v

i Liksba 5

—] |

ESD ACCESSION LIST

TRI Call No._ S 7 E 5
ESD-TR-72-121 Vol. 2 7: 2 :u)
: of cys.

A STUDY OF FUNDAMENTAL FACTORS UNDERLYING
SOFTWARE MAINTENANCE PROBLEMS: FINAL REPORT

APPENDICES

20 December 1971

ESD RECORD COPY
RETURN TO
ENTIFIC & TECHNICAL INFORMATION DIVI

(TR Building 1210

SION
sCi

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited,

(Prepared under Contract No. FI19628-71-C-0125 by Corporation for
Information Systems Research and Development/CIRAD, 40i N. Harvard,
Claremont, California 9I711.)

ADD39%71

ESD-TR-72-121

A STUDY OF FUNDAMENTAL FACTORS UNDERLYING
SOFTWARE MAINTENANCE PROBLEMS: FINAL REPORT

Apperdices

20 December 1971

DEPUTY FOR COHMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. F19628-71-C-0125 by Corporation for
Information Systems Research and Development/CIRAD, 401 N. Harvard,
Claremont, California 91711.)

APPENDICES

APPENDIX TITLE
I Statement of Work for This Study
II Software Maintenance: Questions and Answers
III BUIC Case Studies and Diary
v A Study of Factors Inhibiting the Effectiveness

of Maintenance Programmers at Chrysler Corporation
\' CSA Software Maintenance Report
VI - Scenarios and Questions
- Higher Order Languages and Maintainability
VII1 Technical Approach and Aims for a Path Analysis

Feasibility Study

VIII Instructions for Path Analysis Experimental
Programmer
IX Specification of Modifications for Path Analysis
X ' Minimum Paths According to Staff Programmer
X1 Experimental Programmer's Verbalization While

Making Modifications
XI1I Guidelines for Keeping a Magnetic Tape Log
of Program Maintenance Mentql Processes
XIII Tape Logs of Experimental Programmers
X1V Language Statement Types Which Define

Conceptual Groups

APPENDIX I
Statement of Work

for This Study

STATEMENT OF WORK
Computer, Aided Software Maintenance Study

1.0 JIntrcoduction: Systems programmers must often maintain programs
that someone else wrote. To do so, they must first learn about
these programs by consulting the written documentation prepared
by the original programmer. Such documentation commonly consists
of flowcharts at various levels of detail, narrative descriptions,
and ultimately, program symbolics. Even for only moderately com-
plex systems, it is difficult to use these materials efficiently
to remedy defects that show up in use or to evaluate proposed
system changes. = :

In this procurement, the Contractor will focus on
problems faced by programmers who must maintain programs someone
else wrote. He will identify and study the factors which inhibit
the effectiveness of current maintenance programming aids, and
as a result of this study, he will propose new kinds of computer
aids for use by maintenance programmers. The emphasis in this
study will be on the development of principles underlying the
effective use of such aids, although some effort will be devoted
to initial development and test of promising aids.

2.0 Scope .)

2.1 Objective: The objective of this procurement is to study problems
of maintaining complex programs in order to develop more effective,
computer aids for software maintenance. It is intended that these
methods be especially useful to programmers who must malntaln programs
that someone else wrote.) =

2.2 Approach: Contractor will investigate fundamental problems.limiting
the effectiveness of maintenance programmers and will propose and
study new techniques for increasing their effectiveness. He will
identify inadequacies in current methods and identify reasons for
these inadequacies. He will develop case studies illustrating prin-
ciples and problems encountered in software maintenance, together
with sone estimate of the importance of the principles and problems.
He will specify and carry out a research program for developing
further information that must be known in order to create useful
maintenance programming aids, and he will specify and investigate
new methods to help maintenance programmers. He will investigate
the role of grathics consoles in maintenance programming. At the
end of the study, he will present a balanced view of realities vs.
possible techniques, together with a plan for further study of these
problems and techniques. t

-
-

3.0

3.2

3.3

3.4

3.5

4.0

4.1

4.1.1 Step 1

Areas of Consideration

Use of Graphics Terminals: Contractor's study should emphasize

the use of on-lire interaction with a graphics console.

Case Studies: The Contractor will develop and evaluate his ideas

‘being maintained or modified by the Contractor.

with respect to the maintenance or modification of particular
compilers, operating systems, duta management systems, or other
sets of existing complex programs with which he is familiar. From
this source of material, the Contractor will draw examples of the
kinds of problems one faces in maintaining or modifying programs
that someone else wrote. The Contractor will evaluate his proposed
techniques with respect to these specific real-world examples. Pre-
ferably the system of programs that serves as a test environment
and as a source of case studies will be a system that is already
Note that it is
not necessary and not expected that any software modifications or
software maintenance be carried out. The Government only desires
that the research be accomplished with respect to actual problems
that have arisen in connection with existing systems of programs.

Extent of Programming Effort: Contractor shall test his techniques

~only in a static format.

by thoughtful, scientific study; he shall not embark on an extensive
programming effort before fundamental limitations have been carefully
identified. The Contractor is encouraged to test his ideas on actual
computers cnly if a relatively small amount of programming is required
for a meaningful test.

Possible Problem Area (examnle): One of the inherent deficiencies
in current documentation methods is the presentation of information
A programmer who must analyze program flow
for complex test czses may have considerable difficulty in relating
the test case to the actions described in the flowcharts. Hence
means might be provided to show the actual program flow (on-line)
for test cases specified by the programmer, and thus the programmer
might learn the structure and function of the program more quickly
and more thoroughly.

Interdisciplinary Aroroach: The Contractor is encouraged to include

.on his research team a person with background in the behavioral

sciences as well as persons experienced in computer sciences. Such

a person will be exjected to help devise suitable methods for scien-
tifically assessing the general advantages and limitations of the
techniques to be developed under this Contract. He would be expected 3
to provide useful insight into the cognitive processes and the in-

herent human limitations and requirements of maintenance programmers.

Task to be Accomplished

Fhase I - Overall Analysis;:

The contractor will identify problems interhent in (and

-

I-2

4.1.2

4.1.3

4.1.4

4.2

4.3

especially those peculiar to) maintenance programming where the
maintenance programmer is not the original programmer. The
maintenance programmer is assumed to be an experienced systems
programmer, and the system being maintained is to be considered
fairly complex (e.g., any system which would normally be pro-
grammed by more thin one programmer).

Step 2- A set of case stLdies, based on actual systems maintenance

problems (see 3.2 above) will be developed to illustrate the funda-
mental principles and the prob lzms inherent in maintenance program-
ming (The case studies are to serve as paradigms of system mainten-
ance problems, and hence should represent problems which are in some
sense typical of the problems faced by maintenance programmers.)

Step 3: A number of possible maintenance programming computer aids

will be proposed. Each proposed aid will be characterized in terms

of (1) its relation to fundamental factors underlying systems main-
tenance problems; (2) the kind of research that must be accomplished
to assess the probable utility (e.g., what information must be known
to make this assessment, and how could this information be developed)
of the proposed aid; and (3) the amount of work that would be required
to test the proposed aid's effectiveness. (The solutions proposed

in this part of Phase I, together with the case studies, will be used
by the Air Force to determine the extent and value of initiating a
broader, more intensive, research effort on maintenance problems).
Solutions proposed as part of this step will range from conservative
to highly speculative, since the purpose of the Step is, in part,

to stimulate thought on solutions to maintenance programming problems.

SteE.A: The contractor will next select a small set pf problems,

factors, and/or proposed solutions to be investigated more thoroughly
in the remainder of the contract (Phase II). The rationale for this
selection and a plan of research for gaining a deeper understanding
of the selected issues will be furnished (see 4.2 and 4.3 below).

Phase I - Renorté The results of the Phase I study will be presented

in a Technical Report consisting of two parts. Part I will contain
the results of Steps 1, 2,and 3 of Phase I. Part II will contain
the information developed in Ythase I, Step 4.

Phase II - Intensive Study of Selected Problems/Solutions: A

scientific study of selected preoblems or proposed solutions to soft-
ware maintenance will be undertaken as specified in Part II of the
Phase I report (see 4.2). The purpose of this study is to examine
more carefully the feasibility of these approaches and especially,
the underlying fundamental problems that might impede the effective-
ness of proposed techniques. The emphasis of the study will be the
development and evaluation of principles concerning the nature of
software maintenance so that the effectiveness of possible programmer
aids can be more accurately assessed in advance of implementation or
actual tests. Limited evaluation of proposed programmer aids will be
accomplished (see 3.2). Extensive programming will not be undertaken

4.4

4.5

in this phase. Instead, scientific study and pilot experiments
together with judicious hand-simulation or analysis of proposed
computer implementations will be used insofar as possible to
assess the prchbible effcctiveness of proposed techniques and to
examine underlying problems. (Some programming effort will un-
doubtedly be necessary, but since the emphasis of this contract is
the study of principles underlying the effectiveness of proposed
maintenance pregramner £ids rather than the implementation of
imrediately useful aids, it is expected that a relatively small
amount of prograzming effort will be required.)

Final Report: At the conclusion of Phase II (4.3), a Final Report

will be prepared consisting of 1) Fart I of the Phase I report,
revised as necessary to reflect knowledge gained in the Phase II
studies; and 2) a presentation of results obtained in Phase II. -

. Part II of the Phase I report (4.2) will serve as a working paper

defining the work to be accomplished during the remainder of the
contract (Phase II). Work on Phase II will not proceed until
receipt of Government approval. A decision on whether or not the
proposed plan is approved, with or without modifications, will be
rendered within seven (7) calendar days of the receipt of Part II.

T-4

APPENDIX II

Software Maintenance: Questions and Answers

Part

II.

III.

Iv.

V.

VI.

VLT,

CONTENTS

Introduction and Interviewees .

Sources of Reference Information

Maintenance Tools and Test . .

Facilities and Languages . . .

Qualities of a Good Maintenance Programmer
Opinions About Personnel and Administration

Thoughts for the Future

Page
II-1
-5
II ~12
II-20
II -23
II -25

IT-29

PART I

INTRODUCTION AND INTERVIEWEES

INTRODUCTION

This document is a compendium of answers to various questions
about the problems of maintaining software systems. These
answers were generated during interviews over the period of

2 March to 6 April 1971. The interviews generally were con-
ducted by a two-man team with one person reading questions from
a prepared questionnaire and the other injecting clarifying
inquiries while taking notes. The results viewed as a table of
interviewee versus questions are not complete because some ques-
tions did not apply to specific interviewees. 1In other cases,
certain questions evoked such a torrent of freely flowing com-
ment that it seemed best to pursue these lines to the neglect of
the prepared questions. The emphasis was on obtaining realistic
information and opinion directly and indirectly related to the
problem of maintenance programming.

THE INTERVIEWEES

Five full interviews were conducted. The people interviewed are
listed below with some background material about each. A sixth
person, Michael Castin, commented on some of the questions.

ROBERT HARRINGTON - Mr. Harrington was in charge of a staff of
260 including 100 programmers, who used 21 computers, at Chrysler
Corporation's centralized computing facility in Detroit. A large
part of the effort involved here concerned a real-time on-line
order entry system for control of assembly lines. Mr. Harrington
was administered a different questionnaire than the other four.
This questionnaire differed in the order and emphasis of the
questions asked. His responses have been rearranged to fit the
format of the other questionnaire using the best judgment of the
authors. '

JOHN BROWN - At TRW Mr. Brown's group is "the organizational
focal point for questions regarding software maintenance."

PAUL SLEEPER - Mr. Sleeper is Director of Technical Development
for Remote Computing Corporation. His group of seven people is
"responsible for the technical products that the company offers.”
His primary duties are the development and maintenance of

executive programs for a time-sharing system. Secondly, he con-
tributes to the development of some business application programs.
His company's computing center is organized around two Burroughs
5500s. Each can theoretically handle around 40 terminals. A
total of around 50 terminals, including several used in-house by
the company, are actually serviced by the two 5500s.

WILLIS HUDSON - Mr. Hudson is presently an employee of CSA. He
is experienced in machine-language programming and in data reduc-
tion. He also was employed at SDC in the development and main-
tenance of SAGE programs. Later assignments at SDC included
developing and maintaining software which "solved the hardware
interface"; e.g., compilers, and executive monitors. He was also
employed for a time at Jacobi Systems. Mr. Hudson will graduate
from law school in June and is preparing for the Bar Exam.

DANIEL COVILL - Mr. Covill is Associate Director--Development,
Computer Center at the University of California at San Diego.
Previously he was the Chrysler Parts Division's Manager of Pro-
gramming. There a major area of concern was the maintenance of
programs which others had written. His employment prior to
Chrysler was with the University of Wisconsin, the Burroughs
Corp., and SDC on the SAGE project.

MICHAEL CASTIN - Mr. Castin, an employee of SDC, maintains and
directs the maintenance of portions of the BUIC software system.
He has also used his extensive BUIC experience in consulting on
the present project.

INTRODUCTORY RESPONSES TO QUESTIONS

Question: First, we would like some general background informa-
tion on the overall system you are working on and what
you do. What is the overall purpose of this software
system?

Multimachine ?
Programmed in an HOL?

Mr. Covill: On the SAGE project, the system was well
defined. But at Chrysler, it was "not clear
what the system was . . . a lot of systems for
one customer."” A programmer felt he was work-
ing on a program, not on part of a system:
there was just a large collection of batch-mode
programs.

It -2

Mr. Hudson:

Mr. Sleeper:

(Our Comment:

"The government contractor thing is better, for
maintenance programmers, than the business
thing."

At Jacobi Systems, the purpose was the effective
use of a Univac 1108. The operating system was
Exec-2. Interfaces included those to applica-
tions-oriented programs; the concerned 10, and

a library of subroutines. '

It was not a multi-machine system, it was batch
only, and it was not programmed in a higher-
order language.

It is: time-sharing, primarily;
multi-machine;

programmed as much as possible in
higher-level languages.

In addition to serving in a consulting capacity
~in TRW, Mr. Brown's group is working on "PACE
(Product Assurance, Checkout and Evaluation)."
This is, or will be, a system written in Fortran
for assisting in the check-out of other programs
written in Fortran.

Only one program, composed of about 1,000 state-
ments, is actually operational in PACE. Five
other programs are planned.

The one operational program "will look at a
program, and find all ways--all directed
graphs--through it . . . it will label chords."
The result is "a nice representation of the
logical structure of the program under the
statements."

This part of PACE seems to have some close
antecedents in the work of others, namely
Green, 1970.)

Does it do this before compilation?

Question:

Yes. It "looks at the program, modifies it"
(by adding a statistical table) and "evaluates
the percent of the code that has been exercised
by the current test data."

Question: How large a project is PACE?

Mr. Brown: It is a sort of "pet project." But, in terms
of memory, "the TS core limit is 64K octal."
In terms of people, four people have worked on
PACE off and on-for about a year, for a total
of only about six man-months of effort.

II -4

PART II

SOURCES OF REFERENCE INFORMATION

Question: Where do you get the information you need to make

modifications or correct the errors? More specifi-
cally, please comment on the value to you of the
information to be gotten from . . .

The request itself . . .

Mr. Castin: "There is no substitute for a well-explained
request."
Mr. Hudson: There were some sophisticated users who made

"very helpful" requests, but most were "simply
FORTRAN programmers; they would say, 'This
program ran before, and I just changed two
cards.'" These were not very helpful.

Mr. Sleeper: In general there are two very different kinds of
requests. One complains of a Command and Edit
failure. The information given "is usually
rrettyv good," although, of <ourse, it varies
with the source. "I insist on the teletype
sheets (which show the effect) of the 'disas-
ter,' and listings" from all parties.

A second kind of request is a vague request for
some kind of extension of the system. These
are not usually very useful.

Mr. Brown: It's very valuable for developing a program,
and in "telling you where to go to change the
coding." For example, PACE is being adapted to
a 360; the requests come in the form of specifics
such as "You have to use BLOCKDATA subroutines."

(Our Comment: Since PACE is not an operational system, these
are not really maintenance requests; they are
pieces of advice, from one programmer to another,
during the development of a program.)

Question: . . . the value . . . of the information . . . from
written documentation?

Mr. Hudson: For Exec 2, "it varied from extremely bad to
non-existent."

IT -5

Mr.

Mr.

Mr'

Question:

Mr.

Question:

Mr.

Question:

Mr.

Mr.

Sleeper:

Harrington:

Castin:

Covill:

Brown:

rown:

Brown:

Hudson:

Sleeper:

Where

Would

e e e

"That is an interesting question. With the 5500,
it is mostly oral; there is not all that much
written down. It's mostly in the (programming)
language and in small groups of programs."

At Chrysler, there was a full-time librarian;
programmers used documentation enough to make
it well worth while.

In general, documentation is very valuable if it
is kept up to date, kept all together where you
can find it, and otherwise handled well. But

if it deteriorates, people ignore it, and there
is a vicious circle; it just keeps on getting
worse.

"With many programs, the problem is that there
is no basic strategy. There isn't any way to
document an ill-conceived program that will
make it maintainable. Mainteability proceeds
out of" good basic strategies for the program.

At our company, documentation is very valuable,
but it's mostly in the form ef "Inter-Office
Correspondence (IOC)" and not in one big docu-
ment.

does the formal, written documentation reside?

"Only in the form of IOCs. And these are a
users' guide, not a programmers' guide."

a new person be lost . . .?

Prokably he would, but . . . there are documen-
tation cards in the program. You don't need
formal documentation yet; it is embedded in

the code."

How useful is out-of-date documentation?

"Out-of-date documentation does have some value,
because it may tell the interfaces with system
functions." It does not give current details,
"but I wouldn't believe them anyway."

Out-of-date documentation "is very dangerous."

II-6

Mr. Harrington:

(Our Comment:

Question: . .

Out-of-date documentation "has a negative
impact."

As an idea, you might let the computer do the
dog work of documentation. But it would be
hard to inspect and do QA on changes if a pro-
grammer could enter them directly, without
going through an inspector.

Perhaps you could have a manual buffer in the

system. A computer would do the dog work, QA

would inspect the changes, and then they could
be entered.)

. the value of the source coding and comments

therein?

Mr. Hudson:

Mr. Sleeper:

Mr. Harrington:

Mr. Castin:

(Our Comment:

Not only at Jacobi but elsewhere, the comments
were "extremely beneficial." In spite of having
been "misled quite a few times, I've subcon-
sciously developed a reliance on comments.
Invariably I will scan the comments first" for
clues to what the problem is, and to identify
ti.e ‘'segment of code whici should bc examined
first.

In spite of relying heavily on them, "I don't
write comments. But . . . I will write block
comments. I tend to believe them more."

Very valuable. "We try to take advantage of
comments"”" as much as possible, both in devel-
opment and maintenance. This "is very neat,
because of the programming languages (primarily
ALGOL and COBOL in-house, and FORTRAN and BASIC
by users) we use."

Source coding is very valuable; comments, less
So‘

Most programmers at SDC would agree with
Mr. Hudson. They tend to scan through the com-
ments, looking for key words.

Perhaps we should look into this idea: Store

the comments separately from the code, but put
in connectors. Then:

ITr -7

(1) Give the programmer something like
KWIC, to help him scan.

(2) Automatically check to see where
comment changes are needed when a
patch is put in.

(3) Report patches to the right people via
the SDI idea.)

Question: . . . the value of . . .
a. Formal meetings with other programmers and systems
analysts

b. Informal discussions with others - is it easy to
get help from an "expert"?

Mr. Hudson: Fairly useful. Almost all meetings were
informal, because the staff was so small.

"There were no experts."”

Mr. Sleeper: "It's mostly informal. Formal meetings are
usually just a follow-up, to sanctify what has
already been decided. We like to keep the group
small enough so it will work." The information
is vexry valuakle.

Mr. Brown: Regarding formal meetings, "I'm the only liaison
with Houston." To the people there, formal
meetings are very valuable. They are also very
valuable to a local programmer whom Mr. Brown
supervises.

Informal meetings are also very valuable; it is
easy to talk to Mr. Brown.

Mr. Covill: The most valuable source of information is
informal meetings with other programmers. The
second is the listings (in COBOL).

Question: To what degree is interchange of information between
specialists formalized?
i. What kinds of aids to interchange are there?
How well do they work?
ii. What barriers do you observe to interchange
of information?

Mr. Harrington: Documentation standards were the formal means of
communication.

|
o

IT

Question: . .

i. A quality control group checked each
document before letting a programmer
sign off on it. This worked pretty
well.

ii. Personality barriers. Some programmers
had to talk, others had to work alone.
"Talkers" were assigned to work
together, if possible.

. the value of the information you carry around

in your head?

Mr. Hudson:

Mr. Castin:

Mr. Sleeper:

Mr. Harrington:

(Our Comment:

This was valuable in combination with "analogies
with similar problems (on other systems) in the
past."

After a time, (experience was) the chief source,
plus "what I could dig out of the heads of my
co-workers."

It is extremely valuable, because you do think
by analogy (with similar problems and systems)
to a great extent.

"For those (programs) I have specific responsi-
bility for it's very valuable. But even there
it's easy to lose the gory details if you're
away for (as short a time as) a couple of
months." ’

So-so, for the non-elite (programming group)
but very valuable for "Customer Service."

An important general rule is that the more
urgent requests demand more human memory.

There was a consensus among other programmers
at SDC, which was surprising to us, regarding
the significant extent to which maintenance
experience could be generalized from one soft-
ware system to a different one.)

Question: What parts of the documentétion are you most likely
to actually use? How useful is each of the following:

ii.
iii.

Flow charts?
Narrative descriptive material?
Commentary in the source listings?

What parts are you least likely to use?

I1-9

Mr. Covill:

Mr. Hudson:

Mr. Sleeper:

Mr. Harrington:

"I don't bother with narrative material. I
hunt for what might relate to my problem."

Commentary is good if it is up to date. But
"people patch the operative (sic), but not the
comments. They can be a booby-trap."

At Chrysler, in COBOL, "the biggest thing of
all is to have good record lay-outs."

Flow charts are the most valuable "in the
initial exposure. They are more useful in
adding capabilities than they are in de-bugging."

Commentary is very valuable.

After initial study, IO specifications are most
likely to be used.

We prefer the documentation to be in the source
code; it is most useful there.

"There is another type of documentation which
y:i did not list; the 'interface specificationy!?
« « » which I prefer to use" rather than the
more detailed, conventional documentation.

The programmer is least likely to use the nar-
ratives, because most are bad.

But the narrative can be very valuable, when
well done . . . can be much more concise than
flow charts. But analysts vary widely in their
ability to write . . . Most don't write well;
they leave out essential points, they say things
which are ambiguous. Narratives are usually
even "worse than manuals." Also, experience
with a technical writing course indicates that
"you can't make a good writer by legislation."

The commentary in the source listing is "inval-
uable." Also, it is easier to train people to
perform well here.

Flow charts are very useful. Detailed flow
charts are most valuable. The place where
computer-generated flow charts would be most
useful would be in keeping documentation

II -10

current, since you could let the computer do
the updating. The disadvantages to computer-
generated flow charts are that they are hard
to read, and poorly organized.

(Our Comment: An important area of research might be in
methods of improving the readability of computer-
generated flow charts.)

Question: What level of flow chart do you prefer to work with?

Mr. Covill: With higher-order languages, "the low-level of
flow chart is not worth the trouble." The test
to work with is "the one that gives you the
basic strategy of the program."”

Covill now works like this: "I draw a flow
chart and make my most important decisions.
Then I do just one page of code that sort of
gives me the feel of what this thing is doing.
That gives me the specifications for the main
internal workings." In short, "I work from the
outside in."

(Our Comment: That is similar to the Mills’ approach.)

Covill strongly dislikes "any flow chart which
is not complete on one 8-1/2 X 1l paper." The
flow chart can be layered, but one page has to
be a box in another flow chart.

"If you can't show the relationships on one
sheet, then you've probably done a bad job of
arranging those relationships."

Mr. Harrington: Detailed flow charts were the most valuable to
the programmers at Chrysler. ‘

Mr. Sleeper: "I don't think flow charts are too useful,
except at the top level." However, it would be
good to be able to "call out data-processing
functions, like SORT, REPORT, etc. . . . work
with big pieces."

IT-11

PART III

MAINTENANCE TOOLS AND TESTS

Question (Introduction): Another area of great interest to us

Question:

Mr.

Mr.

beyond the sources of information is
the kinds of mechanized debugging
tools available to you.

Do you have a tool which accepts as input a group of

programs and turns out a cross index of variables
(etc) vs program showing for each program whether the
variable is set, used, both or cleared therein?

How useful is it (if you have it), and why?
Or, how useful would it be?

Covill:

Hudson:

Sleeper:

Brown:

"The most important thing I've got is a COBOL
cross reference . . ." which lists identifier
by identifier, and tells where each is defined,
and where used.

"Secnnd+ The §5500s are all on source language.
I can go to 1t, and not to memory maps and the
like." This saves time.

There was just a tool which gave references,
i.e., whether a variable was either set or used.
But it also could tell what line it was defined
on [] L] L]

It was extensively used. Its main drawback was
the absence of a set/use breakdown.

The question is mostly not applicable, because
there is very little "inter-program communica-
tion on the system." However, one can get
"very nice cross-references" on the Command and
Edit programs, and such features are very useful,
if not essential, in maintenance and improvement.

Yes, we have. It is used "quite often.”" It is
"very easy" to use, which is a good point. Its
best point is that it "can do other things, and
you can use it in league with other documenta-
tion aids as a program maintenance tool." It
gives a more complete picture of what parameters

IT -12

are represented in different subroutines. It
also generates specification statements
required in individual subroutines which use
COMMON.

The tool (called COMGEN) is like a set-use
program, but it also updates both COMMON and
the program, and causes modification cards to
be punched.

Question: Would you need COMGEN if you had the INCLUDE of
FORTRAN V?

Mr. Brown: "I don't know. The INCLUDE is not being used
in the 1108 in Houston, but I don't know why."

(Our Comment: It turned out later that this and other advanced
features of FORTRAN V are not used in order to
maintain source compatibility with versions of
FORTRAN used on other machines.)

Question: Do you have means to cross reference identifiers
within a program by line number and showing
where set
where used
from which line numbers it is branched to?

Mr. Sleeper: No, one cannot tell from which line numbers it
is branched to. (Would you use such a tool?)
"It probably would be valuable."

Mr. Brown: We have "the classical 'set-use' program," but
not the line number branch generator.

Question: Does each programmer consider the problem of "fanout"?
Is the Problem formally assigned to anyone? To whom?

Mr. Harrington: There was a manual of "inter-relationships and
data dependencies." It was generated from the
test files. The manual "of course” did not
cover all fanout cases. However, new problems
were added to the manual as they were reported.

Question: What kind of cross-indexing is there? That is, what

tells a programmer that a change at Point A may affect
Points P, Q & R?

II ~13

Mr. Harrington:

Question: a.

Mr.

Mr.

Mr.

Hudson:

Sleeper:

Brown:

There is very little cross-indexing between
different types of documents, and different
levels. But perhaps you could do a lot of that
with machine generation of source coding. Also,
"why not make an index on which you could use
something like KWIC?"

(Comment later: An important research gquestion
might be: How do you key each part of each
"representation" of the program to each other
representation?)

Can you get a static memory map?

Can you get field explosion diagrams of tables of
packed data?

Do you have any tools commonly in use which haven't
been mentioned?

Yes, there was a static memory map. It was easy
to use, and frequently used.

. « o field explosion diagrams? . . . any other
tools . . . ?
No, on both counts.

A static memory map would be "impossible because
the system is so dynamic. Only a small part of
a program is fixed in a core location, and that
part is there only on one execution." But the
compiler will "put out a relative map." This

is "absolutely essential, to understand where
segments are in the dump."

Field explosion diagrams of tables "would be
valuable." .

(Other tools?) No. "We have nothing to build
data sets with, all over the place," and might
be a little overwhelmed if these were available.

We can get a "Load Map . . . some other kind,
but I have never used it."

For field explosion diagrams of . . . packed
data, such a tool is incorporated in PACE.

« « « No other tools except PACE and COMGEN.

IT -14

Question:

Mr.

Mr.

Mr.

Mr.

Question:

Mr.

Mr.

Mr.

Mr.

Can you make symbolic corrections to object code,

i.e., patch at a symbolic level without the need to
recompile whole symbolic program? :

Castin:

Hudson:

Sleeper:

Brown:

The frequency of corrections would determine
whether or not you would want to do this in the
first place.

No. If it had been available, it "wouldn't
have been too valuable."

"We've supposedly just added a capability to
link~-edit precompiled program pieces," and
this "should help a lot." However, this capa-
bility does not seem as broad as that referred
to in the question, because all of the defini-
tion of the "program piece" is left up to the
programmer.

Programmers are not allowed to patch the object
code. K

No. "I would not use such a system. But I

might (on second thought) if, on a big system,
complle time was scarce." Also, in FORTRAN,

(but not JOVIAL and SPL) you can "independently
compile subroutines rather than the whole big

glop."

Mr. Brown is "very interested in 'segmented
compilers."'" '

Do you have the means for automatically génerating test

data for your testing procedures?

Hudson:

Sleeper:

Brown:

Harrington:

No. But it would have been valuable.

No. (Would you like to have this capability?)
Yes, if the formatting, etc. was easy enough.

No. But it might be good.
Yes, "there are all kinds of aids. Several
levels of test files . . . You can call these

with control instructions." They are semi-
automatic.

IT -15

On small sections, you make manual checks.
"There are some automated audit programs for
massive system tests."

As a "Buck Rogers" idea, it would be good to
have "as much machine generation of the-clerical
material as possible." It would be very desir-
able, but very hard to have a machine "check the
consistency of logic."

(Our Comment: It probably would be possible to have a computer
do this, using Boolean logic equations.)

Question: Who sets the test standards?

Mr. Harrington: At Chrysler, the System Programming Staff, who
generate the test decks, tapes, and files.
Systems Programming sets the standards.
Quality Control enforces the standards.

The programmer "gets audited at the end of each
phase . . . like . . . design, flow-charting,
coding, debugging, check-out, production check-
out . . ." The test environment includes samples
of actual data. There is a final review of all
phases before QC signs off.

Also (this is what we called the Warranty Period
Concept),. . a number N is assigned to each pro-
gram; the program then has to be used N times in
actual production, before the programmer is no
longer responsible for it.

Question: What sorts of things slip past the testing procedure?

Mr. Harrington: "Odd combinations . . . seasonal combinations
. . « of data. Changes in the structure of the
variables."

Question: Does information about the things which slip through
feed back and cause any improvement in the test
procedure?

Mr. Harrington: Yes. In the "shake-down, it is entered in the
log, and integrated" into the procedure.

After N cycles, however, the answer is usually

no. Then one usually could not anticipate the
things which slip through.

II -16

Question:

Mr. Huston:

Do you have a selective dump - during and/or post—
mortem?
- conditional and/or
unconditional?
- choice of formats?

Post-mortem and conditional dumps were avail-
able. FORTRAN contains a valuable "track-and-
trace feature . . . that shows you where you
branched from."

(Our Comment: Mr. Hudson is referring to an object time

package which works in conjunction with the
method used to compile subroutine linkages that
provides a "Walkback" listing of the subroutine
nesting in effect (with statement numbers of
the calls) at the time of an abnormal termina-
tion.)

Mr. Sleeper: Except for some "very nice monitor and snapshot

Mr. Brown:

Question:

facilities in most languages," the answer is no.
Would you like it? No, in this facility "the
dump is too elusive. There is nothing more
frustrating than to get a core dump where the
part you want is 'OUT ON DISC.'"

Yes, "we have some nice 'revive-execute' sorts
of things." Yes, "you have a choice of formats
for dumps.

Do you find that you normally use a lot of PRINT
statements while you are de-bugging?

What factors cause you to rely more on one (PRINT,
dump) vs the other?

Mr. Hudson: Computer time (i.e., non-prime time) was essen-
tially free to the staff members, and they
"usually got a full memory dump, and threw all
of it away except three or four pages."

Mr. Sleeper: "Several people do use a lot of PRINT state-

ments; it depends on the individual." Less
experienced programmers usually find it easier
to use MONITOR and TRACE routines. In BASIC,
however, these are not available, so "people
have to use PRINT. This is not terribly
effective."

II -17

Question:

-Mr.

Mr.

Question:

Mr.

Mr.

More experienced programmers use MONITOR and
TRACE less often, because they know more pre-
cisely what they want to look for.

Do you have any other display tools which we haven't

mentioned?

‘Hudson:

Brown:

No, but it would have been good to have ". . .
something which would automatically sense some
abnormality," and print then and only then.

No, but it would be good to have "flow charts
which cover all possibilities . . . not limited
by" (the ommissions of) the systems analyst.

Aside from the information you've just given us, we'd

like to know what things get in the way of your
actually using these tools.

Castin:

Covill:

Hudson:

Sleeper:

Examples: 1. People change the tools without

telling you.

2. Operations personnel don't follow
instructions, or otherwise goof.

3. User's manual: incomplete; too
complex or time-consuming.

4. Temptation to invent one's own
tools.

5. Proprietary considerations.

Tools are changed before documentation is updated.

"Nobody ever seems to include the need for main-
tenance"” in the budgets for personnel, computer
time, and equipment.

The main problem was the fact that the "users'
manuals were incomplete and inaccurate."

Certain features, such as a decimal register
dump, did not actually get in the way, but were
irrelevant to the work.

"We're in comparatively excellent shape here."
But in most large data centers, "the almost

civil service attitude" gets in the way. "You
have no support, and part of that is negative."

A study at Lockheed a few years ago indicated
that the probability of a run getting

IT -18

successfully through all of the steps in the
center was less than 0.25.

Question: How about the temptation to invent your own tools?

Mr. Hudson: In general, it is true that "you don't learn
what's there; you do your own thing." But at
Jacobi the temptation was "minimal, because of
the lack of time."

Mr. Brown: "It's more pleasant to invent your own tool . . .
You get status. That's the biggest one problem."

Question: Are there any aids which help the programmer convert
the static information into an understanding of the
dynamics of the program? . . . are any conceivable?

Mr. Harrington: There are no such current aids. "I used a kind
of diagram which restated the action . . . know
of no work in this area . . . It's up to the
individual."

II -19

PART IV

FACILITIES AND LANGUAGES

Question: What about higher-order languages?

Mr. Harrington:

(Our Comment:

Mr. Harrington:

The programmer "can accept what he gets, or try
to think like a computer thinks." Recommenda-
tion: The programmer should have the easy capa-
bility to enter the lower-level language, "not

just in a subroutinized way . . . but . . . get
a dump of what happened at the machine language
level when the statement was executed." Also,

one might wish the object code for any state-
ment or group of statements.

An important philosophical question is: Should
software be designed to reward poor programming?
Also, this grates against the notion of an opti-
mizing compiler.)

"There is a need for a meta-language that would
translate between the application and the lan-
guage." This would be analagous to the language
used in writing a compiler.

You should have debugging routines, not just
computational routines, in things like FORTRAN.
There are trace routines, but . . .

Accounts Payable was a very large system at
Chrysler due to the very large number of vendors.
Re-coding Accounts Payable, from COBOL to some-
thing like BAL, reduced the run time from 72 to
28 hours. Besides (obviously) lowering cost,
this reduction facilitated maintenance, because:
a. It created the effect of making more
machine time available.
b. A full system test was made feasible.
c. Re-assembling, following changes, was
faster than recompiling.
d. It required different levels of skills
and programmer types.

Multiple cross-referencing (e.g., by vendor,
part number, length of time since invoice

ITI -20

received, etc.) was a big problem. The files
were not big enough to hold all of these data.
A higher-order language tailored specifically
to Accounts Payable (e.g., permitting state-
ments like DO VENDOR EXTRACT) would have been
helpful.

Question: Do you think there is any danger that we will run
into English-language- type ambiguities in higher-level
languages?

Mr. Covill: "We already havel!" It is not generally recog-
nized that "The compiler takes things in a
standard order" and has other implicit decision-
making features, so that "people don't know
that their statements were ambiguous."

But this may be a necessary situation. Other-
wise "you are like the old English writers who
expressed their thoughts with increasing prec1-
sion to a decreasing number of people."

Mr. Sleeper: "Yes, there is not only a danger, but you will.
But in my oplnlon, the added 'sensibility' that
you get . . . outweighs the danger."”

Question: Now a question about Turn—Around Time and over-all
availability of machine time.

a. What kind of TAT do you think would be ideal
(1) for simple programs; (2) for complex
programs?

b. Speaklng of your own work hablts only, can
you envision any problems from a TAT that was
very short?

Mr. Covill: Typical turn-around time is one hour, but "brief
turn-around times would do the most for me" in
debugging. There would be no problem with very
short times: "I'd like to have a remote job
entry terminal, throw in a job, wait to hear
the printer . . ."

Mr. Hudson: " Overnight turn-around time was long enough to
degrade performance. A four-hour TAT was "about
right, except for simple clerical goofs." A

very short TAT would "discourage analysis."

II -21

Mr‘

Mr.

Question:

Mr.

Mr.

Mr.

Mr.

Sleeper:

Brown:

"I get bent out of shape if it takes longer
than one hour" for any program. For many, the
ideal time would be a few minutes.

(Any problems from a TAT that was very short?)
"NO! !Il ' i

For simple programs, a fast TAT. For complex,
longer (slower).

"We get immediate turn-around time on time
sharing. On batch, . . . two or three hours."

(Any problems from a very short TAT?) "Not
knowing what to do, I'd throw in another run,
instead of thinking for myself. I'd be less
of a thinking programmer."

When you have slow TATs, do you find it hard to work

on more than one program at once? In other words, how
many projects can you keep active and outstanding at

once?

Covill:

Sleeper:
Brown:

Castin:

With overnight TAT, "It takes time to shift
gears. The number of programs I can keep going
is not greater than three." However, it helps
if the programs are all part of the same system.
Having them in the same language also helps,
but having them part of the same system is more
important.

"About three."
Only one project.
When there is overnight TAT, people seem to

drift into an arrangement in which each pro-
grammer is working on three different projects.

I1-22

Question:
Mr. Covill:
Question:

Mr. Covill:

Question:

Mr. Covill:

Question:

Mr. Covill:

Question:

Mr. Covill:

Question:

PART V

QUALITIES OF A GOOD MAINTENANCE PROGRAMMER

. « . differences in people?

"Some people are (very much) better at debugging.”

What makes them better?

"Their logic and thinking. 1It's like science.
Some people can iteratively form and test
hypotheses" and others can't.

Also, "a good debugger will test his original
hypothesis so that a false proof lets him make
a new hypothesis."

There are two kinds of bad debuggers: (1) "One
makes a great big detailed test of A, and learns
that that's not the answer." (2) The other
"leaps immediately to a conclusion, and puts in
a patch." "The leapers and the plodders are
both bad."

"The art is sort of figuring how specific” to
make the diagnostic tests."

Is training a factor?

"People are not taught to program so that their
programs are maintainable."

Why not?

They write programs which are "absolutely planar.
Nothing is modularized."

Why is that so?
"They've never had to debug. 1I'd like to
require every new programmer to spend one year
debugging before creating any programs."

Do the qgualifications for a good debugger remain valid

if he moves to an interactive console? Would a termi-
nal be dangerous or wasteful for a poor programmer?

II -23

Mr. Covill:

Question:

Mr. Covill:

The qualifications for the good debugger would
"be even more valid, because there would be
less time to change strategies."

"A terminal doesn't do anything, one way or the
other, for guality. It just makes it happen
faster."

"Debugging is a function of the individual and
his approach, and not of his tools."

other research on this topic?

One relevant research project is going on in

the UCSD Psychology Department. It relates to
individual differences in "scratch-pad" memory
(in programmers?). The director is Dr. Donald

- A. Norman.

II -24

PART VI

OPINIONS ABOUT PERSONNEL AND ADMINISTRATION

Question: Anything . . . about personnel?

Mr. Harrington: Personnel policies . . . are perhaps an under-
estimated area of importance for investigation.

Question: Do you have responsibility for a specific set of pro-
grams within the system? OR '
Do your assignments rove all over the system?

Mr. Covill: At Chrysler, originally, a programmer was respon-
sible only for "his programs." Later, however,
areas were created in which programmers could
specialize. "A system of only programs never
works. You've got to take the programs out and
make them definable entities"” within the frame-
work of a larger system, and then make assign-

ments. o

Mr. Hudson: Primarily, responsibility for the executive -
monitor.

Mr. Sleeper: Yes, he specializes, but "I take calls on any-

thing I know about,” including maintenance of
the hardware.

Mr. Castin: Mr. Sleeper's answer is "most realistic."”
Mr. Brown: The assignments do cover the system.

Mr. Harrington: The systems analyst was assigned to a small
group of customers, but programmers themselves
did not specialize. On the contrary, there was
a formalized program of "cross-training," and
another "formalized study of common problems."

(Our Comment: The fact that so much effort was spent against
specialization might indicate that specializa-
tion was really the course of least resistance.)

Question: In general, was the number of programmers assigned to

an area proportional to its seriousness? Should it
have been?

II -25

Mr. Harrington: ©No, because of the dynamic nature of the system.
Different things were critical at different
times, and people had to be transferred to the
points of temporary problems.

Question: How are emergencies handled?
Are you on call for handling emergency requests?

Mr. Hudson: Yes. There was a skeleton crew, and this was
necessary.

There were basically two tasks: First was the
routine operations involved in getting runs
that customers paid for; this always took pri-
ority. Second was optimization or improvement
of the system.

Mr. Sleeper: Yes! The corporation is sufficiently small
that emergencies can usually be handled infor-
mally.

Questién: Do more urgent requests short-cut part of the assign-
ment system?

Mr. Harrington: Yes. For example, the car ordering system was
tied to the assembly line, and was most vital.
For a problem with such a system, the most
senior men were on call; they would solve such
a problem, or know whom to call. (They were
called "Customer Service" for political pur-
poses. Also, their on-call assignments were
rotated.)

Question: Now we want to know a little about the kinds of skills
your job requires. In particular, do you have to
spend very much time in routine "dog work"? (e.qg.,
clerical work, versus thinking and searching for bugs).

Mr. Covill: "There is way too much. For every little
change, there is a release memo . . ."
Mr Hudson: "I never viewed the work as dog work."
Mr. Sleeper: Most programmers feel they do, "but I don't."
. « . could use a little (more clerical help),

but having a terminal in your office helps
eliminate dog work."

II-26

Mr. Brown: Yes, programmers complain of the requirement
"to make the listing mean a lot more than it
normally means."

Mr. Harrington: The use of para-professionals for clerical
work should be investigated as a promising
idea.

Question: Is there anything in your work that you could classify
as physical inconvenience?

Mr. Covill: "Being in a bull pen. You need a little work
table for every two or three people. You need
tables and blackboards; desks aren't enough."

Mr. Castin: People should change offices when they change
" functions.

Mr. Hudson: Cross-indexing with the present big stacks of
paper is indeed inconvenient.

Mr. Sleeper: "No, just the funny hours."

Mr. Brown: Yes. Simply the physical limits on sizes of
sheets, etc., represent an inconvenience.

Mr. Harrington: Importance of the physical environment may be
under-estimated. At Chrysler, taking program-
mers out of a bull-pen improved their produc-
tivity significantly. (They were placed in
two-man cubicles.) :

Providing a small conference room for each four
cubicles (i.e., for each eight men) facilitated
useful, informal consultation.

Question: Now a question about whom you have to deal with and
any problems that arise. Do you get a job request
from a customer directly, or does it come through
some kind of interface? How well do you think the
interface works? 1Is it intelligible the first time,
or does it take several go-arounds? In short, do you
have problems interfacing with the customer?

Mr. Covill: No.
Mr. Hudson: In general, the request came directly from the

customer.

I1-27

Mr. Sleeper:

Mr. Harrington:

Mr. Hudson set his own priorities.

The request was "made intelligible in the first
session with the customer."

A typical request for an improvement in' the
executive system will come from a salesman. It
does take several go-rounds before anything
comes (if ever) of such a request.

For system modifications, there are two general
origins: (1) Users of the system . . . one of
45 groups within Chrysler. (2) The programming
staff . . . which usually makes a technical
request for something which will improve the
usability of the system in operation. Requests
for error corrections come from the staff, and
may represent emergencies.

Each system analyst was assigned to a certain
group of customers. When a request came in,
the systems analyst prepared the top-level
flow charts,)
the programming supervisor estimated times
and schedules and the programmer got a
i. narrative description,
ii. flow chart
iii. IO format (of the user's require-
ments) .

The interface arrangement at Chrysler "was the
best I'd seen.”

II-28

Question:

Mr.

Mr.

Covill:

Hudson:

PART VII

THOUGHTS FOR THE FUTURE

Now we'd like to turn to an entireiy different way of
looking at tools for program maintenance. If money
were virtually no object, what sorts of tools would

you ask to have
possible? Here
seem to exhaust

Interactive
Interactive
Redesign of

designed, to make your job as easy as
are some examples, but don't let them
the possibilities. Suggest anything.

consoles
consoles integrated with documentation -
programming languages to facilitate

ease of maintenance
Computer output goes to microfilm and a console
oriented system can retrieve and display it.

First, "a

big o0ld engine that looked like a

tap drive, where I could just dial in the kind

of erroxr"

"I wanted.

(e.g., a line transmission failure)

Second, "a system that stored all the current

data base
them . .

definitions, with the OK names for
and a terminal to look at them."

Third, a way of "automatically updating the use
table, by version of the system."

Finally, "some way to integrate this whole thing
with Operations, so you would know if there
really was a program problem." For example,
formats which are convenient for programmers can
be inconvenient for keypunch operators, who then
make mistakes.

"No tools will ever remove having a person with

a certain
partly an

level of talent . . . Programming is
art."

It would be good to have "tools to screen out
unnecessary information in a dump. If you were
a little better at this, you could easily speed
up de-bugging by a factor of three."

I1 -29

Mr. Sleeper:

Mr'

(Our Comment:

Mr. Harrington:

Mr.

Brown:

Castin:

On big systems, there is a need for a way of
taking a correction and "automatically integrat-
ing it into the system." This is true because
of the (present) high probability of human
error.

"There's nothing I really strongly desired.
I'd like an improved set/use program" with very
convenient formats and controls.

A minor complaint: Teletype keyboards are
awkward to use. Keyboards need to be made more
compatible with people.

"I received a proposal for 'computer-aided pro-
gram development,' where you would sit at an
interactive terminal, draw a flow chart, and
your flow chart would get compiled: You want a
flow chart compiler."

On the console with the flow chart, you could
have the computer "mark the lines heavy on the
paths that you have used.")

I'd like a console whose buttons would give
selective dumps of anything from one word to
the whole thing.

"A trace routine coming at me on a console,
telling me where I'm at."

On output, not only the output itself, but the
status of buffers, through time, which would
tell how "this garbage" originated. Now "the
programmer has to simulate a computer," which
is a bad situation.

Something like a pre-set stop, or break point
. « . the sort of thing incorporated in the
hardware for machine-language programming of
the old computers. (Later note: . . . and
something like the old "single-step" versus
"continuous" modes of operation?)

Here are some things which maintenance program-
mers at SDC have suggested:

I1-30

A trace which showed only when jumps occur
other than to the next sequential instruc-
tion. ("It takes so long to look through
traces now.") __

Or, trace which would show only when par-
ticular items or thin film registers were
set.

A handy aid would be a display which
appeared each time a piece of code was
operated or an item was set.

A model of the system which would allow
input to be tested for completeness of code
(prevent fanout).

A tool for on-line dumps without using the
utility system.

Or, have the resident utility always in
core . . . maybe in an untouchable area.

Update documentation by using the computer.
Make a documentation change just by changing
cards, as with a program.

During the system development phase, as the
Part I specifications are converted to a set
of programs, a series of notes are usually
written to communicate inputs to various
tables, etc. These should become standard
system documents. In other words, the "Impli-
cation Notes" should be incorporated in the
formal documentation.

The ability to parallel run the system with
an old and new compilation of a program to
point out differences . . . like an experi-
mental and a control group.

Centralize all documentation so that each
change can be readily seen by the next user.
This would also make it easier to keep the
documentation up to date.

When developing a system, gear the utility
tools towards aiding the system in its

IT -31

development as well as in its maintenance.
Or, write the utility programs first,
rather than in parallel with the system.

10. A code analyzer which would verify that your
patch is not going to adversely affect
existing code, branches, and item settings
. « « guard against unexpected transfers to
your patch.

11. A display of all areas of core your program
affects each time it operates. This would
turn up implicit references.

12. A trace-back capability where a table of the
last file I/0 requests, program interrupts,
etc. is maintained.

(Our Comment: This 12th request is for a sort of computer
analogy of the human's "immediate memory," hold-
ing a temporary record of all of the N most
recent events.)

Question: Finally, is there anything we should have asked you
but didn't? .
Mr. Sleeper: None, except to emphasize that "I am totally in
favor of higher-level languages."

"There will not be any single higher-level lan-
guages as a panacea . . . each . . . will be
for its own problem area."

"You can write system software in a higher-level
language." Most useful would be something like
a version of ALGOL through which a program
structure could be implied.

Mr. Brown: "Maybe, 'what makes me the maddest about soft-
ware development?' What are the frustrations
and agonies . . .?"

Mr. Hudson: "You ought to categorize those things the human

is going to have to get on board and interact
with" in order to decide realistically what
tasks can be turned over to the tools.

I1~-32

APPENDIX III

BUIC Case Studies and Diary

The BUIC Case Studies which appear in this appendix were
developed by Mr. Michael J. Castin of the Systems Development
Corporation. The BUIC Diary was kept by Mr. Tom Brotherton also
of SDC. The commentary on each diary entry (generally below the
solid line) was supplied by Mr. Castin.

A Glossary of BUIC Terminology appears after the Diary together
with explanatory material on the BUIC Error Correction and Pro-
duction Cycles.

Brief résumés of Mr. Castin and Mr. Brotherton appear at the end
of this appendix.

IIT -1

BUIC CASE STUDIES

IIT -2

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

BUIC CASE STUDY

Poor Documentation

In order for a maintenance programmer to
perform at maximum efficiency, he must be
able to install program changes quickly
and effectively. To accomplish this, he
must be able to determine quickly the
affected areas of the program. If programs
are not well documented, the programmer
will be considerably slowed down.

Recently, a change to one of the BUIC
Manual Input card formats was requested

by ADC. The programmer assigned responsi-
bility for the Manual Input function esti-
mated the time required to install the
necessary code. He had been assigned to
that area only two months earlier but felt
that the change was not complex to install.
Problems arose when he discovered that the
existing code had already undergone a
great deal of modification and the docu-
mentation described the area only in over-
all terms. This made it very difficult to
determine the logic flow through the
affected program area.

The programmer finally delivered the code
by spending 120 hours on developing the
change rather than the 60 hours he origi-
nally estimated. He delivered it only 3
days late by working overtime and on his
vacation time.

IIT -3

LITLE $

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

BUIC CASE STUDY

Uninformed Third Party

In a complex large system, changes to one
area may affect other areas. If the
change coordinator fails to inform all
affected parties, incompatibilities and
schedule slippage may occur.

The addition of a Real Time Quality Control
function to BUIC necessitated the addition
of a new program module to the Air Defense
Program (ADP). Adding that module caused
the operating sequence of existing modules
to change. The coordinator of the new
product was not aware that a special

module timing processor required modifi-
cation whenever program sequencing changed.

As soon as the new module was loaded on

the ADP master tape, the programmer respon-
sible for analyzing module operating time
began to experience difficulties with the
timing processor. He estimates that 4

days were spent in determining the cause

of his difficulties.

Although no schedule slippage occurred as
a result of this problem, 4 days which
could have been put to better use were
wasted.

IIT -4

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

BUIC CASE STUDY

Language Requirements

The language in which a program is coded
will limit the logic available to the
programmer. Additionally, he must code
in the techniques the assembler/compiler
will accept rather than the techniques he
might otherwise choose.

Whenever new programmers are transferred
into the BUIC project, they must learn not
only the functional requirements of their
area but the language requirements of the
JOVIAL compiler. 1In reality, this is not
confining since the compiler contains the
attributes required by BUIC's design.

A good example of unique language regquire-
ments is that of the capability of the
BUIC compiler to deal with individual bits
of a data word. Not all compilers have
this feature and programmers must learn
how to use it when they join BUIC or how
to get around it when they leave.

III -5

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

BUIC CASE STUDY

Indirect Addressing

In BUIC all indirect addresses are rela-
tive to the start of the applicable pro-
grams data region (BAR). The BAR is
located right after the instruction region
and each time instructions are added the
address of the BAR is moved down accord-
ingly. In order to allow this dynamic
updating an indirect address list is
created for each program and put in a
specific location so that it can be up-
dated with each change.

Unfortunately one cannot add to this list
after a program is compiled. (SRC will
not create a new entry.) When programmers
attempt to use a new indirect address it
will work only until the location of the
BAR moves.

In a previous version, a corrector was
issued to the field sites which had an
indirect address reference which was not
in the indirect address list. The cor-
rector worked fine until somebody ran a
test which changed the affected programs
BAR. The system hung up and a new cor-
rector had to be written which did not
contain a static indirect address.

III -6

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

BUIC CASE STUDY

Modifying Table/Item Locations

Whenever the location of a table or an
item changes, all references to the table
or item must be changed accordingly. 1In
a large system it can be quite difficult
to discover all references.

When table and item locations change in
the BUIC system, all references to the
items and tables must be recorded using
either the compiler or Symbolic Relative
Corrector. The only tools for discovering
all references are the SET/USE listing

and the Tag Reference listing.

Problems have arisen in BUIC because of
the following limitations of the two
listings:

l. They are accurate only to the most
recent compilation of each program.

2. Implicit references such as those
used by Pseudo Instructions are not
detected by either tool. (An exam-
ple of a Pseudo Instruction would
be the CYCle Instruction which will
shift a register from 1 to 48 bits
dependent upon item size and loca-
tion.

IIT -7

TITLE:

PROBLEM DESCRIPTION:

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>