DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE  LEGIBLY.




ARL 71-0287 /40 75 ? f?O

A POSTERIORI FORWARD ERROR ANALYSIS

NAI-KUAN TSAO

APPLIED MATHINMATICY RESEALRCH LABORATORY
DECEMBER 1971
PROJECT 7071
Approved for public release; distribution unlimited.

ALROSPACE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE. OHIO




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body ol abstract and ndexing annotation must be ente =+ when the overall /eport is classified)

1 ORIGINATING ACTivITY (Corporate author) 28. REPORY SECURITY CLASSIFICATION
Aerospace Pesearch Laboratories Unclassified
Aoplied Mathematics Pesearch Laboratory 75, GROUP

\riaht-Patterson AFB, Nhio 45433
3 REPORY TITLE

! Posteriori Forward Error Analysis

4 DESCRIP Yo.vE.NoYEs (Type ol report and inclusive dates)
Scientific Interim

5 AU THOR(S) (First name, middle initial, aat name)

nNai-¥uan Tsao

6 REPORT CATE 78. TOTAL NO. OF PAGES 7. NO OF REFS
December 1971 23 3
8a CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMPBPER'S)
In-llouse Pesearch
b, PROJECTY NO
7071-00-14
<NoD Element 61102F oh. OTHER REFGORT NOI(SI (Any other numbers that may be assigned
this report)
400D Subelement 681304 ARL 71-0287

10 DISTRIBUTION STATEMENT

Apnroved for public relcase; distribution unlimited

1 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Aeronsnace Pesearch Laboratories (1.7)
Air Force Syvstems Cormand
Yrinht-Patterson AFR, "hin 45433

TECH NTHER

13 ABSTRACT

The neneral nrincinle of a rosteriori forward error aralvsis is discussed. The
fundamental idea is simply based on the fact that the diffarence hetween the comnuted
result of any of the basic floatinn-noint onerations and the exact resnlt can be es-
timated usina the computed result. For alaorithms with finite numher of arithmetic
operations, this idea can be extended easily so that forward error analysis is pos-
sible. Some results of certain useful aiqorithms are derived usinn this anproach.

DD ™.1473 UNCLASSTFIED

Secunty Clas <ifioat) n




UHCLASSIFIED

Security Clas. ‘fication

KEY WORDS

LINK A

LiNk B

LINK C

ROLE

wY ROLE wT

ROLE

wT

Error Analysis

Floatina-noint arithmetic
Mnalytic and Synthetic oneration
Polvnomial

Linear a‘nebraic cquatinns

1.5.Governmant Printing Otfice: 1972 759-082/367

UNCLASSIFICD

Secunty Classification




ERRATA

ARL 71-0Z287 December 1971

I. Page 3 - line 2 to linc 4:
CHANGL :

we simply move the factor (1 + &) in equation (1.3) to the left-

’
hand side of the cquation, thus we have
10:

<o« Lemma 1 can be expressed [4] as:

b

aee o - e 3,1) should read:

e et

N, s il(xlxz...xn)
3, Paee IR - Add:

{17 arsvthe, G, E, and €. 8. Moler, Computer Solution of Linear Algebraic

Svstems, Prentice Hall, Englewood Cliffs, New Jersey, 1967.

AEROSPACE REFSEARCH LARATORTES
ATR FORCE SYSTINE 2 ™NMAND
UNTTEDY STATES A YORCE
WRIGHT -PATTERSON AIR FORCE BASE, OHIO




FOREWORD
This research was accomplished while the author held a National
Research Council Postdoctoral Resfdent Research Associateship supported
by the Applied Mathematics Research Laboratory of the Aerospace Research
Laboratories. The author wishes to thank Dr. Paul J. Nikolai for many
helpful suggestions concerning the style of the present presentation.

Thanks are also due to Mrs. Georgene Graves for typina the manuscript.

11




PBSTRACT
The general principle of a posteriori forward error analysis is
discussed. The fundamental idea is simnly based on the fact that the
difference between the computed result of any of the basic floatina-
point operations and the cxact result can be estimated using the
computed result. For alaorithms with finite numoer of arithmetic
operations, this idea can he extended easily so that forward error

analysis is ponssible., Some results of certain useful algorithms

are derived usina this approach.
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1. Introduction.

In recent years considerable attention has been qiven to the effect of
rounding errors upon the numerical solution of various problems involving
algebraic processes. An outstanding contribution on this topic has been
made by J.H. Wilkinson [1,2,3]. His backward error analysis shows that
the computed results are the exact solutions to a perturbed problem and
the bounds for the perturbations can be obtained numerically. In other

words, if we are computing a mathematical expression aiven by
Y = 9{xyaXpseiax)) (1.1)

the backward analysis shows thai the computed y satisfies exactly a per-

turbed equation of the form
5’ = g(x]+E]’x2+€2’---,xn+€n) (].2)

where €; are perturbations whose bounds, in general, could be obtained.

From now on we will only consicer normalized floatina-point comoutations
with t bits allocated to the mantissa of a floating-point number. In this
setting the backward error analysis is based on the repeated use of the

followina lemma [3]:
Lemma 1. Let * denote any of the operators +, -, x, /. Then
Flx*y) = (x*y)(1 +8)  |§] <2t =u (1.3)

where x and y are any real numbers and fl{x * y) is the correctly rounded

result of the floating operation *.




We observe that Lemma 1 is indeed itself the result of backward error

analysis. It expresses the result of any floating-point operation as the
result of an exact arfinmetic operation on slightly perturbed data and the
bound for the perturbation is known. Therefore, {f the xq are not known
exactly, the backward analysis will enable us to decide whether the solu-
tion obtained numerically is as good as the original data warrants by com-
paring the bounds for the €4 with the known errors in Xy3 however, 1t does
not tell us how much i1s the difference between the computed y and the
exact y if the original set of data is regarded as exact. This problem

can be solved if a forward error analysis can be carried out to trace the
forward propagaticn of individual rounding errors and then to compare the
computed results with those which exact computation would have produced.
Furthermore, this analysis 1is useful only if the difference between the
computed results and the exact results is a simple function of the computed

results. In other words, a useful analysis should show that
y-y=cely) (1.4)

where ¢(y) is some simple function of y. The letter requirement is neces-
sary to obtain bounds for the errors e(y).

We wili show in this paper that this a posteriori forward error

analysis 1s possible by properly modifying Lemma 1 such that the modified
Jemma satisfies the requirement expressed in equation (1.4). Some common
floating-point operations are then analyzed and the results applied to

some specific algorithms.




2. The basic lemma.

To satisfy the requirement stated in (1.4), we simply move the factor
(1 + 8) in equation {1.3) to the left-hand side of the equation, thus we
have

Lemma 2. If x and y are two given floating-point numbers, and * is

used to denote any of the operators +, -, x, /. Then

(T+a)fi(x*y)= x*y,1+4= T%g’ ) <278 =y (2.1)

dote from Lemma 2 the difference between computed result fl1(x * y) and
the exact result x * y is (a) fl1{(x * y) which is a function of the
computed result. Since most of the computations are carried out by
using these operators sequentially, the error at each operation could
thus be monitored by the use of this lemma.

In the formulation of Lemma 2, we have treated the division operator /
on the same basis as that of addition +, subtraction -, or muitiplication y;
namely, division is regarded as an independent operation which {s distinct
from the additive or the multiplicative opnerators +, -, or x. However,
the division could also be carried out by considering al*ernatively the
followinn problem: namely, for aqiven x and y, an unknown z is souant

such that, without actually performina the division ?ﬂ we have

X (2.2)

yZ

In this respect we are decomposina x into a product yz. Thus the com-

putational equation corresponding to (2.2) is




yz(1 + 4°) = x [6°] < u (2.3

which can only tell us the difference between the computed decomnosition
yz and the exact decomposition x. llence the algorithm used for (2.2) is
"analytic" in nature. 0On the other hand, if division is done to find

Z = %, then this oneration is “synthetic" as tvo unknowns x and y are
"synthesized" to form z. The addition, subtraction, and rnultinlicaticn
cperations can all be considered as "synthetic" in this respect. Ve

will see later that this idea can also be used to classify alaorithms

and to interpret the results of error analysis.




3. Errors of extended products and sums.

We first consider the extended product p, defined as

Pn = f](x],xz,...,xn)

ke assume henceforth that X; are floating-point numbers and t

(3.1)

hat operations

take place in the order in which they are written. ‘'Ye use the followino

recursive algorithm to evaluate (3.1):

P1°%

Pral = f1(pkxk+]) k=1,2,...4n-1-
Jow applyino Lemma 2 to (3.2), we have

PP =X

pkL](] + ﬁk‘*'l) = kaH_] k = ],2,...,n‘1.

Hence in aqeneral we have

It can be shown [3] that if n-1 is appreciably smaller tnat 2

(4e) =1+C<(1+u)]

(] _ u)n‘] : ;
2

n 33

i

Thus we have proved the fnllowing lemma:

(3.2)

3.4)

t. then

(3.5)




Lemma 3. For an extended product of n floatina-point numbers defined

in (3.1), we have

Pl +E) = 7 x (3.6)
i=1
Where 1 + E satisfies (3.5).
For an extended sum defined as
X.), (3.7)
we can similarly define the recursion
17X
Spe] = fl(sk + xk+1) k=1,2,..., n-1 (3.3)

to carry out the computation. Applyina Lemma 2 repeatedly to (3.0), wve

have the following lerma-

emma 4. For an extneded surm of n flnatiia-noint numbers defined in

(3.7), we have

n
S + = z X. (3.’))
witere

n
]‘ U 5. (3.17)




We see that the errors generated in the computation of extended
r.oduct and that of extended sum can each be estimated after the com-
putation by using Lemmas 3 and 4 respectively. Observe that in extended
product the upper bound for the relative error term £ is independent of
the computation order as is shown in (3.5). On the other hand, the
atsolute error in the evaluation of extended sum does depend on the
crder they are added. If all X; are of the same sign, then from (3.10)
the upper bouna for thz absolute error [e| is smallest if the terms are
added in order of increasing magnitude. Furthermore, if the Xy are of
different signs, then it is also advisable to prearrange X, such that

they are in the order of increasing maanitude with alternate signs.




4. Applications
Applying the previous lemmas to the analysis of alaorithms for inner
product evaluation, polynominal evaluation and matrix decomposition, we

have the following results:

Theorem 1 ( Inner Product Evaluation). Let the inner product defined

as
a.b.) (4.1)
be computed by the following alqorithm:
Step A. Compute
c; = fi(a;by) 1 =12, (4.2)

Step B. Compute

Hh=e9q
tep = UL *cy) k= 1.2,0.00n (4.3)
t = tn
Then we have
n
t 4+ €y = Z aibi (4.4)
j=]
where
; : (4.5)
le,! <cu [z eyl v ¢t ] 4.5
t i=] i i=z i




Proof. Apnlying Lemma 2 to (4.2) and (4.3), we have

c;(1+2;) = ab fa] <u, i=1,2,...,n (4.6)

j
=4

tk+](] + 5k+l) =t Crr 16k+]' <u, k=1,2,...,n-1.

(4.7)
t = tn
fdding (4.6) and (4.7) for all i and k respectively, we have
n n n )
Toc.+ o Ciii o= foash, (4.8
=t 1o T g U
n-1 n
t+ £t 46 T C, (4.3)
k=1 k417 k+1 i=1 i
Combinina {4.3) and (4.9), we have finally
n
t + t’?t = E aibi (4.]0)
i=1
n n
Hlliere ee = L tis.+t I .8, (4.11)
t 27 171 §21 i

Clearly (4.11) satisfies (4.5) and thus the proof is now comnlete.

e see the format of the error in Theorem 1 is similar to that in
Loarma 4. Therefore the comments recardine computation order for extended
surt are also anplicable in the present case.

Theorem 2. ("lested Polynomial {valuation). To evaluate a polynomial

1cfined as




p(x) = filag” + a4 v al, (4.12)

let the following nested algorithm be applied:

c = f1(b x) k =0,1,2,...,n-1 (4.13)

Tnen we have

p(x) ‘2] €5 = ‘ZO a;x . (4.14)
i= i=
where
el cu Db+ !ci{ 1, i =1,2,...,n (4.13)
Proof. ipplying Lerma 2 to (4.12), we have

bO =3

Cel T M T CkalTke o E:k+1: zd (4.17)
Brel = ka1 P 01 T Pkt ere T e
p(x) =t

Simplifying, we have

1n




by = 20

Dl B Bt T Gentinn T Pt KO ned
(4.17)

p(x) = b,

ax" (4.13)

where
i85 + bys7y (4.19)

The theorem follows from (4.19)

We observe from (4.18) that the error term depends not only on the
conputed values bi and Cis but also depends on the powers of x, which are
not explicitly computed and hence are unknowns. Thus, extra computations
are needed if error bound is to be estimated.

Theorem 3. (Unnested Polynomial Evaluation). If the polynomial de-

fined in (4.12) is evaluated by the following algorithm:

Step A, Compute

——

(4.20)
Yy = f](yk+1x) k =n-1,n-2, ..., 0.

n




Step B. Compute

N
i1

fl(a.y.
1(aJyJ)

Step C. Compute

Sn T ?n
S; = 1’1(51.4(‘I + zi) i=n-1, n-2, ...,0 (4.22)
o(x) = Sy s
then we have
(x) n-1 : n n-i
p(x) + & (V+68.)z8a,. +e¢ = 1 a.,x. (4.23)
i=0 L EV
where ’51' < u, (1- u)n'.i <1+ b < (1 + u)n'i and
n
legl < u 120 Clzgl + 0s,1 ] (4.24)

The proof is similar to uiav. of Theorem 2.

We should note that although an extra n multiplications are needed
for this unnested algorithm, we do have results which are useful for
error estimation. This is shown in (4.23). Furthermore, if extra com-
putations are carried out to estimate the error in (4.14) resulting
from the nested algorithm, then the unnested and nested algorithm are

equivalent in terms of number of operations.

12




Theorem 4 (Matrix Decomposition). For the matrix equation
Rx = b (4.25)

where 7 = ( ) is ann by n non-singular lower trianqular matrix

rij
and b is an n-vector, then the component of x can be computed 1in the

order of X 3XosensXy by usina the followina substitution algorithm:

b,
X.I = f](F..)
S Xa = X =Py . X, Ltb.
xi - f] 11 ] 12 2 1,1-] 1'] 1 ." = 2,3,...,"
’
P (4.26)
If (4.26) for each X5 is computed in the followino sequence:
Step A. Compute
y]_k = f] (-rikxk) k = ],2,...,1‘1 (4°27)
Step b. Compute
Siy = flly;y +y50 * + y”) i=12,...,i (4.28)
Step C. Compute
zp = flsy 50+ by) .
3 (4.29)
x. = f1{— )
! i

13




then the computed x satisfies

Rx+ n=0b (4.30)
where n = (n‘) is an error vector such that

Iml < ue [rex]

Ingl < e |ryoxsl + le1’1_1| 1=2,3,...,n (4.31)

i- -1
and {1 - u)? <l+e<(1+ u)?, leg gyl <ul kz] Y]+ kz Isg! ]
? = =2

The proof can be obtained easily by applying Lemmas 2 and 4 to equations
(4.27), (4.28) and (4.29).
We observe from (4.30) that {f we are to find the error between the

computed solution x and the exact solution R'Ib. then it is easily seen

that

b - x =r7T, (4.32)

! which, just like the powers of x in

Thus the error is a function of R
nested polynomial eveluation, has never been explicitly computed. Extra
computations are therefore necessary for error estimation.

We might argue that the results of Theorem 2 and Theorem 4 do not

satisfy the requirement of (1.4) for useful a posteriori error analysis

even if Lemma 2 {s used consistently in the analysis. However, we should

realize that algebraically we have assumed that the powers of x and R"

14




are fmplicitly generated by the algorithms in Theorem 2 and Theorem 4
respectively. Unfortunately, these "efficient" algorithms do not yield
these necessary data computationally. Therefore, the "inefficient" un-
nested algorithm is a "better" algorithm for polynomial evaluation from
the point of view of error estimation. Similarly we could conjecture
that Cramer's rule might be a "better" algorithm than substitution

algorithm for solving triangular system of equations from this recpect.

15




5. Conclusions.

We have seen for certain algorithms the repeated use of Lemma 2 can
Tead to useful a posteriori results for error estimations. For some
"efficient” algorithms the results are not very "useful". This is be-
cause that in order to be "efficient" certain steps of computations
have to be skipped which result in insufficient data for error estima-
tion. Another explanation is as follows: The nested algorithm in

n
Theorem 2 essentially decomposes the original polynomial = aix"']
i=

into a nested product {...[(aox + a]) X + a2]x + ...} x ¢ a, with the
assumption that the powers of x are generated implicitly; similarly
the substitution algorithm in Theorem 4 effectively decomposes b into
a product Rx. Hence they are "analytic" in nature. If we are asking
only how good is the decomposition, then Theorems 2 and 4 do give us
"useful" results concerning the difference between computed decomposition
and exact decomposition. Hence they are indeed useful a posteriort
results. On the other hand, the algorithms used in Theorem 1 and 3
are "synthetic" in nature as results are "synthesized" step by step
without taking "efficient" short cuts. These observations are con-
sistent with the basic results of (2.3) where the division z = 3-15
considered as an analytic process if z is computed such that yz = x
without actually carrying out the divisfon. The distinction between
"analytic" and "synthetic" processes is thc,efore essential in inter-

preting the results of error analysis. Furthermore, for matrix equations

16




of the type Ax = b where A is a general n by n non-singular matrix, it
is well known that the closeness of Ax to b does not necessarily quaran-

tee the closeness of x to A']

b; thus it is questionable that we should
use "efficient" analytic algorithms instead of using "inefficient" syn-
thetic algorithms if ultimate error estimation is required for the solu-

tion of these systems.
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