

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of sny trade names or manufacturers in this report shall not be construed as advertising nor ss an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer meeded. Do not return it to the originator.

	NTROL DATA - R & C)				
(Security Cleastification of title, body of abstract and index	ling annotation must be enter Tao	NEPORT S	CURITY CLASSIFICATION			
Army Materials and Mechanics Research Center Watertown, Massachusetts 02172		Unclassified				
		GROUP				
REPORT TITLE	_					
THE OF SEDUATION OF HEITCAL DISLOCATION	S IN SADDHIDE					
4. OESCRIPTIVE NOTES (Type of report and inclusive dates,						
8. AUTHORISI (First name, middle initial. last name)						
Jaroslav L. Caslavsky and Charles F. G	azzara					
REPORT DATE	74. TOTAL NO. OF P	AGE#	75. NO. 67 38FS			
December 1971	6		10			
I. CONTRACT OR GRANT NO.	SE. ORIGINATOR'S RI	PORT NUM	(VER(\$)			
b. PROJECT NO. D/A 1T061102B32A	AMMRC TR 71-	54				
^{c.} AMCMS Code 501B.11.855	S. OTHER REPORT	NO(5) (Алу с	other numbers that may be acalgo			
4 Agency Accession Number DA 044771	this report)					
Agency Accession Number DA 0A4771						
Approved for public release, distribut	ion unlimited					
	ion unitaticed.					
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
	U. S. Army Ma Washington, E	U. S. Army Materiel Command Washington, D.C. 20315				
3. ABSTRACT						
Helical dislocations have been for	und in sapphire f	or the	first time. Lang			
dislocations are shown. The Burgers v	ectors, in all ca	ses, ha	ve been found to			
be parallel to the <2110> directions as	s well as with th	e axes	of the helical			
disiocations.						

Construction of the second second

CHESCO.

Security Classification	۰. ۱						
ta. KEV WORDS		LINK A		LINK		LINKC	
		ROLE	WT	ROLE	WT	ROLE	WT
Sapphire Single crystals Dislocations (materials) Helical dislocations X-ray diffraction Lang topography		ROLE		ROLE		ROLE	
						2	

and the second s

UNCLASSIFIED Security Classification

AMMRC TR 71-54

THE OBSERVATION OF HELICAL DISLOCATIONS IN SAPPHIRE

Technical Report by

JAROSLAV L. CASLAVSKY* and CHARLES P. GAZZARA

December 1971

D/A Project 1T061102B32A AMCMS Code 501B.11.855 Research in Materials Agency Accession Number DA 0A4771

Details of illustrations in Details of illustrations in this document may be better, this studied on microfiche studied on microfiche

Approved for public release; distribution unlimited.

CERAMICS DIVISION ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

*J.L. Caslavsky is currently working on a research associataship for the National Rasearch Council, National Academy of Sciances, Washington, D.C.

7

ARMY MATERIALS AND MECHANICS RESEARCH CENTER

THE OBSERVATION OF HELICAL DISLOCATIONS IN SAPPHIRE

ABSTRACT

Helical dislocations have been found in sapphire for the first time. Lang X-ray diffraction topographs, including a stereotopograph revealing such helical dislocations are shown. The Burgers vectors, in all cases, have been found to be parallel to the $<2\overline{110}>$ directions as well as with the axes of the helical dislocations.

THE OBSERVATION OF HELICAL DISLOCATIONS IN SAPPHIRE

During the course of investigation of dislocations in sapphire crystals,¹ numerous dislocation reactions of the type

$[2\bar{1}\bar{1}0] + [\bar{1}2\bar{1}0] + [\bar{1}\bar{1}20] = 0$

were identified. Each reaction represents a self-pinning point, hence the dislocations involved cannot glide easily. However, a special kind of con-trolled dislocation climb can take place. If a straight dislocation of predominantly screw character, pinned on both ends, could climb, it would curve and thereby acquire an edge-type component. This type of climb would require a transfor of material and a high activation energy, hence, the implication is that the dislocation will be active only at an elevated temperature. Provided that the climb already described could be realized, then prismatic glide² parallel to the Burgers vector can occur as well. In such a case, a dislocation which is pinned on both ends and undergoes limited climb and prismatic glide would curl and, under certain circumstances, may result in the formation of a helicoidal dislocation. Such helical or helicoidal dislocations have been observed, using decoration techniques, in ionic crystals such as CaF, ³⁻⁶ and NaCl. 7,8 A review of the subject of dislocations in ionic crystals in which the mechanism describing the formation of these helices is given by Amelinckx.⁹ This is the first time that such helical dislocations have been observed in sapphire (see Figure 1).

Examination of these helices in stereo topographs revealed that the axes of the helical dislocations are parallel with basal plane and in the $<2\overline{10}>$

Figure 1. An X-ray transmission topograph of a sapphire plate, formation of numerous prismatic cut parallel to the (0001) plane, taken in 3030 reflection. The loops, originating from the helic arrow indicates the direction of the Burgers vector with respect dislocations, are frequently to the helical dislocation. This helical dislocation exhibits total observed. (See Figures 2 and 3). extinction in 3300 reflection. 19-066-258/AMC-71

directions. Consequently, such a helical dislocation will be mostly of an edge character. Therefore, for the total extinction of the helix, both conditions, $\hat{g} \cdot \hat{b} = 0$ and $\hat{g} \cdot \hat{n} = 0$, must be satisfied simultaneously. Since the helical dislocations are totally extinct in the topographs obtained, using the $\{30\bar{3}0\}$ diffraction planes, the Burgers vectors are parallel to the $<2\bar{1}10>$ directions and also with the axes of the helicoidal dislocations.

In sapphire, the helicoidal dislocations having Burgers vectors directions <2:10> were identified. It should also be noted that the formation of numerous prismatic loops, originating from the helical dislocations, are frequently observed. (See Figures 2 and 3).

Figure 3. A stereo pair of X-ray topographs where a is in 3030 and b is in 3030 reflection. A pair of basar, helical dislocations is shown interconnected by a dislocation line. Viewed stereographically, the helix on the right is higher than the helix on the left. Note the prismatic loop in the lower right hand corner. 19-066-259/AMC-71

Hence it may be inferred that the loops, such as have been observed by Lommel and Kronberg¹⁰, could have been formed by a similar mechanism. The magnitude of the Burgers vectors was derived from the topographic study performed on sapphire¹.

A detailed explanation of this work will be presented in the near future.

ACKNOWLEDGMENT

Thanks are extended to the National Research Council, National Academy of Sciences for their cooperation with the Army Materials and Mechanics Research Center in the administration of this work.

LITERATUKa CITED

- CASLAVSKY, J.L., GAZZARA, C.P., and MIDDLETON, R.M. The Study of Basal Dislocations in Sapphire. Army Materials and Mechanics Research Center, AMMRC TR 71-53, December 1971; also Phil. Mag. v. 25, 1972, p. 35.
- 2. SEITZ, F. Prismatic Dislocations and Prismatic Punching in Crystals. Phys. Rev., v. 79, 1950, p. 723.
- 3. BONTINCK, W., and DeKEYSER, W. Precipitation of Calcium in Natural Calcium Fluoride Crystals. Physica, v. 22, 1956, p. 595.
- 4. BONTINCK, W., and AMELINCKX, S. Observation of Helicoidal Dislocation Lines in Fluoride Crystals. Phil. Mag., v. 2, 1957, p. 94.
- 5. BONTINCK, W. Climb Phenomena in Synthetic Fluorite Crystals. Phil. Mag., v. 2, 1957, p. 561.
- 6. AMELINCKX, S., BONTINCK, W., DeKEYSER, W., and SEITZ, F. On the Formation and Properties of Helical Dislocations. Phil. Mag., v. 2, 1957, p. 355.
- BARBER, D.J., HARVEY, K.H., and MITCHELL, J.W. A New Method for Decorating Dislocations in Crystals of Alkali Halides. Phil. Mag., v. 2, 1957, p. 704.
- 8. AMELINCKX, S., BONTINCK, W., and MAENHOUT-VAN DER VORST, W. Helical Dislocations in CaF₂ and NaCl Crystals. Physica, v. 23, 1957, p. 270.
- 9. AMELINCKX, S. Dislocations in Ionic Crystals. Del Nuovo Cimento, v. 2, 1958, p. 569.
- 10. LOMMEL, J.M., and KRONBERG, M.L. Direct Observation of Imperfections in Crystals. John Wiley and Sons, 1962, p. 543.

4

* U.S. GOVERNMENT PRINTING OFFICE: 1972-700-611/53