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ABSTRACT

A posteriori forward error analysis is applied to the Gaussian

elimination method for solving system of linear algebraic equations of

the type Az = p. By attributing the generated round-off errors properly

to the matrices A and p, it is shown that the computed z satisties a new
perturbed system such that (A + SA)z = p + 8p. For large system order
n, the upper bounds for §A and §p in infinite norm are then shown to be
proportional to nz, instead of n3 obtained by the usual backward error

i analysis where round-off errors are attributed totally to the system
matrix A. This answers partially some questions raised concerning the
discrepancy between the theoretical result and practical observation of

the perturbations.
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1. Introduction.

Consider a system of n linear algebraic equations in n unknowns,
written as Az = p where A is a square coefficient matrix of order n,
whose elements are real numbers aij with a determinant det(A) # 0; z and
p are column vectors, and the components of p are given real numbers.

It is desired to find the unique solution z., Among the classes of direct
methods in solving the system Az = p, the most popular one is perhaps the
class of methods based on Gauss's idea of a systematic elimination of
variables. The usual approach of the Gaussian elimination methods con-

sists of the following steps: first, forward elimination with pivoting

is used to decompose A into two factors L and U such that LU = A where L

is a lower triangular matrix and U is an upper triangular matrix; secondly,

substitution is then used to solve the decomposed system LUz = p in the
sequence Lv = p and Uz = v.

The backward error analvsis of this class of methods [1,2] shows that
the computed = satisfies a perturbed system such that (A + 4A)z = p. For
large system order n, the upper bound for A\ in infinite norm is propor-

tional to n°. This is mainly due to the multiplicative accunulation of

perturbations attributed to the matrices L. and U in solving the triangular
systems.

By attributing the generated round-off errors properly to both A and
p, a posteriori forward error analysis [3] is carried out in this paper
to analyze the Gaussian elimination method. The results show that in

solving the triangular systems the accumulation of perturbations is

additive instead of multiplicative. Tt is also shown that the computed




z satisfies a new perturbed system such that (A + 8A)z = p + &p where
the upper bounds for A and Sp are proportional to n2 for large n. This
result is then used to explain some inconsistent interpretation: of the

results of backward error analysis.

2. Some basic lemmas.

Throughout this paper the infinite norm of a vector x is used as our
vector norm. For simplicity it is denoted as ||x||. In association with
this vector norm, the infinite matrix norm is also defined. Thus we have,

for any vector x and matrix A,

X1 = maxix, |,

! (2.1)
[A]] = max } |a..].

i § tJ

We next define |+| as the result of replacing all elements of the
argument by the corresponding absolute values. Thus for a scalar s, Is!
is simply its magnitude; for a vector v = (vi), vl is a vector with
elements ]vil; for a matrix M = (mij), M| is a matrix with clements
Imijl. Furthermore the inequality |A] < |B| implies laijl < ]bij} for
all i,j. We have the following lemma which can easily be proved:

Lemma 2.1. With respect to the norms defined in (2.1), we hove

Hoaxt 1,

NIENIRE
Bl 11,

(1) ilxt)
(ii) [{All
(iii) [[AB[| < I |A

"

(iv) [A] 2 IB] = 1Al < [1B].




Now we will only consider norm~lized floating-point computations with
t bits allocated to the mantissa of a floating-point number. Given two
floating-point numbers x, y, we shall denote by f2(x*y) the correctly
rounded result of any floating-point operation *, For a posteriori error

analysis, we need the following lemma [1]:

Lemma 2.2. Let * denote any of the operators +, -, *, /. Then
(1 + 8)fL(x*y) = x*y, l6] < 27t = u. (2.3)

We see that Lemma 2.2 indeed tells us the a posteriori error (§)ff(x*y)
which is the difference between the exact result x*y and the computed

result f:(x*v). Furthermore the bound for the error can easily be

estimated for each operation. For algorithms with a finite number of
these basic operations, the repeatcd use of Lemma 2.2 will enable us to

monitor the error generated a* ~~rh step of computation.

3. The triangular systems.

Consider a triangular system of linear equations defined as
Lv=p (3.1)

where 1, = (lij) is a non-singular n-th order triangular matrix and p is
a given n-vector. Let us now define LSt as an n-th order matrix with
Qst as its (s,t)-th element and 0 or 1 as the off-diagonal or diagonal
element-, respectively. Thus for a 3 x 3 system, L21 and L33 will be

(2]




Lyp = (% 1 o|l , (3.2)
0 0 1
and
10 o)
Lyz = |0 1 0 (3.3)
3 0 231

respectively. With Lst defined above, we have the following theorem:
Theorem 3.1. For the lower triangular matrix L defined in (3.1), let
L (K) denote an n-th order identity matrix with its k-th row replaced by

the k-th row of L. Then we have

(1) Lghi, o Ly = RO l1<k<n, (3.4)
Gi) LBL@ o ) o (3.5)

Equations (3.4) and (3.5) can easily be proved by induction. From Theorem
3.1, we see that solving (3.1) is equivalent to solving a decomposed

system

L(I)L(Z) cse L(n)v =p (3.6)

which can be solved in the sequence




P(o) =p,
AONO IO}
L(Z)p(Z) - p(1)’
) (3.7)

Ly o)
p™

Again by Theorem 3.1, each of the equations in (3.7), say L(k)p(k) _
P(k-l), is equivalent to

(k-1)

7 kap(k) =p (3.8)

which can also b solved in a new sequence

p(k),o - p(k-l)’

k),1 k),0
Lklp( )1, 09,0

(k),2 _ _(k),1
Lop p ,

(3.9)

kap(k) ;k = p(k) ,k‘l
NONINONRY

¢

Expressing a specific equation of (3.9) in detail, say ijp(k):J =

P(k)’j-l, 1 < j <k, we have




i . p().3
X)), j
' K.
k-th~ {0 . 0 %, 0 . 1 plk)
row kj k
k3,j
= 4 L u?n -
j-th colum
(3.10)
~ Kk .-1
p§),31
pgk)sj'l
p]Ek).J"l
Lng)nJ'i

Equation (3.10) shows that the only non-trivial computation is that to

obtain

k),j - (X),j (k),j-1
Pt = e rd e ) -

(k)sj'l (k)sj'l 3
'Q“kjpj * Py ’ 1<j<h

For j = k we simply have




- ‘""""""""""""""""""""""""""""“"“"""""""""""ll!

pt) K = p{Khklyg (3.12)

Thus we have reduced the solution of a general lower triangular system
to the solution of a sequence cf decompositions in which at most two
elementary operations are needed for each decomposition. If we define

s(k)’j = fQ(-lkjpgk)’j), then computationally (3.11) and (3.12) become

s fg(_lkjp§k),j) ‘\L
:lij<k,

(3.13)
pe3 = prs®3 Pﬁk)’J_llj
p]Ek) ’k = fg(plgk) ’k-l/g‘kk)' (3.14)
Applying Lemma 2.2 to (3.13) and (3.14), we have
(K),j , ,(X),3 , (K),] (K)sige =
TPy T Y PR T AP Ty s ey
(3.15)
eI gl legl <u 125 <k
K v g piKhokg 2 plDkL g |, (3.16)
In matrix fornulation, we have
ijp(k)’j + o) p(k),j'l, 1<j<k, (3.17)
and
)oK+ 00k 500,k (3.19)
where e(k)'j and e(k)’k are n-vectors whose only non-zero elements are

the k-th elcments




k ’ - k - L] .
eﬁ ) J p£ )’Jékj + s(k)’Jaij’ 1 <jc< k, (3.19)

and

ek lkkp(k)’kﬁkk. (3.20)

Premultiplying both sides of (3.18) by LlekZ see Lk k-1 and using (3.17),
]
we have

Lijlyy **° kap(k) + B o) (3.21)

where

(k) - ,1 + (k ’2 + (k)’s 4+ ose 4
e o) L™ Ll

(3.22)

k),k
Laliz *** beras

Now the only effect of premultiplying ij with e(k)’i is to add an

additional term Rkje§k)’i to the k-th element of e(k)’j; since oK)l

is zero for j # k, hence we have

Lkie(k)’j e 5y, (3.23)

Applying (3.23) to (3.22), we have

L) _
i

e()si, (3.24)
1

ne~1x

Furthermore, the only non-zero element of e(k) is the k-th element eﬁk)

which is equal to

k-1 . .
K . s+ (ydgr )y g oK)k

8




Equation (3.21) can also be expressed as

L&, () pGeD) (3.26)

Extending (3.26) to k = 1, 2, *++, n and combining these equations, we

have

LWL@ o )y s p (3.27)
where

e- e, W@, OO, ...,

(3.28)

L(l)L(z) P L(n-l)e(n).
Again we have

LGle@ o B 5y, (3.29)

since the first i-1 elcments of 5(1) arc zero. llence (3.28) simplifies

to
n .
e= ] ), (3.30)
Now if we define

< maxl[p009), s, rckem 1ey ek D
k,j

©
|

and

mixllkk|’ (3.32)




et

Then an upper bound for the k-th element of e, or eék) in (3.25), can be

estimated as

&1 < 2D oo, ke, (3.33)

Thus we have proved the following theorem:
Theorem 3.2. In solving the triangular system of equations (3.1),
the solution v computed by the sequential decompositions of p satisfies

the equation
Lv+e=p (3.34)

where e is defined by (3.30); furthermore

——

[2(0) + o
2(1) + oL

lel < {2(2) + o | ey, (3.35)
2(n-1) + o

lell < 11 tel 11 < [2(n-1) + oy Jpu. (3.36)

Now we observe that (3.8) can also be written as




B ] Ry
. o4
1 p(K
(k) (k) k
P L B e s 0 o -
(k
l. % fnz
- (3.37)
pl(k-l)
p‘7€k-1)
plEk-l)
(k-1)
Pn
whose solutions are easily obtained as
k-1
M . g _1__{_ w, (k-l)] ,
and (3.38)

® . D
P; pj ’ itk

11




The algorithm expressed in equation (3.38) is exactly the substitution
algorithm used in Gaussian elimination to solve the decomposed triangular
systems. Furthermore, if the inner product in (3.38) is evaluated first,
then the computations are executed in exactly the same sequence as that

in (3.9). Thus computationally the decomposition algorithm expressed in

(3.7) and (3.9) are equivalent to the conventional substitution algorithm.
However, if we follow the usual backward error analysis, the computed v

can be shown [1] to satisfy:

(L+AL)v=0p (3.39)
where
| |aL]| | f'l'gl n(n+1) ma;llijlu. (3.40)
1,)

Comparing (3.36) and (3.40), we have the following comments:

(a) The bound for e in (3.36) is a function of ap» °p and n in which
pp and o, are relatively stationary for computations with sufficient
precision. Hence if the system order n is large, the bound is propor-
tional to n. However, we see ||AL|| is proportional to n? for large n.
Since these bounds are used to bound the relative error between the
computed solution and exact solution, (3.40) 1s an overestimation when
compared with practical results.

(b) Computationally, using (3.36) is not only practical as it
enables us to monitor the round-off error step by step, but it is also
realistic as it depends on both matrix L and the n-vector p. For example,

ifn=1andp=0, then it is obvious that ||e|| < 0 and this is what

12




happens in actual computation. On the other hand, (3.40) depends only
on the matrix L, hence intuitively and computationally it is a ''static'
overestimation with very little information regarding what actually

happens in the process of computation.

4. The general systems,

Now we can consider solving a general system of linear equations

defined as

Az =p (4.1)

where A is an n-th order non-singular matrix and p is an n-vector. It

is rather trivial to show that by properly interchanging rows or colums,
the permuted A, for simplicity we will still call it A, can be decomposed
into a product of L, and U such that A = LU where L is a unit triangular
matrix and U is an upper triangular matrix. The usual row-pivoting
strategy makes the decomposition possible by proper row interchanges.

We will consider the partial row-pivoting strategy in which a row is
chosen as pivoting row such that it has the largest magnitude coefficient
for the variable to be eliminated. We will also assume that row permu-
tations are done in advance so that no pivoting is necessary,

Now the decomposition consists of computing a sequence of matrices
A(l) = A, A(Z), oo, A(n), where the matrix A(k) is zero below the
diagonal in the first k-1 colums. The matrix A(k+1) is obtained from
A(k) by subtracting a multiple of the k-th row from each of the rows

below it; the rest of A(k) is not change!. The multipliers are chosen

13




so that if there were no round-off errors, A(kﬂ) would have zeros below
the diagonal in the k-th colum. We do not calculate these elements but
take them to be zero by definition. More precisely, let A(k) have elements

agk). Then let
1)

- fg[ (k) a&)] K+l < i, (4.2)
and
0 ’ J = k’ k+1 -<- i’
NSV fg[ 1 _ L (k)l k+1 < j, k*1 < i, (4.3)
13 ik%k Jj - -
2 otherwise.
1J

These steps are carried out fur k = 1, 2, +++, n-1. Finally, let

u=am, (4.4)

™1
Moy Mg, o
L= |7 32 i (4.5)

My M2 - - - L

To compute (4.3), let us further define

(k) - (k) . .
1J fk( 1kakj l, k+1 < j, k*1l < 1. (4.6)

14

e | . |




So we have
0 , J=k, kel <,
k+1 k k . .
a(K) .
1J otherwise.

Applying Lemma 2.2 to (4.2), (4.6), and (4.7), we have

INCPNEY

(1 + 80ms, = akk , K+l < i, (4.8)
1+ 5ij)5§§) 1ka£§)’ k+1 < j, k+1 < i, (4.9)
al*h) = . kel <, (1.10)
(1 + &;j)ugk+1) (ﬁ) . s§§)’ kL < j, k1 < i, (4.11)
ai};’l) ﬂ;) otherwise. (4.1
Combining (4.8) and (4.10), we have
D =0 =al) e n M wici s
Combining (4.9) and (4.11), we obtain
D o) -l oy o
(4.14)

k+1 < j, k+1 < i.

In matrix notation (4.13), (4.14), and (4.12) are combined to give

aAlk1) | a(K) | (K (K) | p(K) (4.15)

15




(k) _[L®)] L.
where € = [Eij 1 with

(k) .
M3 Gik y k*1 < i, j =k,
(k) _ (k) (k+1) ., X .
ey =4 eiy sy alk )Gij, K+ < i, k+l < j, (4.16)
0 otherwise,
and
0
0
L(k) - 0 0 0 . (4.17)
M1,k
Me+2 k
N Mk J

Adding (4.15) for k = 1, 2, **+, n-1, we have

A L 00,00 Ly LT 00,

(4.18)
k=1 k=1

Since the matrix L{KJa(K) depends only upon the k-th row of Atk

which is equal to the k-th row of A(n), we thus have

i




n-1 n-1
[1 + 3 L(k]IA(n) =a- 3 M, (4.19)
k=1 k=1
That is,
W=A-E (4.20)

where L and U are defined by (4.5) and (4.4) and where
n-1
= § £, (4.21)
k=1
To bound E we observe that since my = fﬁ(a&)/algkk)l , the use of pivoting

implies that !mikl < 1 for all i,k. Furthermore from (4.6, we have

s < |a

iy S kg, ks (4.22)

Hence if we define

- (k) ] . (K
o 1’:‘?’:}([151;] P |al] IJ 17:1;13’(k[|31J ':}’ (4.23)

then from (4.16) we have

ou , i=k, k*1 < i,

]c§?)| <1 2ou, kel <, kel < j, (4.24)
0 otherwise.
(k)

Following (4.21), we add the £ together to get E. And we have




0 0
1 2 .
1 3 4
|E| < ou
1 3 5 . 2n-4 2(n-2)
1 3 5 . 2n-3 2(n-1)

From (4.25) we also have || |E| || < (1#3+5+:+++2n-3+2(n-1))ou = (nz-l)ou.
Thus we have proved the following theorem:
Theorem 4.1. The matrices L and U computed by Gaussian elimination

with row-pivoting, using floating-point arithmetic, satisfy

W+ E = A. (4.26)
Furthermore,
HEI < |1 1Bl || < @®-Dou. (4.27

Once the matrix A has been decomposed, the results in section 3 can
therefore be used to solve the decomposed triangular systems. Thus after

decomposition we have
LU + L = A, (4.28)

Now in solving LUz = p in the sequence Lv = p and Uz = v by substitution

algorithm, Theorem 3.2 tells us that the computed v and z satisfy

Lv + ¢; = Ps (4.29)

18




and
Uz + e,=v (4.30)
where
_ - - -
2+oL .
2(2)+oL
Iell < . PpUs Iezl < . o . (4.31)
2(2}+0U
2+0U
2(n-1)+o a
L( ) L B

Combining (4.28), (4.29), and (4.30), we have
(A-Ez=p - e - Le,. (4.32)

Thus the computed z satisfies a new system with perturted A and perturbed

p. Let A = -E, &p = ey - Lez, the bound for &§# is estimated as

|16A]| < (m%-1)ou. (4.33)

A

Applying Lemma 2.1 to 8p, we have

|spl]

A

eyl + 11 ILi+leyl 1]

A

[2(n-1) + oL]ppu + [n2 - n + noylo u. (4.54)

19




We chould note that op =1 and cy<o from the definition of L and U,
Furthermore, if we denote p = max[pp,pv], then (4.34) can be simplified

as

I16pl] < 0% + n - 1+ no)pu (4.35)
where

p = max{pp.ov]- (4.36)

Thus we have proved the following theorem:
Theorem 4.2. The solution z computed by Gaussian elimination with

row-pivoting and substitution satisfies the equation

(A+68A)z=p+ Sp (4.37)

where 8A = -E and &p

ey - Le2. Furthermore,

|18A]] < (® - 1oy, (4.38)

+

|16p|] < (n2 n - 1+ no)pu. (4.39)

We observe that 6A is essentially in the same format as the pertur-
bation matrix obtained by Forsythe and Moler {1] in the decomposition of
A. This is no surprise to us since they have also used Lemma 2.2 in part
of their analysis. However, the overall result is different. In fact,

their result shows [1] that the computed z satisfies

A+M)z=p (4.40)

20




where

|1aa]] < 1.01(> + 3n%)ou. (4.41)

The upper bound for AA in (4.41) is therefore proportional to n3 for
large system order n. The comments at the end of section 3 also apply
here.

We further note that the factor n3 in (4.41) is due to the solution
of the decomposed triangular systems. Hence if we use higher precision
to solve the decomposed systems, this term should be reduced drastically
and hence we should expect to have much more accurate results. However,
this is not true in practical observations. Indeed, if the decomposition
is already in error, the improvement to solution accuracy using high
precision arithmetic in solving the triangular systems is very little,
if not naught. The reason can be explained by the results of our analysis.
We see that the perturbations due to decomposition of A is A and the
perturbations due to the solution of triangular systems is Sp. The upper
bounds for SA and 8p, shown in (4.38) and (4.39), show that they are of
the same order n2 for large n. So unless higher precision arithmetic is
used for both the decomposition of A and the decomposition of p, there is

very little gain in using higher precision arithmetic in only one process.

5. Conclusions.
We have shown by using a posteriori error analysis that the pertur-
bations due to decomposition process and due to solution of triangular

matrices are of the same order n® for large n. This approach of

21




attributing generated errors to both matrices A and p is intuitively and
computationally natural. In fact, the decomposed L and U are kept in
computer memory and are not perturbed in solving the triangular systems.
Hence the perturbations in the solution of triangular systems should be
attributed to the vector p which is actually perturbed. There is of
course another advantage of using a posteriori error analysis: that the
"dynamic'' behavior of the computational process can be monitored step by
step.

We should also note that the ''efficient' Gaussian process is essen-
tially an "analytic" process [3]. In other words, this algorithm tries
to decompose p such that Az = p for given A, p. Algebraically z is
unique whether it is obtained by satisfying Az = p or by directly eval-
uating z = A'lp. However, computationally the closeness of Az to p does
not guarantee the closeness of z to A'lp. Hence the results of the a
posteriori error analysis can only tell us the difference between the

computed decomposition LU and the exact decomposition A or the difference

between the computed decomposition LUz and the "exact' decomposition p.

In order to find the difference between computed solution z and the
exact solution A'lp, we need to know A‘1 whose information has been
inadvertently by-passed in the Gaussian process. Therefore "efficient"

algorithms are not necessarily ''good'" algorithms in other respects.
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