deternine a sign for the coefficient of the highest
power of the main variable (in the numerator). Thus it knows that
the following expressions are negative: =4, =X, =X - Y, =(1 +« X).
Whether X = Y is negative or not depends on which variable (X or
Y) the rational function package has been told is the main
varlable. It wll) choose a main variable itself |f necessary,

The only expression whose SIGNUM is 0 is 0., Using SIGNUL we
can define:

NEGATIVEPREL(X) := IF SIGNUM(X)==1 THEN TRUF ELSE FALSEC,

A few more predicates which are used in examples to follow
are:

| NRANGEC(LOV,HI,VAR) := IF (LOW ¢ VAR) AND (VAR < HI) THEN TRUE
ELSE FALSEG

NONZERUANDFREEUF(X,Y) := IF NONZERO(Y) THEN FREEOF(X,Y) ELSF
FALSEU.

To associate a pattern variable with a predicate, ve have
the DECLARE command. It has the form:

UECLARE(n.am,D.Led.Lca.Lc(ml, eee, arg )) e, (n 2 0)
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For example,
DECLARE(A,FREEUF(X))u
DECLARE(A, I NRANGE( N, M) ) ¢
DECLARE(A, TRUE) @

Note that the last argument of each predicate Is missing
from the declaration. The value matching the declared variable
will serve as the final actual argument. Thus If A were declared
WUNZERO and an attempt were made to match A with X+*2 + 3, then
WUNZERO(X#%2 + 3) would be evaluated. Since the result would be
TRUE, the match would be successful, and A would be assigned the
value A**2 + 3,

The binding tines of the arguments to DECLARE rust be
clarified. The first argument is not evaluated; thus
DECLARE(A,..) affects the declaration of A, even if the value of
A is b+ 2, The second (predicate) argument to DECLARE is
treated as an undeflined function: if we were to change the
definition of INRANGE to some other function of three argunents,
it would not be necessary to redeclare A. The extra argzunents to
the predicate (aLxl, eees ArL,) are hound at the tirme the
predicate is applied. Thus if A were declared to be FREEOF{X),
and the value of X at some later time were Z, an attempt to match
A current with that assignnent would invoke a test to see If the

potential rmiatch for A wiere dependent on Z.
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2.2, Match Cefinitions

The DEFHATCH coiwiand defines a new program (a predicate)
which will succeed only if a particular semantic pattern is
matched. The DEFMATCH cormand has the forr:

VEFHMATCH(programname, pattern, patternvar., ..., patternvar )¢
(n2 0).

For example,

DEFNATCH(LINEAR, A*X + B , X)¢
DEFMATCH(F3, X+ 3 + F(X,Y,5), Y)i
DEFHATCH(CUSS 1P, CUS(N*Pl) )&

-

These examples will have different interpretations
depending on the declarations (or lack of declarations) for
A,B,%,N, and F. The result in :ach case wil] be a program with
name programname (e.g. LINEAR, F3, COSSiMP) which will test to
see if the pattern pattern (f.e., A*X + B, etc.) can be applied to
its first argurnient. The program will have n additional arguments,
corresponding to the patternvars.

During the execution of these resulting programs,
undeclared variables (i.e., those variables not appearing as the
first argunent in a DECLARE command) in the paitern are lambda-
bound to the values in the program invocation if their names are
among those variables listed in the DEFMATCH cormand, Variables
not listed among the naxsggnxa;i's are bound to their values in

the environment at execution time. At the successful conclusion
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of a match, declared vartables will be assigned the values that
they match, and a list of the assocliations of variables and their
values Is returned.

An extended example should clarify this. The lines labelled
Ci are typed by the user, the lines labelled DI are typed by the
computer. Lines terminated by a § suppress printing of the
result. Lines terminated by an (¢ result in a computer generated
display of the answer.
(C1l) DECLARE(A, NONZEROANDFREEOF(X))$
(C2) DECLARE(D,FRECOF(X))$
(C3) DEFMATCH(LINEAR,A*X+B,R)(C
(D3) LINEAR

(C4) LINEAR(3*Y+4,Y)¢
(D4) (B = 4,A = 3,X = Y)

(C5) LINEAR(Z#*Y+l4+X,Y)U
(D5) (B =X+ 4,A=17, X =Y)

At this point the value of A Is Z, the value of B Is X + &,
If the value of X previous to line C5 had been 4, the answer
would have been (B = 8§,A = 2, X = Y),

The X on line D4 Is a completely separate entity from the X
on line C5, in that the first is like a formal parameter to a
subroutine, and the latter Is a global variable with the same
naie. This distinction should be apparent on 1ine D5.

The patternvar's may appear In the declarations also.
Thus:
(C6) DECLARE(A, INRANGE(N,I))$
(C7) DEFMATCH(UBETWEEN,A,N,M)C
?S THE PATTERHN

(C8) BETWEEN(5,1,6)0
(D8) (A = 5,N = 1,li = 6)
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The message following line C7 is from the DEFMATCH
compiler, indicating that it had evaluated A to see |f perhaps
A's value was the intended pattern, in this case, the value of A
was A, thus the message, "A IS THE PATTERN" is printed. The
kattern in the DEFMATCH command is generally not evaluated, since
this (with its substitution of values for variables) tends to
make patterns disappear. However, if (as in this example) the
pattern is an "atom," or single variable, then it 1s evaluated.
This allows a user to coripose an elaborate pattern, say as a
result of a computation, and then give its name to the DEFMATCH
corviand, rather than having to type it in all at once, If A had
had the value B + L, the wessage "B + 4 IS THE PATTERN" would
have been printed.

Wow that we have shown how pattern prograns are defined, we
can clarify the use of the predicate TRUE. Recall that declaring
A to be TRUE means that A in a pattern will match anything
occupying the appropriate position in the expression. Thus
(C9) LECLARE(A,TRUE)$
(C10) DECLARE(B,TRUE)$
(C11) DEFMATCH(G,A*X+B*Y)y
(C12) G(3*X+lnYeyuX)y,

(D12) (B = j,A=J+ 3)

This illustrates another principle in matching patterns,
Af A is undeclared and not a pattern variable, A In a pattern
will match only A's qurrent value. (If A has no value, then

MACSYIA provides "A" for the value of A, As a special case,

constants uatch only themselves.)
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2.3, Selectors

Sorietimes it is not sufficient to find out whether or not a
predicate succeeds on a given argument. Sometimes we wish to not
only test, but separate components of a pattern which in ordinary
circumstances would remain indivisible. lie wish to permit a
special form of predicate which (1) confirms that a subexpression
satisfies a predicate, and then (2) hands back to the pattern
program riore information than just "the predicate succeeded." \ie
will call such programs, when used in the place of predicates,

selectors. The selectors that are of the greatest interest to us
here always "succeed" in one form or another, hut in so doing,
return a particular part of the expression which is being
matched. Aiding us in this venture is the convention that any
result which is not "FALSE" is true.

Consider the predicate INTEGER., it returns TRUE when
applied to an integer. A corresponding predefined selector,
WHULE, returns only the integer part of a number. Another
selector, FRACTIUONPART, might be defined:

FRACTIONPART(X) := X = WHOLE(X)S

It would then have to be designated a selector by:
SELECTUOR(FRACTIONPART)S.

A dialogue would look like this:

(C1) FRACTIGHPART(X) := X = WHOLE(X)$S
(C2) SELECTOR(FRACTIONPART)S

(C5) DECLARE(A,WHOLE)S
(C4) DECLARE(D,FRACTIONPART)S
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(C5) DEFMATCH(SEPARATE, A + B)$
B
MATCHES ALL N

B + A
(C6)SEPARATE(S5/2) ¢

1
(D6) (A= 2,8 =-)

2

The nessage following line C5 would normally indicate an
error. Here it signifies that B's predicate (or selector) will be
applied to what is left after A's predicate (or selector) is
applied. Here, this is what is intended, but note that if both A
and B had only predicates, SEPARATE would mat~h one of them to 0
in every case. The following caution should be observed: if a
selector is used, a corplementary selector should generally be
used with it, since, for exanple,

(C7) DEFHATCH(F3,A)S$
?S THE PATTERN

(C8) F3(5/2)¢
(D8) (A= 2)

results, The "fractionpart" has (perhaps unintentionally) been
discarded,

Another selector provided by MACSYMA is NUMFACTOR, which
selects the numerical factor from a product (or 1, otherwise)., A
complementary selector, OTHERFACTOR rilght be defined hy
OTHERFACTOR(X) := X/NUMFACTOR(X)S
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Other selectors provide facilities for picking out items In
a sum or product one by one. The notion of "extractor" in Formula
Algol is weaker than this, in that extractors can only he used to
attach labels to syntactically distinguishable subexpressions.
Thus the numerator of a fractlon can be labelled through
"extraction" but the "whole part" of a ratio of two numbers

cannot be labelled through Formula Algol.
2.4, More Hatch Detalls

Patterns can be more complicated. For example, with A and B

declared TRUE, the pattern 3+wA + Bwelh will match

weel + 3ewz with A=2z , B =w
wewl ¢+ 1 with A=0, B=w
3ewz with A=2z, 0 =20
3 withA=1,8=20
1 with A=0, B =0,

The expression 10, (which is 3#+2 + 1lw*4) will not match.
The exact limitations of the exponentiation treatment are
described in this chapter's Appendix 1.

Any pattern, or part of a pattern, P which Is entirely free
of variables which are declared and as vet unmatched will match
any expression E such that (when all free varlables are given
their assigned values) £ - B = 0. To some extent this type of
match depends on what algorithm Is used to simplify the result of

the subtraction. Ordinarily the MACSYNA simplifier Is used, but
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rational simplification (see Chapter 3) is used when coefficlents

are being picked off, since expansion is often needed to produce

proper results. ile feel this Is very important If we are to abide
by our belief that the semantics of the expression, rather than
the syntax, Is the important aspect to rwael in pattern matching,

Thus the following dialogue is possible:

(Cl) DECLARE(A,NONZEROANDFREEOF(X))S

(C2) DECLARE(B,FREEOF(X))$

(C3) UECLARE(C,FREEOF(X))$

(C4) DEFMATCH(QUAD,AtX*22 ¢+ BeX + c, X)s

(C5) QUAD((Z+1)=(Z+2),2)¢

(DS) (c s 2'8 = Z,A = l'x = Z)

Rational simplification must be used to compute (Z+1)+(Z+2) -

(Z+#243+7+2), to convince (UAD that the match has succeeded. This

Is the only effective r - .hod at our disposal if we wish to

implenent such matches as C5. The additional rational sinpli=

fication is not particularly inefficlent, since the coefficient
routines described in Chapter 3 have already converted the
expression to a canonical rational form,

DEFMATCH has produced in QUAD a program which operates as
follows. QUAD(E,X)

a. Picks out the coefficient of Xw+2 in E, and If the coefficient
is free of X and non-zero, assigns it to A, otherwise returns
FALSE.

b. Sets £ to E = AeXwe?2

c. Picks out the coefficient of X in E, and if the coefficient iIs
free of X, assigns it to B, otherwise returns FALSE.

d. Sets E to E = BeXx

e. If E is free of X, assigns E to C and returns a list of the
values A, b, and C, otherwise returns FALSE,
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lmplicit in this algorithm are several basic principles of
semantic pattern matching. For example, line (C5) above demon-
strates that coefficients in an expression should be extracted
semantically (i.e. the coefficient of Z must be extracted using
the semantics of the operators + and +).

(C6) QUAD(3+Xww2el,X)@
(D6) (C=3,6=0,A=3)

Line (C6) demonstrates that summands In the pattern which
are plssine in the expression are matched with 0. This is what
happened to the terr B*X in the QUAD pattern. Furthermore, If a
m“hmmmmnn,mgimimmmn. Thus
for B*X to match 0, B must match 0,

(C7) QUAD(X#*2+3aX+y,X)(
(D7) (C= 4,8 =3,4=1)

That is,mmmmmﬂmmmﬂm-
sion are matched with 1. This assigns to A the value 1,

Since DFFMATCH actually produces short programs (e.g.
QUAD), the matching programs may be compiled by a LiSP compiler
into machine code for increased speed. The program, QUAD, pro-
duced above, is shown in this chapter's Appendix Ii.

To help prevent the user from asking for ambiguous matches
(where they can be detected), the match compiler used by DEFIMATCH
has a nunmber of warning nessages. Generally they indicate points
where there is a likelihood that the user has submitted a pattern

which is anbiguous, or could be more suitably constructed for
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optimal matching. In general, patterns shovld be expanded so that
the full freedom of commutative operators can be exploited. The
pattern xe*2-yes*2 will match a wider range of expressions than
the pattern (x+y)+*(x-y), The latter will match only expressions
which are the product of two suris of the specific syntactic Form
used. This asymietry with respect to patterns and expressions
(the expressions x+eZ-ye*2 and (x+y)*(x=-y) will be treated
identically by rost pattern programs) is a consequence of the
fact that it is far easier to multiply out sums and pick out
coefficients, than it is to factor polynomials. Ve allow either
pattern however, since it is possible that the latter, strictly
syntactic match (1ike those avallable in Formula Algol or FANOUS)
might be of some use anyway.

Since backing up (i.e., abandoning assignments of values
and trying new ones) is not done in the matching process, the
user should consider whether his intentions will bhe properly
represented. (hile a back-up algorithm could have been adopted,
the potentially great increase in cost, combined with no
assurance that the user would be happy anyway, make such an
aﬁproach somewhat unattractive., (It should be said, however,
that in cases where heurlstics and back-up are part of the
processing itself, as in early stages of SIN (35) it may be
convenient to use the pattern matching program for the basis of
heuristics.) There is the further argument that pattern=-match

problems can be easily constructed which are undecidable (in the
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Turing-Church sense), so back-up will not solve all our problems,
SCHATCHEN uses back-up; back-up is expensive, and as is demon-
strated by the examples in this paper, the lack of back-up is

often not even noticed. This is discussed further in section 8.

An example which demonstrates how backing=-up might be
implied by a pattern follows:
(C1) DECLARE(A, TRUE)S
(C2) DECLARE(B,FREEOF(Y))3
(C3) DEFMATCH(NEEDBACKUP, SINCA)+SIN(B))$
(C4) NEEDBACKUP(SIN(X)+SIN(Y))$

The final line may match with (A = Y, B = X); but, iIf A = X
is tried first (succeeding), and then B = Y |s attempted, the
pattern will fail.

One method of circumventing this difficulty Is as follows:
(RETLIST returns its argument list as a sequence of equations,
":" Is the assignment operator, and [] Is used to enclose a list

consisting of local (i.e., "dummy") variables within a BLOCK.)

(C1l) DECLARE(A,TRUE)S
(C2) DECLARE(B, TRUE)S
(C3) DEFMATCH(PAT,SIN(A)+SIN(B))S
(Ch) DOESBACKUP(Z):=iF PAT(Z)=FALSE THEMN FALSE
ELSE IF FREEOF(Y,B) THEN RETLIST(A,B)
ELSE BLOCK ([TemP],
TEMP: A,
A:B,
B: TEMP,
RETLIST(A,B))S

The purpose of the fancy ELSF clause In C& Is to reverse the
assignment of values to A and B in the returned list, Thus, while

a consclous design decision was rmade to prevent back-up, the
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possibility of sirmulating it, when necessary, is available.

The fact that we insist on completely directed or
"anchored" (12) searches in a pattern is both a strength and a
weakness, Some patterns are inherently ambiguous, and al)
pessible types of matches must be explored. This is the case in
symbolic integration. If such ambiguous patterns are the rule,
rather than the exception, we would be seriously inconvenienced

by having to simulate back-up (as above), in every case.

Arbitrary n-ary functions may be used in a pattern, as iIs
illustrated below:
(C1l) UECLARE(F,TRUE)S
(C2) DECLARE(X, TRUE)S
(C3) DECLARE(Y, TRUE)S
(C4) DEFMATCH(E2,F(X,Y))s
(C5) F2(POINT(3,4))¢
(D5) (Y = 4,X = 3,F = POINT)
It is also possible to execute
(CG) F2(N+y)e
(DG) (Y = 4,X = 4,F = 1PLUS)
This gives a facility for explicitly matching operators,
if, for example, F is declared to match only MPLUS. This facility
could be used to simulate sirpler styles of pattern matching

which are completely syntax based,
2,5, Markov Algorithms

Users of a mathematical laboratory may find that certain
algorithis lend themselves to an organization based on the larkov

algorithim formalism: a list of rules, each consisting of a
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Pattern=replacement pair Is applied to an expression, FAMOUS
(16), PANON-IB (7), AMBIT/S (8), Formula Algol (37), and SNOBOL
(12), among others, are based on such a formalism, In order to
allow MACSYMA algorithms to be written in such a style, a command
to define rules, DEFRULE, is provided, along with sequencing

algorithms, The form of the DEFRULE command Is:

DEI'RULE(LMsnmomoLﬂELMM)@-

If the rule named rulename is applied to an expression (by
one of the APPLY programs below), every suhexpression matching
the pattern will be replaced by the replacement. All variables in
the replacement which have heen assigned values by the pattern
match are assigned those values in the replacement which is then
simplified. The rules themselves can be treated as programs which
will transform an expression by one operation of pattern-match
and replacement. if the pattern fails, the value of the rule is

FALSE.

2,5.1 Applying Rules

tach of the programs described in this section applies Its
rules to the expression indicated by its first argument,
recursively on that expression and its subexpressions, from the
top down.

APPLYl(g,L', L,s0000L,) applies the first rule, r,, to the
expression ¢ until it fails, and then recursively applies the

same rule to the subexpressions of that expression, lef’=to-
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right, until the first rule has failed on all subexpressions,
Then the second rule Iis applied In the same fashion. When the
final rule falls on the final subexpression, the application is
finished.

APPLY2(g, L, /L, see,k,) differs from APPLY1 in that If the
first rule, r falls on a given subexpression, then the second Is
applied, etc. Only if they all fail on a given subexpression Is
the whole set of rules applied to the next subexpression. If one
of the rules succeeds, then the same subexpression is repro-
cessed, starting with the first rule,

APPLY1 corresponds to Formula Algol's (23), (37) one~hy-one
sequencing mode, and APPLY2 corresponds to its parallel
sequenicing mode (with the inessential difference that Formula

Algol processes from right to left),
Thus if R1, R2, R3, and R4 are rules defined by DEFRULE, a

program might be written using them as follows:

PROGRAM(X) : =APPLY1(APPLY2(X,R3,R4),R1,R2)$

and the Markov-style algorithm represented by PROGRAM could be
executed on the expression Y by

Z: PROGRAM(Y)Q

2.5.2 An Example

Here is an example of using rules to alter an expression,
The symbo! S Is used as an abbreviation for ez, RATSIMP (see
Chapter 3) expands an expression into a ratio of polvnomlials and

cancels common factors, and the symbol % always denotes the rmost
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recently displayed expression.

DEFRULE(R1,SECH(Z), )/COSH(Z))$
DEFRULE(R2, TANH(Z),SINH(Z)/COSH(Z))$
DEFRULE(R3,SINH(Z),(S-1/S)/2)s
DEFRUJ.E(R&4, COSH(Z),(S+1/S)/2)$
SECH(Z)#*2+TANH(Z) *»2Q

2 2
(D5) TANH(Z) <+ SECH(Z)

(C6) APPLY1(%,R1,R2,R3,R4)E

e lalatel
(2 X2X2 X2 X2)
W& W N
Nt ot "t

(D6) ceccacce 4 Sccccca=

(C7: RATSIMP(%)Q

2.6, Advising the Simplifier

When the user of a system like MACSYMA introduces new func-
tions or uses old functions in a way that is unfamiliar to the
system, he may find himself battling certain "built-in" aspects
of MACSYMA.

On one hand, he inay find that the SIMPLIFY program does not
simplify expressions the way he wants it to, While he can work at
odds with the simplifier to some extent by using Markov-style
algorithms on his data, the global and all-pervasive influence of
the simplifier must sometimes be modified. Although the user

could just turn off the simplifier, this solution is probably not
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very useful, The chances are that he still wants the simplifier

to work on most of the expression under consideration, but not on
some particular part in some particular fashion.

On the other hand, he may find that the SIMPLIFY program Is
just ignorant of functions of interest to him. For example, a
user may wish to see SINH(0) replaced by 0 whenever it occurs,
especially if it occurs inside a calculation. He may also wish
to tell the simplifier that X**N is 0 for N greater than some
number M. This, in effect, allows one to truncate while doing
arithmetic on power series.

For these reasons, an advising facility, similar in cercaln
respects to Teitelman's ADVISE (44) has been implemented. There
are two couniands to advise the simplifier: TELLSIMP, and

TELLSIMPAFTER. They have the following forms:

TELLSIMP(pattern, replacement)@
TELLSIMPAFTER(gattern, replacement)®

The arguments are similar to those of DEFRULE, but the
pattern must conform to certain restrictions described below.

TELLSIMP analyzes the pattern, and if it is either a sum, a
product, or an atom (i.e. a single variable name or a number) |t
will complain. Sums and products are excluded by TELLSIMP because
of the interdependence of the simplifier and the matching pro-
grams in this implementation. TELLSIMPAFTER, discussed at the

end of this section, has no such restriction.
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The exception for atomic variables is necessary because the
advice is stored on the property list of operators, where
SIMPLIFY looks for it. SIMPLIFY does not look on the property
list of variables for simplification advice. This restriction,
however, Is hardly important, since setting a variable to its
"simplified" form will glive the same effect.

The simplification of sums and products should probably be
attacked in ways other than through TELLSIMP gr TELLS IMPAFTER.
it is simple (but somewhat nalve) to suggest that (sin x)«*2 +
(cos x)*+2 ==)> 1 be told to the simplifier as TELLSIMP
(SIN(X)**2,1-COS(X)**2); what Is really needed Is a facility that
demands the presence of both sines and cosines, and removes them
In appropriate circumstances. All the above rule does is remove
sines In favor of cosines, sometimes.

TELLS INPAFTER(SIN(X)##24C0OS(X)*+2,1), although a legal command,
does far less that the user may think. For example, it leaves out
the possibility of a third term in the sum (e.g..
5¢sin(y)**2+cos(y)*+2), it does not back up (e.g.,
sin(y)#*2+cos(2+y)*+2+sin(2+y)++2) and it does not detect
instances of the pattern Iimplicit in such constructions as
sin(y)**he2esin(y)ev2ecos(y)er2+cos(y)**k, lhile patterns may be
constructed for some of these expressions, it Is our opinlon that
such substitutions as sin(x)**2+cos(x)*+2 ==)> 1 require much
stronger methods than pattern matching, Methods for doing such

simplifications effectively are available in the rational
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substitution faclility of MACSYMA described in chapter 3. In it
the approach used by REDUCE to handle products (17, p. 8), is
implemented, but is extended to deal with sums also.

TELLSIMP piles new advice on top of old advice, but old
advice Is still accessible If the new advice Is not appropriate

(il.e. the pattern fails), This is exhibited in the following

example.

(C1l) COS(PI)@
(D1) COS(PI)

(C2) TELLSIMP(COS(PI),~1)@
=l

IS THE REPLACEMENT

(D2) COs

(C3) Cos(PI)Q
(D3) =1

(Ck) COS(=-Pl1)a
(DW) cos( - PI)

(C5) MPRED(X):=IF (SIGNUIH(X)==1)THEN TRUE ELSE FALSES

(C6) DECLARE(M,MPRED)$
(C7) TELLSIMP(COS(M),CUS(=M))$

(C8) CUS(=PI1)Q
(D8) -1

(C9) COS(5+PI)d
(D9) Cos(5 PI)

(C10) DECLARE(N, INTEGER)S

(C11l) TELLSIMP(COS(N*PI), (=1)*+N)$
(C12) COS(5+P1)Q

(D12) -1

(C13) cos(-b6)a
(D13) C0S(6)
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The dialogue above shows (D1) that the simplifier (at that
time) did not know the rules about pi (=3,1415+), if we tell it
that the cosine of pi Is =1, it can (D3) simplify COS(Pi) to -1,
Line (D4) demonstrates that the simplifier did not know about
cosine being symmetric about 0. Lines (C5)=(C7) add this bit of
information, as evidenced by 1ine (D8). Line (C11), which makes
superfluous the advice of (C2), but not of (C7), adds the capa-
bilities shown In (D12). (C13) shows that the old advice is still
accessible.

One of these rules happens to coincide with a "bullt-in"
simplification COS(G) = 1, since N+*P| for N=0 matches 0;
however, since the answer will be (-1)++0, the ordinary operation
of the simplifier underneath will not be affected. (System-
defined simplifications will be tried, but only if none of the
advice is applicable. Note that If any of the advice Is
applicable, the replacement part of the advice will have already
triggered a further simplication, if such Is possible.)

TELLSIMPAFTER Is similar to TELLSIMP except that new rules
are placed after old rules and "bullt-in" simplifications,
Because of this, TELLSIMPAFTER cannot be used to drastically
alter the action of the simplifer, whose "built=in" simplifica-
tiuvns take precedence. On the other hand, these restrictions make
it possible to apply TELLSIMPAFTER to sums and products.

TELLSIMPAFTER should be used on "built-in'" operators

whenever possible, since such rules will be applied only If the
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same operator is still the lead operator after the previous sim-
plification has been performed. if the lead operator has been
changed, all "after" rules are bypassed, producing faster opera-
tion,

2.7, Hon=-Commutative Multiplication

At this time, a standard non-commutative multiplication
simplification program is not generally included in MACSYMA.
There are several different programs availeble, but it may be the
case that none of them does exactly what is required in a given
problem area. This section describes how one might add a fairly
extensive hand-tallored facility by using the TELLSIMP commands.
The group operation, represented by a period (.), is allowed by
the parser in anticipation of the time when an efficient non-
comwtative multiplication scheme is programmed in LISP. (Since
the same symbol is used to denote the decimal point of a floating
point number, extra parentheses nay sometines be required to
avoid misinterpretation.)

Telling the simplifier about non=commutative multiplication
requires a bit of knowledge of the internal representation, The
input A.B is parsed to ((MCTIMES) $A $B), that is, a prefix
representation (although with certain peculiarities of no
importance to this discussion). The fact that MCTIMES is a binary
operator rather than a "varl-ary" operator will complicate mat-

ters somewhat. We will abbreviate ((MCTIMES) $A $B) as (. A B).
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The input A.B.C or (A.B).C is parsed to (. (. A B) C), but
A.(B.C) is parsed to (. A(. B C)). Clearly one of the first Jjobs
of the "MCTIMES" simplifier is to transform the second structure
into the first. To do this (in effect, telling the simplifier
about the associative law), we
DECLARE(A,TRUE) S
DECLARE(B,TRUE) $
DECLARE(C, TRUE) $
TELLSIMP(A.(B.C),(A.B).C)$

As an example of how this operates, consider (A.B).(C.D).
This Is parsed to (. (. AB)(. C D)) which Is then simplified to
(.(.(. AB) C) D). Since the simplifier iIs recursive, any depth
of forced nesting is untangled.

Any time two identical elements are adjacent, we want to
combine them. That is, A.A = A ; nore generally, A .A = A
Since our pattern matcher is clever enough to recognize A as an
occurrence of A , this one pattern would suffice, but for one
difficulty: although A.A Is parsed to (. A A), B.A.A is parsed to
(. (. B A) A)., These two situations differ sufficiently with
respect to adjacency of the A's so as to require the two paiterns
below.

DECLARE(N, TRUE) $
DECLARE(M,TRUE) $
TELLSTMP( (A1) ,(AeaR) ,A*e(M+N))$
TELLSTMP(B,(Av#ti), (A*+N),B,Av+(M+N))$
Let us denote the inverse of A by INV(A), and the identity

by 1. We might then have
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TELLSIMP(INV(1),1)s
TELLSIMP(INV(INV(A)),A)S
TELLSIMP(INV(A.B), INV(B).INV(A))S
Recall that these pieces of advice are placed on the pro-
perty list of the function INV, and so are independent of the
previous bits of advice, which are on the property list of ",",
Another piece of advice which will he needed goes on the
property list of "#e" -- this time, after other simplifications
have been made:
TELLSIMPAFTER(INV(A)*=N, INV(A**N))$
The major fact concerning inverses is their "cancellation"

property. That is, A.INV(A) = INV(A).A = 1, To automate this, let

n m J k
us consider the more general situation, (A ).INV(A ) = A *iNV(A )

where at least one of j or k is 0.

Let us define MONUS(N,1), which will compute J and k:
HONUS(N,M):= |F NDM THEN N-M ELSE 0$
and INVPROG(A,N,M) which will compute the right hand side of the

above reduction formula,

INVPROG(A, N, 1) : = A'0M0NUS(N,M)'INV(A"MONUS(M,N))S
Thus:

TELLSIMP((A**N) . INV(A*#M), INVPROGCA,N,M))$
TELLSIMP(INV(A**M), (A**N), INVPROG(A,N,M))$
TELLSIMP(B. (A**N) . iNV(A**M) B, INVPROGCA,N,H))$
TELLSIMP(B. INV(A*#*M) , CAv*N) , B, INVPROGCA,N,1i))$

Finally,
DECLARE(N, INTEGER) $

TELLSIMP(N,.A,N*A) S
TELLSIMP(A.N,N*A) S



gives us such useful notions as left and right zeros, identities,
and rnultiplication by scalars., It may appear that we have left
out some items, for example,

TELLSiMP(A**0,1)$

TELLSIMP(INV(A)*20,1)$

TELLSIMP(1.A,A)$

but this is not so. Since 1.A will be converted to 1*A, which
will be simplified to A, the last rule is unnecessary., Since A++0
will (unless we tell the simplifier otherwise) always result in
1, the other two are =1so unneeded.

As examples of how this new simplifier operates,
X.iWV(X)*+2 js simplified to INV(X), and A.B.(B**3),C.INV(C) is
simplified to A.B**4, This last example used about .7 seconds of
machine time when the simplification rules were in uncompiled

LISP (on a PUP-10 computer using 2.75 microsecond cycle time
memory), and when compiled by the LiSP compiler, about .05 sec.
2.8. Comparisons with SCHATCHEN, FAMOUS,
REDUCE, Formula Algol

SCHATCHEN (35), Moses' matching program is similar to our
matching program in many respects. However, there are significant
differences, both in implementation and in philosophy, between
the two systems,

SCHATCHEN demands patterns in a form resembling the
internal form for expressions. it uses controls (called riodes) on
the pattern match to direct its highly recursive matching pro-

cesses. Our "straight-1ine" matching programs preserve some, but
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not all, of the aspects of the mode facillty.
A SCHATCHEN pattern corresponding to the intuitive notion

of '"quadratic in x" discussed in section 4 fis:

(QUOTE
(PLUS
(COEFFPT
(A
(FUNCTION
(LAMBDA (Y) (AND (FREE Y (QUOTE X))
(NOT (EQUAL Y 0))))))
(EXPT X 2))

(COEFFPT
(B (FUNCTION (LAMBDA (Y)
(FREE Y (QUOTE X)))))

X)
(COEFFP

(C
(FUNCTION (LAMBDA (Y)
(FREE Y
(QUOTE X))))))))
This is not in the best possible form for SCHATCHEN, but it
serves to illustrate several points. First, the pattern is
written as a LISP S-expression which, upon close examination, has

most of the components of a prefix representation of the

2
algebraic expression AX +BX+(. Second, there are a number of

extra notations in the pattern, some of which clearly depend on
LISP's version of the lambda-calculus. A less obvious point is
that the pattern implies an ordering on the subtasks required to
match it to an expression.

There are two modes, COEFFPT and COEFFP, used in this
pattern. They stand for "coefficient In plus and times" and

"coefficient in plus" respectively, and their uses are best
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described through an example.

' 2 2
Consider the quadratic, Q = 2X + YX + 3 + Z. There are

2 2
two terms involving X . For the pattern AX + BX + C to match Q,

A must match 2 + Y, This is indicated to SCHATCHEN by using the

indicator COEFFPT. This modifies the action taken to match A by

causing SCHATCHEN to traverse Q looking for coefficients of X
and assigning to A the simplified sum of those coefficients,
Similarly, by matching B with mode COEFFPT, B is assigned the
simplified sum of the coefficients of X (or is assigned zero if
there are no coefficients, as is the case for Q.

SCHATCHEN requires that C in the quadratic pattern be
matched using the mode COEFFP (that is, "coefficient in plus") so
that in Q, C will match Z + 3, and not just one term (e.g. Z or

2
3). Since AX and BX have been previously deleted from the ex-

pression by the matching procedure, C (by virtue of jts being
indicated a COEFFP) will match what is left in the sum, namely 2
+ 3,

SCHATCHEN also provides opportunities to apply predicates
to A, B, and C; in this case they each are checked to make sure
they are free of X. A is also checked to assure it is nonzero.

Compared to the relatively casual definition of QUADRATIC
in section 4, using these controls requires a high level of
awareness on the part of the user, both of the representation of

data, and the operation of SCHATCHEN. This burden of awareness is
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considerable. However, SCHATCHEN matches differ from the matches
done here in a more fundamental sense. We find a particular
subexpression and apply a predicate. if the predicate fails, the
match fails. In a similar situation, SCHATCHEN wil) try to find
another subexpression which nmatches the subpattern, which might
satisfy the predicate. The match fails only if this exhaustive
search fails to find any subexpression natching (and satisfying)
the subpattern.

This difference, which would seem to indicate that
SCHATCHEW is more powerful, is somewhat deceptive. We use more
powerful tools to find an appropriate place to apply a predicate,
and then apply it only once. (The coefficient-finding rcutine we

2
use can find that the coefficient in (2x)(3x+1) of x is 6;

SCHATCHEN would fail to notice this.) There is an increase in ef-
ficiency since the programs produced by the match compiler are
"straight-line" code, and apply predicates (assuming success)
only as many times as there are distinct variables in the pat-
tern. In case the pattern fails, fewer predicates are applied.
The number of times SCHATCHEN applies its predicates is much more
dependent on the expression. While SCHATCHEN has certain types of
iterative facilities within a single pattern, the prograrming
language facility in IMACSYMA can supply sone of the same
iterative machinery, as in section 5.

There are sone instances where SCHATCHEN is undeniably rore

thorough (within the scope of a single pattern): if the pattern
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B
is A and the expression is 1, efther B matching 0 gor (B's

predicate failing) A matching 1 will cause the pattern to
succeed. We insist that A match 1 and B match 0.

TELLSIMP gives essentially all the power of FAMOUS for
flexibly altering an algebraic simplifier, yet allows one to have
a quite competent 'fall-back" facility. While using TELLSiMP
excessively on commonly used operators might make the system run
as slowly as did FAMOUS, It is unlikely that that point will be
reached either frequently or quickly, Using TELLSIMP on new func-
tions (e.g. SINH) does not affect the speed of the simplifier on
old Functions. The technique of compiling rules achieves a modest
level of efficiency; using the LiSP compiler further speeds up
processing. Of course, advice requiring much computation (e.g.,
replace INV(A) where A is a square matrix, by its computed
inverse) will slow up the simplifier in direct proportion to the
length of the computation, and how often it is done. Easy advice,
in this user's experience, has not caused a noticeable change in
system response. More precise measurements can be made, of
course, but very little unnecessary system degradation is
introduced by the particular techniques used. (Some timing data
appeared at thke end of section 7). Furthermore, the TELLSiMPAFTER
facility, potentially far more efficient than a last-in first-out
rule organization, is available.

It is clear that flexible pattern matching results in an

enormous decrease in the number of rules required to achieve a
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given match, Consider the rules that would be required to define
"quadratic in x" in a purely syntactic manner, as in FAMOUS or

Formula Algol:

xe#2 arxXken?

X*®e2 + x arxe*2 + x

xXe*®2 + bwx arxe«*?2 + bwyx
X**2 + ¢c arx«®2 + C

Xe*®*2 + x + ¢ Arx**2 + x + C
X**2 + bex + ¢ arxet?2 + hex + ¢

This also assumes

(1) + and » are commutative with respect to the match;
(2) a, b, and c may be declared free of x;

(3) a, b, and c may each match more than one term;

and (4) the minus sign is not a separate operator,

This is not meant to imply, however, that restricted styles
of matching are never appropriate. By using restricted matches,
Fenichel was able to justify his contention that arbitrary and
precisely specified algorithms could be constructed in FAMOUS.
Itturiaga (23) used similar techniques in Formula Algol to pro-
duce somewhat more practical results, but the syntactic (rather
than semantic) nature of Formula Algol pattern matching prevented
the tackling of difficult problems in a natural fashion. FAMGUS
and Formula Aigol insist that expressions look very nearly 1ike
the pattern which is used to match against them. Fenichel's
"super-match'" proposal, implemented in (32), changes each single
pattern into a large number of similar patterns by trans-

formations of commutative operators (etc.). This is scarcely an
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improvement in efficiency, and appears to be useful only as a
shorthand in writing out long rule sets. By contrast, our
semantic approach can match quadratics which do not resemble any
of the above twelve forms,

Dependence on local syntactic transformations, another
major thread in FAMOUS, has serious implications relative to ef-
ficiency. For example, the ad hoc treatment of "logsum" ((IP)
page 42) was necessary because local information, in some Zases,
has to be propagated outside of its immediate vicinity. (The
logsum device separated sums into logarithmic terms and non-

logarithmic terms. If the sum occurred in an exponent, the log

(x+log(y)) X
term became a coefficient of the base. Thus e ==y e ,

If the sum was not in an exponent, a great deal of time

has been wasted.) Waste of this sort is avoided by MACSYMA (and
no doubt in other algebraic manipulation systems not tied down to
local syntactic transformations) by considering such analyses in

a top-down fashion. This provides sufficient global context to
distinguish sums occurring in exponents from sums occurring
outside exponents.

To the concept of spatial or syntactic adjacency must be
added the concept of adjacency along semantic dimensions. For
example, if the properties of an exponent are adjacent to its
base, then an efficient local "logsum" device might be
constructed. In the expression f + g + h, it is clear that f and

h should be considered just as adjacent as f and g. What is less
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clear is how one might note that f and g, belng integer-valued
functions, make them adjacent along a semantic dimension.

MACSYMA allows information to be stored at operator nodes
in the internal tree representation of expressions (e.g. "this
expression and all its subexpressions are simplified") which has
some aspects of this semantic dimension. This "property list" of
operators has turned out to be an extremely useful design
decision, one with applications to many difficult implementation
problems. The types of information stored on these nodes will no
doubt pecoine imore varied as MACSYMA continues to grow,

Another thread in FAMOUS is reliance on the Markov
algorithm formalism. It is clear that some algorithms, (e.g.
synthetic division of polynomials) are difficult to program in
such a formalism, These algorithms benefit not only from a
different style of program organization, but also from a
radically different data representation, Fenichel, by not
modeling any sophisticated polynomial manipulation capabilities,
implicitly recognized this limitation.

In summary, FAMOUS and Formula Algol cannot compete with
MACSYMA with regard to efficiency or ease of use in algebraic

manipulation on several grounds:

(1) the lack of a competent base simplifier (FAMOUS assumes
nothing about the characteristics of its data, and cannot assume,
therefore, that any particular simplifications would always be
valia; Forinula Algol nas only trivial built-in simplifications.,),

(2) the inflexibility of the rules (a consequence of their
syntactic, rather than semantic, nature),

(3) inefficient rule-sequencing techniques (they have no
equivalent to TELLSIMPAFTER),
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FAMOUS has additional problems because of:

(4) its requirement that *he Markov algorithm formalism, and
data types appropriate to it be used for all manipulations,

(5) the absence of facilities for global! communication,

REDUCE has, in addition to objection (2) above, another
problem, It considers the user-supplied rules only after it has
done its own simplifications, Therefore a rule Xex| ==> 0 for all
I wiil not prevent X#*0Q ==)> 1, the action taken by the simpli-
fier. Furthermore, REDUCE does not allow sums in rules at the
top level. KEUUCE, although probably more efficient within its
domain (19), would require considerable programming to extend it
to the realm of non-rational functions, a domain treated
routinely here.

Finally, It is not certain that a closer model of
SCHATCHEN, including back=-up, but (of necessity) closely tied to
the internal representation, would greatly aid a user (except
perhaps a system programmer), considering the burden It would
impose. The benefits of our implementation are clear: we glive a
user error and warning messages, the selector facility, and easy-
to-use methods for declaring variables and defining patterns. For
the most part, he can remain lgnorant of the subtleties of LIiSP
and the data representation (a sharp contrast with SCHATCHEN),

and yet define powerful, flexible patterns.
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2,9, Differential Equctions
The following example of a dialogue with MACSYMA
illustrates the usefuiness of pattern matching in constructing
more useful programs. We wish to program the solutior of ordinary
linear first-order differential equations, i.e.

oY
FOX) (==) + G(X)*Y + H(X) = ¢
UA

where F, G, and H are functions of X, but not of Y. The solution
can be written in terms of integrals, as demonstrated by the pro-
gram defined on line C6, below. (Details of the programming
syntax are descrioea in appendix | co this thesis.) nNote that by
is correct, although in a somewhat unusual form.,

(Cl) DECLARE(F,NONZEROANDFREEOF(Y))$
(C2) DECLARE(G,FREEUF(Y))s$

(C5) DECLARE(H,FREEOF(Y))Ss

(C4) P : F*DERIVATIVE(Y,X)+GrY+HS
(C5) DEFMATCH(PAT,P,Y,X)d

DY
F(==) +GY+H
DX

IS THE PATTERN
(D5) PAT

(C6) LINDEP(EQ,Y,X) :=BLOCK((F,G,H,P,q,s0L],
IF PAT(EQ,Y,X)=FALSE THEN FALSE
ELSE
P : ZE«+«(INTEGRATE(G/F, X)),
Q : H/F,
SOL:Y*P+INTEGRATE(Q*P,X),
EXPAND(SULVE(SOL=CONST,Y)))s
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(C7) DERIVATIVE(Y,X)+3#Y+uyg

DY
(D7) -+ 3Y + 4

DX
(C8) LINDEP(%,Y,X)$

CONST &
(D8) Y = eeemee -
3Xx 3

3E

The program on line C6 could easily be altered to account
for other types of equations. if the PAT pattern fails, other
patterns could pe tried, each with its own method of solution. if
none of the patterns succeed, other analytic or numerical methods

could be tried.
2.10, Uther Applications

Une of the major problems of algebraic manipulation systems
has been the lack of substantlial tools to ald in human
comprehension of large expressions. Hearn, in (20), explores this
problem. He displays an expression with a large number of
dependent variables, and by properly choosing substitutions of
expressions for variables, produces a new expression reduced in
size and complexity. This requires a high degree of human
experimentation and interaction with the computer. In chapter 3
we describe more sophisticated substitution methods which relieve
the user of some of his headaches, but still require explicit

"substituce A for B" type commands. By contrast, the Markov
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algorithm processing of expressions, combined with semantic pat-
tern matching, can lead to more general styles of substitution:
e.g. For any Z, substitute Y(Z) for COS(wat+Z).

Another approach toward improving comprehension has been
the automatic 'breaking-up" of expressions at (computer-chosen)
positions. The parts are then easier to display (30), or
manipulate further (10), (20), (34). Unfortunately, except for
special cases, the computer-chosen break points tend to obscure
the underlying structure. By breaking an expression up at points
suggested by user-supplled patterns, and renaming the pieces (say
by allocating coefficients of certain types and locations to a
matrix), inherently bulky expressions can be reduced to more
tractaole sizes. As a simple example, the pattern A + B*%i, for
A and B declared free of %I serves to separate real and imaginary
parts of an expression. ‘ |

2.11, Conclusions

Although a pattern-directed interpreter (along the lines of
SCHATCHEN or FAMOUS) could have been written to implement this
algorithm, a compiler, which produces a LISP program from the
pattern, was written instead. There are several advantages to
this approach;

1. Elaborate check{ng is done at compile-time, to help insure
that patterns make sense. An interpreter can prrovide this only
at considerable cost at execution time. This makes interpreta-
tion unattractive to a user who needs as much error-checking

as possible.
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When the match compiler is no longer needed, it can he removed
from core memory, and the space it occupies reclaimed. Only
the pattern programs themselves are required at execution
time. An interpreter must be present any time a pattern is
matched. It is possible that a large number of pattern
programs could collectively take more space than some other
pattern represention, so that this aavantage is not clear cut.,
However, judging from the size of the match compiler, we
suspect that an interpreter performing the same tasks is
likely to be sufficiently large so as to be more space
consuming than perhaps 40 pattern programs.

With the exception of calls to the simplifier, the coefficient
routines, and calls to subroutines to find exponents, bases,
and unknown functions, the program produced by the DEFMATCH
(or DEFRULE, TELLSIMP, etc.) command is self-contained. The
application of preaicates, the assignment of values, and
sequencing of operations is rapid and efficient., Furthermore,
each pacttern program can be compiled into machine language by
a LISP compiler, which (on the P5P-10) decreases the bulk of
the program and may increase the speed by a factor of ten. It
may appear that this possibility is independent of the
question of compilation vs, interpretation, since the pattern-
directed interpreter could also be compiled into machine code.
This is not the point we are making. The batterns for the
interpreter cannot be compiled since they are, of necessity,
LISP data. On the other hand, the pattern Rrograms of our

system can be compiled completely into machine code,
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The advantages of semantic (as opposed to syntactic)
matching are clear. Semantic matching as implemented in MACSYMA
allows the user to introduce new information relying on a wide
range of previously developed information and simplification
rules. Syntactic methods would require considerably more
efforts (since all information would have to be encoded in syntax

only) and result in a less powerful extension.

Chapter 2 - Appendix i

Detailed description of the MATCH processor.

Up to this point we have tried to show mainly by examples,
what kinds of patterns can be compiled. By describing the
algorithm used to compile patterns into programs, this appendix
explicates the nature of the semantic matching done by the
resulting programs, Some details which are concerned only with
"code optimization'" are omitted -- as an example, the predicate
"TRUE" is never actually called, since the result is known to the
match compiler, However, the operatic: would be unaffected if a
call to "TRUE" were actually used.

Definition: An ynmatched variable in a pattern is a variable
which is declared and for which no value has yet been assigned
during this matching process. A variable may be assigned a value
either by being in the list of patternvar's, or by being
successfully compared to an expression. A pattern R l1s compared

Lo an expression ¢ by attempting a match between p and e. if the
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match succeeds, all unmatched variables in R will be assigned
values. |f the match falils, the value FALSE Is

returned.

Definition: If a pattern p has no unmatched variables In iIt, It
Is called a fixed pattern, or is said to be fixed.

Remark: Any number is a fixed pattern. Any undeclared "atomic"
name is a fixed pattern. A sum, product, (etc.) of fixed patterns

is a fixed pattern.

Definition: A pattern Is anchored If after all fixed parts have

been subtracted, divided out, or otherwise removed from an
expression Instance of the pattern
(1) The remaining pattern consists of an Isolated unmatched

variable not in a sum or product.

or (2) There is at least one fixed subpart of the pattern
such that any expression instance may be separated into at least
two parts, each part, furthermore, corresponding to an anchored
sub-pattern of the original pattern.

The pattern compiler in MACSYMA seeks out anchors, and
successively compiles program segments to remove those parts
which can be unequivocally identified. If the remaining parts
provide no wsnchor, or iIf several not distinct anchors are
provided, the compiler will not be able to take advantage of Iits
built=in knowledge. in some cases, warning messages will be

produced.
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One of the basic design decisions concerning the internal

format of MACSYMA expressions pervades this algorithm. MACSYMA
removes inessential operators such as aivision and negation: A/u
is represented internally by A*B##(-1), and -A is represented by
(-1)*A. Reducing all arithmetic operators to +, *, and ** has the
disadvantage of causing a moderate increase in the size of
internal representations, but has the overriding advantage of
erasing small aifferences in appearance which might tend to
complicate the matching process. (The MACSYMA input and output
routines, in order to improve readability, reintroduce quotients,
differences, and unary minuses.) Markov algorithms written in
Formula Algol seem to be largely concerned with juggling these
redundant internal notations, a confirmation of the suitability
of our design decision., (see (23) pp. 172-174)

The remainder of this appendix describes in detail the
methods used to seek out anchors. These methods vary depending
on the context, so that an anchor within a sum is different from
an anchor within a product. Although we have tried to make this
description as clear as possible, it is not our intention that a
user of MACSYMA read this as a prerequisite to using the pattern
matching system. A user should compose patterns in the inter-
active MACSYMA environment, and by viewing the explicit actions
of the patterns themselves, he should judge their suitability,
This is similar to the philosophy of other parts of MACSYMA: a

user will rarely know a priori whether or not an integration can
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be performed by the system, or whether an indicated command is
powerful enough to accomplish his task. Although it Is desirable
to describe capabilities in a clear manner, it is unreasonable to
restrict the capabilities to that which can be so described.

With these preliminaries, we can define precisely what is

meant when a pattern p matches an expression e.

I. If a pattern p is fixed, then it matches an expression e if
and only if p - &, when simplified, is 0. Of the simplification
routines in MACSYMA, the general ("advisable") one is usually
used. When coefficients have been picked out of an expression in
the previous step, canonical rational simplification, which
expands expressions and combines similar terms, is used. Note
the heavy dependence on the power of the simplifier. I|f the user
has (presumably by mistake) told the simplifier to replace an
expression A by a larger expression which has A as a
subexpression, this definition may become circular. We assume

that no such errors have been committed.

Il. If pis a sum, E:a', then all fixed a are subtracted from
i i

e, and then the rest of the a, are examined as follows:
i

A. If a is a product with more than one unmatched variable,
i

it is ambiguous., Any of the variables might match the whole
expression. Processing such a pattern will cause a warning to

be printed, and the pattern will be treated as in E below, as
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an occurrence of the specific function "MTIMES" with a fixed
number of arguments,

B. If a is a product of a declared variable Y and a fixed
i

pattern f then v's predicate is applied to the coefficient of
f in e. (The definition of "coefficient" used here may be
found in Chapter 3, in the description of the RATCOEF
command.) If {t fails, the match fails, otherwise it proceeds.,
(That is, v is compared to the coefficient of f in e.)

C. If a is an unmatched variable, then it should be the only
i

unmatched @ , since it will match the rest of the expression,
i

If selectors are used, there might be more than one remaining

a , in which c(zse they might correctly separate out the rest
i

of the expression into several parts, A warning is printed in
this situation,

D. If a is an exponentiation, one of three possibilities
i

exists, Either the base is fixed, the exponent is fixed, or
neither is fixed. (If both were fixed, a would be fixed, and
thus be treated under i.) '

1. The base is fixed: A search is made for an exponential

operator with the given base. If the search succeeds, the

pPattern for the exponent is compared to a 's exponent,
i

Here, as elsewhere, if the comparisons of subexpressions
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fail, the match fails, If the search fails, the base may
occur to the first power. if the base is found in e, then
the pattern for the exponent is compared to the number 1.
If the base is a sum itself, it is subtracted from &, and
the pattern for the exponent compared to 1.

2. The exponent is fixed: A search is made for an
exponential operator with the given exponent. if it
succeeds, the pattern for the base is compared to a 's
base. if the search fails and the exponent is a negative
integer, 1 is subtracted from ¢ and the pattern for the
base is compared with 1 (the case of a missing

denominator) . Otherwise, (the exponent is not a negative
integer) the pattern for the base is compared with 0. This
means that the pattern a+l/b (with a and b declared TRUE)
will match the expression X+1 with a=X, b=1, and will match
the expression X with a=X-1, =1, The pattern a+b**2 will
match the expression X with b=0, a=X.

5. Neither is fixed: Any exponentiation is searched for.
Exponentiation is treated as a two=-argument function with
name "MEXPT'" as in E below.

4. If an exponentiation being searched for in a sum is
actually the only item left in the sum (e.g. y**x + A after
A has been matched and removed) then other special cases
are considered. if the base B is fixed, then B*+E matches 1

if B# 0 and £ matches 0. If the exponent E is fixed, then
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E
B matches 0 if E js a number greater than 0 and B

matches 0,

E. If a is a specific function (e.g. SIN) then the first
i

occurrence of that function is searched for. The arguments of
the pattern are compared with the corresponding arguments in
the expression, and a check is made to assure that the same
number of arguments appears in the pattern and in the expres-
sion. If all the component matches succeed, a , the pattern,
(now fixed) is subtracted from e. !

F. If a is a function whose name is an unmatched variable,
i

then any function, (possibly +, *, or »*) s searched for, and
treated as in E.

lit. if 2 is a product, Tl a then the sum operations (except for
i

Il-A and Il -B) are duplicated, with "divide" replacing "subtract"
and "product" replacing "sum," Since products within products are
not possible with the MACSYMA simplifier, the action taken in i1~
A or I1-B has a correlate in I1] only if the siwmp er is turned
off; in such situations, semantic pattern matches will not
succeed anyway,
IV, If p is an exponentiation, then p is treated as in 11-D, 1,
2, and 4, If neither the base nor the exponent is fixed, (the
situation of I1-D-3), e is treated és follows:

A. If e is 1, pis compared to 1lww(Q,

B. If ¢ is o, P is compared to Owwl,
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C. If ¢ is not an exponentiation, p is compared to eww],

D. if ¢ is an exponentiation, the respectijve bases and

exponents of p and g are compared,
V. If p is some specific function, it is treated as follows: The
function name in p (e.g. SiN) must match the leading operator in
e. The respective arguments of the pattern and expression are
then compared and a check is made that the same number of
arguments appears in the pattern and in the expression. if all
the component matches succeed, the pattern succeeds.
Vi. If p is an unspecified function whose name is unmatched, it
is treated as in V, except that the unmatched function name of D
is compared to the leading operator of e.

VIil. if p is an atomic unmatched variable, it is compared to g.

These operations may be nested to an arbitrary depth, since
comparing a pattern and an expression may invoke comparisons of
subexpressions, Furthermore, this algorithm is exhaustive, in the
sense that given any syntactically valid MACSYMA expression, a

Pattern matching process will be defined for it.

Appendix il

The following LISP listing o/ QUAD uses several system conven-
tions which can be briefly summarized as follows:

All user variable-names have a dollar sign prefixed to
them. The *KAR(ERRSET(...)) construction serves only to catch

illegal operations or ERR()'s and return NiL in such instances,
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MATCOEF(X,Y) returns the coefficient of Y in X as found by the
RATCUEF of chapter 3, MEVAL(X) is the MACSYMA evaluator., It
substitutes values for variables in the expression X, evaluates
the result, and returns a simplified expression as an answer.
RATS IMP(X) rationally simplifies X. RETLIST returns a list of its
arguments and their values,
The GOOn names are symbols produced to meet the need for

unique new variable names,
(DEFUN $SQUAD

(GOO42 $X)

(*KAR

(ERRSET (PROG (GOO43 GOOUuLY)
(SETQ GOO43

(MATCOcF GOO42
(MEVAL (QUOTE ((MEXPT SIMP)

$X
2)))))
(COND ((MEVAL (QUOTE (($NONZEROANDFREEOF)
$X
GOo0oL3)))
(SETQ $A GOO43))
(CERR)))
(SETQ GOOu2 (MEVAL (QUOTE (($SRATSIMP)
((MPLUS)
GOoOou2
((MTIMES)
-1
Goou3s
((MEXPT SIMP)
$X
2)))))))

(SETQ GoOuu (MATCOEF GOOu2 $x))
(COND ((SFREEOF $X GOO4Y4) (SETQ $B GOOuu))

(CERR)))
(SETQ GOOu2 (MEVAL (QUOTE ((SRATSIMP)
((MPLUS)
GOoou2
((MTIMES)
-1
GOOuyY
$X))))))
(COND ((SFREEOF $X GOOu2) (SETQ $C GOOL2))
((ERR)))

(RETURN (RETLIST $C $B $A $X))))))
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Appendix 111

This appendix considers the question of pattern matching
from a more theoretical standpoint, It answers some questions
about the formal power of pattern matching in determining
membership of an expression in a class, and the ability of the
pattern match to uniquely determine the values of the variables
in the pattern. Many of these results may seem trivial or
obvious; nevertheless, they are not expressed elsewhere., Some
especially trivial results are (1) Any expressions E, synthesized
by MACSYMA can be matched by a pattern, namely, the pattern E.
and (2) Any expression in MACSYMA can be completely decomposed by
some pattern: By using explicit matches for operators (as in
section 4, line C6), every single component of any expression can
be given a name. (Since we usually seek to define general
patterns, such explicit matches are rarely of great use.)
Definition: A pattern match program (PMP) is a program produced

by the implementation of the algorithm described in Appendix
I, given a valid MACSYMA expression,

Iheorem 2.11i.1. A PMP for a finite pattern is finite in speci-
fication,

Proof. A finite pattern, written as a tree, has a finite number
of nodes. The algorithm of Appendix | traverses the tree
once, emitting a finite number of finite steps at each node
(in practice, fewer than 3 LISP "S-expressions" per node).

The algorithm terminates when the tree has been traversed. (A
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more rigorous proof is possible, but would require a detailed
analysis of the correctness of our programming Implemen=-
tation. This could be done by case analysis, as described in
(28).)

We will assume, for the remainder of this appendix that

all PMPs are defined for finite patterns, and are therefore

finite in size,.

Iheorem 2.111.2., A PMP always terminates given finite expressions
for each of its arguments if its predicates always terminate, and
the evaluator (MEVAL) always terminates (with a finite result) on
finite exoressions,
Proof. A PMi is a finite non-looping sequence of steps. Each step
terminates, since It is elther an application of a predicate, an
evaluation of an expression, or the extraction of the Ith
argument of an n-ary function. The last of these clearly
terminates since | and n are finite by hypothesis, and the first
two terminate by hypothesis,

Since patterns are themselves predicates, it Is possible
(and often useful) to use them recursively, In such cases
termination will be difficult to guarantee by this theorem,
Although this theorem states sufficient conditions for termina-
tion, these conditions are not necessary, since, for example,

non-terminating predicates may be present in a pattern, but may

never be applied if the pattern fails first,
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For the remainder of this appendix, all PMP's are assumed
to be terminating. Thus a PMP divides the set of finite algebraic
expressions into two classes, P, the expressions which satisfy
the pattern, and N, those which do not,

Now, a result which determines a theoretical limit (but not

necessarily the best 1imit) on the power of pattern matching:

Iheorem 2.111.3. Unless N or P Is empty, there is a MACSYMA ex-
pression p in P which is functionally equivalent to a MACSYMA
expression n in N,

Proof. Let us assume for the moment that the MACSYMA simplifier
is unaware of special angle simplifications, and let a PMP
program pass only expressions which match zero (0). Neither P
nor N is empty, so this theorem asserts there Is an element
in N equivalent to zero. We can show there are many. One of
them is COS(P1/2), To see if COS(PI/2) matches 0, (see the
first line of the algorithm, Appendix I) we simplify
COS(P1/2)-0. The result, COS(PI/2), is not identically the

expression "0" and therefore is in N.

One might blame the MACSYMA simplifier for this
inadequacy, excapt for the following lemma, which proves that

the simplifier cannot be made sufficient)ly adequate,
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Lemma. (Richardson, (36), see (6) also) Let R be the set of
expressions generated by

(i) the rational numbers, and the real numbers pi and
log 2,

(ii) the variable x,

(iii) the sine, exponential and absolute value func-
tions,

Then if E is an expression in R, the predicate "E is
equivalent to 0" is recursively unsolvable,
Since all of these operations and constants are permissible
in MACSYMA, there is no computation which can exclude 0-
valued functions from N, Furthermore, since "0" can be added
to any pattern whatsoever, the same analysis holds for any
PVP.,

This concludes the proof of theorem 2.111.3,

Our only hope is that some sub-domains within R have less
disastrous cunsequences for pattern matching. Such is the case.
Let us use the convention that A(s.ve Ay are MACSYMA variables
which have been declared TRUE, and X,,...,X, are constants. (This
convention may seem odd, but consider that AX+B as a pattern has
variables A and B and constant X,)

Since we are restricting the domain of expressions handed
to PMP's, we will be affected by the power of the simplifier.
Thus while E = X + COS(PI1/2)*SIN(X) does not look like a
polynomial in X, a suitable simplifier will transform E into the
equivalent expression X, which is a polynomial in X. All expres-

sions mapped into a domain D by a simplifier s, are members of
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the class Ds. No rigorous definition of Ds's will be attempted,
since the simplifier in MACSYMA defies simple analyses, and in

any case, it can be altered by the user.

Iheorem 2.ili.b. Let D be the domain of polynomials in any finite
number of variables {X;} with integer or symbolic coef-
ficients. A pattern consisting of any (expanded) member of D
with variable coefficients {A;} will match uniquely any
member of Ds.

Proof. An expanded member of D will look !ike

Za 0 ax
A PMP for this pattern will consist of a finite set of calls
to the coefficient-finding routine, which will assign to each
A, the coefficient of Xr”i *...*X:“i . These coefficients
c;n be extracted because this representation of polynomials
is canonical, and the coefficients are obviously unique in

any expression (regardliess of its original form) which can be

transformed into an equivalent polynomial in Xy reeesXpe

Theorem 2.111.5. Let D be the domain of rational expressions
(i.e., ratios of polynomials as in theorem k). A pattern
consisting of the ratio of two expanded polynomials with

variable coefficients will match uniquely any member of Ds.
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Proof. The numerator is matched as in theorem 4, and the
denominator, which appears as a polynomial raised to the -1
power, is matched as in theorem 4, The absence of a
denominator will cause the pattern for the denominator to be

matched against 1,

These results can be extended ir various directions, but
results become more specialized and less illuminating. For

example,

Iheorem 2.111.6. Let f be an n-ary function with no simplifica-
tion rules in the simplifier s. Let Ds be the Ds of the
previous theorem, and {d;} elements of Ds. Let Df be the set
of expressions

dp*fldy,...,d, )+d,, .
Then an expression in Df with variable coefficients will
match uniquely any member of Dfs,

Proof. The single occurrence of f can be found, and its '"coef-

ficient" d, and '"constant torm" ¢ can be matched as in

Aot

theorem 5,

Typical of statements which are true, but are of only
limited interest is: Let Ds be the Dfs of the previous theorem,
and let{d} be in Ds. Let E be the set of expressions d,m . The
pattern matches uniquely any member of Es, but the uniquencss is

imposed by the match algorithm. Thus 1 is a member of Es, as

1#*0, but the possibilities 1#*1 or x**0 are not considered,
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When we restrict ourselves to matching expressions composed
over classes for which canonical forms exist, as in theorem 4,
quite neat results can be obtained if the simplifier is able to
compute these canonical forms. For many areas of interest,
canonical form algorithms do not exist, yet being abie to
recognize nembers of particular classes within the confines of a
simplifier can stil! be useful. For example, recognizing the
parameters of a differential equaticn, even if it can be done
only in some standard form, is use“u!, even if some other, rarely
encountered, but equivalent form is not recognized at all.

In comparing various systems in this context, the principal
point is that fcr the same domain D, the ability of the
simplifier, s, to reduce an expression to essential components,
strongly influences the size of the set Ds. MACSYMA's simplifiers
(the "ordinary" one which can be modified by the user, the
RATSIMP rational simplifier, and the RADCAN radical canonical
simplifier of Chapters 3 and 5), provide a range of possibilities
larger than that of any other existing system. While any system
which is in theory equivalent to a Turing machine could in theory
do as well (eventually) as MACSYMA, or even better, theorem 3

provides a bound on their theoretical capabilities just the same.
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Chapter 3 - Extending the Power of the Rational
Function Facilities

This chapter concerns the practical implications of what |

believe to be the most significant design decision In MACSYMA.
MACSYMA was designed with the intention of not necessarily
restricting its components to the same data representation. The
rational function package embodies the essentials of a special
data type which, by suitable treatment, has yielded a number of
new results. These results include particularly powerful tech-
niques for extracting coefficients (section 3.3), for substi-
tution (section 3.5), and for solving for a variable in an
expression (section 3.6).

Since a number of other current systems (e.g. REDUCE (19))
also include analogous special rational function representations,
the new ideas and techniques discussed here could, no doubt, be

implemented elsewhere with relative ease,

By using the rational function representation (as opposed
to the general representation), extremely fast processing is
possible. For typical calculations which can be done either way,
the rational function representation can easily reduce the time
requirements by a factor of five or ten, becoming far more
efficient as the problem increases in size. This in itself can be
a significant asset. In order to make this point more concrete,
and to demonstrate how MACSYMA compares to similar efforts else-

where, some timing information has been compiled. Only the
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crudest efforts at making the cross-system conparisons truly
comparable have been att.mpted; no doubt an extensive study could
be conducted in balancing the differences of word-length, CPU
cycle time, memory access time, size of storage, CPU instruction
set, etc. The timings in table 3.1 are for the calculation of
the first 10 polynomials in the "f and g" series, the details of
which may be found in (11) or (31). The calculation is of two
sets of polynomials in sigma, mu and epsilon, defined recursively
in terms of each other and derivatives of lower order terms, The
calculation can be indicated in MACSYMA's rational function
representation through the following input:
X1: RAT(-SIGMA*(MU + 2+EPS))s$
X2: RAT(EPS-2+«SIGMA**2)$
X3: RAT(-3+#MU*SiGMA)S$
F[O] : RAT(1)$
G[0] : RAT(0)S
FLI] := -MU*G[i-1] + X1*DIFF(F[I1~1],EPS)

+ X2*DiFF(F[i-1],SiGMA)

+ X3«DiFF(F[i-1] ,MU)s$
G[I] := F[i-1] + X1*DiFF(G|i-1],EPS)

+ X2+DIFF(G[i-1],SiGMA)

+ X3«DiFF(G[I-1],MU)S$
FL10]w
G[10]@
Timings for systems other than MACSYMA are interpolated from (11)
or from conversations with the authors of various systems

presented at SYMSAM/2 (1),
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Table 3.1 - A Cross~System Timing Comparison

System Computer Time Adjusted Notes
(sec) Time«

Machine-Language Systems

PM IBM 709t b.b 18
FORMAC IBM 7094 39.0 156
SAC-1I COC 1604 25,8 26
SYMBAL CDC 1604 52.2 53
SYMBAL CDC 6600 b.3 65
CAMAL ATLAS-2 2,0 L (1)

Systems Written in Higher-Level Languages
using Special Rational Function Representations

REDUCE?2 IBM/360-67 b,5 45 (2)
10. 109 (3)

POP-10 10.5 55 (%)

1AM POP-10 152 760 (5)

MACSYMA's rational
function routines PDP-10 1.8 30 (6)

Systems Written in Higher Level Languages
usirg General (Tree) Rerresentations

Korsvold's System IBM 7094 119.0 475

MACSYMA's general
representation PDP-10 76. 152 (7)
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Notes for Table 3.1
*For a direct comparison, we have usec the following somewhat
controversial speed factors: CDC 1604 = 1, PDP-10 (with 2.8
microsecond memory) = 2, ATLAS-2 = 2, 1BM 7094 = 4, PDP-10 (with
1 microsecond memory) = 5, I1BM 360/67 = 10, CDC 6600 = 15, In
addition, the notes must be taken into account in computing the
adjusted time., REDUCE2, Korsvold's System, and MACSYMA are all
viritten in LISP, and are subject to variations depending on the
efficiency of the underlying language implementation.
(1) A particularly rough interpolation; the actual time was 7.4
seconds for F and G to index 19. CAMAL uses a representation
which packs a great deal of information in a single node; it thus
uses less space, and less pointer-following time than the other
systems listed here.
(2) Using Stanford University LISP.
(3) Using I1BM's Scratchpad LISP which is slower than Stanford
LISP, since it packs two addresses in a 32-bit word, thus
requiring shifts to adjust the addresses.

(4) Using 1 microsecond memory.

(5) Using 1 microsecond memory. 1AM is written in AMBIT/L, and
is interpreted, rather than compiled.

(6), (7) Using 2.8 microsecond memory.

These times (and, no doubt, other LISP times) can be
decreased by some 40 percent by methods unrelated to the
algorithms: By using a larger core allocation, LISP garbage
collection time can be reduced; also, a cleverer LISP arithmetic
statement compiler (now being implemented) would reduce

calculation time further.
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3.0 An Introduction and a "Political" Digression

Moses, in (34), describes a spectrum of attitudes towards
algebraic manipulation ranging from the "radical" to the
"conservative," According to this classification, a radical
system will transform a user-supplied expression into an internal
format which consists of an encoding of the expression in a
special unique simplified form., This drastic transformation
generally destroys superficial resemblances between the input and
output, The only attribute necessarily preserved is the
functional value of the expression. Polynomial and rational func-
tion systems generally fall in the "radical" category. The
contrasting 'conservative" approach does almost nothing but that
which is specified by the user; it keeps the internal form as
nearly the same as the external form as is possible, and
generally accepts a wide variety of expressions (wider than poly-
nomials and rational functions).

The top-level ("liberal" in Moses: terminology) "general"
simplifier and evaluator in MACSYMA takes a stance in the middle.
It has some built-in rules (e.g. concerning zero and one,
collecting terms) and by ordering terms in sums and products,
does a fair job of simplifying a large class of expressions. Its
importance lies in the fact that it allows certain subsystems to
explore the far reaches of the "political" spectrum, Because of
the conjunction of different approaches, radical simplification

algorithms can be applied to expressions which would not
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ordinarily be considered proper inputs. For example, the ability

2X X
to manipulate e + 2e + 1 as a quadratic in ex (and apply poly-

nomial "radical" processing) is quite useful, even though the ex-
pression is not quite fair game for ordinary polynomial systems,
MACSYMA is capable of factoring the above expression into

X
(e +1) , and treating it as a polynomial for various purposes:

however, it is also capable of noticing that e can reduce to y
when x=log(y). Polynomial or rational function systems are rarely
aware of such possibilities in their data.

This chapter discusses the "radical" data handiing
facilities of MACSYMA, and their relation to the MACSYMA command
level. In one particular instance (the SOLVE command) we show how
radical and conseQVative handling of different parts of the same
expression can lead to an end result which could be produced with
either approach alone only with great difficulty., Other commands
where rational simplification or other radical approaches are
essential to programming effective algorithms are also discussed,

By an unfortunate coincidence in terminology, we will use
the word "radical" in two senses. In one case, we will discuss a
class consisting of algebraic extensions adjoined to the field of
rational functions. This class is generally called the class of
radical expressions (in the sense that a square root is a
radical). In the second case, our approach to simplifying
radical expressions is, in Moses' terminology, radical (i.e.

drastic).
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In this and later chapters, the algorithm and the command
used for invoking the algorithm used to simplify radical expres-
slons will be referred to as RADCAN. RADCAN and the two commands
to be described in section 3.1, RATSIMP and FULLRATSIMP are all
classified as radical (i.e. drastic) simplifiers.

3.1 Basic Ratlional Function Commands

In order to clarify the discussion, it is necessary to dis-
tinguish between the two major internal forms for expressions in
MACSYMA. Ordinary MACSYMA form is a delimiter prefix form which
is typical of many list-processing implementations of algebraic
manipulation systems., For example, 3x2 would be represented
(glossing over inessential details) as (times 3 (expt x 2)), and
x+y as (plus x y). By contrast, the canonical rational expression
(CRE) form in MACSYMA is an internal form especially suitable for
rapid manipuliation of sparse polynomials and rational functions.

2
In CRE form, 3x 1Is represented, (again, glossing over details)

as (x 2 3), The first element of the list Is the variable, the
second is its highest exponent, and the third, the coefficient of

2
the just preceeding exponent. Thus 6x +4 is represented as (x 2 6

0 ), and, allowing coefficients themselves to be polynomials,

2
X y+7xz is (x 2 (y 11) 1 (21 7)). Since (y 1 (x 2 1) 0 (x 1 (2

17))) is an equivalent CRE representation, it should be clear

that the ordering of variables must be specified to insure that
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equivalent CRE's are identical, that is, they are in canonical
form.

CRE's in general represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have
no common factors, and the denominator is positive. Thus a CRE
has three essential parts: a variable 1ist (VARLIST), specifying
the ordering of the variables, and two polynomial parts.

With these preliminaries, we can describe the actions of
the rational function commands.

RATVARS(a,b,...) orders the variables 1isted in its argu-
ment 1ist on a global variable list (VARLIST) so that the
rightmost element of the list a,b,... will be the main variable
of future rational expressions in which it occurs, and the other
variables will follow in sequence. if a variable is missing from
the RATVARS list, it will be given lower priority than the
leftmost element. |If several variables are missing, they will be
ordered by the MACSYMA function GREAT, which uses an implementa-
tion of the ordering algorithm described in (34). The arguments
to RATVARS can be elther variables or non-rational tunctions
(e.g. SIN(X)).

RATSIMP(EXP) rationally simplifies the expression EXP,
That is, EXP is converted into a single fraction, whose numerator
and denominator are polynomials over the integers, with no common
factors. EXP is written in a recursive form: a polynomial in the

main variable whose coefficients are polynomials !n the next-
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higher-order variable, ..., whose coefficients are integers. This
is accomplished by converting EXP into CRE, and then converting
back to ordinary MACSYMA form for display.

For example:

(Cl) (Xaw2-Yux2)%(Z#%2+42+Z)/((X+Y)*W)Q

(D1) = eccccccccmccccaaa-.o.

(C2) RATSIMP(D1)@
(X =Y)Z +(2Xx-2Y)12
(D2) W eee---- eececceccceaceacecaa
(C3) RATVARS(X)$
(C4) RATSIMP(D1)@
2 2

X(Z +22)-Yz -2VY7z2
(D4) mccccccemccmacacccccaceeaa-

FACTOR(EXP) factors the expression EXP into factors
irreducible over the integers. If EXP is a rational expression
(with a derominator not 1) both numerator and denominator are
factored. If FACTORFLAG is set to TRUE, the integer multiplier,
if any, is factored also. The algorithm can be used to factor
polynomials in any number of variables. GFACTOR(EXP) factors
polynomials over the Gaussian integers,

For example,

(C5) FACTOR(X#»*6+1)Q@

2 4 2
{D5) (X + 1) (X - X + 1)
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SQFR(EXP) is similar to FACTOR except that the polynomial
factors are ''square-free'" that is, have no multiple roots. This
algorithm, which is also used by the flrst stage of FACTOR,
utilizes the fact that a polynomial has in common with its nth
derivative all its factors of degree > n. Thus by taking
derivatives with respect to each variable in the polvnomial, all
factors of degree > 1 can be found. Several ;pecial cases are
also factored, including the removal of polynomial contents.

PARTFRAC(EXP,VAR) expands the expression EXP in partial
fractions with respect to the main variable, VAR. The algorithm
employed is based on the fact that the denominators of the
partial fraction expansion (the factors of the original
denominator) are relatively prime. The numerators can be written
as linear combinations of denominators, and the expansion falls
out,

(C6) PARTFRAC(X/(X**2-1),X)Q@

(D6) = eece--- ¢+ mmceada

3.2. Contagious CRE Commands
The above commands represent rio new capabilities; MATHLAB
(29) has almost identical facilitins, although its internal
equivalent of our CRE's is less efficient for sparse polynomlals.
Other systems, by limiting their universe of discourse to
canonical representations, make the expiicic RATSiMP commands

unecessary. Nevertheless, an algorithm equivalent to RATSIMP
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must be present in order to maintain the canonical represen-
tations during a computation.

The commands in this and the following sections represent
significant departures from the usual use of rational function

routines.

RAT(EXP) is indistinguishable on command level from
RATS IMP; however, RAT leaves its internal result in rational
function (CRE) form, so that operations used by the rational
function commands described here can be more rapidiy performed on
it. Furthermore, any time the user adds to or multiplies by a
CRE, the result is a CRE. That Is, the CRE form Is "contagious."
This enables a user to easily force his entire calculation to be
done in CRE form by converting one of his inputs into CRE by
simply multiplying by RAT(1). Some problems require excessive
amounts of storage and/or time if intermediate results are
converted back into prefix form at each step of the calculation.
The RAT facility, by being integrated into the simplifier,
permits a user to compose a Program and try it out (without any
changes) on ordinary prefix form arguments or on CRE arguments.
In this manner it is simple to compare the timing of "general"
versus CRE methods on the same task, This very often demonstrates

that CRE methods, when appropriate, are much faster.

RATDISREP(EXP), which appears to do nothing on the command

level, changes its argument from rational function form (CRE) to
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ordinary MACSYMA form, This s sometimes necessary in order to
use some of the other MACSYMA commands., |If RATDISREP is not

given a CRE for an argument, it does nothing,

3.3. The Rational Coefficent Program

RATCOEF(EXP, PART) returns the coefficient, C, of the ex-
Pression PART in the expression EXP, C will be free (except
possibly in a non-rational sense) of the variables in PART. |f
no coefficient of this type exists, zero will be returned,
RATCOEF will give reasonable answers to reasonable requests, and
will often produce reasonable answers to poorly stated requests,
Generally, when PART includes a "+" or a /", results may seem
odd. (see lines D7, D8, D10, and D11 in the examples to follow),
Since EXP is rationally simplified before it is examined, coef-
ficients may not appear Quite the way they were envisioned. The

effect of RATCOEF should be clarified by the following examples.

(Cl) S:A#BxX##2+4B%X+24X+50

(D1) AB x2 +BX+2X4+5
(C2) RATCOEF(S, X)

(D2) B + 2

(C3) RATCOEF(S,A*B)q

(D3) X

(C4) RATCOEF(S,B)@

(D4) A X2 + X

(C5) RATCOEF(S,2+X)0@

B + 2
(b5)  ecaea
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(C6) RATCOEF(S,B/2)@

2
(D6) 2AX +2X
(C7) RATCOEF(A«X+B#X+C,6A+B)(
(D7) X
(C8) RATCOEF(3»A+2+B,A+B)@
(D8) 2
(C9) RATCOEF(S,-A)@

2

(D9) - B X

(C10) RATCOEF((A+B+C)/D, B/D)@
(D10) A

(C1ll) RATCOEF(3+A/D+A/D*%*2, A/D**2)Q
(D11) 0
Let us first define RATCOEF(EXP,PART) where EXP Is a

k
polynomial and PART has the form v for v a variable, k a number.

This case Is clear: we expand EXP as a CRE, and pick off the

k k
coefficent of v . |If there is no occurrence ¢f v , the

coefficent is 0. |If EXP is not a polynomial, but a ratio of
polynomials, then we must make a decision about how to treat
occurrences of v in the denominator.

i
Let EXP =num/denom, where num = ZEa v . If the coefficient
[
i
of v , namely a , Is zero or if a /denom depends on any variabla
i i

in the original PART, then the response Is zero. Otherwise the

response is a /denom.
i
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RATCOEF of a product can be defined recursively as

follows. Consider RATCOEF(EXP,PART). If PART =

n n n
1 2 k
v Ay LR 1" » then RATCOEF(EXP,PART) =
1 2 k
n n n
k 1 k-1
RATCOEF(RATCOEF(EXP, v Y,v *,, .0y ).
k 1 k=1

If PART = A/B then RATCOEF(EXP,PART) = RATCOEF(EXP«B,A).
if PART = -A, RATCOEF(EXP,PART) = RATCOEF(-EXP, PART).

If PART = Z. A  (possibly after removing multipliers, as
I

above), then EXP is divided by PART with respect to the main
variable in PART, if the quotient depends on any variable In the
original PART, the response is zero. Otherwise the answer is the
quotient,

The coefficient produced in this manner may depend, in the
last case, on the ordering of the variables within EXP. For

2 2
example, the coefficient of (Y+Z)X in Z X +(Y+Z)X+A is clearly 1.

The similar problem of finding the coefficient of XZ+XY in

2 2 2 2
X Z +XZ+XY+A yields the answer 0, since X Z +XY+XZ+A divided by

2
XZ+XY is XZ+1, with remainder -X YZ+A. The quotient depends on X,

and thus the coefficient is taken to be zero.
This illustrates both the ability of the user to ask for

coefficients of sums, and the ability of RATCOEF to sometimes
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answer correctly. We could have defined RATCOEF only for
products, but it seems more in keeping with the spirit of an
interactive system to avoid such restrictions on the user. Note
that if the user were disappointed with the answer 0 to the above

request, first executing RATVARS(X) would correct the situation,

In summary, RATCOEF will find the coefficient of PART when
PART is a factor of the expression, or of some part of the ex-
pressicn such that the other factor has none of the same
variables.

The re.urned value is in CRE form,

An alternative to RATCOEF is available in situations where
its generality is not needed. The COEFF command can operate on
CRE forms or on ordinary MACSYMA forms which have been expanded.
COEFF(EXP, VAR, POWER) will extract the coefficient of VAR*+POWER
(where POWER may be 0) from EXP. COEFF returns a CRE form if and

only if it is given a CRE form,

3.4, Simple Extensions to Rational Simplification
FULLRATSIMP(EXP) is an expanded version of RATSIMP which
is recursive on the arguments of non-rational functions. It also
removes zero exponents, and converts forms like (xwwy)##z to
x*«(y*z). Although these last two operations are generally
performed by t1e simplification program, FULLRATSIMP must
repeatedly simplify the resuits of such transformations until no

more rational simplifications can be made. FULLRATSIMP is no more
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time-consuming than RATSIMP if EXP is an algebraic expression
with no non-rational functions. FULLRAT(EXP) Is a program which
operates similarly, but allows the user to specify a varlist
as does RAT.

A more extensive expansion of the concept of glubal simpli-
fication is embodied in RADCAN. While FULLRATSIMP does not apply
any identities concerning logs, radicals, and non-numeric

exponents, RADCAN does.

RADCAN(EXP) converts tne expression EXP into a form which
is canonical over a large class of expressions and a given
ordering of variables; that is, all functionally equivalent forms
are mapped into a unique form. For a somewhat larger class of ex-
pressions, RADCAN produces a normal form; that is, all forms
equivalent to zero are mapped into zero. For purely rational ex-
pressions, RADCAN is no more time-consuming than RATSIMP or
FULLRATSIMP; however, for more general expressions including
radicals, logs, and non-integer exponents, RADCAN can be quite
expensive. This is the cost of exploring certain relationships
among the components of the expression for simplifications based
on factoring and partial-fraction expansions of exponents.

A description of the method, and proofs of the canonical
properties of the RADCAN algorithm are discussed in chapter 4.
Examples should, however, give a rough feel for the capabilities
of RADCAN. (2% always refers to the just-previously displayed ex-

pression, %E is the base of the natural logarithms):
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(Cl) SQRT(98)@

(D1) SQRT(98)
(C2) RADCAN(%)@
(D2) 7 SQRT(2)
(C3) (SQRT(X**2-1))/(SQRT(X-1))@
2
SQRT(X - 1)
(D3) = cccccccecaa-
SQRT(X - 1)
(C4) RADCAN(%)Q
(D4) SQRT(X + 1)

(C5) (LOG(A**(2*X)+2*A**X+1))/(LOG(A**X+1))@
X
LOGC(A + 2 A + 1)

(D5) = eecccccccccccccaaaa.
X
LOG(A + 1)
(C6) RADCAN(%)@
(D6) 2

(C7) (ZE**X-1)/(%E**(X/2)+1)Q
X

$E - 1
(07)  emeeeae
X/2
56+ 1
(C8) RADCAN(%)@
X/2
(D8) 5 -1

3.5. The RATSUBST (rational substitution) Commands

RATSUBST, or RATSUBSTn(A,B,C) where n =1, 2, 3, 4 is a set
of similar commands to substitute A for each occurrence of B in
the expression C. In those cases where it is clear where B
occurs, the result wili correspond to the intuitive notion of

substitution.
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If B Is an atom, occurrences of B are obvious. The action
taken is simply substitution followed by simplification.

If B is a quotient, say b /b , then RATSUBSTn(A,B,C) is
1 2

entirely equivalent to RATSUBSTn(Axb ,b ,C).
2 1

I B is a product, all coefficlents of powers of B can be
detected in C by a technique similar to that used by RATCOEF.
Hearn in (20) suggests this approach.) If B is a sum, we must
define what we mean by an occurrence of an expression B in a
polynomial expression C. (If C Is not a polynomial, we can

consider its numerator and denominator separately.)
i
If C = Zis B , then B Is sald to occur In C with coef-
i i

ficient S and exponent 1, coefficient S and exponent 2, ...,
1 2

and remainder S . If B occurs in such a fashion we wish to
0
i
replace C by Zs A . Unfortunately, finite power serles
i

expansions for an expression in terms of a non-atomic

2 2
subexpression are not unique. For example, C = x +3xy+y Hhas

(among others) the following expansions in (x+y):

2 1 0
1, 1#(x+y) + 0*(x+y) + xryx(x+y)

2 1 0
2. 1x(x+y) + xw(x+y) - x »(x+y)

2 1 c

3. 1x(x4y) + yax(x+y) =y sl{x+y)
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What is needed is a set of restrictions on the coefficients

S so that the expansion is unique and appropriate to the problem
i

at hand. This is the basic problem in substitution for simpli-
fication, and this solution is based on a set of heuristics for
achieving what appear to be, in some instances, more desirable
results than have been possille in the past. We will separate out

only the highest power of B, and discuss at each stage

(recursively on lower powers of B) the situation C = SB + r,
vhere r contains the lower order terms.

As we have pointed out earlier in our discussion of
RATCOEF, the ordering of variables is sometimes quite critical.
"Sum"-hood, which is a property of a form, not of a functior,
somet imes depends on ordering. For example, xz+yx is a sum, but
(z+y)x is (for purposes of RATSUBST) bot a sum, but a rnroduct,
although the two expressions are functionally equivalent.

Let B be a polynomial containing variables v ,v ,...,v ,
1 2 k

where the highest power of each v is m . For all but condition 2
i i

below, the only restriction on r, the remainder consisting of
lower order terms, is that it has lower degree than C does in
some particular variable (namely, the most important on the
varlist that is also in B). The conditions below are embodied in
the commands RATSUBST1,2,3, and &4, respectively. Their effects

can best be gauged by frequent reference to the examples in
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figure 3.2 following. RATSUBST (without a number) is a quicker
program than the numbered ones, which short-cuts many of the
(rareily needed) conversions and re-conversions required for

strictly following all the conditions.

Conditions

1, The highest power of some v in S that appears in B is less
i

than the corresponding m .
i

2. The highest power of each v in S that appears in B is less
i

than the corresponding m , and the highest power of each v in r
i i

that appears in B is less than the corresponding m .
i
3. S is a polynomial.

4. S contains no sum,

The value of n ranges from the highest possible (the ratio

of the highest coefficient of some v in C which is also present
i

in B, to the corresponding maximum coefficient of that v in B,
i

namely m ) to the lowest possible (when some v in B is no longer

i i
present in C to a power as high as it is in B, or 1.). To avoid
the possibility of looping, occurrences of B in C are replaced,
as found, by a special dummy variable, which is subsequently
replaced by A. Cases in which B occurs in A (probably an error on

the user's part) or where simplification of C results in new
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occurrences of B can be treated with repeated calls to RATSUBST.
This can be easily programmed in MACSYMA.

If C contains non-rational functions, substitution proceeds
on the arguments of the non-rational functions, recursively. Thus
A, B, and € need not be rational expressions.

X

By noting when B has non-rational components (e. g., e , or
x1/2), RADCAN can be called on B and C, and they can be left in a
special expanded format, which tends to reflect more clearly the
similarities of the two expressions. Thus
RATSUBST(A,E**X,Exa(24X)) is A#w2,

An example of an extension to the RATSUBST framework might
serve to illustrate its generality., If there is a canonical
ordering on all expressions submitted to RATSUBST, and on all
intermediate expressions, then a RATSUBSTS could be programmed

with the following condition:

n n
5. SA + r has a lower canonical order ("is simpler") than SB +

rl
By using the RATSUBST commands selectively, such substitu=-
2
tions as sin (x) + cos (x)-=> 1 can be performed more nearly in
the sense in which they are intended. If one RATSUBST command

does not do the job, perhaps another will.
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5+6+ The SOLVE Program
The SULVE command in MACSYMA uses several techniques for
solving for a given variable in an equation. Each of these
techniques is open to extension in a straightforward manner. The
roots and their multiplicities are available to other programs,
and are used as building blocks for more complicated facilities,

such as contour integration,

The format of the SOLVE command is:
SULVE(equation, variable)@
where the equation may also be an expression (which is assumed to
be set equal to zero), or a set of polynomial equations linear in
some set of variables. This last case is a straight-forward
problem in Gaussian elimination, and will not be discussed
further here.

SOLVE(E,X) puts its first argument E, in radical canonical
form, and attempts to factor it with respect to the varijable X,
and all non-rational functions in E containing X. Each factor is
examined for being linear, quadratic, cubic, or biquadratic with
respect to X and the non-rational functions containing it. If the

factor is of degree five or more, then it is considered

n
unsolvable unless it is of the form a(F(X)) + b in which case
the n nth roots of a/b are generated, and the n equations F(x)-

1/n
(a/b) = 0 are solved. Any remaining unsolved factors and their

multiplicities are put on a list which is returned along with the

roots.
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Linear terms of the form F(X)-C are examined to see if c,
the constant term, is actually free of elements containing X; if
so, USOLVE is called. Otherwise the term is added to the list of
unsolved factors. USOLVE knows the Inverses of SiN, COS, ASIN,
ACOS, TAN, ATAN, LOG, etc. and powers of e. it could be extended
to other functions. Once the inverse has been applied, a new
equation results. it may be of the form X = FiNVERSE(C), in which
ceése the term has been solved, or it may be of the form G(X) =
FINVERSE(C), in which case SOLVE is called again. This recursive
algorithm allows for solution of, for example, SIN(COS(X)) = 0
for X.

The quadratic (cubic, biquadratic) formula is applied to
quadratic (etc.) factors, and the same sort of recursive
treatment as described above is used if the equation is, for
example, quadratic in SiN(X) instead of X.

The simplification done by the quadratic (etc.) routines is
of some interest, in that the roots in the formulae are simpli-
fied by a special program (SiMPNRT) which takes out perfect n#k
powers of a kth root. (i.e. even powers in a square root,
multiples-of-three powers in a cube root, etc.) Thus SQRT(8) is
simplified to 2*SQRT(2). SIMPNRT calculates a square-free
factorization of the radicand, and takes appropriate multiple
factors, if any, outside the radical.

The following examples illustrate the capabilities of
SULVE:
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(C1l) SULVE(Y#*#(2¢X)=3eYenaX+220,X)(

SULUTION
(E1) X =9
LOG(2)
(E2) X 8 ccacaa
LOG(Y)
(L2) (E1,E2)
(C3) A:X®®22-12+X+3Q
2
(D3) X =12 X ¢+ 3

(Ch) SOLVE(SIN(A)**2-5«SIN(A)+3,X)Q

SOLUTION
5 SQRT(13)
(EW) X = 6 = SQRT(ARCSIN(= = =ccccee- ) ¢+ 353)
2 2
5 SQRT(13)
(E5) X = SQRT(ARCSIN(= = =ccccee- ) ¢+ 33) + 6
2 2
SQRT(13) 5
(EG) X = 6 = SQRT(ARCSIN(====c==a + =) + 33)
2 2
SQRT(13) 5
(E7) X = SQRT(ARCSIN(====cce= + =) ¢+ 33) + 6
2 2

(D7) (E4,E5,EG,E7)
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(C8) SOLVE(ARCSIN(COS(3*X))*(F(X>-1),x)@

SOLUTION
ARCCOS(0)
(ES8) X = ==mecmaae
3
THE ROOTS OF
(E9) F(X) = 1
(09) (ES, E9)

(C10) SOLVE(S+*X=125,X)@
(D10) X=3

Note that SOLVE has taken advantage of radical approaches
but is still able to step back and treat fairly general expres-
sions. In order to use the "radical" polynomial factoring pro-
gram, it uses RADCAN to expand unlikely-looking expressions into

2X X
polynomials. Thus the expression Y =37 +2 in Cl is expanded into

X Xlog(Y)
a polynomial in Z, where Z=Y (actually Z=e ), which is

then factored into (Z-1)#(Z-2). By setting each of these factors
equal to zero, the following sequence of steps is followed:

Xlog(Y)
e -1 = 0 is converted by USOLVE to

X1og(Y) = log(l) which the simplifier changes to
Xlog(Y) = 0,
SOLVE is called recursively, and factors this; SOLVE

throws out the log(Y) factor since it does not depend on X, and
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the factor "X" is recognized as a linear expression of the form
aX+b where a=1 and b=0, which has solution X==-a/b, or in this

case, X=0. The other root is handled in an analogous fashion.

3.7 Conclusions

By using several distinct avproaches to attack different
phases of the same problem, particularly powerful algorithms can
be obtained. Although ad hoc procedures can, in some
circumstances, yieid similar results in other systems for alge-
braic manipulation, MACSYMA's SOLVE, KATSUBST, RATCOEF, and FULL-
RATSiMP commands provide a generality and power not available
el sewhere.

These foundation blocks allow the building of new
facilities. SOLVE is used by programs which find limits, compute
definite integrals, and expand functions in power series.
RATCUEF is used by the semantic pattern matching subsystem.
FULLRATSIMP is used by RADCAN, and RADCAN, in turn is used by
SOLVE. RADCAN, furthermore, can be used as the basis for

implementing the Risch (41) integration algorithm,
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Chapter 4 - Simplification of Radical Expressions

4.1l. Introduction

The simplification of algebraic expressions is a many-
faceted problem. On one hand, all of the work in simplification
(and algebraic manipulation in general) is circumscribed by the
work of Richardson (39), which shows that for a sufficiently
large class of expressions the quescion of zern-equivalence is
undecidable. Furthermore, some researchers (e.g. Fenichel (1€),
Moses (34), (35)) argue that (regardiess of computability) the
concept of simplicity has no generally acceptable meaning. On the
other hand, Brown (3), Caviness (5), (6, and others shov that
within certain classes of expressions the rigorous notions of
canonical forms and zero-equivalence tests can serve as useful
measures of simplicity. For a survey of these and other atti-
tudes and achievements in algebraic simplification, see Moses
(34).

lhe importance of the simplification problem in algebraic
manipulation is quite basic: A "simplified" expression generally
exhibits its most significant properties in a systematic fashion.
This can make mechanical (or human) processing of the expression
much easier.

This chapter discusses simplification algorithms for the
class of radical expressions. These are, roughly speaking, ratios
of multivariate polyncmials, some of whose '"variables" are nth

roots of polynomials. These expressions commonly occur in
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representing roots of algebraic equations in several variables,
and are rarely treated adequately in algebraic manipulation
systems. The only current alternative to the treatment we
provide in MACSYMA (and describe here) is a computationally
impractical procedure suggested by Caviness in (5).

In the following sections we will proceed to define the
problem of simplification of radical expressions in more exact
terms and contrast our approach with that of others who have had
similar goals. In sections 4.2 and 4.3 we discuss basic concepts
and define the class of radical expressions more precisely. In
section 4.4 we survey previous algebraic approaches to radical
simplification and a promising alternative, zero-equivalence
testing.

Sections 4.5 and 4.6 discuss the specific methods we
developed for MACSYMA. Section 4.7 proves some properties of the
simplified form; 4.8 discusses the canonical form implications of
this work; 4.9 points to other related efforts in MACSYMA, and

4.10 summarizes its usefulness.

4.2. Basic Concepts
Following Caviness (6), to be given a class of expressions
é means to be given rules, such as a Backus-Naur Form (BNF)
grammar, for determining the well-formed expressions in the
class. The expressions must be formed from a finite set of
atomic symbols, a subset of which must be designated as yar-

jables. A member of € not containing any variables is a constant.
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Expressions are interpreted as functions over the domain & of

ccnstants.

If R and S are members of an expression class &, R is said
to be identical toS if R and S are the same string of atomic
symbols. This relation is denoted by R = S. R and S are said to
be functionally equivelent or simply equivalent, if for all
assignments of values in & to their variables for which they are
defined, they are equal. This relation is denoted by R = S. Of
course R = S implies R = S,

One concept related to simplicity which is of particular

usefulness is that of a canonical form.

Definition 4.2-1 A canonical form algorithm f for a class of

expressions & is a mapping from € into & such that for all R, S
in &,

(i) f(R) = R

(ii) R=38§ ==> f(R) = f(S)

Definition 4.2-2 A zero-equivalence test algorithm f for a class

of expressions & is a function from & into & such that for all R,
S ine,
f(R) =0 (== R =0

The constant problem consists of determining the zero-equivalence

of an expression containing no variables.



- 112 -

A third concept, that of a normal form, is used by Caviness.

Definition 4.2-3 A pnormal form algorithm f has the same strong
property of the zero equivalence test algorithm, but has the

additional properties

(i) f(R)

R (whether or not R = ()

(ii) f(R) fits a "pattern."

This pattern concept is not generally defined but can be
clarified in a particuiar situation. For example, Brown's
"simplified" form for rational exponential expressions (3) is
normal,

A more useful concept than the ncrmal form is that of a
regular elementary (or just regular) form as introduced by Risch
(40).

f
Definition 4.2-4 1f @ = e or log(f) for fe¢ €& and is transcen-

dental over €, ® is said to be a monomial over &, I1f 8 is a root
of a polynomial with coofficents in & irreducible over & and of
degree d(8) at least 2, then 8 is said to be hon-trivial

algebraic over &. Let <8= 5(6 s+ oo ,8 ), that is, & with n
1 n

normal algebraic extensions. 4 is regular elementary over & iff

each 9, is a monomial or is non-trivial algebraic over

5(6 ¢ cee o0 ). An expression ze.d'is regular elementary if
1 k-1

the degree of g in any algebraic ® is less than the defining
degree of 68, d(6).
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Clearly if g contains 8 to some higher degree than d(®),
reductions can be made to remove this condition. Any g ed fits
the impiied "pattern" of a rational function (ratio of two poly-
nomials) because any expression is rational once a regular field
description is found. Thus the vagueness of the normal form is
removed.

Section 4.8 returns to exponential and logarithmic
monomials briefly, but for the bulk of this chapter we will be
concerned only with the non-trivial algebraic extensions,

A class of expressions is called a canonical (normal,
regular) class or is said to possess a canonical (normal,
regular) form if there exists a canonical (normal, regular) form
algorithm for it. it is conventional to assume that if R = 0,

then f(R) = 0.
4.3, Radical Polynomials and Expressions

Radical polynomials,(), are formed from

(i) the integers

(ii) the variables x , x , ..., x (collectively called X)
1 2 N

(iii) the operations of addition, subtraction, multiplication

(iv) the un-nested operation of exponentiation to a
positive rational number.

Radical expressions ﬂ, are formed from radical polynomials with

the added operation of division.
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Examples of radical expressions are

The expression

1/2 1/2
(x + 3 )

is not in the class R because of the nested exponents.

This definition is a slight generalization of one given
by Caviness (5) in that it allows more than one variable.

The interpretation given to radical expressions is one
which we believe corresponds, in its implications, to the most
common valid usage. As does Caviness, we interpret radical ex-
pressions as algebraic functions: For each expression E e & ’
there must exist an irreducible polynomial P(z,X) such that
P(E,X) = 0. Caviness notes the necessity of simplifying

1/2 172 2 172
(x+1) (x-1) - (x =1) to 0 in spite of the following

situation:

2
If we let vy be a root of y = x+1
1
2
y be a root of vy = x-1
2
2 2
y be arootof y = x -1
3
2 1/2
then y y -y can just as easily be +2 (x -1) as 0. Perhaps a

12 3
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complete answer would inciude all these possibilities. Any
interoretation "consistent" (but unrspecified by Caviness) should
produce 0, since admitting the other possibilities is tantamount
to declaring all algebraic extensions transcendental over the
hase field (and therefore subject to no simplifications at all).
Caviness requires that some branch of multiple valued roots be

2 1/2
chosen. Thus (x ) is either x or -x, depending on the

branch of the square root chosen. We differ from Caviness on
this point: a particular branch, the positive real branch, to be
defined shortly, will be autoratically chosen as the interpreta-
tion of the radical.

In general, single-valued branches of radicals are not
analytic everywhere, and hence their domains must be suitably
restricted in either Caviness' gor our interpretation.

We now défine the particular interpretation of radicals

which we use.

Definition 4.3-1 A polynomial p(X) is said to be positive if its
leading (integer) coefficient is positive, when p is written in

some canonical form. |In such a case we shall write p > 0.

Refinition 4.3-2 A polynomial or integer p is said to be square-

free if it has no repeated factors (or roots).

If p is a positive square-free polynomial and m is a

1/m
positive integer, then p has a positive real interpretation
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(PR1). A1l other instances of radicals wili be reduced to this

case in defining their interpretations.

Definition 4.3-3 if p is a positive square-free polynomial and m

1/m
is a positive integer, then p has the positive real interpre-

tation (PRI) defined as follows:

1/m
case 1l: p is a positive square-free integer. p is Iinterpreted

as the positive real mth root of p.

case 2: p is a polynomial in one variable, say x. The coefficient
of the leading term in p(x) is a positive integer, so that
there exists a real number L such that for all $> L, p(®) is a

1/m
positive real number. By case 1, for each %, (p(%)) has a

1/m
PRi. The PRi for (p(x)) is then this branch of the solution

m
to z -~-p(x) = 0 which has positive real values for x > L.

case 3: M-variable polynomial (M > 1), Assume a recursive poly-
nomial representation as in chapter 3., it is possible to fix
values for all but the main variable, say x, such that the
coefficient of the leading term in x is positive. Then a PRi
for p(x) is defined as in cate 2. For example, consider the 3-

variable polynomial

2 2
P(x,y,2) = (y =(z+1)y)x =3 xy+2
choose z = 0 (arbitrary)
2
choose y = 2 to make y =- (z + 1) y positive (namely 2)

then for x > 2, p has a PRJ.
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Now let us define interpretations for more complicated
radicals. We can assume that any radicand is at worst a rational
expression p(X)/q(X) where p(X) and q(X) are relatively prime
polynomials in canonical form, and q(x) is positive and nonzero.

n/m
(p(X)/q(X)) is interpreted as the ratio of the interpre-

n/m n/m
tations of p(X) and q(X) . Thus all radicandscan be assumed

to be polynomials,
n/m
If p(X) is not positive, p(X) is interpreted through the
ir/m n
use of a primitive root of unity w = e as (w ) times the
2m 2m
n/m
interpretation of (=-p(X)) . Thus all radicands can be assumed
to De positive.
If p(X) is positive but not square-free, it is easy to
prove that p(X) may be factored into positive square-free

factors. Thus if

k i
p(X) = TI (p (X)) ,
i=1l i
n/m
the interpretation of p(X) is the product of the interpreta-
tions of
in/m
(DI(X))

for i =1, ..., k. Thus all radicands can be assumed to be
square-free.

n/m
If n2m, then for n = qm+r, for 0 £ r < m, p(X) is
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q
interpreted as the product of p(X) and the interpretation of

r/m
p(X) « Thus we can assume n < m.

If n/m is not in lowest terms, it can be converted to
lowest terms., Thus we may assume the greatest common divisor of

nandmis 1.

n/m
If n= 0, p(X) is interpreted as 1.
n/m
Ifn>1, p(X) is interpreted as the nth power of the
1/m

interpretation of p(X) . Thus all interpretations are based on
definition 4.3-3,

2.1/2
According to the PRI interpretation, (x ) means x and

1/72 1/2
(20) means 2 5 » @ positive number. We believe this

corresponds to the most common usage.

We should point out that some of the transformatiors used
for the algorithms to follow are the basis for innumerable false
"proofs" These proofs are generally based on inconsistent inter-
pretation of radicals, and will not occur in our usage. For
example, using

b b ¢ c cc
a = a3 a and (ab) = a b

we can '"prove"

1 1/2 1/2 1/2 172 172 1/2 172
1=1 =1 1 O | (-1) (-1) = (-1) (-1)
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Since MACSYMA wil) impose positive real interpretations on
radicals, it will not factor 1 into (-1)(-1) and fallacies of

this sort will not occur.

It is interesting to compare our interpretation of radicals
with one which is, some would argue, most common, namely, that

2 1/2
the expression (x ) means |x|]. For example, the modulus of ¢ =

2 2 1/2
a+bi is written as lcl = (a + b)) ; If b =0, we are left with

2 1/2
the convention that lal = (a ) . Since this holds only when a

assumes real values, and the square is computed before the square
root, the usage is, in fact, consistent with a positive real

1/2 1/2
interpretation. In general x meaning |x | is restricted to

the domain of non-negative real x.

In summary, there are (at least) three interpretations for
radicals.
1. Caviness', which does not choose a branch of the algebraic
function;
2. Ours, which chooses the PRI;
3. The "common' square root which implies absolute value with
restricted domain.
The last two are equivalent on a restricted domain, and the
first two are equivalent up to the choice of a branch.
Computationally, interpretation (2) has a distinct advantage over

either of the others in that it is consistent over a larger
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domain than (3), and does not unnecessarily involve arbitrary

roots of unity as in (1).
b.b. Comparisons with Previous Work on Radical Expressions

b.4.1 Algebraic approaches

Caviness proves in (5) that for an expression EeR, "E =
0" is decidable. Unfortunately, the application of his
constructive proof relies on an impractical (and largely
unnecessary) computation. The problem lies in the difficult task
of factoring over algebraic extensions of @ polynomial ring.
Caviness points out that the need for factoring is a result of
the lack of irreducibility criteria for the radical expressions.
He develops a few; we extend his results and show that satis-
factory results can generally be obtained without any factoring.

The results here appear to conform more closely to intu-
itive notions of simplification than coes Caviness'. More
important, they are far more easily computable, since the only
calculation needed is that of the greatest common divisor (gcd)
of multivariat; polynomials with integer coefficients.

The difficulty in Caviness' approach, from a practical
standpoint, is his interpretation of radicals as written in an
expression, His approach can be most easily seen in Van der
Wiaerden (47), section 36. Briefly, given any finite number of
radicals, an algebraic extension to the field of rational

expressions may be constructed to which all the radicals belong.
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Each expression in this field will have a unique representation
within the field. The construction of this field takes a finite
number of steps. Given a radical expression E, it Is only
necessary to explicitly construct a suitable field which contains
E, and find the unique répresentation of E in that field. This
representation can always be found in a finite (but possibly
large) number of steps. This does not produce a canonical form
since there are an infinite number of fields which will contain
E, and the representation of E in the different fields may
differ. However, given two non-identical equivalent expressions,
a field may be constructed which contains them both, and in which
they are identically represented.

An unpublished report by S. L. Kleiman (25) proposes a
canonical form for rational expressions In several algebraically

2
dependent variables (e.g. f(x,y) where y +x=1). The procedures he

suggests have never been implemented, nor would they be computa-
tionally efficient; nevertheless, his discussion of the
problems involved is quite thorough. He avoids the question of
interpretation of radicals by introducing new variables which

satisfy certain polynomial equations.

By contrast, our approach (by applying irreducibility
criteria and simplifications) is to produce a field which allows
all permissible simplification to be performed. Many, but not
all expressions are mapped into canonical forms by this approach.
Those not in canonical form are easily distinguishable from the

others by the presence of roots of -1,
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b.b,2 Zero-equivalence tests

it has been shown by Richardson (39) and Johnson (24) that
zero-equivalence tests for the class of expressions treated here
(and other, larger classes) can be reduced to the "constant"
problem; that is, all references to variables can be removed in
determining zero-equivalence, assuming the expressions are
totally defined over the domain of interest. The constant

problem is non-trivial, since very little is known about such

e 1/4
specific constants as e+t or e ; also if (-1) stands for a
, in/4
primitive fourth root of -1, for example, e
1/4 3/4 1/2
(L.4,2-1) (-1) - (-1) - 2

is a constant which is 0, but not obviously so. The constant
problem does not concern us here because it is decidable for
radical constants by methods used by Caviness, while using our
interpretatica of radicals it only crops up with roots of -1.
We discuss zero-equivalence tests in ;ome detall because
they serve, in some instances, as a potentially very powerful
tool in simplification. in some cases decisions as to zero-
equivalence may be all that is needed. Secondly, given a zero-
equivalence test, we can produce a canonical form algorithm in
the following way: Assume we wish to find a canonical form
algorithm for a class of expressions but only have a zero-

equivalence test over that class. We can produce, in lexico-
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graphic order, all legal members of the class (say, in size
place, up to and including the length of the expression f under
consideration)., The first generated expression g, such that f-g
is 0, is the canonical form. Al though this is clearly unsatis-
factory as a practical computational approach, it does provide
some theoretical unity to the concepts. Furthermore, research
along the lines of the approach illustrated below promises to
provide especially useful insight into the ways expressions can
combine. This Is particularly relevant for classes of expression
much larger than R.

Let us illustrate the approach of Johnson's (24) zero-

B
equivalence test. Let & consist of expressions of the form A , A

a rational function in one variable, x, and B a rational number.
Let U consist of products of elements of §’. Radical palynomials
are sums of elements of ¥, Define the function L(u) = (du/dx)/u
for uey . Any element u of ¥ is called an gigenvector (of the
derivative operator) whose eigenvalue is L(u). Eigenvalues are
always rational functions of x, since

L(A*B) = L(A) + L(B)

L(A/B) = L(A) - L(B)

L(AB) = BeL(A) B a rational number

Lix) = 1/x

L(g) = 0 B a rational number

L(A+B) = (dA/dx + dB/dx)/(A + B) A, B rational

functions of x.
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Since we can always decide whether or not a rational func-
tion of x is zero, we can always tell whether or not L(u) for
ued s zero. The basis for the algorithm is the fact that for
u equivalent to a constant, L(u) = 0.

Suppose we can decide !f a constant is zero. Assume we

have a set of eigenvectors u , i= 1, sess N (and have calculated
i

their eigenvalues by the above rules). We may decide if

n
S = 2 u
i=1 i

is zero as follows:

STEP 1: If n=1 and L{u ) is not zero, S # 0. Ctherwise $ is a
1
constant, By assumption we can decide if the constant is
zero, Return,

STEP 2: if n > 1 then consider
n
T = 2. u/u.
i=1 | n

T is a sum of eigenvectors (whuse eigenvalues are known) and
whose last term is 1, Test T for being equivalent to zero
(see below).

STEP 3: if T# 0, S# 0. Return.

STEP 4: if T = 0, then K - S/u Is a constant. By assumption we
n
can test if a constant is zero. if K # 0, then S # 0. if
K =0, Ss=s 0. Return.

We must now explain step 2. Consider
n-1
T= 2 ul/u +1
j=1 i n

If any of the eigenvalues of u Ju , i = 1, sesy N=1 3re zero,
i n
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delete them from T, (The eigenvalue of 1 is 0, and so 1 is
deleted.) if all the eigenvalues are zero, T = 0. Otherwise
T is a sum of at most n-1 eigenvectors (with known eigen-
values) so this algorithm can be applied recursively to

determine whether or not T = 0.

An Example:
Consider

1/72 1/72
S = 2 x - (Lx)

172 1/72
The eigenvalues for 2 x and -(ux) are the same, namely

1/(2x). In step 2 of the algorithm we set

172 172
The eigenvalue for (2 x Y/ (4x) is 1/(2x) - 1/(2x) = 0. This

implies that T (and thus S/u ) is a constant. The particular
n

constant value of S/u must be determined by other means. Such
n

means should reveal that S/u is in fact 0.
n

Several important facts should be noted. First, the
problem of deciding when a constant is zero is not solved.
Second, if an expression is not zero, a "simplified" equivaluent
expression is not generally produced. Third, the class of eigen-

A
vectors can be extended to other expressions (e.g. e , for A

rational in x).
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Richardson's (39) scheme, which is somewhat more compli-
cated, does, however, allow for composition of functions. His
method has been extended to a large class of functions defined by
first order non-linear differential equations by Moses,
Rothschild, and Schroeppel (36).

Zero-equivalence tests, although an area of theoretical
importance, cannot at present be considered as useful as some
other notions of simplification, especially canonical forms,
within the context of algebraic manipulation systems, We are
hopeful however, that research in this direction will produce
useful information for algebraic manipulation system designs, and

have for this reason included this section.

4.5, Simplified Radical Polynomials
In this section we present two closely related simplified
forms for a radical polynomial. Each looks like a multivariate

polynomial, some of whose variables are radicals.

let v, k=1, ... , Nbe a set of radicals of the form
k
1/m
k
(4.5-1) v = (p)
k k

Definition 4.5-1. In form (1), each m is an integer > 1 and each
k

P is a positive square-free integer or polynomial with no
k

(integer or polynomial) factors in common with any p , j #F k.
J
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Definition 4.5-2. In form (2), the p are distinct positive prime
k
numbers or positive, primitive, irreducible (over the integers)

polynomials. Form (2) is a special case of form (1).

With this definition of {v }, @ simplified radical poly-
Kk

nomial has the form:

m -1
k
i
(4.5-2) Qv ) = E a v
k I,k k
1=0
where each a is an Integer, a polynomial, or a simplified

T,k

radical polynomial In other radicals v . J < k.

J
For example,

1/2 1/4 1/2 1/2
2 + 3 + 6 + (x x )
12

can be represanted as a form (1) simplified radical polynomial
1/2 1/4 1/2 1/4 2 1/2
2 + 3 + 2 (3 ) + (x x )
12
and as a form (2) simplified radical polynomial by:
1/2 1/4 1/2 1/4 2 172 1/2
2 + 3 + 2 (3 ) + (x ) (x )
1 2

There are some radical polynomials wkich cannot be

represented in either of the above simpliflied forms, e.g.
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(-1) 1/? To allow for representing such expressions, we define

forms (1') and (2'). In these, a single primitive nth root of

unity, W,, may be adjoined to the set {v }. With this addition,
1/2 k

(-1) = W, .

We initially excluded +1 from the set {p } because
expressions involving roots of unity cannot bekhandled as
authoritativel!y (by the methods we use) as other expressions. By
agreeing that any root of +1 is 1, we are left only excluding
roots of -1. By writing these roots in terms of other exprec-
sions, even these symbols may be effectively removed. For
example, the expression (4.4.2-1) mentioned earlier will not be

reduced to zero automatically. On the other hand, MACSYMA allows

in/4 1/2 1/4
e or 2 (1+i)/2 to be substituted for (-1) . and would then

simplify the resulting expression to 0.
Since many expressions can be represented in the forms (1)

and (2), it Is significant that each of these is the basis for a
canonical form, Furthermore, algorithms for

(a) Converting any radical expression into a ratio of radical
polynomials

and (b) converting a radical polynomial into forms (1) or (2)
are relatively straightforward, given programs for factoring
poiynomials and computing polynomial greatest common divisors.

Details of such algorithms are contained in the next section.
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4.6 Algorithms

4.6.1 Removing quotients from radicals

Let us first consider the radicands in a given radical
expression., A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>