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DISCLAIMERS

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized
documents.

.

When Government drawings, specifications, or other data are used for any
" purpose other than in connection with a definitely related Government

procurement operation, the United States Government thereby incurs no

responsibility nor any obligation whatsoever; and the fact that the

Government may have formulated, furnished, or in any way supplied the '

said drawings, specifications, or other data is not to be regarded by

implication or otherwise as in any manner licensing the holder or any

other person or corporation, or conveying any rights or permission, to

manufacture, use, or sell any patented invention that may in any way be
related thereto.

T

Trade names cited ia this report do not constitute an official endorse-
ment or approval of the use of such commercial hardware or software.
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SUMMARY

Thomas Young, medical doctor, philcsopher, and Professor of Mechanical Arts
at the University of Ceubridge, derived in 1807 a very simple but powerful
fornmla which associated the applied load, the Euler critical lcad, the
initial bow, and the elastic deformation under load for a columa. His
hyperbolic law is in essence We = (WoPp/(P - Pg)). Westergaard in 1922
used the Lagrangian law to derive this exprescicn in a much wider context,
and in so doing demonstrated its general validity in all linear instability
problems.

This relationship has great significance in the correlatlon of experimental
data with linear theory. This was realized first by Ayrton amd Perry, who
in 1887 published a paper on strubs in which they gave a graphical inter-
pretation of the fundamental equation, end by so doing were able to verify
that the Buler load was correct for a perfect column.

Their important work was virtually ignored. However, in 1932 Southwell
indrpendently redeveloped the technique and used it to discuss the classic
column tests of von Karmdn. In his report, Soutnwell stated without proof
the axiom which was so clear in Westergaard's analysis; viz, that the
process should have wider use.

This reporv reviews these several contributions to our knowledge together
with the numerous pepers which have followed them. A wide range of problems
is illustrated both experimentally and analytically. 1In those cases for
which the appropriate theory or the valid experiment exists, the current
results have been presented; but where gaps in reported information exist,
the necessary analysis or tests were conducted and presented herein.

It is significant to record that the work covers not only normal load
environments but also instsbilities under thermal conditions.

Thus, we may state that the report coordinates and exterds the research
of some twenty engineers made in a century and a half. It demonstrates
the power and versatility of the method of expressing the given hyper-
bolic equation in & linear form - by change of variables - and of deter-
mining the classic critical load as the slope of this line. The results
obtained show that there can be no doubt as to the applicability of the
method to all linear instability problems of plates. Thus, the report
corrects the statement of previous researchers who have been hampered in
their work by the lack of valid experiments, arising from the coarseness
of measurement techniques. There is clear indication that continued
study will open the door to a clearer understanding of the perplexing
questions which arise in compressive elements in which curvature is
present. :
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The research reported herein was carried out under the Sponsorship of the
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‘The subject of elastic stability is moie than 200 yeers old. _From the
scientific point of view it begen, in 174k, when Leonard Buler! made the
now classic analysis of the buhavior of an initially straight, perfectly
elastic, centrally comp:essed strut. Despite his analytical achievement,
there is little doubt that in the century which followed, practicing

engineers still had to rely upon experience and empiricism born in experi-
mentation.

There is no doudbt, however, that researchers who were active in the

field studied Euler's work very thoroughly. Indeed, Hodgk%nson, a foremost
experimentalist, remarked in 1842 with reference to Euler:

"It appeared from the researches of this great analyst, that a pillar
of any given dimensions and description of meterial required a certain
weight to bend it, even in the slightest degree; and with less than
this weight it would not be bent at all. iagrange, in an elaborete
essay in the same work, arrives &t the same conclusion. The theo1y

as deduced from this conclusion is veiy beautiful, and Poisson's

exposition of it, ir his Mecanigue, 2nd edition, vol i,™ will well
repay the labour of a perusal.

E
g
A
3
b2
k-
v

pr
3
X

I have many times sought, experimentally, with great care for the
weight producing incipient flexure, according to the theory of Euler;
but have hitherto been unsuccessful. So fzr as I can see, flexure
commences with weights far below those with vhich pillars are usually
loaded in practice. It seems to be produced by weights much smeller
than are sufficient to render it capable of being measured."

i _ NS AT R

At the time that Hodgkinson made this remark a large nuantity of experimental
data was being obtained by many workers. These ¢-perimental datza werc,
however, at variance with the predictions of Euler, and analysts thus came

to regard his theory as incomplete. Now analysis according to the classic
theory indicates that struts of the type already described will remain
straight until a certain critical load level is reached; taen the struts

mey suddenly bend into the form of a single bow, a shape which will o:

meintained with increasing load although the amplitude of the deformation
will increase.

In reality, however, struts tested under axial compression have lateral
deformetion from ithe very onset of loading. It is found in practice that
the load deformation curves for such bodies have the characteristic shapes
given in Figure 1. When they are long, the curve tends to become asymptotic
to the Euler curve, but when they are short, it does not do so. The curve
for short struts is characterized by maximum values of load, =2c is clearly :
seen in the figure. It is not difficult, therefore, to arrive at the point 3
of view that agreement between the critical load determined by Euler consid-
erations and the buckling load as determined by experiment is & chance
occurrence to be expected only in the case of very long struts. Thus, one
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is forced to ask tke question: Wher experimental observations give curves
of the type presented in Figure 1 and the critical load is never attained,
can any valid comparison of theory and experiment be made?

The first researchers to prcvid: a substantial answer to this guestion were
Ayrton and Perry.”? In 1886 these two investigators published an instructive
paper on struts. It is interesting tc note that when they performed this
vork, the situation with regard to knowledge on this fundamental juestion
was such that they commentei: "We think we are right in saying that no
subject connected with the strength of structures is at present regarded
as being in a more vague and unscieuntific state than the subject of which
we have undertaken the study”.

As a result of their study, Ayrton and Perry5 were among the first to
realize that for a complete theory it was essential to introduce imper-
fections of form and loading. Their owm words express this particuler
point and their manner of deeling with it: "The conclusion at which we

3 have arrived is, then, that any want of axiality in placing the load, or
: went of straightness in the unloaded strut, or want of homogeneity in the
{ material may be allowed for by a term C such that it may be taken as the
1 initial deflection of a homogeneous, carefully loaded strut, and then,

T B s e T R RTAUAL

e @
1 - a’p
| xr?
where
3 ¥y = tne ordina?e of the strut center line in the displacad
configuration

: E = Young's modulus
- I = second moment of cross~sectional area

L = pin center length

P = axial load."

From this expression, they deduced that the measured deflection of the
3 midpoint from its initial value was given by

where P was the end load and P, was Euler load.

Pt Bl P T

Equation (2) can be written as }
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If we choose new variables,

then we see that equation (3) is a linear equation in these variables. Thus
a plot of

% and %-is a straight line whose slope is %».

1
This analytical deduction was verified from tests on Dantzic Oax and wrought
iron. The appropriate data are given in Figures 2 to 5. The plots of

PR AR e e} Sy

TRIESTYETY

1.ogd
= sud 5

are seen to be straight lines. Ayrton and Perry's result of equation (2)
can also be expressed as

- &6 = C = effective initial deflection  (4)

Hjcn

i P,

Thus, we may choose a new variable X, such that

L
P =

TN

Hence, equation (4) may be written as

P,x - 6 = C = constant (5)

N

This is a linear equation in x and 6. The inverse of the slecpe of the line
is clearly the Euler critical load, and the intercept with “he & axis is the
effective initial deflection. This is shown in Figure: ¢ and 7.

D0 A T et 20 LA T ia W‘VW w
T

It is strange that this equation, which gives a very elegant method of

correlating theory and practice, was virtually ignored. Indeed, almost

half a century passed before the method was used to any extent. Then it

was indepegdently rediscovered and presented in the second form by R. V.

Scuthwell,® who published his work in the Proceedings of the Royal Society. .
Today the method of presentation is always reterred to as a Southwell plot.

Since it is this latter work to which all reference is made, the theoretical
justification for the formula given in equation (2) will be derived in the
Southwell manner.
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Consider the strut shown in Figure 8. Let yo denote the initial deflection,
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Strut Considered by Southwell.

il

TR
N " e i g .
ok s kit bl ORI RS S SPRTTY ST 71




YErILT

T

it L P M e e Tl ar o

TR PR

DAL PO S s amon T S

I

and let y denote the final deflection of the central line from the line of
thrust. Let P be the axial load and let EI be the flexural rigidity of the
body. Then the condition of equilibrium of the bent body is

E(y" - y")) + Py =0 (6)

which may be written as

v + Py = Y (7)

Now the quantities y and y are both regarded as functions of x. Thus,
the form of one is dependen% on the other. If y vanishes at either end
of the strut, then a general sclution of equatiog (7) cen be obtained if
y and Yo are represented by the following Fourier series:

(o]
. nmx
y—z [Cn sin 5= | (8)
n=1
=Y [ sin 2%
e} oy o ©
n=1
We find, then, that
n
C, = —>%>% (10)
N
{ 2 3)
nm

Thus, if Pn is the nth critical load given by the Euler conditions,

C
n 1
- (11)
Cn 1l- %—
n

Now the increase in deflection at the center of the strut (elastic
deflection) is

d=Cl-Cl-C3+C3+etc. (12)

and if P is a fairly considerable portion of Pl’ this may be written as




al

as - (13)
x
1
Equation (13) can be rewritten as
Py 1Y) L e
a -~ 1) = Cons’ant (1%)

This equation is, of course, identical with that of Ayrton and Perry and
is in fact that of a rectangular hyperbola. However, whereas Ayrton and
Perry displayed it in a linear form by plotting the reciprocals of the load
and the displacement, Southwell chose to plot the ratio of the displacement
to the load against the displacement. There is a third way in which this

. equation can be expressed im a linear manner. In this altermative, the
1 load is plotted against the ratio of the load to the displacement. This
1 latter fcrm was given by Donnell in his paper on the Southwell method. |

: The differences among the Ayrton and Perry, the Southwell, and the Donnell
i representations are clearly shown in Figure 9.

3 Just as his predecessors had chosen the most accepted test data of their

day to try ocut theér approach, so did Southwell pick the well acclaimed
date of von Kérmén® (Tabie I).

The results are shown in Figure 10. In all cases the straight lines are
good. An analysis of the criticsl load, as derived from the plot; and

of the value given by the theoretical formula is given in Table II. The
correlation is excellent.

P TS T YT

: One condition prescribed in the derivation of the forwul= was that the ¥y 4
4 should be zero at both ends of the strut. Thus, since Lhis case is likely ;
1 to be rare, it is of clear interest to know whether or not in practige
the method would still work for eccentric loadings. R. V. Southweil
studied the problem and confirmed that small eccentricities of loading

: point could be accommcdated. The experimental data which he used for

% this purpose were obtained by Robertson.

b FL A

ezt AT

After the publication of the Southv.ell6 paper, Lundquist9 reexamined the
: question and generalized the result.

The formula which he developed is as follows:

A L P

a_ si ox ;

yoy o Yoy yEeg (1) 4

g P-P Pepst " P10 Popir =By
13




6 = elastic deflection
P = applied load

Pl= Euler losad

¢ = constant

6 is related, to a first approximation, to the load (P) which produces
it and the Euler loag (Pl) by the expression

6 = B
g Pl -p
3 Three possible arrangements of this form are: 1
‘7 P

Ayrton and Perry jA
4 P y
- formila l/6=[§l—l]g'- ax ax B
: _115 ay * ¢
* veriables 1/8 and 1/p 1 1 —~ 14
| iy

[}
Southwell P ’
Py - ay

i formula 6 [—-- 1J=c Ax
E P Ax
4 c A =P
3 P Y 1
! variables §/P and 6 1 -
3 L_ c ..‘ 3
%

Donnell P )
formula P. - T = ¢ %
l P 4x ’é‘y = C
3 1 ay  Ax
veriables P and P/6

Figure 9. Linear Graphical Relationships for Columns.
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TABLE I. T. VON KARMAN'S STRUTS (Ref. 8), Nos. 1, 2, 3a, 3b, ka, kb, 5, and
6. (MILD STEEL: E = 2, 170,000 keg/ec
P = End Load in X = Measured Deflection V=x/Px 106
Kilograms in Millimeters
trut No. l---
2260 0.01 4,43
3020 0.025 8.28
3170 0.0k 12.62
3320 0.06 18.07
3470 0.09 25.94
i 3620 0.25 69.06
] Strut No. 2--- 1
;I 4520 0.02 L, k3 :
: 4830 0.05 10.35
: 5130 c.11 21.hL A
‘ 5280 0.2k 45,46 4
5430 0.25 158.38 2
] Strut No. 3a--- i
: 6030 0.01 1.56
g 7540 0.03 3.98 3
; 8290 c.11 13.27
] 8520 0.52 61.03
] Strut No. 3b~---
. *78L0 0.02 2.55
] 8140 0.05 €.k ;
' 8290 0.07 8.l j
8LL5 0.11 13.03 i
8600 0.21 2. k2 1
3 Strut No. 4a--- i
] ¥9050 0.02 2.21 f
{ *9660 0.025 2.59 ;
( 10260 0.03 2.92
{ 10560 0.07 6.63 §
10710 0.10 9.3k ;
, 10860 0.13 11.97 3
{ 11010 0.25 22.71 ;
L 11160 0.73 65 .41 ]
Strut No. 4b--- .
%3020 0.03 9.93 '
: %1530 0.05 11.04 ]
3 *6030 0.07 11.51 ;
: *7540 0.09 11.9%
*83C0 0.12 146
9050 0.15 16.98 :
g 9805 0.23 230
] 9960 0.26 26,10 g
10110 0.29 .07 ;
; 10260 0.33 32000 i
¢ 10410 0.h1 39,39 ]
' 1 :
¥
} 5
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TABLE I - Continued

g 10560 0.52 9.2k

: 10710 0.71 66.29

10860 1.46 1341k

: Strut No. 5---

5 *9050 0.01 1.105 :

4 *10560 0.03 2.8k
10860 0.05 4.67
11160 0.07 6.27 .
11470 0.1C 8.72
11770 0.15 12.74

] 12070 0.22 18.23

1 12370 0.30 2k.25

4 12520 0.45 35.94

3 Strut No. 6---

3 *10560 0.01 0.95

; *¥12070 0.04 3.31

: 12370 0.06 4.85

: 12670 0.10 7.8

12970 0.15 11.57

; 13270 0.25 18.84

E 13430 0.34 25.32

# 13580 0.7k 54,49

* These poiris were not considered amenable to the linear plot by Sou‘:,hwell6
hecause of the lack of accuracy at the lower values of load and deflection
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TABLE II. COMPARISON OF THE THEORETICAL CRITICAL LOADS WITH THE SLOPE
VALUE FROM TPE SOUTHWELL PLOTS (Ref. 6)
(1) (2) (3) () (5)
Strut | ¢ deduced from P1 estimated P, as given Estimated value
No. best-fitting | fTom slope of |by theoretical (Col. 3)
line in best-fitting formula Theoretical value
Figure 9 | 1line in Fig. 9 (kg) (Col. ¥)
() (ke)
0.005 3712 3790 0.980
2 0.005 5453 5475 0.995
3a 0.C05 8590 8645 0.994
3b 0.005 8758 8610 1.017
La 0.003 11220 10980 1.022
) 0.030 11090 10920 1.015
5 0.010 12815 12780 1.003
6 0.010 13750 13980 0.984
18
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P and y = the load and the corresponding midpoint deflection,
respectively

Pl and ¥y = initial velues of P and y, respectively

P ., = the first Euler locad
crit

. TX
a1§1n T = g constant for a given reference point x.

The straight line obtained by plotting

y-¥

P - P1

as an ordinate against y =~ yl as an abscissa cuts the horizontal axis at
tlie distance

[oystn ]

from the origin, and the inverse slope of the line is P - P

crit 1’

With this formula he was able to analyze some of the von Kédrmén results
which were not amenable by the original approach.

This process of analyzing experimental data was extended by Fisher

10,11

to deal with more complex conditions. The case which he considered is
depicted in Figure 1l. In this diagram the line AA' represents the center

g Fe L S

line of the bearn.

T

T (VIR e

TIRTT

Thus, the conditions assumed for the purpose of analysis
Compressive loads P are applied at fixed poinuts in the end cross
sections of the beam.

The end eccentricity of P is small.

The center line of the beam in the unstrained case is represented
by v = n(x).

Forces proportional to P are applied to the beam in the direction
Oy’ and end couples proportional to P are applied in the plane O

The forces described in (L) above and their associated reactions
are defined by saying that they produce in the absence of other
loads : bending moment P + N(x) at a distance x from the origin.

Constant forces parallel to Qy are applied at various points along
the beam, and constant end couples are gpplied in the plane Oxy'

The system described in (6) above is defined by saying that these

19
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forces, together with their appropriate reactions, produce
a bending moment M(x) at position x and end rotation m(x).

With these assumptions the equilibrium equation may be written as:

2
d
B3 {ox) + m(0)) = 7 {ax) + a(x) + 8(a} + M(x) + PNC) (16)
or
2% + ] 600 = = {a0) + W(x) + n(x0)} =4%H(x)sey (17)
where "

6(x) is the added deflection due to P and its associated loads and

2 _P_
o= ET

The deflection 6(x) is determined by equation (17) and by the condition

6§ =0at x 2L, It is to be noted that there is an exact correspondence
among y, N, and m, in that it is not these individual values which affect

6 but only the sum H. Thus, we have the most important results - namely,
initial bowing, end-eccentricity, transverse loads, and end couples
whether proportional to P or constant, all combine to form one total equiv-
alent eccentricity.

Fisher then proceeded with a rigorous analysis and demonstrated that South-
well's expression should be written as

Py v - & = H(6). Fy(6,2) (18)
where
H(e) = the sum of the normal forces on the beam
FH(G,Z) = a function dependent upon the normal force distribution
v =

$
5

Now the varijation of F, as 2z passes from O to 1 is a measure of the
deviation from linearity. This he demonstrated to be small in general.

A second approximation is also given to the v/6 relationship. This is in
the form of a hyperbola.

(Plv -0 - Cl)<Plv K+ Cl - Co>= -Cl(cl - Co) \19)

where
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P, v, ard 6 have the significance previously ascribed, and C and C
are constants. X has the value 0.123234.

To test his theory, Fisher performed a series of experiments. The results
are portrayed in Figures 12, 13, and 14. It is seen from these figures
that even large values of side force do not destroy the linearity of the
§/P versus & curves. Thus, the tests provide substantisl verification of
Fisher's analysis. It is interesting to note, too, that when the South-
well eccentricities are expressed in terms of the side force values, the
relationship is linear (Figure 13). This is clear evidence that the
intercept with the axis has the meaning nommally ascribed to it.

In his paper on the applicability of the Southwell plot, Donnell7 also
considered analytically the case of a hinged strut with continuous elastic

support. This strut system is shown in Figure 15. For the purpose of
his analysis he assumed an initial deformation given by

T _
VIEY oy, sin B (20)

n=1

and that the movement during buckling could be represented by
= Ej W, . sin E%E (21)

Now the total energy change due to a virtual displacement dWn must vanish,

or
1 2.2
d tg;(a w) B 2]
e ] —— _
Wy W [ 2\, 2) *a¥ &
n o dx
(22)
1. 2
=P 1‘{ é‘ 1r! EE?.(. Q_ ¢ ] }
Io 5 Ldﬁ(" +w+dW . sin )J dx(w +w) | tdx
where
EI = the bending rigidity
f = the modulus of the elastic support.

Thus, it can be shown that

o Yy ( n°TCET .\ 1°p ) o - (23)
- 1 - !
W 1 + wn L2 n2ﬂ2 W n + wn n
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This equation can be written in the form

/
n Pn -1 (24)

where

Pn = the classical critical loads for a perfect strut having a
continuous elastic support.

Once again the relationship between the elastic deformation and the applied
load reveals a form similar to the Southwell representation for the strut.
Of course, in a problem of this type, which may easily exhibit modal shapes
having hermonics higher than the fundamental one, it is important to

observe and record adequately the buckling shape as well as the load and
deflection parameters.

Hayashi and Kihira12 in a report recently presented to the Japan Congress
on Testing Materials provide some experimental results for this probiem.
The test setup which they used is depicted in Figure 16, while their
results are portrayed in Figures 17, 18, and 19.

Just as a restraining spring located along the length of a column causes
an increase in the critical load reflected by a change in slope of the
Southwell line (as the above referenced vests show), so does a point of
local stiffness reduction caused by slight yielding of the material in a
local area cause a change in the apparent critical load. This situation
is clearly seen in the test data of Fisher given in Figure 20. This is an

important facet since such local yielding is not always readily apparent
from the load displacement curve.

The discussion, so far, has centered around uniform pin-ended columns and
their fundamental critical loads. ©Such restrictions, however, are not
necessary. The process applies for all end conditions, as has been demon-
strated analytically by Ariaratnam!3 and experimentally by Hill.l'Jr The
guestion of critical loads beyond the first was treated by Donnell.7

This analysis was perhaps his most important contribution to the column
problem.

In the normal Southwell derivation, as in Donnell's, the total displacement
at any point is the algebraic sum of the various harmonic components of the
deformation at that point. If three of these are considered, as depicted
in Figure 21, then the overall deflection 6 at the 1/3 and 2/3 positions

is related to the harmonic amplitudes as follows:

61/3 = 0.866(W, + W,) (25)

5 /3 = 0.866(W, - W,) (26)
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whence
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Such an expression for W, is clearly more accurate than the normal South-
wellian approximation wh%ch gives

KT A T 7

W= b (28
: in which expression there is an error of W, and higher harmonics; whereas in

the second approximation formula given aboVe, equation (28), the error is
Wh and higher harmonics.

Y

ol L e e MY

It is clear that in cases in which a large number of harmonics are concerned,
the use of the many simultaneous equations would add greatly to the data
processing as well as to the acquisition. But by using the principles of

: Harmonic Analysis, it can be shown that if

S " 24 L v
btk RELEP s S AR U PRI LY Vo SIS S LS TPV L]

S mw Co/w " Y - 1/m)

!

i

% are deflections at points dividing the length into m aliquot parts, ?
s 2 ip OO in 207 3

Wn = n L&(l/m)SJ.n - + 6(2/m)51n N + g

% :
Z in (m - n_ﬂ.] :
3 6(m - 1/m)Sin (m -1 - (29) _‘
g

Donnell remarked that it was unfortunate that no experimental evidence %

: existed on this question. However, in a report publishi in the Journal of g
Research of the National Bureau of Standards, Tuckerman™ examined the 4

Southwell plot from the point of view of the Westergaardl6 general theory, 3

and produced data to verify the harmonic theory. This experimental work was %

performed by McPherson and Levy. From this laboratory study, he was able ?

{ to determine first and second critical loads for one column tested and E
4 first and third for another. )

The experimental results are presented in Table III, and the final curves
are given in Figure 22 for the first and second mode problem. The theor=-

etical critical load levels are compared with the experimentally detemmined
values in Table IV.

o e S LA PN

T T TR B TR P

The corresponding data with respect to the determination of the first and
third critical levels are given in Tables V w«ad VI and in Figures 23 and 24.

It should be noted that in each case, the agreement between the first
critical load and the Euler load is good (3 percent), but the egreement

between the second and third values and their corresponding theoretical
counterparts is poorer (1l percent and 12 percent).
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TABLE 1IXI. CRITICAL LOAD OF 13.5-BY-1/4-BY-1/2-INCH COLD-ROLLED STEEL
COLUMN WITH EQUAL AND OPPOSITE ECCENTRICITIES AT THE ENDS*

Toad | amsx | meex | apex| P | Za x| Zg x| g dy**¥
1] 2% 291 2Xa% S
Py 1
w | w0*| w0t w0t w| w0t ;g:f 107 ;g:ﬁ
% 1o 1b
] 790-- | © 0 0 ol o - 0 -
; i 750-- | -1.02 | -0.73 | 0.01| -40| -0.37 .00912 | -0.51 .01288
: 710-- | -1.93 | -1.20 | 0.13| -80| -0.60 .00750 | -1.03 .01288 :
E 670-- | -2.73 | -1.63 | 0.33|-120( -0.81 00679 | -1.53 .01275 2
: 630-- | -3.50 | -1.93 | o0.54|-160] -0.96 | .00602 |-1.97 .01231 E
: 590-- | -4.10 | -2.19 | 0.91}-200} -1.09 00548 | -2.50 .01252
? 550-- | -k.67 | -2.34% | 1.21]-240| -1.17 00488 | -2.9% .01225
510-- | -5.23 | -2.53 | 1.52] -2801 -1.26 .00k52 | -3.38 .01205

470-- | -5.73 | -2.66 | 1.82|-320| -1.33 .00416 | -3.78 .01179
430-- | -6.29 | -2.78 2.19]-360| -1.39 .00386 | -h.2h .01178
390-- | -6.74 | -2.87 | 2.52] -400 | ~1.44 .00359 | -4.63 .01158
350-- | =7.22 | -3.0L | 2.83|-4k0| -1.50 00342 | -5.,02 .011k2
310-- | =7.69 | =3.05 3.14 | -480} -1.52 .00318 | -5.42 .01130
270-- | -8.1% | -3.13 | 3.47|-520| -1.56 .00301 | -5.80 .01115
230-- | -8.53 | -3.19 | 3.79}-560| -1.60 .00285 | -6.16 .01100 g
190-- | -9.01 | -3.26 | 4.08| -600] -1.63 .00272 | -6.55 .01090 3
150-- | ~9.40 | =3.35 Lho | -640 | ~1.68 .00262 | ~6.9C .01080
§ 110-- | -9.78 | =3.36 L,71] -680| -1.68 00247 | -7.2% .01065

A s ety . _ SIS B SRS SR DI L et

TS T

* This table reproduced from Reference 15.

G A is the difference in strsin on opposite sides of the specimen
(bending strain) arranged to be zero at the erbitrary "zero lced"
for computations of 790 1lb.

¥% 4. and 4, are the bending strains corresponding to the first and §
sécond critical loads, respectively.
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Strain Difference x 101*

PO, B 5 S e e =

Strain Difference

7
Toad Difference * -0
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§ I L ¥ 1 T 1
|
Slope = 204 1b
- 0,
% Pcr=790+2ol+=991+ 1b o
Slope = 2910 1b

ap = 159 2910 = 3700 1b

Assumed "Zero Load" for Computations of 790 1b

Figure 22, Lundquist~Type Plots for First and Second Modes

of «n Axially Compressed Column (from Reference 15).
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TABLE IV. CRITICAL LOAD OF 13.5-BY-1/4-BY-~1/2-INCH COLD~ROLLED STEEL
COLUMN WITH EQUAL AND OPPOSITE ECCENTRICITIES AT THE ENDS*

FIRST CRITICAL LOAD

From Stmin at middle L] L] L] L] L] L] L] L] L] L] L] . L] . L] * L) L] ° L] il L] L] 991+ lb
From strain at quarter poin‘bs. e o 6 o 0 6 o 6 & 6 6 o o & o o o 1,015 lb

Theoretica.lﬂng........................ 1,020 1b
L

®

(Assumed E -~ 29 106 1b/1n.2)

RS

SECOND CRITICAL LOAD

From strain at quarter points + ¢« ¢« ¢ ¢ ¢« ¢ ¢ s ¢ o ¢ ¢ ¢+« + 3,700 1b
Theoreticalmr?gl O . [o o B R
L

(Assumed E - 29 x 10° 1b/in.2)

A D AN e Rt e kX S W v Sy

¥ This teble reprodiced from Reference 15.
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: TABLE VI. CRITICAL LOAD OF A 27.T7-BY-3/8-BY-3/4~INCH COLD-ROLLED
1 STEEL COLUMN*
/
1 FIRST CRITICAL LOAD
3 rom SErain Zages « o o ¢ ¢ o o ¢ 6 4 o s 6 6 s s s s e s s ¢+ o 1.251 12D
Ihecretical T‘FEI L] L] . * L] L] . * L] * L] L] L] L] L] L] L4 L] L] . L] . * L l’2m lb
2
L
] 6 2
3 (Assumed, E = 29 x 10" 1b/in.%)
THIRD CRITICAL LOAD
§ From strain gages L] L] L] L] * . L] . L] L] L] L] L] L] L] . L[] . * L] L] L] L) L] 9,825 lb
l:; Theoretical 2T€EI L ] . L] L] L[ ] L] L] L] L] L ] - L] L] L] . L] L ] L] [ ] L] ® L] L] . ll, loo 1b
A 2
L
6 2
(Assumed, E = 29 x 10~ 1b/in. )
¢ This table reproduced from Reference 15. %
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The next application of interest appears iu the study reported by Bridget,
Jerome, and Vosseller.1? This work was concerned with the stability of
angle struts. The instability mode for such structures is markedly
dependent on the width of the flanges. When the flanges are narrow., the
mode is of the Euler Column type, but when they are wide, local -or torsional
instability can occur. It was found in the investigation that the South-
well plot was applicable irrespective of mode. The overall results of the

study are given in Figure 25. A typical Southwell plot is shown in Figure
26.

These experiments were conducted under the guidance of Donnell,7 who pro-

vided theoretical justification for the procedure in & report published

in 1938. He analyzed the stability of & compressed flat panel hinged on

1 ) three sides and free on the fourth, as shown in Figure 27. Because the

4 deformed shape of such a body is, to a fair approximation, a developable
surface, extensional stresses can be neglected in the internal energy,

and the initial deformation of the panel can be represented by

k
i
3
4
:
4
3
§
2

AT LD
g paagita

t _ 8 zi 1 gqp DX
w! = 5 Wh sin I
n

SRR i) ]
Tazers i SN

T

and the additionsl deflection can be represented by

ey R R T i

s
= = V i 0
V=g Z W, smn;‘rx (30)
n

it

Then the condition where the energy change due to a virtual displacement
dwn vanishes is

kS b

~b oL

3 2 2 2 2 2 2
9 Et : P Af/ow oW ow
i Wy S 2) Jo Jo §{< ax2) + < 652) +2(2 - ) <axas)

.......... (31)

where E, p, and t are the elastic modulus, Poisson's ratio, and thickness,
respectively.

Substituting equation (30) into (31), we obtain

W 3 °F L 61 - ) W
P 'n Et-h /TJ + - U - : n P (32)
Wr W [12(1 ] pz)] \.2 b2 ) W W n
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vhere Pn is the nth critical load. ghis expression if clearly identical
in form™to that derived by Southwell“ and suggested by Ayrton and Perry.5

If the linear plot method (Southwell Plot) described had significance
merely with regard to the strut, then, without question, it would merit
discussion. But the value of the technique is much wider. We shall deal

with various successful applications of the procedure in chronological
ceder.

In 1933 Gough and Cox18 made experiments on the shear buckling of plates
with a view to checking the analytical studies of Southwell and Skan.ld

In the first series of tests vhich they made, the buckling loads were
determined by distortion of images reflected in the surface of the strip.
The results of this approach were very positive. In all cases, there was
a serious discrepancy between theory and experiment. The "critical loads"
determined as described were found to be representable by an expression
which differed from the theoretical not only in magnitude but also in form.

As a consequeyce, the interpretation of the tests was made on the basis of
the Southwell® argument, which proceeds as follows.

If initial irregularities are present in the plane of the sheet, there
will te a component of the wave form corresponding to the first critical
load, as defined by theory. If the amplitude of this component is W _, the
effect of a shear load S is to multiply this amplitude in the ratio

S/(s_ - 8), S_ being the critical load. Thus, the corresponding values of
S and W (elas%ic deflection) should satisfy the relationship.

W=sW /(s -8) (33)

.S N
. Cowle oo
i.e., W|g - 1]= constant (34)

an equation of precisely the same form as equation (14),

Thus, the plot of W versus W/S should be linear, and the slope should
correspond to the Tirst critical load for a perfect plate, since the inter-
cept is clearly the value of the effective imperfection.

The results of this approach are portrayed in Figure 28. Good linear
relationships are obtained. The comparison of the theoretical loads and
the values estimated from experiment is given in Table VII.

The application of the same techniques for the interpretation of the
instability results of flat plates is also feasible. Timoshenko ard Gere
determined a linear relationship similar to equation (14) for plates in
vhich there is no midplane stretching. The initial deflection must be
small in comparison to the plate thickness. The fourth-order differential
equation of equilibrium is

20
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: Strip DGLI, 150 - 1-1/2-in. width (w/S plotted from O as zero).
Strip DGLI, 157 - 1-1/4-in, width (w/S plotted from 10 as zero).

3 Strip DGLI, 156 - l-in, width (w/S plotted from 10 as zero).

1 Strip DGLI, 155 - 3/h-in. width (w/S plotted from 20 as zero).

: Strip DGLI, 154 - 1/2~in. width (w/S plotted from 30 as zero).

Figure 28, Determination of Critical Load From Gough and Cox
Data on Thin Strips Under Shear (from Reference 18).
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TABLE VII. DETAILS OF STRIPS TESTED AND MEASURED VALUES OF WAVE DEPTH#*

Reference mark

of strip DGLI 154 | DGLI 155 | DGLI 156 |DGLI 157 | DGLI 150

Width (in.) 1/2 3/4 1 11/% 11/2

Length (in.) 10 15 20 25 30

Thickness (in.) 0.0126 0.0126 0.0126 0.0126 0.0126

Theoretical buck~

ling load (tons) 16.3 10.9 8.2 6.5 5.4

Buckling load

estimated from

ings (tons)

S estimated

_& _ buckling load - 1.045 .81 1.055 .98

S theoretical

O  buckling load lﬁ

Shear load (tons) Wave-Depth (deflection meter reading)*
0.2 0 0 I 0 0 -
0.25 - - - - 0
O.)-I- O 6 2 l -
0.5 - - - - 1
0.6 1 7 5 2 -
0.75 - - - - 6
0.8 2 e 8 3 -
1.0 3 12 10 b 10
1.2 6 1k 11 6 -
1.25 - - - - 12
1.k 8 15 14 9 -
1.5 - - - - 18
1.6 10 18 18 11 -
1.75 - - - - 20
1.8 12 20 21 12 -
2.0 16 21 2k 14 25

T

shiatia M i i

(0 BRI AL RO AR DD SIS o £ 116 O S N RS m W s S G ]

. et anboadtand

e T




TABLE VII - Continued
2.2 20 23 29 17 -
2.25 - - - - 31
2.4 23 26 33 19 -
245 - - - - 39
2.6 = 29 Lo 22 -
2.75 - . - - 48
2.8 30 31 47 25 -
: 3.0 35 35 23 27 58
; 3.2 39 39 62 32 -
é 3.25 - - - - 70
E 3.k 45 k2 T4 35 -
? 3.5 - - - - 90
! 3.6 50 18 89 40 -
3.75 - - - - s
3.8 57 52 104 45 -
h.0 65 60 127 52 150
b.25 - - - S T
, k.5 - - - - 252
4 k.75 - - - - 323
5.0 - - - - ko1
: % Data repooduced from Gough and Cox Reference 18. ;
3 *% The values of deflection readings used for determining the critical j
f. loads are those included between the horizontsl lines marked in the
3 table.
|
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D vh v=q - [N 9 (wb + W) + o d (wo + W) + N 9 (wb + w)}
X ——p—— TNy "y ——

‘ 2 (35)
3 ox oxay
H vwhere
w = elastic lateral displacement of the median surface
v, = initial lateral deformation of the median surface
= flexural stiffness
q = transverse loading
and the in-plane stresses are
r O = Ny
i t
¢
: o, =N
4 y < (36)
: o =N
] v X
¢ t
¢
4 being positive in compression. From the equation above, it was shown by
3 Timoshenko and Gere that an initial curvature produces a deflection
g identical to that given by a lateral loed of intensity.
E
g aawo aewo Bewo
; q =N + 2N + N (37)
% 0 b'4 aXE Xy dxdy NS ay2
i This mathematical identity is true only as long as w_ is so small that the
] principle of superposition is not invalidated. This result is a particular
example of the general case derived by Fisher in Reference 10. (See also
Figure 36.)
For this linear plate theory under the restriction of a uniaxial load with
simply supported edges, Figure 29, the elastic lateral deflection may be
taken as %
> @ g
. omix . ally
i V=) B , sin —= sin = (38) i
] m=1l n=1 3
¢ and then the initisl deflection is defined as §
N #
: ¥
ff; 3
k9 :
. ' 9
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Figure 29. Rectangular Plate With Uniaxial In~plene Loeading.
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Substitution of these Fourier relationships into equation (37) results in

2
Bm[(g)*(b)J"h'l'NB(’zI‘r)*NA ’LT)] (40)
Thus,
B = B (h1)
mn 2
e (@],
for
m = 1, 2, cece..
n = 1, 2, .. .

For a perfect flat plate with ideal boundaries, the critical uniaxial loads
per unit length are well established. They are

22
S IO s+ ()] (12)

mn meae

X X
cY

for
m=l’ 2) EEEE

n=1 2, .....

Therefore, equation (4l) becomes

A
-
mn N'x (23)
=— -1
Nx
This can also be rewritten as
- N'x
— - ] =
an L Nx - ArnrJL (M)
f
or m=l, 2, 3’ s e oo
n= 1) 2, 3, s e s e e
51
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Clearly this result is in a one-to-one correspondence with that established
by Southwell for the case of the column.

If we consider a realistic square plate under normel test conditioms, all
experimental evidence indicates that the deflection is of the first modal
shape at the commencement of buckling, and equations (42) and (44) become

N =N = T°Dk
X XCI' a2 (hs)
N
X
o [ = PER (46)
X

Equation (46) is identical to equation (14). Therefore, the Southwell
Plot is also applicable in this case.

As buckling develops, however, modal chenges may occur, and then
consideration must be given to the effects of further terms which result
from the higher harmonics. Thus, for interpretation of test data appropr-
iate to these cases, it is clearly necessary for the observer to describe
and record accurately the modal behavior of the test vehicle and to
realize the need for careful positioning of the displacement sensor. In
general, for a square plate the deformations are sinusoidal, and the modes
higher than the first do not normally occur. Hence, in practice, the
elastic deflection 0 may be measured at almost any position on the plate.
Of course, for maximum sensitivity the center point should be chosen.

In his 1938 paper, Donnell7 applled the finite displacement theory, which
he had previously derived in 193&‘ for thin-walled cylindrical shells, to
a panel, and so permitted edge restraint and allowed for in-plane stretch-
ing of the plate. On this basis, if & is the usually defined stress

function, he found that :
1 b 1P, ‘( 2 >2 i agw] )
Et ves T ? L 0xds 2 2 T
ox  Os

theg

where 1r 1is the radius of curvature and x and s are longitudinal and
circumferential coordinates. If ¢ and w are harmonic functions of x
and s , the internal strain energy is

v = ;r L —ET%E:_EE7—(V W ——(V @) ]dxds (48)

In the case of a flat panel, the added midplane extensional terms are 3
those of the first order squared. These are due to the elemental rotations

PO
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as shown in Reference 21. Let the initial curvature and the elastic
movement of the square "flat" panel, hinged on four sides and shown
in Figure 30, be respectively

Mx x
t t —_— 1 —
w! = W'sin I, sin I
. . (L9)
. X X
w = W sin i sin T

Setting l/r = O shows that equation (47) is similar to the compatibility
equation for the flat plate "large displacement” theory derived in 1910
by von Kérmdn.22 Now further substituting

- H_)
K -(l + 2 T
and equation (49) into equation (46) results in

Vhé = Efgi (1 + 2%%) W2 (c052 E% 3052 E% - sin2 E% sine E%)
L

EtT
= 2Mx 2“5)
! — —
2LH (W + 2w )W (cos T- + cos (50)
When possible conditions for displacements in the plane of the plate at the

edges are neglected, equilibrium in the plane of the plate is evidently
satisfied if

2 Etﬂ2

. 2T 2Ms
v d= 8L2 (W + 2W )W(COS T + COS —L"> (51)

The condition that the total work due to a virtual displacement dW vanishes

is
L .L 2
w_P L in Bigsn )]
aw i I . Io 5 ax(w + w + dW sin I sin I )
2
,a ‘1
- ng (w' + W)J } dxds (52)

Substituting equations (48), (49) , and (51) into equation (52) results
in

| [ gt ][1 + 313525Efl (W + 2W' ) (W + w')]
£

Wr W 2 - D)L
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"W +W- e L

2
L pr1+3i§§l(w+2WXW+Wﬁ] (53)

where Pc is the critical load without initial curvature.

It is clear from equation (53) that if W' and W are very small in relation
to the plate thickness, then the expression

L [ (54)

2
¥ = M f(W-}- 2W')(W+ w:)]
8t
is negligible and for all practical purposes the Southwell approximation is
valid. However, as the ratios of W'/t and/or W/t increase, the Southwell
condition is violated. Nevertheless, if the ratio of w'/w is small,
equation (53) can be written as

P=P [1 - (%l> + yw2<1 + 3¥l)] (55)

_ 3 -0
TR

where

which may be further approximated, with little error, to the expression

P=P [1 + yw2] (56)

2
Thus, if a new variable is chosen such as Z = W, equation (56) may be
written as

P =P (1+72) (57)

vwhich, of course, is & lincar equation in the variables P and z. This
result 1s similar in form to that published by Yoshiki et al.23,24,25

and also bears a remarkable similarity to Queinec's3 results which are
discussed later in this report. It can be visualized easily that it a
graphical representation of equation (57) is made for the variables P and z,
then the straight line will intercept the load axis at a value of P which
corresponds to the theoretical critical load value Pc.

At this stage it is interesting to determine the bounds of applicability of
the Southwell approximation in terms of the amplitude of permitted motion.
For this, the important term in Donnell's equation, equation (53), is of
course the expression for ¥, equation (54). Thus, if a valid Southwell
condition is to exist, this coefficient Y must be very small in comparison

25
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to unity. In general, the upper bound of applicability for equation (53)
would appear to occur when the square of the measured displacement is

2 -
2 2 [ 2] (58)

(w
3(1 - ¢°)

where ¥ << 1.

Equation (53) can be rewritten similar to the Southwell form as
P [W' + W] _ .
Pc e 1+ Y

[(l + )P, _ 1] W= W (59)
3

Hence, it is ovbvious that the numerical value of Y is the measure of the
precision with which the Southwell Plot will predict the classical critical
load. In other words, the coefficient Y is the error introduced into the
evaluation if no bounds, other then the limitations of the original "large
displacement" derivation, are placed on W (or W/t). For example, if the
error is to be limited to 1 percent, then ¥ = .0l; therefore, the upper
bound placed on W is given from equation (58) as

2
(12 s —2 (.01) (60)
3(1 - w)

Experiments conducted in the Aeronautical Structures Laboratory at Stanford
University have demonstrated the validity of the Southwell approximation
for plates with restrained loaded edges and simply supported unloaded edges.
These results are shown in Table VIII and Table IX and in Figures 31, 32,
33, 3h, and 35. They have shown that imperfection magnitude and side rail
clearance are linearly related, as are imperfection values and the intensity
of a central normal force. This result matches that of FisherlO for a
column.

If further justification of the Southwello linear approach for flat plates
is negded, it can be obtained by reevaluation of the analytical work of
Coan?® and the experimental results of Hoff, Boley, and Coan.?T Coan
analytically investigated the buckling of rectangular isotropic plates
having small initiasl curvature, simply supported loaded edges, and simply
supported unloaded edges which were free to warp. The initial curvature
was restricted to be small. The theoretical curve relating
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'ABLE VIII. BEHAVIOR OF A COMPRESSED 4-PLY FIBERGLAS PANEL OF 181 CLOTH - :
6-IN.-BY-6-IN. LOADED EDGES CLAMPED AND UNI.,OADED EDGES SIMPLY i
SUPPORTED WITH VARIOUS SIDE RATL CLEARANCES.
Load (1b ) Strain p in./in.
20 20 20 20
30 23 23 55
f 4o 30 30 67
{ 50 38 38 85
? : 6 48 48 108
70 62 70 137
] 80 83 102 185
B 90 115 140 250
t 100 158 192 339
110 219 278 hhs
t 120 300 393 570
130 400 528 676
; 140 508 648 775
150 615 748 892
160 720 853 960 ;
3 170 818 958 1092 ;
180 900 1054 1175
b}
Side Edge Clearance :
b (in.) 0.0015 0.002 0.00k ;
) Tests conducted at Aeronautical Structures Laboratory, Stanford f
y University. ;
]
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TABLE IX. BEHAVIOR OF A COMPRESSED L-PLY FIBERGLAS PANEL OF 181 CLOTH -

6-IN.-BY-6-IN. LOADED EDGES CLAMPED AND UNLOADED EDGES SIMPLY
SUPPORTED WITH VARTOUS NORMAL FORCES APPLIED AT CENTER OF

T T R ST

PANEL
Load (1b) Strain Units
0 0 0 0 0 0
20 0.4 0.80 0.80 0.80 0.80
4o 0.95 1.k0 1.60 1.80 2.05
60 1.50 2.15 2.50 3.10 3.55
80 2.25 3.25 3.80 4.85 5435
100 3.30 4.60 5.45 7.20 7.5
120 4.80 6.55 7.65 10.15 10.90
140 6.95 9.25 10.80 14.20 15.00
160 10.40 13.20 15.30 19.60 20.30
180 16.20 19.30 21.40 26.4%0 26.90
200 25.40 27.40 29.20 34.30 34.30
Normel Force Test 1 Test 2 Test 3 Test 4 Test 5
(gm) 0 5 130 190 250

Tests conducted at Aeronautical Structures Laboratory, Stanford

University.
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sud K., Figure 4 or Reference 26, where

f; = average compressive load
Pcr = critical load for a perfect plate
Ké = elastic deformation at the plate center divided by the

plate thickness,

was used to obtain the data listed in Table X. This informaticn has been
plotted in the Southwell manner and is shown in this form in Figure 36.
The resulting straight line has an inverse slope of

£ %,
’K£=p=§-—-=0.96 (61)
P

which is within 4 percent of the classical relationship.

In the experimental work of Hoff, Boley, and Coan,eT "flat" fiberglas:
plates were buckled. Lateral deflections and strains of the plates wers
me&gsured and load-deflection curves as well as load-strain curves were
shown. Some of the data from Figures 6, 7, 9, and 10 of the report are

shown in Taules XI and XII. These data were recast in the Southwell manner
and plotted in Figures 37, 38, and 39.

This techrique can be applied also to the case of a biaxially loaded plate.
The dimensions and coordinates are shown in Figure 40. The equilibrium
equation which holds true under the assumption of a Hookean homogeneous,
isotropic, and perfectly flat plate is

DY v = - N -E’J-NQQ—w (62)
ax2 yay2

when the effect of an initial deformation, Vo is includeq, this equation
becomes

2 2 . 2
A A A B R (63)
X Lax z W TB-
ox oy

For a simply supported plate where the biaxial forces N, and N_are uni-

formly applied in the plane of the middle surface, the approerate elastic
deflection is

-] -]
NN cp W L DTy /
W= ) Bpsin—==sin = {64)
m=1 n=1
6l
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TABLE X. DEFLECTION BEHAVIOR OF A SIMPLY SUPPORTED SQUARE PLATE WITH
SMALI, INITTAL CURVATURE LOADED IN EDGE COMPRESSION, UNIFORMLY
DISPLACED LOADING EDGES AND STRESS-FREE SUPPORTED EDGES

- Kc

x % P,

cY P""“"

cr

0 0 0

0.347 048 0.1380
0.533 072 0.1680
0.459 .0848 0.1850
0.500 .0983 0.1966
0.553 1200 0.2170
0.569 .1280 0.2250
0.597 .1380 0.2310
0.621 1600 0.2580
0.710 2240 0.3150
0.766 2720 0.3550
0.826 3520 0.4260
0.871 1320 0.4960
0.903 5040 0.5580
6.992 606 0.6110

Data obtained from theoretical curve, case 1, Figure h of Coan.26
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TABLE XI. LOAD DISPLACEMENT DATA FOR BUCKLING TESTS ON SQUARE
FIBERGLAS PANELS
P b 6-6 /P -P
1b x 103 in. P- Po 5 - 60 ° °
in. -6
5 x 10
Panel (28a + Uc), (Data obtained from Fig. 9, Ref. 27)
: 3.36 .0167 0 0 -
; 3.79 0222 0.43 .0055 .0128
g 4,07 .0278 0.70 0111 .01585
: h.31 .0333 0.95 .0166 0175
j k.55 .0L31 1.19 0250 .C210
; 4.78 .0514% 1.2 0347 0245
E 4,96 - 0625 1.60 .0k58 .0286
: 5.21 .0833 1.85 0666 .0360
4 5.40 .1028 2.04 .0816 .0h22
2 5.57 .1223 2.21 .1056 o7
- 5.76 .1528 2.4 .1361 L0567
Panel (24d/4e), (Date obtained from Fig. 7, Ref. 27)
k.52 .00190 0 0 -
9 4,83 .00240 0.31 +0005 .00160
3 5.31 00344 0.79 00154 .00195
i 5.86 .00495 1.3% .00305 00177
; 6.38 .00715 1.86 .00525 .00282
g 6.83 .00990 2.31 .00800 .00346
6.92 .01070 2.40 .00880 .00366
7.07 .01237 2.55 .01047 .00412
3 7.32 01430 2.80 01240 00443
1 7.65 .01730 3.13 .01540 .00k92
1 8.07 .02090 3.55 .01900 .00535
é 8.52 02450 4,00 .02260 .00565
E’ Panel (28a + Uc), snug side edge clearance, (Data
cbtained frem Fig. 10, Ref. 27) Test one.
5.00 c.0227 0 0 -
5.24 .0253 0.2k .0026 .0108
5.49 .0293 0.49 .0066 .0135
5.64 L0347 0.64 .0120 .0187
5.78 .0373 0.78 0146 .0187
5,90 027 0.90 .0200 .0222
6.07 .0520 1.07 0293 0274
6.20 0627 1.20 .0k00 .0333
6.35 .0800 1.35 0573 ok2h
6.51 .0973 1.51 0746 .okgk
6.68 1213 1.68 .0936 .0587 i
6.82 k27 1.82 .1200 0660 :
2\
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TABLE XI - Continued

Test two
5.00 .0280 0 0 -
5.24 0333 0.24 .0053 .0221
5.49 .0387 0.49 .0107 .0218
5.6k .0lho 0.64 .0160 .0250
5.78 .0507 0.78 .0227 .0291
5.90 .0587 0.90 .0307 0341
6.07 0747 1.07 0467 0436
6.20 .0933 1.20 .0653 L0541
6.35 J175 1.35 .0895 .0663
6.51 .1440 1.51 .116 L0768
Panel (28a + kbe), approx 0.010-in. side edge clearance. Test one
4,17 .0160 0 0 -
4.32 .0187 0.15 .0027 .0180
k.55 .0213 0.38 .0053 .0140
4,75 .0266 0.58 .0106 .0183
4,89 .0293 0.72 .0133 .0185
5.07 .0373 0.90 .0213 .0237
5.25 0453 1.08 .0293 0271
5.38 0560 1.21 .0k00 .0331
5.49 0707 1.32 0547 o1k
5.65 .092 1.48 0760 .0513
5.78 112 1.61 .0960 0597
5.91 .128 1.74 1120 L0644
Test two

h,17 .0280 0 0 -
4.32 .0320 0.15 .0040 0267
4.55 .0373 0.38 .0093 0245
L.75 .0453 0.58 0173 .0298
4.89 .0520 0.72 0240 .0333
5.97 0610 0.90 .0360 .0k0oo
5425 .0827 1.08 0547 .0507
5.38 0973 1.21 0693 0573
5.49 16 1.32 .0880 0667
5.65 1373 1.48 .1093 .0738

Deflections measured at panel center.

68

AT -




(P N omk e L r

YRR

P

TABLE XII. LOAD BENDING STRAIN DATA FOR BUCKLING TESTS ON SQUARE

FIBERGLAS PANELS

Panel (24d/hc) (Data obtained from Fig. 6, Ref. 27)

P 3 ¢ P-P c - :_-_:2
1b x 10 %xlo-s o P-P
| i 107
1b
2.93 T1.b 0 0 0
3.43 91.0 0.50 19.6 39.2
3.88 116.9 0.95 k5.5 47.9
4,30 149.4 1.37 78.0 56.9
b, 72 194.8 1.79 123.4 69.0
5.08 233.6 2.15 162.4 75.6
5.41 279.2 2.48 207.8 83.8
5.80 350.6 2.87 279.2 97.2
6.06 422.,0 3.13 350.6 112.,0
6.2 526.0 3.k49 454.6 130.2
6.71 669.0 3.78 597.6 158.1
7.03 890.0 4,10 818.6 199.6
7.33 1078.0 4.4o 1006.6 228.8
7.69 1280.0 4,76 1208.6 254,0
7.98 1448.0 5.05 1376.6 273.0
69
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Figure 39. Southwell-Type Plot for a Square Fiberglas Panel
(244 + be). Data Obtained From Figure 6 of Reference 27.
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Figure 40. Rectangular Plate With Biaxial In-plane Loading.
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Thus, the initial deformation is assumed to be

© YD gy otn B el “

vhere m and n represent the mumber of buckles or the number of half
t waves in the x and ¥y coordinate directions, respectively. Substituting
. these Fourier relationships into equation (63) leads to

e @F o e AF ] P 30

(66)

T

This reduces to

7oa R crpp i T o)

Amn
B

m (61)
o (2P + &FF '
N /m + N bf]

3
for

[22kg)

ZA R

AT R ATREA Y

This equation ( 67), relating the amplitude of the elastic deformation,
the amplitude of the assumed imperfection (& conmstant), the classical

critical loading, and the biaxial loads, is similar in type to equation
(41) for the uniaxisl loeding case.

e

I

] For the perfect flat plate with ideal boundaries, the critical biaxial

3 loads are directly dependent upon the aspect ratio of the plate, %; and are
9 determined from the relation

Nm +N&b)2 2 D112 ne (a 2]2 (68)

P o T T T

The critical combinations for N_ and Ny for any particular value of a/b are

determined by minimization of eduation’(68) with respect to m and n. The

t usual interaction curve clearly outlining the stability bounds for an a/b = J
3

e

1.0 is shovn in Figure hl.

, If a square plate is considered, the aspect ratio will have a value of
¢ unity, a/b = 1.0. Therefore, equation (68) vecomes

2
Nxm2 + Nyn = Dﬂ2 m2 + n2]2‘

a

(69)

Y 2 Vit saed 2 e

The interaction for this particular case having the nondimensional form
of coordinate axes of

Led
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is shown in Figure 4l. From this graph, the classical critical loads can

be determined for particular biaxial load ratios. Thus, if the loading
ratio

=
"
=

is substituted into equation (69), the critical loading for a perfect plate
would become

F o-N = ot [u® + o] ) oI n?[(%)z + 1]

(70)
er ~ X 2 2 e
er a 2 1.2 a m2 1
o+ 2] 1B+ 5
After substitution of this expression into equation (67), the elastic
deflection is
A
A= o
1
§9£-1 (11)

where N = N KN . This implies that the loading rate in the two

directions %ill mXintain a constant proportionality. Transposing equetion
(71) results in

¥
er 3
Bm;[“ﬁ—'lr“-mn (72)

for the particular m and n which correspond to ﬁ;r obtained from Figure Ul.
If the values of the total in-plane loads

Px=Nx8.
P =N a
y y

are substituted into equation (72), we obtain

P
cr

an[—; - 1_] - (73)

Thus, once again the relationship between the variatles of the elastic

deformation and the load shows a direct correspondence to the Southwell
equation (14). The experimental work to check this derivation should
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be completed in the very near future.

In the analysis performed above, the imperfection of the plate was con-
sidered to be an initial deformation whose shape was similar to the expect-
ed buckle mode. An alternate manner in which to consider the imperfection
E is to suppose that an additional transverse load is applied at some point

¢ on the plate. This technique has received attention by Loo and Evan-

2 Iwanowski28 in the experimental study of instability of sphericel caps.
Their work is discussed in our paper on shells.9 It is, of course,
validated by the tests of Fisher and by the tests reported here on paneis.

Turner, Martin, and Weikel3o’31 numerically examined a biaxially loaded
plate with such an added normal force. Their computer results are listed
in Teble XIIT and depicted graphically in Figure 42. These computed
points are essentially collinear. This result tends to give credence to
the suggestion that a knowledge of the nature of the basic imperfection
is not of importance if it is desired merely to confirm the theory for

4 perfect bodies. I% is obviously of importance in the compilation of data
3 designed to help in the formulation of practical theories of real struct-
@ ures.

3
3
E
N
k.
k-
%
4
P
b
4

Real structures, of course, are very rarely subjected to uniformly dis-
tributed loadings or restrained in the simple manner considered so far.

: Walker3e has made a substantial effort to consider flat plates under

: conditions which more closely approximate those encountered in actuality.
! His study has been directed toward the establishment of a stability theory
s for plates axially compressed by nonuniformly distributed load. In the

@ snelysis performed, & wide range of possible boundary conditions was teken
]

into account. The theoretical treatment was evaluated in the laboratory. The
g tests which were performed and reported in the given reference appear to
3 be very thorough, well conducted tests. In the analysis of the data derived,
Walker demonstrated that & linear relationship existed between & and 6/p, ﬁ
but he offered no esnelysis to confirm that this was so. Typical results :
y are given in Figure 43. In presenting the results, the author pointed out
that the correlation of the theoretical critical load value and the insta-
s bility level predicted from the analysis of the test is very good. This )
can be seen from the graphs in Figure Ll. :

5.8 1503 8 B,

203 O WIS

However, it must be admitted that while flat plates do play an imporiunt

part in everyday structures, generally, conditions are more complex. In

. seronautics, combinations of plate end column (Usually called a stringer

; in this opplication) are frequently met. The testing of components of this !
; type is fraught witgsall the difficulties of the simpler cases. Ramberg,

McPherson, and Levy~~ have carried out an experimental study of this problem.

In their analysis of the test dats, they applied & Southwell-type plot. They §
demonstrated, as is clearly seen in Figures 45 through 48, that it gave good 3
results for stringers attached to sheets, irrespective of their failing mode.
They were unable to apply tne process to the sheet between stringers due to
the lack of eppropriate data prior to the instability value.
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| TABLE JIII. GOMPUTER RESULTS - RECTANGULAR PLATE STABIL.TY PROELEM
A Av at w¥ = YAw wk 6
Step psi "{A" x=y=0 Zaw ~o.oo§75
1 0 0 0.00575 0.90575 0
2 100 100 0.000587 0.006337 0.00059 5.9
3 100 200 0.000736 0.007073 0.00132 6.6
4 100 300 0.000951 0.0¢8ck2 0.00227 7.6
5 100 Te's) 0.001287 0.009711 0.00356 8.9
3 6 100 500 0.001836 | 0.011147 | 0.00540 10.8
: 7 100 600 0.002823 0.013970 0.00822 13.7
X 8 100 700 0.004922 0.018892 0.01314 18.7
9 100 800 0.010558 | 0.029L450 0.02370 29.6
& * Reference 31
g
é
i J
K %
7
y
i
o ;
. ! ¥
) ..:{
§ ! ’
. d
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Figure 42. Southwell Plot for Biexially Loaded Plate. Computed
Datba Points From Reference 31.

79

. e Sk o als N Al nosim A a
e T e did hiadn e ST bk Gk ¥ ¢ M)
i (3R

3 Y 54 b kAT

et i Lt X

de 22

o nda,

o

B A s

s NL AR MTIER RTINS ol 2T Fu




TP PG T R S S T Lkt

23 ST ] i SR TR S ] PRETRT PAAR R gl A R T S

[ aacamk e s TN

TN

25

-
1
20

rmly Loaded Plate as

o
8 x 1073

T
s o
.
10
Southwell Plot of Nonunifo

Given by Walker32.

3
2
1
0
Figure 43.

d

e N . " PO A A g S8
R T L T I L R A e W7y CTI O VI LIOMEAA ALY, 1 PPSSY= 8 e




B Yoy

10000

l‘ N
Fixed
8.S. edge No/2
6000 P~ -
4000 p~ -
o (o]
2000 P~ -
agpect ratio =~ 2
0
T R
6000 "N
}Fixed edge No
N e o]
o 4800 - -
B Free edge
[oF
4 3600 I~ -
;
é 2400 |- -
i o]
1200 |- -
g agpect ratio = 2
; ) 8
3 | i 1 1
] 35 45 55 65 75 85
; Plate thickness, t(in. x 107°)
: Figure 44, Comparison of Experimental Results and Theory. Data
1 Points Depict the Critical Load Determined From
: Southwell Plots From Reference 32.
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Figure 45, Southwell Plot of Twisting Instability of Short ;ﬁ
Z-Type Stringer From Reference 33. ‘é
z
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Generally speaking, references to the Southwell Plot define the displace-
ment parameter as a motion normsl to the direction of loading. However, it
is relatively simple to demonstrate that there is a one-to-one correspondence
betweén this deflection and some strain parameter in the p. anisof the body.
The first report to utilize this point was that of Tuckerman. Indeed, in
the harmonic test previously discussed with respect to his report, the
determination of the Southwell Plots was made using strains on the surface
of the column. The linear relationship between normal displacement and
elastic bending component strains for flat plates is demonstrated here in
Figure 49 from tests made in conjunction withr the flat plate studies con-
ducted at Stanford University and those previously mentioned. The use of
the Southwell Plots baseghuggn gtg n measurements also has been outlined
and verified by Gregory for appiication to struts.

Thus, concern has been mainly with elastic structural instabilities ggich
have been produced by usual force systems. However, in 1961l Queinec
analytically studied the behavior of & centrally heated "flat" circular
plate with free edges and checked these results experimentslly. In the
course of his work, he treated the problem .asing both the linear and
nonlinear theories. A most important step was taken when the author
correlated the test results with theory. 'Ie revealed, on the basis of
linear plate theory which included the porssibility of a constant initial
geometric imperfection, the validity of the Southwell Plot for this partic-
ular loading. Also, & deflection-squared law (82) was derived using the
large displacement analysis and this weas correlated with some experimental
data.

The basis of Queinec's analyses is as foilows. The temperature distributim
and edge conditions vere assumed to be perfectly exisymmetric. Tae plate
was considered to be of uniiorm thickness, at uniform temperature, and

free from stresses in its initial state. The temperature variation through
the thickness was neglected, as was the effect of gravity forces. The usual
bending theory assumptions were made.

The general equations of plate bending (Kérmén eguations) modified for
temperature effects were used.

2 2 2 2

2 2
D 2 U 3w 9 d W dU 9o
Evz‘”’ 5 a*axz.e‘zaxaya

oy ox 6y

2

2 2 L

These equations, transtormed into polar coordinates and reduced for the
axisymmetric case, are

R 5 RASE L+ A e S s,
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D 22 1l 4 /dU aw™
‘,EV?V'W —1: )

dr \dr ar
(75)
- 2
2l 2, lav dv
VLVJ+EeT_|+Erdr 5 =0
dr
or these two equetions can be written as
1af 4 )} B4 1wl
rdr U dr \ VEU B s rd \dr}
(76}
1_4)dU dW}_Eui-é_{. a/R
rar Gr ar) Ct T a \* dr\vzw)J =0
vhere
U = ‘the ususl Airy stress function for circular plates39
Et3
D = flexural stiffness -y
12(1 -~ u7)
W = lateral deflection
t = plate thickness
2 2 .
¢ - (), O a [ el
2 2 ~r A4dr dr J
ox oy
€ = OF, the thermal strain.

T

Unfortunately, these coupled nonlinear differential equations have no closed
form solutions except for very special cases; i.e.

or = 0 (no membrane stresses) or
aw .
i 0 (plane stress problem).

So Queinec utilized the well-known energy method for determining the
approximate critical temperature for both the linear and nonlinear theories.

Because his experiments revealed that lateral deflections occur well below
the critical value of temperature, he realized that these plates were not
absolutely flat. Hence, Queinec considered the ef'fect of initial imper-
fections. The initial deflection was assumed to be zxisymmetric and was
defined by w,(r). When the initial temperature is uniform end the initial
state is freé from stresses, the additionsl deflection w(r) is a solution
of the differential equation
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wvhere
or = stress due to temperature rise T(r) = To(e)

and this equation is valid for small deflections. Equation (76) is no longer
homogeneous. When the initial imperfection is proportional to the elastic
deflection, the following expression is obtained from equation (77):

LA A A A Cha e A Dt S e R

This relationship can also be written as

T I e o
AL oM h T

e ST, K BN

Yo [':EE'E - 1] = Yio (78)
(o]

which of course has the identical graphical form of the Southwell Plot.
This researcher was probably the first to investigate the case when the
imperfection and the additional deflection were not of the same form. Using
the energy equation, he derived the following expression:

Sadasaizrolome st

T I R A T ey

3 P
E . 4
1 .
4 T j 9 Efg dwio . p . dp
E o T
4 T» rit =1+ Ol dé’w gr ( 7 9)
f RS 1L S
° dr

; where ¢ = r/a (a = radius of plate)

1)

1
1 (T T.p.d
o= [ .0 -] P (80)
p o ‘o o "o

YT A% oY

AT

The subscripts denote particular radial positions; thus, T is the temper-
ature at r = 0. Queinec then showed that this equation reguces to

RS

T =l+K .= (81)
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where the coefficient K, depends only on the initial shape. Equation (81)
reduces once again to

T
erit 1
Yo [ - 1] -1 )

This equation then is similar to equations (78) and (14). All three are
equal to constants.

The central temperature versus the central deflection or specimens

numbers one and two 1s plotied in Figure 50. The corresponding Southwell
Plots are illustrated in Figure 51. The critical temperature for the
center of the plate determined from this Southwell Plot is T =59 F.
This shows & 7.8-percent difference from the value Ocrit
determined from the energy approximation which is normally unconservative.
Therefore, this percent of difference should actually be smaller when
compared to an exact solution.

AP B A N SN 8 S P LY.

JENS W ko d maam

The author appears to have been the first to realize that it was possible
to develop a relationship between the postbuckling deformations &nd the
initial buckling load. For the problem which he considered, he derived the
following equation:

Aht

Lati? Ao

:I T -T 03 lw"\2

; fo) crit 0 (8

s Oo__ ceriv 2 3)
Tcrit K2 L t

where T and w_ are the midpoint temperature and displacement, respectively, :
: Torit 18 the cPitical temperature and K, is a constant.

In a8 report published in 1962 by Fernendez-Sintes, Horton, and Hoff,uo g
dealing with the thermsl buckling of annular plates, the Southwell plct )
was used to correlate the derived theoretical results with the test data. :

Moiré fringe techniques were used to measure the latersl deflections when ;
the plate was heated in an axisymmetric manner. The test setup is shown ;
in Figures 52, 53, and 5h.

[

The relationship derived by Queinec and just discussed, equation (82), was
utilized by these researchers to compare the experimental results. Figures
55, 56, and 57 show the curves of central edge temperature and centrul edge
deflection versus time for the three test specimens. The corresponding
Southwell plots are shown in Figures 58, 59, and 60. The values of critical
temperature determined from these graphs were, respectively,

R R

:
{ (Tcrit)l = 127°F

120°F [

(Tcrit)z )
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(T;rit)3 = 11F

The compaiative theoretical values were, respectively,

(Topgpdy = M95F

°

(Tcrit)2 = 1UF
(Topspdy = 102F

J Rl S oy

The differences of these results were all within the order of accuracy
predicted for the particular test equipment.

Once again the value of the Southwell plot for correlation of a theory

has been shown. The accuracy of these results most certainly will be

improved with the intended implementation of noncontacting measurement dev- e
ices of high sensitivity and accuracy. %

e ok SUTI AL o 4L

This general process for correlating experiment and theory can also be
applied to the case of the lateral instability of the deep beam under the ]
X action of a concentrated force applied in the vertical plene. Such a beanm
3 vwhen simply supported in two planes is shown in Figmes 61 and 62. In this
type of structure, where the t/h ratio is small, te.ding takes place in the
plane of the greatest flexural rigidity, and lateral buckling may occur at
a2 certain critical value of the applied load. Both bending and twisting

mist be considered. i

RO e D A

Al LNl B

The Rayleigh~Ritz method is applied to the total potential energy to deter- ;

i mine the relationships between the load and both the elastic lateral defor- 3
X mation and the elastic torsional deformation for a deep beam with initial 3
! imperfections simply supported in two planes. :

3 As the beam buckles laterally, the strain energies of lateral bending and
twist about the longitudinal axis increase while, at the same time, a
certain amount of work results from the movement of the point of application
of the concentrated load. Assuming tuat the small change in the strain
energy of bending in the plane of the beam during buckling is negligible,

we find that the change in the strain energy due to the lateral buckling is

1..2 .2 - 1 z )
_EI d w] GJ ‘:dgg :
W= f [—75 L dx + 3 = - dx (84) :
o dx 0

P e e R T

where

FUSW

R Y
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E = the modulus of elasticity

G =  the modulus of elasticity in shear (G =2(%%E))
I = I* = second moment about § axis

J = polar second moment

1} = Poisson's ratio

w = the lateral deflection

o) = the angle of rotation of the cross section.

When the symmetry of the buckled shape is considered, equation (84) may be

written as
_ L o
n
j [d .dx+GJ‘[2[%:gT.dx (85) :
[o] 3

Now the work dome by the applied load during buckling is

L
r2 vt /L

M =7 J P . [ 5 K§ - x) . dx (86)
o) dx

The term

SO IL w1 AT SR

is the infinitely small arc described by the end of the beam with respect
to the elemental cross section. It is caused by the bending of the element
in the 7§ plane. The vertical component of this arc when the angle of
1 rotation, ¢, is small is
; 2
1 dwiL 1
: ¢ . —5 |3 -x].dx
dx2 J

g s

T

This, then, is the small distance through which the applied force moves.
The total work done is one-half the summation across the beam of these ecle-
mental vertical components multiplied by the applied load. When symmetry
of the deformed shape is assumed, this total work of buckiing is as given

. in equation (86).

S s sy ey o

s

The total potential energy is ]

V = A - M

N Ly
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or

V= mf[ﬁf.u+w} uf ax

-Pjacp[d E-x) . ax (87)

e one o

when small imperfections of both the twist and the lateral deflection are ;

considered; the total deformations are the sum of the initial and elastic 4

components g

Wt = we + wo . ]

} (88) 3

where

W, = elastic lateral deflection :

wo = initial lateral deflection %

3 7

3 9 = elastic angle of rotation ﬁ

i z

3

g % = initial angle of rotation.

e

Now equation (87 ) becomes

I" - g

= EI f [ -V )J . dx + GJ f;e Ld(qkd; ¢6)J2 . dx ;
Lo : ;

-7 % [——-—-d ] (G %) - ax )

ax

Sasddp AAL A an

P AT N
.

For the simply supported case in gucstion, the tctal deformations may be
represented by

o

nhix ;
0T oo |
n=1 !

A ZACOS!-anz{-

s Cn et e MR

T

(90)
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m=1 !
: It has been shown2o that the resulting critical load is within 1.5 percent ?
§ of the exact solution when only the first term of equation (90) is used.
3 ’ Therefore, this simplification is utilized here also. Moreover, the same
¢ simplification is applied to the initial deformations. These first terms

of equations (90) and (91) are substituted into equation (89). This total

potential must be minimized with respect to the unknown amplitudes of the
total deflections. Then

v L Sor g )

PO L LT C UG 20 LIS

IV v

‘ 3A1 = 0 and aal -0

yield ;

: iR o.a 12260 4 L4 1 3

g Sl T W s AR LS Tl W (92) :

p %
3

4 and - - g

-f '.-TI 2 1 - ! _ . ?

S 2EI LL_[ . |By - A =P LK (937 3

3 where 7

K = 00351

) This factor is the result of performing the prescrived integrations.
3

If the amplitudes of the elastic lateral deflection and of angle of elastic :

rotation are denoted by 6§ and ¢, respectively, and substitution for the total

deformation amplitudes is made in equations (92) and (93), the following
relationships are obtained:

P TPCT TR

" et g

PLKG6=2GJ ¢ ' (9k) j

e
2E1l_1L—T.;2.6-PLK(é+f3)=o

o

(95)

Equations (9%) and (95) are algebraic relationships coupled in & and ®. If

{
the expression for §, as obtained from equation (9}4), is substituted into p
equation (g5), it yields
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and thus .

—2‘- - l] B (98)

It is not immediately apparent that this expression can be transposed into

the Southwell form. However, if £ is much less than &, so that powers of B/
¢ greater thou the first can be ignored, we may write

P e M e RS VAN i

PECI‘
s =1+ B/t (99)
P
. and so it follows that ;
] ?
: - - 1 = p/ee (100) !
: vhich 1s & relationship of the Southwell type.

. A search of the literature did not reveal any existing experimental data

on this subject. Thus, a special series of tests was made to check the
process. The experimental setup less the displacement transducer is Gepicted
in Figures 61 and 62. The deformation mode of the beam is clearly seen in
this picture. The concentrated load was applied via a dowel and yoke system
which is readily seen in the figure. The dimensions of the beam together

s o el )

with the deformations under load are given in Table XIV. The resuliing
E Southwell Plot is given in Figure 63. The critical load deduced from this
; curve is 21.4 pounds and is in excellent agreement with the theoretical value

of 22.1 pounds. Additional tests made with a small spring providing some side
restraint, show that under tihese conditions there is an increase in buckling
load just as was demonstrated by Hayashi and Kihira for the strut sipported in
the same manner. Full details of this test series are given in Reierence 41.

The presentation so far has been concerned mainly with the use of the South-
well technique in interpreting data obtained f'rom uniform x-section members
é tested as individual items. It must not be inferred, however, that the
process 1s not applicable to structures fabricated from such elements. The
first application to a member in a realistic structure appears to have been
made by Lundquist . In 1939 he analytically formlated a method for deter-
mining the critical loads for the displacement variable, normally the mid-

(S gel sem)
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[ TABLE XTV. TATERAL INOTABILITY OF DEEP BEAM (Ref. LI)
P 6
1b in. 5/
0.0 0.0 - L
7.70 0.001 1.30 x 10_)
12,17 0.006 k.93 x 10,
14.59 0.001 7.55 x 10_)
15.85 0.016 9.47 x 10_,
17.10 0.021 12.29 x 10_,
17.85 0.026 14.58 x 10_),
18.28 0.031 16.97 x 10_),
18.70 0.036 19.25 x 10_;
19.11 0.041 21.45 x 10_,
19.32 0.046 23.80 x 10_),
19.64 0.051 26.00 x 10_y
19.79 0.056 28.30 x 10_,
19.90 0.061 30.65 x 10_)
20.05 0.066 32.92 x 10_)
20.11 0.071 3k.80 x 10_),
20.25 0.076 37.50 x 10_)
20.32 0.081 39.90 x 107,
20.k2 0.086 k2.10 x 10_,
: 20,50 0.091 hh,bo x 10,
: 20.55 0.096 16,80 x 107,
: 20.58 0.101 49.10 x 10_)
3 20.60 0.106 51.50 x 10_
3 20.65 C.111 53.80 x 10_)
4 20.67 0.116 56.20 x 10_)
; 20.69 0.121 58.50 x 10_)
] 20.71 0.126 60.90 x 10_
i 20.77 0.131 63.10 x 10_)
: 20.79 0.137 66.00 x 10 L
3 20.80 0.1k 67.80 x 10-4
1 20.81 0.151 72.50 x 1o‘h
20.8k 0.161 77.30 x 10_)
20.89 0.171 81.90 x 1°:u
20.90 0.181 86.70 x 10_)
4 20.92 0.191 91.40 x 10_) :
: 20.93 0.201 96.00 x 10_) ;
3 20.93 - 0.211 100.9 x 10_)
: 20.97 0.221 105.3 x 10_)
~ 20.99 0.231 110.0 x 10_) ;
21.01 0.2l 117 x 10y
; 21.02 0.261 124.0 x 10
1 Beam Dimensions Thickness t = 0.059 in.
3 Derpth d = 1.953 in. :
: Length L = 30.69 in. 3
]
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point lateral deflection, used for the Southwell representation could 35,36 %
equally well be, chosen as the angle of end rotation. In 1960, Gregory~™”’ :
applied the technique to frame structures under torsion and bending. He was i
able to use the procedure tgh@evelop a design system for lattice girders

liable to lateral buckling. The routine followed was to load the memobgr

in question to a load valuc less than that required to precipitate insta<

bility and, from the load-displacement relationship thus established, to

determine the effective initial imperfection and the theoretical critical

moment. From these two experimentally established parameters, hLe then pred-

dicted the probeble tuckling moment for this resl structure.

Ariaratnaml3 theoretically established the validity of the Southwell type
linear relationship for struts having a varisble flexural rigidity and
various end conditions and for plane frameworks subjﬁgted to both flexural
and torsional buckling. In 1963 Stevens and Schmidt 3 proposed a design
scheme for frameworks. In this plan they combined the Southwell formulation
with an iteration procedure. Thus, they were able to predict the critical
loads in the compression components of the structure.

L
3
.
K
.
-
%
,
3
‘s

Syt

IRt Ll

It is clear from the discussion already given that the key to the correlation
of experiment and theory lies, in all cases, in the treatment of a slightly
imperfect system. From this presentation it might be inferred that Ayrton
and Perry were the first to realize that initial and elastic deformatious

of a strut could be associated with the Euler load and the actual load. This
is not so. Admittedly, Eulexr himself appears to have given consideration to
the initially straight column only. However, an awareness of the influence
of initial curvature has existed since the beginning of the nineteenth
century. Young, % in his course of Lectures on Natural Philosophy and the
Mechanicel Arts published in 1807, gave a theorem with regard to this question.
This theorem, theorem 323 in his Magnum Opus, states:

T P T TS T A

S Lhos g 420 3 9 B oy
i AN S A Gl

Vs .w gy

"If a beam is naturally of the form which a prismatic beam would acquire,
if it were slightly by a longitudinal force, calling its depth, b, its length,

4 e, the circumference of a circle of which the diameter is unity, c, the weight 3
} of the modulus of elasticity, m, the natural deviation from rectilinear form,
d, and a force applied at the extremities of the axis, f, the total deviation 3
from the rectilinear form will be
1
B bbeedm
~ bbeem - 12eef
[
g If Young's equation is rewritten in present-day language, we obtain the ;
A formilation i
§ W
¢ T TP

PE j
3 !
: ;
é
r ,
: 108+ ]
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where

L]
]

& the total deflection

wb = the initial deflection
E
PE = Buler load -2—

L
P = axial load appl.ed

13 sk ta e

This is identical with the Southwell formulation, equation (11), provided
it is realized that in his time Young perpetrated Jacob Bernmoulli's error
in determining the expression for the second moment ("Moment of Inmertia")

for the cross-sectional area. Bernoulli had fixed this for a rectanguler
section as

LS o et e A

TALTI

bh>
37

afakd

instead of the presently acceptable relationship of

tn3 :
12 °

3 There is little in the literature between 1807 and 1886 %o indicate that

d engineers had taken note of Young's contribution, but it seems clear that

; many were awere of the lack of agreement vetween the Euler theory for a
perfect body and reality. Smith,us a contemporary of Ayrton and Perry,

was certainly cognizent of the importance of initial curvature and eccentric
loading prior to 1886. He recognized, about this time too, that the load
displacement curves for struts subjected to axial compression were hyper-

bolic. This is evidenced from a footnote to Ayrton and Perry's report5 and
also from Reference 45,

That the leaders in the field of engineering mechanics of this era recognized
the problem and were acquainted with the mathematical relationship of
equation (1%) is clear from T. Claxton Fidler's text.h6 In this treatise of :
1887 he wrote: "Let R denote the resilient force of the ideal column, equal
to EI2/I2, and let A denote the initial deflection, and § the elastic
deflection, then

T e N T

A+ 6
and 1"

T F (101)

S L p s

Claxlon Fidler's equation (99) is identical to Scuthwell's equation (14).
Therefore, the deflection will now have a certain assignable value depending
on the load P; and if the load is gradually increased the column will
exhibit an increasing deflection, or, in other words, it will always be in
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a condition of stable equilibrium; and looking at formula {99) it is evident
that when the load P 18 increased to within a little of the fixed quantity,
R, the factor P/R - P will be a very large miltiple, and & very small
initial curvature (A) will then be sufficient to produce & comparatively
large deflection of the columm.

Without doubt, there were other derivations of this basic equation which

we have not been able to trace, but few, if any, could be more general than
that of Westergaard.l In 1922, this author made a very detailed study of
the buckling of elastic strctures. Where most previous and contemporary
analyses dealt with buckling from the point of view of the differential
equations of equilibrium, Westergaard's analysis was based upon the use of

a generalized Lagrangian analysis. He made, of course, the usual assumptions
with regard to linearity of stress-strain relationships and considered only
deflections which were small. In this manner, he was able to show that

the relationship was by no means restﬁécted tohﬁhe simple cplumn. Unfortun-
ately, like his predecessors, Fidler,*© Smith,* and Young, ** he did not
recognize the potential of his formumla for correlating theory and experiment.
Neither, of course, did other engineers.

From analysis and by reference to tests made on virtually all practical
cases of tubes, braced structures, and flat plates subjected to in-plane 6
loadings, it has been established in this report that the simple Southwell
formla

) (% - l) = constant
cr

is absolutely general and is of great importance in interpreting experimental
data in all these areas.

Its equal applicability in the area of shell structures is asserted. This
question is discussed in another report.29 The large displacement analysis
briefly mentioned for flat plates urnder compression and for the circular
disc with a central hot spot is also a method of wide generality and is
discussed further in & paper to be published shortly.t7

It is to be emphasized that the Southwell method calls for diligence in
measurement of the displacements and for care in interpretation of the
results. It can be a dangerous practice, for example, to use a least-
squares-fit method in constructing the line.
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