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SUMARY

Thomas Young, medical doctor, philosopherj and Professor of Mechanical Arts
at the University of Cabridge, derived in 1807 a very simple but powerful
formula which associated the applied load, the Euler critical lcad, the
initial bow, and the elastic deformation under load for a column. His
hyperbolic law is in essence we = (wOPE/(P - PE))- Westergaard in 1922
used the Lagrangian law to derive this expression in a much wider context,
and in so doing demonstrated its general validity in all linear instability
problems.

This relationship has great significance in the correlation of experimental
data with linear theory. This was realized first by Ayrton and Perry, who
in 1887 published a paper on struts in which they gave a graphical inter-
pretation of the fundamental equation, and by so doing were able to verify
that the Euler load was correct for a perfect column.

Their important work was virtually ignored. However, in 1932 Southwell
indf-pendently redeveloped the technique and used it to discuss the classic
column tests of von K~rman. In his report, Southwell stated without proof
the axiom which was so clear in Westergaard's analysis; viz, that the
process should have wider use.

This report reviews these several contributions to our knowledge together
with the numerous papers which have followed them. A wide range of problems
is illustrated both experimentally and analytically. In those cases for
which the appropriate theory or the valid experiment exists, the current
results have been presented; but where gaps in reported information exist
the necessary analysis or tests were conducted and presented herein.

It is significant to record that the work covers not only normal load
environments but also instabilities under thermal conditions.

Thus, we may state that the report coordinates and extends the research
of some twenty engineers made in a century and a half. It demonstrates
the power and versatility of the method of expressing the given hyper-
bolic equation in a linear form - by change of variables - and of deter-
mining the classic critical load as the slope of this line. The results
obtained show that there can be no doubt as to the applicability of the
method to all linear instability problems of plates. Thus, the report
corrects the statement of previous researchers who have been hampered in
their work by the lack of valid experiments, arising from the coarseness
of measurement techniques. There is clear indication that continued
study will open the door to a clearer understanding of the perplexing
questions which arise in compressive elements in which curvature is
present.
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The bubject of elastic stability ts more than 200 years old. From the
scientific point of view it begsn, in 1744,when Leonard EulerA made the

now classic analysis of the b'-navior of an initially straight, perfectly
elastic, centrally comp.essed strut. Despite his analytical achievement,

there is little doubt that in the century which followed, practicing
engineers still had to rely upon experience and empiricism born in experi-
mentation.

There is no doubt, however, that researchers who were active in he
field studied Euler's work very thoroughly. Indeed, Hodgk nson, a foremost
experimentalist, remarked in 1842 with reference to Euler:

"It appeared from the resea'rhes of this great analyst, that a pillar

of any given dimensions and description of material required a certain
weight to bend it, even in the slightest degree; and with less than

this weight it would not be bent at all. L.agrange, in an elaborate
essay in the same work, arrives at the s.ime conclusion. The theory
as deduced from this conclusion is ver7 beautiful, and oisson's
exposition of it, in his Mecanique, 2nd edition, vol iy will well
repay the labour of a perusal.

I have many times sought, experimentally, with great care for the
weight producing incipient flexure, according to the theory of Fuler;
but have hitherto been unsuccessful. So far as I can see, flexure

commences with weights far below those with which pillars are usually
loaded in practice. It seems to be produced by weights much smaller
than cre sufficient to render it capable of being measured."

At the time that Hodgkinson made this remark a large quantity of experimental
data was being obtained by many workers. These r'perimental data were,
however, at variance with the predictions of Euler, and analysts thus came
to regard his theory as incomplete. Now analysis according to the (assic
theory indicates that struts of the type already described will remain

straight until a certain critical load level is reached; then the struts
may suddenly bend into the form of a single bow, a shape which will o
maintained with increasing load although the amplitude of the deformation

will increase.

In reality, however, struts tested under axial compression have lateral
deformation from the very onset of loading. It is found in practice that
the load deformation curves for such bodies have the characteristic shapes
given in Figure 1. When they are long, the curve tends to become asymptotic
to the Ealer curve, but when they are short, it does not do so. The curve
for short struts is characterized by maximum values of load, P is clearly
seen in the figure. It is not difficult. therefore, to arrive al the point
of view that agreement between the critical load determined by Euler consid-
erations and the buckling load as determined by experiment is a chance

occurrence to be expected only in the case of very long struts. Thus, one

1

ii



Ideal column (Euler) post buckling

Curve - the elastics

Long slender column with
small initial bow

Normal practical column

S(in.)

Figure 1. Beha-vior of Columns in Compression.



is forced to ask the question: When experimental observations give curves
of the type presented in Figure 1 and the critical load is never attained,
can any valid comparison of theory and experiment be made?

The first researcbers to prcvide a substantial answer to this question were
Ayrton and Perry.5 in 1886 these two investigators published an instructive
paper on struts. It is interesting tc note that when they performed this

.ork, the situation with regard to knowledge on this fundamental question
was such that they commentel: "We think we are right in saying that no
subject connected "with the strength of structures is at present regarded
as being in a more vagae and unscientific state than the subject of which
we have undertaken the study".

As a result of their study, Ayrton and Per& were among the first to
realize that for a complete theory it was essential to introduce imper-
fections of fcrm and loading. Their o.m words express this particular
point and their manner of dealing with it: "The conclusion at which we
have arrived is, then, that any want of axiality in placing the load, or

want of straightness in the unloaded strut, or want of homogeneity in the
material may be allowed for by a term C such that it may be taken as the
initial deflection of a homogeneous, carefully loaded strut, and then,

y 1 = C (1)
1 - 4L P

where

Yl = the ordiuate of the strut center line in the displaced
configuration

E = Young' s modulus

I = second moment of cross-sectional area

L = pin center length

P = axial load ."

From this expression, they deduced that the measured deflection of the
midpoint from its initial value was given by

6C _ P (2)

F,- P

where P was the end load and P, was Euler load.

Equation (2) can be written as



1 1'  1 lP.1

if we choose new variables,

x 1andy
P

then we see that equation (3) is a linear equation in these variables. Thus

a plot of
1 1 C

and lis a straight line whose slope is

This analytical deduction was verified from tests on Dantzic OaK and wrought

iron. The appropriate data are given in Figures 2 to 5. The plots of

6 P

are seen to be straight lines. Ayrton and Perry's result of equation (2)
can also be expressed as

Pcb r -6= C = effective initial deflection (4)

Thus, we may choose a new variable x, such that

8

P

Hence, equation (4) may be written as

P,x - 6 = C = constant (5)

This is a linear equation in x and 6. The inverse of the slope of the line

is clearly the Euler critical load, and the intercept w ith 4.he 6 axis is the

effective initial deflection. This is shown in Figure. 6 and 7.

It is strange that this equation, which gives a very elegant method of

correlating theory and practice, was virtually ignored. Indeed, almost

half a century passed before the method was used to any extent. Then it

was indepegdently rediscovered and presented in the second form by R. V.

Southwell, who published his work in the Proceedings of the Royal Society.

Today the method of presentation is always referred to as a Southwell plot.

Since it is this latter work to which all reference is made, the theoretical

justification for the formula given in equation (2) will be derived in the

Southwell manner.

Consider the strut shown in Figure 8. Let y0 denote the initial deflection,

4
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Y Deflected Position
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Figure 8. Strut Considered by Southwell.

llS

iiJ



and let y denote the final deflection of the central line from the line of
thrust. Let P be the axial load and let EI be the flexural rigidity of the
body. Then the condition of equilibrium of the bent body is

EI(y" - y 0) + -= 0 (6)

which may be written as

y,, + a2y = y,, (7)

Now the quantities y and y are both regarded as functions of x. Thus,
the form of one is dependen on the other. If y vanishes at either end
of the strut, then a general sclution of equation (7) can be obtained if
y and y are represented by the following Fourier series:

= I' 1C sin 371(8)
LL L,

n=l

Yo= I rn sinIn -

n=l }

We find, then, that

Cn  (10)

n ur

th

Thus, if P is the n critical load given by the Euler conditions,

C n

Cn 1

P

n

Now the increase in deflection at the center of the strut (elastic
deflection) is

d = C - I - C3 + C3 + etc. (12)

and if P is a fairly considerable portion of Pl. this may be written as

12



d- (13)

P
P1

Equation (13) can be rewritten as

d - i) = Constant (14)

This equation is, of course, identical with that of Ayrton and Perry and
is in fact that of a rectangular hyperbola. However, whereas Ayrton and
Perry displayed it in a linear form by plotting the reciprocals of the load
and the displacement, Southwell chose to plot the ratio of the displacement
to the load against the displacement. There is a third way in which this
equation can be expressed in a linear manner. In this alternative, the
load is plotted against the ratio of the load to the displacement. This
latter form was given by Donnell in his paper on the Southwell method.7

The differences among the Ayrton and Perry, the Southwell, and the Donnell
representations are clearly shown in Figure 9.

Just as his predecessors had chosen the most accepted test data of their
day to try oat their approach, so did Southwell pick the well acclaimed
data of von K~rman O (Table I).

The results are shown in Figure 10. In all cases the straight lines are
good. An analysis of the critical load, as derived from the plot, and
of the value given by the theoretical formula is given in Table II. The
correlation is excellent.

One condition prescribed in the derivation of the forw, was that the y
should be zero at both ends of the strut. Thus, since 'ls case is likely
to be rare, it is of clear interest to know whether or not in practie
the method would still work for eccentric loadings. R. V. Southwell
studied the problem and confirmed that small eccentricitie s of loading
point could be accommodated. The experimental data which he used for
this purpose were obtained by Robertson.

After the publication of the Southuell 6 paper, Lundquist9 reexamined the
question and generalized the result.

The formula which he developed is as follows:

Y Yl Y - yl a sin r--

P- PI Pcrit P 1 Pcrit _ p.

13



6 elastic deflection
P = applied load

PI = Euler load
c - constant

6 is related, to a first approximation, to the load (P) which producesit and the Euler load (P1) by the expression

6= cP

P1 P
Three possible arrangements of this form are: 1
Ayrton and Perry P

formula 1/6 =A

Southwell /an1/

c c AX P

variables 6/P and 6 TP_ I__ ___

Donnell P

formula P 1  A cP
variables 6p and /6 il A

6 A6

III

Figure 9. Linear Graphical Relationships for Columns.
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TABLE I. T. VON KARMAN'S STRUTS (Ref. 8), Nos. 1, 2, 3a, 3b, 4a, 4b, 5, and
6. M STEEL: E =2, 170,000 kg/ciTP)

P = End Load in X = Measured Deflection V = X!P x 106

Kilograms in Millimeters

Strut No. 1---
2260 0.01 4.43
3020 0.025 8.28
3170 0.04 12.62
3320 0.06 18.07
3470 0.09 25.94
3620 0.25 69.06

Strut No. 2---

4520 0.02 4.43
4830 0.05 10.35
5130 0.11 21.44
5280 0.24 45.46
5430 0.25 158.38

Strut No. 3a---
6030 0.01 1.66
7540 0.03 3,98
8290 0.11 13.27
8520 0.52 61.03

Strut No. 3b---
*7840 0.02 2.55

8140 0.05 6.!1
829O 0.07 8. IL4
8445 0.11 13.03
8600 0.21 24.42

Strut No. 4a---
*9050 0.02 2.21
*9660 0.025 2.59
10260 0.03 2.92
10560 0.07 6.63
10710 0.10 9.34
10860 0.13 11.97
11010 0.25 22.71
1116o 0.73 65.41L

Strut No. 4b---
*3020 0.03 9.93
*4530 0.05 ii.o4
*6030 0.07 11.51
*7540 0.09 11.9;
*8300 0.12 14.1j6

9050 0.15 16.58
9805 0.23 ,Y. IW,
9960 0.26 .. 0

10110 0.29
10260 0.33 2. 16
10410 0,41 39.j9



* -- . • o= . , %. , - = A ±' ' ;T , p : ' -. ' ' r'7 -" " ' '"

TABLE I - Continued1056D 0.52 49.2

10710 0.71 66.29
1o86o 1.46 134.44

Strut No. 5---
*9050 0.01 1.105

*1056o 0.03 2.84
1o86o 0.05 4.67

i160 0.07 6.2711470 0.1c 8.72
11770 0.15 12.74
1270 0.22 18.23
12370 0.30 24.25

12520 o.45 35.94
Strut No. 6---

*10560 0.01 0.95
*12070 0.04 3.31
12370 0.o6 4.85
12670 0.10 7.89
12970 0.15 11-57
13270 0.25 18.84
13430 0.34 25.32
1358o o.74 54.49

* These points were not considered amenable to the linear plot by Southwell
6

because of the lack of accuracy at the lower values of load and deflection

16
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TABLE II. COMPARISON OF UE THEORETICAL CRITICAL LOADS WI H THE SLOPE
VAUE FROM TEE SOUTHWELL PLOTS (Ref._6)

(1) (2) (3) (4) (5)

Strut c dedaced from P estimated P as given Estimated value

No. best-fitting from slope of theoretical (Col. 3)
line in best-fitting formula Theoretical value

Figure 9 line in Fig. 9 (kg) (Col. 4)
(mm) (kg)

1 1 0.005 3712 3790 0.980

2 0.005 5453 5475 0.995

3a 0.005 8590 8645 0.994

3b 0.005 8758 8610 1.017
I0.03 11220 10980 1.022

4b 0.030 .1090 10920 1.015

5 0.010 12815 12780 1.003

6 0.010 13750 13980 0.984

/3

I1



where
P and y = the load and the corresponding midpoint deflection,

respectively

P1 and y= initial values of P and y. respectively

P = the first Euler loadcrit

a sin 1- = e, constant for a given reference point x.
1 L

The straight line obtained by plotting

Y -Yl

P P1

as an ordinate against y - Yl as an abscissa cuts the horizontal axis at
the distance

[a,1sin TT]

from the origin, and the inverse slope of the line is Pcrit -Pl"

With this formula he was able to analyze some of the von Kgrmdn results
which were not amenable by the original approach.

This process of analyzing experimental data was extended by Fisher
10'11

to deal with moie complex conditions. The case which he considered is
depicted in Figure 11. In this diagram the line AA' represents the center

line of the bear. Thus, the conditions assumed for the purpose of analysis
are:

1. Compressive loads P are applied at fixed points in the end cross

sections of the beam.

2. The end eccentricity of P is small.

3. The center line of the beam in the unstrained case is represented
by y = n(x).

4. Forces proportional to P are applied to the beam in the direction
0 , and end couples proportional to P are applied in the plane 0 xy.

5. The forces described in (4) above and their associated reactions
are defined by saying that they produce in the absence of other
loads a bending moment P • N(x) at a distance x from the origin.

6. Constant forces parallel to Qy are applied at various points along
the beam, and constant end couples are applied in the plane 0

7. The system described in (6) above is defined by saying that these

19



forces, together with their appropriate reactions, produce

a bending moment M(x) at position x and end rotation m(x).

With these assumptions the equilibrium equation may be written as:

d2

d 2l x {o(x) + m(x)} P {n(x) + m(x) + 8(x)} l )+P'~)(6

or

LDP2 + P2] 6(x 2 {n(x) + N(x) + m(x)} =i 2 H(x)say (17)

where

6(x) is the added deflection due to P and its associated loads and

2 P
= E.

The deflection 6(x) is determined by equation (17) and by the condition
6 = 0 at x t L. It is to be noted that there is an exact correspondence
among y, N, and m. in that it is not these individual values which affect
6 but only the sum H. Thus, we have the most important results - namely,
initial bowing, end-eccentricity, transverse loads, and end couples
whether proportional to P or constant, all combine to form one total equiv-
alent eccentricity.

Fisher then proceeded with a rigorous analysis and demonstrated that South-

well's expression should be written as

P1 v- Hi(e). F (e,z) (18)

where

H(e) = the sum of the normal forces on the beam

FH(e,z) = a function dependent upon the normal force distribution

v = 6
P

Now the variation of F as z passes from 0 to 1 is a measure of the
deviation from lineari~y. This he demonstrated to be small in general.

A second approximation is also given to the v/6 relationship. This is in
the form of a hyperbola.

(Pi v - 6 C )(Piv -K + Cl - 0= -01(01 C.o) al9)

where

20
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Figure 11. Various Loadings on a Spar Considered by Fisher1.
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Figure 13. Plot of Lateral Load R vs Intercept Value
C From Figure 12.
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Figure 15. Initially Curved, Elastically Supported Strut
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P, v, and 6 have the significance previously ascribed, and C and C
are constants. K has the value 0.123234. 1

To test his theory, Fisher performed a series of experiments. The results
are portrayed in Figures 12, 13, and 14. It is seen from these figures
that even large values of side force do not destroy the linearity of the
6/P versus 6 curves. Thus, the tests provide substantial verification of
Fisher's analysis. It is interesting to note, too, that when the South-
well eccentricities are expressed in terms of the side force values, the
relationship is linear (Figure 13). This is clear evidence that the
intercept with the axis has the meaning normally ascribed to it.

7
In his paper on the applicability of the Southwell plot, Donnell also
considered analytically the case of a hinged strut with continuous elastic
support. This strut system is shown in Figure 15. For the purpose of
his analysis he assumed an initial deformation given by

S  W n sinTh- (20)

n=l

and that the movement during buckling could be represented by

w W sin (21)

n=l

Now the total energy change due to a virtual displacement dWn must vanish,
or

[1 2 2~h

b pE/ w iP/d,. 2 _d_.
dW . r L-2-( 2-+ J w Idx

n wn jo dx

(22)

{L-(i'+w+dW sin -r) L2 d' I+w) 2dx
f 2- d n L w)]}dx

0

where

EI = the bending rigidity

= the modulus of the elastic support.

Thus, it can be shown that

Wn (n 2 EI L G L i Wn

W' + W L2  +n=2 / Wm+W Pn (23)Sn n L nn n
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This equation can be written in the form

W1

n
n 1 (24)

where

Pn = the classical critical loads for a perfect strut having a

continuous elastic support.

Once again the relationship between the elastic deformation and the applied
load reveals a form similar to the Southwell representation for the strut.
Of course, in a problem of this type, which may easily exhibit modal shapes
having harmonics higher than the fundamental one, it is important to
observe and record adequately the buckling shape as well as the load and
deflection parameters.

Hayashi and Khr12in a report recently presented to the Japan Congress
on Testing Materials provide some experimental results for this problem.

The test setup which they used is depicted in Figure 16, while their
results are portrayed in Figures 17, 18, and 19.

Just as a restraining spring located along the length of a column causes
an increase in the critical load reflected by a change in slope of the
Southwell line (as the above referenced tests show), so does a point of
local stiffness reduction caused by slight yielding of the material in a
local area cause a change in the apparent critical load. This situation
is clearly seen in the test data of Fisher given in Figure 20. This is an

important facet since such local yielding is not always readily apparent
from the load displacement curve.

The discussion, so far, has centered around uniform pin-ended columns and
their fundamental critical loads. Such restrictions, however, are not
necessary. The process applies for all end conditions, as has ben demon-
strated analytically by Ariaratnam1 3 and experimentally by Hill.14 The
question of critical loads beyond the first was treated by Donnell.

7

This analysis was perhaps his most important contribution to the column
problem.

In the normal Southwell derivation, as in Donnell's, the total displacement
at any point is the algebraic sum of the various harmonic components of the
deformation at that point. If three of these are considered, as depicted
in Figure 21, then the overall deflection 6 at the 1/3 and 2/3 positions
is related to the harmonic amplitudes as follows:

61/3 = o.866(w1 + w2 ) (25)

623=0.866(W4 W (26)
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Figure 16. Experimental Test Setup for Column Testing
(from Reference 12).
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Figure 18. Plots of 8 vs 8/P From Data Shown in Fig* 17
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k (kq/mm) 0 0.196 0.313 0.530 0.770O.8631 1.080 1.722
Pc3 Exp 20.0 32.1 38.7 51.3 62.5 68.5 78.7 80.0
(kg) Cal 20.9 33.0 39.9 52.3 65.4 70.6 81.7 83.6

k --- - - I k1.722

& 0.863

k 0.770
3

k 0.530

2k 0.313

KCALCULATION
a 0.196

0 EXPERIMENT

0 5 10 1

kt,3/16EI 0IS1

Figure 19. Comparison of Experiments and Theory Data From
Figure 18 (from Reference 12).
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whence

W1 =0.58 [61/3 + 62/3 (27)

Such an expression for W is clearly more accurate than the normal South-
wellian approximation whch gives

W = 8 / 2  (28)

in which expression there is an error of W and higher harmonics; whereas in
the second approximation formula given aboe, equation (28), the error is
W and higher harmonics.

It is clear that in cases in which a large number of harmonics are concerned,
the use of the many simultaneous equations would add greatly to the data

processing as well as to the acquisition. But by using the principles of
Harmonic Analysis, it can be shown that ifI 1/m' 62/m'.-- 6(m- iI
are deflections at points dividing the length into m aliquot parts,

W nTT 2nTT

- /m Sin nn + n -2 sin 2 2/ +

(m m)sin (m 1) ] (29)

Donnell remarked that it was unfortunate that no experimental evidence

existed on this question. However, in a report publishV in the Journal ofResearch of the National Bureau of Standards, Tuckerman examined the

Southwell plot from the point of view of the Westergaard general theory,
and produced data to verify the harmonic theory. This experimental work was
performed by McPherson and Levy. From this laboratory study, he was able
to determine first and second critical loads for one column tested and
first and tbird for another.

The experimental results are presented in Table III, and the final curves
are given in Figure 22 for the first and second mode problem. The theor-
etical critical load levels are compared with the experimentally determined
values in Table IV.

The corresponding data with respect to the determination of the first and
third critical levels are given in Tables V and VI and in Figures 23 and 24.

It should be noted that in each case, the agreement between the first
critical load and the Euler load is good (3 percent), but the e.greement
between the second and third values and their corresponding theoretical
counterparts is poorer (11 percent and 12 percent).
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TABLE III. CRITICAL LOAD OF 13.5-BY-1/4-BY-1/2-INCH COLD-ROLLED STEEL
COLUM WITH EQUAL AND OPPOSITE ECCENTR.ICITIES AT THE ENDS*

1 1 d2**-

P 1I

04 i4 -4 -4 -4 i-4 ilb 10- 10- 10- lb 10 10- 1 10-
lb lb

790-- 0 0 0 0 0 -0 -

750-- -1.02 -0.73 0.01 -40 -0.37 .00912 -0.51 .01288

710-- -1-93 -1.20 0.13 -80 -0.60 .00750 -1.03 .01288

670-- -2.73 -1.63 0.33 -120 -0.81 .00679 -1.53 .01275

630-- -3.40 -1.93 0.54 -160 -0.96 .00602 -1.97 .01231

590-- -4.10 -2.19 0.91 -200 -1.09 .00548 -2.50 .01252

550-- -4.67 -2.34 1.21 -240 -1.17 .00488 -2.94 .01225

510-- -5.23 -2.53 1.52 -280 -1.26 .00452 -3.38 .01205

470-- -5.73 -2.66 1.82 -320 -1.33 .00416 -3.78 .01179

430-- -6.29 -2.78 2.19 -360 -1.39 .00386 -4.24 .01178

390-- -6.74 -2.87 2.52 -40o -1.44 .00359 -4.63 .01158

350-- -7.22 -3.01 2.83 -440 -1.50 .00342 -5.02 xoi142

310-- -7.69 -3.05 3.14 -480 -1.52 .00318 -5.42 .01130

270-- -8.14 -3.13 3.47 -520 -1.56 .00301 -5.8o .oll15

230-- -8.53 -3.19 3.79 -560 -1.60 .00285 -6.16 .01100

190-- -9.01 -3.26 4.08 -600 -1.63 .00272 -6.55 .01090

150-- -9.40 -3.35 4.40 -640 -1.68 .00262 -6.9c .0108o

110-- -9.78 -3.36 4.71 -680 -1.68 .00247 -7.24 .01063

* This table reproduced from Reference 15.
* A is the difference in strain on opposite sides of the specimen

(bending strain) arranged to be zero at the arbitrary "zero load"
for computations of 790 lb.

** d and d are the bending strains corresponding to the first and
second critical loads, respectively.

d AT -AB
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Strain Difference 7
Load Difference x1

2 3 4 5 6 7 8 9 10 11 12 13

Slope =2041 lb ~
2

Pcr =790 +204 = 9941lb
3

S4

Slope = 2910 lb

5 -f9,0+ 2910 3700 lb

Cc

Assumed "Zero Load" for Computations of 790 lb

Figure 22. Lundquist-Type Plots for First and Second Modes
of ,n Axiall3y Compressed Column (from Reference 15).
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TABLE IV. CRITICAL LOAD OF 13.5-BY-1/4-BY-1/2-INCH COLD-ROLLED STEL
COLUMN WITH EQUAL AMD OPPOSITE ECCENTRICITIES AT THE ENDS*

FIRST CRITICAL LOAD

From strain at middle ........................ 994 lb

From strain at quarter points ......... . . . . . . . 1,015 lb

Theoretical - ..EI1,020. .

(Assumed E - 29 x 106 lb/in. )

SECOND CRITICAL LOAD

From strain at quarter points . ................ 3,700 lb

Theoretical 4 I .... 4,100 lb

(Assuned E - 29 x 10l6 b/in. 2

* This table reprod iced from Reference 15.
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TABLE VI. CRITICAL LOAD OF A 27.7-BY-3/8-BY-3/4-INCH COLD-ROLLED
STEEL COLUMN*

FIRST CRITICAL LOAD

From strain gages . .. . . . ... . . . . . . . . . . . ... 1.251 lb

Theoretical TEI . . . . . . . . . . . . . . . . . . . . . . . . 1,24o lb

(Assumed, E = 29 x 106 lb/in. 2)

THIRD CRITICAL LOAD

From strain gages . . . . . . . . . 9P825 lb
Theoretical9TPEI . . . . . . . . . .. . . . . . . . . . . . . .11,100 lb

L2

(Assumed, E -29 x 1O6 lb/in.
2)

This table reproduced from Reference 15.
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The next applicatio: of interest appears in the study reported by Bridget,
Jerome, and Vosseller.1 7  This work was concerned with the stability of

angle struts. The instability mode for such structures Is markedly
dependent on the width of the flanges. When the flanges are narrow, the
mode is of the Euler Column type, but when they are wide, local or torsional
instability can occur. It was found in the investigation that the South-
well plot was applicable irrespective of mode. The oerall results of the

study are given in Figure 25. A typical Southwell plot is shown in Figure

26.

7These experiments were conducted under the guidance of Donnell, who pro-
vided theoretical justification for the procedure in a report published
in 1938. He analyzed the stability of a compressed flat panel hinged on
three sides and free on the fourth, as shown in Figure 27. Because the
deformed shape of such a body is, to a fair approximation, a developable
surface, extensional stresses can be neglected in the internal energy,

and the initial deformation of the panel can be represented by

w' W W nrxb n --L
n

and the additional deflection can be represented by

s.1
w b I Wn sin nTx (30)

L
n

Then the condition where the energy change due to a virtual displacement
dW vanishes is

WEt 3  nb ,L i(2w 2 2 ( 2

2 P ) o , 2) + (b
- ) -

L 1
)

nx~ 0 0 x+ ~ ~ 2p 62 aJ_ dxd x"\ rLw + w + dW ssin-f
2 x2 6s 21 dx ; as 0 Jo 0o1 [ nb !i-X

-- [(w +w)2} dx ds (31)-a- L w' + W 21 d ds .......... ( 1

where E, p, and t are the elastic modulus, Poisson's ratio, and thickness,

respectively.

Substituting equation (30) into (31), we obtain

W n Et3b n2 + 6(1 - Wn P (32)
W +W 2) + 2\-1 2 W) + W n
n n 12(l -[) L- b n n
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Figure 25. Correlation of Theoretical Curves With Results of
Bridget, Jerome, and Vosseller as Determined From
Southwell Plots of Compressed Duralumin Angles

(from Reference 17).
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Figure 26. Southwell Plot of Bridget, Jerome3, and Vosseller's
Data on Compressed Angles (from Reference 17).
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thwhere P is the n critical load. This expression if clearly identical
in form to that derived by Southwell and suggested by Ayrton and Perry.5

If the linear plot method (Southwell Plot) described had significance
merely with regard to the strut, then, without question, it would merit
discussion. But the value of the technique is much wider. We shall deal
with various successful applications of the procedure in chronological
order.

In 1933 Gough and Cox 18 made experiments on the shear buckling of plates
with a view to checking the analytical studies of Southwell and Skan.19

In the first series of tests ithich they made, the buckling loads were
determined by distortion of images reflected in the surface of the strip.
The results of this approach were very positive. In all cases, there was
a serious discrepancy between theory and experiment. The "critical loads"
determined as described were found to be representable by an expression
which differed from the theoretical not only in magnitude but also in form.

As a consequepce, the interpretation of the tests was made on the basis of
the SouthwellO argument, which proceeds as follows.

If initial irregularities are present in the plane of the sheet, there
will be a component of the wave form corresponding to the first critical
load, as defined by theory. If the amplitude of this component is Wo, the
effect of a shear load S is to multiply this amplitude in the ratio
S/(S - S), S being the critical load. Thus, the corresponding values of
S an W (elas~ic deflection) should satisfy the relationship.

W = SW 0 / (S 0 - S) (33)

i.e., WL- - lj = constant (34)

an equation of precisely the same form as equation (14).

Thus, the plot of W versus W/S should be linear, and the slope should
correspond to the first critical load for a perfect plate, since the inter-
cept is clearly the value of the effective imperfection.

The results of this approach are portrayed in Figure 28. Good linear
relationships are obtained. The comparison of the theoretical loads and
the values estimated from experiment is given in Table VII.

The application of the same techniques for the interpretation of the 20
instability results of flat plates is also feasible. Timoshenko and Gere
determined a linear relationship similar to equation (14) for plates in
which there is no midplane stretching. The initial deflection must be
small in comparison to the plate thickness. The fourth-order differential
equation of equilibrium is
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Ratio of wave depth to shear load

Strip DGLI, 150 - 1-1/2-in. width (w/S plotted from 0 as zero).
Strip DGLI, 157 - 1-1/4-in. width (w/S plotted from 10 as zero).
Strip DGLI, 156 - 1-in. width (w/S plotted from 10 as zero).
Strip DGLI, 155 - 3/4-in. width (w/S plotted from 20 as zero).
Strip DGLI, 154 - 1/2-in. width (w/S plotted from 30 as zero).

Figure 28. Determination of Critical Load From Gough and Cox
Data on Thin Strips Under Shear (from Reference 18).
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1

TABLE VIIo DETAILS OF STRIPS TESTED AND MEASURED VALUE OF WAVE DEPTH*

Reference mark
of strip DGLI 154 DGLI 155 DGLI 156 DGLI 157 DGLI 150

Width (in.) 1/2 3/4 1 1 1/4 1 1/2

Length (in.) 10 15 20 25 30

Thickness (in.) 0.0126 0.0126 0.0126 0.0126 0.0126

Theoretical buck-
ling load (tons) 16.3 10.9 8.2 6.5 5.4

Buckling load
estimated from ll.4 6.65 6.86 5.29
wave-depth read-
ings (tons)

S estimated
e - buckling load 1.045 .81 1.055 .98
S theoretical

0 buckling load

Shear load (tons) Wave-Depth (deflection meter reading)*

0.2 0 0 0 0 -

0.25 - - - - 0

0.4 0 6 2 1 -

0.5 3 1 .. 1

1.6 1 7 5 2 -

0.75 - - - - 6
M. 2 P 8 3-

1.0 3 1-2 10 4 10

1.2 6 14 14 6 -

1.25 - - 12
1.4 8 15 14 9 -

1 . 5 ....- 1 8

1.6 10 18 18 11 -

1.75 .... 20

1.8 12 20 21 12 -

2.0 16 21 24 14 25
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TABLE VII - Continued

2.2 20 23 29 17 -

2.25 - - - - 31

2.4 23 26 33 19 -

2.5 - - - - 39

2.6 27 29 40 22 -

2.75 - - - 48

2.8 30 31 47 25 -

3.0 35 35 53 27 58

3.2 39 39 62 32 -

3.25 - - - - 70

3.4 45 42 74 35 -

3.5 - - - - 90
3.6 50 48 89 40 -

3.75 - - - - 115

3.8 57 52 1o4 45
4.o 65 60 127 52 150

4.25 - - - - 195

4.5 - - - 252

4.75 - - - 323

5.0 - - - 4o

* Data repooduced from Gough and Cox Reference 18.

** The values of deflection readings used for determining the critical
loads are those included between the horizontal lines marked in the
table.
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V w) [N W2 ) ?21~ ( ) (W + )J
2 (35)

where

w = elastic lateral displacement of the median surface

w = initial lateral deformation of the median surface0

D = flexural stiffness

q = transverse loading

and the in-plane stresses are

Ox= N
Xt

a(36)
t

a =NYy XY
t

being positive in compression. From the equation above, it was shown by
Timoshenko and Gere that an initial curvature produces a deflection
identical to that given by a lateral load of intensity.

2 w 2w 62w
0 0 0qo = Nx-2 + 2N +Ny y (37)x Y xby y 61

This mathematical identity is true only as long as w is so small that the
principle of superposition is not invalidated. This result is a particular
example of the general case derived by Fisher in Reference 10. (See also
Figure 36.)

For this linear plate theory under the restriction of a uniaxial load with
simply supported edges, Figure 29, the elastic lateral deflection may be
taken as

wI= Ba sin m-X sin n Y (38)

m=l n=l

and then the initial deflection is defined as
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Figure 29. Rectangular Plate With Uniaxial In-plane Loading.
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W , , OSflrx l (39)
a b

: m~-l -i=l

Substitution of these Fourier relationships into equation (37) results in

B [ = 'Nx Br(n x ] (+N)

Thus,

B ra l.x (41)
"'= 1D [M2+ (na\

for
m =1l,2,.......

n = ,2. ......

For a perfect flat plate with ideal boundaries, the critical uniaxial loads
per unit length are well established. They are

N' N I E- _+ (42)x Xcr mn m a

for m =1, 2.....

n = 1, 2,.....

Therefore, equation (41) becomes

Amn

n N' (43)
N

This can also be rewritten as

N'
BA (44) '

Brn LN J %

for 1n = 1, 2, 3,.....

n=i,2,3 .....
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Clearly this result is in a one-to-one correspondence with that established
by Southwell for the case of the column.

If we consider a realistic square plate under normal test conditions, all
experimental evidence indicates that the deflection is of the first modal
shape at the commencement of buckling, and equations (42) and (44) become

N' = N = TD4x X 2 (45)
a

--xcr-1  ]= Bll Lxcr ]=All (46)

x x

Equation (46) is identical to equation (14). Therefore, the Southwell
Plot is also applicable in this case.

As buckling develops, however, modal changes may occur, and then
consideration must be given to the effects of further terms which result
from the higher harmonics. Thus, for interpretation of test data appropr-
iate to these cases, it is clearly necessary for the observer to describe
and record accurately the modal behavior of the test vehicle and to
realize the need for careful positioning of the displacement sensor. In
general, for a square plate the deformations are sinusoidal, and the modes
higher than the first do not normally occur. Hence, in practice, the
elastic deflection 6 may be measured at almost any position on the plate.
Of course, for maximum sensitivity the center point should be chosen.

In his 1938 paper, Donnell7 applied the finite displacement theory, which
he had previously derived in 193421 for thin-walled cylindrical shells, to
a panel, and so permitted edge restraint and allowed for in-plane stretch-
ing of the plate. On this basis, if is the usually defined stress
function, he found that

1 4+ 2 W ,; 4 2  2a w 21
-v = --L + K - - (47)ET r 2 (47)

where r is the radius of curvature and x and s are longitudinal and
circumferential coordinates. If and w are harmonic functions of x
and s , the internal strain energy is

v JL 2 ( w E&w)2  ]dxds (48)

In the case of a flat panel, the added midplane extensional terms are

those of the first order squared. These are due to the elemental rotations
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as shown in Reference 21. Let the initial curvature and the elastic
movement of the square "flat" panel, hinged on four sides and shown
in Figure 30, be respectively

w' = W'sin E- sin "K

L L
(49)

T x Trx
w = W sin - sin

=" L L

Setting 1/r = 0 shows that equation (47) is similar to the compatibility
equation for the flat plate "large displacement" theory derived in 1910
by von K~rman.2 2 Now further substituting

K =(l + 2 w

and equation( 4 9) into equation (46) results in

4@ =Et + (cos2- f 2 s 2TTx TS

(t19 + 2W'2f T x -os - sin -L sin
L L

Etnr'--~ r w+ ,w(cos 2Tfx +cs2T sIL( + cos L L (50)

When possible conditions for displacements in the plane of the plate at the
edges are neglected, equilibrium in the plane of the plate is evidently
satisfied if

V2 -t (W + 2W')W cos 2rx + cos 2T()
8-T,2  L o (51)

The condition that the total work due to a virtual displacement dW vanishes
is

dW 7-- f x\w + w + dW sin i-sin
2WL 6Lx\ L L0 0

- L (w' + w)j }dxds (2

Substituting equations (48), (49) , and (51) into equation (52) results
in

P = W [ +lWEt 3  "[l+3(- 2) (W + 2W')(W+ W')j
38t
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Figure 30. Square Panel Hinged on Four Sides as Considered
by Donnell7.
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1

W P r +3(1i (W + 2W,)(w + V,)] (53)

where P is the critical load without initial curvature.c

It is clear from equation (53) that if W, and W are very small in relation
to the plate thickness, then the expression

= 3( 1 - ) L(w + 2W,)(W + W:)] (54)

8t
2

is negligible and for all practical purposes the Southwell approximation is
valid. However, as the ratios of W'/t and/or W/t increase, the Southwell
condition is violated. Nevertheless, if the ratio of W'/W is small,
equation (53) can be written as

where 3(l - 2

8t2

which may be further approximated, with little error, to the expression

P P c[1 + W2] (6

Thus, if a new variable is chosen such as Z = W2, equation (56) may be
written as

P = Pc(l + yz) (57)

which of course is a linear equation in the variables P and z. This
result is similar in form to that published by Yoshi~i et al.23,24,25
and also bears a remarkab.e similarity to Queinec's 3° results which are
discussed later in this report. It can be visualized easily that if a
graphical representation of equation (57) is made for the variables P and z,
then the straight line will intercept the load axis at a value 6f P which
corresponds to the theoretical critical load value Pc"

At this stage it is interesting to determine the bounds of applicability of
the Southwell approximation in terms of the amplitude of permitted motion.
For this, the important term in Donnell's equation, equation (53), is of
course the expression for T, equation (54). Thus, if a valid Southwell
condition is to exist, this coefficient Y must be very small in comparison
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to unity. In general, the upper bound of applicability for equation (53)
would appear to occur when the square of the measured displacement is

[ 8t 2  (58)
3( g)

where T <<< 1.

Equation (53) can be rewritten similar to the Southwell form as

P rW' + w
1+

or

[ + w 1 (59)
P

Hence, it is obvious that the numerical value of T is the measure of the
precision with which the Southwell Plot will predict the classical critical
load. In other words, the coefficient T is the error introduced into the
evaluation if no bounds, other than the limitations of the original "large

displacement" derivation, are placed on W (or W/t). For example, if the
error is to be limited to 1 percent, then T = .01; therefore. the upper
bound placed on W is given from equation (58) as

2 8t2
(W)2  2 (.01) (60)

3(1 - g 2

Experiments conducted in the Aeronautical Structures Laboratory at Stanford
University have demonstrated the validity of the Southwell approximation
for plates with restrained loaded edges and simply supported unloaded edges.
These results are shown in Table VIII and Table IX and in Figures 31, 32,
33, 34, and 35. They have shown that imperfection magnitude and side rail
clearance are linearly related, as are imperfection values and the intensity
of a central normal force. This result matches that of FisherlO for a
column.

If further justification of the Southwell0 linear approach for flat plates

is ne ded, it can be obtained by reevaluation of the analytical work of
Coan29 and the experimental results of Hoff', Boley, and Coan.

2 7 Coan
analytically investigated the buckling of rectangular isotropic plates

having small initial curvature, simply supported loaded edges, and simply
supported unloaded edges which were free to warp. The initial curvature
was restricted to be small. The theoretical cure relating

Px/Pcr
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TABLE VIII. BEHAVIOR OF A COMPRESSED 4-PLY FIBERGLAS PANEL OF 181 CLOTH -

6-IN.-BY-6-IN. LOADED EDGES CLAMPED AND UmOADED EDGES SIMPLY
SUPPORTED WITH VARIOUS SIDE RAIL CLEARANCES.

Load (lb) Strain g in./in,

20 20 20 20

30 23 23 55

40 30 30 67

50 38 38 85

60 48 48 108

70 62 70 137

80 83 102 185

90 115 140 250

100 158 192 339

110 219 278 445

2o 300 393 570

130 400 528 676

140 508 648 775

150 615 748 892

16o 720 853 960

170 818 958 1092

180 900 1054 1175

Side Edge Clearance
(in.) 0.0015 0.002 0.004

Tests conducted at Aeronautical Structures Laboratory, Stanford
University.

57

-..- '-- '.--



TABLE IX. BEHAVIOR OF A COMPRESSED 4-PLY FIBERGLAS PANEL OF 181 CLOTH-
6-iN.-BY-6-IN. LOADED EDGES CLAMPED AND UNLOADED EDGES SIMPLY
SUPPORTED WITH VARIOUS NORMAL FORCES APPLIED AT CENTER OF
PANEL

Load (Ib) Strain Units

0 0 0 0 0 0

20 0.40 0.80 0.80 0.80 0.80

40 0.95 1.40 1.60 1.80 2.05

60 1.50 2.15 2.50 3.10 3.55

80 2.25 3.25 3.80 4.85 5.35

100 3.30 4.60 5.45 7.20 7.75

12o 4.80 6.55 7.65 10.15 10.90

140 6.95 9.25 10.80 14.20 15.00

160 10.40 13.20 15.30 19.60 20.30

18o 16.20 19.30 21.40 26.40 26.90

200 25.40 27.40 29.20 34.30 34.30

Normal Force Test 1 Test 2 Test 3 Test 4 Test 5
(gm) 0 75 130 190 250

Tests conducted at Aeronautical Structures Laboratory, Stanford
University.
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stud Kc, Figure 4 or Reference 26, where

P = average compressive load

Pcr = critical load for a perfect plate

Kc = elastic deformation at the plate center divided by theplate thickness,

was used to obtain the data listed in Table X. This information has been
plotted in the Southwell manner and is shown in this form in Figure 36.
The resulting straight line has an inverse slope of

Kc = P = x o.96 (61)

c Pcrp

which is within 4 percent of the classical relationship.

In the experimental work of Hoff, Boley, and Coan., "flat" fiberglas:-
plates were buckled. Lateral deflections and strains of the plates were
measured and load-deflection curves as well as load-strain curves were
shown. Some of the data from Figures 6, 7, 9, and 10 of the report are
shown in Tables XI and XII. These data were recast in the Southwell manner

and plotted in Figures 37, 38. and 39.

This technique can be applied also to the case of a biaxially loaded plate.
The dimensions and coordinates are shown in Figure 40. The equilibrium
equation which holds true under the assumption of a Hookean homogeneous,
isotropic, and perfectly flat plate is

4 2w
Dv w- N 2 -- (62)

when the effect of an initial deformation, w0, is included, this equation
becomes

4 6 2 y2 2W
DV w= N e Wjy 2 0 + ] (6.3)

For a simply supported plate where the biaxial forces Nx and N are uni-
formly applied in the plane of the middle surface, the appropriate elastic
deflection is

w ' - mnSln ET sin nTly (64)
=_ am bm=l n=l
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TABLE X. DEFLECTION BEHAVIOR OF A SIMLY SUPPORTED SQUARE PLATE WITH
SMALL INITIAL CURVATURE LOADED IN EDGE COWPRESSION, UNIFORMLY
DISPLACED LOADING EDGES AND STRESS-FREE SUPPORTED EDGES

K
C

x K
p xcr

cr

0 0 0

0.347 .048 0.138o

0.533 .072 0.1680

0.459 .0848 o.1850

0.500 .0983 0.1966

0.553 .1oo 0.2170

0.569 .i280 0.2250

0.597 .1380 0.2310
0.621 .16oo 0.2580
0.710 .224o 0.3150

0.766 .2720 0.3550

0.826 .3520 O.4260

o.871 .4320 0.4960

0.903 .5o4o 0.5580

0.992 .606 o.611o

Data obtained from theoretical curve, case 1, Figure + of Coan. 2 6
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TABLE XI. LOAD DISPLACEMENT DATA FOR BUCKLING TESTS ON SQUARE
FIBERGLAS PANELS

P 36 r- v 0 /F' o

lb x 10 in. 0 i

Panel (28a + 4c), (Data obtained from Fig. 9, Ref. 27)

3.36 .0167 0 0 -
3.79 .0222 0.43 .0055 .0128
4.07 .0278 0.70 .0111 01585
4.31 .0333 0.95 .0166 .0175
4.55 .0431 1.19 .0250 .0210
4.78 .0514 1.42 .0347 .0245
4.96 .0625 1.60 .0458 .0286
5.21 .0833 1.85 .0666 .0360
5.4o .1028 2.04 .816 .0422
5.57 .1223 2.21 .1056 .x477
5.76 .1528 2.40 •1361 .0567

Panel (24d/4c), (Data obtained from Fig. 7, Ref. 27)

4.52 .00190 0 0 -
4.83 .00240 0.31 .0005 .00160
5.31 .00344 0.79 .00154 .00195
5.86 .00495 1.34 .00305 .00]77
6.38 .00715 1.86 .00525 .00282
6.83 .00990 2.31 .00800 .00346
6.92 .01070 2.40 .00880 .00366
7.07 .01237 2.55 .01047 .00412
7.32 .01430 2.80 .01240 .0443
7.65 .01730 3.13 -01540 .00492
8.07 .02090 3.55 .01900 .00535
8.52 .0245o 4.00 .0226o .00565

Panel (28a + 4c), snug side edge clearance, (Data
obtained from Fig. 10, Ref. 27) Test one.

5.00 0,0227 0 0
5.24 .0253 0.24 .0026 .olo8
5.49 .0293 0.49 .0066 .0135
5.64 •0347 o.64 .0120 .0187
5.78 •0373 0.78 .0146 .0187
5,90 .0427 0.90 .0200 .0222
6.07 .0520 1.07 .0293 .0274
6.20 .0627 1.20 .0400 .0333
6.35 .0800 1.35 .0573 .0424
6.51 .0973 1.51 .0746 .0494

6.68 .1213 1.68 .0986 .0587
6.82 .1427 1.82 .1200 .0660
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TABLE XI - Continued

Test two

5.00 .0280 0 0
5.24 -0333 0.24 .0053 .0221
5.49 .0387 0.49 .0107 .218
5.64 .o44o 0.64 .0160 .0250
5.78 .0507 o.78 .0227 .0291
5.90 .0587 0.90 .0307 .0341
6.07 .0747 1.07 .0467 .0436
6.20 .0933 1.20 .o653 .0544
6.35 .1175 1.35 .0895 .0663
6.51 .1440 1.51 .116 .0768

Panel (28a + 4c), approx 0.010-in. side edge clearance. Test one

4.17 .0160 0 0 -
4.32 .0187 0.15 .0027 .0180
4.55 .0213 0.38 .0053 .o14o
4.75 .0266 0.58 .0106 .0183
4.89 .0293 0.72 .0133 .0185
5.07 .0373 0.90 .0213 .0237
5.25 .0453 1.08 .0293 .0271
5.38 .0560 1.21 .0400 .0331
5.49 .0707 1.32 .0547 .414
5.65 .092 1.48 .0760 .0513
5.78 .112 1.61 .0960 .05975.91 .128 1.74 .1120 .0644

Test two

4.17 .0280 0 0
4.32 .0320 0.15 .0040 .0267
4.55 .0373 0.38 .0093 .0245
4.75 .0453 0.58 .0173 .0298
4.89 .0520 0.72 .0240 .0333
5.07 .6W0 0.90 .0360 .o400
5.25 .0827 l.o8 .0547 .0507
5.38 .0973 1.21 .0693 .0573
5.49 .16 1.32 .0880 .667
5.65 .1373 1.48 .1093 .0738

Deflections measured at panel center.
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TANA XII. LOAD BENDING STRAIN DATA FOR BUCING TESTS ON SQUARE
FIBERGLAS PANELS

Panel (214d/4c) (Data obtained from Fig. 6, Ref. 27)

P 3 6
lb x l 3  in. x l0 - 6  0 a P - P0

in. 
in.
lb

2.93 71.4 0 0 0

3.43 91.0 0.50 19.6 39.2

3.88 116.9 0.95 45.5 47.9

4.30 1.49.4 1.37 78.0 56.9

4.72 194.8 1.79 123.4 69.0

5.08 233.6 2.15 162.4 75.6

5.41 279.2 2.48 207.8 83.8

5.80 350.6 2.87 279.2 97.2

6.06 422.0 3.13 350.6 112.0

6.42 526.0 3.49 454.6 130.2

6.71 669.0 3.78 597.6 158.1

7.03 890.0 4.10 818.6 199.6

7.33 1078.0 4.40 1006.6 228.8

7.69 1280.0 4.76 1208.6 254.0

7.98 1448.0 5.05 1376.6 273.0
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Thus, the initial deformation is assumed to be

w o A  sinmTx n)y
13 (65)

where m and n represent the number of buckles or the number of half
waves in the x and y coordinate directions, respectively. Substituting
these Fourier relationships into equation (63) leads to

)2 n-2-1J fx[3 (in2 (jn2] + N (IT 2

\bJ x~nnaI in a, yL inn bI inb,
(66)

This reduces to
A

B =m (67)

+ N - 1

for
m i1, 2, .....

n 12....

This equation (67), relating the amplitude of the elastic deformation,
the amplitude of the assumed imperfection (a constant), the classical
critical loading, and the biaxial loads, is similar in type to equation
(41) for the uniaxial loading case.

For the perfect flat plate with ideal boundaries, the critical biaxiala
loads are directly dependent upon the aspect ratio of the plate, B, and are
determined from the relation

N Nm2 + a 2 n2  D +(2 n (68)
x y2bb a

The critical combinations for N and N for any particular value of a/b are
determined by minimization of e~uationY(68) with respect to m and n. The

usual interactiou curve clearly outlining the stability bounds for an a/b =

1.0 is shown in Figure 41.

If a square plate is considered, the aspect ratio will have a value of
unity, a/b = 1.0. Therefore, equation (68) becomes

2 2DTr2 22
Nm n 2] (69)

a

The interaction for this particular case having the nondimensional form I
of coordinate axes of
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Figure 41. Interaction Curve for Determination of Stability
Boundary -for Biaxially Loaded Plate With Aspect
Ratio a/b = 1.0.
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XT and

is shown in Figure 41. From this graph, the classical critical loads can
be determined for particular biaxial load ratios. Thus, if the loading
ratio

NK _x

y

is substituted into equation (69), the critical loading for a perfect plate
would become ' -:DTF [r2 + n - 7?n( 2 + 1

N ~ f -D1 nt~ 2  (70o)cr r a [2 12 2 2
Im + nJ IIn/RK+ -R

After substitution of this expression into equation (67), the elastic
deflection is I

A

cr 1

where N = N KN • This implies that the loading rate in the two
directions will mintain a constant proportionality. Transposing equation
(71) results in

B Ncr 1 A AM (72)

for the particular m and n which correspond to Ncr obtained from Figure 41.

If the values of the total in-plane loads

P =N a
X X

P =N a
y y

are substituted into equation (72), we obtain

T  - = (3
P

Thus, once again the relationship between the variables of £he elastic
deformation and the load shows a direc, correspon.dence to the Southwell
equation (14). The experimental work to check this derivation should
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be completed in the very near future.

In the analysis performed above, the imperfection of the plate was con-
sidered to be an initial deformation whose shape was similar to the expect-
ed buckle mode. An alternate manner in which to consider the imperfection
is to suppose that an additional transverse load is applied at some point
on the plate. This technique has received attention by Loo and Evan-
Iwanowski28 in the experimental study of instability of spherical caps.
Their work is discussed in our paper on shells.29  It is, of course,
validated by the tests of Fisher and by the tests reported here on panels.

Turner, Martin, and Weike1031 numerically examined a biaxially loaded
plate with such an added normal force. Their compute ' results are listed
in Table XIII and depicted graphically in Figure 42. These computed
points are essentially collinear. This result tends to give credence to
the suggestion that a knowledge of the nature of the basic imperfection
is not of importance if it is desired merely to confirm the theory for
perfect bodies. It is obviously of importance in the compilation of data
designed to help in the formulation of practical theories of real struct-
ures.

Real structures, of course, are very rarely subjected to uniformly dis-
tributed loadings or restrained in the simple manner considered so far.
Walker 32 has made a substantial effort to consider flat plates under
conditions which more closely approximate those encountered in actuality.
His study has been directed toward the establishment of a stability theory

'for plates axially compressed by nonuniformly distributed load. In the
analysis performed, a wide range of possible boundary conditions was taken

into account. The theoretica3 treatment was evaluated in the laboratory. The
tests which were performed and reported in the given reference appear to
be very thorough, well conducted tests. In the analysis of the data derived,
Walker demonstrated that a linear relationship existed between 8 and 6/P,
but he offered no analysis to confirm that this was so. Typical results
are given in Figure 43. In presenting the results, the author pointed out
that the correlation of the theoretical critical load value and the insta-
bility level predicted from the analysis of the test is very good. This
can be seen from the graphs in Figure 44.

However, it must be admitted that while flat plates do play an important
part in everyday structures, generally, conditions are more complex. In
aeronautics, combinations of plate and column (Usually called a stringer
in this application) are frequently met. The testing of components of this
type is fraught wit 3all the difficulties of the simpler cases. Eamberg,
McPherson, and Levy have carried out an experimental study of this problem.
In their analysis of the test data, they applied a Southwell-type plot. They
demonstrated, as is clearly seen in Figures 45 through 48, that it gave good
results for stringers attached to sheets, irrespective of their failing mode.
They were unable to apply the process to the sheet between stringers due to
the lack of appropriate data prior to the instability value.
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V

TABLE . MPU * TJ RESLT - RECTANGULAR PLATE STABILhTf PROBLEM

Aw at xlO
Step psi x = y = 0 l-000575I

1 0 0 0.00575 0.00575 0

2 i00 i00 0.000587 0.006337 0.00059 5.9
3 100 200 0.000736 O0.007073 0.00132 6.6
4 100 300 0.000951 o.00842 0,00227 7.6
5 i00 400 0.001287 0.009-U 0.00356 8.9
6 100 500 0.001836 0.o11147 0.00540 10.8
7 100 600 O.002823 0.013970 0.00822 13.7
8 100 700 o.oo4922 o.o8892 o.o1314 18.7
9 100 800 0.010558 0.029450 0.02370 29.6

* Reference 31
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Figure 42. Southwell Plot for Biaxially Loaded Plate. Computed
Data Points From Reference 31.
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Figure 46. Southwell Plot of Twisting Instability of Stringer
of Specimen 6 From Reference 33.
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Generally speaking, references to the Southwell Plot define the displace-
ment parameter as a motion normal to the direction of loading. Rowever, it
is relatively simple to demonstrate that there is a one-to-one correspondence
between this deflection and some strain parameter in the plan15 of the body.
The first report to utilize this point was that of Tuckerman. Indeed, in
the harmonic test previously discussed with respect to his report, the
determination of the Southwell Plots was made using strains on the surface
of the column. The linear relationship between normal displacement and
elastic bending component strains for flat plates is demonstrated here in
Figure 49 from tests made in conjunction with the flat plate studies con-
ducted at Stanford University and those previously mentioned. The use of
the Southwell Plots baseJu 9 n 3 gtrin measurements also has been outlined
and verified by Gregory ' ' for application to struts.

Thus, concern has been mainly with elastic structural instabilities ich
have been produced by usual force systems. However, in 1961 Queinec
analytically studied the behavior of a centrally heated "flat" circalar
plate with free edges and checked these results experimentally. In the
course of his work, he treated the problem using both the linear and
nonlinear theories. A most important step was taken when the author
correlated the test results with theory. "Ue revealed, on the basis of
linear plate theory which included the potssibility of a constant initial
geometric imperfection, the validity of the Southwell Plot for this partic-
ular loading. Also, a deflection-squared law (82) was derived using the
large displacement analysis and this was correlated with some experimental
data.

The basis of Queinec's analyses is as follows. The temperature distributicn
and edge conditions were assumed to be perfectly axisymmetric. 'ne plate
was considered to be of uniform thickness, at uniform temperature, and
free from stresses in its initial state. The temperature variation through
the thickness was neglected, as was the effect of gravity forces. The usual
bending theory assumptions were made.

The general equations of plate bending (Kgrman equations) modified for
temperature effects were used.

D 2VW= U' 2b2 U 2w2 b 2 U b2w

222 + T 2

2V2U = _ c 2 a w, 2 b2W ~ 2 w1 (74i)

- +~ )-bX2 B

These equations, transformed into polar coordinates and reduced for the
axisymmetric case, are
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D v22  1 d dw'

rr ( d d r (27

or these two equations can be written as

1 dr dv( + +Ed L ,dw'21 0

rd.rd r E T r dr ,\r,) =

(76)

1 D. d 
r T dr drJ t r dr dr\ _

,Ahere

U the usual Airy stress function for circular plates
3 9

D flexural stiffness 2

w lateral deflection

t plate thickness

V2 2 2 L(
2 6y2 r drL dr J

T T the thermal strain.

Unfortunately, these coupled nonlinear differential equations have no closed

form solutions except for very special cases; i.e.

ar = 0 (no membrane stresses) or

d-E = 0 (plane stress problem).dr

So Queinec utilized the well-known energy method for determining the
approximate critical temperature for both the linear and nonlinear theories.

Because his experiments revealed that lateral deflections occur well below
the critical value of temperature, he realized that these plates were not
absolutely flat. Hence, Queinec considered the effect of initial imper-

fections. The initial deflection was assumed to be axisymmetric and was
defined by wi(r). When the initial temperature is uniform and the initial

state is free from stresses. the additional deflection w(r) is a solution
of the differential equation
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-t

d r dr di d( (77)

where
ar = stress due to temperature rise T(r) = To(e)

and this equation is valid for small deflections. Equation (76) is no longer
homogeneous. When the initial imperfection is proportional to the elastic
deflection, the following expression is obtained from equation (77):

Ti
crit = 1 + Wio

0 
w

0

This relationship can also be written as

w rLt I] =w. (78)0 UT .o (8

0

which of course has the identical graphical form of the Southwell Plot.

This researcher was probably the first to investigate the case when the

imperfection and the additional deflection were not of the same form. Using

the energy equation, he derived the following expression:

1O '
TS0dw 0dW io.. p d

Tcrit 0 dr dr (9

7r

where p = r/a (a radius of plate)

e 1 T d I T  p  d p  (80)2 T o o T

The subscripts denote particular radial positions; thus, T is the temper-
ature at r = 0. Queinec then showed that this equation reduces to

Tcrit Wio
T I + K, • - (l

0  0
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where the coefficient K, depends only on the initial shape. Equation (8)
reduces once again to

'W0 -- 1 K io(2

0

This equation then is similar to equations (78) and (14). All three are
equal to constants. 4

The central temperature versus the central deflection or specimens
numbers one and two is plottbed in Figure 50. The corresponding Southwell
Plots are illustrated in Figure 51. The critical temperature for the
center of the plate determined from this Southwell Plot is T = 59 F.
This shows a 7.8-percent difference from the value 0crit
determined from the energy approximation which is normally unconservative.
Therefore, this percent of difference should actually be smaller when
compared to an exact solution.

The author appears to have been the first to realize that it was possible
to develop a relationship between the postbuckling deformations and the
initial buckling load. For the problem which he considered, he derived the
following equation:

T0 -Ti , 2 (3
T crit 0crit = K 2 L-- tj (83)

where T and w are the midpoint temperature and displacement, respectively,
Tcrit ig the c~itical temperature and K2 is a constant.

In a report published in 1962 by Fernandez-Sintes, Horton, and Hoff,
dealing with the thermal buckling of annular plates, the Southwell plct
was used to correlate the derived theoretical results with the test data.

Moir4 fringe techniques were used to measure the lateral deflections when
the plate was heated in an axisymmetric manner. The test setup is shown
in Figures 52, 53, and 54.

The relationship derived by Queinec and just discussed, equation (82), was
utilized by these researchers to compare the experimental results. Figures
55, 56, and 57 show the curves of central edge temperature and central edge
deflection versus time for the three test specimens. The corresponding
Southwell plots are shown in Figures 58, 59, and 60. The values of critical
temperature determined from these graphs were, respectively,

tT(crit) 127°F

(Tcrit)2 = 120°F
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Reference 38.
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(T ) = lUF
crit 3

The comparative theoretical values were, respectively,

(Tcit1  = 119.5F

(T Fcrit)2 = liF

(Tit) 3  = 102OF

The differences of these results were all within the order of accuracy
predicted for the particular test equipment.

Once again the value of the Southwell plot for correlation of a theory
has been shown. The accuracy of these results most certainly will be

improved with the intended implementation of noncontacting measurement dev-
ices of high sensitivity and accuracy.

This general process for correlating experiment and theory can also be
applied to the case of the lateral instability of the deep beam under the
action of a concentrated force applied in the vertical plane. Such a beam
when simply supported in two planes is shown in Figuies 61 and 62. In thistype of structure., where the t/h ratio is small, b--.ding takes place in the
plane of the greatest flexural rigidity, and lateral buckling may occur at

a certain critical value of the applied load. Both bending and twisting
must be considered.

The Rayleigh-Ritz method is applied to the total potential energy to deter-
mine the relationships between the load and both the elastic lateral defor-
mation and the elastic torsional deformation for a deep beam with initial
imperfections simply supported in two planes.

As the beam buckles laterally, the strain energies of lateral bending and
twist about the longitudinal axis increase while, at the sae time, a
certain amount of work results from the movement of the point of application
of the concentrated load. Assuming t'hat the small change in the strain
energy of bending in the plane of the beam during buckling is negligible,

we find that the change in the strain energy due to the lateral buckling is

Au= d[2  dx+ 20 [d9 dx (84)

Where
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E the modulus of elasticity
E

G the modulus of elasticity in shear (G

I I = second moment about * axis

J polar second moment

Poisson's ratio

w the lateral deflection

cp the angle of rotation of the cross section.

When the symnetry of the buckled shape is considered, equation (84) may be
written as

L 2L

AU = EI 2 dx + GJ F T. dx (85)
0o dx o

Now the work done by the applied load during buckling is

L 2&W P c L-j'  x) x(6

The term

dx

is the infinitely small arc described by the end of the beam with respect
to the elemental cross section. It Is caused by the bending of the element
in the 9§ plane. The vertical component of this arc when the angle of
rotation, t, is small is

2p. -- -x .j dx
dx

This, then, is the small distance through which the applied force moves.
The total work done is one-half the summation across the beam of these ele-
mental vertical components multiplied by the applied load. When symmetry
of the deformed shape is assumed, this total work of buckling is as given
in equation (86).

The total potential energy is

V =trj- AW
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I-I

or L~i~ 2 d+J'[j

2o dx + oJ J2d

PJ I[d -] (L2- x) .cx(87)
o dx

.when small imperfections of both the twist and the lateral deflection are
considered; the total deformations are the sum of the initial and elasticI components

Wt =W +Wt e o
(88)

'P e+ To

where

w = elastic lateral deflection
e

w = initial lateral deflection
0

cp = elastic angle of rotation

To initial angle of rotation.

Now equation (87) becomes

L 2 2 L 2

V=EIJf2 [d (wt o) dx + GJ 2 L t-po) . dx
0 dx2 o dx

L

P [d 2 (W - w~j(
j (Pt 2 - t 2 0 X) . dx (89)

dx

For the simply supported case in glicstion, the total deformations may be
represented by

=1 cos L-
n=l

A TITX
i o L (90)
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and the initial imperfections may be chosen as

-- Cosnl
n--

mgl

B Co mTrx= ) Bcos --
0 Li m Lm=l

It has been shown20 that the resulting critical load is within 1.5 percent
of the exact solution when only the first term of equation (90) is used.
Therefore, this simplification is utilized here also. Moreover, the same
simplification is applied to the initial deformations. These first terms
of equations (90) and (91) are substituted into equation (89). This total
potential must be minimized with respect to the unknown amplitudes of the
total deflections. Then

-= 0 and 2a 0

1
yield

2GJ 1
P LB, All L -l ± ji.K (92)

and i 'T

2EI j. LB1  Aj= PLal K (931

where
K = 0.351

This factor is the result of performing the prescribed integrations.

If the amplitudes of the elastic lateral deflection and of angle of elastic
rotation are denoted by 6 and , respectively, and substitution for the total
deformation amplitudes is made in equations (92) and (93), the following
relationships are obtained:

PLK8=2GJ (94) I
2E1 . 8 - P L K (@ + P) 0 (95)

Equations (94) and (95) are algebraic relationships coupled in 8 and 1. If
the expression for 8, as obtained from equation (94), is substituted into
equation (95), it yields
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2L4GJ1? ] (96)

But

K Lcr (97)

and thus
[cr-1

[L~-1 (98)
P

It is not immediately apparent that this expression can be transposed into
the Southwell form. However, if' P is much less than , so that powers of P/
greater thr the first can be ignored, we may write

P 2 cr= 1 + (99)
2 ,

and so -it follows that

P
cr (:LO0)

which is a relationship of the Southwell type.

A search of the literature did not reveal any existing experimental data

on this subject. Thus, a special series of tests was made to check the
process. The experimental setup less the displacement transducer is Cepicted
in Figures 61 and 62. The deformation mode of the beam is clearly seen in
this picture. The concentrated load was applied via a dowel and yoke system
which is readily seen in the figure. The dimensions of the beam together
with the deformations under load are given in Table XIV. The resulting
Southwell Plot is given in Figure 63. The critical load deduced from this
curve is 21.4 pounds and is in excellent agreement with the theoretical value
of 22.i pounds. Additional tests made with a small spring providing some side
restraint, show that under these conditions therc is an increase in buckling
load just as was demonstrated by 11ayashi and Kihira for the strut supported in
the same manner. Full details of this test series are given in Reference 41.

The presentation so far has been concerned mainly with the use of the South-

well technique in interpreting data obtained from uniform x-section members
tested as individaal items. It must not be inferred, however, that the
process is not applicable to structures fabricated from such elements. The
first application to a member in a realistic structure appears to have been

made by Lundquist 4 In 1939 he analytically formulated a method for deter-

mining the critical loads for the displacement variable, normally the mid-
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TABLE . LMMZ nOMBIITY OF DEE Ref,

P8
lb in.

0.0 0.0 - 4
7.70 0.001 1.30 x 10_h

12.17 o.oo6 4.93 x 104
14.59 0.001 7.55 x 10-
15.85 o.o16 9.47 x 10-
17.10 0.021 12.29 x 104
17.85 0.026 14.58 x 104
18.28 0.031 16.97 x 104
18.70 0.036 19.25 x 104
19.11 0.041 21.45 x 104
19.32 0.046 23.80 x 10-
19.64 0.051 26.00 x 104
19.79 0.056 28.30 x 104l
19.90 0.061 30.65 x 104'20.05 0.066 32.92 x 104

20.11 0.071 34.8o x lO4
20.25 0.076 37.50 x 10
20.32 0.081 39.90 x 104-
20.42 0.086 42.10 x 10-L
20,50 0.091 44.40 x 10420.55 0.096 )t6.80 x 104

20.58 0.101 49.10 x 104
20.60 0.106 51.50 x 104h
20.65 0.111 53.8o x i-
20.67 o.116 56.20 x 104h
20.69 0.121 58.50 x 10.4
20.71 0.126 60.90 x lo4
20.77 0.131 63.10 x 104
20.79 0.137 66.00 x l0
20.80 0.141 67.80 x 10-"'
20.81 0.151 72.50 x 10-4
20.84 0.161 77.30 x 10-4
20.89 0.171 81.90 x 10"4
20.90 0.181 86.70 x 104
20.92 0.191 91.40 x 10_420.93 0.201 96.00 x 10_4
20.93 0.211 100.9 x 10_4

20.97 0.221 105.3 x 10-4
20.99 0.231 110.0 x 10_4
21.01 0.241 114.7 x 104
21.02 0.261 124.0 x 10

Beam Dimensions Thickness t = 0.059 in.

Depth d = 1.953 in.
Length L = 30.69 in.

106

hI



100

80

40

00

60

20

0 ' ' I I . I I I , I I 1 I ! I ,,

0 2 4 6 a 10 12 14 16 18 20 22 24 26 28

8 - in. x 10- 2

Figure 63. Southwell Plot From Test of Lateral Instability of
Deep Beam From Reference 41.
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point lateral deflection, used for the Southwell representation could
equally well be. chosen as the angle of end rotation. In 1960, Gregory 36

applied the technique to frame structures under torsion and bending. Hd was
able to use the procedure tq develop a design system for lattice girders
liable to lateral buckling.34 The routine followed was to load the medbiE

* in question to a load valu- less than that required to precipitate insta-L
bility and, from the load-displacement relationship thus established, to
determine the effective initial imperfection and the theoretical critical
moment. From these two experimentally established parameters, he then pred-
dicted the probable buckling moment for this real structure.

Ariaratnam1 3 theoretically established the validity of the Southwell type
linear relationship for struts having a variable flexural rigidity and
various end conditions and for plane frameworks subjected to both flexural
and torsional buckling. In 1963 Stevens and Schmidt 3 proposed a design
scheme for frameworks. In this plan they combined the Southwell fonrulation
with an iteration procedure. Thus, they were able to predict the critical
loads in the compression components of the structure.

It is clear from the discussion already given that the key to the correlation
of experiment and theory lies, in all cases, in the treatment of a slightly
imperfect system. From this presentation it might be inferred that Ayrton
and Perry were the first to realize that initial and elastic deformations
of a strut could be associated with the Euler load and the actual load. This
is not so. Admittedly, Euler himself appears to have given consideration to
the initially straight column only. However, an awareness of the influence
of initial curvature has existed since the beginning of the nineteenth
century. Young,44 in his course of Lectures on Natural Philosophy and the
Mechanical Arts published in 1807, gave a theorem with regard to this question.
This theorem, theorem 323 in his Magnum Opus, states:

"If a beam is naturally of the form which a prismatic beam would acquire,
if it were slightly by a longitudinal force, calling its depth, b, its length,
e, the circumference of a circle of which the diameter is unity, c, the weight
of the modulus of elasticity, m, the natural deviation from rectilinear form,
d, and a force applied at the extremities of the axis, f, the total deviation
from the rectilinear form will be

bbccdm
bbccm - 12eef

If Young's equation is rewritten in present-day language, we obtain the
formulation

w
wt I - P

E
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where

= the total deflection

w = the initial deflection
0

P= Euler L E1

P = axial load appled

This is identical. with the Southwell formulation, equation (ii), provided
it is realized that in his time Young perpetrated Jacob Bernoulli's error
in determining the expression for the second moment ("Moment of Inertia")
for the cross-sectional area. Bernoulli had fixed this for a rectangular
section as

bh
3

3'

instead of the presently acceptable relationship of

bh
3

1-

There is little in the literature between 1807 and 1886 to indicate that
engineers had taken note of Young's contribution, but it seems clear that
many were aware of the lack of agreement between the Euler theory for a
perfect body and reality. Smith,45 a contemporary of Ayrton and Perry,
was certainly cognizant of the importance of initial curvature and eccentric
loading prior to 1886. He recognized, about this time too, that the load
displacement curves for struts subjected to axial compression were hyper-
bolic. This is evidenced from a footnote to Ayrton and Perry's report 5 and
also from Reference 45.

That the leaders in the field of engineering mechanics of this era recognized
the problem and were acquainted with the mathematical relationship of
equation (14) is clear from T. Claxton Fidler's text.4 6 In this treatise of
1887 he wrote: "Let R denote the resilient force of the ideal column, equal
to EI2/L2, and let A denote the initial deflection, and 8 the elastic
deflection, then

P=RV "
A+8

andp .

a n R -P (101)

ClaXLon Fidler's equation (99) is identical to Southwell's equation (14).
Therefore, the deflection will now have a certain assignable value depending
on the load P; and if the load is gradually increased the column will
exhibit an increasing deflection, or, in other words it will always be in

l09



a condition of stable equilibrium; and looking at formula (99) it is evident
that when the load P is increased to within a little of the fixed quantity,
R, the factor P/R - P will be a very large multiple, and a very small
initial curvature (A) will then be sufficient to produce a comparatively
large deflection of the column.

Without doubt, there were other derivations of this basic equation which
we have not been able to trace, but few, if any, could be more general than
that of Westergaard.16 In 1922, this author nade a very detailed study of
the buckling of elastic structures. Where most previous and contemporary
analyses dealt with buckling from the point of view of the differential
equations of equilibrium, Westergaard's analysis was based upon the use of
a generalized Lagrangian analysis. He made, of course, the usual assumptions
with regard to linearity of stress-strain relationships and considered only
deflections which were small. In this manner, he was able to show that
the relationship was by no means restricted to the simple ca umn. Unfortun-
ately, like his predecessors, Fidler, Smith,45 and Young, he did not
recognize the potential of his formula for correlating theory and experiment.
Neither, of course, did other engineers.

From analysis and by reference to tests made on virtually all practical
cases of tubes, braced structures, and flat plates subjected to in-plane
loadings, it has been established in this report that the simple Southwell6

formula

Sc- 1) = constant
~cr

is absolutely general and is of great importance in interpreting experimental
data in all these areas.

Its equal applicability in the area of shell structures is asserted. This
question is discussed in another report.29 The large displacement analysis
briefly mentioned for flat plates under compression and for the circular
disc with a central hot spot is also a method of wide generality and is
discussed further in a paper to be published shortly.47

It is to be emphasized that the Southwell method calls for diligence in
measurement of the displacements and for care in interpretation of the
results. It can be a dangerous practice, for example, to use a least-
squares-fit method in constructing the line.
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