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rBSTRACT

The general principle of a posteriori forward error analysis is

discussed. The fundamental idea is simply based on the fact that the

difference between the computed result of any of the basic floatina-

point operations and the cxact result can he estimated usina the

computed result. For aloorithms with finite nurrer of arithmetic

operations, this idea can he extended easily so that fonrard error

analysis is pnqsible. Some results of certain useful algorithms

are derived usinn this approach.
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1. Introduction.

In recent years considerable attention has been given to the effect of

rounding errors upon the numerical solution of various problems involving

algebraic processes. An outstanding contribution on this topic has been

made by J.H. Wilkinson [1,2,3]. His backward error analysis shows that

the computed results are the exact solutions to a perturbed problem and

the bounds for the perturbations can be obtained numerically. In other

words, if we are computing a mathematical expression aiven by

y = g(Xlx 2 ,...,xn) (1.1)

the backward analysis shows that the computed y satisfies exactly a per-

turbed equation of the form

S= g(xI+ElX2+E 2,...Xn+cn) (1.2)

where Ei are perturbations whose bounds, in general, could be obtained.

Frnm now on we will only consider normalized floatina-point comDutations

with t bits allocated to the mantissa of a floating-point number. In this

setting the backward error analysis is based on the reneated use of the

followina lemma [3]:

Lemma 1. Let * denote any of the operators +, -, x, /. Then

fl(x * y) = (x * y)(l + 2) 6 . 2- = u (1.3)

where x and y are any real numbers and fl(x * y) is the correctly rounded

result of the floating operation *

1.. .. J



We observe that Lemma 1 is indeed itself the result of backward error

analysis. It expresses the result of any floating-point operation as the

result of an exact ari,ýmctic operation on slightly perturbed data and the

bound for the perturbation is known. Therefore, if the xi are not known

exactly, the baLkward analysis will enable us to decide whether the solu-

tion obtained numerically is as good as the original data warrants by com-

paring the bounds for the ci with the known errors in xi; however, it does

not tell us how much is the difference between the computed ý and the

exact y if the original set of data is regarded as exact. This problem

can be solved if a forward error analysis can be carried out to trace the

forward propagation of individual rounding errors and then to compare the

computed results with those which exact computation would have produced.

Furthermore, this analysis is useful only if the difference between the

computed results and the exact results is a simple function of the computed

results. In other words, a useful analysis should show that

j - y - E(G) (1.4)

where e(j) is some simple function of j. The letter requirement is neces-

sary to obtain bounds for the errors c(j).

We will show in this paper that this a posteriori forward error

analysis is possible by properly modifying Lemma I such that the modified

lemma satisfies the requirement expressed in equation (1.4). Some common

floating-point operations are then analyzed and the results applied to

some specific algorithms.
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2. The basic lemma.

To satisfy the requirement stated in (1.4), we simply move the factor

(1 + 6) in equation (1.3) to the left-hand side of the equation, thus we

have

Lemma 2. If x and y are two given floatinq-point numbers, and * is

used to denote any of the operators +, -, x, /. Then

1 I ! < 2-t 2

(1 + 6) fl( x *y) - x*yl + A = +TA 2 = u () l)

Note from Lemma 2 the difference between computed result fl(x * y) and

the exact result x * y is (A) fl(x * y) which is a function of the

computed result. Since most of the computations are carried out by

using these operators sequentially, the error at each operation could

thus be monitored by the use of this lemma.

In the formulation of Lemma 2, we have treated the division operator /

on the same basis as that of addition +, subtraction -, or multiplication x;

namely, division is regarded as an independent operation which is distinct

from the add4itive or the multiplicative operators +, -, or X. However,

the division could also be carried out by considering al'ernatively the

following problem: namely, for qiven x and y, an unknown z is sounht

such that, without actually performinn the division 2L. we haveY

yz = x (2.2)

In this respect we are decomposinn x into a product yz. Thus the com-

putational equation corresponding to (2.2) is

3



yz(l + A-) x I _U (2.3)

which can only tell us the difference betw'een the computed deconnosition

yz and the exact decomposition x. Hence the algorithm used for (2.2) is

'analytic" in nature. On the other hand, if division is done to find

z = -, then this oneration is "synthetic" as tv'o unknowns x and y arez y,

"synthesized" to form z. The addition, subtraction, and riultiolicaticn

operations can all be considered as "synthetic" in this resnect. We

will see later that this idea can also be used to classify algorithms

and to interpret the results of error analysis.
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3. Errors of extended products and sums.

We first consider the extended product n, defined as

Pn = fl (xlx 2 '"... " xn) (3.1)

t,,e assume henceforth that xi are floating-point numbers and that operations

takQ- place in the order in which they are written. We use the follow.inn.

recursive alqorithm to evaluate (3.1):

Pi = X1

Pk+l = fl(pk x k+l) k = 1,2,.... n-l. (3.2)

-oi aoDlyinn Lemma 2 to (3.2), we have

Pl = Xi

PkLl(l + ok+l) = PkXk+l k 1,2,...,n-l. (3.3)

k~! u•Lk+l -_

Hence in neneral we have

n nPn in (I + ci) i= x x.( .4

It can be shown [3] that if n-l is appreciably smaller that 2t, then

(l - u n- I n (l i l + u )n- l
"(1 - _ 1 (1+ F.) = 1 + 1 ( + (3.5)

i=2

Tnus -..je have nroved the fnllowinq lemma:



Lemma 3. For an extended product of n floatina-point numbers defined

in (3.1), we have

n
Pn(l + E) = xi (3.6)

Where 1 + E satisfies (3.5).

For an extended sum defined as

n
sn = fl( z xi), (3.7)i=l

we can similarly define the recursion

s5 = xi

Sk+l = fl(sk + xk+l) k 1,2,..., n-I (3.3)

to carry out the computation. 'pplyinn Lenma 2 repeatedly to (3.0), we

have the followinq lemma-

Lemma 4. For an extneded surr of n finatevti-noint numbers defined in

(3.7), we have

n
S +n + x. (3.9)n i=l i

where

n n
.is i s (3. 1;)i=z i=2

i. .. . . . . mm~r ,i• • I N mI~z= I J • m i



We see that the errors generated in the computation of extended

r:oduct and that of extended sum can each be estimated after the com-

putation by using Lemmas 3 and 4 respectively. Observe that in extended

product the upper bound for the relative error term E is independent of

the computation order as is show4n in (3.5). On the other hand, the

atsolute error in the evaluation of extended sum does depend on the

Grder they are added. If all xi are of the same sign, then from (3.10)

the upper bouna for th2 absolute Error Jej is smallest if the terms are

added in order of increasing magnitude. Furthermore, if the xi are of

different siqns, then it Is also advisable to prearrange xi such that

they are in the order of increasing magnitude with alternate signs.
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4. Arplications

Applyinq the previous lemmas to the analysis of alaorithms for inner

product evaluation, polynominal evaluation and matrix decomposition, we

have the following results:

Tneorem 1 ( Inner Product Evaluation). Let the inner product defined

as

n
t : fl( z aibi) (4.1)

i=l

be computed by the following algorithm:

StepA. Compute

ci = fl(aibi) i b 1,2,...,n. (4.2)

Step•B. Compute

tI = c1

tk+l = fl(tk + Ck+l) k 1,2,...,n. (4.3)

t=t n

Then we have

n
t + C t a i ab .i (4.4)

where

n n
Itl < u [ Ic + z Iti! (4.5)

-i; i=z
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Proof. Applying Lemma 2 to (4.2) and (4.3), we have

ci(0 + 6i) aib i JAl _< u, i = 1,2,...,n (4.6)

t CI

tk+l(1 + •k+l) = tk + Ck+l, 6k+i u, k = 1,2,..., n-l.

(4.7)

t=t
n

Adding (4.6) and (4.7) for all i and k respectively, we have

n n n
c. + b aibi (4.8)i=l 1 1li~

n-I n
t + = tk+16k+1 E c i (4.9)

k=l il

Corihininn (4.3) and (4.9), we have finally

n
t + n aibi (4,10)

n ln

.Jere Lt t isi + z ci6i (4.11)
i=2 i=l

Clearly (4.11) -.atisfies (4.5) and thus the proof is now comnlete.

'.e see the format of the error in Theorem 1 is similar to that in

Le3ma 4. Therefore the comments reeardin- comrputation order for extended

sur, are also anplicable in the present case.

Theorem- 2. (';ested Pnlynomial -valuation). Tn evaluate a polynomial

,define! is

1 a m ~ ' i i l I i l P i / a ,-,•...



p(x) = fira xn + a 1x nI+ ... + a n], (.2

let the following nested alqorithrn be applied:

b 0 = a0

Ck+l = fl(bkx) k = 0,1,2,... ,n-l 4.3

bk+1 fll(ck+l + ak+l)

p(X) = h

Then we have

n nI
p(x) - i~.£xn-i E az axn1 (4i

i=O1

we re

u j+ 'c! 1,2,.. (41.5)

Proof. ."%;plyinq Lurira 2 to (4.13~), we have

,+ Lk - k+l k+l W:'+1 -u(. )

Ck+ + a i k =,,,. n-1.
kL k1k+1 k+1 k+l' Li -

P(x) = L1

rcir~{p1ifyinq, yqe have



b =ab0 = 0

b =bx +a -cb
k+l k k+l - k+l k+l bk+16k+l k0,l,2,....n-1

(4.17)

p(x) bn

By repeatedly substituting (4.17) for bk+l startino from k n-1, we have

n n n
p(x) + z Fix = Z ax (4.13)

where

C= ci6 + bi6i (4.19)

The theorem follows from, (4.19)

We observe from (4.18) that the error term depends not only on the

computed values bi and ci, but also depends on the powers of x, which are

not explicitly computed and hence are unknowns. Thus, extra computations

are needed if error bound is to be estimated.

Theorem 3. (Unnested Polynomial Evaluation). If the polynomial de-

fined in (4.12) is evaluated by the following algorithm:

Step A•. Compute

Yn = 1

(4.20)

Yk = fl(yk+1 x) k = n-1 , n-2, ... , 0.

11



Compute

z =a
nl n

(4.21)
z J fl(a ) .i = n-1, n-2, , 0

Step C. Compute

s =zn n

si fl(s + zP) i = n-1, n-2, ... , 0 (4.22)

D(x) = so

then we have

n-l n
p(x) + T (1 + 6.) zi.i + Cp = a (4.23)

1O 1 p =0

where 16il < u, (1 u)n-i 1 + (1 + u)n- and

n
IE 1 <_ u T [ Jzil + Isil ] (4.24)

i=O

The proof is similar to W~d, of Theorem 2.

We should note that although an extra n multiplications are needed

for this unnested algorithm, we do have results which are useful for

error estimation. This is shown in (4.23). Furthermore, if extra com-

putations are carried out to estimate the error in (4.14) resulting

from the nested algorithm, then the unnested and nested alqorithm are

equivalent in terms of number of operations.

12



Theorem 4 (Natrix Decomposition). For the matrix equation

Rx = b (4.25)

where 2 = (r ij) is an n by n non-singular lower triangular matrix

and b is an n-vector, then the component of x can be computed in the

order of xl,x 2,..,, Xn by usino the followina substitution algorithm:

b,

x.=x-ril"ri 1r 2x2 -".-. 1 1~1  i

x i =fl r'lXI 2X2"-rii- X i-I +b i i = 2,,3,... ,n

ri ii (4.26)

If (4.26) for each xi is computed in the followina sequence:

Step A. Compute

Yik = fl(-rikXk) k 1,2,...,i-1 (4.27)

tpb. Compute

S= fl(Y i2 + + Yii) j ,2,...,i- (4.28)

Step C. Compute

zi = fl(s ,i-1 + b()
zl (4.29)

x. fl(- )
r )

13



then the computed x satisfies

Rx + n = b (4.30)

where n - (ni) is an error vector such that

I r, < u. jr~x,I

Ini<le. Irixi I + Iei.lI, I = 2,3,...,n (4.31)

and 1 u)2_< 1 + e < (1 + u)2 Elei.lI < u E Yikl + E Isikl I
k=l kaz

The proof can be obtained easily by applying Lemmas 2 and 4 to equations

(4.27), (4.28) and (4.29).

We observe from (4.30) that If we are to find the error between the

computed solution x and the exact solution R-Ib, then it is easily seen

that

RIb - x n (4.32)

Thus the error is a function of R-1 which, just like the powers of x in

nested polynomial evwluation, has never been explicitly computed. Extra

computations are therefore necessary for error estimation.

We might argue that the results of Theorem 2 and Theorem 4 do not

satisfy the requirement of (1.4) for useful a posterlori error analysis

even if Lemma 2 is used consistently in the analysis. However, we should

realize that algebraically we have assumed that the powers of x and R-1

14

S. . . . .. • .• • mlm wmn il m mm • m mml d- mmrmm •. . ..



are implicitly generated by the algorithms in Theorem 2 and Theorem 4

respectively. Unfortunately, these "efficient" algorithms do not yield

these necessary data computationally. Therefore, the "inefficient" un-

nested algorithm is a "botter" algorithm for polynomial evaluation from

the point of view of error estimation. Similarly we could conjecture

that Cramer's rule might be a "better" algorithm thdn substitution

algorithm for solving triangular system of equations from this respect.

15
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5. Conclusions.

We have seen for certain algorithms the repeated use of Lemma 2 can

lead to useful a posteriori results for error estimations. For some

"efficient" algorithms the results are not very "useful". This is be-

cause that in order to be "efficient" certain steps of computations

have to be skipped which result in insufficient data for error estima-

tion. Another explanation is as follows: The nested algorithm in

n
Theorem 2 essentially decomposes the original polynomial Z atxn'l

=O0

into a nested product {...[(a~x + a1) x + a2]x + ... ) x + an with the

assumption that the powers of x are generated implicitly; similarly

the substitution algorithm in Theorem 4 effectively decomposes b into

a product Rx. Hence they are "analytic" in nature. If we are asking

only how good is the decomposition, then Theorems 2 and 4 do give us

"useful" results concerning the difference between computed decomposition

and exact decomposition. Hence they are indeed useful a posteriori

results. On the other hand, the algorithms used in Theorem 1 and 3

are "synthetic" in nature as results are "synthesized" step by step

without taking "efficient" short cuts. These observations are con-

sistent with the basic results of (2.3) where the division z - • is
y

considered as an analytic process if z is computed such that yz a x

without actually carrying out the divisio,,. The distinction between

"analytic" and "synthetic" processes is thuefore essential in inter-

preting the results of error analysis. Furthermore, for matrix equations

16



of the type Ax = b where A is a general n by n non-singular matrix, it

is well known that the closeness of Ax to b does not necessarily guaran-

tee the closeness of x to A-1 b; thus it is questionable that we should

use "efficient" analytic algorithms instead of usWig "inefficient" syn-

thetic algorithms if ultimate error estimation is required for the solu-

tion of these systens.
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