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ABSTRACT

A study is performed to estimate various states of a vehicle
launched from an idealized spherical, airless, nonrotating earth. A
tracking radar measures slant range and elevation of the vehicle and
yields an output which is corrupted by additive Gaussian noise. In
addition, the vehicle is disturbed by a random specific force during
its boost phase. Estimation of the vehicle states is done by two dif-
ferent Kalman filter mechanizations which are linearized applications
of the optimal theory. A Monte Carlo computer simulation is used to
compare the performance of the two filter mechanizations.
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1. Introduction

A large class of estimation problems is concerned with finding
an optimal estimate of some quantity (an unknown parameter, a random
variable, or a random signal) when a linear function of this quantity,
corrupted by an additive noise, is available for generating the estimate.
However, the class of estimation problems most often encountered are
those in which the unknown quantity is describable by equations which
are not linear functions. Then, the theory of Kalman (11 and Kalman
and Bucy [2], developed to indicate optimal state estimates of linear
systems, no longer yields an optimal estimate. Extensions or new
theory work to include a large class of truely nonlinear systems gen-
erally has not been successfully developed and is the topic of current
research. A partial solution, allowing application of their theory in
many instances to practical nonlinear systems, is based on work by
Kushner [3], Cox [4], Bucy [5], and others.

The fundamental assumption (6] is that a nominal solution of the
system's nonlineardifferential equations must exist. This solution
must provide a "good" approximation to the actual behavior of the system.
It is "good" if the difference between the nominal and actual solution
can be described by a set of linear differential equations (sometimes
called linear perturbation equations). In practice the nominal equations
or nominal trajectory may not be available a priori. For example, the
navigation of a terrestrial vehicle may not be predetermined in the
sense that the trajectory of a ballistic missile or space booster is
predetermined. Without a nominal trajectory, the linear perturbation
equations may be obtained as the difference between the actual solution
and the current estimate of the nominal trajectory. This process, called
relinearization by Bryson and Ho [7], may prove to be even more accurate I
in estimating the state variable than when linearizing about the nominal.

2. Purpose

It is the purpose of this study to evaluate two mechanizations
of a pseudo nonlinear Kalman-Bucy filter. Performance will be evaluated
of a filter that estimates the states of a nonlinear system which has
been linearized about the nominal, called a linearized Kalman filter [8],
versus one that has been relinearized about the current estimate, called
an extended Kalman filter [8].

3. Problem

The problem is to estimate various parameters for a vehicle
launched from an earth assumed to be spherical, airless, and nonrotating.
The launch point and trajectory of the vehicle are coplanar with a tracking



station located downrange from the launch site. The tracking radar
measures slant range and elevation of the vehicle and yields an output
which is corrputed by noise. The noisy output is processed to give
estimates of the vehicle's stateswhich describe its trajectory. For
this study the trajectory is assumed simply to be generated by a gravity
turn. After launch the rocket is disturbed in the cross track direction
by a random specific force which for realism could be considered a
gusting wind disturbance.

4. Model of the System

All of the equations for the launch problem can be inferred
from the geometry presented in Figure 1.
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Figure 1. Geometry of the Problem
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The following symbols are applied in Figure 1:

R a earth's radius

L O elevation angle between radar site and vehicle f
e A reference angle between launch site and vehicle

e R reference angle between launch site and radar site

h • altitude above the earth's surface

S • slant range distance from radar site to vehicle

g earth's gravity vector with magnitude at zero altitude

v . velocity of the vehicle with respect to an inertial basis

F n. disturbing force orthogonal to v

T • vehicles thrust vector with respect to an inertial basis

y 4 flight path angle between velocity vector and a vehicle fixed
reference line

d O distance of the vehicle downrange from the launch site

r h +R
e

The following state variable equations defining the vehicle's
trajectory are obtainable from the given geometry of Figure 1:

h =v sin y I

R v cos Y
d= e (2)

e

-ksin y +(T 1(3)

0)sp

d k cFn
coF - +2 (4)

e v(h + Re)

3
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where

k gR2e

t 4 time of flight measured in seconds from the launch

I 4 specific impulse of the rocket fuel
sp

w 0 initial weight of the total vehicle.

The slant range and elevation equations as a function of the states
are obtained from simple trigonometric identities. From the Law of
Cosines:

2 2 2
= r + R -2R r co 0 , (5)

so that

S = r +Re -2R r cos(OR-O) . (6)

From the Law of Sines:

R (7)

sin (0R 9) sin(~ + L) sin (,T- + L) - (eR -e))

Expanding the middle term of Equation (7),

sin L + L = sin j cos L + cos-I sin L

=cos L (8)

Thus,

r S
cos L sin(eR- e) ' (9)

4



and

L = arc coo rsin(R ) (10)

r + R 2 R r cos ( - eJ

Alternatively, if the right equality of Equation (7) is used the eleva-
tion angle is given by

Ri

L =arc tan [Cos (OR - _-r~I(1
sin(eR - )9

5. Approximately Nonlinear Kalman-Bucy Filter Mechanizations

The filter equations developed by Kalman and Bucy were derived
under the assumption that the system disturbances and the measurement
errors were random variables described by Gaussian statistics, and that
the plant was describable by linear equations. The resulting filter
then gave the optimal estimates of the states.

The filter equations in this study are modeled as a continuous
nonlinear system. That is, unlike a discrete model, the transition of
each state from one increment of time to another is considered to be
a smooth continuous process. Furthermore, the observations measured
with the radar tracking system are also continuous. Thus the system
nonlinear dynamics are given by

k = f[X(t), w(t), t] (12)

where

x L n-vector of states

w in= m-vector of process noise

t A time.

The observation equation is also nonlinear and given by

z(t) = hfx(t), tj + v(t) (13)

5'



where

z 4- p-vector of observations

v ! k-vector of measurement noise.

The a priori statistics are given by zero means; i.e.,

Efw(t)J = 0 , (14)

Efv(t)) = 0 , (15)

where E(") is used to denote the expected value of a quantity. The
noise covariance matrices are

E(w(t), wT('r)) Qb(t - () (16)

E~v(t), vT( )r ) Rb(t -) , (17)

E{w(t), v(r)}) 0 , (18)

where

8(t - ') = Dirac delta function.

To estimate the states a suboptintal nonlinear filter is used which
estimates their deviation from the nominal trajectory or the current
estimated trajectory. The nominal trajectory is given by the nonlinear
state equations with the white process noise ignored, i.e.,

XN = f[xN(t)' t] , (19)

where

x A n-vector of nominal states.

The actual trajectory is the trajectory represented by the launch and
boost itself. In this study it is simulated by Equation (12) which
contains the process noise as would be expected in a realistic situation.
To linearize about the nominal state, define a small error as the
difference between the nominal state and the actual state

bx(t) A= -(t) = x(t) - xN(t) . (20)

6



It is apparent that

i(t) = *(t) - XN(t) . (21)

Putting Equation (21) into Equation (12) yields

*(t) = itN(t) + bA(t) = f[xN(t) + 5x(t), w(t) + Bw(t), t ] (22)

Expanding the right side of Equation (22) via a Taylor series,

ýf [x(t), w(t), t]l 5xt
f [xN (t) +5x (t) . w (t) +aw (t) ' t] = f [xN(t) ' w (t), t] + C~ N(t) xt

x
N

+ " •w(t) 8w(t) + 0 (23)

wN

where

2f[xN(t), w(t), t] M evaluation of the partial derivative at

XN(t) the nominal state
xN

•f[x(t), w(t), t] = evaluation of the partial derivative about

•w(t) J the conditional mean

wN

0 2 + partial derivative terms of order two
and higher.

Thus a differential equation that gives the deviation between the
actual state and the nominal state to first order is

5; = NX(t), w(t) t x(t) + 'f[xN(t), w(t)' t w(t) . (Z4)
ýX (t) )W(t)

N IxN I wN

(state deviation linearized about the nominal)



In a manner which uses the Taylor series expansion as above, a
differential equation can be formulated that describes the state evalu-
ated about the estimate. By defining the error as the difference

x(t) A iE(t) = x(t) - x(t) , (25)

so that

x(t) = k(t) - X(t) (26)

and proceeding as before, the result is

k f xGw) w(t), t] •fx(t) +,kt) w(t), t] WMt (27) l

X= . x•t) ~ ~W(t) w~t) + (27)

'C w

(state linearized about the estimate)

where the partial derivative for the noise is evaluated about the
expected value. This is the conditional mean, as before.

The observations given by Equation (13) are also a system of
nonlinear equations which may be linearized by expansion of a Taylor
series and evaluated about the nominal or estimated trajectory. Define
the observation deviation as

bz(tz(t) (t) - ZN(t) . (28)

The observations contain only additive noise so that when the Taylor
series expansion is performed, as was done previously, the results are

S[xN(t), t]
bz(t) = 5(t) 8xN(t) + v(t) (29)

xN

(observation deviation evaluated about the nominal)
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Similarly,

,tz(t) = t1x(t) + v(t) (30)

(observation evaluated about the estimate)

Before expressing the algorithms for the suboptimal filter the
following definitions will be useful:

Kfx 4(t), w(t), t]
FN(t) o X(t) (31

N xNIN

N(t f[xNt' w(t), t](

HN(t) 1= 3hrXN(t),_ t (33

N 3xN(t) (

I xN

FEt A fi[x(t), w(t), t] 34
E(t) (t) , (34)

x
Gt) f[(t), w(t). 0 (

Ew(t) a (t) ^ (35)

w

H t(t), (36)

9



Using the definitions previously described, the filter equations that
describe the state deviations for the two mechanizations follow in
Tables I and II. Derivations of these equations can be found in
references [l], (2], and [6] through [9].

Table I. Linearized Kalman Filter Equations

A

Filter state deviation bx(t) = FN(t) bx(t) + K(t) [8z (t) - HN(t) 8x(t)]

Suboptimal gain K(t) = (t) HNT(t) R l(t) I

Error equation 5x(t) = 5x(t) - tx(t)

Error covariance E(t) EI&x(t), bT(t).
matrix

Error covariance F (t)>,(t) +,(tlFT(t)
differential equation

T -
- ,(t) % (t) R (t) H(t),(t)

+ GN(t) Q(t) GN (t)

Best complete t
linearized state X(t) x N(t) + bx(t)
estimate

10



Table II. Extended Kalman Filter Equations

Filter State x(t) = fix(t), t] + K(t) [z(t) -h(x(t), t)]
equation

Suboptimal gain K(t) = 7(t) HT(t) R1 l(t)

Error equation i(t) = x(t) - X(t)

Error covariance Y(t) = E '(t), iT(t 1

matrix

Error covariance 1(t) = FE(t)Z(t) + 7(t)FET(t)

differential
equation T -1

- 7,(t) HE(t) R'(t) HE(t)Z(t)

+ GE(t) Q(t) GET(t)

6. Development of the Filter Models

a. The Explicit Linearized Equations

The algorithms summarized in Tables I and II require
the evaluation of partial derivatives about the nominal and estimated
trajectory. Equation (31) is a matrix operation which is derivable
from the additional information which follows. Because

fl[x(t), w(t), t)

fix(t), w(t), tj = (37)

fn[X(t), w(t), t]

nI

11



and

x1 (t)

x(t) = . (38)

x (t)
n

then,

xn

6f Xt W(t), = (39)

FN(t) 6= 5x(t)
NN

x
N 6f )f

n

where the arguments have been dropped for simplicity. It is obvious,
but worth repeating, that

fl[x(t), w(t), ti = h = v sin y (40)

R v cos Y
efosw(t), t d (41)

wt4 ), h + R e
(w2t) 2  ( Tt

d k cos F (3
4xt w(t)' t] R 2 ____ 1(3

12



and that 1

X2(t) h(t) , (45)

x3(t) = (t) , (46)

x 4(t) Y= (t) ( 47)

By performing the differentiation described by Equation (39), the
following four by four array is obtained:

0 0 sin y v coso

-R Co YRe Cos Y - R v sin

Ke v cos~ 1 cou •RY~

(h + a)2 h+Re h+Re

"F" 21,o o .0 048)

([h +R0.)3 

(

[_2(h +R)+ Acoy] 0 [+ k]coo ~ ) [j k sin I

v(h + RY0 " v R() + a.) + R

By an analogous operation described by Equation (32), the following

array for GN(t) is completely filled with zeros except for the element

in the fourth row an,; fourth column:

0

GN(t)i ( 49)

0

0 0 0 1

_N

13



For the observation equations, the functions are

hl[xN;(t). t] + R 2R r cos(OR -e) (50)

and

COS(R e

h 2 [XN(t), t] = L = arctan( sin(OR - • (51)

Performing the operation described by Equation (33) results in the
following two by four array:

"HN(t) = (52)

ýh2 ýh2 ýh2 ýh2

Z~- 3
n

The arguments on the partials have been left out for simplicity and

3h h1 h 2 ýh 2
=- - 0- =° (53)

also,

3h1  Re se-)
I -t 1+ Cos-(e 0) (54)
5x s R (5)R

"R --ý (+-h)sin (55))
2e

14



M2 sin(R- +e (56)
1 R2 2 coo(eR~ e) ___

a heR 
e R

anid

h +

R 1l+R R 14)2)e( h e

The arrays for the expressions given by Equations (34), (35), and (36)
are exactly the same with the important restriction that they are to be
evaluated about the current estimate and not about the nominal.

b. Computer Synthesis of Suboptimal Estimators

The synthesis of a computer algorithm for the computations
required to estimate the four states of the idealized rocket launch can
be observed in Figures 2 through 5. These are similar to results derived
by Lange [101. Figure 2 is a block diagram of the overall program with
the linearization done about a nominal trajectory. Figure 3, in more
detail, describes the linearized filter process. Figure 4, in more
detail, describes the actual and nominal trajectories.

The synthesis for the extended filter is essentially the same but
with the major exception that the estimated state equations replace the
nominal state equations in Figures 2 and 4. The estimated equations
are formed by adding the observation differences multiplied by the opti-
mal gain. Figure 5 shows this process.

c. Discussion of the Model and Problem

The problem, mentioned earlier, is to eitimate four
parameters of an idealized vehicle's trajectory launched from a spherical,
airless, 'nonrotating earth. The trajectory parameters are altitude (h),
downrange distance traveled as measured from the launch site (d),
velocity (v), and flight path angle (y). The launch site and trajectory
of the vehicle are in a plane which contains a radar tracking station

15
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A
KWt [ZWt) - h WO(t), t01

Figure 5. Formation of Estimated Nonlinear Equations

located 40 nautical miles from the launch site. The simulation is run
with the noise (w), which is considered a disturbing wind, at a value
of zero until 15 seconds has elapsed. This can be envisioned as a
case where the surface winds are negligible for altitudes up to about
2500 feet.

The trajectory is planned to achieve an altitude of about 80 miles
with a flight path angle suitable for injection into a circular orbit.
Thus, at the time of 220 seconds, the ideal case would be to have Y
equal to zero.

In the runs where the Extended Kalman Filter is used, the initial
estimated equations are assumed to be the same as the actual equations
but without noise. After 10 seconds the estimated equations are
generated more accurately by employing the observation modified by the
optimal gains as summarized in Table II.

Also, the elevation angle (L) measured by the tracking radar is
not computed for approximately 10 seconds. This is to allow the vehicle,
which initially appears below the horizon to the radar tracker, to
become observable. The impact of this modification is to prevent the
measurement noise covariance matrix (R) from being computed while it
is zero. This keeps the computer from reaching an exponential overflow,

i.e., (R)" becomes infinite and the simulation terminates prematurely.

In the initialization of the problem, several constants, initial
conditions, and standard deviations of measurement error had to be
chosen. Tables Ill and IV are compilation of those values.

19



Table III. State Initial Conditions and Constants

States Constants

v = 100 ft/sec T/w° W 1.3

d = 0 ft R =20.89 X 106 ftO e

h = O ft I 300 sec
0 sp

7o = 89.66 deg g = 32.17 ft/sec2

d = 40 n mi

NOTEY: Because this analysis assures Gaussian statistics, the standard
deviation about a zero mean defines the probability distribution func-
tion precisely. The i-a values for the driving noise and measurement
noise are given in Table IV.

Table IV. Standard Deviation of Noise

Driving Noise Measurement Noise

av = 0 ft/sec Us = 1O0 ft

ad = 10 ft aL = OO.1 rad

ah = 100 ft

a = 0.001 deg
Y

Finally, the covariance matrices Z), (R), and (Q) are initialized
with the appropriate element given by the square of the standard devia-
tions of Table IV. The initial array for the error covariance matrix is

104 0 0 0

0 102 0 0

-0 W 9 (58)0 0 0 0

0 0 0 1061(57.7)2

20



the initial array for the measurement noise covariance matrix is

1 0

I 0

--------------4-- ---
142

0 0 0 1 l0 gLOI 10dg

and the initial array for the inverse of the process noise covariance
matrix is

1041 (60)

7. Results and Conclusions

The performance of the two mechanizations used to estimate
the trajectory states are observable in Figures 6 through 18. The values
of plus and minus one standard deviation from the indicated covariance
matrix are plotted in Figures 6 through 13. That is, each figure has the
square root of its corresponding diagonal element of the covariance
matrix plotted for a positive and negative l-a value. Also, each figure
shows the error of the filter in estimating that state. For the Extended
Kalman Filter Mechanization (Figures 6 through 9), the error is given
as the difference between the actual state and the estimate of the
actual state. For the Linearized Kalman Filter Mechanization (Figures
10 through 13), the filter error is given as the difference between the
actual state and the best estimate of the actual state which in turn
has been differenced about a nominal, i.e.,

X=Xactual - xactual = Xactual - Xnomiln -a x . (61)

It is interesting to note that the results of both mechanizations indi-
cate proper performance of the filter. This is concluded from the
figures by observing that the irregular or "noise-like" trace is indeed
within the ±1 a curves about 63 percent of the time as the linearized
theory suggests.

21
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Or. an overlay depicting the extended filter variance versus the
lineirized filter variance, there is virtually no discernible difference
between the two for any of the states estimated. However, Figures 14
through 18 show a graphic view of the filter error in estimating the
states. The velocity (v), distance downrange (d), and altitude (h) are
estimated with less error with the Extended Kalman Filter Mechanization.
The same conclusion holds true for the flight path angle (y), though
not as graphically evident as for the first three states.

At this point one is inclined to conclude that the Extended Kalman
Filter (known also as the Relinearized Kalman Filter) is superior to
the Linearized Kalman Filter in estimating states defined by nonlinear
equations. However, in reporting on a larger sample of results by
others, Jazwinskl [91 notes that such results cannot be assessed a Priori.
That is, though better more often than not, the Extend Filter can some-
times be worse and may even diverge (Kushner [3]).

The future effort in the application of these mechanizations to
nonlinear filtering problems is probably best directed to actual simu-
lations as was done here. More experience with the approximate nonlinearfilters is desirable because the insight gained in this type of work
may lead to other useful approximation techniques.

8. Future Applications

This report describes the first phase of a study directed
toward application in the Army's Cannon Launched Guided Projectile (CLGP).
It is well known that the Proportional Navigation and Guidance Law used
in the CLGP, though highly accurate for its mission, is susceptible to
the effects of the gravity field force. The result is that the pro-
jectile's flight trajectory has a tendency to "droop" or fall short of
the intended target at low quadrant elevation firings. One way to
minimize this effect is to roll stabilize the projectile and, knowing
the direction of the vertical, bias the autopilot to, in essence, aim
high and counteract gravity.

A common method for roll stabilization is to measure roll rate with
a gyroscope sensor and null the vehicle's roll rate to some small level.
In the CLGP environment, however, the gyroscopic sensor is subjected to
extremely high acceleration forces at the launching. Thus, the question
may be asked if an alternative method of measuring and nulling roll rate
is available. The answer leads into the program for which this report
was initiated. The program is to determine the feasibility of esti-
mating roll rate of the CLGP vehicle without the requirement of a
specific additional roll rate sensor. The solution, if it is feasible,
would make use of other on-board sensors, such as the laser seeker, to
estimate the required state. Implementation of this scheme is through
formulation of a Kalman-Bucy filter which, in the linear theory, opti-
mally yields the best estimate in a minimum variance sense.

26
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Because the CILP equations of motion are not linear, the problem
is complicated by the choice of a linearization scheme. This report
addresses that problem, in particular, for a simplified and idealized
system of equations. However the results are directly applicable to the
future work described above.
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Figure 14. Comparison of Filter Errors
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