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ABSTRACT

A posteriori forward error analysis is applied to the Gaussian

elimination method for solving system of linear algebraic equations of

the type Az = p. By attributing the generated round-off errors properly

to the matrices A and p, it is shown that the computed z satisfies a new

perturbed system such that (A + 6A)z = p + 6p. For large system order

n, the upper bounds for 6A and 6 p in infinite norm are then shown to be

proportional to n 2 , instead of n 3 obtained by the usual backward error

analysis whcre round-off errors are attributed totally to the system

matrix A. This answers partially some questions raised concerning the

discrepancy between the theoretical result and practical observation of

the pc-trbations.
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1. Introduction.

Consider a system of n linear algebraic equations in n unknowns,

written as Az = p where A is a square coefficient matrix of order n,

whose elements are real numbers a.. with a determinant det(A) ý 0; z and1J

p are column vectors, and the components of p are given real numbers.

It is desired to find the unique solution z. Among the classes of direct

methods in solving the system Az = p, the most popular one is perhaps the

class of methods based on Gauss's idea of a systematic elimination of

variables. The usual approach of the Gaussian elimination methods con-

sists of the following steps: first, forward elimination with pivoting

is used to decompose A into two factors L and U such that LU = A where L

is a lower triangular matrix and U is an upper triangular matrix; secondly,

substitution is then used to solve the decomposed system LUz = p in the

sequence Lv = p and Uz = v.

The backward error analysis of this class of methods [1,2] shows that

the computed z satisfies a perturbed system such that (A + L%)z = p. For

large system order n, the upper bound for LA in infinite norm is propor-

tional to n3 . This is mainly due to the multiplicative accumulation of

perturbations attributed to the matrices L. and U in solving the triangular

systems.

By attributing the generated round-off errors properly to both A and

p, a postvriori forward error analysis [3] is carried out in this raper

to analyze the Gaussian elimination method. The results show that in

solving the triangular systems the accumulation of perturbations is

additive instead of multiplicative. It is also shown that the computed



z satisfies a new perturbed system such that (A + 6A)z = p + 6p where

the upper bounds for 6A and 6p are proportional to n2 for large n. This

result is then used to explain some inconsistent interpretationz, of the

results of backward error analysis.

2. Some basic lemnas.

Throughout this paper the infinite norm of a vector x is used as our

vector norm. For simplicity it is denoted as I lxl. In association with

this vector norm, the infinite matrix norm is also defined. Thus we have,

for any vector x and matrix A,

IlxiI = maxlxil,
1 (2.1)

tjAjj= max I IaijI.
i j

We next define 1.1 as the result of replacing all elements of the

argument by the corresponding absolute values. Tlhus for a scalar s, W

is simply its magnitude; for a vector v = (vi), !vf is a vector with

elements Ivi I ; for a matrix M = (minj), MII is a matrix with elements

Jmiji. Furthermore the inequality JAI < IBI implies Ia ij. <__ bijI for

all ij. We have the following lemnma which can easily be proved:

Lemma 2.1. With respect to the norms defined in (2.1), we have

(i) JlX! = Ii ixl ii,

(ii) MAlI = 1 JAI 11, (2.2)

(iii) I AB[I < 11 IAI.IBI 1I,
(iv) JAI - JBI - I IAII < I 1BII.



Now we will only consider norn'nlized floating-point computations with

t bits allocated to the mantissa of a floating-point nunber. Given two

floating-point numbers x, y, we shall denote by fZ(x*y) the correctly

rounded result of any floating-point operation *. For a posteriori error

analysis, we need the following lemmua [1]:

Lemma 2.2. Let * denote any of the operators +, -, ', /. Then

(1 + 6)fk(x*y) =x*y 161 < -t U. (2.3)

We see that Lemma 2.2 indeed tells us the a posteriori error (6)fI(x*V)

which is the difference between the exact result x*v and the computed

result f,(x*y). Furthermore the bound for the error can easily be

estimated for each operation. For algorithms with a finite number of

these basic operations, the repeatýcd use of Lemma 2.2 will enable us to

monitor the error generated a* -rh qtep of computation.

3. The triangular systems.

Consider a triangular system of linear equations defined as

Lv = p (3.1)

where 1, = (R. ) is a non-singular n-th order triangular matrix and p is

a given n-vector. Let us now define Lst as an n-th order matrix with

Est as its (s,t)-th element and 0 or 1 as the off-diagonal or diagonal

element-, respectively. Thus for a 3 x 3 system, L2 1 and L3 3 will be

3



L L2 z 21 1 0 (3.2)

0 0 l

and

1 0

L3 3 = 0 1 0 (3.3)

0 k

respectively. With Lst defined above, we have the following theorem:

Theorem 3.1. For the lower triangular matrix L defined in (3.1), let

L(k) denote an n-th order identity matrix with its k-th row replaced by

the k-th row of L. Then we have

(i) L 2  = L(k), 1 < k < n, (3.4)LklLk2 -. Lkk

(ii) L(1)L2) ... L(n) = L. (3.5)

Equations (3.4) and (3.5) can easily be proved by induction. From Theorcen

3.1, we see that solving (3.1) is equivalent to solving a decomposed

system

L(1)L(2) ... L(n)v = p (3.6)

which can be solved in the sequence

4



(0)p =pt

L11)p(1) = p(O),
Ln(2)p(2) = p 1),

* (3.7)

L(n)p(n) = (n-1)

V = p(n).

Again by Theorem 3.1, each of the equations in (3.7), say L (k) p(k)

p(k-1) is equivalent to

LklLk2 *-. Lkkp(k) = p(k-i) (3.8)

which can also b, solved in a new sequence

p(k),O = (k-1)

Lklp(k),l p (k),O,

Lk~p (k),2 p (k), 1,

* (3.9)

Lkkp(k),k = p (k),k-i

TI)(k) = p (k),k .

Expressing a specific equation of (3.9) in detail, say Lkjp(k),J =

p(k),j-i 1 < j < k, we have
p



1 (k),j

p 1 1

pi

k-th 0 . 0 Zk 0 p ( ,j
row J

1 (k),j

j-th column

k),j-(3.10)

(pk),j-l
p3

(Nk) ,j -1

(k),j-1
pn

Equation (3.10) shows that the only non-trivial computation is that to

obtain

(k),Pj = (k),j + (k),j-l
(3.11)

:-Zkjpk)'j'1÷+ p(k)jil 1< j < k.

For j = k we simply have

6



(k) ,k ()k1(3.12)

Thus we have reduced the solution of a general lower triangular system

to the solution of a sequence cf decompositions in which at most two

elementary operations are needed for each decomposition. If we define

s~k)' = . (k)j) . then computationally (3.11) and (3.12) become

skj I , 1< J < k, (3.13)

k),j _= fZ(s(k),j + p(k),j-1)J

(k),k = f, ( 4k) k-1/) (3.14)

Applying Lemma 2.2 to (3.13) and (3.14), we have

Z (k),j , P(k)..i + (k),J6 +~ s(k) kj =

(3.15)
(k),j-l jkI _< 1 _< j <

Pý 1 1, 6, 1< _ 1 _ Sk

(k),k (k),k6  (k),k- 16 u. (3.16)
lu'kk 'Uk kk =k Pik

In matrix formulation, we have

Lkjp(k),j + e(k),j = p(k),j-l 1 < j < k, (3.17)

and

Lkkp(k),k + e(k),k = p(k),k-I

where e(k),j md e(k),k are n-vectors whose only non-zero elements are

the k-th elcments

7



e (k)'J = pk(k)'J6 + s(k)j., 1<j < k, (3.19)

and

ek(k),k = (k),k.6  (3.20)

Premultiplying both sides of (3.18) by LklLk 2  L k,k_1 and using (3.17),

we have

LklLk2 ... Lkkp (k) W= p(k-1) (3.21)

where

(k) = e(k)'l + ie(k), 2 + k (k) + +

(3.22)
LklLk 2  Lk,k-le

Now the only effect of premultiplying Lkj with e(k) ,i is to add an

additional term £kje~k)ui to the k-th element of e(k)'j; since e k)ji
3

is zero for j ý k, hence we have

L kie(k)'J = e(k),j, i # j. (3.23)

Applying (3.23) to (3.22), we have

(k) = k e(k)'i. (3.24)
i=l

Furthermore, the only non-zero element of c (k) is the k-th element c(k)

which is equal to

E(k)= k (k)J 6  + 5(k)J6 ) + .k~)k k6  (3.25)
k j 'Pi kJ 8

r i i i l i -i i- i Il ..... ...... ....... '.. ..... ,. .... . . . .. . .. ..... ,.. . ....8



Equation (3.21) can also be expressed as

Lk(k)pk) C (k) = p(k-i). (3.26)

Extending (3.26) to k = 1, 2, -. , n and combining these equations, we

have

L(1)L(2) --- L(n)v + e = p (3.27)

where

e = E(1) + L(1) c(2) + L()L(2)(3) + +
(3.28)

L(l 1)(2) .. L(n-1)(n)

Again we have

L(j)(i) j < i-i, (3.29)

since the first i-i elements of Ji) are zero. Hence (3.28) simplifies

to

n
e =- '(i). (3.30)

Now if we define

p = kx[1 pkk'J s(k)1J 1], 1<_k<_n, 1 j <_k, (3.31)

and

CL = maxI Zkki, (3.32)
k

9

IL 1 i- m k . .



Then an upper bound for the k-tb element of e, or kk) in (3.25), can be

estimated as

•k) 1 <_ [2(k-l) + aLipU, 1 < k _< n. (3.33)

Thus we have proved the following theorem:

Theorem 3.2. In solving the triangular system of equations (3.1),

the solution v computed by the sequential decompositions of p satisfies

the equation

Lv + e = p (3.34)

where e is defined by (3.30); furthermore

2(0) + o"L

2(l) + a"L

jef < 2(2) + cL Ppu, (3.35)

2(n-l) + cL

1HeHl < I1 )e) 11 < [2(n-l) + cL]Ppu. (3.36)

Now we observe that (3.8) can also be written as

10



1 p(k)

(k)
1 p2

(k)p(k) - Zki 9 •k2 "kk (k)

(3.37)
(k-i)

(k-1)

(k-i)

_L -.
whose solutions are easily obtained as

p k) f~[j Z i ' kiPi(k + Pk-1)

p ýk) =(pk-1) j#k
SP jjk.

11



The algorithm expressed in equation (3.38) is exactly the substitution

algorithm used in Gaussian elimination to solve the decomposed triangular

systems. Furthermore, if the inner product in (3.38) is evaluated first,

then the computations are executed in exactly the same sequence as that

in (3.9). Thus computationally the decomposition algorithm expressed in

(3.7) and (3.9) are equivalent to the conventional substitution algorithm.

However, if we follow the usual backward error analysis, the computed v

can be shown [1] to satisfy:

(L + AL)v - p (3.39)

where

IIALII_<----1 n(n+l) maxli lU. (3.40)

Comparing (3.36) and (3.40), we have the following comnments:

(a) The bound for e in (3.36) is a function of L, pp and n in which

pp and ol are relatively stationary for computations with sufficient

precision. Hence if the system order n is large, the bound is propor-

tional to n. However, we see I I•L1I is proportional to n2 for large n.

Since these bounds are used to bound the relative error between the

computed solution and exact solution, (3.40) is an overestimation when

compared with practical results.

(b) Computationally, using (3.36) is not only practical as it

enables us to monitor the round-off error step by step, but it is also

realistic as it depends on both matrix L and the n-vector p. For example,

if n = 1 and p = 0, then it is obvious that Ilel I 0 and this is what

12



happens in actual computation. On the other hand, (3.40) depends only

on the matrix L, hence intuitively and computationally it is a "static"

overestimation with very little information regarding what actually

happens in the process of computation.

4. The general systems.

Now we can consider solving a general system of linear equations

defined as

Az = p (4.1)

where A is an n-th order non-singular matrix and p is an n-vector. It

is rather trivial to show that by properly interchanging rows or columns,

the permuted A, for simplicity we will still call it A, can be decomposed

into a product of L, and U such that A = LU where L is a unit triangular

matrix and U is an upper triangular matrix. The usual row-pivoting

strategy makes the decomposition possible by proper row interchanges.

We will consider the partial row-pivoting strategy in which a row is

chosen as pivoting row such that it has the largest magnitude coefficient

for the variable to be eliminated. We will also assume that row permu-

tations are done in advance so that no pivoting is necessary.

Now the decomposition consists of computing a sequence of matrices

A(') = A, A(2) -.. A(n) where the matrix A(k) is zero below the

diagonal in the first k-l columns. The matrix A(k+l) is obtained from

A(k) by subtracting a multiple of the k-th row from each of the rows

below it; the rest of A(k) is not changej. The multipliers are chosen

13



so that if thtere were no round-off errors, A(k+l) would have zeros below

the diagonal in the k-th column. We do not calculate these elements but

(k(k
take them to be zero by definition. More precisely, let A~k have elements

a.N.. Then let1j

M za~k), (k)]
mAk If k /aiNk ' k+l < i, (4.2)

and

0 , j =k, k+l < i

a.(k~l) = fa - m. aj) k+l < j, k+l < i, (4.3)Ij 1 -3A k %- -- i

aPk) otherwise.
1ij

These steps are carried out fur k = 1, 2, "., n-l. Finally, let

U 'k (n)= (4.4)

and

r21 1

l-4 m32 . (4.S)

ýnnl "n'

To compute (4.3), let us further define

sk) k+ < j, k+l < i. (4.6)

ij ~ ikaý Ij

14



So we have

"0 , j k, k+1 < i,

f+(ýk.) + sik)j, k+l < j, k+l < i, (4.7)13 t ij ij )

a(k) otherwise.
iJ

Applying Lemma 2.2 to (4.2), (4.6), and (4.7), we have

= (k) (k)

a1+ 6ik)mik ik /akk ' k+l < i, (4.8)

(1 + 5. i = (k) k+l < j, k+l < i (4.9)

(k 1))
aikj~l 2 , k+l_ i, (4.i0)

(1 + )a (k+l) = a(k) + _(k) k+l < j, k+l < i, (4.11)ljjaij ij •ij '--

a(k+1) ( k) otherwise. (4.V),U3 1J

Combining (4.8) aud (4.10), we have

aikk+l) = 0 = a(k) m (k) (k)6  k+l_< i. (4.13)
lkik -ikakd - Thik kk ik'

Combining (4.9) and (4.11), we obtain

a) ij - mik4 -J) ij ij'9

(4.14)k+l < j, k~l < i.

In matrix notation (4.13), (4.14), and (4.12) are combined to give

A(k+l) = A(k) - L(k)A(k) - E(k) (4.15)

15



where E (k) (Fý)Iwith
j
m a(k)6 k+1 < i, j =k,ik kk ik'-,

E(k) = (k) 6 + a 1k+l) 6!' i k+l < i, k+l < j, (4.16)
1j 1j 1J i~j 1J

0 otherwise,

and

0

0

L(k) = 0 0 0 (4.17)

mk+l,k

mk+2,k

Adding (4.15) for k = 1, 2, -.. , n-i, we have
nn-i

A(n) + n L(k)A(k) = A-- n E(k). (4.18)
k=l k=l

Since the matrix L(k)A(k) depends only upon the k-th row of A(k)

which is equal to the k-th raw of A we thus have

16



Sn-1 (k n n-1(k

I + L A A (k) (4.19)
k-k=1

That is,

LU A - V (4.20)

where L and U are defined by (4.5) and (4.4) and where

n-iL -I E(k). (4.21)

k=l

To bound E we observe that since mik = fi ak) /ak (k the use of pivoting

implies that ImikI < 1 for all i,k. Furthermore from (4.6) we have

ij <- kj I, k+l < j, k+l< i. (4.22)

Hence if we define

= i,j,ks, - ij I = ,k Lmj] (4.23)ijk-i,j,k• i

then from (4.16) we have

agu , j = k, k+l < i,

JEk) --< 02au' thriek+l <_ i, k~l _< j, (4.24)

( otherwise.

Following (4.21), we add the torether to get E. And we have

17



0 0 • 0

1 2 . 2

1 3 4 4IEI < au• (4.25)

1 3 5 . 2n-4 2(n-2)

1 3 5 . 2n-3 2(n-1

From (4.25) we also have 1 IEl Ii < (l+3+5+,..+2n-3+2(n-1))au l(n2-1)Ou.

Thus we have proved the following theorem:

Theorem 4.1. The matrices L and U computed by Gaussian elimination

with row-pivoting, using floating-point arithmetic, satisfy

LU + E = A. (4.26)

Furthermore,

SEI _ II E _ 11 < (n2-1)ou. (4.271

Once the matrix A has been decomposed, the results in section 3 can

therefore be used to solve the decomposed triangular systems. Thus after

decomposition we have

LU + L = A. (4.28)

Now in solving LUz = p in the sequence Lv = p and Uz = v by substitution

algorithm, Theorem 3.2 tells us that the computed v and z satisfy

Lv + e 1 : p, (4.29)

18



and

Uz + e2 = v (4.30)

where

GoL 2 (n -1) + QvU

2+coL

2(2)+oL

(el! < E = p l 21 - (4.31)

p.Lt _ = EpU- 1 - e, the2 boun fo vseUiatda

2+2U

A (n-1)a 
(4. 3UL Li

Combining (4.28), (4.29), and (4.30), we have

(A - E)z = p - e 1 - Le2. (4.32)

Thus the computed z satisfies a new system with perturbed A and perturbed

p. Let 6A = -E, 6p = -e 1 - Le 2, the bound for 6P is estimated as

116AIl < (n 2-1)o-u. (4.33)

Applying Lemma 2.1 to 6p, we have

116pil < Ilell + 11I I -j l ' e21 11

< [2(n-1) + aL]Ppu + [n 2 n + na n]Pvu. (4.34)

19



C_

We should note that al= 1 and cU < a from the definition of L and U.

Furthermore, if we denote p = max[ppPI], then (4.34) can be simplified

as

I 16pli < (n2 + n - 1 + na)pu (4.35)

where

p = max[pp,Pv]. (4.36)

Thus we have proved the following theorem:

Theorem 4.2. The solution z computed by Gaussian elimination with

row-pivoting and substitution satisfies the equation

(A + 6A)z = p + 6p (4.37)

where 6A = -E and 6p = -e1 - Le2. Furthermore,

11iAII < (n2- 1)ou, (4.38)

116pll < (n2 + n - 1 + nc)pu. (4.39)

We observe that 6A is essentially in the same format as the pertur-

bation matrix obtained by Forsythe and Moler [1] in the decomposition of

A. This is no surprise to us since they have also used Lemma 2.2 in part

of their analysis. However, the overall result is different. In fact,

their result shows [1] that the computed z satisfies

(A + AA)z = p (4.40)

20



where

II .ll < 1.o1(n 3 + 3n2)cu. (4.41)

The upper bound for AA in (4.41) is therefore proportional to n3 for

large system order n. The comments at the end of section 3 also apply

here.

We further note that the factor n3 in (4.41) is due to the solution

of the decomposed triangular systems. Hence if we use higher precision

to solve the decomposed systems, this term should be reduced drastically

and hence we should expect to have much more accurate results. However,

this is not true in practical observations. Indeed, if the decomposition

is already in error, the improvement to solution accuracy using high

precision arithmetic in solving the triangular systems is very little,

if not naught. The reason can be explained by the results of our analysis.

We see that the perturbations due to decomposition of A is 6A and the

perturbations due to the solution of triangular systems is 6p. The upper

bounds for 6A and 6p, shown in (4.38) and (4.39), show that they are of

the same order n2 for large n. So unless higher precision arithmetic is

used for both the decomposition of A and the decomposition of p, there is

very little gain in using higher precision arithmetic in only one process.

5. Conclusions.

We have shown by using a posteriori error analysis that the pertur-

bations due to decomposition process and due to solution of triangular

matrices are of the same order n2 for large n. This approach of

21



attributing generated errors to both matrices A and p is intuitively and

computationally natural. In fact; the decomposed L and U are kept in

computer memory and are not perturbed in solving the triangular systems.

Hence the perturbations in the solution of triangular systems should be

attributed to the vector p which is actually perturbed. There is of

course another advantage of using a posteriori error analysis: that the

"dynamic" behavior of the computational process can be monitored step by

step.

We should also note that the "efficient" Gaussian process is essen-

tially an "analytic" process [3]. In other words, this algorithm tries

to decompose p such that Az = p for given A, n. Algebraically z is

unique whether it is obtained by satisfying Az = p or by directly eval-

uating z = A-Ip. However, computationally the closeness of Az to p does

not guarantee the closeness of z to A 1p. Hence the results of the a

posteriori error analysis can only tell us the difference between the

computed decomposition LU and the exact decomposition A or the difference

between the computed decomposition LUz and the "exact" decomposition p.

In order to find the difference between computed solution z and the

exact solution A-Ip, we need to know A-1 whose information has been

inadvertently by-passed in the Gaussian process. Therefore "efficient"

algorithms are not necessarily "good" algorithms in other respects.
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