
a es

ESD-TR-72-I2I Vol. 2

ESD ACCESSION LIST
TRI Call No. r7<T/7j5 /^
nnn,Nn. J Of 2^ CV&

A STUDY OF FUNDAMENTAL FACTORS UNDERLYING
SOFTWARE MAINTENANCE PROBLEMS: FINAL REPORT

APPENDICES

20 December 1971

ESD RECORD COPY

(TRlk Building 1210.

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-7I-C-0I25 by Corporation for
Information Systems Research and Development/CIRAD, 401 N. Harvard,
Claremont, California 91711.)

W>wm

ESD-TR-72-121

A STUDY OF FUNDAMENTAL FACTORS UNDERLYING
SOFTWARE MAINTENANCE PROBLEMS: FINAL REPORT

Appendices

20 December 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Uanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. F19628-71-C-0125 by Corporation for
Information Systems Research and Development/CIRAD, 4 01 N. Harvard,
Claremont, California 91711.)

APPENDIX

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

APPENDICES

TITLE

Statement of Work for This Study

Software Maintenance: Questions and Answers

BUIC Case Studies and Diary

A Study of Factors Inhibiting the Effectiveness

of Maintenance Programmers at Chrysler Corporation

CSA Software Maintenance Report

- Scenarios and Questions

- Higher Order Languages and Maintainability

Technical Approach and Aims for a Path Analysis

Feasibility Study

Instructions for Path Analysis Experimental

Programmer

Specification of Modifications for Path Analysis

Minimum Paths According to Staff Programmer

Experimental Programmer's Verbalization While

Making Modifications

Guidelines for Keeping a Magnetic Tape Log

of Program Maintenance Mental Processes

Tape Logs of Experimental Programmers

Language Statement Types Which Define

Conceptual Groups

APPENDIX I

Statement of Work

for This Study

STATEMENT OF WORK

Computer. Aided Software Maintenance Study

1.0 Introduction: Systems programmers must often maintain programs
that someone else wrote. To do so, they must first learn about
these programs by consulting the written documentation prepared
by the originsL programmer. Such documentation commonly consists
of flowcharts at various levels of detail, narrative descriptions,
and ultimately, program symbolics. Even for only moderately com-
plex systems, it is difficult to use these materials efficiently
to remedy defects that show up in use or to evaluate proposed
system changes.

In this procurement, the Contractor will focus on
problems faced by programmers who must maintain programs someone
else wrote. He will identify and study the factors which inhibit
the effectiveness of current maintenance programming aids, and
as a result of this study, he will propose new kinds of computer
aids for use by maintenance programmers. The emphasis in this
study will be on the development of principles underlying the
effective use of such aids, although some effort will be devoted
to initial development and test of promising aids. .

2.0 Scope
*— /

2-1 Objective; The objective of this procurement is to study problems
of maintaining complex programs in order to develop more effective,
computer aids for software maintenance. It is intended that these
methods be especially useful to programmers who must maintain programs
that, someone else wrote.

2.2 Approach: Contractor will investigate fundamental problems.limiting
the effectiveness of maintenance programmers and will propose and
study new techniques for increasing their effectiveness. He will
identify inadequacies in current methods and identify reasons for
these inadequacies. He will develop case studies illustrating prin-
ciples and problems encountered in software maintenance, together
with some estimate of the importance of the principles and problems.
.He will specify 3nd carry out a research program for developing
further information that must be known in order to create useful
maintenance programming aids, and he will specify and investigate
new methods to help maintenance programmers. He will investigate
the role of graphics consoles in maintenance programming. At the
end of the study, he will present a balanced view of realities vs.
possible techniques, together with a plan for further study of these
problems and techniques. ••

1-1

3.0 Areas of Consideration

3.1 Use of Graphics Terminals; Contractor's study should emphasize
the use of on-line interaction with a graphics console.

3.2 Case Studies: The Contractor will develop and evaluate his ideas
with respect to the maintenance or modification of particular
compilers, operating systems, data management systems, or other
sets of existing complex programs with which he is familiar. From
this source of material, the Contractor will draw examples of the
kinds of problems one. faces in maintaining or modifying programs
that someone else wrote. The Contractor will evaluate his proposed
techniques with respect to these specific real-world examples. Pre-
ferably the system of programs that serves as a test environment
and as a source of case studies will be a system that is already
being maintained or modified by the Contractor. Note that it is
not necessary and not expected that any software modifications or
software maintenance be carried out. The Government only desires
that the research be accomplished with respect to actual problems
that have arisen in connection with existing systems of programs.

3.3 Extent of Programming Effort; Contractor shall test his techniques
by thoughtful, scientific study; he shall not embark on an extensive
programming effort before fundamental limitations have been carefully
identified. The Contractor is encouraged to test his ideas on actual
computers only if a relatively small amount of programming is required
for a meaningful test.

3.4 Possible Problem Area (example); One of the inherent deficiencies
in current documentation methods is the presentation of information
only in a static format. A programmer who must analyze program flow
for complex test cases may have considerable difficulty in relating
the test case to the actions described in the flowcharts. Hence
means might be provided to show the actual program flow (on-line)
for test cases specified by the programmer, and thus the programmer
might learn the structure and function of the program more quickly
and more thoroughly.

3.5 Interdisciplinary Ar^roach; The Contractor is encouraged to include
on his research team a person with background in the behavioral
sciences as well as persons experienced in computer sciences. Such
a person will be expected to help devise suitable methods for scien-
tifically assessing the general advantages and limitations of the
techniques to be developed under this Contract. He would be expected
to provide useful insight into the cognitive processes and the in-
herent human limitations and requirements of maintenance programmers.

4.0 Task to be Accomplished

4.1 Phase I - Overall Analysis;

4.1.1 Step 1; The contractor will identify problems interhent in'(and '

1-2

especially those peculiar to) maintenance programming where the
maintenance programmer is not the original programmer. The
maintenance programmer is assumed to be an experienced systems
programmer, and the system being maintained is to be considered
fairly complex (e.g., any system which would normally be pro-
grammed by more than one programmer).

4.1.2 Step 2; A set of case studies, based on actual systems maintenance
problems (see 3.2 above) will be developed to illustrate the funda-
mental principles and the problems inherent in maintenance program-

• ming. (The case studies are to serve as paradigms of system mainten-
ance problems, and hence should represent problems which are in some
sense typical of the problems faced by maintenance programmers.)

4.1.3 Step 3: A number of possible maintenance programming computer aids
will be proposed. Each proposed aid will be characterized in terms
of (1) its relation to fundamental factors underlying systems main-
tenance problems; (2) the kind of research that must be accomplished
to assess the probable utility (e.g., what information must be known
to make this assessment, and how could this information be developed)
of the proposed aid; and (3) the amount of work that would be required
to test the proposed aid's effectiveness. (The solutions proposed
in this part of Phase I, together with the case studies, will be used
by the Air Force to determine the extent and value of initiating a
broader, more intensive, research effort on maintenance problems).
Solutions proposed as part of this step will range from conservative
to highly speculative, since the purpose of the Step is, in part,
to stimulate thought on solutions to maintenance programming problems.

4.1.4 Step 4; The contractor will next select a small set pf problems,
factors, and/or proposed solutions to be investigated more thoroughly
in the remainder of the contract (Phase II). The rationale for this
selection and a plan of research for gaining a deeper understanding
of the selected issues will be furnished (see 4.2 and 4.3 below).

4.2 Phase I - Report; The results of the Phase I study will be presented
in a Technical Report consisting of two parts. Part I will contain
the results of Steps 1, 2,and 3 of Phase I. Part II will contain
the information developed in Phase I, Step 4. •

4.3 Phase II - Intensive Study of Selected Problems/Solutions: A
scientific study of selected problems or proposed solutions to soft-
ware maintenance will be undertaken as specified in Part II of the
Phase I report (see 4.2). The purpose of this study is to examine
more carefully the feasibility of these approaches and especially,
the underlying fundamental problems that might impede the effective-
ness of proposed techniques. The emphasis of the study will be the
development and evaluation of principles concerning the nature of
software maintenance so that the effectiveness of possible programmer
aids can be more accurately assessed in advance of implementation or
actual tests. Limited evaluation of proposed programmer aids will be
accomplished (see 3.2). Extensive programming will not be undertaken

Ir3

in this phase. Instead, scientific study and pilot experiments
together with judicious hand-simulation or analysis of proposed
computer implementations will be used insofar as possible to
assess the prcb-ible effectiveness of proposed techniques and to
examine underlying problems. (Some programming effort will un-
doubtedly be necessary, but since the emphasis of this contract is
the study of principles underlying the effectiveness of proposed
maintenance programmer aids rather than the implementation of
immediately useful aids, it is expected that a relatively small
amount of programming effort will be required.)

4.4 Final Report: At the conclusion of Phase II (4.3), a Final Report
will be prepared consisting of 1) Fart I of the Phase I report,
revised as necessary to reflect know ledge gained in the Phase II
studies; and 2) a presentation of results obtained in Phase II.

4.5 Part II of the Phase I report (4.2) will serve as a working paper
defining the work to be accomplished during the remainder of the
contract (Phase II). Work on Phase II will not proceed until
receipt of Government approval. A decision on whether or not the
proposed plan is approved, with or without modifications, will be
rendered within seven (7) calendar days of the receipt of Part II.

1-4

APPENDIX II

Software Maintenance: Questions and Answers

CONTENTS

Part Page

I. Introduction and Interviewees II-1

II. Sources of Reference Information II-5

III. Maintenance Tools and Test 11-12

IV. Facilities and Languages 11-20

V. Qualities of a Good Maintenance Programmer II -23

VI. Opinions About Personnel and Administration 11-25

VII. Thoughts for the Future 11-29

PART I

INTRODUCTION AND INTERVIEWEES

INTRODUCTION

This document is a compendium of answers to various questions
about the problems of maintaining software systems. These
answers were generated during interviews over the period of
2 March to 6 April 19 71. The interviews generally were con-
ducted by a two-man team with one person reading questions from
a prepared questionnaire and the other injecting clarifying
inquiries while taking notes. The results viewed as a table of
interviewee versus questions are not complete because some ques-
tions did not apply to specific interviewees. In other cases,
certain questions evoked such a torrent of freely flowing com-
ment that it seemed best to pursue these lines to the neglect of
the prepared questions. The emphasis was on obtaining realistic
information and opinion directly and indirectly related to the
problem of maintenance programming.

THE INTERVIEWEES

Five full interviews were conducted. The people interviewed are
listed below with some background material about each. A sixth
person, Michael Castin, commented on some of the questions.

ROBERT HARRINGTON - Mr. Harrington was in charge of a staff of
260 including 100 programmers, who used 21 computers, at Chrysler
Corporation's centralized computing facility in Detroit. A large
part of the effort involved here concerned a real-time on-line
order entry system for control of assembly lines. Mr. Harrington
was administered a different questionnaire than the other four.
This questionnaire differed in the order and emphasis of the
questions asked. His responses have been rearranged to fit the
format of the other questionnaire using the best judgment of the
authors.

JOHN BROWN - At TRW Mr. Brown's group is "the organizational
focal point for questions regarding software maintenance."

PAUL SLEEPER - Mr. Sleeper is Director of Technical Development
for Remote Computing Corporation. His group of seven people is
"responsible for the technical products that the company offers."
His primary duties are the development and maintenance of

II-1

executive programs for a time-sharing system. Secondly, he con-
tributes to the development of some business application programs.
His company's computing center is organized around two Burroughs
5500s. Each can theoretically handle around 40 terminals. A
total of around 50 terminals, including several used in-house by
the company, are actually serviced by the two 5500s.

WILLIS HUDSON - Mr. Hudson is presently an employee of CSA. He
is experienced in machine-language programming and in data reduc-
tion. He also was employed at SDC in the development and main-
tenance of SAGE programs. Later assignments at SDC included
developing and maintaining software which "solved the hardware
interface"; e.g., compilers, and executive monitors. He was also
employed for a time at Jacobi Systems. Mr. Hudson will graduate
from law school in June and is preparing for the Bar Exam,

DANIEL COVILL - Mr. Covill is Associate Director—Development,
Computer Center at the university of California at San Diego.
Previously he was the Chrysler Parts Division's Manager of Pro-
gramming. There a major area of concern was the maintenance of
programs which others had written. His employment prior to
Chrysler was with the University of Wisconsin, the Burroughs
Corp., and SDC on the SAGE project.

MICHAEL CASTIN - Mr. Castin, an employee of SDC, maintains and
directs the maintenance of portions of the BUIC software system.
He has also used his extensive BUIC experience in consulting on
the present project.

INTRODUCTORY RESPONSES TO QUESTIONS

Question: First, we would like some general background informa-
tion on the overall system you are working on and what
you do. What is the overall purpose of this software
system?
Multimachine ?
Programmed in an HOL?

Mr. Covill: On the SAGE project, the system was well
defined. But at Chrysler, it was "not clear
what the system was ... a lot of systems for
one customer." A programmer felt he was work-
ing on a program, not on part of a system:
there was just a large collection of batch-mode
programs.

II -2

Mr. Hudson:

Mr. Sleeper:

Mr. Brown:

(Our Comment:

"The government contractor thing is better, for
maintenance programmers, than the business
thing."

At Jacobi Systems, the purpose was the effective
use of a Univac 110 8. The operating system was
Exec-2. Interfaces included those to applica-
tions-oriented programs; the concerned 10, and
a library of subroutines.

It was not a multi-machine system, it was batch
only, and it was not programmed in a higher-
order language.

It is: time-sharing, primarily;

multi-machine;

programmed as much as possible in
higher-level languages.

In addition to serving in a consulting capacity
in TRW, Mr. Brown's group is working on "PACE
(Product Assurance, Checkout and Evaluation)."
This is, or will be, a system written in Fortran
for assisting in the check-out of other programs
written in Fortran.

Only one program, composed of about 1,000 state-
ments, is actually operational in PACE. Five
other programs are planned.

The one operational program "will look at a
program, and find all ways—all directed
graphs—through it ... it will label chords."
The result is "a nice representation of the
logical structure of the program under the
statements."

This part of PACE seems to have some close
antecedents in the work of others, namely
Green, 1970.)

Question: Does it do this before compilation?

Mr. Brown: Yes. It "looks at the program, modifies it"
(by adding a statistical table) and "evaluates
the percent of the code that has been exercised
by the current test data."

H-3

Question: How large a project is PACE?

Mr. Brown: It is a sort of "pet project." But, in terms
of memory, "the TS core limit is 64K octal."
In terms of people, four people have worked on
PACE off and on for about a year, for a total
of only about six man-months of effort.

II-4

PART II

SOURCES OF REFERENCE INFORMATION

Question:

Mr. Castin:

Mr. Hudson:

Mr. Sleeper:

Mr. Brown:

Where do you get the information you need to make
modifications or correct the errors? More specifi-
cally , please comment on the value to you of the
information to be gotten from . . .
The request itself . . .

"There is no substitute for a well-explained
request."

There were some sophisticated users who made
"very helpful" requests, but most were "simply
FORTRAN programmers; they would say, 'This
program ran before, and I just changed two
cards.1" These were not very helpful.

In general there are two very different kinds of
requests. One complains of a Command and Edit
failure. The information given "is usually
pretty good," although, of course, it varies
with the source. "I insist on the teletype
sheets (which show the effect) of the 'disas-
ter,' and listings" from all parties.

A second kind of request is a vague request for
some kind of extension of the system. These
are not usually very useful.

It's very valuable for developing a program,
and in "telling you where to go to change the
coding." For example, PACE is being adapted to
a 360; the requests come in the form of specifics
such as "You have to use BLOCKDATA subroutines."

(Our Comment: Since PACE is not an operational system, these
are not really maintenance requests; they are
pieces of advice^ from one programmer to another,
during the development of a program.)

Question: . . . the value . .
written documentation?

of the information . from

Mr. Hudson: For Exec 2, "it varied from extremely bad to
non-existent."

II-5

_

Mr. Sleeper:

Mr. Harrington

Mr. Castin:

Mr. Covill:

"That is an interesting question. With the 5500,
it is mostly oral; there is not all that much
written down. It's mostly in the (programming)
language and in small groups of programs."

At Chrysler, there was a full-time librarian;
programmers used documentation enough to make
it well worth while.

In general, documentation is very valuable if^ it
is kept up to date, kept all together where you
can find it, and otherwise handled well. But
if it deteriorates, people ignore it, and there
is a vicious circle; it just keeps on getting
worse.

"With many programs, the problem is that there
is no basic strategy. There isn't any way to
document an ill-conceived program that will
make it maintainable. Mainteability proceeds
out of" good basic strategies for the program.

At our company, documentation is very valuable,
but it1". TT.^stly in HIP form of "Inter-Office
Correspondence (IOC)" and not in one big docu-
ment.

Question: Where does the formal, written documentation reside?

Mr. Brown: "Only in the form of IOCs. And these are a
users' guide, not a programmers' guide."

Question: Would a new person be lost . . .?

Mr. Brown: Probably he would, but . . . there are documen-
tation cards in the program. You don't need
formal documentation yet; it is embedded in
the code."

Question: How useful is out-of-date documentation?

Mr. Brown:

Mr. Hudson:

Mr. Sleeper:

"Out-of-date documentation does have some value,
because it may tell the interfaces with system
functions." It does not give current details,
"but I wouldn't believe them anyway."

Out-of-date documentation "is very dangerous."

II-6

Mr. Harrington:

(Our Comment:

Out-of-date documentation "has a negative
impact."

As an idea, you might let the computer do the
dog work of documentation. But it would be
hard to inspect and do QA on changes if a pro-
grammer could enter them directly, without
going through an inspector.

Perhaps you could have a manual buffer in the
system. A computer would do the dog work, QA
would inspect the changes, and then they could
be entered.)

Question:

Mr. Hudson:

. . . the value of the source coding and comments
therein?

Not only at Jacobi but elsewhere, the comments
were "extremely beneficial." In spite of having
been "misled quite a few times, I've subcon-
sciously developed a reliance on comments.
Invariably I will scan the comments first" for
clues to what the problem is, and to identify
tl*e segment of code whicli should be examined
first.

In spite of relying heavily on them, "I don't
write comments. But ... I will write block
comments. I tend to believe them more."

Mr. Sleeper:

Mr. Harrington:

Mr. Castin:

(Our Comment:

Very valuable. "We try to take advantage of
comments" as much as possible, both in devel-
opment and maintenance. This "is very neat,
because of the programming languages (primarily
ALGOL and COBOL in-house, and FORTRAN and BASIC
by users) we use."

Source coding is very valuable; comments, less
so.

Most programmers at SDC would agree with
Mr. Hudson. They tend to scan through the com-
ments , looking for key words.

Perhaps we should look into this idea: Store
the comments separately from the code, but put
in connectors. Then:

II -7

Question:

Mr. Hudson:

(1) Give the programmer something like
KWIC, to help him scan.

(2) Automatically check to see where
comment changes are needed when a
patch is put in.

(3) Report patches to the right people via
the SDI idea.)

. . . the value of . . .
a. Formal meetings with other programmers and systems

analysts
b. Informal discussions with others - is it easy to

get help from an "expert"?

Fairly useful. Almost all meetings were
informal, because the staff was so small.

Mr. Sleeper:

Mr. Brown:

Mr. Covill:

Question:

"There were no experts."

"It's mostly informal. Formal meetings are
usually just a follow-up, to sanctify what has
already been decided. We like to keep the group
small enough so it will work." The information
is very valuable.

Regarding formal meetings, "I'm the only liaison
with Houston." To the people there, formal
meetings are very valuable. They are also very
valuable to a local programmer whom Mr. Brown
supervises.

Informal meetings are also very valuable; it is
easy to talk to Mr. Brown.

The most valuable source of information is
informal meetings with other programmers. The
second is the listings (in COBOL).

To what degree is interchange of information between
specialists formalized?

i. What kinds of aids to interchange are there?
How well do they work?

ii. What barriers do you observe to interchange
of information?

Mr. Harrington: Documentation standards were the formal means of
communication.

II-8

Question:

Mr. Hudson:

i. A quality control group checked each
document before letting a programmer
sign off on it. This worked pretty
well.

ii. Personality barriers. Some programmers
had to talk, others had to work alone.
"Talkers" were assigned to work
together, if possible.

. . . the value of the information you carry around
in your head?

This was valuable in combination with "analogies
with similar problems (on other systems) in the
past."

After a time, (experience was) the chief source,
plus "what I could dig out of the heads of my
co-workers."

Mr. Castin:

Mr. Sleeper:

Mr. Harrington

(Our Comment:

Question:

It is extremely valuable, because you do think
by analogy (with similar problems and systems)
to a great extent.

"For those (programs) I have specific responsi-
bility for it's very valuable. But even there
it's easy to lose the gory details if you're
away for (as short a time as) a couple of
months."

So-so, for the non-elite (programming group)
but very valuable for "Customer Service."

An important general rule is that the more
urgent requests demand more human memory.

There was a consensus among other programmers
at SDC, which was surprising to us, regarding
the significant extent to which maintenance
experience could be generalized from one soft-
ware system to a different one.)

What parts of the documentation are you most likely
to actually use? How useful is each of the following:

i. Flow charts?
ii. Narrative descriptive material?

iii. Commentary in the source listings?
What parts are you least likely to use?

II-9

Mr. Covill:

Mr. Hudson:

Mr. Sleeper:

Mr. Harrington;

"I don't bother with narrative material. I
hunt for what might relate to my problem."

Commentary is good if it is up to date. But
"people patch the operative (sic), but not the
comments. They can be a booby-trap."

At Chrysler, in COBOL, "the biggest thing of
all is to have good record lay-outs."

Flow charts are the most valuable "in the
initial exposure. They are more useful in
adding capabilities than they are in de-bugging."

Commentary is very valuable.

After initial study, 10 specifications are most
likely to be used.

We prefer the documentation to be in the source
code; it is most useful there.

"There is another type of documentation which
y-*u did not list; the 'interface specification:-'
. . . which I prefer to use" rather than the
more detailed, conventional documentation.

The programmer is least likely to use the nar-
ratives, because most are bad.

But the narrative can be very valuable, when
well done . . . can be much more concise than
flow charts. But analysts vary widely in their
ability to write . . . Most don't write well;
they leave out essential points, they say things
which are ambiguous. Narratives are usually
even "worse than manuals." Also, experience
with a technical writing course indicates that
"you can't make a good writer by legislation."

The commentary in the source listing is "inval-
uable." Also, it is easier to train people to
perform well here.

Flow charts are very useful. Detailed flow
charts are most valuable. The place where
computer-generated flow charts would be most
useful would be in keeping documentation

II -10

(Our Comment:

current, since you could let the computer do
the updating. The disadvantages to computer-
generated flow charts are that they are hard
to read, and poorly organized.

An important area of research might be in
methods of improving the readability of computer-
generated flow charts.)

Question: What level of flow chart do you prefer to work with?

Mr. Covill: With higher-order languages, "the low-level of
flow chart is not worth the trouble." The test
to work with is "the one that gives you the
basic strategy of the program."

Covill now works like this: "I draw a flow
chart and make my most important decisions.
Then I do just one page of code that sort of
gives me the feel of what this thing is doing.
That gives me the specifications for the main
internal workings." In short, "I work from the
outside in."

(Our Comment: That is similar to the Mills approach.)

Covill strongly dislikes "any flow chart which
is not complete on one 8-1/2 X 11 paper." The
flow chart can be layered, but one page has to
be a box in another flow chart.

"If you can't show the relationships on one
sheet, then you've probably done a bad job of
arranging those relationships."

Mr. Harrington:

Mr. Sleeper:

Detailed flow charts were the most valuable to
the programmers at Chrysler.

"I don't think flow charts are too useful,
except at the top level." However, it would be
good to be able to "call out data-processing
functions, like SORT, REPORT, etc. . . . work
with big pieces."

11-11

PART III

MAINTENANCE TOOLS AND TESTS

Question (Introduction):

Question:

Mr. Covill:

Mr. Hudson:

Mr. Sleeper

Mr. Brown:

Another area of great interest to us
beyond the sources of information is
the kinds of mechanized debugging
tools available to you.

Do you have a tool which accepts as input a group of
programs and turns out a cross index of variables
(etc) vs program showing for each program whether the
variable is set, used, both or cleared therein?

How useful is it (if you have it), and why?
Or, how useful would it be?

"The most important thing I've got is a COBOL
cross reference ..." which lists identifier
by identifier, and tells where each is defined,
and where used.

"Sernn^* TV»P ^SOOS are all on source language.
I can go to ru, and not to memory maps and the
like." This saves time.

There was just a tool which gave references,
i.e., whether a variable was either set or used.
But it also could tell what line it was defined
on ...

It was extensively used. Its main drawback was
the absence of a set/use breakdown.

The question is mostly not applicable, because
there is very little "inter-program communica-
tion on the system." However, one can get
"very nice cross-references" on the Command and
Edit programs, and such features are very useful,
if not essential, in maintenance and improvement.

Yes, we have. It is used "quite often." It is
"very easy" to use, which is a good point. Its
best point is that it "can do other things, and
you can use it in league with other documenta-
tion aids as a program maintenance tool." It
gives a more complete picture of what parameters

II -12

are represented in different subroutines. It
also generates specification statements
required in individual subroutines which use
COMMON.

The tool (called COMGEN) is like a set-use
program, but it also updates both COMMON and
the program, and causes modification cards to
be punched.

Question: Would you need COMGEN if you had the INCLUDE of
FORTRAN V?

Mr. Brown: "I don't know. The INCLUDE is not being used
in the 1108 in Houston, but I don't know why."

(Our Comment: It turned out later that this and other advanced
features of FORTRAN V are not used in order to
maintain source compatibility with versions of
FORTRAN used on other machines.)

Question: Do you have means to cross reference identifiers
within a program by line number and showing

where set
where used
from which line numbers it is branched to?

Mr. Sleeper: No,one cannot tell from which line numbers it
is branched to. (Would you use such a tool?)
"It probably would be valuable."

Mr. Brown: We have "the classical 'set-use1 program," but
not the line number branch generator.

Question: Does each programmer consider the problem of "fanout"?
Is the Problem formally assigned to anyone? To whom?

Mr. Harrington: There was a manual of "inter-relationships and
data dependencies." It was generated from the
test files. The manual "of course" did not
cover all fanout cases. However, new problems
were added to the manual as they were reported.

Question: What kind of cross-indexing is there? That is, what
tells a programmer that a change at Point A may affect
Points P, Q & R?

II -13

Mr. Harrington:

Question: a.
b.

c.

There is very little cross-indexing between
different types of documents, and different
levels. But perhaps you could do a lot of that
with machine generation of source coding. Alsof
"why not make an index on which you could use
something like KWIC?"

(Comment later: An important research question
might be: How do you key each part of each
"representation" of the program to each other
representation?)

Can you get a static memory map?
Can you get field explosion diagrams of tables of
packed data?
Do you have any tools commonly in use which haven't
been mentioned?

Mr. Hudson:

Mr. Sleeper

Yes, there was a static memory map.
to use, and frequently used.

. . . field explosion diagrams? . .
tools . . . ?
No, on both counts.

It was easy

• any other

A static memory map would be "impossible because
the system is so dynamic. Only a small part of
a program is fixed in a core location, and that
part is there only on one execution." But the
compiler will "put out a relative map." This
is "absolutely essential, to understand where
segments are in the dump."

Field explosion diagrams of tables "would be
valuable."

(Other tools?) No. "We have nothing to build
data sets with, all over the place," and might
be a little overwhelmed if these were available.

Mr. Brown: We can get a "Load Map . .
but I have never used it."

some other kind,

For field explosion diagrams of . . . packed
data, such a tool is incorporated in PACE.

... No other tools except PACE and COMGEN.

II -14

Question: Can you make symbolic corrections to object code,
i.e., patch at a symbolic level without the need to
recompile whole symbolic program?

Mr. Castin:

Mr. Hudson;

Mr. Sleeper:

Mr. Brown:

Question:

The frequency of corrections would determine
whether or not you would want to do this in the
first place.

No. If it had been available, it "wouldn't
have been too valuable."

"We've supposedly just added a capability to
link-edit precompiled program pieces," and
this "should help a lot." However, this capa-
bility does not seem as broad as that referred
to in the question, because all of the defini-
tion of the "program piece" is left up to the
programmer.

Programmers are not allowed to patch the object
code.

No. "I would not use such a system. But I
might (on second thought) if, on a big system,
compile time was scarce." Also, in FORTRAN,
(but not JOVIAL and SPL) you can "independently
compile subroutines rather than the whole big
glop."

Mr. Brown is "very interested in 'segmented
compilers.'"

Do you have the means for automatically generating test
data for your testing procedures?

Mr. Hudson:

Mr. Sleeper:

Mr• Brown:

Mr. Harringtoni

No. But it would have been valuable.

No. (Would you like to have this capability?)
Yes, if the formatting, etc. was easy enough.

No. But it might be good.

Yes, "there are all kinds of aids. Several
levels of test files . . . You can call these
with control instructions." They are semi-
automatic .

II -15

'-•-^f.' »—JWfll'-*— -

(Our Comment:

On small sections, you make manual checks,
"There are some automated audit programs for
massive system tests."

As a "Buck Rogers" idea, it would be good to
have "as much machine generation of the clerical
material as possible." It would be very desir-
able, but very hard to have a machine "check the
consistency of logic."

It probably would be possible to have a computer
do this, using Boolean logic equations.)

Question: Who sets the test standards?

Mr. Harrington: At Chrysler, the System Programming Staff, who
generate the test decks, tapes, and files.
Systems Programming sets the standards.
Quality Control enforces the standards.

The programmer "gets audited at the end of each
phase . . . like . . . design, flow-charting,
coding, debugging, check-out, production check-
out ..." The test environment includes samples
of actual data. There is a final review of all
phases before QC signs off.

Also (this is what we called the Warranty Period
Concept), a number N is assigned to each pro-
gram; the program then has to be used N times in
actual production, before the programmer is no
longer responsible for it.

Question: What sorts of things slip past the testing procedure?

Mr. Harrington: "Odd combinations . . . seasonal combinations
. . .of data. Changes in the structure of the
variables."

Question: Does information about the things which slip through
feed back and cause any improvement in the test
procedure?

Mr. Harrington: Yes. In the "shake-down, it is entered in the
log, and integrated" into the procedure.

After N cycles, however, the answer is usually
no. Then one usually could not anticipate the
things which slip through.

II -16

Question; Do you have a selective dump - during and/or post-
mortem?

- conditional and/or
unconditional?

- choice of formats?

Mr. Huston:

(Our Comment:

Mr. Sleeper:

Mr. Brown:

Question:

Mr. Hudson:

Mr. Sleeper:

Post-mortem and conditional dumps were avail-
able. FORTRAN contains a valuable "track-and-
trace feature . . . that shows you where you
branched from."

Mr. Hudson is referring to an object time
package which works in conjunction with the
method used to compile subroutine linkages that
provides a "Walkback" listing of the subroutine
nesting in effect (with statement numbers of
the calls) at the time of an abnormal termina-
tion.)

Except for some "very nice monitor and snapshot
facilities in most languages," the answer is no.
Would you like it? No, in this facility "the
dump is too elusive. There is nothing more
frustrating than to get a core dump where the
part you want is 'OUT ON DISC.1"

Yes, "we have some nice 'revive-execute' sorts
of things." Yes, "you have a choice of formats"
for dumps.

Do you find that you normally use a lot of PRINT
statements while you are de-bugging?

What factors cause you to rely more on one (PRINT,
dump) vs the other?

Computer time (i.e., non-prime time) was essen-
tially free to the staff members, and they
"usually got a full memory dump, and threw all
of it away except three or four pages."

"Several people do use a lot of PRINT state-
ments; it depends on the individual." Less
experienced programmers usually find it easier
to use MONITOR and TRACE routines. In BASIC,
however, these are not available, so "people
have to use PRINT. This is not terribly
effective."

II -17

Question:

Mr. Hudson:

Mr. Brown:

Question:

More experienced programmers use MONITOR and
TRACE less often, because they know more pre-
cisely what they want to look for.

Do you have any other display tools which we haven't
mentioned?

No, but it would have been good to have w. . .
something which would automatically sense some
abnormality," and print then and only then.

No, but it would be good to have "flow charts
which cover all possibilities . . . not limited
by" (the ommissions of) the systems analyst.

Aside from the information you've just given us, we'd
like to know what things get in the way of your
actually using these tools.

Examples: 1. People change the tools without
telling you.

2. Operations personnel don't follow
instructions, or otherwise goof.

3. User's manual: incomplete; too
complex or time-consuming.

4. Temptation to invent one's own
tools.

5. Proprietary considerations.

Mr. Castin:

Mr. Covill:

Mr. Hudson:

Mr. Sleeper:

Tools are changed before documentation is updated,

"Nobody ever seems to include the need for main-
tenance" in the budgets for personnel, computer
time, and equipment.

The main problem was the fact that the "users'
manuals were incomplete and inaccurate."

Certain features, such as a decimal register
dump, did not actually get in the way, but were
irrelevant to the work.

"We're in comparatively excellent shape here."
But in most large data centers, "the almost
civil service attitude" gets in the way. "You
have no support, and part of that is negative."

A study at Lockheed a few years ago indicated
that the probability of a run getting

II -18

successfully through all of the steps in the
center was less than 0.25.

Question: How about the temptation to invent your own tools?

Mr. Hudson: In general, it is true that "you don't learn
what's there; you do your own thing." But at
Jacobi the temptation was "minimal, because of
the lack of time."

Mr. Brown: "It's more pleasant to invent your own tool . . .
You get status. That's the biggest one problem."

Question: Are there any aids which help the programmer convert
the static information into an understanding of the
dynamics of the program? . . . are any conceivable?

Mr. Harrington: There are no such current aids. "I used a kind
of diagram which restated the action . . . know
of no work in this area . . . It's up to the
individual."

II -19

PART IV

FACILITIES AND LANGUAGES

Question; What about higher-order languages?

Mr. Harrington: The programmer "can accept what he gets, or try
to think like a computer thinks." Recommenda-
tion: The programmer should have the easy capa-
bility to enter the lower-level language, "not
just in a subroutinized way . . . but . • . get
a dump of what happened at the machine language
level when the statement was executed." Also,
one might wish the object code for any state-
ment or group of statements.

(Our Comment: An important philosophical question is: Should
software be designed to reward poor programming?
Also, this grates against the notion of an opti-
mizing compiler.)

"There is a need for a meta-language that would
translate between the application and the lan-
guage." This would be analagous to the language
used in writing a compiler.

You should have debugging routines, not just
computational routines, in things like FORTRAN.
There are trace routines, but . . .

Accounts Payable was a very large system at
Chrysler due to the very large number of vendors,
Re-coding Accounts Payable, from COBOL to some-
thing like BAL, reduced the run time from 72 to
28 hours. Besides (obviously) lowering cost,
this reduction facilitated maintenance, because:

a. It created the effect of making more
machine time available.

b. A full system test was made feasible.
c. Re-assembling, following changes, was

faster than recompiling.
d. It required different levels of skills

and programmer types.

Mr. Harrington:

Multiple cross-referencing (e.g., by vendor,
part number, length of time since invoice

II -20

Question:

Mr. Covill:

received, etc.) was a big problem. The files
were not big enough to hold all of these data.
A higher-order language tailored specifically
to Accounts Payable (e.g., permitting state-
ments like DO VENDOR EXTRACT) would have been
helpful.

Do you think there is any danger that we will run
into English-language-type ambiguities in higher-level
languages?

"We already have!" It is not generally recog-
nized that "The compiler takes things in a
standard order" and has other implicit decision-
making features, so that "people don't know
that their statements were ambiguous."

But this may be a necessary situation. Other-
wise "you are like the old English writers who
expressed their thoughts with increasing preci-
sion to a decreasing number of people."

Mr. Sleeper: "Yes, there is not only a danger, but you will.
But in my opinion, the added 'sensibility1 that
you get . . . outweighs the danger."

Question:

Mr. Covill:

Mr. Hudson:

Now a question about Turn-Around Time and over-all
availability of machine time.

a. What kind of TAT do you think would be ideal
(1) for simple programs; (2) for complex
programs?

b. Speaking of your own work habits only, can
you envision any problems from a TAT that was
very short?

Typical turn-around time is one hour, but "brief
turn-around times would do the most for me" in
debugging. There would be no problem with very
short times: "I'd like to have a remote job
entry terminal, throw in a job, wait to hear
the printer ..."

Overnight turn-around time was long enough to
degrade performance. A four-hour TAT was "about
right, except for simple clerical goofs." A
very short TAT would "discourage analysis."

II -21

Mr. Sleeper: "I get bent out of shape if it takes longer
than one hour" for any program. For many, the
ideal time would be a few minutes.

(Any problems from a TAT that was very short?)
"No!!"

Mr. Brown: For simple programs, a fast TAT.
longer (slower).

For complex,

Question:

Mr. Covill:

Mr. Sleeper

Mr. Brown:

Mr. Castin:

"We get immediate turn-around time on time
sharing. On batch, . . . two or three hours."

(Any problems from a very short TAT?) "Not
knowing what to do, I'd throw in another run,
instead of thinking for myself. I'd be less
of a thinking programmer."

When you have slow TATs, do you find it hard to work
on more than one program at once? In other words, how
many projects can you keep active and outstanding at
once?

With overnight TAT, "It takes time to shift
gears. The number of programs I can keep going
is not greater than three." However, it helps
if the programs are all part of the same system.
Having them in the same language also helps,
but having them part of the same system is more
important.

"About three."

Only one project.

When there is overnight TAT, people seem to
drift into an arrangement in which each pro-
grammer is working on three different projects.

11-22

PART V

QUALITIES OF A GOOD MAINTENANCE PROGRAMMER

Question; . . . differences in people?

Mr. Covill: "Some people are (very much) better at debugging."

Question; What makes them better?

Mr. Covill; "Their logic and thinking. It's like science.
Some people can iteratively form and test
hypotheses" and others can't.

Also, "a good debugger will test his original
hypothesis so that a false proof lets him make
a new hypothesis."

There are two kinds of bad debuggers: (1) "One
makes a great big detailed test of A, and learns
that that's not the answer." (2) The other
"leaps immediately to a conclusion, and puts in
a patch." "The leapers and the plodders are
both bad."

"The art is sort of figuring how specific" to
make the diagnostic tests."

Question: Is training a factor?

Mr. Covill: "People are not taught to program so that their
programs are maintainable."

Question: Why not?

Mr. Covill: They write programs which are "absolutely planar.
Nothing is modularized."

Question: Why is that so?

Mr. Covill: "They've never had to debug. I'd like to
require every new programmer to spend one year
debugging before creating any programs."

Question: Do the qualifications for a good debugger remain valid
if he moves to an interactive console? Would a termi-
nal be dangerous or wasteful for a poor programmer?

H-23

Mr. Covill: The qualifications for the good debugger would
"be even more valid, because there would be
less time to change strategies."

"A terminal doesn't do anything, one way or the
other, for quality. It just makes it happen
faster."

Question;

Mr. Covill:

...

"Debugging is a function of the individual and
his approach, and not of his tools."

other research on this topic?

One relevant research project is going on in
the UCSD Psychology Department. It relates to
individual differences in "scratch-pad" memory
(in programmers?). The director is Dr. Donald
A. Norman.

II -24

PART VI

OPINIONS ABOUT PERSONNEL AND ADMINISTRATION

Question; Anything . . . about personnel?

Mr. Harrington: Personnel policies . . . are perhaps an under-
estimated area of importance for investigation.

Question:

Mr. Covill:

Mr. Hudson:

Do you have responsibility for a specific set of pro-
grams within the system? OR
Do your assignments rove all over the system?

At Chrysler, originally, a programmer was respon-
sible only for "his programs." Later, however,
areas were created in which programmers could
specialize. "A system of only programs never
works. You've got to take the programs out and
make them definable entities" within the frame-
work of a larger system, and then make assign-
ments .

Primarily, responsibility for the executive
monitor.

Mr. Sleeper:

Mr. Castin:

Mr. Brown:

Mr. Harrington:

(Our Comment:

Yes, he specializes, but "I take calls on any-
thing I know about," including maintenance of
the hardware.

Mr. Sleeper's answer is "most realistic."

The assignments do cover the system.

The systems analyst was assigned to a small
group of customers, but programmers themselves
did not specialize. On the contrary, there was
a formalized program of "cross-training," and
another "formalized study of common problems."

The fact that so much effort was spent against
specialization might indicate that specializa-
tion was really the course of least resistance.)

Question: In general, was the number of programmers assigned to
an area proportional to its seriousness? Should it
have been?

II -25

Mr. Harrington: No, because of the dynamic nature of the system.
Different things were critical at different
times, and people had to be transferred to the
points of temporary problems.

Question; How are emergencies handled?
Are you on call for handling emergency requests?

Mr. Hudson:

Mr. Sleeper:

Yes. There was a skeleton crew, and this was
necessary.

There were basically two tasks: First was the
routine operations involved in getting runs
that customers paid for; this always took pri-
ority. Second was optimization or improvement
of the system.

Yes! The corporation is sufficiently small
that emergencies can usually be handled infor-
mally.

Question: Do more urgent requests short-cut part of the assign-
ment system?

Mr. Harrington: Yes. For example, the car ordering system was
tied to the assembly line, and was most vital.
For a problem with such a system, the most
senior men were on call; they would solve such
a problem, or know whom to call. (They were
called "Customer Service" for political pur-
poses. Also, their on-call assignments were
rotated.)

Now we want to know a little about the kinds of skills
your job requires. In particular, do you have to
spend very much time in routine "dog work"? (e.g.,
clerical work, versus thinking and searching for bugs)

"There is way too much. For every little
change, there is a release memo ..."

Question:

Mr. Covill:

Mr Hudson:

Mr. Sleeper:

"I never viewed the work as dog work."

Most programmers feel they do, "but I don't."
". . . could use a little (more clerical help),
but having a terminal in your office helps
eliminate dog work."

11-26

Mr. Brown:

Mr. Harrington:

Yes, programmers complain of the requirement
"to make the listing mean a lot more than it
normally means."

The use of para-professionals for clerical
work should be investigated as a promising
idea.

Question:

Mr. Covill:

Mr. Castin:

Mr. Hudson:

Mr. Sleeper:

Mr. Brown:

Mr. Harrington:

Is there anything in your work that you could classify
as physical inconvenience?

"Being in a bull pen. You need a little work
table for every two or three people. You need
tables and blackboards; desks aren't enough."

People should change offices when they change
functions.

Cross-indexing with the present big stacks of
paper is indeed inconvenient.

Question:

Mr. Covill:

Mr. Hudson:

"No, just the funny hours."

Yes. Simply the physical limits on sizes of
sheets, etc., represent an inconvenience.

Importance of the physical environment may be
under-estimated. At Chrysler, taking program-
mers out of a bull-pen improved their produc-
tivity significantly. (They were placed in
two-man cubicles.)

Providing a small conference room for each four
cubicles (i.e., for each eight men) facilitated
useful, informal consultation.

Now a question about whom you have to deal with and
any problems that arise. Do you get a job request
from a customer directly, or does it come through
some kind of interface? How well do you think the
interface works? Is it intelligible the first time,
or does it take several go-arounds? In short, do you
have problems interfacing with the customer?

No.

In general, the request came directly from the
customer.

11-27

Mr. Sleeper:

Mr, Harrington:

Mr. Hudson set his own priorities.

The request was "made intelligible in the first
session with the customer."

A typical request for an improvement in the
executive system will come from a salesman,
does take several go-rounds before anything
comes (if ever) of such a request.

It

For system modifications, there are two general
origins: (1) Users of the system . . . one of
45 groups within Chrysler. (2) The programming
staff . . . which usually makes a technical
request for something which will improve the
usability of the system in operation. Requests
for error corrections come from the staff, and
may represent emergencies.

Each system analyst was assigned to a certain
group of customers. When a request came in,

the systems analyst prepared the top-level
flow charts,
the programming supervisor estimated times
and schedules and the programmer got a

i. narrative description,
ii. flow chart

iii. 10 format (of the user's require-
ments) .

The interface arrangement at Chrysler "was the
best I'd seen."

11-28

PART VII

THOUGHTS FOR THE FUTURE

Question:

Mr. Covill:

Mr. Hudson:

Now we'd like to turn to an entirely different way of
looking at tools for program maintenance. If money
were virtually no object, what sorts of tools would
you ask to have designed, to make your job as easy as
possible? Here are some examples, but don't let them
seem to exhaust the possibilities. Suggest anything.

Interactive consoles
Interactive consoles integrated with documentation
Redesign of programming languages to facilitate
ease of maintenance
Computer output goes to microfilm and a console
oriented system can retrieve and display it.

First, "a big old engine that looked like a
tap drive, where I could just dial in the kind
of error" (e.g., a line transmission failure)
"I wanted."

Second, "a system that stored all the current
data base definitions, with the OK names for
them . . . and a terminal to look at them."

Third, a way of "automatically updating the use
table, by version of the system."

Finally, "some way to integrate this whole thing
with Operations, so you would know if there
really was a program problem." For example,
formats which are convenient for programmers can
be inconvenient for keypunch operators, who then
make mistakes.

"No tools will ever remove having a person with
a certain level of talent . . . Programming is
partly an art."

It would be good to have "tools to screen out
unnecessary information in a dump. If you were
a little better at this, you could easily speed
up de-bugging by a factor of three."

II -29

Mr. Sleeper:

Mr. Brown:

(Our Comment:

Mr. Harrington:

Mr. Castin:

On big systems, there is a need for a way of
taking a correction and "automatically integrat-
ing it into the system." This is true because
of the (present) high probability of human
error.

"There's nothing I really strongly desired.
I'd like an improved set/use program" with very
convenient formats and controls.

A minor complaint: Teletype keyboards are
awkward to use. Keyboards need to be made more
compatible with people.

"I received a proposal for 'computer-aided pro-
gram development,' where you would sit at an
interactive terminal, draw a flow chart, and
your flow chart would get compiled: You want a
flow chart compiler."

On the console with the flow chart, you could
have the computer "mark the lines heavy on the
paths that you have used.")

I'd like a console whose buttons would give
selective dumps of anything from one word to
the whole thing.

"A trace routine coming at me on a console,
telling me where I'm at."

On output, not only the output itself, but the
status of buffers, through time, which would
tell how "this garbage" originated. Now "the
programmer has to simulate a computer," which
is a bad situation.

Something like a pre-set stop, or break point
. . . the sort of thing incorporated in the
hardware for machine-language programming of
the old computers. (Later note: . . . and
something like the old "single-step" versus
"continuous" modes of operation?)

Here are some things which maintenance program-
mers at SDC have suggested:

11-30

1. A trace which showed only when jumps occur
other than to the next sequential instruc-
tion. ("It takes so long to look through
traces now.")

Or, trace which would show only when par-
ticular items or thin film registers were
set.

2. A handy aid would be a display which
appeared each time a piece of code was
operated or an item was set.

3. A model of the system which would allow
input to be tested for completeness of code
(prevent fanout).

4. A tool for on-line dumps without using the
utility system.

Or, have the resident utility always in
core . . . maybe in an untouchable area.

5. Update documentation by using the computer.
Make a documentation change just by changing
cards, as with a program.

6. During the system development phase, as the
Part I specifications are converted to a set
of programs, a series of notes are usually
written to communicate inputs to various
tables, etc. These should become standard
system documents. In other words, the "Impli-
cation Notes" should be incorporated in the
formal documentation.

7. The ability to parallel run the system with
an old and new compilation of a program to
point out differences . . . like an experi-
mental and a control group.

8. Centralize all documentation so that each
change can be readily seen by the next user.
This would also make it easier to keep the
documentation up to date.

9. When developing a system, gear the utility
tools towards aiding the system in its

II -31

development as well as in its maintenance.
Or, write the utility programs first,
rather than in parallel with the system.

10. A code analyzer which would verify that your
patch is not going to adversely affect
existing code, branches, and item settings
. • . guard against unexpected transfers to
your patch.

11. A display of all areas of core your program
affects each time it operates. This would
turn up implicit references.

12. A trace-back capability where a table of the
last file I/O requests, program interrupts,
etc. is maintained.

(Our Comment: This 12th request is for a sort of computer
analogy of the human's "immediate memory," hold-
ing a temporary record of all of the N most
recent events.)

Question: Finally, is there anything we should have asked you
but didn't?

Mr. Sleeper:

Mr. Brown:

Mr. Hudson:

None, except to emphasize that "I am totally in
favor of higher-level languages."

"There will not be any single higher-level lan-
guages as a panacea . . . each . . . will be
for its own problem area."

"You can write system software in a higher-level
language." Most useful would be something like
a version of ALGOL through which a program
structure could be implied.

"Maybe, 'what makes me the maddest about soft-
ware development?' What are the frustrations
and agonies . . .?"

"You ought to categorize those things the human
is going to have to get on board and interact
with" in order to decide realistically what
tasks can be turned over to the tools.

II-3 2

APPENDIX III

BÜIC Case Studies and Diary

The BÜIC Case Studies which appear in this appendix were
developed by Mr. Michael J. Castin of the Systems Development
Corporation. The BUIC Diary was kept by Mr. Tom Brotherton also
of SDC. The commentary on each diary entry (generally below the
solid line) was supplied by Mr. Castin.

A Glossary of BUIC Terminology appears after the Diary together
with explanatory material on the BUIC Error Correction and Pro-
duction Cycles.

Brief re*sum£s of Mr. Castin and Mr. Brotherton appear at the end
of this appendix.

Ill -1

BÜIC CASE STUDIES

III -2

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION

BUIC EXAMPLE:

Poor Documentation

In order for a maintenance programmer to
perform at maximum efficiency, he must be
able to install program changes quickly
and effectively. To accomplish this, he
must be able to determine quickly the
affected areas of the program. If programs
are not well documented, the programmer
will be considerably slowed down.

Recently, a change to one of the BUIC
Manual Input card formats was requested
by ADC. The programmer assigned responsi-
bility for the Manual Input function esti-
mated the time required to install the
necessary code. He had been assigned to
that area only two months earlier but felt
that the change was not complex to install.
Problems arose when he discovered that the
existing code had already undergone a
great deal of modification and the docu-
mentation described the area only in over-
all terms. This made it very difficult to
determine the logic flow through the
affected program area.

The programmer finally delivered the code
by spending 120 hours on developing the
change rather than the 60 hours he origi-
nally estimated. He delivered it only 3
days late by working overtime and on his
vacation time.

Ill -3

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Uninformed Third Party

In a complex large system, changes to one
area may affect other areas. If the
change coordinator fails to inform all
affected parties, incompatibilities and
schedule slippage may occur.

The addition of a Real Time Quality Control
function to BUIC necessitated the addition
of a new program module to the Air Defense
Program (ADP). Adding that module caused
the operating sequence of existing modules
to change. The coordinator of the new
product was not aware that a special
module timing processor required modifi-
cation whenever program sequencing changed.

As soon as the new module was loaded on
the ADP master tape, the programmer respon-
sible for analyzing module operating time
began to experience difficulties with the
timing processor. He estimates that 4
days were spent in determining the cause
of his difficulties.

Although no schedule slippage occurred as
a result of this problem, 4 days which
could have been put to better use were
wasted.

Ill -4

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Language Requirements

The language in which a program is coded
will limit the logic available to the
programmer. Additionally, he must code
in the techniques the assembler/compiler
will accept rather than the techniques he
might otherwise choose.

Whenever new programmers are transferred
into the BUIC project, they must learn not
only the functional requirements of their
area but the language requirements of the
JOVIAL compiler. In reality, this is not
confining since the compiler contains the
attributes required by BUIC's design.

A good example of unique language require-
ments is that of the capability of the
BUIC compiler to deal with individual bits
of a data word. Not all compilers have
this feature and programmers must learn
how to use it when they join BUIC or how
to get around it when they leave.

Ill-5

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Indirect Addressing

In BUIC all indirect addresses are rela-
tive to the start of the applicable pro-
grams data region (BAR). The BAR is
located right after the instruction region
and each time instructions are added the
address of the BAR is moved down accord-
ingly. In order to allow this dynamic
updating an indirect address list is
created for each program and put in a
specific location so that it can be up-
dated with each change.

Unfortunately one cannot add to this list
after a program is compiled. (SRC will
not create a new entry.) When programmers
attempt to use a new indirect address it
will work only until the location of the
BAR moves.

In a previous version, a corrector was
issued to the field sites which had an
indirect address reference which was not
in the indirect address list. The cor-
rector worked fine until somebody ran a
test which changed the affected programs
BAR. The system hung up and a new cor-
rector had to be written which did not
contain a static indirect address.

Ill-6

BÜIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Modifying Table/Item Locations

Whenever the location of a table or an
item changes, all references to the table
or item must be changed accordingly. In
a large system it can be quite difficult
to discover all references.

When table and item locations change in
the BUIC system, all references to the
items and tables must be recorded using
either the compiler or Symbolic Relative
Corrector. The only tools for discovering
all references are the SET/USE listing
and the Tag Reference listing.

Problems have arisen in BUIC because of
the following limitations of the two
listings:

1. They are accurate only to the most
recent compilation of each program.

2. Implicit references such as those
used by Pseudo Instructions are not
detected by either tool. (An exam-
ple of a Pseudo Instruction would
be the CYCle Instruction which will
shift a register from 1 to 48 bits
dependent upon item size and loca-
tion.

Ill -7

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Hardware Limitations

Hardware limitations and idiosyncrasies
can cause errors and problems not readily
visible in program listings.

In BUIC the capability exists to modify
the next program address to be executed.
This allows an internal subroutine capa-
bility. A problem can occur, however,
when a multiply or divide instruction is
executed just prior to one of these inter-
nal subroutine jumps. The problem is
called double overlap fill and can cause
an incorrect program address to be
selected. Although this hardware limi-
tation is documented, occasionally a pro-
grammer either neglects to read all avail-
able documentation or just forgets that
the problem exists.

During the development of the previous
BUIC version, one of the program modules
schedules to be recompiled was not avail-
able to be loaded on the master tape on
the planned date. The programmer in charge
of the program recompilation complained
of recurrent program halts in an area that
he swore was error free. A senior pro-
grammer was assigned to assist him and
after a week discovered the source of the
problem.

Earlier in the program, a double overlap
fill was occurring just before an internal
subroutine jump. The result of this was
a return to an incorrect address after the
subroutine operated. The program then
attempted to operate program data as if it
were an instruction and ultimately halted
in the routine in question.

Ill -8

BUIC EXAMPLE (cont.): The result of this problem was two man
weeks spent in non-productive work and
the loss of a week in available time for
testing the newly compiled module in a
system environment.

Ill-9

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Home Office Test Procedures

The test methods practiced in the produc-
tion shop may differ from those practiced
by the user. This can create a situation
where the user uncovers an error even
after the production shop thoroughly
tested its product.

When the BUIC system is cycled up in Santa
Monica, a standard start-up card deck is
utilized. One of the functions of that
deck is to initialize the system as being
in the Simulation mode.

One of the previous versions contained an
error which was evident only when the
system was initially in the Live mode and
then changed by switch action to the
Simulation mode. This error existed all
through our production cycle but was never
noticed because of our start-up procedures.

Ill -10

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Time Constraints

Because of the large amount of time
required for testing each new version of
a large system, programmers are constrained
by the time allotted for producing new
products. They are further constrained by
time requirements for familiarization,
coordination, documentation, other work,
and their own testing needs.

The BUIC Guidance function is difficult to
check out completely because of the infi-
nite combinations of Interceptor Position,
Speed, Heading, Tactic, Altitude, etc.;
Target Position Speed, Heading, Altitude,
etc.; and Cycle Time, Track Load, or other
system influences. Given a situation such
as this, it should be obvious that to
thoroughly test the Guidance function would
require an extraordinarily large amount of
time.

Since there must be a cutoff time for
testing, it is impossible to uncover every
error which may exist in the Guidance
function. Because of this, errors are
continually found in the Guidance program
module even though the caliber of the
programmer maintaining the area is usually
above average.

Ill -11

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Data Reduction Time Lag

When the master tape for a large system
is being continuously updated, some sort
of overall complex system test should be
run periodically to insure continuous
quality. The amount of data reduction,
the time to obtain that reduction, and
the amount of time spent analyzing the
reduction can get to be quite large.

Approximately once each month during the
BUIC production cycle a large system test,
the FQT, is run. This test is reproduc-
able and documented; there are predicted
outputs for each BUIC function. A com-
plete data reduction run and analysis can
take up to 10 days, varying with the
number of programmers involved. That is
a long time to certify a tape.

Usually, to circumvent the time lag, spot
checks and minimal data reduction passes
are run. This cuts certification time way
down but is not in keeping with the intent
of the test: maximizing quality control.

Ill -12

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Little Used Support Programs

With a large system there are usually a
number of Utility Support programs avail-
able to aid in the Maintenance Task. For
various reasons some of the programs are
used much less than others or not at all.
Some of the contributing factors to this
lack of usage in BUIC are presented below.

Listed here are some of the BUIC Utility
and Support Program/Systems which are used
less frequently than others. Accompanying
each Program/System is a consensus opinion
on the reason for that lack of usage.

Parameter Test Tool - Originally designed
for checking an individual program module
outside of the system context. Used
extensively in the system development
phase prior to the completed system. Now
that the system is operational it is no
longer necessary and is harder to use than
system-oriented tools.

Trace - The use of the trace function
decreases with the increase of programmer
experience. As programmers become more
familiar with program design the need for
trace disappears. Also one of the trace
options is rarely used—a capability for
outputting the trace dump directly to the
printer instead of using a DLO tape. It
takes an exorbitant amount of time.

Load Petals on Tape - Unused because the
Symbolic Corrector Loader or Symbolic
Relative Corrector functions are far
superior.

Dump - A dump option, direct on-line
printout is so slow that it is rarely
used. The normal procedure is to dump
onto a tape and print the tape later.

Ill -13

BUIC EXAMPLE (cont.): Assembler - Only one function of the
assembler is even used, the update func-
tion, since all programs are compiled
with the JOVIAL Compiler. The update
function allows the user to update a
symbolic prestore tape of a program with-
out rereading the entire symbolic deck.

Dynamite - One function of Dynamite allows
a user to set a COMPOOL item to a prede-
termined value in a specific cycle. This
feature is rarely used because the plan-
ning of what to set and when to set it
takes longer than using a simulation tape
to set up the desired environment.

Ill -14

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Specialization

Whenever the knowledge of a particular
system function is confined to one person
(or "expert"), the maintenance programmer
needing assistance in that area is
restricted by the availability, knowledge,
and idiosyncrasies of the "expert."

The BUIC Lateraltell function, communica-
tion between two or more defense facili-
ties, is an area which is usually assigned
to one programmer. That programmer
usually becomes the only person knowledge-
able in lateraltell because other program-
mers tend to be unsure of themselves as
communications experts. Consequently,
when a product or error has lateraltell
implications, the coordinator relies
heavily on the lateraltell programmer.

Whenever the lateraltell programmer is ill,
on vacation, or just busy, products
requiring his assistance are held up until
his availability. In most other functions,
programmers are more sure of themselves
and they will code the change.

Ill -15

BUIC CASE STUDY

TITLE:

PROBLEM DESCRIPTION:

BUIC EXAMPLE:

Programmer Idiosyncrasies

One of the common complaints of maintenance
programmers is that a program module was
originally written with such sophisticated
coding techniques that it is difficult to
maintain. Programmers must draw the line
between maximizing computer attributes
and developing easily maintainable programs,

One of the BUIC program modules, the sort
program, was developed by a programmer who
relied heavily on utilizing the thin film
or stack capabilities of the computer.
Most of the other BUIC program modules
utilize a combination of thin film coding
and temporary data registers to make the
code easier to follow.

Currently, whenever a programmer wishes to
install a change to the sort program, he
must spend three times as long on that
program as he would on any other since he
must insure that his new code does not
disturb any thin film registers already
used by the program.

Ill -16

BUIC DIARY

III -17

BUIC DIARY: MARCH 8, 1971

Spent some time desk checking the newly compiled switch
program, KAW.

No incidents.

USED: Tag Reference

Set/Use

Symbolic Relative Corrector Listings

Compool, Comdoc

Program Change Specification - Generated by Programmer

Part II Specification

Wrote code for EPD 027.

No incidents.

USED: Program Listings

Tag Reference

Symbolic Relative Corrector Listings

Compool, Comdoc

EPC 027 Document

Part II Specifications

Tom spent most of the day at his desk using previously procured
printouts from the above tools.

111-18

BUIC DIARY: MARCH 9, 1971

Desk checked KAW using same materials as previous day.

No incident.

Coordinated Group Test

USED: Symbolic Relative Corrector (SRC)

Dynamite

Pre-recording

Dump

Start BUIC

Ran EPC 027 Test

USED: Start BUIC

Load (Function)

Symbolic Relative Corrector (SRC)

Experienced problem due to mispunched corrector. Aborted
job to be rescheduled.

Problem was reported in Bookkeeping program. Spend 10
minutes discovering problem was corrected but was not fixed
on present Master Tape. Scheduled for next load.

Tom ran the Group Test without incident. The load function,
used for EPC 027, was used as a time saver. His SRC deck was
so large that he was using approximately 10 minutes of computer
time just to read in his card deck.

Ill -19

BUIC DIARY: MARCH 10, 1971

Continued to desk check KAW.

Received DOC listing.

No incident.

Corrected problem in EPC 027.

Submitted production job to load test master. Deck
included:

Symbolic Relative Corrector cards

Load Control cards

Compool Octal cards

Worked with another programmer in uncovering and solving
problem in Manual Inputs program.

USED: Symbolic Relative Corrector

Pre-recording

BUIC Analysis and Reduction System

The above problem was discovered by other programmer while
working on another error.

Tom was sure of his EPC 027 fix and felt safe in submitting job
for production (to be run at night without his supervision).

The Manual Inputs problem was discovered when the other program-
mer fixed an outstanding problem in his program. The second
problem was not noticeable while the first existed.

Ill-20

BUIC DIARY: MARCH 11, 1971

— Completed desk check of KAW program - submitted acceptance
memo for typing.

Used special processor of BARS.

— Coordinated Group Test

USED: Symbolic Relative Corrector

Dynamite

Pre-recording

Dump

Print Function

Start BUIC

— Analyzed suspected incompatibility between two volumes of the
BUIC Operational Specifications.

— Reviewed load of EPC 027 for possible errors.

USED: SRC Printout

— Wrote documents for 4 error corrections previously tested and
submitted for load on the Master Tape.

The incompatibility was found to exist in the two documents. A
decision on how to correct it was deferred. Tom seems to spend
more time documenting than coding, typical of all programmers.

Ill -21

BÜIC DIARY: MARCH 12, 1971

Reviewed a draft copy of BUIC Program Change 361. A parallel
activity to EPC 027 for a later version.

No tools used.

Rewrote BPC 358, "Add New Function to IDO Console"

USED: Old BPC

Part I Specification (in using this specification, Tom
discovered a word had been left out and reported it to
the person responsible for maintaining the document).

Pre-recording

SRC Printouts

Discovered loop in Bookkeeping program

Used SRC printouts and program listings to find problem.

/

Tom had to rewrite BPC 358 because of a conflict with another
BPC which used the same switch action. (A fanout related
problem.)

Tom spent about 15 minutes finding the Bookkeeping loop. An
ensuing discussion brought out the fact that the loop was caused
by a previously installed correction branching to an octal loca-
tion rather than a tag. This branch was not evident to the
programmer searching the listing.

Ill -22

BUIC DIARY: MARCH 15, 1971

— Reviewed DOC listings of MIN and BOK to insure their accuracy,

Participated as an observer during tests on the newly loaded
ADP master.

Verified that correctors to MIN on that load were installed
as anticipated.

USED: SRC Printout

— Recoded portions of EPC 027 to save spare registers.

Saved 22 registers.

USED: Coding instruction manual.

Tom reread the Burroughs Coding Manual and found ways to combine
instructions and use more efficient instructions. This allowed
him to save the register space in the EPC.

Ill -23

BUIC DIARY: MARCH 16, 1971

EPC 027 - Ran test on newly generated code.

Uncovered hang-up in Manual Input Program (MIN).

Investigated hang-up.

USED: SRC Printout

MIN Listing

Tried to run trace to pinpoint hang-up but computer problems
aborted job.

Tom spent about half the day consulting on a Non-BUIC project,

CIRAD Comment: The use of tracing mentioned here and in the
following entries seems to contradict the
characterization of trace given on Page B-13.

Ill -24

BUIC DIARY: MARCH 17, 1971

EPC 027 - Reran trace but a drum problem caused the job to
abort.

Spent time looking at SRC printouts and MIN listing and dis-
covered cause of hang-up (Pending Test).

Tom left work early today. His wife needed transportation home.

The hang-up was caused by using correctors which did not apply
to the current program mod. Tom had installed this EPC in a
previous BUIC version and in his attempt to shorten his job, he
tried to use as much of the old code as possible. He inadver-
tently used some code which no longer applied to the MIN program.
We normally insert the applicable program mod as a comment on
the symbolic cards.

Ill -25

BUIC DIARY: MARCH 18, 1971

Spent the morning in preparation for and attending a meeting
regarding this diary.

Worked on EPC 027 reviewing code using SRC Listing and
Program Listings. Computer problems prevented code test.

Spent some time writing documents for use by training team
in North Bay, Canada.

Tom explained some of the production cycle to Levi Carey and
responded to questions from Dr. Wersan and Dr. Overton.

The training documents are to be used in teaching the main-
tenance of various functional areas of the SAGE system to Royal
Air Force personnel.

Ill -26

BUIC DIARY: MARCH 19, 1971

Continued work on training documents.

Set up an EPC 027 computer test utilizing:

Tape Load

Pre-recording

Symbolic Relative Corrector

Start BUIC

Could not cycle and returned to office.

Spent remainder of day with Startover programmer determining
cause of cycling problem.'

I questioned Tom on the possibility of his uncovering new main-
tenance aids as he produced the training documents. He said
that the documents were geared toward learning the area more
than learning maintenance techniques.

The BUIC Startover program is responsible, among other functions,
of initializing and starting the BUIC Air Defense Program
cycling. The error in the Startover program correctors for EPC
027 prevented the BUIC ADP from cycling. There was no way to
get around it. It was not discovered previously because Start-
over correctors must be loaded and cannot be read by SRC.

Ill -27

BUIC DIARY: MARCH 22, 1971

EPC 027 - Tested correctors to solve problem of March 19.
Apparently the correctors work, but discovered another error
caused by mispunching of the cards coded March 15.

Later in the day retested correctors; they appeared to work
okay (within the limits of the test).

USED: Tape Load

Symbolic Relative Corrector

Pre-recording

Dump

Submitted a production job to obtain MDT listings of programs
MIN and BOK incorporating all current EPC 027 changes.

The secondary problem noted today seems to be a typical one
facing the maintenance programmer—that of fixing one problem
and either discovering or causing another.

Ill -28

BUIC DIARY: MARCH 23, 1971

EPC 027 - Ran test with existing correctors and encountered a
loop in program MIN.

USED: SRC

Pre-recording

Dump

Print

Trace

Trace was not helpful in discovering loop because the problem
involved a branch outside of MIN's core area and trace brake
down when this occurred. •

Tom worked on the EPC in his office and discovered his
problem by looking over the program listings.

My discussion with Tom turned up the cause of his program
problem. He had disturbed the positioning of the stack in a
routine where the return address of the calling routine was
stored in one of the stack levels. This type of problem is
typical of programs which rely heavily on stack coding. (Using
the stack instead of temporary core storage.)

There is a timing and storage saving by stack coding but the
routines are not easily maintained. This was my first experi-
ence with trace failing to find the problem.

Ill -29

BUIC DIARY: MARCH 24, 1971

EPC 027 - Planned computer test this morning to verify
corrections to yesterday's problem. Memory parities caused
the job to abort and machine was turned back for maintenance.

Tried again in afternoon and job ran successfully. Loaded a
new master tape with all correctors to date.

USED: Symbolic Relative Corrector (SRC)

Pre-Recording

Tape Load

Each time Tom has a successful computer run he varies his inputs
somewhat. This causes him to go from a successful run to an
un-successful run with seemingly no changes in his correctors.

He used Manual Input cards in his testing and this allows him
an almost infinite number of variables. Manual Input cards are
read in through the card reader while BUIC cycles and allow
dynamic change of certain elements in the BUIC environment.

Ill -30

BUIC DIARY: MARCH 25, 1971

EPC 027 - Ran a test utilizing the newly loaded Master Tape,

USED: Symbolic Relative Corrector

Pre-recording

Start BUIC

Dump

Trace

The test turned up a problem in the Tabular Display associ-
ated with the EPC. The display contained zeroes instead of
valid data.

Further investigation showed the problem to be caused by an
incorrect constant used by the program. An octal card was
added to the EPC to solve this problem.

It appears thus far that Tom's main test tool has been to con-
tinuously exercise the EPC code, each time varying the input.
Perhaps we should have kept track of the number of different
paths through this code.

Ill -31

BUIC DIARY: MARCH 26, 1971

— EPC 027 - Prepared for computer run to test the correction
from yesterday. The system could not be cycled and memory
parities plagued the run. The computer was turned back to
the maintenance people. No further activity on the EPC took
place.

— BPC 358/01 - Worked on the document the remainder of the day.

With the exception of EPC 027, activity on producing the new
BUIC version has slowed to almost a halt. A pre-release tape
has been built for shipment to Fallon on April 2. Shortly
thereafter problems will begin to be reported and activity will
increase, but for the meantime, Tom's main effort will be con-
centrated on EPC 027.

During this time period, almost all activity is directed
towards producing Version Documentation, Specifications, Users
Manuals, and Operator Handbooks.

Ill -32

BUIC DIARY: MARCH 29, 1971

— EPC 027 - Spent one hour preparing for computer time.

During computer run loaded a new Master Tape and ran test of
current corrections.

Encountered one problem when a Manual Input Card is read in
to status aircraft at an airbase, another card is read in to
clear that status, and the first card is read in again.

USED: Symbolic Relative Corrector

Pre-recording

Trace

BUIC Analysis and Reduction System

Start BUIC

Dynamite

— Worked on BPC 358/01 documentation.

Tom's heavy reliance on computer time for his testing must in
some way lend itself to justifying the design of on-line
debugging tools.

Ill -33

BUIC DIARY: MARCH 30, 1971

EPC 027 - Set up and ran a trace on yesterday's aircraft
status problem. The test was delayed due to difficulties
with tape drives: repeated tape parities prevented cycle-up.

The maintenance people corrected the problem and the trace
operated without further incident.

First analysis of the trace did not turn up the cause of the
problem.

BPC 354 - Researched this BUIC Analysis and Reduction System
program change in preparation for conducting a test on its
accuracy.

Tom is still studying the trace in an attempt to discover the
program problem. The problem is apparently not readily evident.

It will be interesting to see what type of problem was not
obvious upon first studying the trace.

Tom is acting as the "naive" third party in testing BPC 354 as
he did with the testing of the KAW program.

Ill -34

BÜIC DIARY: MARCH 31, 1971

EPC 027 - Ran another trace in order to develop more informa-
tion about latest problem.

Problem was finally discovered by analyzing a combination of
trace output and program listings.

The error turned out to be a mistake in program design logic.
This was not as apparent as an incorrect branch or a setting of
the wrong item. Analysis of the trace initially showed every-
thing as working correctly because Tom was investigating it from
a standpoint of program error rather than incorrect logic.

Ill -35

BUIC GLOSSARY

and

BACKGROUND INFORMATION

III -36

BUIC GLOSSARY

SET/USE

This is a program which produces a matrix cross-indexing BUIC
programs and BUIC compool items. At each intersection, a symbol
indicates whether a program sets, uses, sets and uses, or clears
an item.

INDIRECT ADDRESS AND BAR TABLE REFERENCE

This program lists each table, its type, its address, and its
length, accessed by each program. It also produces a picture
(Field Explosion Diagram) of each compool table structure.

PARAMETER TEST TOOL

A program which allows the programmer to test his program with-
out loading it on the master tape. Parameters are set up as
input to his program and the output is saved for analysis.

FACILITY SYSTEM

A subset of Utility programs which are duplicated on the ADP
master allowing tape loads, symbolic correction, dynamite, and
recording without reading the Utility master.

TAG REFERENCE

A program which produces a listing for your program indicating
where it accesses items, tables, internal data words, internal
program tags, and all thin film references except the stack.

SYMBOLIC CORRECTOR LOADER

This allows you to input a binary tape of a program, add sym-
bolic correctors to that program, and end up with a binary tape
of the corrected program.

COMPUTER UTILITY AND SUPPORT SYSTEM EXECUTIVE

This is the Utility control program. It reads input cards and
based on the control information on those cards, it branches
control to the applicable Utility program.

Ill -37

GLOSSARY (cont.)

DUMP FUNCTION

This produces, on tape or printer, an octal dump of any
requested area of memory and/or a dump of the contents of the
thin film registers.

Ill -38

BUIC Error Correction Cycle

Problem
Uncovered

APASTO Receives
Error Notification APASTO

BPO Receives Notifica-
tion and Determines
Area Impacted

V
BUIC

Project
Office
(BPO)

Manager of Affected
Area Receives Error
Notice

5. Responsible Programmer
Receives Error Report

IiTI-39

BUIC Error Correction Cycle

6,

7.

Field Problems
Sometimes Have
Military Solutions

V
Programmer Writes
And Documents
Code ->

Produce
Code And

Documenta-
tion

Coded Change Is
Re-Verified To
Prove Error No
Longer Exists

V

Test

Error Correction
Loaded On Master
Tape And/Or Document
Sent to Field

No
>

v
V

V

Product
Completed

III -40

BUIC Production Cycle

1« Design
Change
Suggestions
(DCS) Sub-
mitted

2. ADC Approves

3. APASTO SDC Office
Receives Memo

BPO Receives DCS And
Determines Function (s)
of BUIC Affected

Manager of Affected
Area Receives Work
Request

Manager Assigns
Programmer/Designer
As Product Coordinator

V
HQ. Air
Defense
Command
(ADC)

_\k

APASTO

±.
BUIC

Project
Office
(BPO)

V

SDC
Line

Manager

V
Product

Coordinator

III -41

BUIC Production Cycle

0
7. Coordinator Calls

Meeting Of All
Affected Parties

\/
Analysis
Team Study
Meeting
(ATSM)

8. Minutes of ATSM Are
Approved By APASTO
And Published

V

Linear Days (not
working days)

14.3

Analysis
Team Study

Report
(ATSR)

9. Changes to System
Design Are Published

35.9
V

Product
Change

Specification
Published

10. A Draft Document
Explaining All
Anticipated Program
Changes Is Produced

33.9

V
Draft

Program
Change

Specification

11. After Manager Approves
Program Change, Coding
Begins

9.0

V

Code
Change

9.0

III -42

BUIC Production Cycle

12. Coordinator Submits
Anticipated Test Plan
For Approval By Manager

0
V

Draft
Product

Test
Report

13. After Test Plan Approval
Coordinator Tests
Product

Linear Days (not
working days)

V
A

Test

14. Product Submitted For
Incorporation On
Master Tape

12.5
\k

Load

V
15,

16,

3rd Party Verifies
Accuracy Of Product
And Its Impact On
The System

Master Tape Released
To Air Force For Two
Months Live Testing

Acceptance
And System

Test

V

_Nk

Release
For Live
Testing

III -43

ADDITIONAL BUIC PRODUCTION CYCLE EXPLANATIONS

BOX 7 - CALLING THE ANALYSIS TEAM STUDY MEETING

At this point in the production cycle, the coordinator must
determine all areas which will be affected by this change. He
then sends meeting notices to each programmer which he feels is
involved as well as each line manager responsible for BUIC pro-
duction. The managers do not normally attend but they send a
representative if they think their area will be affected.

The additional check by the managers usually serves to avoid an
area being overlooked. Occasionally, however, a manager is very
busy and does not notice the meeting invitation until the meet-
ing is over.

BOX 9 - PUBLISHING THE PRODUCT CHANGE SPECIFICATION

The Product Change Specification contains the changes, additions,
or deletions to the BUIC Part I Specifications. In order to
insure that the document is complete and accurate, the coordi-
nator routes a draft copy to all BUIC line managers for review.
Usually six days is allowed for comments to be returned.

This affords another check to insure that all affected areas are
aware of the change. The managers route the specification to
their programmers and checks are made for such things as the
feasibility of the proposed design, again the possibility of an
area being overlooked, or conflict with other proposed changes.

After all comments are received, evaluated, and installed, the
final document is typed, approved for incorporation into BUIC,
and published.

BOX 10 - DRAFT PROGRAM CHANGE SPECIFICATION

This document contains all changes anticipated to BUIC program
modules and data base to incorporate the design change. The
change coordinator collects a prose description of each program
module's changes from the assigned programmer and adds any data
base changes and/or equipment changes to produce the document.

The draft document is then routed to all line managers who
reroute it to their programmers to ensure accuracy and complete-
ness. After all comments are received, the coding is installed

III -44

ADDITIONAL BÜIC PRODUCTION CYCLE EXPLANATIONS

in each module, the document is reviewed again to verify that the
actual changes were the anticipated changes, and a final Program
Change Specification is produced.

BOX 12 - DRAFT PRODUCT TEST REPORT

After a Program Change Specification has been approved and coding
is underway, the change coordinator produces a draft Product Test
Report. This document explains how the coordinator intends to
verify that the change performs as specified. The level of test-
ing is such that the new or changed code is verified in a sterile
or non-system environment. Further testing is accomplished dur-
ing the Acceptance Test activity (see the description of Box 15).

The coordinator submits the draft to his line manager who reviews
it for technical accuracy, completeness, and responsiveness to
the intent of the design change. After testing is completed, the
Product Test Report is reviewed to verify that the proposed test-
ing was indeed accomplished and the final document is published.

Perhaps it should be noted here that some system testing does
take place to verify that no obvious degradation occurs to the
existing Air Defense Program. This is, however, outside of the
intent of the Product Test Report.

BOX 15 - ACCEPTANCE AND SYSTEM TEST

After a coordinator has completed his product and it is loaded
on the Air Defense Program (ADP) master tape, it is submitted
for acceptance testing. The acceptance test is conducted by a
randomly selected third party. He prepares a test plan memo and
tests the new product in its system environment.

At the conclusion of his testing, he transmits a memo to the
product coordinator indicating acceptance, partial acceptance,
or rejection of the loaded product. In either of the last two
cases, the coordinator makes the required changes and resubmits
the product for load.

Another activity, the system test activity, parallels this
effort. During this activity the latest ADP master tape, which
includes many new products, is subjected to two successive simu-
lation tests.

Ill-45

ADDITIONAL BUIC PRODUCTION CYCLE EXPLANATIONS

The first test, the Heavy Load Formal Qualification Test (FQT),
verifies the proper operation of the current ADP master in a
peaked load environment. Timing data is also produced during
this test which is used to determine any variances in module
operating times from load to load.

The second test, the Sim Mode FQT, verifies the proper operation
of the current ADP master in a "normal" day to day air defense
environment. Data reduction from this test is compared with
previous test reduction to uncover any new errors. Any errors
noted are reported to the responsible programmer and corrected.
The Sim Mode FQT is updated periodically to implement new ADP
design changes.

Ill -46

MICHAEL J. CASTIN

Mr. Castin has a Bachelor of Science degree in Business Admin-
istration from UCLA.

Mr. Castin is able to apply over seven years experience in
Design, Projection and Testing of Computer Program Systems to
his present position. Mr. Castin has been involved with Real
Time Command and Control Systems, Data Base Conversion, Data
Management and Report Generation as well as digital communica-
tions between large scale Systems.

During his experience Mr. Castin has been involved with the IBM
7094 and System 360 computers plus the Burroughs D-825 computer
system utilizing the FORTRAN, COBOL and JOVIAL higher order
languages in addition to direct code machine language applica-
tions.

In Mr. Castin1s current assignment he has responsibility for the
technical coordination of work produced by a section of ten pro-
grammers. In fulfilling this assignment he assures correctness
and quality of code as well as documentation. Other duties
include training, procedure development, and customer liaison.

Ill -47

TOM BROTHERTON

Mr. Brotherton has a Bachelor of Science degree in Physics from
U.C. Riverside. He has been a Programmer at SDC since 1968, his
first full-time job. He is responsible for maintaining the BUIC
Manual Input program (MIN), the BUIC Bookkeeping program (BOK),
and the BUIC Automated Programmed Instruction program (API). He
was not involved in the production of any of these programs.

His experience includes test design for SAGE and BUIC, and some
involvement with the BUIC Data Reduction System. He is familiar
with PL/1, COBOL, FORTRAN, JOVIAL, and 360 and Burroughs Assembly
Language.

His current assignments include: coordinating EPC 027, maintain-
ing the three programs mentioned, and verifying the correctness
of the new mod of the BUIC Weapons Switch Program (KAW). In the
latter activity, he is performing as an uninformed third party.

Ill -4 8

APPENDIX IV

A Study of Factors Inhibiting the Effectiveness

of Maintenance Programmers

at Chrysler Corporation

CONTENTS

/
Page

Introduction

X« Maintenance Programmer Processes & Environment IV- 1

A. Chronology of the Process IV- 1

1. Initial Request for Change & Systems IV- 1
Analysis

2. Program Planning IV- 2

3. Test Design IV- 5

4. Diagramming & Coding IV- 6

5. Debugging IV- 7

6. Quality Assurance IV- 8

7. Production Shakedown IV- 9

B. Physical Environmental Factors IV- 9

1. Clerical Functions IV-10

2. Machine Time Availability IV-10

3. Work Surroundings IV!-10

4. Inadequate Supervision & Audit IV-11

C. Systems/Hardware Environment IV-11

1. Batch Systems IV-11

2. Remote Batch Systems IV-11

3. On-Line Systems IV-12

CONTENTS

Page

II. Piscussion of Factors Inhibiting IV-13
Maintenance Programmers

A.. Poor Communications IV -13

1. Verbal » IV-13

2. Documentation IV-13

3. Production Bugs IV-14

B. Inadequate Knowledge IV-14

1. Application IV-14

2. Program Structure IV-14

3. Inter-Systems Effects IV-14

4. Operations Practices IV-15

5. Programming Languages IV-15

6. Audit Practices IV-15

C. Inadequate Organization & Procedures IV-16

1. Consultation & Supervision IV-16

2. Audit IV-16

3. Operations IV-16

4. Design Changes IV-17

5. Results Review IV-17

6. Production Diagnostics IV-17

7. Production Responsibility IV-18

8. Clerical Duties IV-18

CONTENTS

Page

D. Missing Aids IV-19

1. Production Environment Test IV-19

2. Machine Displays IV-19

3. Test Data IV-19

E. Inadequate Environment IV-20

1. Machine Time IV-20

2. Work Surroundings IV-20

III. Analysis of Inhibiting Factors IV-21

A.. Inhibiting Factor Scoring System IV-21

B. Matrix of Activities vs. Factors IV-24

C. Summary of Rank Scores by Rank & Percentages IV-25

1. Inhibiting Factors IV-25

2. Inhibiting Factors by Groups IV-26

3. Activities IV-26

INTRODUCTION: This Appendix is organized in three major sections
The first section describes, chronologically, the
activities associated with the maintenance pro-
gramming task and associated inhibiting factors.
The second section is organized by inhibiting
factor and a brief description of the manifesta-
tion of each as experienced at the Chrysler
Corporation by the author. The third section
describes a subjective scoring/ranking system for
the evaluation of the effect of inhibiting factors
as experienced at Chrysler, and presents such an
evaluation.

The contents of this Appendix are based entirely
on the experiences of the author while employed
at the Chrysler Corporation where he was in charge
of a staff of 260, including 100 programmers, who
used 21 computers. A large part of the effort
involved an on-line order entry system for the
control of assembly line production. A more
complete author's resume appears at the end of
this Appendix.

I. Maintenance Programmer Processes and Environment.

A. Chronology of the Process.

The following exposition is intended to define the
processes and functions associated with the mainte-
nance programming task and to describe the inhibiting
factors observed to be associated with each.

1. Initial Request for Change and Systems Analysis.
A request to change an operating program is
inaugurated. The inauguration for such a change
may come from two sources: the customer or user of
the program's results and the programming staff.
If inaugurated by the customer the change usually
corresponds to a change in the application require-
ments or to a desire for a format or presentation
of the data that represents an improvement in the
ability of the user to utilize the results. If
the change is inaugurated by the programming or
systems staff it usually represents one that will
improve the execution or maintainability of the
program. Factors in this process that inhibit
programmer effectiveness are:

a. The request for a change is verbal, or scantily
documented. This causes the maintenance
programmer to have to interact with the customer
in an iterative learning process that leads to
understanding of the exact requirement for
change. Many times, the inefficiency of this
process leads to the creation of a Systems
Analyst position as a buffer between the user
and the maintenance programmer. This, in turn,
may inhibit programmer effectiveness in the
following way:

b. The systems analyst is either not familiar with
the program requirements or with the user
requirements, or both. Thus the iterative
learning process is complicated by the intro-
duction of another level in the communication
process.

c. Even though the Systems Analyst, when present
in the organization, may be fully familiar with
both user and program requirements, the lack of
a fully defined and agreed to documentation
language may prove to be an inhibiting factor.

IV-1

d. During the change request process, lack of
knowledge of the program to be altered will
inhibit the maintenance programmer's effective-
ness. This manifests itself in the programmer's
inability to make accurate estimates as to the
time and resources required to perform the task
requested. Poor estimates lead to later
renegotiations with the using authority with
an attendant loss of time and efficiency on the
part of the programmer.

e. Involvement of the programmer in the change
request process frequently takes him away from
another in-process maintenance task, thereby
delaying that task. This delay in the orderly
process of pursuing maintenance tasks introduces
another level of complexity in the learning
process and can destroy knowledge that is
essential to the first task, thereby causing a
redundancy in the learning processs.

f. Inability of either the user, the systems
analyst (if present in the organization) or the
maintenance programmer to assess the effect of
the change requested on other program functions.
This may later lead to costly inefficiencies
as the maintenance programmer must return to
the user and explore alternative changes.

2. Program Planning. The programmer gathers and surveys
the program documentation that is available prepara-
tory to planning and beginning the maintenance task.
This task is approached in different ways by differ-
ent programmers. Some may proceed in an orderly
manner, organizing and planning the task thoroughly,
while others may proceed directly to logic diagram-
ming and coding, letting the planning occur inter-
actively with this process. Common to any approach,
however, is the necessity for the programmer to
acquaint himself with the adequacy of the documenta-
tion available.

Factors in this process that inhibit programmer
effectiveness are:

a. Out-of-date documentation. Changes may have
occurred to the program that are not reflected
in the documentation. This may lead the programmer

IV -2

clown false paths as he sets to the task of coding
and testing changes, with an attendant loss of
time and efficiency in discovering these incon-
sistencies and understanding and correcting them.
Documentation may be out of date on several
levels. First the narrative descriptions of the
program logic may not truly reflect the latest
status of the program. This problem may be of
slight consequence if the remaining documentation
is current. Second, the logic diagrams may be
out of date. This can have serious consequences
if the programmer makes changes based on fallacious
assumptions made from such diagrams, or if he
discovers inconsistencies between the diagrams
and other documentation and must pause to recon-
cile them. Third, the source code may be out
of date. This may be caused by programmers
making changes directly to the object code with-
out recompiling or correcting the source code.
This will lead to programmer inefficiency if he
uses the source deck to make corrections to and
discovers, upon testing, that the object code
derived therefrom performs in an unexpected
manner. On the other hand, this could lead to
a bad object code becoming the production status
code, since the programmer most likely would
design a test that would only verify his changes.
Rectification in a production environment could
be costly. Fourth, the input/output and report
format documentation may be out of date, causing
lost time and inefficiency while the programmer
reconciles this documentation with the actual
functioning of the program.

b. Missing or incomplete documentation. This prob-
lem may occur at any of the levels mentioned in the
preceding section and will cause programming delay.
If the programmer detects that documentation is
missing, and sets about to correct this before he
begins coding changes, then the consequences
will be less serious than if the omission is not
detected and he makes changes based on fallacious
assumptions.

c. Non-standard or non-conventional documentation.
If the documentation has been prepared according
to standards or conventions unfamiliar to the
maintenance programmer, his efficiency will be

IV-3

inhibited as he attempts to translate the docu-
mentation into a form he can work with or tries
to learn the unfamiliar conventions.

Non-standard (to the programmer) documentation
may occur at all the preceding named levels and
may entail such things as:

i. Narratives of program logic. Indicative
information in unfamiliar places or format;
unfamiliar computer or application termi-
nology; unnecessary or misleading phrase-
ology; unfamiliar or clumsy prose form;
clauses that may be interpreted ambiguously.

ii. Logic diagrams. More or less detailed than
the programmer is accustomed to; unfamiliar
uses of diagram symbols; standard logic
(such as opening and closing loops, incre-
menting counters and registers and input/
output formatting) in unfamiliar places in
the diagram or using unfamiliar symbols or
variable designators.

iii. Source code. Absence of comments or, if
present, using terminology not consistent
with the code or unfamiliar to the programmer.
Overly complex, intricate or arcane coding
conventions (such as, using instruction
operands for indirect addresses, blind branches
caused by multiple level patches, conditional
branches dependent on constant quantities,
etc.). Conventional routines coded in non-
standard ways, or appearing in sections of
the program not expected by the programmer.

d. Absence of, or non-conventional sample runs.
The programmer may look to sample runs as a
source of explanation for what variables in the
input will affect the output and to discern the
expected performance of the program in a pro-
duction environment. Absence of such documenta-
tion may inhibit his efficiency by causing him,
in effect, to create such runs with some of his
initial tests. Non-conventional samples may
entail such factors as:

i. Runs that exhibit too small a portion of the
functioning of the program and thereby don't

IV -4

adequately illustrate the full range of the
program functions as input and output inter-
act.

ii. Unfamiliar terminology or symbolic conven-
tions in accompanying documentation.

3. Test Design. After the programmer has familiarized
himself with the documentation and planned his
approach to the task, he then prepares a test en-
vironment for his debugging phase. This entails the
extraction from the production program of a portion
of the logic that he feels will adequately represent
the affected program areas and the preparation of
test input data. Both test programs and data may be
prepared on several levels of complexity in order to
simplify the programming task. At some installations
test data and programs are maintained as a standard
procedure, and are available at all times to mainte-
nance programmers. Once again, the procedure in
setting up test environments varies from installation to
installation and with different programmers. This
procedure also varies with the complexity of the
change contemplated, some installations allowing
changes "on the fly" to production programs if the
changes are deemed to be simple enough. This process
may produce factors that inhibit maintenance pro-
grammer efficiency in the following ways:

a. Machine readable input data is not available.
Thus the programmer must either hand encode test
data for transcription to the proper input
medium, or he must write a program to generate
the data. In either case his efficiency is
inhibited by having to test another program or
check the validity of hand encoded data.

b. Because of coding restrictions, too large a
sample of the production program must be extracted
to provide a proper test environment. This
problem manifests itself either because the
logically nested nature of the code obviates
efficient testing, or because data dependencies
are entwined throughout major portions of the
code, or the programming language is at a level
too high and too intricate to allow ready
partitioning. Large sample programs may cause
the maintenance programmer to look at redundant
or extraneous results of test runs, and will

IV -5

cause extra clerical and housekeeping functions
connected with coding and testing.

c. Improper or non-conventional (to the programmer)
run instructions (documentation) exist for the
necessary generation of the test program object
code. This may cause the programmer to generate
new run instructions or to spend time in
deciphering the existing ones.

4. Diagramming and Coding. The programmer prepares the
Initial logic diagrams and coding sheets. (It should
be remarked that this and the preceding step are
often done in reverse sequence, which allows the
programmer to overlap the keypunching, if required,
of his code with the preparation of a test environ-
ment.) This step is iterative, and the programmer
during the course of a task may return to it many
times to alter diagrams and coding logic. The
factors that may inhibit programmer efficiency
during this phase are:

a. Unfamiliarity with the language being employed
in the production program. This will cause the
programmer to, in effect, gain on-the-job
expertise in the language being employed with
the attendant loss of efficiency.

b. Unfamiliarity with the computer control proce-
dures and language. This will create in-
efficiencies similar to those cited in A above.

c. Non-standard, inadequate or unconventional coding
and documentation standards that the programmer
must conform to. The programmer has two choices
in these circumstances; he may either conform to
the standards with the attendant loss in
efficiency caused by his having to refer back
to documentation he doesn't fully understand as
he iterates through the diagram and coding phase;
or, he may elect to follow nonstandard procedures
more familiar to himself and later re-do them to
conform to the prevailing standards. (Or he may
elect not to re-do them, and thereby create the
possibility that a programmer attempting to per-
form maintenance on his program at a later time
will have his efficiency inhibited.)

IV-6

d. Lack of adequate supervision or consultation
resources. When the programmer is desk checking
his logic, inadequate access to more knowledge-
able programming staff may cause him to spend
a considerable amount of time in the debugging
phases that might have been eliminated by
relatively short consultation.

■*• Debugging. The programmer begins the testing cycle.
During this phase he may, from time to time, iterate
through all of the previous phases in order to arrive
at an adequately debugged program.

The factors that may inhibit programmer efficiency
during this phase are:

a. Improper or inadequate knowledge of program audit
procedures. These procedures, in effect, organ-
ize the test phase into orderly, logical sequences
of events. Lack of the use of these procedures
can cause the programmer to waste time in attempt-
ing to sort out all of the logical and physical
factors influencing a particular test run in
order to determine the causes of bugs.

b. Lack of adequate machine generated displays at
the improper termination of a test run. Dumps;
input/output tape, disc and memory displays; and
listings of parameter cards, are essential evi-
dence in the detection of bugs. If these are
not provided, then re-runs must be made or
debugging deductions made with improper or mis-
leading evidence.

c. Inadequate operations procedures or laxity on
the part of operations personnel in following
run instructions. This can cause the programmer
lost time in correcting operations mistakes, in
effect introducing another level of debugging;
that of correcting or rectifying poor operating
practices.

d. Discovery of program or data interdependencies
not previously known to the programmer, that
cause unanticipated aberrations in the execution
of the test program. This condition can cause
the maintenance programmer a loss in efficiency
by requiring him to retrace his planning and
orientation steps and to revise his approach to
the task.

IV_7

e, Unavailability of a representative sample of
input data or parametric variables that exercise
the program logic paths. If this inadequacy is
known to the programmer, it can cause him lost
time and inefficiency in hand coding data. If
not known to him, it can seriously reduce the
adequacy of the performance of the maintenance
task, thereby creating the possibility of
specious coding being introduced into the
production system.

f. Inability of the programmer to test the program
in a production environment. This condition is
often the case for complex programming systems,
particularly those that operate in an on-line
or real time environment. Thus, certain condi-
tions that cause unique paths through the system
to be executed will never be encountered until
the program is placed in production status.

Quality Assurance. The testing cycles are completed
and the programmer has satisfied himself that the
program is as operational as he can make it. At
this point he presents the results to the customer
either indirectly through an administrative chain
of quality control, systems analyst or supervisory
functions, or directly.

The factors that may inhibit programmer efficiency
during this phase are:

a. The customer either disagrees with the results
or based upon the new information obtained by
reviewing the results, requests additional
changes. This introduces further requirements
upon the programmer for communication relating
to the programming task, usually in an informal
and unstructured manner, and, if the customer
request is honored, may cause him to re-do
significant portions of the task that he has
just accomplished.

b. Lack of formal or standardized procedures for
reviewing results and resolving disagreements
as to adequacy of the results. This may cause
the programmer to spend considerable time in
arguing for, and explaining the results he has
produced.

IV-8

c. Detection of inadequacies in the programming
results or deficiencies in the documentation
accompanying them. This may cause the programmer
to re-write significant portions of the program
or to re-document parts of it, and could lead
to an effort as significant as the original task.

7. Production Shakedown. Finally, the program is placed
in production status. At this point the programmer's
responsibility probably doesn't end. With the ex-
ception of those installations that maintain a group
of specialist programmers for the purpose of remedy-
ing production status malfunctions, the maintenance
programmer continues to have either an informal or
formal continuing responsibility for the production
program insofar as the changes he has made may be
suspected to be causing aberrations in production
runs.

Factors that may inhibit programmer efficiency during
this phase are:

a. Lack of proper diagnostic techniques that allow
for the detection of causes of production program
malfunctions. This may cause the maintenance
programmer to have to enter into debates as to
the source of problems or to spend considerable
effort in tracing such causes only to discover
that they are the responsibility of someone else,
and subject to more expedient correction by others.

b. Lack of proper definition of responsibility for
production malfunctions. This will cause in-
efficiencies similar to those described in the
preceding paragraph.

c. Lack of proper or adequate communication concern-
ing the nature of the failure encountered. This
will cause the programmer to spend unnecessary
time in regenerating the conditions that caused
the failure.

B. Physical Environmental Factors.

In this section are presented environmental and work
factors that inhibit maintenance programmer effectiveness
that apply to more than one of the activity phases de-
scribed in the preceding section.

IV-9

1. Clerical Functions. In the course of the maintenance
programming task, the programmer is called upon to
perform functions that are menial in relationship
to his training and experience and that require simple
skills and attention to routine that are normally
the attributes required of clerks and secretaries.
Factors in these processes that inhibit programmer
effectiveness are:

a. The necessity to keep track of, in an orderly
manner, the many documents, source code sheet
and other paraphernalia essential to the task.
This requires the programmer to spend much of
his time in filing, cross referencing material,
and in general arranging material for ready and
efficient access.

b. The necessity to document, keep track of and
otherwise arrange for easy reference, the names
of variables in programs, the format and names
of data elements and the sequence of source code
statement numbers, etc.

2. Machine Time Availability. The lack of adequate
machine time during the debugging phase may cause
the programmer to lose efficiency through a loss of
knowledge, between test shots, of the logical con-
text of the phase of the test he is in.

3. Work Surroundings. The factors associated with this
that can cause inhibition of efficiency are:

a. Excess noise that cause distractions. This is
particularly detrimental during periods of
activity requiring intense concentration such
as logic design and flow charting, coding,
desk checking, data checking and debugging.

b. Lack of adequate work surfaces and storage areas.
During the course of the programming activities,
many documents, manuals, and writing tools and
forms must be kept track of. Lack of appropriate
and adequate space to accommodate such para-
phernalia cause an attendant loss in efficiency.

c. Lack of a comfortable work area. Discomfort can
cause distraction that may seriously inhibit
effectiveness.

iv-10

4. Inadequate Supervision and Audit. Lack of adequate
supervision or audit of the programmer's progress
during the accomplishment of the maintenance task.
This may cause the programmer to lose time and
effectiveness through lack of proper work organiza-
tion or consultation on technical and administrative
roadblocks.

C. Systems/Hardware Environment.

In this section various systems/hardware configurations
are described and the factors that inhibit the effective-
ness of maintenance programmers who have to deal with
these configurations.

1. Batch Systems. The factors that inhibit programmer
effectiveness in this environment are:

a. Schedules for time on the machines have a
tendency to inflexible. Since the progress of
maintenance changes, particularly during debug-
ging, is hard to predict, the programmer many
times finds it impossible to get test shots at
the times he needs them since production work
has taken up all the available resources.

b. Interaction with the computer is through manual
methods. The programmer must fill out run in-
structions and submit them to operating personnel
who then are expected to follow them. This
introduces the possibility of human error and
lost time on the programmer's part in rectifying
such errors. In addition, a batch system re-
quires more handling of cards and tapes with the
possibility of error.

2. Remote Batch Systems. When the remote batch system
is operating in-stand-alone mode, the factors in-
hibiting programmer effectiveness are little differ-
ent than those of a normal batch system. However,
when it is interacting with a central computer for
the interchange of data or programs, it introduces
a new level of complexity to the maintenance pro-
gramming task. The programmer must then, in addition
to knowing and keeping track of the program that is
the object of his task, also address himself to the
interface programs. It may also be difficult, if
not impossible, for him to replicate the production
environment because of interference with production
activities.

IV -11

3. On-Line Systems, The major obstacles confronting
the maintenance programmer in on-line systems is
the complexity introduced by operating systems
routines and the inability to fully replicate the
production status environment. If real time
applications are being worked on, the programmer
also will have difficulty in creating test data
that fully represents all of the interactive
processes that may occur in production status.

IV -12

II. Examples of Factors Inhibiting Maintenance Programmers as
Experienced at the Chrysler Corporation.

A. Poor Communications.

1. Verbal. Although many procedures and standards
existed for formal written communication, many of
the vital instructions were verbally communicated.
This communication medium was weakest and most
detrimental in the requests for maintenance that
came from the user. These requests were trans-
mitted to an organizational group called 'Customer
Service1 who were, in fact, the most experienced
group of maintenance programmers. Difficulties
arose from the discrepancy in understanding and
objectives between the user and Customer Service.
The user tended to think in terms of the applica-
tion with little concern for the implications to
programming effort. The programmers tended to
consider only the programming implications. This
led to exhaustive negotiations and meetings in
order to achieve agreement on the changes to be
made and understanding of the resources required
to make them.

2. Documentation. The documentation at Chrysler was
generally up to date and conformed to well-
documented standards. This was achieved at
considerable cost involving training in standards,
a large, well-staffed library function, and much
supervisory time and effort expended in auditing
documentation. The weakest point, once again, was
with the user request for maintenance. The users
were not trained in the documentation languages
and standards, and requests had to be translated
from the application language of the user to the
technical language familiar to the programmer.
This was the job of the systems analyst. Diffi-
culties arose because the systems analysts had been
drawn either from user organizations or from the
programming staff. In either case the bias of
their background tended to be translated in the
work they did. Formal documentation standards
were followed, but it was difficult to derive a
language that was precise and inclusive of all
possible circumstances. Therefore, narrative
descriptions of the changes became an important
part of the documentation. The ability to write

IV-13

concise, unambiguous narrative descriptions varied
widely among Systems Analysts. This ability did
not seem to correlate significantly with technical
or applications aptitude. Courses in technical
writing were given periodically to Systems Analysts,
but the results were not equal to the resources
invested.

3. Production Bugs. The most frequent breakdown in
communication occurred between the operations staff
encountering bugs in production programs and the
maintenance programmer responsible for correcting
such bugs. Often the operator was not adequately
instructed on what recovery procedures to use, and
what diagnostic information to obtain. This was
largely corrected by better operating procedures
that instructed the operator on general procedures
to follow when encountering a malfunction, better
run instructions in documentation packages that
covered restart and diagnostic procedures peculiar
to the particular system being documented and
operations turn-over training sessions conducted
by the maintenance programmer for the operations
staff when he placed a change into production status.

B. Inadequate Knowledge.

1. Application. The most serious effect was in
communication between the user and the programming
staff, as described above. Classes, conducted by
members of the user's organization, were given to
maintenance programmers on application topics. The
main effect seemed to be an increase in the morale
of the maintenance programmer and a facilitation of
relations between user and programmer.

2. Program Structure. Because of the good condition
of the documentation this problem was not as severe
as others. It occurred most frequently with new
or inexperienced programmers. It was alleviated by
a formal program of cross-training on different
applications, and by assigning senior 'advisors1 to
the inexperienced programmers.

3. Inter-Systems Effects. This was a major problem at
Chrysler due to the large size and interactive
nature of the applications. The systems followed
the chronological flow of sales, acknowledgment,
scheduling and manufacture that encompassed the

IV -14

business of the Corporation. The problem occurred
most frequently in emergency 'fixes1 or in short
duration changes. The larger changes were usually
better planned and tested, since the resources
brought to bear were greater. Partial alleviation
of the problem was achieved by keeping a log of
changes and their effects. This log was organized
by major system and was kept by the programmers
who were making maintenance changes to the systems.
Another procedure adopted that contributed to the
alleviation of this problem was systems test runs
by the systems programming staff. These runs were
done in order to determine data and logic inter-
relationships among various systems and the results
were documented and placed in the library.

4. Operations Practices. This problem manifested
itself most severely in the production shakedown
phase of the maintenance programmer's activities.
Corrective procedures, noted above, were costly.
The cost of these procedures were probably equal to
the direct cost incurred without them, but the
reduction in disruption of Company operations more
than justified their use.

5. Programming Languages. This problem occurred most
frequently with inexperienced programmers and with
experienced programmers who were not familiar with
the particular machine for which they were pro-
gramming. It caused mistakes in coding that were
often not detected until the debugging phase, and
at that juncture might cause significant reprogram-
ming. Cross training on different computers,
formal programming classes, and the availability
of experienced consultation alleviated these problems
to a large extent.

6. Audit Practices. Unfamiliarity with these practices
caused problems most frequently in the Quality
Assurance phase. A programmer may have performed
his task in an effective manner from the standpoint
of coding and testing, but unless he could communi-
cate, in the manner specified by standards, the
results of his task to the audit team his work was
not accepted. This caused some work, particularly
documentation, to be redone. The problem was
alleviated by including audit practices in the
standard training courses.

IV -15

C. Inadequate Organization and Procedures.

1. Consultation and Supervision. This problem caused
the most serious consequences in the debugging phase
when the programmer was attempting to trace a mal-
function in his test program. Often, a few minutes
with a senior programmer could solve a problem that
might take hours for the maintenance programmer to
solve on his own. The program planning phase could
also be far less effective without adequate super-
vision and consultation. This manifested itself in
the later phases when poor planning caused lost
time while the programmer attempted to reorganize
his tasks to be appropriate to the resources avail-
able. This problem was largely alleviated by
adequate supervisory control (there was an average
of one working supervisor for every five mainte-
nance programmers) and the assignment of consulting
duties to members.of the organization that had
specialties appropriate to the programming tasks.
The latter procedure created problems in that it
had a tendency to disrupt the work activities of
the programmers who were carrying the double duty
of 'consultant1.

2. Audit. Inadequate audit procedures most frequently
caused problems in the debugging phase of the
maintenance programmers task. This occurred because
it was extremely difficult to obtain an accurate
assessment of the programmer's progress during
debug. The programmer typically thought that each
test shot he submitted would be the last and as a
consequence consistently under estimated the effort
and time necessary to complete the job. In the
other phases of the programming task it was fairly
easy to audit programmer progress, and a very
thorough audit procedure was derived and implemented,

3. Operations. This problem manifested itself most
frequently in the debugging phase. It was often
difficult for the programmer to acquire the test
time he needed for orderly progress on the job.
It was also difficult for him to communicate his
specific needs to the operations organization so
that the test results were optimally effective.
Two organizational schemes, tried at various times,
accounted for these difficulties: one allowed the
programmer free access to most of the operations
staff, on a semi-open shop basis, another formalized

XV-16

the programmer-operations interface rigidly on a
closed-shop basis. In the former case control an
orderly scheduling became impossible. Many
schedules were created on the basis of the
aggressiveness or popularity of individual pro-
grammers, rather than on need as determined by work
priority. In the latter organizational mode
bureaucracy impeded progress by requiring extra
effort on the programmer's part to conform to rules,
and by stifling informal communication required
for responsive results. The best solution that
was implemented at Chrysler was something in between
the two extremes: A closed shop with formal
procedures, but with escape clause provided by an
expediter who had informal access to all the
operations staff and was the programmer's 'friend
in court1.

4. Design Changes. Although design changes could
require the programmer to retrace all of his
programming steps, the problem most frequently
manifested itself in the Quality Assurance phase.
These changes were requested by the quality
assurance staff because of results that didn't
meet standards. No direct remedial actions
alleviated this problem. The indirect actions of
better training for programmers, more concise
specifications at the initial request phase, and
better supervision, all contributed indirectly to
improving the situation.

5. Results Review. This problem was manifested pri-
marily in the Quality Assurance phase. It was
caused by an inadequate understanding among the
Q/A staff, the programmer, and the user as to what
should be considered as adequate results. Once
again, the indirect actions cited above contributed
to improvement.

6. Production Diagnostics. This problem arose during
production shakedown. It was caused by inadequate
production diagnostic aids and procedures for
determination of causes of malfunctions. It caused
the programmer and operations staff to spend
unnecessary time and resources in recreating mal-
functions in order to produce the proper diagnostic
material. It was largely solved by better operator
training, improved program documentation that

IV -17

included instructions for diagnostic procedures,
and better operations supervision.

7. Production Responsibility. This problem caused
much confusion and lost time when a production
program malfunctioned. No one wanted to claim
responsibility for correcting the malfunction and
much energy was expended in fixing responsibility.
This was greatly improved by adopting the following
practices: at the conclusion of a maintenance
programming task, the Quality Assurance function
assigned an integer to the program. This repre-
sented 'n' production cycles through which the
program was run before the maintenance programmer
was relieved of primary responsibility for any
malfunctions. After that, the responsibility
resided with the systems programming staff.

8. Clerical Duties. This problem was most inhibiting
during Diagramming and Coding, and Debugging phases.
It arose because the maintenance programmers had so
much data and documents to keep track of and to
organize for effective work activity. Since
Chrysler's documentation was extensive, and the
systems were massive and complex the amount of paper
that a programmer used in accomplishing a maintenance
task was considerable. Further complicating the
clerical task was the necessity to conform to
detailed and extensive standards. This required the
programmer to organize his work so that its comple-
tion would yield results consistent with the
standards. In the other phases of the programming
task this problem was largely alleviated by the
use of 'para-professionals' to assist the programmer
in the clerical functions. These personnel were
secretary/clerks and programmer-trainees. For each
group of 5 programmers there was at least one such
person assigned. Approximately half of their time
was devoted to organizing material that the pro-
grammer required to accomplish his task, and pre-
paring data and keeping track of material as it
flowed from the programmer to the different organiza-
tions. However, in the coding and debugging phases
the programmer's use of such materials was so inter-
active and random that it was difficult if not
impossible to utilize such help. The only step that
was taken to improve this was the incorporation of
clerical methodology in the standard training courses.

IV -18

D. Missing Aids.

1. Production Environment Test. Since the systems at
Chrysler were large, complex and highly interactive,
it was often impossible for the maintenance pro-
grammer to have all of the production environment
conditions present for testing. This led to much
extra effort in attempting to design tests that
were as close as possible to the production environ-
ment, and caused bugs to be left in programs that
weren't detected until the program was in production
status. This problem was never satisfactorily solved
but certain measures were taken that improved the
situation. The systems programming staff extracted
from production runs statistically representative
samples of input data and created test files from
these. They also created simulated interaction
programs that allowed the programmer to test
interactions without the full system. Obviously,
such test files and simulations could not be ex-
haustive, and the problems continued, particular in
production programs.

2. Machine Displays. The largest problem at Chrysler
was the unavailability of the correct selective
dumps of core or external storage media in order to
pin-point the cause of program malfunctions. Fre-
quently, when using selective dumps, the programmer
would get the wrong area of storage, or he would
get too large a dump and have to waste considerable
time in finding the area he was most interested in.
Another problem was presented by the fact that many
times the dump was taken when storage was in a
different state than at the time the malfunction
occurred. Trace routines were used extensively in
an attempt to reduce the effect of this problem,
but the routines introduced other problems. They
slowed down execution, created unwanted displays,
and were tedious to set up. No conclusive solution
was ever found for this problem.

3. Test Data. Even though systems test files existed
for all major systems, they were not all inclusive
and the programmer was often faced with the task
of generating his own test data. This occurred
often enough that the expense involved amounted to
approximately 10% of the average programmer effort
expended on maintenance tasks. Creation of automatic

IV -19

and selective data extraction and formatting routines
alleviated this problem slightly but the effect on
effort was negligible since the routines required
effort to understand, use and maintain.

E. Inadequate Environment.

1. Machine Time. There were two conditions that
occurred at Chrysler that were detrimental to pro-
gramming effectiveness; first, when there wasn't
adequate machine time to allow the programmer to
get tests back fast enough so that his time was
fully occupied during debugging, and second, when
there was almost limitless test time and the pro-
grammer had a tendency to submit tests without
adequately desk checking the previous test. The
latter situation caused the programmer to become
confused and disorganized in his testing approach.
The attempt at solution caused a study to be con-
ducted, and periodically updated, for the most cost
effective average turnaround duration. When this
average fell below cost effective tolerances, and
it was determined that the condition wasn't
transitory, additional equipment was installed.
Another procedure that alleviated this problem was
the introduction of a priority system that took into
account the importance of the application to the
company and also incorporated an aging system that
increased the programmers' priority as the interval
between test shots increased.

2. Work Surroundings. This problem was most debili-
tating during those programming activities requiring
high concentration, such as coding and debugging.
It was caused by poorly organized, noisy work space.
The programmers were in a 'bull pen' arrangement
with tile floors, non-acoustical ceiling and no
provision for meeting rooms for consultations. This
problem was largely alleviated by organizing the work
space into well arranged two-man cubicles, carpeting
the floors and installing acoustical tile on the
ceilings. For every four cubicles, there was a
small six-man conference room. The reduction in
distractions and disorganization improved output of
the programming staff by a measured 8%.

IV-20

III. Analysis of Inhibiting Factors.

A. Inhibiting Factor Scoring System,

The following system is arbitrary and subjective. It
is designed to assign relative rankings to inhibiting
factors as experienced at the Chrysler Corporation.
It assumes a non-linear relationship between effects
that inhibit but does not take into account the
possibility of interrelated effects. (e.g., if an
inhibiting factor X;L exists in an activity area yi,
with a rank score rlf then it is possible that there
exists x2, y2 such that r2 = f(r^, x^, y^). The
determination of such relationships would require
extensive research.)

The efficacy of the system described below is that, by
assuming additive effects of rank scores, it gives a
ranking of seriousness to inhibiting factors and
activities as they potentially contain such factors;
and it is easily understood.

WORST
EFFECT SCORE

1. Causing major disruptions felt 6
widely throughout both user and
programmer organizations

2. Causing disruptions felt sig- 4
nificantly beyond the programmer
and his immediate associates, but
not in the user organization

3. Causing disruptions felt only by 2
the programmer and his immediate
associates

4. Causing disruptions felt only by 1
the programmer

The scores reflect relatively perceived disruptions.
It might be analytically more satisfying to reflect
absolute cost of resources. However, this measurement
is not available. The assumption, then, is that cost
of disruption is proportioned to the extent of organiza-
tional reaction. This assumes a rationally responding
and perceiving organization. The scores indicated are
the "worst" effect that a factor might create in an

IV -21

organization. In the matrix that follows, scores are
multiplied by a probability coefficient which indicates
a guess, based on experience, as to the probability of
such a factor having effect or occurring in a given
activity. (Zero probabilities and scores are not shown.)
The resulting product produces a rank score. Rank
scores are then summed by row and column to produce
summary rank scores for activities and factors. These
are listed in this Appendix and in Chart 2.4.3 of Part I
of the Phase One Report.

IV-22

Ul

T/JITVM 8sc%zsr SfaffsA&jf» 7exr DZSK/tf psewfttty QuALtrf
A*Sur?AtJc£

P/topvcfiotJ
StlAtfetiOvHJ

rcrr:.Ls <
Pi

M+ Mil \CO Ala \l.o
tx.«*/.* y*2>f

DitatnZfjrrhoN 6xJht4 VX.JS/.I zjf.r»/ 1».7J>.< 3«J*/.t V*W» tr.ts/.u lo.o /

P£c*::cno;J OtrrjS i»4**H **\n
ZtJAPfÖfOTtM'loM&CtC l/.f I3A kf I A* Iftf \f* . "** !■»• Zo.Z |

APPu<Artort £*./• *> **.*** ?x.?*/t fj.fr/ *r.?s/.* <*.*«/•* £>.o 7
pjzcs&w SKuerute 4fJs.4 V*.**/* fV.l».* 2*.?».« SX.1S.4 V*.lc.J <X.l*f* (,0 1
Iirrcf.-vffiZiS eff&rs £y./«.* yjr.t'-* Vx.is.J SV.Tr.fc 4/X.T-/.V i«.9*f.8 S% t
OP&VtTKMt F.Xcr/cet 2*.y*l tfl.fcZ.« C*.X*bT' +1 ll
t>anf» tntJe,nat,*s 4x.l*/.l V*-*!»/.^ i*V-2'} S.t lc
te&r prAcrices Vv.z«.» <|IM.*.I Vi.f'«- rc 14

miPJQWic'ai&i./pffc&i *.o [*.* 1/4, ~l>* |f.# Ji.. U» A>ol 2o.o\
CofJsuL;irt-io.j/suP •. +X.1*.% 1*.¥*U **•**/ a*.«**.» 4*.f«z. AM«.* «|6
AttDir •fX.?«f/l. **«»* tX.ff.l

^(//
OF£iV.rioUS **$*« 4«-«*.1 *«j#
Design awmts tX.t:/.T '•*| /U
&st/as W£u/ 6*.**3 3.Ö \!L
PAOD, PiAhNosriCS <y.i*s.< J.6 U
P/&D. RiSPOtiStXHtfT/ Ol^X Vt

I?-

Cce/ucAL puTtes **|% * *»!*«. *#I#J
/.7£&'/6 .tyDS \'° |»~ if:9 | <?.<? |*.* '.'!** _J^ It* /^Cf

&,'ot>. Q/H-resT 2.X. f* f *m**l v**=/ AC
\s

te.&Iitis D/sPM/s 4>.t«.l fX.i«.<f tfX.fejh *>*\T
T£sf 7*TA «jr.5.1 /*.f*t 2*S*l 4**|/S

&£P*GMfir£MV/JH£vr \c. l/.o \z* U.O IM JAf J ••* U.0 /tf-s"!
mtrntiS 7M£ |*.f« .5 #fJ«t. <xi>* y.s r.
Wxye Sf-iKottMutXfS 7KU 1 Z*lzt 2*151 *?I*X Iftlt 1 ^.o 1

£AHK ToTAL\ <?.o 7.? u t.z A>7 z%z /*8 372

XAAIK Z 7 8 4 ¥■ 2. 3 /

B. Matrix of Activities vs. Factors

IV -24

C. Summary of Rank Scores by Rank & Percentages.

1. Inhibiting Factors.

Rank Factor Score % of Total Cum. %

1 Documentation 10.0 8.7 8.7

2 Machine Time 8.5 7.4 16.1

3 Verbal Communication 8.4 7.4 23.5

4 Work Surroundings 8.0 7.0 30.5

5 Prod. Env. Test 7.0 6.1 36.6

6 Consultation/Supv. 6.8 6.0 42.6

7 Application Knowledge 6.0 5.2 47.8

8 Inter Systems Effects 5.8 5.0 58.0

9 Machine Displays 5.4 4.7 62.7

10 Prog. Languages 5.2 4.5 67.2

11 Audit Procedures 4.4 3.8 71.0

12 Operations Practices 4.2 3.7 74.7

13 Clerical Duties 4.0 3.5 81.9

14 Audit Practices 3.6 3.1 88.5

15 Results Review 3.0 2.6 94.2

16 Operations Org./Prcdrs. 2.8 2.4 96.6

17 Production Bugs 2.4 2.2 98.8

18 Design Changes 1.2 1.1 99.9

15 Results Review 3.0

16 Operations Org./Prcdrs. 2.8

17 Production Bugs 2.4

18 Design Changes 1.2

• IV-25

2« Inhibiting Factors by Groups.

Rank Group

1 Inadequate Knowledge

2 Inadequate Org./Prcdrs.

3 Poor Communications

4 Inadequate Environment

5 Missing Aids

3. Activities

Score % of Total Cum. %

30.8 26.9 26.9

30.0 26.1 53.0

20.8 18.4 71.4

16.5 14.6 86.0

16.4 14.2 100.2

Rank Activity

1 Production Shakedown

2 Debugging

3 Quality Assurance

4 Test Design

5 Initial Request

6 Diagramming & Coding

7 Systems Analysis

8 Program Planning

Score % of Total Cum. %

37.2 32.4 32.4

23.2 20.3 52.7

13.8 12.0 64.7

10.9 9.4 74.1

9.0 7.8 81.9

8.2 7.1 89.0

7.8 6.7 95.7

5.4 4.7 100.4

IV -26

APPENDIX V

CSA Software Maintenance Report

SOFTWARE MAINTENANCE

Purpose of the Report

This brief report is a summation of CSA's experience with and
analysis of software maintenance problems. The report also
attempts to identify the computerized tools now utilized and the
potential areas for improved computerized tool development in
support of the maintenance programmer. Further, recommendations
are made for research areas in the development of these computer-
ized tools. The prime focus in the report is on the maintenance
programmer in a large real-time software system.

The resources utilized for this report have come from three
sources:

1. The experience of the authors.

2. Material gathered and reviewed in a literature search
on the software maintenance problem.

3. Interviews of maintenance programmers, primarily at
SDC, in the last couple of months.

The authors, Levi J. Carey and Willis Hudson have had extensive
experience in software maintenance. Both were employed at the
System Development Corporation during a period of five years when
software maintenance of the SAGE and BUIC systems was an awesome
chore. SAGE and BUIC are both large real-time command and control
systems. Their responsibility was to develop tools for software
maintenance. One of the tools mentioned by an SDC programmer in
the latest series of interviews was originally developed and
conceived by the authors—the symbolic corrector program. The
SDC programmer stated that the corrector program was the most
valuable tool they had. In any case the authors have had ample
opportunity to view the software maintenance problem as main-
tenance programmers and as tool developers.

The literature search has provided information primarily on the
tools that are presently available or are being researched.
Later in this document these tools are identified. Interviews
with present SDC employees and with other personnel have identi-
fied further some of the major problems of software maintenance.
One of the disappointments of the interview technique, however,
was the lack of insight into what might be done to change things.
Indeed, there appears to be some complacency or resignation in

v -1

the maintenance programmer's attitude relative to what might be
done for him.

What Is Software Maintenance?

Software maintenance is that activity required to support the use
of the software system. Generally, software maintenance activity
can be organized into two types. These are:

1. Software modification

2. Software repair

These are the primary activities of the maintenance programmer.
However, there are other conditions which also require servicing.
They include the requirement for the programmer to provide
information about the system's operation, also to provide im-
provements in system operation. The latter two requirements are
generally of an ancillary nature and are prerequisites to pro-
gram modification. Requests for modifications to the system
require the majority of the maintenance programmer's activity.
He is usually bombarded with modification requests to accommo-
date either: the user, some system component (usually hardware)
that is malfunctioning or could malfunction, and changes in the
system environment, i.e., new requirements. The other activity
required of software maintenance programmers is error correction
and program repair. If the user or anyone else discovers a
program error, one of the maintenance programmer's primary tasks
is either to repair the software system or to devise a way around
the failure which is satisfactory to the user. Error correction
for large real-time programming systems consumes a considerable
amount of the maintenance programmer efforts and is used to
justify the considerable expense of retaining some programmers
in this type of maintenance effort on a full-time basis.

These two areas, program modification and program repair, will
be the primary areas of discussion in this report from the view-
point of the maintenance programmer we are attempting to aid.

Software Modification Process

Any chronology of the maintenance programmer software modifica-
tion activity would include the following six phases:

1. Request for change;

2. System change design;

V-2

3. Detailed program change design;

4# Program code development;

5, Program testing;

6. System validation.

Request for Change

The request for change from our experience (and it also appears
to be the experience of others interviewed) varies greatly in
terms of: the magnitude of the request for change; the proce-
dures used to process the change; and the knowledge of the
requester relative to the software system.

Requests for changes, when formally submitted, have usually had
some informal analysis. From the maintenance programmer's point
of view, his first task after receiving the request for change
in a large real-time system is to determine what part of the
system is involved and what programmers or analysts should be
involved. The programmer receiving or coordinating the request
for change first attempts to identify from the statement of the
change what primary data structures are involved and what com-
puter program modules are involved. He generally has some
knowledge of the areas that are involved. For instance, he is
probably aware if the change involves some large functional area
of the system such as displays. He then goes to the lead pro-
grammer in that area for further information. Notice that the
system of discerning information from the written statement of
the request for change is based largely upon human theory. This
part of the modification process is subject to considerable
error - catastrophic error! The programmer receiving the request
for change may overlook a vital area that should be involved.

One of the most effective aids to the maintenance programmer in
processing a request for change is a program which builds an
alphabetized cross referencing index between the data names and
a description for their reason for being. This is organized as
a data base of information in the SAGE system and it was called
COMDOC or COMPOOL documentation. It can be extracted from the
program code. Another aid which was used is a system set/use.
This program provides cross referencing between names and the
program module which either sets the data or uses the data. With
these types of automated documentation, the programmer receiving
the request for change has a better idea of where to go to find
the affected parts of the system and the affected programmer.

V-3

System Change Design

After is has been established which programmers are involved and
what part of the system is involved, a meeting of the personnel
involved is usually called to decide upon a design for the system
modification. Generally there were several alternatives. Opti-
mization of several design goals is attempted at once—the fore-
most consideration is to implement the change and not degrade
system operation; further, to implement the change in such a way
that a minimum of storage is utilized and minimum operating time
is realized. Another goal is to implement the change so that the
work load is evenly distributed thus facilitating production of
the change. Once a design has been agreed upon, one of the larger
and more onerous chores is to document it.

Computerized tools used to support the system change design
activity include those which were also used to support the
request for change analysis, namely COMDOC and a system set/use.
There is considerable reliance upon non-computerized documenta-
tion during this phase. This includes the Operational System
Description Manuals, Part I Specifications and Part II Specifi-
cations where and if they exist. Again the primary tool in the
design activity is the programmers memory. If the change
requires data restructuring or program module reallocation, the
systems are used and are very valuable. If the change is of
sufficient magnitude, a simulation of the modification may be
required. These simulations are rarely of a general nature, but
are customized to the system being modified.

Program Change Design

The individual maintenance programmer usually has the responsi-
bility of developing a design change for one or more program
modules. This is accomplished usually by the programmer out-
lining in an informal manner the areas of the Part II documenta-
tion that are to be changed. He is generally requested to
identify at this time his system test requirements. This is
infrequently accomplished. The program design activity is highly
dependent upon how intimate the programmer is with the program
module for which he is responsible. Modification to a computer
program always involves some risk due to the fact that incom-
plete knowledge may generate another error.

One of the computerized tools used during the program design
process is cross-referencing programs which relate data names to
statements where they are used and other identifiers in the

V-4

program such as statement labels to their references throughout
the program. Very few flow charts generally exist in Part II
Specifications. If flow charts are automatically derived they
are rarely of much aid except for program structure analysis.
One of the problems in performing modification to programs is to
obtain a listing of the source program as it is on the opera-
tional tape. If the program has been patched with corrections
then there is always a risk that the corrections have been
improperly noted or not noted at all. One of the more effective
tools which the authors conceived and developed for assembly
language programs was a disassembler—a program which took cor-
rection patches and integrated them into a program listing so
that a reliable listing of the computer program at the source
language level existed. For higher order language programs, a
decompiler or un-compiler is required. This was also attempted
with less success. Some parts of the system were in a higher
order language. We were not successful for several reasons. The
most prominent reason is that it was difficult to allow a pro-
grammer to code in a higher order language and then integrate the
patched code into the binary programs. This was much simpler in
assembly language programs. We will say more about this later.

Program Code Development

The maintenance programmer is required to make a decision as to
how to proceed in developing code to implement a modification.
He generally has two methods available to him—a program patch
or reassembly/recompilation. The program patch method has the
advantage of isolating the program modification and quick imple-
mentation. The reassembly or recompilation has the advantage of
coding in the source language of the program and an ability to
reorganize the program. If the proper tools are not available,
program patching will degrade the system documentation. Also,
if a program patch system is not available in the source lan-
guage, the mechanics of making the change may be cumbersome,
i.e., octal corrections. In any case, code must be developed
either for a patch or a reassembly or recompilation. This part
of the task generally requires less time than most other pro-
cesses; however, it is one that is considered first when program
maintenance is discussed.

The tools used for program coding are symbolic or octal correc-
tor programs for patching and the assembler and compilers for
source program translation. Cross-referencing programs are also
used to aid in determining how to code the change.

V-5

Allocation programs for data are utilized when a change involves
reallocation of storage. A considerable amount of program modi-
fication involves recoding variable names, dimensions, locations,
etc. The use of COMPOOL or data base generation programs for
data names and descriptors is very effective in facilitating
modifications. In a large number of cases, all that is required
is a data change.

Program Testing

The area of program testing on a program module basis is usually
left up to the individual maintenance programmer. This is gen-
erally accomplished in a system environment however; that is,
the modified program is placed in the system and checked out
using the system's tools. There is considerable advantage to
this for the maintenance programmer. Essentially he has avail-
able to him the system's simulation and data reduction facilities.
Checkout for the modification is most often accomplished by gen-
erating inputs for a program module for a particular set of
functions and examining the results. On the first few checkout
runs, typically the program does not run to completion. However,
after that hurdle has been passed the problem quickly blossoms
into one of generating test inputs and reviewing test outputs.
Since a considerable amount of time is consumed in this activity
and since this activity is less systematic than CSA believes it
might be, particular emphasis should be placed on improved test-
ing.

The tools utilized for program testing are data conversion pro-
grams which accept decimal numbers and associated variable names
as input and convert these to binary for system use at the proper
time. Tools for high level simulation are also used. A function
description is input and variable values are generated. Data
reduction programs of considerable variety are utilized during
the test process. During the debugging process several kinds of
cross-referencing and post auditing tools are used.

System Validation

System validation is the most constraining factor in the produc-
tion of a software modification. Validation is a "forcing func-
tion" requiring software modifications to be bundled permitting
the system to remain stable for a period so that system valida-
tion may be applied. The maintenance programmers when faced
with software system validation tasks generally organize them-
selves so that either a separate group is responsible for this

V-6

activity or a subset of the implementation group is responsible
for this activity. It is approached most usually in a large
real-time system in a formal manner in that test plans are
devised to exercise the area changed. Further tests are usually
maintained for general system exercise. Maintenance programmers1

success using these techniques have been less than optimum as
evidenced by the numerous discrepancy reports which are immedi-
ately generated after validation of a new version or model of a
system. Indeed, most users would rather run with an error (if it
is not extremely serious) in a system with which they are famil-
iar than to modify the error and risk introducing new errors.

The maintenance programmer begins by generating simulation inputs
for the software system. The level of the simulation input
language is important to the maintenance programmer because it
defines the amount of work he must supply in generating a system
exercise. Simulation inputs which require variable names and
data values are most difficult to generate but are also useful
for precisely controlling the input. After generating simulation
input and exercising the computer program, the next task is data
reduction. It has been the author's experience that data reduc-
tion in terms of the number of statements gets to be the biggest
part of almost every software system. The reason is the require-
ment for variety and type of output. If the maintenance pro-
grammer must use a memory dump, he is indeed in a sorry condition.
Generally, however, large real-time systems have some data reduc-
tion facility; very rarely at a function level however. Data
reduction is provided for variable names and values and it is
also provided for some functional areas that are easy to decode
such as keyboards, switchboards and some displays. Data reduc-
tion for air defense systems on hostile and interceptor condi-
tions is difficult to come by.

Computerized tools which support system validation generally are
of the type to aid the mechanics of program testing. Very rarely
are tools available which attempt to assess program correctness.

One tool is generally available; it is an audit type program.
This program indicates to the user which statements or sub-
program modules have and have not been exercised.

Tool Utilization

Following is a list of tools which are presently used and iden-
tified for the phase of software maintenance activity they
support.

V-7

Request for Change

System Change Design

Program Change Design

Program Code Development

Program Testing

System Validation

Cross-referencing Index
Data Dictionaries
System Set/Use

Data Name Description
System Set/Use
Data and Module Allocation

Systems
Analytic Simulation

Data Name Statement Cross-
Referencing

Data Dictionary
Program Set/Use
Automatic Allocators
Flow-chart Generator Program

Assemblers, Compilers
Dis-assembler/Uncompiler
Symbolic Corrector Program
Machine Language Corrector

Programs
Data Base Audit Programs
Automatic Update Programs
Code Analysis and Improvement

Programs
Reformatting Programs

Simulators, Functional and Data
Oriented

Data Reduction
Trace and Trap Routines
Timing Analysis Programs
Data Analysis Programs
Initialization Programs
Standard Test Libraries
Test Drivers
Data Generators

Register Use Analysis
Statement Use Analysis
Data Reduction
Standard Test Library
Regeneration of Functional

Statement

V-8

Potential Areas for Computerized Tool Improvement

The authors see six areas in which computerized tool development
will aid the maintenance programmer significantly. These are,
in their order of importance:

1. Techniques for computerized documentation support.

2. Techniques to support program testing and validation.

3. Techniques to support program debugging.

4. Techniques for coding of modifications.

5. Techniques for improved and generalized simulation
and data reduction.

6. Techniques for automated system allocation.

Computerized Documentation Support

Two different types of documentation requirements exist for the
maintenance programmer. The first and the one with which he is
most intimate is the documentation directly related to the pro-
gram code, i.e., cross-referencing listings, program listings,
data name listings, etc. The second type of documentation
relates to system requirements, i.e., operational handbooks,
Part I Specifications, Part II Specifications, etc. Techniques
generally are available for the generation of most of the docu-
mentation of the first category; however the documentation is
degraded after the system has been modified. Further, consider-
able improvement in this documentation for the individual program
module could be made. The authors believe that the second type
of documentation, requirements and design documentation, can be
made much more usable through computerized techniques. What is
required is a thread of continuity through the computer program,
the Part I and Part II Specifications, and the operational system
description. All of this documentation however can benefit from
the use of interactive consoles and a common data base.

Computerized Support For Testing and Validation

Techniques which support program testing and validation have
recently taken two paths: 1) development of formal program
proofs and associated translation programs and 2) measures of

V^9

program testing required and applied for software reliability
using computer aided tools. The authors feel that what is
needed now is further development of the latter technique.
Quantitative data on the correlation of software reliability and
validation is required. Real progress is software validation
and verification or software reliability can only be made when
it is known what is significant about software reliability;
numbers assigned to the effects and progress measured using
these numbers.

Computerized Support for Program Debugging

This is an area in which an investigation and projection of
techniques likely to be used in the future should be pursued.
Coding techniques and the support tools differ vastly depending
upon the approach one takes for software modification. There
are two techniques: 1) patch the computer program and 2) decom-
pile and reassemble the program. Patching a program requires a
completely different set of approaches and tools—some quite
sophisticated. In spite of claims to the contrary, patching of
computer programs has remained as a primary technique for program
modification. Recompilation or reassembly of programs has dis-
advantages in the present state of the art relative to software
reliability and computer time utilization. One other considera-
tion should be made for coding of modifications. This is a pro-
jection of the level of languages likely to be used in the future.
Decisions relative to whether our attention should be focused on
assembly, procedure, or problem oriented languages, or all three,
are analyzed.

Improved Simulation and Data Reduction

Techniques for establishing generalized simulation and data reduc-
tion facilities to facilitate program testing should be investi-
gated. An identification should be developed of the levels of
language input and definition of the types of output more than
likely to be required.

Automated System Allocation

Although not one of the areas which is more prominent, a soft-
ware system modification involving reallocation or resegmentation
of data and program modules is usually a very cumbersome and long
lead time chore. Recommended here is the investigation of what

V-10

techniques are presently in existence, their effectiveness, and
the potential for generalizing these capabilities.

Conclusion

The six areas identified for potential improvement using compu-
terized tools not only supply the maintenance programmer with
more powerful system software, but will probably change his
responsibilities and methods of operation. Further, tools of
the type recommended benefit the production programmer equally
well.

V-ll

APPENDIX VI

- Scenarios and Questions

- Higher Order Languages and

Maintainability

CONTENTS

Part

I Introduction

II Flowcharting Scenario

III Structured Documentation Scenario

IV Interactive Aids Scenario

V Testing Scenario

VI Position Paper: Higher Order Languages & Maintainability

Part I

Introduction

The following scenarios were developed by two project
staff members. Their mission was to develop descriptions of
"ideal" maintenance programmer environments that were as free
of efficiency inhibiting factors as their imaginations would
permit. From these scenarios was then developed a list of
questions that would have to be answered to determine the
feasibility and efficacy (in removing fundamental factors) of
the ideal environments.

In creating the scenarios the staff members used the
questionnaire (Appendix A), The Chrysler Study (Appendix C),
The Buic Case Study (Appendix B) and their own experience as
background information.

The "position" paper (Part VI of this Appendix) was
developed by a staff member in order to examine questions
relevant to higher-order languages and their maintainability.
It is in a different format than the scenarios because it was
felt that, for this topic, an expository approach would be more
realistic because of the infeasibility of developing specifi-
cations for a new higher-order language.

Part II

Flowcharting Scenario

Introduction

At the highest level, flowcharts provide insight into
relations of major system components. In this scenario these
are available on-line with boxes keyed by pointers to high-
level, code-related documentation. If there is more than one
level of flowchart, the boxes of the n^ level expand into the
n + 1 st level flowcharts and the programmer can move back and
forth on the console between these levels by the implicit use
of expansion and keyword oriented pointers.

Programmer Scenario

The maintenance programmer (MP) works with a console CRT
display unit with light pen attachment. By depressing certain
keys on the console he has displayed on the CRT the "table of
contents" of the documentation system. The table first dis-
played lists all of the "major" system titles of documentation

VI-l

contained in the system, (e.g., "Payroll", "Accounts Receiv-
able", "LP Model of Plant Production", etc.) Beside each
title are symbols that denote the status of the system name.
The symbols denote status such as "documentation in the process
of being brought up to date", "major (minor) revisions in pro-
cess", "system current", "system locked up-see system author-
ity for permission to access", etc. At this point the MP has
his choice of two possible actions; first, he may elect, through
a touch of the light pen to the appropriate systems title, to
have displayed a more detailed or expanded "table of contents"
for that particular system or, second, he may .elect, through a
touch of the light pen in a different place on the appropriate
systems title, to have the top level flowchart for the named
system displayed (assuming it's not "locked-up"). In the first
case, there is displayed on the CRT an expansion of the "table
of contents" of the system named, which lists all of the sub-
systems of the major system and denotes, with the symbols
described above, the system's status. In the second case, a
top-level flowchart is called forth on the CRT and displays the
gross systems interrelationships in standard flowcharting
notation.

Each of these options present two options of their own.
In the case of the display of the more detailed "table of
contents" the MP can elect, by touching the light pen to the
appropriate sub-system title, to have the top level flowchart
for that sub-system displayed on the CRT. In the case of the
"gross" overall system flowchart he may elect, by touching the
light pen to the appropriate flowchart box, to have that box
"expanded". Expansion displays on the CRT the next level of de-
tailed flowchart that describes the top level box in more logi-
cal detail.

At any level of display on the CRT, except the topmost
level, the MP may elect to "contract" instead of expand. This
is done by depressing a "contract" button on the console and
the next higher level of documentation from where the presently
displayed documentation emanated, is displayed. In the case of
flowcharts, this action would display the next higher level
that would, in general, contain the presently displayed docu-
mentation represented as one figure. In the case of "tables of
contents" the contract action would display a table that would
contain the presently displayed table represented as one line.

Through the exercise of the appropriate options the MP
may progress through higher or lower levels of detail in flow-
charting documentation and relevant tables of content. In
addition the MP has, at any level except the topmost, two more

VT-2

important capabilities. The first is called "Save". Through
the depression of buttons on the console the level that is pre-
sently being displayed may be saved in the sense that at any
later time the MP can depress another button on the console and
have displayed the documentation that was saved without having
to return to it a level at a time as described above. Several
(perhaps as many as 10) saves are available. A complementary
capability available to the MP is that of displaying at any
time without interrupting the sequence of his access to docu-
mentation, the contents of all saves. Upon depression of the
proper button on the console a table of saves is displayed that
contains the save number, the title and level of the documenta-
tion saved, and a "remarks" section which contains space for a
dozen or so characters that the MP may input at the time of the
save.

The second capability is that of "scan". At any time that
the CRT is displaying flowcharting documentation, the program-
mer may elect to "scan" by depressing a scan key on the console
and pointing the light pen at one of the borders of the screen
to indicate the "scan" direction. The CRT will, in effect, then
act as a "window" on a "universe" represented by the total
documentation available at the level presently being accessed.
By pointing the light pen at different screen borders the MP
will cause the documentation to "shift" in that "direction".
Before he starts this operation an automatic save is done by
the system so that he can always return to the window "scene"
he started with.

Systems Scenario

The flowcharting system is designed around a central
executive or handler routing that responds to inquiries on the
CRT and consoles. It also handles message interpretation,
formatting for displays, pointer and register maintenance and
other housekeeping chores.

The systems files are constructed in four major files:
the flowchart file, containing the codes that can be trans-
lated by the handler into figures and the text that appears in
the diagrams; the pointer file that gives the addresses and
logical linkages for the flowcharts and also contains the
tables of contents; the scan file which contains pointers that
indicate, directionally, the linkages for each figure in each
level of documentation; and the save and systems dynamic files
which contain the pointers for saves that the MP has made and
also contains registers and variant systems addresses for
systems returns to routings in process, interrupt status

VT-3

switches, etc.

Upon the initial request by the MP for the top level table
of contents the handler sets up a work space identified with the
console initiating the request. It clears the work space or
saves it in archival storage depending on an option exercised
by the MP at sign off time. While interacting with the MP at
the console the handler keeps track of "where it is", "where
it's been" and "where it's going". "Where it is" is kept track
of by loading a systems register with the address of the pointer
set that describes the locations of the elements that make up
the documentation currently being displayed. "Where it's been"
is available to the handler by accessing the above mentioned
pointer, going to the pointer file and reading the referal
pointers for the next higher level of documentation in the file.
"Where it's going" is available by going to the file in the
same manner and reading the referal pointers for the next lower
level of documentation.

Questions raised by the flowcharting scenario.

FC1 Can the MP work without hard copy? Can he use only the
CRT displays when examining and working with flowcharts? If he
requires hard-copy, when and to what extent will he require it?
When does the amount of hard copy he might generate exceed the
usefulness of the automated system, in particular, the "save"
feature?

FC2 What effect will out-of-date documentation in the file
have on the MP's effectiveness? Statistically, how "out-of-
date" might a file be at any one time compared to manual hard
copy files? What is the benefit that can be ascribed to the
difference, if any?

FC3 Is it possible to define a "unit" of flowcharting logic
that will allow the MP to access displays that are defined for
him and the system consistently? Should a unit defining
algorithm be subjective (i.e., dependent on the particular
system) or objective (i.e., independent of the system and there-
by requiring some degree of conformity to a standard procedure
for flowcharting)?

FC4 What hardware characteristics facilitate the flowcharting
system? Are these characteristics available in existing hard-
ware? If not, what are the specifications for new hardward
designs and what are the cost/benefit trade-offs? (Some examples
of facilitating hardware characteristics: high speed buffers
for address "saving", heirachial file organization with hard-

VI-4

wired dynamic storage allocation, etc.)

Part III

Structured Documentation Scenario

Introduction

Structured Documentation (SD) assumes a programming lan-
guage environment with the characteristics of the structured
programming sort—the documentation occurs in a hierarchal
structure keyed to major down through minor "documentation units"
which are both syntactically and semantically defined. This
documentation would probably be kept in a file separate from
the source language text to which it pertains so that it becomes
a more tractable data base for meeting other needs. These needs
are described below. The system of pointers may itself be
separately filed.

a) "Expando Text": Keywords or phrases in the blocks of
documentation may be light-penned to cause the in-
dicated entity to expand into more detailed sentences,
paragraphs and/or tabulations. The fully expanded
explanation may represent the original, programmer-
submitted text which has been boiled down in several
successive stages by (an) automatic abstracting
algorithm(s).

b) Programmed Learning: A system to provide a self-taught
beginner's or refresher course in gross or fine system
details can exploit the SD data base by making use of a
pointer structure keyed to concepts, keywords, system
functions and data names.

c) Inquire: A similar pointer structure or a subset of
the pointer structure of b) can be used to provide an-
swers to specific inquires, e.g.,

- all uses of a variable or data name

- all I/O statements referring to a device or datum

- the declared type of a variable, etc.

d) Management Information: The pointer connection of the
documentation tree to the source code tree can be ex-
ploited to alert both the programmer and management
to which parts of the documentation require updating.

VI-5

Management can check that this has, in fact, been done
and done well.

e) Selective Dissemination of Information: The structure
mentioned in d) can be combined with a current table
of "who's working on what" (which might be generated
from sign-in name data) to provide notices to those
(other than maintenance programmers) most likely to
be affected by changes to the program.

f) Historical Data: Maintenance programmers express a
need to know not only the what, how and why of a pro-
pram but also some perspective on the history of
changes and modifications it has undergone (and who
did them). This historical data can be generated as
changes are made and approved and stored on relatively
slow, cheap archival storage devices. This data can
be fetched to re-create the portion of code and docu-
mentation as it was at each stage of its evolution.

Work on a system having some of these capabilities
was done by Nathaniel Rochester of IBM, Cambridge,
Mass. IBM regards this work as experimental and pro-
prietary and refuses to divulge any information on it.

UNIVAC!S EXEC 8 operating system permits one to store
up to 1000 program modification "cycles" and to gen-
erate therefrom any intermediate version of the program.
Although this feature worked, it was never observed to
have been used at a large UNIVAC 110 8 installation
known to two of the authors.

g) Static Deskchecking: A portion of code and its asso-
ciated documentation can be fetched to the CRT screen.
Retaining the same piece of code the superior levels
of documentation can be inspected or the programmer
may move upward or downward in the code/narrative
stream. When a named procedure is encountered, he may
indicate his desire to go out to look at that and then
return to the point of call. Similarly, a reference
to a data name can be used in an immediate inquiry
(see c)) to elicit information on where and how
stored (i.e., dimensioned, named field in a data
structure), declared type, where else used, etc.
Inquiry completed, the programmer can resume his perus-
al of the code. If this system is coupled to a device
which can be quickly providing a hard copy facsimile
of the CRT face, demands on the programmer's immediate

VI -6

memory are reduced.

Programmer Scenario

The MP has received a request to perform maintenance on
the "Colossus" system, which is the largest and most complex
system at his installation. The request is extensive, involv-
ing modifications that affect input, output, and computation.
The request documentation consists simply of a plastic card
the size of a badge. He inserts the card in a badge reader
connected to his console CRT unit and depresses a button on the
console. There appears on the screen lines of textual informa-
tion which indicate his name, a detailed breakdown of the man-
power schedule for the modification, showing, where appropriate,
the names of anyone else involved in the modification work, and
a schedule for computer test time. He depresses another con-
sole button and receives a hard copy of the scheduling informa-
tion which he inserts in his project workbook. By depressing
another button on the console, the MP has displayed an abstract
of the modification request. The abstract is organized in lines
representing sentences, but uses abbreviations, symbols and sup-
presses unimportant words. By light penning the line he is
interested in knowing more about the MP has displayed an expand-
ed textual description of the change element indicated by the
line. With a further touch of the light pen he gets displayed
a flowchart of the system segments affected by the change de-
scribed in the expanded text. He touches the light pen to a
particular symbol on the flowchart and is presented with a
display of "meta-code" that underlies the flowchart symbol.
The "meta-code" is a shorthand notation of the actual source
code that exists for that particular logic unit. Meta-code sup-
presses all coding that is only for the purpose of conforming to
systems standards and displays a short-hand or abbreviated
abstract of the logical portions of the code.

At this point the MP feels a need to understand more thor-
oughly the logic of the section he is examining so he depresses
a button on the console that puts his unit in "programmed learn-
ing mode" (PLM). There appears on the screen lines of text
indicating the options the MP has. One set of lines indicates
how many "levels" of documentation exist for the particular
logic segment he is interested in examining, and by light-pen-
ning he indicates the level he wishes to learn. (In this case
the topmost.) Another set of lines indicates what types of
documentation exist at each level (e.g., "flowcharts", "expando-
text", "meta-code", "detailed source code", "object code", "all
of above", etc.) Beside each documentation type appears a
symbol denoting the status of that particular segment of

VI-7

documentation (i.e., as in the previous scenario, whether the
documentation is current, locked-out, etc.) He selects, with
the light pen, "flowcharts". Frames of flowcharts appear on
the screen in a rhythmic manner. The interval between frames
can be slowed down, speeded up, or stopped by depressing the
appropriate keys on the console or using a "joy stick". The
MP can also, after halting a frame, request an "expansion" or
"contraction" as described in the previous scenario. (Con-
traction would not be possible in this case since the MP
started at the topmost level of documentation.) After the
complete set of frames have been displayed for the MP, the
programmed learning "option text" appears on the screen. The
programmer selects, with the use of the light pen, the area of
the documentation he has just seen that he desires to learn,
and the level of comprehension he is interested in attaining
(e.g., "full comprehension", "general systems logic", etc.)
After this selection, the programmed learning text begins to
be displayed on the CRT. The format of the responses to ques-
tions is multiple choice and the MP responds by selecting with
the light pen one of the choices given. The programmed learn-
ing methodology is conventional; frames of questions and text
appear, selection of answers are made, and the next frames to
appear depend on the answer given. For wrong answers, re-en-
forcement routines are invoked. At the end of the programmed
learning (occurring either by reaching the end of the course
or by termination by the MP) a hard copy is created on the
terminal printer that lists all of the areas where the programmer
gave wrong answers, with possible implications of the wrong an-
swer (e.g., "the TAPEX file must be prepared for input in proper
sequence to the COMPUTEY routine or the system will assume the
prior TAPEX file is the current data.") By further use of the
programmed learning system the programmer familiarizes himself
with those areas he feels he needs more knowledge in to per-
form the maintenance job. During the course of the modifica-
tion task he may return to programmed learning to clarify areas
he is uncertain of and to aid in understanding bugs or other
unexpected aberrations in the system caused by the modifications.

After the initial programmed learning the MP is ready to
begin the modifications tasks. First, he causes a display of
the top level flowchart of the system to displayed and with the
use of the light pen indicates those areas that will be affect-
ed by the modification. This causes the system to create a
"test documentation file" containing that specified sub-set of
the system. Next the programmer asks for a display of names of
the data files that are associated with the modification-affect-
ed areas. From this list, with the use of the light pen, he can
receive an "expansion" of any file which shows the format and

VT-8

data elements available. From this list, with the use of the
light pen, he can cause test data files to be created that con-
tain copies of sub-sets of the existing files, and, optionally
can receive a hard copy list of the files so created.

Next, the MP may request a list of all variable or data
names with associated data types for any or all of the affected
areas and may select all or part of the list for hard copy out-
put. Similarly he may request a list of all I/O devices refer-
red to.

When the MP is ready to begin his modifications he works
with a combination of systems produced hard copy and the con-
sole CRT. Modifications are made first to the test documen-
tation file beginning with the highest level of documentation
and proceeding in sequence to lower levels. At each level and
for each modification the MP has the option to "test" his
changes at two levels. First, he may request a "syntax" test
which will examine the modifications and display any errors in
structure (e.g., "Logic segment COMPTAB has a two-way decision
exit but only one exit is connected"). Next, he may request a
"semantic" test which will examine the modifications and display
any errors in content that the system is capable of detecting,
(e.g., "variable DATAX does not change its initial value during
the execution of COMPTAB.")

After the documentation test described above, the program-
mer requests the system to construct an executable program
segment which it does from the information supplied previously
regarding the modification affected areas and the associated
data files. Then he enters on the console CRT the code modifi-
cations and requests tests of the various segments. During this
phase he has the ability to "flag" certain logic segments and/or
variable used by the system in order to generate dynamic traces
which can be "played back" on the CRT.

After this check-out is completed he may request a
"systems test". The system then integrates the changes into
the larger resident systems test file and runs a full scale
test which also, at MP option, will trace certain logic seg-
ments and/or variables and "play back" the various conditions
of these at programmer option.

During the "playback" of a test the programmer may elect
to insert "stops" in the code execution/simulation. These
stops will cause a pause in the playback upon the satisfaction
of pre-specified conditions such as the value of a variable
attaining a certain range or a routine being entered. At the

VT-9

time of such pauses the MP may elect to trace in greater or
lesser detail the portions of the execution/simulation preced-
ing or following the pause, or to retrieve certain data files,
documentation test files or other portions of the system.

Systems Scenario

The structured documentation system is organized as
separate primary files. Each such file represents a level
of the structured documentation. Corollary files include texts
for diagnostic routines, programmed learning and systems mes-
sages; and tables of pointers and file directories.

Processing operates under the control of an executive
or handler routine that is similar to the one described in the
previous scenario.

In addition there is a special "frame" handler that formats
and presents to the CRT the randomly acquired frames of text and
documentation that support the programmed learning and execution/
simulation portions of the system.

A data formatting and extracting program operates the I/O
test file portion of the system.

All of the above routines link to the various files through
a separate "pointer" file organized in two major segments. One
segment is for static pointers whose value does not change
throughout the execution of the system. These include pointers
that contain the addresses of production system documentation
and data. The second segment contains pointers that change as
the systems execution proceeds. These include the addresses of
documentation test files and data test files.

Questions raised by the structured documentation scenario.

SDl Will such a system optimize maintainability?

SD2 How will the "units" and "levels" of documentation be
defined? As in the previous scenario, should such definition
be subjective or objective?

SD3 How difficult will it be for a MP to learn to use the
system? How will this offset any advantages of the system?

SD4 Can an effective algorithm be derived that will perform
the text translation necessary for "expando" and "meta-code"
techniques?

VT-10

SD5 What about the hard copy "trade-off" alluded to in the
preceding scenario? (It is not difficult to imagine a system
configured in a way that the MP has to deal with greater vol-
umes of more poorly organized hard copy than with present manual
systems.)

SD6 What about the effects of out-of-date documentation refer-
red to in the preceding scenario?

SD7 What hardware characteristics facilitate the SD documenta-
tion system?

Part IV

Interactive Aids Scenario

1. Dynamic Visualization;

Programmers frequently and laboriously combine the process
of static deskchecking with a pencil-and-paper simulation of
the program action upon typical settings of the inputs. This
process is slow, prone to error and hindered by the need to con-
stantly move back and forth between data representations (inte-
ger, floating point, octal, decimal, hollerith text, etc.).
Alternate means for obtaining the same sorts of information are
snapshot dumps, post-mortum dumps, trace routines and debug
printouts inserted in the code. Each of these has its own
virtues and drawbacks. The ability to elicit the dynamic be-
havior of a program or set of programs working together can and
should be provided on an interactive basis. Two versions of
such a facility are described below. Each has a proper role
and one cannot be thought to be a complete substitute for the
other.

a) Interpretive System: The interpretive system hews
closely to the procedure followed in pencil-and-paper
simulation with the advantages of being faster, more
accurate and providing automatic conversion and format-
ting facilities. In concept, it is a direct descendent
of single-step and breakpoint debugging practiced in
the early days of computing. The specific implementa-
tion techniques as well as the operational modes and
facilities to be provided are the objectives of re-
search here, but some rough sketch of operational
modes can be given by a description of a typical con-
templated scenario. As regards this scenario, it
should first be stated that the probable best use of
an interpretive system is in the investigation of a

VT-11

"relatively small" section of code, with "relatively
few" inputs, parameters and data tables to be set up
beforehand, and "relatively few" or "relatively minor"
interactions with the rest of the system. In this
context, then, the user single steps through the source
code text of his program. The steps referred to are,
by default, single source language statements but these
are subject in some manner to flexible and instantaneous
re-definition so that, for example, he may choose to
look at the overall result of an IF-THEN-ELSE statement
or go through each step of the data-determined clause
which is actually executed. Or again, he may inspect
the overall result of executing a procedure or choose
to enter and step through its coding. At each step,
he may pause and use inquiry facilities to inspect the
current values of key items, returning after each such
pause to the next step in the program flow. More
sophisticated facilities which can be envisaged here
are break-points keyed to program statements, FOR-
loop indices, WHILE-DO or DO-UNTIL conditions and the
alteration of prespecified variables.

Certain elements of this capability have been imple-
mented in a prototype, FORTRAN—based system called
GRAPE (Green,1970).

b) Playback System: A playback system (cf. Balzer, 1969),
by contrast, is appropriate in the context of a larger,
more complex section of code together with the data
and files which support it. The gist of such a system
is that a tape file is created which contains trace
and dump information as the code is executed. This
tape is later played back as a slow-motion movie on
the CRT screen with the user able to speed up, slow
down and jump forward or backward in the flow of
action. The user is provided with extensive and flex-
ible facilities for masking, filtering and summarizing
the vast and otherwise unintelligible information con-
tent of the movie's data base. These facilities are
exercised through such commands as—

- "Collect and display a table showing successive
values of variable APRIME showing program module
and line number where created."

- "Operate at high speed until ALPHA is greater than
BETA then slow down for closer inspection."

VI -12

- "Make a new film starting at APROG Line 1 and
ending at BPROG Line 35 using GAMMA=0 and DELTA=
-1.3"

- "Display the node and chord skeletal structure
of the program providing identification of the
nodes (branch points) and chords (linear code),
and display at each chord the number of times it
was executed (total or under specified conditions)",
etc.

2. Project Control Aids:

We have noted elsewhere that when code is permanently
altered, this can be tied to the associated documentation to
inform management about the need for updating the documentation.
There are a number of control aids with a more dynamic flavor
which should be mentioned here.

a) Warranty Period Concept: One rough measure (and the
worth of this measure should be investigated in the
real-time context) of the solidity of a revised section
of code is the number of times it has been executed.
One use of the introspective system described above
could be to provide management with such reports.

b) Programmer Performance and Progress: It can be assumed
that no matter what the purpose of a console session is,
the programmer will be required to identify himself
and state the job control or project identification
code for the work he is about to perform (see System
Security below). This can easily be turned into a
means for reporting to management the time being spent
on the project. By also presenting the programmer
with a set of "how did it turn out?" questions at the
end of the session, progress can also be measured.
A string of "I did fine" replies could be an indica-
tion that the programmer, at the very least, is delud-
ing himself.

Questions raised by Interactive Aids Scenario.

Ial For an interpretive system what are the optimum dimensions
(size) of the code and how many inputs are maximum for effective
operation of the system?

IA2 For a playback system what is the definition of a "frame"?
(Similar to the units definition question). What is the defin-
ition of "resolution" of the frames (i.e., homogenity of the

VI "13

levels).

IA3 For a playback system how would frame synchronization
between different resolution levels be achieved?

IA4 If the MP detects an error in the code while using these
aids, how will he insert (patch) the code? Will the technique
for error correction create non-integrated code sequences?
("Jumpy" frames in the playback context.)

IA5 In the context of these aids, what is the meaning of
"recompilation"? (Obviously conventional recompilation will
be extremely expensive). Is it possible to derive segmented
interpretive compilers that perform structural integration
with the whole complex of documentation and operational systems
without, at the same time, requiring total multi-level recom-
pilation?

IA6 What should the operational definition of "debugged" be?
Can statistical measures be derived that will determine when a
program's reliability achieves a predetermined value?

IA7 What techniques, existing or new, should be used to achieve
system security? What problems, such as interference between
programmers, will such techniques create?

IA8 In the real-time environment how should the question of
"resource-ownership", be resolved? How does this question
affect interfaces with the MP as he performs maintenance mod-
ifications?

Part V

Testing Scenario

Programmer Scenario

The MP has at his disposal a Systems Test Language (STL)
which he uses when performing tests. This language enables
him to request information specific to the test problem, to
examine and alter test file segments and to automatically com-
pare test results with prior results or with production gener-
ated results.

The STL corresponds to the structured documentation and
HOL networks in that it allows the MP to communicate with any
logical unit on any level of the structured system.

VI-14

Specific STL facilities at his command are:

a) Data examination. Allows the MP to request a "picture"
of any data element resident in the test files. Re-
quests can be conditional, dependent on the range of
value of a variable or upon the entry of a particular
logic segment.

b) Documentation/Code examination. Allows the MP to
examine any unit segment of code or related documenta-
tion upon the satisfaction of prespecified conditions
during execution.

c) Data/code/documentation Comparisons. Allows the MP to
compare data results or upon the satisfaction of pre-
specified conditions, to compare source code and relat-
ed documentation in the before/after modification mode.

Systems Scenario

The STL system operates through an interpretive routine
that examines the STL commands from the MP's console and trans-
lates them into an interpretive string notational language. The
string language is composed of functional designators (such as
"retrieve", "insert", "compare", etc.) address parameters relat-
ed to the designators (specifying such things as the address
limits of data or documentation to retrieved) and pointers that
specify logical connectives between, for example, different
levels of code and documentation in the structured system.

Questions raised by Testing Scenario.

TP1 What are the smallest units of data/documentation that
should be accessible to the MP through the use of examination
commands? What are the trade-offs between unit size and MP
effectiveness?

TP2 Should STL logic be imbedded in production systems in
order to facilitate rapid execution or should it be imposed at
test time?

TP3 What interface problems will occur between STL and well
structured documentation and code? What provision should be
made in well structured systems to accommodate an STL language?

TP4 Aside from comparisons, what arithmetic routines, if any,
should be available to the MP?

VT -15

PART VI

Position Paper: Higher Order Languages and Maintainability

1. Introduction

An underlying assumption of this paper is that we are
dealing with the maintenance of large software systems which
have been written in an HOL. This assumption breaks down into
two logical parts: first, consideration must be given to those
features of an HOL which make it theoretically acceptable as a
vehicle for scripting the components of a large software system;
second, consideration must be given to those features of an HOL
which make it acceptable practically as a vehicle for construct-
ing and maintaining such a system.

The first of these considerations speaks for itself; the
second requires some preliminary elucidation; both will be dealt
with at greater length in what follows.

There are two points to be made concerning the second con-
sideration stated above. The first point is to note that
(original) construction and maintenance are often lumped
together despite indications in the data gathering phase of this
study (e.g., BUIC Case Studies in Appendix B) that there are
inherent differences in the two processes which then presumably
call for different sets of tools and aids. In our view, the
approach which allows a unified approach to these two processes
is the content of the second point: one must regard an HOL as
being a part of a total computing environment. Thus, the second
consideration should be rephrased as:

"second, consideration must be given to those features
of a total computing environment and to those features
of an HOL operating within that environment which make
it acceptable practically as a vehicle for constructing
and maintaining such a systern."

In Section 2 below, we shall examine the first of the above
considerations, namely HOL features providing amenability for
writing large software systems, and we shall cite relevant cases
where HOL's have been so used. In Section 3, we shall examine
the second of the above considerations as rephrased. This will
consist of an examination of the foregoing scenarios to isolate
their implications for HOL's. Next we shall examine current
experimental work which bears promise of providing a total

VI-16

Computing environment and an HOL to enhance construction and
maintenance of large software systems, and finally, we shall
examine briefly language features of present HOL's that are
intended to enhance maintainability or which have unintentional
positive or negative effects upon maintainability.

In Section 4, we will look at an area of endeavor generally
regarded as being out of the mainstream by workers and writers
[e.g., Cheatham, forthcoming; Cocke and Schwartz, 1970] in the
area of software, HOL's and compilers. This area has to do with
the closer integration of hardware design (computer architecture)
with HOL and computing environment design in order to reduce the
amount and complexity of the requisite software. Examples abound
in this area and we shall review these.

In Section 5, we present a series of questions on HOL's
which we feel need to be answered in the future to assure that
total computing environments and their HOL's provide optimal
maintainability of the software systems created using them.

2. Writing Software Systems in an HOL

One of the driving forces in the evolution of HOL's cited
by Cheatham (19 71) is the need for

"languages in which programs for a certain class of
problems can be written 'naturally' ..."

What this means is that the programmer requires a language
which provides him with the data types and structures and associ-
ated operations which are natural to the problem area. Using a
more general purpose programming language, he is forced to build
these natural entities out of the more primitive atoms and opera-
tions provided by the general purpose programming language often
in forced, contrived and artificial ways. Thus, says Cheatham

"The argument that most any programming language is
theoretically adequate for most any programming task
just does not make it an acceptable vehicle in practice."

We note that there is a lesson to be gleaned here for the
problem of software maintainability. One has the intuitive
feeling that the learnability (and therefore the maintainability)
of a software system is enhanced by a natural association between
that which is being manipulated and the prescriptions of manipu-
lation (programs). Conversely, the more layers of artificial

VT -17

build-up required to construct the natural entities to be manipu-
lated, the more difficult it is for a novice to learn what is
going on. Such an intuitive feeling should be subject to more
precise statement and subjected to rigorous measurement.

The past decade has seen the speed of hardware increase and
the unit cost of hardware decrease by many orders of magnitude.
The costs and speed of software production and maintenance have
experienced no such favorable changes. By contrast, the produc-
tion of application programs in many areas has been speeded and
made less costly by the introduction of HOI/s to replace assembly
code (which in turn was a vast improvement over absolute coding).
Thus it is natural to try to apply this lesson to the problems
of constructing large software systems. But, as stated by
Cheatham:

"One application area which still suffers from the lack
of good programming tools, or perhaps more appropriately,
from an improper attitude about [and knowledge of] the
tools which do exist, is that of large system construc-
tion."

The problems encountered in thus using an HOL are those cited
above, namely a lack of proper data types, data structures and
operations. To these should be added, as regards this area, a
paucity of flexible control structures.

Another factor leading to the unacceptability of HOL's in
this area is that too often the object code produced has been
too lengthy and/or has run too long. This is, in part and in
our view, a result of the category of problems cited above: the
natural entities manipulated by a large software system are
hardware registers (etc.), interrupts and individual bits
(amongst others). An HOL which does not provide convenient
means for handling these is bound to provide inferior results.
Another part of the object code length/time problem, in our view,
is insufficient thought given to integrating the HOL design with
the design of the computer architecture. This will be discussed
at greater length in Section 4.

A minimal list of HOL attributes to provide a vehicle for
writing compilers is given by Cocke and Schwartz (1970, p. 253).
Another such list is given by Peschke (1971) as proposed improve-
ments to PL/I. The two lists overlap in parts. The first list
is given as Table E-l.

VI-18

TABLE E-l

HOL Features for a Language to Write Compilers

(i) Efficient access to machine part words as variables in
the language. This is very important if the compiler is to be
able to use densely packed tables.

(ii) Data structures and allocation rules which permit con-
trol over placement of variables in memory including control of
overlays, and which permit the combination of heterogeneous
variable types in a single structure or entry (as in a symbol
table).

(iii) Some form of based storage permitting convenient shift-
ing of tables in core and allowing table structures to be extended
to newly allocated blocks of core.

(iv) Name-scoping rules permitting easy combination of
separate routines written by different people.

(v) Efficient and flexible calling sequences. In this
connection, some of the ideas on subroutine linkage optimization
discussed in a later chapter may be valuable.

(vi) Access to all machine instructions, hopefully in a form
which does not obstruct global optimization of the compiler code.
One way of providing this access is in terms of a package of sub-
routines .

(vii) At least a rudimentary system of macros permitting
conditional compilation of the system source language should be
provided. Such a tool is useful for a variety of purposes,
including isolation of compiler parameters, avoidance of repeated
and error-prone insertion of repetitive code blocks, and produc-
tion of a number of slightly variant versions of a compiler.

(viii) It must be possible to initialize variables, and, in
this connection, provision must be made for the convenient treat-
ment of character and bit string constants.

(ix) Recursive routines are useful for the expression of a
number of compiler processes.

Cocke and Schwartz, 1970.

VI-19

To the list given in this table should be added a wider
variety of control structures including the ability to create,
start, coordinate, stop and destroy cooperating asynchronous
processes; coroutines, etc.; and access to and control over
internal and external interrupts. These things are usually
hidden from the HOL user.

The approach and philosophy adopted by the ECL group at
Harvard (Wegbreit, 1971) is twofold:

- the programmer is not to be denied access to the key
points of system control, those things which we noted
above are usually concealed from the HOL user.

- one cannot possibly guess the kinds of data, data
structures, operations, control structures, etc. that
the HOL user is going to want. Therefore, instead of
giving him what we (ECL group) think he should want,
we will provide him with an easily used capability
for extending the language to suit his needs.

One cannot but wonder what the trade-off in maintainability
will be of the gain in naturalness versus the possible need to
learn new programmer-defined language constructs in such an
extensible language environment.

This section would not be complete without reference to
major software systems which have been written in an HOL. One
outstanding example is provided by the Burroughs 5000 (5500/
570 0) computers and their higher numbered big brothers. Their
entire software (Master Control Program, compilers) is written
in a family of specialized dialects of ALGOL 60 extended in many
of the ways indicated above to put the HOL user closer to the
hardware. It should also be mentioned (jumping the gun on
Section 4) that the architecture of these computers also puts
the hardware closer to the HOL.

Other examples (Cheatham, forthcoming) are MULTICS which
is 90% (figure supplied by E. Fredkin, personal communication)
written in PL/I. [One wonders what the relation of that figure
is to Peschke's (1971) suggested improvements to PL/I or if
Peschke is concerned with the same PL/I implementation as was
used in MULTICS.] Cheatham also mentions an operating system
for the Honeywell 638 using FORTRAN and a logistics system for
the USAF Logistics Systems Command using COBOL. Cocke and
Schwartz (1970) mention that IBM/360 FORTRAN H was written in an
extended FORTRAN, but no indication is given of the nature of the
extensions.

VI-20

3. Features of HOL's and a Total Computing
Environment that Enhance Maintainability

In parts I-V of the present appendix scenarios from an ideal
future computing environment have been sketched. The aspect of
these scenarios that impinges most directly upon HOL's is the
Interactive Aids Scenario wherein we see a programmer "stepping
through" the (HOL) source representation of his program. By
"stepping through" we mean that each statement is being executed
interpretively acting on programmer-specified data. Parts of the
program such as procedures whose correctness is either assured or
of no present worry to the programmer are present in compiled,
object code form. When the programmer finds the error he has
been seeking or the proper place (s) to make a desired modifica-
tion, he makes the change from the console and again executes
interpretively. When he is satisfied with the results of the
execution, he may then order (from the console) the compilation
of the code segment and its placement in the proper program file.

The ECL programming system and its associated HOL, ELI
(Wegbreit, 1971), appear to us to capture many of the capabili-
ties of an HOL and a total computing environment mentioned in
our scenarios or implied therein. The avowed goal of ECL is "an
environment which will significantly facilitate the production
of programs." The measures taken to reach these goals are

1) It (ELI) has been designed to be used in an interactive
environment.

2) ELI can be executed interpretively or compiled and
interpreted and compiled code segments can "be freely
intermixed with no restrictions."

3) Execution can be suspended while the programmer "exam-
ines data or program, modify either, and optionally
resume."

4) A variable can be made "sensitive" and while in that
state "changes to its value are monitored and an
interrupt generated whenever a (programmer-specified)
predicate [associated] with the variable becomes true."

We turn now from this consideration of the ideal and ECL's
approach thereto to a consideration of more mundane, detailed
features of current HOL's which either are intentionally
designed to enhance maintainability or having other intended
purposes, exercise, nonetheless, a positive or negative effect
on the maintainability of software generated using them.

VI -21

3.1 Intentional Maintenance Features

a) Compile-time DEFINE facilities for text substitution
or macro-expansion. Examples: Burroughs ALGOL 60,
FORTRAN V.

b) FORTRAN V PARAMETER statement which can be regarded as
a special example of a).

c) Conditional compilation directives. Example: DELETE
statement of FORTRAN V.

d) The ability to name and subsequently include sections
of code or data base definition by reference to said
name. This centralizes the locus of future mainten-
ance effort as when, for example, a given named COMMON
block must appear in many FORTRAN subroutines. This
may also be regarded as a special case of a). Example:
INCLUDE statement of FORTRAN V.

e) The use of the ON statement group as in PL/I for con-
ditional debugging output.

f) The ability to request the construction of cross-
references and other aids at compile time.

g) The information value of compiler diagnostics and the
strategies employed to overlook errors and provide a
rationale interpretation.

One aim of future research in the area of HOL's and main-
tainability of software should surely be to expand and refine
this list especially in the light of radical innovations such as
ECL. An example of such a feature is suggested by Knuth (197 0):
generate statistics on the frequency of execution of each state-
ment. Then areas of high frequency (e.g., loops) can be con-
centrated on for the most cost-effective application of optimi-
zation techniques.

3.2 Other HOL Features with Maintenance Implications

a) The GOTO statement. The Mills (forthcoming) - Dijkstra
(1969) approach to structured programming or construc-
tive proof of correctness calls for HOL's lacking the
GOTO statement so that every program atom can only be
entered at the top and left at the bottom. It is not

VI-22

clear to us that a program optimally constructed for
proof of correctness is also optimally maintainable
and this is the subject matter for a proposed study
elsewhere in this report.

b) Other Control Structures. We have established else-
where by literature reference and interviews that one
of the most desirable tools needed by a maintenance
programmer is one enabling him to gain dynamic insight
(visualization) of the behavior of his program. Con-
trol structures such as recursion, coroutines, inde-
pendent and cooperating parallel asynchronous processes
will require special efforts to provide dynamic pic-
toralization. Console imperatives that build time-
slice tables will surely be required.

c) Source Input Structure. Existing HOL's exhibit two
types of source input structure. the FORTRAN type of
structure generally calls for a main program and zero
or more separately compiled subprograms. (UNIVAC*s
FORTRAN V provides a minor partial exception in this
regard.) The need for globally defined data base items
and arrays in this environment gives rise to features
such as blank or named COMMON sections and BLOCKDATA
program elements. Language features such as the ability
to name subsequently included sections are added to
alleviate the maintenance problems engendered by the
appearance of a given COMMON block in myriad subprograms,
An intuitive feeling about this approach to source input
structure is that for a given size of program, the
"distance" (however this is eventually defined and
measured) of distant referents is increased.

By contrast, the ALGOL (60) type of source input struc-
ture calls for one program with all of its subprograms
(except for library programs) contained within it. The
scope of data definitions is implied by the nesting of
the domains of definition in the source order. An
intuitive feeling is that this type of structure has
beneficial effects as regards "distance" of distant
referents, but a simple change to a small part of such
a program requires a recompilation of the total program,
whereas the former approach requires only that portion
of the program which is in error to be recompiled.

It is now apparent that block structured HOL's and
separate recompilation are not incompatible. Languages

VT-23

exist having both. The ECL model may make the argument
old fashioned.

d) Method of HOL Implementation. In general HOL's may be
implemented in one or a combination of three distinct
ways:

—Interpretatively: The source text is scanned and
executed by an interpreter. Examples: APL, ELI.

—Compilation: Compilers are, of course, common.

—Hardware or Microprogram Implementation: The source
text is translated and re-ordered in a vastly more
simple and quicker process than in full compilation.
The result of this process is still relatively close
to source form and is directly executable in the
hardware, or by microprogrammed interpretation.
Examples are SPL on the SPLM and SYMBOL on SYMBOL
(Section 4).

As noted above the ELI language (Wegbreit, 1971) being
developed at Harvard allows the programmer the choice
of either interpretation or compilation; and, moreover,
the compiler is callable at object time by the program-
mer. The compile time, load time, object time distinc-
tion disappears.

e) Declarations. Were one asked to make an intuitive guess
about the types of corrections maintenance programmers
actually make [ä la Knuth (1970)], mistakes involving
declarations would rank high in the answer. HOL's
exhibit a range from nothing need be declared (APL,
SYMBOL) through only some things need be declared
(FORTRAN) to everything must be declared (ALGOL). Some
thought needs to be devoted to discovering the true
mistake generation statistics of declarations (and other
language features also). Some optimal mix between the
extremes may exist and this mix should be searched for
and its contextual parameters better understood.

g) Identifiers. Another intuitive feeling concerns the
length of identifiers: the longer the better, because
the longer they are the better they convey the intent
of the original programmer. This is surely subject to
some exact measurement.

VX-24

4, Hardware as a Replacement for Software

There is considerable evidence on hand that better computing
systems can be designed if software people work together with
engineers. This was the approach taken in the design of the
Burroughs machines alluded to above. There is evidence that this
idea may catch on. For example work now completed or in progress
includes such projects as follow:

Contract F04701-70C-0065 (SAMSO), defined SPL/Mark III
which is a language for an on-board missile guidance com-
puter (real-time process control). Simultaneously a com-
patible, stack-oriented computer was developed (Advanced
Guidance Computer - AGC). Programming studies showed that
the AGC exhibited a 60% reduction in space requirements over
a conventional single address (ATS) architecture on a set
of guidance-oriented benchmark equations. The AGC code was
produced by hand simulation of a rather inelegant compiler.
Timing comparisions are not yet available, but the AGC code
need not be faster than the ATS code as long as it meets
the timing tolerances of the application.

Contract F04701-71-C-0200 (SAMSO) is an architecture
study (SPLM) for a direct execution processor (SPL/Mark IV -
direct execution version). This is a processor in which
the source code is slightly rearranged and reformatted by a
loader and the output of the loader is directly executable.
This output corresponds roughly to the sets of tables and
syntax trees produced by a conventional compiler prior to
code generation. There is no fixed word length and pre-
execution binding and storage allocation are at a bare
minimum. Using context-dependent Huffman coding techniques
another 20% space reduction can be achieved.

The recently developed SYMBOL language and computer is an
example of this concept at work [four sequential papers, SJCC
1971 of which Chesley and Smith (1971) is the first]. The first
SYMBOL machine has been delivered to Iowa State University which
expects diminished operating costs partly attributable to almost
no need for software maintenance: the whole compiler and operat-
ing system are hurd wired. One will surely want to keep an eye
on this to see what their actual experience turns out to be.
(For a brief summary description of SYMBOL see Computer Design,
April, 1971.)

VT-25

5. Questions for Future Investigation

HL1 What is the optimum (from the standpoint of MP effec-
tiveness) length for labels? What are the trade-offs
generated by label length between programmer effec-
tiveness and compiler efficiency?

HL2 What is the "optimum" mix of direct hardware imple-
mentation , software interpretation and compiled object
code in implementing an HOL? Which language features
are best handled in the ways cited? Can and should
the programmer be able to specify the mode of imple-
mentation? What are the trade-offs between MP
effectiveness and compiler efficiency?

HL3 Can (should) the HOL language be structured? If so,
what problems are raised in progressing between levels
when maintenance is to be performed? How would multi-
level testing be handled (i.e., segmented recompilation
vs. total systems regeneration).

HL4 What systems will be necessary to interface maintain-
able HOLs (structured or conventional) with structured
documentation systems? How will modifications to one
or the other be handled?

HL5 Should the lowest system language level for the HOL be
microprogramming structured? If so, what advantages,
disadvantages and trade-offs result?

HL6 What hardware features should be specified for the
maintainable HOL? How are these features related to
application requirements?

HL7 What real time application considerations are raised
by a maintainable HOL? How will the HOL interface
with operating systems and resource ownership
algorithms? What maintenance problems will message/
transaction handling interfaces raise?

VX26

References

Balzer, R. M. "EXDAMS - Extendable Debugging and Monitoring
System." Proceedings, Spring Joint Computer Conf., 1969.

Cheatham, Jr., T. E. "The Recent Evolution of Programming
Languages," to be presented at the IFIP Congress; Ljubjana,
Yugoslavia, August 23-28, 1971.

Chesley, G. D. and Smith, W. F. "The Hardware-Implemented High
Level Machine Language for SYMBOL." Proceedings, Spring
Joint Computer Conf., AFIPS, pp. 563-573, 1971.

Cocke, J. and Schwartz, J. T. Programming Languages and Their
Compilers, Preliminary Notes, Courant Institute, New York
University, April 1970.

Dijkstra, E. W. Notes on Structured Programming, Technische
Mogeschool Eindhoven, 1969.

Green, J. "Program Analysis-A Problem in Man-Computer Communications."
NASA Technical Report NASA TR R-338, June 197 0.

Knuth, D. E. An Empirical Study of Fortran Programs, Stanford U.
Computer Science Department, Report #CS-186, 1971.

Mills, H. D. "Syntax-Directed Documentation." Comm. ACM, 13,
No. 4, April 1970.

Peschke, J. V. "PL/1 Subsets for Software Writing," SIGPLAN
Notices, Vol 6, No. 4, May 1971, pp. 16-22.

Wegbreit, B. The ECL Programming System, Division of Engineering and
Applied Physics, Harvard University, Cambridge, Mass., 1971.

VT-27

APPENDIX VII

Technical Approach and Aims

for a

Path Analysis Feasibility Study

1. Detailed Procedure

The experimental study will be done according to the
following detailed procedure:

1.1 Select a program, with associated documentation, for
modification. The program selected will have been
written in a higher-order-language, probably FORTRAN.
The documentation will include a program narrative, a
high level flowchart indicating the logical relation-
ship between the various program segments or modules,
a detailed flowchart indicating the logical relation-
ship between program statements, and a diagram of
input/output formats and contents. (See Attachment.)
The program itself will be relatively short in terms
of statements (about 100) . It will provide a compu-
tational solution to a non-trivial problem, e.g., a
matrix inversion algorithm, an exponential smoothing
routine, a curve-fitting routine, etc.

1.2 Specify a modification to the program. The modifica-
tion will be clearly described in narrative form, but
such description will pertain only to the functions of
the computation to be modified, rather than to the
language and its particular configurations in the
program. The modification will be non-trivial and will
require changes in the program that will affect several
logical modules or segments.

1.3 An experienced, knowledgeable programmer makes the
modification. A member of the .project team, who is
familiar with the program and the application, will
make the modification and record the time it takes to
make it. While doing so, he will describe into a tape
recorder the sequence of steps that he takes in per-
forming the modification. The entire project staff
will then examine the modification steps to derive the
minimum path to successful completion of the modifi-
cation.

VI-1

1.4 A "naive" programmer will make the modification. (Note:
the modification will only be made to the level of
changes to the source code. No computer testing will
be involved.) The programmer will be naive in the sense
that he will not be familiar with the program, but will
have a working knowledge of the application. He will
first read the narratives that describe the program and
the modification and will be asked to make a time esti-
mate for completing the modification. This estimate
will be "negotiated" with the project staff, using the
original programmer's time as a standard, until a
commonly agreed-to time is derived. (This is intended
to simulate the "real" environment of a maintenance
programmer in his interactions with his management.)
While making the modification the programmer will have
available all of the documentation and code for the
program and the narrative specifying the modification.
He will also be allowed to ask specific questions of the
experienced programmer and will receive specific
responses. These may be filtered through the study
director to make sure that the experienced programmer
reveals only technical details and not his general
approach or path. (The interrogation process will
simulate the resource of consultation with more experi-
enced programmers.) While performing the modifications
he will also describe into a tape recorder the sequence
of steps he is taking and the reasons for taking each.
This spoken narrative will be done according to a
specific format derived by the project team and sup-
plied to the naive programmer. (See Appendix.)

1.5 After the naive programmer has completed the modifica-
tion, the project team will analyze the recorded tapes
and the modification. A table will be prepared that
shows the steps the programmer took with associated
reasons for those steps. The table will separate steps
that are on the minimum path from those that aren't.

2.0 Results Expected

2.1 The recorded tapes and tables described in 1.5.

2.2 A written report, by the project staff, that will pre-
sent

(a) explanations of the deviations from the
minimum path,

(b) evaluation of the various reference
resources available to the programmer,

VTI-2

(c) suggestions for specific remedies to
the path obstacles encountered, and

(d) suggestions for further research based
on the findings (feasibility recommen-
dation) .

3.0 Application of the Results

3.1 Deviations from the minimum path. The reasons for such
deviations may provide us with new insights into the
fundamental factors that inhibit the effectiveness of
maintenance programmers. From such reasons it may, for
example, be possible to deduce human characteristics
that are incompatible with the present way of perform-
ing maintenance programming, and to suggest ways in
which the working environment may be restructured to
accommodate these characteristics,

3.2 Evaluation of reference resources. This may provide
indications of how reference resources might be im-
proved. It may also provide ideas for further research
into new ways of structuring reference material or en-
tirely new materials that would be more conducive to
the effectiveness of the programmer.

3.3 Transcripts, with staff comments and analysis, of the
tape recordings. These could provide a basis for future
studies. For example, if new reference materials were
to be tested, a similar experiment could be conducted
using the new materials and a transcription of that
experiment compared with the first to detect differ-
ences.

3.4 Suggestions for Further Research. Based on the find-
ings in this study, recommendations concerning a Path
Analysis research project will be made. The recommen-
dation will be supported by analysis of the findings to
determine the areas that would have to be studied and
further defined. Each of these areas will be analyzed
to determine

(a) the feasibility of providing the answers
to the questions raised. (For example,
is it possible to define a "path" through
a program with enough accuracy to support
research conclusions? and if so, what
method might be used?),

VII-3

(b) the resources and time required to conduct
such a project,

(c) the detailed procedures that might be
used, and

(d) the results that might be expected.

Based on these points, an estimate of feasibility and
cost effectiveness will be made that should indicate
whether further research is warranted.

VTI-4

ATTACHMENT

1. Program Preparation

The programming material will consist of

(a) the source code,

(b) a detailed flowchart,

(c) a top level flowchart,

(d) a program narrative, and

(e) I/O format diagrams.

Each of these materials will be segmented, by marking
out with a felt pen, and each segment will be numbered.
(For example, the detailed flowchart may be numbered
"2", and the segments of the detailed flowchart
numbered 2-1, 2-2, etc.) The segments will be
selected in a way that they represent, to some extent,
a logical entity. This segmenting will be arbitrary
in that it is not expected to be unique. The cor-
respondence between segments in various levels of
documentation will deliberately not correspond on a
one-to-one basis. The program material will be pre-
pared in this manner so that the programmers may
communicate which program reference area they are
referring to as they progress through the modification
effort.

2. Outline of questions the programmer will have before
him and try to answer as he goes from one reference
segment to another (path).

2.1 What new knowledge do you expect to acquire by looking
at this segment? (If no action is to be taken.)

2.2 Why was this segment selected over any others to pro-
vide this knowledge?

2.3 (Before looking at the segment.) What is your con-
cept, at this point, of the actions that will have to
be taken to effect the modification?

VII-5

2.4 (After looking at the segment.) Same question as 2.3.

2.5 Was looking at this particular segment helpful (clari-
fying) or hindering (confusing)? Why?

2.6 (If the programmer is taking action, i.e., modifying
code.) Describe the action you are taking. Why are
you taking it? How do you expect to test its accuracy?
What most recent reference segment caused you to take
this action (may be more than one or none)?

VII-6

APPENDIX VIII

Instructions for Path Analysis

Experimental Programmer

You are participating in a study wherein you will be

asked to make a modification to a program. You will only

make the modification to the source code. You will not com-

pile or test. However, if your modification is incorrect you

may be asked to continue working on it, much as you might if

you had gotten incorrect results from a computer test. At all

times you should strive to perform as you would in a normal

programming working environment.

The purpose of the study is to discern the paths you

take through the program and its associated documentation

while attempting to make the modification. You should follow

your normal methods, as much as possible, and attempt to

make the modification within the time you estimated. You have

been provided with the following items:

1. Program materials; coding pads, source listing,

detailed flowcharts, top-level flowcharts, program

narrative, a narrative description of the modifi-

cation you are to make, and blank paper and

writing instruments.

2. A timer.

3. A tape recorder.

4. A path log.

5. List of questions.

viii-i

You should proceed with the modification following these

procedures:

1. Keep the timer running whenever you are doing work

connected with making the modification, including

discussions with the program consultant. Shut the

timer off when you are performing functions con-

nected with the path analysis study such as writing

in the log or answering questions into the recorder.

2. The elapsed time shown on the timer should be

compared with your estimated time to perform the

modification. Every attempt should be made to

complete the modification within the estimated

time.

3. Each time you refer to the program source listing

or associated documentation enter the code identi-

fication of the documentation section on the path

log before you read any part of the section.

Next, (and before reading the section):

4. Answer the questions, speaking into the recorder,

identified as "before" on the question sheet.

5. After you have finished with the section you are

referring to, and before doing anything else:

a. Answer the "after questions into the

recorder.

b. Record the time you have spent referring

to the section on the path log.

VTII-2

6. For any other activity related to the modification

effort, record on the path log according to the

code at the bottom of the log. Then follow steps

(4) and (5) for that activity.

During the modification effort you may ask questions of

a "program-consultant". The questions must be specific and

clarifying only. (In other words, questions seeking techniques

for making the modification are not allowed.) All questions

must be submitted in writing (stop the timer while writing

questions) and will be responded to verbally (timer running).

Questions may be disallowed if they are felt to be too

general or if the answer would be too directive in giving

modification techniques.

VTII-3

Questions to be Answered into Recorder

BEFORE reading a new segment of documentation:

1. Give the code identification of the segment you

are about to read.

2. Describe in detail the knowledge you expect to

acquire by looking at this segment,

3. Why did you select this segment, over any other,

to provide this knowledge?

4. What is your concept, at this point, of the

actions that will have to be taken to effect

the modification?

AFTER reading a segment (before going to another):

1. Give the code identification of the segment you

just read.

2. What is your concept, at this point, of the

actions that will have to be taken to effect the

modification?

3. Was looking at this particular segment helpful

(clarifying) or hindering (confusing)? Why?

VTII-4

If you are MODIFYING SOURCE CODE;

1. Describe in detail the modification you are

making.

2. Why are you making this modification?

3. How do you expect to test its accuracy?

4. What reference segment or segments caused you

to take this action?

VIII-5

H
H

 . Path Log
Enter ID Enter Elapsed Time

Timer
Use Recorder

BEFORE reading a new sec-
tion of documentation or
other actions (A.l, A.2
or A.3)

AFTER reading a section of
documentation or taking
other actions.

WHILE reading a section of
documentation or taking
other action.

WHILE writing questions
for programmer consultant

WHILE programmer con-
sultant is answering
questions.

X

X

Off On

X

X

Programmer Activity Table

Path Analysis Study

APPENDIX IX

Specification of Modifications

for Path Analysis

Modification #1

Specification:

The seat restriction when applied to "LNCH" (lunch) is

ridiculous and should be removed. Note, the only way you can

create a Hollerith constant in this variety of FORTRAN is to

read it in.

IX-1

Modification #2

Specification:

There is an error in Program II which results in an

abnormal program termination. A deck of the run which evoked

this error is provided with a printout containing some useful

clues.

IX-2

Modification #3

Specification:

You will note that the MCSF contains a field which

tells how many sections there are of each course. This figure

is presently generated in a cumbersome manner. You will re-

vise the scheduling algorithm to take advantage of this datum.

IX-3

Modification #4

Specification:

There is a similar error in Program III, i.e., a case

when an array subscript can go out of bounds. Although no

run has been made to test this error, you will assume that if

such a run were made that errors would take the form:

THE LINES

IF (JARR(KZ) - CODSY) 67, 62, 67

and IF (SVCOD (IZ, JZ) - CODSY) 70, 68, 70

yield erroneous comparisons

IX-4

APPENDIX X

Minimum Paths According to Staff Programmer

Modification 1 Minimum Path

Time: 26 minutes of which 20 minutes were reading entire docu-

mentation, more or less sequentially.

1. Modification Narrative.

2. Source Code. Scanning through to look for variable with

word SEAT in it.

3. Page 10: Disk File Lay Out. Discovered that variable

SEAT contains the number of seats in a section matches

with the seat restriction.

4. Source Code. Scanning through looking for a statement

where ISEAT is decremented. Found it at line 3010 which

reads ISEAT = ISEAT - 1. Noted that it occurs in a

DO-loop.

5. At this point speculated that the modification required

would be to jump to the end of the DO-loop if name of

course is LNCH. This modification would be inserted

before line 3010 in the source code.

£. List of variables. Scanning through looking for the name

of the courses.

7. Page 10. Looking for the format of masters course

schedule file. Found that CAT is the course or catalogue

number.

X-l

8. Made the modification. Got around the Hollerith problem by

changing the blank constant card to read "LNCh". Read

that constant into a place defined as "EAT".

X-2

Modification 2 Minimum Path

Time: 24 minutes

1. Statement of Modification.

2. Run termination information. Discovered that the error

occurred at or after the first two names. The second name

was output correctly and the third one was suppressed.

3. Data cards for second and third names. Looked at the

cards and noticed that the second name appeared to be O.K.

but that the third had 15 requests.

4. Page 8. Narrative. Discovered there is a maximum of 14

requests per student allowed. Deduced at this point that

an improper test for 14 requests is occurring in the code.

5. Source code. Page 55. Lines 104 0 through 1070. Scanning

through to find dimensions that are equal to 14. Dis-

covered that there are three and only three variables so

dimensioned. Scanned the entire code for occurrences of

these names and for unusual uses thereof.

6. Source code. In scanning that code the variable names

that are contained in DO statements with a range from 1-14

and initialized to 0 are eliminated from consideration.

7. Source code. Line 1440. A test here occurs for N > 15.

This causes a new direction in searching for the proper

modification, i.e., looking for uses of N since N is a

subscript affecting variables that have the N £ 14

X-3

restriction. Discovered that immediately below line 1440

is a DO for a range of 1 to N using a variable NSECT that

was one of those variables with the 14 restriction on it.

Discovered that line 1630 is where DO loop branches if

N 21 15. However, it seems that the test that the program

makes preserves the condition of £ 14.

8. Run printouts. Look at the error message which indicates

that subscripts overflow destroys a table.

9. Listing of variables allocations. Discover that the first

variable in the list is dimensioned 141

10. Source code line 1430 in 1360 where the beginning of a

routine occurs that is to process request cards at first

card N = 0. Thus N = 14 for the 15th request card, the

test will fail, and the subscript will overflow.

11. Making the modification. Changing line 1440 to test for

N versus 14 instead of N versus 15.

X-4

Modification 3 Minimum Path

Time: 13 minutes.

1. Statement of modification.

2. Page 10, Figure 5. Layout of master course schedule file.

Discover here that the number of sections is called "ISEQ"

3. Source code page 58 program 3. Scanning through looking

for places where the number of sections (ISEQ) is being

computed. Discovers:

At lines 2480 and 2490 ISEQ is read, however, it

is read just before the program termination so this

is eliminated as a place where it is computed.

Lines 2970 and 29 80 are the only other places

where ISEQ is read. Following down from there at

line 2500 it is discovered that ISEQ is computed

from IREC 2 and IREC.

4. Source code. Lines 2420 and 2430 read IREC, and IREC 2.

At this point, from prior modifications, it is remembered

where and how IREC 2 and IREC are used. On the basis of

this a deduction is made; that to make a modification the

second read should be eliminated because you should be

able to get the number of sections after reading the file.

5. Source code. Line 2450. Here it is seen that IREC is

altered under certain conditions. Therefore, it will be

necessary to concentrate on a new way of computing IREC

2 since IREC is altered after it is read.

X-5

6. Modify the code. Modification consists in constructing a

new variable IREC 0 and setting IREC = the new variable.

Then replacing line 2500 by the statement NOSEC (L) =

ISEQ - IREC.

X-6

Modification 4 Minimum Path

Time: 18 minutes.

1. Statement of Modification.

2. Memory Map. Looking here to see where CODSY is used.

Looking for the address of the variable. Discover that

SVSEC is on right side of CODSY. Note its location. Sus-

pect overflow is wiping out next word. Discover that

SVCOD is to left. Wonder is CODSY is being wiped out by

over or underflow of SVCOD or SVSEC.

3. Source code. Scanning through to find DO loops where

SVCOD and SVSEC are used. Since they are arrays assume

that they must be in a DO or I/O statement. Scanning

through the code and through DO loops in top to botton

sequence in the code looking for DO loops where one of the

bounds is a variable. Find a suspect at statement 67 which

reads LM = L - 1.

4. Source code. Scanning through looking for a situation

where you can get to statement 67 with L £ 1. Discover

that situation in statement 51 where L ranges from 1 to 14.

So in looking for the place where L = 1.

5. Source code. Eliminate the first DO since L =f= 1. Scan

for another DO loop and find one just below statement 73

that matches, i.e., statement 460 where L = 1 branches

to the DO.

X-7

6. Modifying the code. Insert between statements 65 and 73

an IF statement that tests for L = 1 and branch accordingly.

X-8

APPENDIX XI

Experimental Programmer's Verbalization

While Making Modifications

Introduction

The following is a typed transcription of the tape

recorded comments made by the experimental programmer, Jan

Overton, as she worked on the modification.

Quotations

Time: 10:31 A.M.

Modification #1.

Just opening the documentation to survey it, to get a

general idea of what the program is about, and to just

generally read through and find out what the program is about.

I have read the documentation to page 19. The time is

11:40 A.M. A concept, at this point, of the actions that will

have to be taken to effect the modification, is: either to

increase the seat capacity in the course called Lunch to four

positions, and enter all nines (which would essentially

give ten thousand seats to Lunch); or, each time in the

scheduling program, before the Seat field is tested, test to

see if we are trying to schedule a Lunch period, and then by-

pass the test to see if all the seats are filled.

Time: 1:07 P.M.

I am continuing to generally read through the docu-

mentation starting with page 20.

XI-1

I have just finished reading the documentation through

page 61. I am now ready to make the modification. What I will

do is change the seat specification on the data input card for

the one named Lunch, and start with a low negative number like

-1. Then in the program each time before Seat is tested,

I will test to see if Seat is already negative; this is the

only "class" in which "Seat" should be negative; and it should

always be negative here.

I am going back in the documentation to the card input

layout, the master course card, on page 7. Now I am going

in the documentation to page 60 and 61.

I have made the modification. I simply changed two

statements, statement 2530SCHD and statement 2630SCHD; and I

tested Seat, and instead of branching to the class-full con-

dition if the seat field was negative, I branched there only

if it's zero. If it's either negative or positive I branched

to the condition in which there are still seats left. Since

the only condition in which seats should be negative is Lunch

condition, then it should treat the Lunch condition as though

the class was always available. This is the end of modifica-

tion #1.

Time: 1:55 P.M.

Beginning Modification #2. I am looking at pages 55

and 56 in the documentation because that's where the program

is. I am also looking at some sheets of printout produced by

the computer at the time that the problem occurred. Sort of

keeping my finger in page 55, I am going back in the documentation

XI-2

to look for the flowchart of this program.

The time is 2:20 P.M. I am going to compare the flow-

chart on page 31 with the program itself from the auxiliary

material that I received. What I plan to do is try to trace

the coding with the flowchart and see what the problem is, or

if I can spot the problem at all. I suspect that a subscript

is allowed to get too large, and I get that suspicion from

the error message described on the last page of the auxiliary

material. (The error message is, "subscripting destroys

define file table.)

According to the flowchart, the first thing that hap-

pens is that we read an input card. Starting at the beginning

of the program, the first thing that happens is: We do some

housekeeping, set some fields equal to zero and the READ

statement then is Statement 1180SROF; it's called Statement 1.

We read—glancing down through the program. The next thing we

have is a header card. And that agrees with the flowchart.

It's the first header card in which we set M = M+l, M having

been previously set to zero.

Keep going—let me do some writing. Then we set M = 0;

M apparently is the counter to see how many student request

cards there are. Down here, at Statement 1430, I see subse-

quent request cards. Statement 15—if N runs 15 is negative

0 or positive—oh, oh, I think that's the problem. Starting

from 0, N should be: Going back to the flowchart, I think it

should be compared to 14.

XI-3

Back to page 31. It's not the first request. The

number of requests equal to or greater than 15. . . This is

testing to see if N is less than 15. Ok. . . if N is less

than 15 then we keep going. If it's equal to or greater than,

we go to 88, which is a pause statement. Well, actually that

would be the 16th card. I think that's the problem. I think

the problem is Statement #1450.

OK, I made the modification. I changed statement 1450

from "IF (15), 16, 88, 88" to "IF (14), 16, 88, 88." This

is the end of Modification #2.

This is the beginning of Modification #3. I am going

to turn in the documentation to the record layout where the

MCS are filed and see if it contains the field we are looking

for. Figure 3, page 7. Now I have to turn back a page to see

how many digits there are in that field. According to Figure 1,

it's a four digit field. That's interesting ... I was

looking at the wrong thing. I was looking at the section num-

ber which is a four digit field instead of the number of sec-

tions. The number of sections is a three digit field.

I am now going into the documentation to see if I can

find the flowchart which is the algorithm for this program.

OK I have gone to page 29, figure 7. I did not learn anything

from page 29 figure 7. I am now going in the documentation

to the program itself, which is entirely on page 51. Just

flipped back to page 29 figure 7 to look at the flowchart

again. Looking at the wrong program. I think I should be

XI-4

looking at the scheduling program. I'm going now to look at

the scheduling program of the documentation on pages 59, 60

and 61. I know what the problem is. The number of sections

should not be generated. It simply should be picked up from

the master course file. It shouldn't be generated at all.

I am going now to page 59 through 61 of the documenta-

tion. I am going to look at the program to try to find how

the number of sections is being generated at the present time.

The reason for this is, I have to find out how it's being

generated now so that I can change it.

I've looked at the program for about a half an hour

now and I can't find anyplace where ISEQ (which is the number

of sections) is used. It's read in, but I can't see where

it's used. And I also can't see where the number of sections

is being calculated or is used in any way.

I guess the next thing I have to do is go through the

program and identify each variable name. There are a lot of

names in here I do not understand.

I think I have found the area where the number of sec-

tions is calculated. Starting with statement 56, that's the

statement number: IREC = IREC + NIND. Now I'm going to go

and try to find out NIND is. I'm looking on page 10, figures

4 and 5, at the FORTRAN names to see if NIND is any field in the

disk records. Ok . . it is not there; it is not on page 10.

I am looking now at page 6, figure 1 and 2, to see if

NIND is a FORTRAN name on these pages. It is not. This was

helpful in that it now appears that NIND is not a data name, it

XI-5

is not an input field name. I shall have to look for it some

place else. (The experimenter instructed the programmer to cease

work on Modification #3 at this point.)

This is the beginning of Modification #4. I have just

read the modification. At this point my concept of the actions

that will have to be taken is: Either the subscript KZ, or the

subscript IZ, or the subscript JZ is allowed to get out of

bounds.

I am now going to look on page 59 of the documentation.

I'm looking at statements 2030 and 2070, to see what the

upper allowable limits are for the arrays named in the modi-

fication. The reason for this is, to determine what the

maximum value of the subscript is allowed to be. At this

point my concept of the actions to be taken is: to check

the upper limits allowable for these subscripts or arrays, and

see in the coding itself if they are exceeded.

I have just looked at the two variables in question;

the first one being SVCOD, a two dimensional array having

limits of 14 and 15; and the other array, statement 2060,

the array JARR, having an upper limit of 15. At this point

my concept of the actions to be taken is: Somehow one of the

array subscripts is getting incremented too far and has to

be limited. Looking at this particular segment was helpful

because I had to know what the upper limits of the subscripts

were before I tested to see if they were going too high.

XI-5

I am now going to look at the modification again to

see which lines of coding contain the errors.

I have just looked at the modification again. My con-

cept of the action to be taken is not changed. Looking at

this segment was helpful in that it allows me to find the

areas in question in the program.

I am now going to look at statements 2680 and 2610 in

the program. These statements correspond to the areas of

error as stated in the modification. I am going to look at

the coding on either side of these statements to determine if

the subscripts KZ, IZ or JZ are getting too large. My concept

at this point, of the actions to be taken, has not changed.

I have just studied sections of the program starting

with statement 2660 and ending with statement 2750 or 2760. I

have determined that the error is almost certainly not with

the subscript KZ. I suspect that the problem is with the sub-

script IZ. Looking at this section of documentation was

helpful in that I started out with the possible error in 3

subscripts, and I have now narrowed it down to one.

I am looking now in the program from statements 2690

and 2700. The reason is the upper limit for the subscript IZ

in this case is determined by the variable LM, and in state-

ment 269 0 the value of LM is determined by the value of the

variable L decremented by 1. I have selected this segment

over any other because I think that things like variables can

get out of hand.

XI-7

We have the "distant referent" situation here. Now

at this point I do not know the value of L. That is what I

have to find out. Find the value of L, and then calculate

the value of LM at this point, to determine whether the sub-

script IZ is allowed to get too large.

I have looked at statements 690 through 2750 or so to

try to determine the probable value of LM at the point at which

statement 2720 is executed. I have not been able to determine

the value of LM, which is the upper subscript at this point.

By looking at the coding here, I suspect that instead of

getting too large, it's getting too small. I suspect that

the subscript is being allowed to become negative and I think

that's not allowed.

Looking at this segment of coding was not particularly

helpful. It was sort of confusing. I did not find what I

was looking for, namely the value of L at the time statement

2790, 2690 rather, will be executed.

I have decided on the modification. Between statement

269 0 and 2700 I am going to add a statement. I am going to

test at that point to see if the value of LM is negative. The

reason is that the subscript IZ has an upper limit which

depends on the value of LM at that point, and LM was just

calculated as L - 1, so theoretically LM could become nega-

tive, and negative subscripts are not allowed. So I'm going

to insert a test. I am going to say: If LM is negative, I

want to go to 68. If it is non-negative, it can't be zero,

XI-8

and it can't be less than one, so if it's not positive I want

to go to 68; and if it's positive, I want to do the next

statement. It does not have a statement number, so I shall

have to add one.

Now these statement numbers are not in-sequence state-

ment numbers assigned by the program, so I'm going to have to

go through the program to see what statement numbers are not

being used. That means that I'm going to have to go through

and list every statement number that's been assigned, in

sequence, to find out what one is most logical to assign.

OK, I have just determined that 45 is not being used.

I'll assign 45 to statement number 2700. So then my source

code change comes immediately after programmer-assigned 67.

Statement #67 says, LM = L-l. Right after that, I'm going to

do a test: IF (LM) 68, 68, 45.

I do not expect to test the accuracy of this modifica-

tion.

The main reference section which caused me to take

this action was programmer-assigned #67 (which is compiler-

generated statement #269 0) combined with the one immediately

following it.

This is the end of Modification #4.

XI-9

APPENDIX XII

Guidelines for Keeping a Magnetic Tape Log

of Program Maintenance Mental Processes

1. For all remarks that pertain to a specific piece of code,
identify that place by the source card number.

2. When you act upon remembered information, state that you
are doing so and what it is that you remember. If you
later find out that you didn't remember correctly (wholly
or partially) point this out when you make this discovery,

3. When you undertake any action, e.g., decide to look up
the meaning of a variable,

 state why you are doing so;

 state the outcome of your search even if the outcome
is that you get sidetracked into pursuing some other
line of search.

4. Be natural, i.e., work as you normally would if you
weren't recording your thoughts. This may be impossible,
but try.

XII-1

APPENDIX XIII

Tape Logs of Experimental Programmers

Notes: 1. The tape logs presented here are not exact transcriptions
of the magnetic tapes. What is presented is a digest of
these tapes with interspersed comments by the investigator
and many long passages reduced to a few summary lines.
These may be differentiated as follows:

--exact quotes or close paraphrases are delimited
by quote marks;

—the investigator's comments and interpretations
are enclosed in parentheses;

—programmer questions are underlined.

2. The numbers appearing here refer to the source card
line number.

3£•1 rirst Programmer's Tape Log

This programmer is a CIRAD part-time employee.

3E.1.1 Before Language Tutorial

"First part is just data definition." (Skips down to 134.
Then skips over to 178.) "Some ORIF statements. Doesn't
make sense." (Skips down to 319.)

(Reads comment at 319): "Jump table for syntax analysis.
Where does J>IP get set?" (Answer) "Up above at 317,
JMP=XPROG. Doesn't allow for that condition in jump table."
(She missed first line because of physical alignment of text.)

"Very difficult to follow program and at same time give line
numbers—not a normal practice—makes one lose train of thought."

(Back to jump table at 317. Finds if JMP=XPROG, control goes
to PROG, at 412): "STACK (XPRG) —that' s setting a rule (PROGL).
This says we have found a program and we go to POPYES which
means we have a success. We go to POPYES from 416. Where's
POPYES?"

"XOTYES is at 631. And it looks like we build a tree or part

XIII-1

of a tree. Got there with a GOTO. How do we get out of POPYES?"
And where do we go after that?"

(At 663 finds) "GOTO JMPT, beginning of jump table. But how
did JMP get set to anything else in the meantime? That looks
loopy!" (Amused chuckle.)

"Let's go back to POPYES and see if JMP gets set to anything else."
(At 644 finds) "JMP=YEST(STCPNT). At end of POPYES routine
(actually a subpart of the MAIN program) line 662, STCPNT is
decremented by 1, so the next time it comes through, the jump
keeps getting decremented."

(Returns to line 644.) "What is YEST?" (Familiarity with the
language would have told her YEST is an array.) Is YEST a rule?
(Looks in rules section beginning at approximately 413 and
verifies that YEST is not a rule by checking every occurrence
of RUL= that she can find.)

(Continuing search for YEST): "Now I will look in data definitions."
(At 3): "Not in items." (At 77): "It is an array, a global array."

(Encounters abbreviation RCC in comment on line 77. Does not
see it written out in full on line 76.) "What is RCC?"
(Searches data declarations fruitlessly. Goes back to POPYES
at 631.) "Maybe RCC is just a stack and not a location."
(Surmises RCC might just be an abbreviation for something,
but isn't sure.)

(Abandons previous tack. Decides to concentrate on rules) "since
mod is to add another rule (correct). I think I should become
familiar with how rules are made."

"What does the word STACK do?" (Because of language unfamiliarity
does not pick up the . preceding STACK which indicates a call
on a procedure. Checks other rules and finds they all start
"STACK (something). BNF sheet doesn't have STACK on it."
(Over-reliance on literal correspondence between documentation
and program.)

"Oh! I bet that's for building a stack." (Comparing rules):
"Not all of them have a RECO statement (call), not all of them
have a FLEX statement (call), but they all have STACK statements
(calls) and a 'RUL=" statement."

(Regarding STACK): "Oh, it looks like it's the name of a routine."
(Comparison methodology leads her to question why the same statement
is found at 414 and 552 in two different rules.)

(Is still concerned about RCC): "Had this experience with programs
before: not knowing if something was a data name or a procedure

XIII-2

name—be good to have something to discriminate classes of

(Decides on a linear search maneuver.) "Going to 140 and try
to identify at least the unique sections. I need an over all
view of program at this point. I'm not going to get hung up
on details (she does), and I'm not going to try to follow a
chunk of data through the program flow. I'm just going to go
through and see if I understand what's going on."

"The first thing we come to is the jump table." (Vrong—this
is the lexical scan table which has the unfortunate first label
JUMP.) "Looks like pages of just one statement." (Correct--
but then because of language unfami liarity becomes confused
by all the ORIF clause headings and the END delimiters.
Frankly, even for someone who knows the language, this is a
pretty rough statement.) "Not sure what section of program
this is." (Speculates):

—"Input routine? Nope, can't be." (No reason given.)

—"Initializing?—because we seem to be going in a loop." (??)

— "Housekeeping?—which is initializing counters at the
beginning."

"Okay, I'm going to check some things." (At 239): "Don't
understand what's going on." (At 253): "I don't understand
what's going on—ok—that's checking to make sure we haven't
exceeded 48 characters." (Wrong guess—and objectively, a
poor one.)

"Bunch more ORIF statements (clauses)—we're checking STATE.
We just set STATE back here." (Returns to lexical scan table.)
"We check STATE= something depending on the value of IND—
whatever that is. Then we come through and check to see what
STATE is and change it again. That seems odd." (Cites
examples at 153, 172.)

"Ho, ho!" (Discovers the things TYPE is being set to in
256-272 are the names used in rules in FLEX statements, i.e.,
calls. Checks forward to rules to verify and enumerate matches.>

"Wha t does this mean?" (Doesn't specify the antecedent.
Pauses to register a complaint about the arduousness of using
the tape recorder.)

(At 306, reads comment): "End of lexical scan—the first part
of the program must be the lexical scan. All of this is called
MAIN!"

XIII-3

(At 410, reads comment): "Rules for analyzing AGC assembly
language—then begin all the rules."

(She notices that the names appearing as XNAME in the jump table
match those found as arguments of .STACK in the rules and checks
back and forth on specific examples to verify this hypothesis.
Decides that XNAME is a) "stack parameter that indicates the
next place to go to is procedure (rule)" (NAME) (Then
discovers XNAME is really a rule name.)

"How come we go down there?" (She expected the jump table GOTO's
to take her further down in the program and not just to the
rule section. This is because she failed to discern the
recursive nature of the syntax analysis required to build trees
and that the only ways out are when POPYES picks up YEST (0) -
YEST (1) = XSUCCS or when POPNO picks up NOST (0) - XFAILR.
These YEST, NOST settings are made just prior to the first
entry to the jump table.)

(Therefore, seeks further examples at random and finds no help
from BNF sheets, "Sort of relates to my lexical scan table."

"Okay, soing to check some more." (Starts setting up more
detailed correspondences between jump table exits and rule name
entries: 321 and 412, 322 and 416, 323 and 418. Notes and is
confused by jump table entries into the middle of a rule as at
PRG.1 from 324. She also finds label STS3. in the rules has
no corresponding jump table exit. Finally, reaffirms): "This
is all syntax analysis with lexical scan coming first."

(Goes to last rule, BSB at 625, and sees that is ends with GOTO
POPYES.)

(Goes to POPYES at 631.) "Does something and then at 646 ve
have (comment) OUTPUT TREE SECTION." (Wonders if this is end
of syntax analysis.)

(Notes that 648-652 test what RUL is or was) "and is only
interested in XSTL things or XPRG or XPROG. I guess this is
where we have to start. I guess if you're going to output a
tree you have to have a program--so I guess that makes sense."

"POPNO is in the output tree section. POPYES isn't." (Fails
to see that POPYES ends with a GOTO JMPT at end of its output
tree subseotion.) "That seems odd. Seems they should both be
in the same section. Oh, maybe not."

(Finds labels FAILR at 695 and SUCCS at 699, but doesn't indicate
she knows how control gets to one or the other. Under SUCCS, she

XIII-4

notes that we WRITE OUTPUT, at 700, and is amazed that this
is still MAIN.) "Weird."

(Checks forward to see how far MAIN goes): "to 1024 and then
we start STATUS." (She is looking at the annotation in card
columns 73-80.)

"What's so different about STATUS?" (Fails to note that this
is a closed subroutine-procedure. Jumps back to label FINAL.
at 1016 in MAIN* Finds way down to RETURN at 1023. Regarding
RETURN): "I don't quite understand that."

"Then PROC .STATUS. This looks like a whole other program.
Don't understand STATUS. STATUS ends at 1071."

"Then we have something called CENSYM. I don't understand what
that is either. There are no comments. I think there should be
a comment here. There should be a comment every time a section
changes name. GENSYM goes down to 1162."

"Then WRTOUT* That must mean write output. Don't really
understand that either."

(Discovers that every time she section name changes, PROC
appears in the left hand margin): "Looks like a paragraph
name." (COBOL conditioning. She then enumerates line numbers
where she notes this 1163, 1186, 1209, 1218, 1222, 1227. Is
surprised that .FLEX and..REC0 are so short based on her
recollection of Larkin's explanation. Decides she needs
more explanation from Larkin)--"especially this bottom part of
the program." (Confesses her lack of fundamental understanding.)

(Goes to .MATCH at 1396. Appreciates comment which she finds
there but makes no further remarks. Confesses again she doesn't
understand what's going on and that this perusal of the procedures
has been) "a wild goose chase." (and that all along she has
had her finger planted on something up in MAIN)—"oh yeah, the
OUTPUT TREE SECTION." (Backtracks.)

(Complains.) "There are too many sections of output, too many
WRITE statements. No wonder she (Larkin) ran out of core. There
are WRITE OUTPUT statements at 683, 696, 700 (she is now past
the output tree section), 723, 725, 742—May be a constraint of
the language, but I sort of doubt it—755, 765, 785, 819—
I just like one output routine and one input routine—takes less
core—828, 840, 847—all in MAIN, 3 or 4 of them on a page. In
STATUS, still a bunch of them (1032 missed), 1034, 1042, 1044.
Have a whole routine here called WRTOUT—HQw come we have all
of these WRITE statements outside of this routine?"

"Weird thing: ENDALL pops up from time to time. This should

XIII-5

end the program altogether." (Because of language unfamiliarity
she doesn't realize that ENDALL is an END delimiter which closes
all open clauses requiring an END delimiter. Finds ENDALL at
lines 1192, 1198, 1205. Looks for another place she remembers
having seen ENDALL, but tape ends.)

3E.1.2 After Language Tutorial ~(£7 Days Later)

(Decides to concentrate on the requested modification, i.e.,
LFS «Statement)))

"I'll go through the program to find where other BNF descriptors
are and how they're implemented to give me some idea of how
to implement the LFS statement."

"First item in BNF table is something called PROG." (Looks
first in GLOBAL section—data declarations and presetting—then
remembers) "it's somewhere down MAIN—in jump table around 321.
Tilings in jump table determine if JMP is set to one of the
BNF statements. Someplace else, evidently, JMP gets set to
those things." (Finds at 317, JMP=XPR0G.)

"Where else does JMP get set?" (Goes back to the beginning
of MAIN—to line 17.) "JMP is declared logical, 15 bits long
but is not initialized, that is, at that point, has no value."

(At 101-115, finds all XNAME items are preset.) "Looks like
it's for table lookup for numbering the items in the table."

(At 149): "INITL--probably in back—at 1522. JMP is not
initialized to anything there. Don't really understand what
that does."

(At 150): "Check to see what .GTMCH does--at 1327." (Reads
comment and doesn't understand, but notes it doesn't affect
JMP.)

(At 151): ".MATCH at 1396." (Reads comment.) "Doesn't do me
any good." (i.e., doesn't change JMP.)

,. 1S9V "^rhat I probably really should do is write a
flowchart on this thing. That would help me understand the
overall program, but not necessarily help me implement this
modification."

(At 317): "Ah, ha! JMP is set under certain conditions." (?)
(Confusion): "There are two jump tables, one at 319 and one
at 152." (label there is JUMP.) "I wonder if they're the same.
Very strange. Oh, that's not a jump table—checking the condition
of STATE. I think I remember I goofed."

XIII-6

(At 321): "If JMP * XPROG we go to PROG. Now, somewhere In the
program at PROG it should change the value of JMP."

(Beginning at 412 she checks procedure calls to find where JMP
is changed):

"At 412 .STACK to 1321—no."
"At 413 .RECO to 1300—no."
"At 413 .FLEX to 1283—no."
"At 415 .FSUB to 1314—no." (But she has missed line 1318

JMP = XX, XX being the first argument of .FSUB. She sees that
in every rule, every call on FSU3 is followed immediately by
GOTO JMPT which takes control back to the jump table, but she
can't see where JMP got changed.)

(At 416): "RUL * XPROG and GOTO POPYES." (Goes there.)

(POPYES at 631: Fink at 644, JMP = YEST (STCPNT)) 'Vhat happens
in the jump table if JMP = YEST (STCPNT)?" (Goes to data
declarations to find at 77 that YEST is an array. Finds at
316, YEST (STCPNT+1) = XSUCCS and interprets): "STCPNT is
incremented (wrong!) and therefore, line 644 means that ve move
to the next line of the jump table." (!)

(Launches headlong into making the modification. She has most
of the right places in mind but makes an incorrect modification.)

3E. 2 Second Programmer's Tape Log

This programmer is a member, of the CIRAD technical staff.

(Starts by reading printed material.
Concentrates first on lexical scan printed material and makes
sense of it.
Looks at BNF for AGC Assembly Language with aim of inserting
as an allowable statement

LFS (<STATEM>) as an alternative in the <STATEM> line
<'STATEM> : : - <0PC0DE><LIST> /<0PC0D>< EXP> I

LFS (<STATEM> | <0PCD>.)

(More desirable is
<STATEM>:: = LFS (<0RDSTR>)|<0RDSTM>;
<0RDSTM):: = <0PC0DE><LIST>/<0PC0D><EXP>|<0PCD>)

(Confused by (TEMP) because it looks like a BNF literal in
definition lines of<DPCD>, <0PC0D> and <0PC0DE> '<äed by Larkin
to indicate that these are read into program—space considerations.)

(Because he has forgotten what it is he is supposed to do, he
looks at a sample assembly listing to note that usual form of
desired new statement type takes the form

LFS (DATA|26|).

(Concludes BNF is incomplete (he's correct)—because DATA

XIII-7

doesn't appear as a literal in it (wrong reason). "I don't
see anything that refers to op codes. I don't know what the
allowable op codes are." Feels he will) "have to interrupt
the working of the algorithm at a high level rather than at
a very fundamental level."

"It's time to look at the program." (Goes through declares
to familiarize himself with the program data names and their
meanings—almost on a line by line basis. Thus he picks up
and'considers many things which are irrelevant to the modification.
Looks for sense [meaning] in mnemonics [variable names].
Some have, some haven't.)

(Gets into executable code: Begins by reading comments 140-147.
Reference to JUMP causes him to look for some which he finds
immediately below.
INITL: Guesses what it does and deduces it's only done once
since there is no label before it [or on it].
What is happening here is that he makes small local excursions
into the code based on what he reads in the comment referred
to above but keeps on returning to read the comment. Correctly
surmises that this matches logic of lexical scan literature and
that SSTB which he puzzled about when reading variable declarations
is the system symbol table [which the comment tells him].
Ends read of Comment.)

"INITL; Not worried about this. Probably takes care of
itself. Probably nothing to do with the fix."

»
"GTNCH: Grabbing next character." (Scans forward and decides
to use the Name in columns 73-80 to see v-here it changes from
MAIN. Considers each procedure encountered very briefly..

OPCODE: makes guess about START, FINIS and meaning of code-
finally gets to GTNCH)

(1343 in GTNCH: foes back to ascertain meaning and declaration
of INREC. Deduces ICH is character and ICHN is next character,

deduces RECLN = record _length ,
deduces EOFC = end of _file character.>

(Looks back to declarations at 44 for CCPNT--no information.
Guesses (vrong) that .INTEXT (really the read routine) is a
conversion routine to "translate" the characters.
Deduces functions of BCPNT and CCPNT from logic)

(INTEXT: encounters this and finds out its true function.)

(STRSSTB: encounters line 1426 which deletes '(' and ')' and
notes that someone previously had marked this in red vith "DELETE"

xiii-r,

and that this is sensible in view of the change.)

(Goes on briefly through STRLST, PUTL, DIAGNT, IJJITL, SPLOUT
reading comments where found.)

(Wishes to determine where in the tree building there are syntax
tests. He should ignore tree building and concentrate on
syntax alone. He wishes to) "Find out where in tree building
the LFS options are assembled and modify that to accept a
different format.11 "Will do this by going back to beginning
and" then locate the exact place I have to modify. After that
it should be simple."

(At 150 he notes that he is looking for way to get to EXIT1.
This is noted from EOF determination on lexical scan table.
He notes that he has never look at MATCH and doesn't know
what it does but it not interested in that now. Looking at
lexical scan table:)

"STATE ■ 1, IND ■ 15 from 15th column of lexical scan table.
Therefore IND indicates t-hat type of character has been found
by GTNCH. Therefore that's probably T-hat MATCH does because
I remember that GTNCH does not assign a value to IND."

(Looks for EXITl—finds it at lines 306 and reads comment^:
"Hooray, this looks like an intricate pointer system. I don't
think I'm going to be very hep to this." (NOTE: it is precisely
the statements 308-317 that shed the most light on --hat happens
in the syntax analysis.)

(Jumps to comment on 319—looks at XNAMES in jump table and
deduces that they are constants associated with different tests.)

(He has noted without saying so that JMP has been set to XPROG
at line 317. He looks back to declarations to find out what
XPROG is (108-115). Verifies they are constants, but doesn't
know what they mean.)

(Decides to go on to see operationally how the XNAMES are used,
to gain understanding. He goes from 321 down to 412.)
".STACK (XPRG)" (He reads comment at 410, then sees..RECO
('TITLE') and recalls from documentation that TITLE has to be
recognized. Therefore, he deduces meaning of RECO but has
skipped so far investigating .STACK.)

(Goes to RECO at 1299 to find the meaning of FAIL.
Deduces: FAIL - 0 means success; FAIL = 1 means failure to find
argument of RECO.
While he is there—having noted call on FLEX circa 414. investigates
FLEX with same meanings for FAIL regarding T/PE.)

(Goes to next page and looks at STACK at 1320 and sees):

XIII-9

"STCPNT - STCPNT + 1
NOST (STCPNT) - XX and sets up a couple of pointers." fBut has

no idea what this means.)

(Back to MAIN but pauses at POPNO (664) on vay back, having
seen reference to POPNO in area of MAIN currently under
investigation.)

(Sees RCC stack in comments and tries to look it up!! Can't find
in area of 36-STCPNT.)

(Goes back to jump table to investigate opcodes»
Confuses OP for expression operators (■ - * /) vith OPCODE,
OPCOD, OPCD at 562.

—Decides to look at POPNO, POPYES again): "Something's going
on with that."

0?OPYES 631: Reads comment. Concludes since it ends by GOTO
JMPT that nothing can be done unless JMP is changed. Therefore,
he looks for such. Finds JMP = YEST (STCPNT) at 644: • "What's
that (YEST)?" (Finds in declarations—reads comments): "That
doesn t tell me much."

(Back to main branch off on syntax analysis:
OPA, OPB, OPC, [OPlCODE CD.

—Confesses at this point he is completely lost—can't recognize
the "identification logic" of this program and doesn't really
knov? what it produces, i.e., produces a syntax tree whose
meaning he doesn't understand.): "Never encountered that.
Can't even find a constant like LFS—disturbing."

(Randomly looks at 500^508 and notes that this reouires
'(' and ')'. (Larkin error) Therefore, he goes to FSUB 1314):
"JMP ■ XX and YEST(STCPNT + 1) - YY. Beginning to make some

(On his way back to MAIN he discovers at 1248 .OPCODE(START,
FINIS). Fiddles around, but deduces basic intent and logic of
OPCODE. Neighborhood phenomenon; below in .RND finds meaning
of CURPC: therefore, in OPCODE, CURPC ■ CURPC + OPCODEB(A)
means that OPCODE(A) contains the byte length of the instruction
having mnenomic in OPCODN(A).)

(Goes to array declarations to find OPCODN but doesn't see
where it's loaded. Therefore, he guesses that it is probably
set up in INITL which he goes to see): "I hope it's not read
in."

(INITL 1531): "Oh my goodness! As I feared —they are read in."
(Chases to declarations for meaning of 0PC0D0 and finds out they
are opcodes in octal for generating AGC code. ilierefore, he
concludes, correctly, that LFS isn't RECOgnized but is found by

XIII-10

branching to the OPCODE procedure.)

(Decides he has to find where the OPCODE routine is called from.
Starts at 408 and ^ets to CODEA 585. Assumes that an LFS 'ill
have been found. Therefore, FAIL - 0 and RUL - CODEA.
He fails to note that this is a call on .OPCODE **ith START ■ 0
and FINIS ■ 6, meaning search of 0 through 5 inclusive, and
therefore he must know if LFS is included in the first 6 OPCODN's.)

(Goes to POPYES 631 and eventually at 663 finds GOTO JMPT.)
"Apparently the setting of JMP is crucial here- it is an
indicator of vhere to go next, that is, JMPT uses JMP to go to
another part of the syntax analysis."

(Briefly looks at TREE arrays -learns nothing.)

(Believes he sees recursive nature of this): "300 or so
JMP initially = XPROG -*PR0G and asks the ouestion 'Do I have
a program?' if the answer is no for various reasons, so then
it goes and asks ' what is a program made out of?1 Fell, a
program is made out of statements. 1So do I have a statement?'
So go to XSTAMENT or something like that and then for a
statement1do I have some opcode?'
And only when it chews up the whole bunch and puts it
in a tree with a yes condition and this big izree represents
program—only then will it drop through and then do something.
And that's in POPYES in the OUTPUT tree section."

" If RUL - XSTLX, XSTL, XPRG, or XPROG"

(Looks at logic in output tree section and notes .WTREE must
mean write tree but doesn't exit there but goes back to JMPT);
"How do you get out of this program? Is that a t/rong assumption7

I think I'm on the right track *hen I say it's stacking everything
up in the tree array recursively until it has everything »-ell
defined. It seems it should have everything then ready for
assembly, but I don't even see that."

(Looking farther down—encounters WHITE OUTPUT at 723 { "where
do ve branch to that? Good assembly."

(Confusion: sees RETURN statement after all of output at 1023
and therefore, MAIN is a 'perform' (a la COBOL).

(Backtracks to Start again at beginning of program^:
"INITL, GTNCH, MATCH —JUMP etc. until +EXIT1
EXIT1+TMPT 407 or 408. There is specifically a RETURN.
—Vhy?? How can it return? It's not called. Can't see how
to get out of the tree building to get to the output section."

(END of tape.)

XIII-11

APPENDIX XIV

Language Statement Types

Which Define Conceptual Groups

This appendix presents some of the nearly raw data
from the Conceptual Groupings experiment. The material
presented was written by the observer after each of a
number of experimental sessions. Later it was collated
in the form presented here: Observations are listed
under the types of statements about which the observations
were made, and not under the experiment during which the
observations were made.

A bare minimum of editing, primarily to identify the
experiments by number, has been done to the observations.

The observations, arranged according to statement type,
follow:

(1) IF, ELSE, FOR:

In experiment 12, both the explainer and
explainee knew the input and output of the
system, and the DATA DIVISION was explained
only briefly. The PROCEDURE DIVISION was
covered only in generalized statements such
as "well, here is where we're error checking
the cards and then we go over here to ...",
etc. Only one error (IF) path was traced.

In experiment 15, the program was explained
in a straightforward manner, and no error
paths were followed.

In experiment 11, the IF and MOVE statements
were used most in the program and comprised
approximately 60% of the statements.

XIV-1

—

The IF conditions were explained, and the
subsequent action of the object program was
referenced only as far as the branch-to
location. The branch-to path was not followed.
For example, in the following IF statement,
the READ-DATA location-path was not followed.

IF BATCH-ERROR IS EQUAL TO 'YES1

GO TO READ-DATA.

In experiment 10, the most common entrance to
the program was with either an IF or FOR
statement. The most common exit was a GO TO
statement. The GO TO statement when used as
an imperative usually concluded a tagged
region and ended the function being performed.
The following is an example of a typical opening,
tagged statement:

BA1. FOR E=NENT(FLP)-1, -1,0$

and the following a typical paragraph ending:

GO TO B3.

In experiment 9, the conditionalities of IF
statements did not seem to require an explanation
of the code, i.e, the conditionalities LESS THAN,
GREATER THAN, EQUAL TO, etc., were not explained.
The following is a compound of an IF statement
which was used in the explanation:

IF NOT RECEIVER-RECORD AND NOT P-O-RECORD

AND NOT DATE-RECORD

MOVE •1156' TO DUMP-CODE GO TO ABEND-JOB.

In experiment 10, the prose was exceptionally
good. The programming was done using communication«
pool items and tables and so this limited the
paragraph and data identifiers to eight characters
for paragraph identifiers and four and three,
respectively for item and table identifier. This

YTV-2

limitation reduced the ability for the program
to be "read". The following typifies statement
and paragraph identifiers used in this program.
The statement is:

BA100. IF NENT (FLP) EQ 200$

BEGIN

OUTIN (1) = «LOC (WFLX1) $

OUTIN (2) = 5 $

RDSRI ■ ESRN (E) $

etc.

And the prose is:

"If the maximum length of table FLP
will be exceeded by insertion of the
new entry required for this event, an
information message is logged and the
event is skipped."

(This particular case may have been misleading;
it is possible to make JOVIAL statements more
explanatory. The restrictions imposed upon this
coding were severe and may have been the reason
why the program statements are not self-
explanatory,)

In experiment 14, the sentence structure and
alignment of the syntactical combination of
words within the sentence played a very important
part in the explanation. In one example, the
structure was:

IF RESPONSIBILITY etc.

IS EQUAL etc.

AND etc.

IS NOT etc.

MOVE etc.

XIV-3

In experiment 14, identifiers were used
as self-explanatory units when referenced in
an IF statement:

TEST-CHG-LETR.

IF THIS-IS-A-CHG-LTR AND LAST-PR-NOT CLOSED £•-i

MOVE l3l TO ERROR CODE

GO TO FAIL-AUDIT,

It is obvious what the tell-tale paragraph
identifier TEST-CHG-LETR is going to do. The
IF statement is self-explanatory because the
referenced data identifiers explain their
contents.

In experiment 9, the explainer went through the
program in a straightforward methodr i.e., he
did not, with only two exceptions, take
conditional IF statement paths. These two
exceptions were as follows:

- When a new purchase order record was equal to
a previous purchase order record, the •normal*
path was to process that new purchase order.
In the following example, the GO TO RECEIVER-
UPDATES path was followed

IF RECEIVER-RECORD

IF PART-PLT-PO OF RECEIVER-RECORD EQUAL TO

PREVIOUS-PART-PLT-PO GO TO PROCESS-

RECEIVER-REC

ELSE GO TO RECEIVER-UPDATES

ELSE, etc.

- If a change in the purchase order had occurred,
it indicated that a new P.O. or a change to that
P.O. had taken place. In either case, they
wanted to close out the old P.O. The following
statement took care of that situation.

IF CHANGE-OCCURRED GO TO SAVE-PO-RECORD ELSE etc,

XIV-4

In experiment 12, the following was a typical
statement:

IF FIL-TYPE = "S", AND

IN-TYPE - "N", "U", OR "D", GO TO S-CARD1.

In order to make this statement more readable,
it could have been stated as follows:

IF FILE-TYPE IS EQUAL TO STUDENT AND INPUT-

TYPE IS EQUAL TO NEW, UPDATE, OR DELETE GO

TO STUDENT-CARD.

But, the data division would have to be
re-described.

In experiment 9, the paragraph structure and
alignment were very helpful in "visually" under-
standing the operation being performed. The
following is an example.

IF CHANGE-OCCURRED GO TO SAVE-PO-RECORD

ELSE

MOVE SPACES TO LAST-REC-DATE OF NEW-PO-BUFFER

MOVE ZEROS TO RECEIPT-TO-DATE OF NEW-PO-BUFFER,

LAST-REC-QTY OF NEW-PO-BUFFER

GO TO SAVE-PO-RECORD.

In experiment 14, the documented prose was a
condensed form of the program and was not as
clear as the program itself. The following is
an example of prose vs. program statement:

Prose

"If input resp code in zero, P.O price/m
must equal current standard."

XIV-5

Program Statement

IF RESPONSIBILITY OF DAILY-INPUT-AREA «

IS EQUAL TO t0*
«

AND PRICE-PER-1000 OF DAILY-INPUT-AREA

IS NOT EQUAL TO MFCPRICEB

MOVE »l1 TO PRICE-ERROR-IND.

(2) DO, PERFORM:

Experiment 11 illustrates the conditional use of
PERFORM statements to indicate groups to be
explained. Once a subroutine had been referenced
by a PERFORM statement, that subroutine was not
explained again whenever it appeared.

In experiment 14, the PERFORM statements were
such that the paragraph identifiers were self-
explanatory and the explainer did not have to access
the paragraph being described in the statement.
The following are examples:

PERFORM READ-DAILY-INPUT.

PERFORM WRITE-ADJ-DAILY-ACT.

PERFORM READ-P-O-BAL-FWD.

PERFORM PROCESS-RECEIVER-INPUT.

In experiment 11, the program was explained in
a straightforward basis, i.e., no conditional
statement exits were followed. The one exception
to this case was when the PERFORM statement
appeared within the code being explained.

In experiment 14, the program was written in
the way that it operates, i.e., the flow of the
program went from one paragraph to the next
paragraph adjacent directly below it. With the
exception of the PERFORM statement, it was not
interrupted by any other statements such as IF or
GO TO.

XIV-6

In experiment 9, the program was explained
in modular form, each module consisting of the
statements which occurred between tagged regions.
With two exceptions, the PERFORM statement was
the only statement that caused the explainer
to deviate from the "normal" flow of the programs.
These two exceptions were when:

A. The PERFORM statement was the object of
an IF statement. For example:

IF RECEIVER-RECORD

MOVE '1245' TO DUMP-CODE GO TO ABEND-JOB

ELSE MOVE 1 TO NEW-PO-IND

PERFORM READ-ADA

GO TO MOVE-NEW-PO-S.

B. When the object of the PERFORM statement
had been described in preceding explanation,
i.e., it had already been described once
before.

In experiment 13, PROCESS was explained like
PERFORM. For example, reading in a card and
checking column one of that card was coded and
grouped as:

PROCESS-CARD.

READ CARD-IN AT END GO TO FINISH*

IF COL-ONE IS EQUAL TO fL' GO TO PROCESS-LOAD.

From experiment 11, the following are examples of
PERFORM statements initiating groupings:

" In °Pen program regions when it appeared as an
imperative statement.

Example:

PERFORM ERROR-CHECK THRU ERROR-END.

XIV-7

In open program regions when it appeared
as the object of a simple relation condition«

Example;

IF FIRST CARD IS EQUAL TO 'YES1 PERFORM

NEW-BATCH-IN.

In subroutines, the statement path was
followed under any condition, i.e., the path
was followed whether or not the PERFORM state-
ment was imperative, a simple or complex
relation condition. The following are
examples:

Imperative

PERFORM LIST-GOOD-CARDS

VARYING CARD-X FROM 1 BY 1

UNTIL CARD-X IS EQUAL TO BUFFER LIMIT.

Relation Condition (Imperative simple)

IF RESPP IS EQUAL TO SPACE

PERFORM IMPORT-CHECK

VARYING IMP-X FROM 1 BY 1

UNTIL IMP-X IS GREATER THAN 15.

Relation Condition (Conditional complex)

IF BATCH-ERROR IS EQUAL TO 'YES'

NEXT SENTENCE ELSE

PERFORM GOOD-CARD-LIST THRU

G-C-L-EXIT.

XIV-8

It should be noted that the PERFORM statement
path was not followed when it was a relation
condition (conditional) statement in open
program regions and it was the first time
through the region. The path was followed
on the second or sbusequent description of
the region. For example, the following path
was not followed on the first-time-explained:

Relation Condition (Conditional)

EX.1 IF BATCH-TYPE IS EQUAL TO »P1

PERFORM P-O-ACCRUAL THRU P-O-X

ELSE

PERFORM REC-ACCRUAL THRU REC-X.

EX.2 IF BATCH-ERROR IS EQUAL TO •YES1

NEXT SENTENCE ELSE

PERFORM GOOD-CARD-LIST THRU

G-C-L-EXIT.

The PERFORM statement path was not followed
when the logic of the statement was negative
in open program regions. For example, the
following path was not followed the first time
through:

IF BATCH-ERROR IS NOT EQUAL TO 'YES1

PERFORM GOOD-CARD-LIST THRU

G-C-L-EXIT.

(3) GO TO, EXIT:

In experiment 11, the imperative GO TO and EXIT
statement paths were always followed wherever they
were encountered during the explanation of the
code. The following are examples:

EX.1 GO TO READ DATA.

EX.2 P-O-X.

EXIT.

XIV-9

Also, the EXIT statement was used only in
subroutines which contained conditional state-
ments imbedded within the routine itself. For
example:

GOOD-CARD-LIST.

MOVE »YES1 TO BATCH-ERROR.

IF CARD-X IS EQUAL TO 1

GO TO G-C-L-EXIT.

GENERATE

etc.

G-C-L-EXIT.

EXIT.

In experiment 15, the following statements specify
that if "errors occurred while reading card
inputs, (you should) quit now.":

IF (IQUIT.EQ.O OR IBYPAS.EQl) GO TO 201

CALL ERR (201)

GO TO 90

The meaning of the GO TO 90 statement is not
obvious, and the explainer had to actually study
the code to explain its logic (which, ends up
with the statement STOP).

In experiment 13, the explainer covered the areas
of the program as blocked statements which
terminated with either GO TO or EXIT statements.
Since he was not covering the actual statements,
he did not explain PERFORM staeraents but instead
explained the function being performed in a
generalized manner, i.e., he did not go into the
subroutine referenced by the PERFORM statement.

•

XIV- 10

In experiment 10, the explainer did not follow
the coding statements. Instead, he explained
the regions in general terms; he used such
phrases as "so this section of code here deals
with ..." or "we go to BA1 to go to the next
cycle." The explainee had no trouble under-
standing the program; she had had similar
experience in another simulation system.

In experiment 13, the explanation reflected
what appeared to be an excessive number of
paragraph statements. These statements might
have been avoided with more thought. For
example, the following coding:

DONE-MOV1.

MOVE BAR-MARK TO DAYS-PER-YR (INDEX-1).

ADD 1 TO INDEX-1. IF INDEX-1 IS GREATER

THAN INDEX-2, GO TO DONE-MOV 2.

GO TO DONE-MOVl.

DONE-MOV2.

EXIT.

DONE-MOV1.

MOVE BAR-MARK, etc.

IF INDEX-1 IS NOT GREATER THAN INDEX-2,

GO TO DONE-MOV1.

DONE-MOV2.

EXIT.

XIV- 11

(4) WRITE, READ:

In experiment 13, the following were typical
paragraph or data identifiers:

READ-MSTP-CARDS. •

JUN-1.

COMPARE-UNIT-PROB.

01 CALENDAR-REC.

In experiment 14, the words READ, WRITE, and
PROCESS were imbedded and used as a tell-tale
tag, and it was not deemed necessary by either the
explainer or explainee to go to those paragraphs
or subroutines to show the function being
performed.

Not only were these tags good explanatory units
for the PERFORM statement, they were also very
valuable to the explainee in understanding the
routine being covered at this time.

In experiment 15, the program made much use
of the FORTRAN syntactical statements such as '
WRITE, READ, DO, etc., which were good explanatory
units. However, these statements are limited
by their object-labels. For example, the
following statement was treated as a unit
describing a typical WRITE statement:

WRIT (6,20)

The number 6 in (6,20) means PRINTER, but this
number could vary according to the compiler or
machine used. The number 20 in (6,20) means
statement 20; the programmer has to go there to
find out what format to use.

(4) Comments:

As illustrated above, experiment 15 indicated that
without qualifying comments, a FORTRAN program could
be difficult to understand.

XIV-12

In experiment 9, paragraph, section, and data
identifiers were helpful in "reading" the program.
Their contents defined what a data item contained
or what a paragraph or section of the program
performed«

In experiment 15, the program was used for generating
scripts; the inputs were cards. The scripts defined
simulated impacts of nuclear weapons. The main
function of the area covered read cards and performed
a table lookup. The tables were two-dimensional
arrays•

The programmer/explainee used many comment cards
within the program, thus making the understanding
of the program less difficult. For example, the
following comments and statements helped in
defining an array:

CWEAPON TYPE ARRAYS.

DIMENSION JBURS(26), JYIELD(26)

CJBURS IS BURST PARAMETER FROM DS3

(1=SURFACE, 2=AIR)

CIYIELD IS YIELD PARAMETER FROM DS3

(1=SURFACE, 2=AIR)

and the following is a program statement:

CINCREMENT VALID IMPACT COUNT

NIMPS = NIMPS +1

119 IF (NIMPS.LT.NIMLIM) GO TO 121

CALL ERR(119)

NIMPS - NIMP -1

GO TO liO

XIV- l3

(6) TRANSFORM:

In experiment 11, the program was explained
in a modular fashion. The "modules" v:ere
areas between two tagged locations. The only
time this thought-unit was interrupted was
when a PERFORM statement occurred or the TRANSFORM
statement was explained.

Also, the TRANSFORM statements were usually
explained at some length. This was explained
as being due to "the way the old machine used
to handle data" or as a bookkeeping feature
to insure "that there are zeros in there".
The following is an example:

TR/vNSFORM PRICE-UNIT FROM SPACES TO ZEROS.

»

XIV-14

wfc^«!ffisdrj««^^

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification ot title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Corporate author)

Corporation for Information Systems Research and Development
(CIRAD), 40f N. Harvard,
Claremont, California 917(1

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
26. GROUP

N/A
3. REPORT Tl TLE

A STUDY OF FUNDAMENTAL FACTORS UNDERLYING
SOFTWARE MAINTENANCE PROBLEMS: FINAL REPORT
APPENDICES

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

None
5- AUTHORIS) (First name, middle initial, last name)

None

«. REPORT DATE

December 1971
7a. TOTAL NO. OF PAGES 76. NO. OF REFS

8a. CONTRACT OR GRANT NO.

FI9628-7I-C-0I25
6. PROJEC T NO.

8«. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-I2I, Vol. II

96. OTHER REPORT NO(S((Any other numbers that may be assigned
this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited,

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems,
Hq Electronic Systems Division (AFSC),
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRAC T

" Problems faced by programmers who must maintain programs someone else wrote" were identified.
They were reduced to three fundamental inhibiting factors: (I) the limited rate at which people
can make "relevance tests," (2) over-confirmation in clues required before hypothesis-testing,
and (3) human vulnerability to distraction and procrastination. Studies suggested collectively by
these factors were conducted. The studies (I) ascertained that programmers tend to think in terms
of conceptual groupings whose objective identification would be helpful, (2) indicated that it
was feasible to trace the path the programmer takes as he prepares to make a modification, and
(3) identified a few tentative measures of the degree of maintainability of computer programs.

DD FORM ,1473

'

>

