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I. INTRODUCTION 

Many authors have treated the motion of a half-space of a 

condensed medium caused by the impact of a high-speed projectile, or by 

the detonation of an explosive at the surface. Most of the available data 

are the results of experiments or of computer calculations. The purpose of 

the present work is to present a synthesis of what is known, based on the 

analytical properties of the governing differential equations. 

In some theoretical treatments of shock propagation, the phenomena 

occurring are represented by an extremely simplified model, for which a 

solution can be written down without difficulty. Papers of this sort, which 

Eichelberger classified as "quasi-theoretical" in his 1963 review (1), are 

mentioned only briefly in the present work. The primary emphasis is 

given to theoretical studies that start from a full formulation of the problem, 

and then proceed through a sequence of approximations to a simpler set of 

equations whose relation to the original problem can be clearly understood. 

When solids collide at speeds on the order of several kilometers 

per second, the pressures generated reach megabar proportions. Because 

these pressures exceed the strengths of materials by many factors of ten, 

there is a regime where it is possible to neglect the effect of strength, anti 

to treat the solid as an inviscid, compressible fluid. The steps leading to 

this approximation^and the resulting set of differential equations, are reviewed 

in Section II. The entire content of this work is devoted to the solution of 

these equations under a variety of further approximations. Thus the 
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solutions described here apply only to that portion of the impact process 

where strength can be neglected. In any impact, of course, the pressures 

eventually decay, and the material strength then becomes the dominant 

factor, determining the final configuration in which the material comes to 

rest. The inviscid solutions of the present work offer no direct information 

on this final configuration. In some cases, they have been used to infer 

information about the final deformation, but a clear distinction must be made 

between what is found from the inviscid solution in its regime of validity, 

and what is inferred about the subsequent, strength-dominated response of 

the solid. 

Much of our present understanding of the propagation of strong 

shock waves in gases was provided by the methods of self-similarity. 

Perhaps the most famous example of this approach is the treatment of the 

point-source explosion problem, by von Neumann (2), Sedov (3), Taylor(4), 

and others. In seeking solutions of the impact problem, it is natural to 

turn again to the similarity method. Unfortunately, there are two features 

of the impact problem that prevent this method from enjoying the same 

degree of success that it achieved in the earlier blast-wave problems. 

The first is that the flow contains two spatial dimensions, and thus is 

described by a set of partial differential equations, even when similarity is 

assumed. The second is that the intensity of impact-generated shock waves 

is usually too small to permit a similarity assumption; flows of this type are 

characteristically non-self-similar. The full set of requirements for self¬ 

similarity is discussed in Section III. 
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One case for which self-similarity can be assumed occurs when 

the equation of state of the target is taken to be that of a perfect gas. A 

solution for this case was calculated by Walsh et. al. (5). These numerical 

results were very generously made available to the present writer by Dr. 

Walsh, and have been used to determine the full two-dimensional, self-similar 

solution. This solution, described in Section IV, provides a great deal of 

information about the two-dimensional properties of the flow field, for the self¬ 

similar case. 

The effects of nonsimilarity are considered in Section V. These 

effects can be attributed to the form of the state equation appropriate for a 

solid; thus the section begins with a review of various expressions for the 

equation of state. Following this, exact solutions are considered. It is 

shown that the "late-stage equivalence" similitude discovered by Walsh 

(5,6,7) holds for very general conditions, and has a rigorous analytical 

basis. The available details of the solution are reviewed, and several 

approximate treatments of the nonsimilar problem are discussed. 

The concluding remarks, in Section VI, contain a summary of 

the present state of our knowledge of impact-generated shock propagation, 

some comments on the application of this knowledge to crater-size pre¬ 

dictions, and a list of some of the more important problems that remain 

to be solved. 
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Many of the results appearing below are new, and are presented 

here for the first time. Specifically, the new material includes: 

1. The self-similar flowfield functions and associated 
particle paths (Section IV) 

2. The analytic solution for the region near the 
shock/free-suriace intersection point (Section IV) 

3. The derivation of the general similitude properties 
of the basic differential equations (Section V) 
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IL FORMULATION OF THE PROBLEM 

A. RESTRICTION TO AXISYMMETRIC FLOW 

The only case considered in this work is that in which the tar¬ 

get is a half-space, and the path of the projectile is normal to the original 

target surface. The projectile is assumed to have an axis of symmetry 

coincident with its path. Thus, the flow taking place after the initial contact 

is axisymmetric. This restriction is made for the purpose of simplicity 

in the mathematical treatment of the problem. In addition, it has been 

observed experimentally that the crater resulting from an oblique impact 

has the same shape as that due to a normal impact, for angles of 

obliquity up to a maximum value that depends on a number of factors(B). 

Thus the results described here may also be applicable to cases of oblique 

incidence, although the similarity of the final crater shape does not constitute 

sufficient proof that the shock-propagation histories are the same in the 

two cases. 

Furthermore, the projectile is represented as a point source 

of energy and momentum throughout most of this work. Thus the solutions 

presented can be applied to an actual impact situation only when the main 

shock has propagated to a depth many times the significant dimension of the 

projectile. 

5 



B. FLUID-MECHANICAL MODEL 

The net force acting on a small element of the target material 

is contributed to by gradients of the normal and shear stresses. The 

relative magnitudes of these two contributions can be estimated by comparing a 

typical normal stress with a typical shear stress, since the gradients of 

these quantities in any two perpendicular directions are of the same order 

of magnitude. 

The proper order for the normal stress is the pressure generated 

at the shock, which is initially on the order oi p0 Ll , and which 

decays as the shock spreads out into the target. The ultimate strength of 

the target material appears to be a suitable order of magnitude for the shear 

stress. Comparison of these two quantities for impact of typical solids at 

speeds on the order of several kilometers per second suggests that the 

material-strength effect is less than the normal-stress contributions by 

several factors of ten. Thus there is a regime in which the equations used to 

describe the target response can be taken as the familiar equations of com¬ 

pressible, inviscid-fluid flow , expressing the conservation of mass, 

momentum, and energy. 

While this approximation has been used for more than a decade, 

there has always been an awareness that it must fail at sufficiently low pressure 

(9, 10). Recent years have seen significant advances toward the determination 

>!< This approximation 
U se of this term is 
ation in many texts 

is often referred to as the "hydrodynamic" model, 
avoided in the present work because of its associ- 
with incompressible flow. 
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of the pressure level at which the strength effect becomes important, as well 

as useful methods for predicting the effect-- see, for example, Ref. 11. 

Throughout the present work, however, attention is restricted to results 

obtained in the zero-strength approximation. 

In prescribing the energy equation, energy changes arising 

from viscous dissipation and heat conduction are omitted; this is consistent 

with their neglect in the momentum equation. The transport of energy by 

radiation is also neglected. 

C. EQUATIONS OF MOTION 

A cylindrical coordinate system is chosen with its axis along 

the approach path of the projectile: 

EXPANDING SHOCK 
FRONT 
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In these coordinates, the equations of motion are: 

— + + v-Su + J. ê# = 0 
3t. dl 3tj p ^2 (2) 

3v 
2t 

+ V 
(3) 

e = F(t'/>) (5> 

The specific functional dependence appearing in the equation of state is left 

arbitrary for the moment. The use of an equation of state implies an 

assumption of thermodynamic equilibrium; thus kinetic processes such as 

condensation or phase change are excluded from consideration. 
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D. BOUNDARY CONDITIONS 

Along the shock, the Rankine-Hugoniot conditions apply. For 

a small planar element of the shock, moving at speed „ into a medium 

at rest, these conditions are 

Figure 2 SHOCK-WAVE NOTATION 

A =/U£.-£) 

(7) 

A second boundary condition is that, at the edge of the plume 

of fluid being ejected from the target, the pressure in the plume should 

equal the ambient static pressure surrounding the target (usually this 

pressure is taken to be zero). These boundary conditions are very difficult 

to apply, since the time-dependent location and shape of the shock and of 

the plume boundary cannot be specified in advance. 
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III. SIMILARITY REQUIREMENTS 

A. GENERAL CONSIDERATIONS 

In studying a problem as complex as the present one, it is 

useful to see whether there are any similitudes that might be used to 

correlate solutions for different impact situations. The purpose of this 

section is to discuss the conditions under which a similitude can be found. 

In its most general form, a similitude identifies scaling factors 

for both the dependent variables (pressure, density, particle velocity) and 

the independent ones (two spatial coordinates and the time), such that fo.- 

different impacts the scaled pressure distribution (for example) would be 

the same function of the scaled spatial coordinates, provided the same 

scaled time were chosen for both impacts. At a later value of the scaled 

time, the two scaled pressure distributions would again be identical to each 

other, although different from the distribution that existed earlier. 

A simpler similitude is sometimes found in which the scaled 

distributions are the same for all values of the scaled time; solutions of thi 

type are said to be self-similar. It is shown below that a self-similar 

solution can be found when the state equation of the target is approximated 

by that of a perfect gas. If an equation of state more realistic for a solid 

is used, the solution is not self-similar, but a more complex similitude 

can be shown to exist. 

10 



B. NORMALIZATION 

Asa first step in deriving the similitude properties of the solution 

it is useful to normalize the spatial coordinates by the distance 2So (t) 
to which the shock has propagated along the axis of symmetry: 

- , <r = -J— 

The time variable is replaced by the Mach number of the shock along the 

axis of symmetry: 

ft) = 
(10) 

Here C is the speed at which small disturbances travel into the un¬ 

disturbed medium. The dependent variables are redefined as follows: 

“ (^, ÿ ,0 = ¿so W ^ ('L0-, ^sc) 

= ^ (Xer, MS<,) (12) 

(13) 
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/>(2^,*) H5o) (14) 

e(£ ,t) = Ko“)]* ^ Hso) (15) 

In writing the functional dependences on the right-hand sides of these equations, 

the point-source assumption has been made. If this were not done, it would 

be necessary to add a separate dependence on the scale of the projectile 

L°/¡zso(t) ■ 

In terms of these variables, the equations of motion become 

<r d<r / 

dJU âSo 
d 2 So so 

d. ^ SO 

d 2 so 
4- ± 

dJU ¿so 24 
d 2 jo ^ so 

d i;,, 
d jL*. 2io 

4- (u)- r) 
<*u) 
atr 

+ .1 ÉÍ- S 
Ÿ d<r 

2 so t?uJ 

¡r¿r¿’se tjz^z 

(16) 

(17) 

(1H) 
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■2 — ~ f ~ + (-J-r)£¿¡ = 
3t f¿C 35 srJ 

(19) 

d jU. g.o Í ^ _ _£ d'f' ) 

d J**- ¿So ( 'dd+A- t^So 'P 'Sd*+- f^SO J 

The Rankine-Hugoniot conditions becon'e 

(20) 

(21) 

(22) 

C. REQUIREMENTS FOR SELF-SIMILARITY 

If the flow is to be self-similar, it must have the same nor¬ 

malized spatial distributions at all times. The conditions necessary for 

this to occur can be seen by inspection of the above equations. 

13 
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The first requirement is the point-source assumption, i. e. , 

that Lc/2sc «■) be negligible. This assumption has already been 

made. The second requirement is that the quantity d-^ 50 / . , _ 

be a constant; this is satisfied if the shock scale grows as a power of the 

time; 

= At 
A/ 

(23) 

The third, fourth and fifth sources of time dependence enter through the 

boundary conditions at the shock. The third is introduced by the function 

!2. > the flow can be self-similar only if this quantity is independent 
' SO 

of the time. Thus the shock must preserve the same shape as it grows. 

The fourth condition for self-similarity is that the pressure ahead of the 
• Z 

. The latter quantity is shock be negligible in comparison to ^ 2 

of the order of the pressure behind the shock, and is large compared with 

"b0 whenever the fluid-mechanical approximation is valid. The 

fifth possibility of time dependence enters by way of the state equation. 

As pointed out by Kynch (12) and Sedov (13), self-similar solutions are 

possible when the equation of state has the form 

e = = i f (/) (24) 

where ^ (j?) is any function of the density. When the state equation is 

of this form, when the term f“/) à ¿ is negligible, and when the 
/ o So 

shock shape is constant, it is possible to solve the third of the Rankine- 

Hugoniot conditions for the density ratio across the shock, , which 

14 



remains constant 

a/» f (/=^) - I + I 
= O 

(25) 

The equation of state of a perfect gas 

<2 - 
t 

lY-O/ 
(26) 

is of the form of Eq. (24). Thus, departures from self-similarity for a 

perfect gas arise from the counterpressure term fo A . The 
/ / ° so 

situation is reversed for shock propagation in a solid. There, the counter¬ 

pressure term is negligible, but the state equation is not of the proper 

form, except in the limit of extremely high pressures. Only the very early 

portion of an impact at extremely high speed will satisfy the self-similarity 

conditions in a solid. Thus, impact-generated shock propagation in solids 

is characteristically non-self-similar. 

If all of the conditions for self-similarity are met, then the 

functions , ft ’ P ' anc* ^ dePend only on 

the two similarity coordinates and CP : 

i. 
/ 

o 
o So 

e 
> > 

“So 

A 'f = Wl-) (27) 

So 'So 

* They also depend on any constants appearing in the state equation, 
such as g' in the perfect-gas case. 
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The theoretical existence of this similarity is of little use, however, until 

the actual dependence of -p and the other functions on and Q“ 

has been found, and until the constant fy and the exponent 

appearing in the shock trajectory, Eq. (23), ha^e been related to the 

energy and momentum of the projectile. Dimensional analysis can be used 

to construct a characteristic length and time from the quantities £ 

and P . It is convenient to include the quantities P0 and C 

in this formulation as well. The result is the following form of the power- 

law shock trajectory: 

«C 
where the scaling length is defined as 

4a/-I 

Ah!-i_ 

(28) 

(29) 

Walsh and his coworkers (5, 7) present a discussion of the 

self-similar solution from a slightly different point of view. They first 

observe that a dimensional analysis of the problem, characterized by the 

initial density , the projectile size L0 , the impact speed 

[X. , and the specific-heat ratio , shows that the solution 

must be of the form: 

X- 
i> ClZ I O ^ 

u 

a 
V 

a 
(30) 
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They then show that a simpler scaling can be found if one introduces the 

assumption of "late-stage equivalence". This assumption states that the 

solutions for two different impacts will be identical, after early transient 

differences have died out, provided the quantity iZ is the same 

for the two impacts, OÍ. being a constant. The "late" aspect of this 

statement is identical with the point-source assumption, i. e. , it simply 

requires that the shock scale be large compared with the projectile scale. 

« 
The requirement that L0¿Z be a constant is the same as the statement 

that the scaling length be the same in the two cases, where oC 

and t\j are related by 

, A/ oC - - 
!-fij 

Thus, for the perfect-gas case, late-stage equivalence is the same as 

self-similarity. 

(31) 

The functional dependences employed by Walsh et al. are 

f H 
oc 

r°a‘ 

r-> ^ ^7 ^oc 
J ul ¿L, \r £ 

/ J --- " ! - 
A ÜC uc 

I + OÍ 

fcrts/J__ , ÍL- ; ¡r ; (32) 

' r*’ 

where 

íZÍ * 
r = - , 4 = 

/ 
— o L, L, [3 3) 

17 



It will be seen in Section IV that this form of the solution is identical with 

the self-similar form described above. 

D. SIMILITUDE FOR FINITE SHOCK SPEED 

The equation of state of a solid approaches that of a perfect 

gas only at very high pressures. Thus the self-similarity described above 

can be expected to apply to solids only under the limiting condition of 

. As becomes finite, very large shock strength 
So 

the equation of state no longer approximates that of a perfect gas, and 

the flow becomes non-self-similar. (Specifically, the second, third, 

and fifth of the requirements listed above are not met. ) However, the 

only new parameter that must be considered is ^7 ; the quantity 
j JL. 
^ f U n cs U rtr ^ nrl th*» At , the shock shape, and the boundary values at the 

shock depend only on f^so ’ Thus the solution can be written as 

where the shock trajectory is of the form 

(35) 

* In addition, parameters other than appear in the equation 
of state. The similitude described here can in principle be 
used only to correlate solutions for a given material. Actually, 
the evidence described in Section V indicates that the differences 
between various materials are relatively minor, at least in 
axisymmetric flows. 
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Here the three dots indicate the presence of various constants from the 

equation of state. 

The important feature of these results is that no new scaling lengths 

enter the problem when becomes finite. The scaling length^* , which 
So vo 

originates in the self-similar limit, continues to be the appropriate similtude 

parameter throughout the non-self-similar part of the flow. In particular, 

the parameter (or equivalently oO in the formula for depends only on the 

high-pressure limit of the state equation. 

The similitude expressed in Eqs. (34) and (35) was first observed 

by Walsh et. al. (6), who called it "late-stage equivalence". These authors 

pointed out that dimensional analysis would yield the following form of the 

solution: 

(36) 

OÍ. 

They demonstrated numerically that in two impacts for which L. LZ is 

the same (whereof is the same constant that produces self-similarity in the 

perfect-gas limit) the solution is the same function of time in both cases. 

The solution common to both is different at different times, of course, since 

this How is not self-similar. They went on to show that the existence of this 

similitude implies that the solution can be rewritten in the form: 
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The connection between this correlation and that of Eqs. (34) and (35) is 

discussed in Section V. 

Rather than use the same term (late stage equivalence) for the 

self-similar and the non-self-similar portions of the flow, it seems preferable 

to speak of both of these equivalences as "point-source similitude", noting 

that the similitude has self-similar behavior in the limit ^ so —* 

This terminology is adopted throughout the present work. 

It should be noted that the point-source assumption is not related 

to any assumptions made regarding the equation of state. All the solutions 

discussed in the present work employ the point-source model, but different 

forms of the equation of state are used in various places. 

20 
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IV. THE PERFECT-GAS CASE 

The purpose of this section is to present a complete picture of 

the two-dimensional character of the flow, in a case where self-similarity 

applies. Self-similarity is possible with any equation of state of the form 

indicated in Eq. (24). The reason for devoting special attention to the 

perfect-gas case is that it approximates the high-pressure form of the state 

equation for many solids. 

BASIC EQUATIONS A. 

Under the conditions of self-similarity, the shock scale grows 

as a power of the time; thus 

dUU gso 
¿¿.¿vu 

/-a7 

(38) 

If this is used in Eqs. (16)-(19), and if the right-hand sides are set equal to 

zero, the result is 

<T 
(39) 

(40) 

(41) 
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It can ue shown that these equations are either elliptic or hyperbolic in 

character, depending on whether 

+ (^-rf-J $ c (43) 

The reason why a mixed mathematical character arises can be seen by 

following the path of a small-disturbance front, originating at the point A in 

Fig. 3a. The front of this wavelet travels at a velocity equal to the vector 

sum of the local sound speed and particle velocity, and is located, at a 

succession of later instants, as follows: 

This figure is a schematic illustration of what might happen if the disturbance 

originates at a point where the particle speed is locally less than the sound 

speed. In this case, the disturbance can overtake the shock wave, where it 

is reflected; it is eventually felt at all points in the region enclosed by the 

shock. li each of the instants in the figure above is now reduced to the same 

scale, and if the solution in these scaled coordinates is to be the same for 

each instant, then clearly the governing differential equations must have the 
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property that the solution at point A affects the solution at all the points 

traversed by the disturbance. The interdependence of the points in part of 

the flow field is manifested in the partially elliptic character of Eqs. (39)-(42). 

If the disturbance originates at the point B (see Fig. 3b) where 

the sound speed is less than the particle speed, then the disturbance has only 

a finite zone of influence: 

Figure 3b PATH OF DISTURBANCE FRONT,INITIALLY 

When the transformation of these sketches to the self-similar plane is made, 

the finite zone-of-dependence property is assured by the partially hyperbolic 

nature of the solution. 

Finally, because disturbances made in the elliptic region are 

ultimately transmitted to the hyperbolic region, it follows that the solutions 

in the two regions must be matched along their common boundary. It will 

be seen below that the matching can be achieved by the proper choice of 

the parameter^'. 

The boundary conditions at the shock are 
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The two components and u)t are found from ¢-,/4. by taking it s 

components in the ^ and (f directions: 

so 
(45) 

The determination of these components cannot be carried out until the shock 

shape is specified. 

At the time of the present writing, no solutions have been calculated 

directly from Eqs, (39)-(42), because of their mixed hyperbolic-elliptic 

nature, and also because of the unknown value of and the unknown location 

of the shock surface and the plume boundary. A further problem arises when 

an attempt is made to satisfy the conservation of the total energy and momentum. 

Because of its crucial importance, this subject is discussed fully in the 

paragraphs below. 

B. CONSERVATION OF ENERGY AND MOMENTUM 

1. The Axisymmetric Case 

The integrals expressing the total energy and momentum of the 

system are 

E (46) 

¿soi*-) iuL 

(47) 
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The upper limit for the integration on is the shock surface, for £ ÏO 

and the plume boundary, for 2 40 

-- 2 

Figure 4 INTEGRATION LIMITS 

The choice of the lower limit 2 =-£D requires some explanation. 

In an actual impact with a projectile of nonzero size, the particles lying 

originally on the free surface would be located at a finite value of 2 i for any 

finite time after the impact. An upper limit to their distance from the free 

surface can be calculated by assuming that, at ¿ = 0 , they immediately 

begin moving to the left at the full escape speed, which for a perfect gas 

has the value 

escape )f- i { J 

Here f, and are the pressure and density generated at the impact point. 

This estimate represents an upper limit to their distance from the free 

surface since these particles are actually carried below the free surface at 

first; only later do they reverse their velocity, and asymptotically approach the 
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escape speed in the minus- j? direction. If the point-source idealization 

is now made, then the projectile, of vanishing size, must carry a nonzero 

amount of energy and momentum. To do this, its velocity must be infinite; 

thus the pressure generated at impact, as well as the speed of the escape 

front, will also be infinite. For this reason, the lower limit in the integrals 

above is set at it -- CO , 

If the self-similar functions are now introduced into Eqs. (46) and 

(47), the result is 

/° So so 

i , ; , 
i 1 ' 

■ OD O ^ 

(y-0^ z 
Z ( cJ'1) (49) 

octt) 

P= .Zr/>0 iSo ¿s3o J j cpÿrdrdl; (50) 

- 00 Q 

It is clear that a single value of cannot render both of these expressions 

independent of time. Constancy of energy would require /\/= , while 

constant momentum requires /\/= '/^ . The solution of this dilemma was 

provided, for the one-dimensional case, by Zeldovich (14). It was 

subsequently extended to the axisymmetric problem by Rayzer (15) and by 

the present writer (16). Zeldovich's solution is given below. 

2. The One-Dimensional Case 

If the projectile is assumed to be a slab of infinite length in 

- direction, or if the disturbance is caused by an explosive slab of 
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infinite length in the ¿^-direction, the response of the target can be assumed 

to be a function only of 2 and t • The solution of this problem has been 

discussed in several papers (14, 16-22). An excellent review is given by 

Miréis (23). The features important for the present case are repeated 

below. 

Í/ 

The equations of motion are Eqs. (1), (2), and (4), with the 

■ dérivâtes omitted, and the term absent from the continuity equation. 

The self-similar forms of these equations are found by dropping their right- 

hand sides, to yield: 

continuity: ' + 'P T>' = O (51) 

He 

r ' 

momentum: — 1 cp +(<£“£) 4* ‘ H" _- = Q 
N \p 

energy: f + ( <t> ~ ~ ( ~ l) + ' = O 

re the prime denotes d/A , and the boundary conditions are 

d,ii)= ; ¢(0 = f(0 =-^- 
T Í-I J 2^1 

(52) 

(53) 

(54) 

In both the impact and explosive-slab cases, the target acquires a nonzero 

energy and momentum. For the impact case, the magnitudes of these 

quantities can be related to the energy and momentum of the projectile. 

In the explosive case, the energy and momentum acquired by the target depend 

on particulars of the loading history at the surface. 
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The integrals expressing the conservation of the total energy 

and momentum (per unit area in the plane of the target surface) are 

. ¿ 
£ = /) ¿ 
^ / o so (55) 

P = A o ^50 '50 

-oo 

(56) 

The lower limits in these integrals have been taken at minus infinity, since 

the projectile or explosive slab is considered to be of vanishing thickness. 

Note that the one-dimensional problem presents the same dilemma regarding 

the choice of A/ : the energy integral requires , while the momentum 

integral requires /\/= //^ . 

However, there is a much more important consideration affecting 

the choice of /\J , namely, that Eqs, (51)-(53) have an acceptable solution 

only for one value of ^/ . The reason for this can be seen by solving them 

for the derivatives: 

i-bJ jr - s) 

t-*J (4>-s) - 2. f 

" (4>-K) - **/+] 

i-*j f ft - ¿i ( 4 - $) 

" 4> - 

(57) 

(58) 

(59) 

28 



These equations become singular at the point where changes 

sign. This point divides the zones in the similarity plane in which small 

disturbances can or cannot be felt all the way to the shock wave. For a 

given value of / , Eqs. (57)-(59) have nonsingular solutions only for a 

single value of fsj . For that value, the numerators of these equations are 

also zero at the singular point; resolution of the indeterminate form yields 

the slope of the solution that passes smoothly through the singularity. Table 

I lists the values of A/Cífjthat lead to regular solutions. The distributions of 

density, pressure, and velocity that are obtained are shown in Fig. 5 for 

the case/=/.4, which has the closed-form solution (17, 18) 

f = *-1^-') > ï = Ï(*-4ï)3/î ,60, 

There can be no question that the nonsingular solutions are the 

only acceptable ones. But if^/is chosen s > as to achieve a smooth crossing 

of the singularity, it is then impossible to satisfy either of Eqs. (55) and (56). 

The problem involved in the choice of a/ is not created simply by the fact that 

there is a second quantity (the momentum) to be conserved. Even if the total 

momentum were to be zero, the constant-energy value d= ^/3 still would not 

produce a physically acceptable solution. 

A resolution of this difficulty was proposed by Zeldovich (14); 

it is also discussed in the recent text by Zeldovich and Rayzer (¿4). Their 

suggestion is that a small portion of the mass be omitted in calculating the 

total energy and momentum. This small mass initially lies at the free 

surface and is strongly compressed during the initial stages of the impact or 
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TABLE I 

si (i) FOR ONE-DIMENSIONAL BLAST WAVES 

A/ Source 

1 

1.1 

1.4 

5/3 

2.8 

œ 

0.5 

0.56888 

0.6 

0.61073 

0.626704 

0.6416 

Ref. 23 

1 1 

1 1 

1 1 

1 1 

1 1 

1.001 

i. i 

1.2 

1 .3 

1.4 

1.8 

2.0 

2.5 

3.0 

4.0 

5.0 

7.0 

10.0 

100.0 

1000.0 

0.5106 

0.5683 

0.5843 

0.5935 

0.6000 

0.6143 

0.6182 

0.6244 

0.6279 

0.6321 

0.6341 

0.6365 

0.6385 

0.6412 

0.6416 

Ref. 16 

1 1 

1 1 

1 1 

1 1 

1 1 

! 1 

1 f 

! 1 

f 1 

1 1 

I 1 

1 f 

1 1 

f 1 

30 

ÉiMiNiMMiaiaiiliMIilMIBIIÉIMIMillllIMHIÉOlllNlllimiHIIIMIIImi 



Figure 5 SELF-SIMILAR, PLANE-WAVE SOLUTION (PERFECT GAS, 
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explosion. It acquires a certain entropy during this compression, which it 

retains thereafter, since the flow is particle-isentropic. However, the 

entropy acquired during the initial stages is in general different from the 

entropy that would be assigned by the self-similar solution. That solution 

depends only on conditions at the shock and on the properties of the self¬ 

similar differential equations; it contains no information about the details of 

how the shock was initiated. The small amount of mass processed during the 

early phase always bears the imprint of this phase, and is never correctly 

described by the self-similar solution. Zeldovich's argument is that, in 

seeking a self-similar solution, only that mass should be included whose 

motion is expected to be properly described by such a solution. 

An analogous interpretation has been developed in recent years 

for the problem of hypersonic flow over a blunted slender body (see, for 

example, Refs. ¿3, ¿5, and 26)*. Far downstream of the nose, the flow near 

the shock can be self-similar if the coordinates, transverse to the freestream 

direction, of the body and the shock grow as a power of the streamwise 

coordinate, 1 he layers of fluid near the body, however, are those which 

have passed through the blunt part of the bow shock; there they acquired an 

entropy distribution that reflects the details of the shock shape near the nose. 

This distribution is in general different from that given by the self-similar 

solution. 

To correctly account for the effect of the entropy layer, 

* The writer is very grateful to his colleague, Dr. T. R. Sundaram, for 
calling his attention to this analogy, and for many interesting discussions 
of its application to the impact problem. 
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separate analyses must be carried out for the high-entropy region and the 

self-similar region, and the two analyses must then be joined, for example 

by the method of matched asymptotic expansions (27). 

If an analysis of this type were done for the present problem, 

it would be possible to derive a formula for the shock trajectory which at 

a/ 
large time would be of the form 2So= f\t . The exponent hj would be 

that given by the nonsingular solution of the self-similar equations, while 

the amplitude f\ would reflect the details of the shock-initiation process-- 

i. e. , f\ would depend on the amount of mass neglected. Zeldovich outlined 

this approach in his original paper, recommending that the amplitude f\ be 

determined by matching the self-similar solution to a numerical solution of 

the complete, nonsimilar, partial differential equations at some intermediate 

time. Since the appearance of Zeldovich's paper, the method of matched 

asymptotic expansions has undergone considerable development, and could now 

be used to derive an explicit formula for the amplitude coefficient in terms 

of the loading history at the target surface. To the writer's knowledge, the 

full details of this approach have not yet been carried out. 

Zeldovich's result can be expressed in the form (see Appendix 1) 

(61) 

where the indeterminate length scale has been expressed in terms of the 

neglected mass . The present writer observed (16) that a determinate 

result could be found by making a slight modification to Zeldovich's analysis. 

This result was presented in Ref. 16 with the erroneous indication that it was 
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an exact solution of the problem, equivalent to what would be derived by the 

method of matched asymptotic expansions. Further study has made it clear 

that such is not the case; however, the results derived in this manner have 

been found to be a very accurate and simple approximation, and are worthy 

of mention. 

If the length scale is made determinate in the manner indicated 

above, the solution for the slab-impact case has the form (see Appendix 1 

for details) 

/° (62) 

This can be rewritten in terms of a scaling length as: 

For the constant £7 (Y) has the value (126 

The accuracy of this formula can be estimated by comparing 

its predictions with the numerical results of Zhukov and Kazhdan (21). These 

authors calculated the response of a half-space of gas, with V »^ , to a 

square-wave pressure loading on the surface. At late time, their solution 
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displayed the same behavior as that of the self-similar solution, and they 

determined the amplitude coefficient from their numerical results. In terms 

of the peak pressure at the shock, Zhukov and Kazhdan designate this 

amplitude by the symbol ß : 
1-rJ 

'P - It r 
¢1 V* 

t: _ / \ 

V Po , 
a/ 

(65) 

Here the symbols h and T~ are parameters that characterize the 
'wia-y 

loading. In the general case, the free surface is considered to be subjected 

at t-G to a sharply rising pressure pulse -4 of peak amplitude P and 

duration T“ 

Figure 6 SURFACE-LOADING FUNCTION 

35 



The momentum and energy imparted to the target during this loading are 

*= W/r_HVr_) 
(67) 

d = £>r 
y^ax a Vj. 

where denotes the velocity of the loaded surface. In particular, for a 

Use of these values in Eq. (62) leads 

to the prediction that ß = . The number actually found by Zhukov 

and Kazhdan is 1.8224.* Thus the approximation presented above is in error 

by about ten percent in pressure, or about five percent in shock location. 

Other evidence for the accuracy of this solution can be found in 

the numerical calculations of Dienes (22) and of Chou and Burns (28). The 

scale of the shock trajectory in both of these calculations is predicted with 

great accuracy by Eq. (62). ** 

Dienes' calculations were done for the case of zero initial 

pressure in the target, an initial density of 1.0 gm/cm^, and for a slab whose 

-The amplitude coefficient ß depends only on the shape of the loading function, 
as expressed in the constants <X and b . Thus it would have the same 
constant value lor a slab of any thickness and velocity, and a different 
constant value for a square-wave loading of any magnitude. 

"The agreement, in the case of Dienes' calculations, is partially obscured 
by the fact that he made a slight shift in the origin of the time scale of the 
theoretical solution, so as to force the theoretical and numerical shock 
locations to coincide at 2. 0 microseconds. The agreement is still very 
good, even if no such shift is introduced. 
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thickness-density product was 1.2 gm/cm^, moving initially at 10 cm/sec. 

Not only is the shock location accurately given by Eq. (62), but also the 

distributions of pressure, density, and particle velocity are found to be 

matched by Eq. (60). 

The calculations presented by Chou ami Burns were done by the 

method oi characteristics, for a series of six impact conditions. The case 

singled out for special attention here used a slab thickness of 3. 319 cm, 

traveling initially at 9.19 1 km/sec. The initial pressure in the target was 

taken to be one atmosphere, and so the solution at very late time becomes 

non-self-similar because of the effect of counterpressure. There is a time 

interval, however, before the onset of the nonsimilar effect, and sufficiently 

long after the termination of the early impact phase, during which Chou and 

Burns' calculations are closely matched by Eq, (62). The agreement is 

shown in Fig. 7, where it can be seen that the error in shock location is 

less than five percent. 

Dienes (22) observed that the approximate solution discussed above 

could also be derived by assuming that the self-similar solution matches 

neither £ nor (P individually, but that it produces a flow having the same 

value of £P as did the impacting slab, where ^ is defined as 

¿ -3^ 

I 
(68) 

He too compared this solution with his own numerical results, but, like the 

present writer, was unaware of the fact that this solution would be shifted 

slightly in amplitude if used in the correct sense outlined by Zeldovich. 
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To summarizr this discussion of energy and momentum conservation, 

it should be repeated that at a large time after the loading of the front surface 

of a half-space of gas, and before the onset of the effect of counterpressure, 

the flowfield is correctly described by the nonsingular, self-similar solution, 

except for those portions that were set in motion during the loading process 

and shortly afterwards. The power-law dependence of the solution, and its 

scaling with respect to the parametersy9 , £ , and (P is that given by Eq. (6¾). 

The amplitude coefficient appearing in the solution depends on'/ and also on the 

details of the time history of the loading process. 

The considerations given above for one dimension can be extended 

to the case of two spatial dimensions. The axisymmetric impact case has 

been considered by the present writer (16), while Rayzer (15) has treated both 

impacts and explosions of either a point source or a line source. In these 

cases also, the solution at late time has a self-similar, power-law dependence 

throughout most of the flowfield. The criterion for selecting the exponent 

is that it be the value which allows a smooth transition between the hyperbolic 

and elliptic regions. The scaling with respect to the total energy and momentum, 

and the initial density are given below. Simultaneous conservation of energy and 

momentum is achieved by neglecting the small portion of the mass alfected 

during the initiation of the flow (or, more precisely, by finding the correct 

solution for this part of the flow and by then joining it to the self-similar 

part of the flow by the matched-asymptotic-expansion procedure). The 

amplitude coefficient in the expression for the shock trajectory depends on 

the specific heat ratio / and also on the details of the loading history. 
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c. THE AXISYMMETRIG SOLUTION FOR if = f. S’ 

The direct solution of the self-similarity equations for the 

axisymmetric case is extremely difficult, because of the mixed hyperbolic- 

elliptic nature of the problem, the unknown value of h/ , and the unknown 

shape of the shock and of the plume boundary. At the time of this writing, 

no direct solution of these equations has been reported. 

However, the solution of the original time-dependent 

equations of motion has been reported by Walsh et aL (5^7) for the case of 

a right-circular cylinder striking a half space of perfect gas, with , 

zero initial pressure, and density As noted above, these authors 

observed the development of the self-similar solution, and iadicated a 

functional form which the solution could take. The actual distributions 

of the self-similar functions were not presented, however. Ur. Walsh 

made available to the present writer the complete numerical output for 

this problem; the self-similar distributions have been found, and are 

described below. 

1. Shock Shape 

Walsh's calculations were done with a computer code (29) that 

was an improvement over the particle-in-cell method, in that the mass 

distribution was represented in a continuous manner, rather than by a number 

of discrete particles. The projectile was taken to be 36 cm in both length and 

diameter, travelling initially at 106 cm/sec. After the flow becomes self¬ 

similar, any instant can be chosen as the one to be used for evaluating the 

similarity functions. The one chosen here was the largest time for which 
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results were printed (r. 40 xio'^sec). At this point in the calculation, the cell 

size was 8 cm in the axial and radial directions. To locate the shock, the 

pressure was graphed as a function of distance, assuming that the pressure in 

each cell could be assigned at the midpoint of that cell. Fig. 8 shows the 

result for the row of cells lying nearest to the symmetry axis. It is characteristic 

of numerical calculations of this type that the shock is sprí ad out over several 

cells. The location of the shock was guessed, usually between the second and 

third points on the front portion of the pressure pulse. The shock-location 

points, estimated from curves of this type ( versus ¿ , for ^ < i ßo c* 

and ^ VS. , íor ¿ Í 234- .were then graphed, and a curve was faired 

through these points. This faired curve could be closely approximated by 

the ellipse: 

Figure 9 NOTATION USED IN SHOCK-SHAPE FORMULA 

with ?So= 33.1 ff,) t 2, - ^i) c»* t and ^0= (2.4-/ . In terms of the simi¬ 

larity coordinates, this becomes 
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Figure 8 
axÍsSofEsymmetryUT,ON IN THE R0W 0F cells NEAREST T0 THE 
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(70) 

\v ht‘ re 

= 0.1503 (71) 

It is possible to find the an^le between the shock and the free 

surface at the point where they meet, independently of the numerical 

results. The basis for this solution was yiven in a number of Russian 

papers. (30-35) which are reviewed by Collins (36) and by Collins and Holt (3<). 

The reasoning is that, if the solution is to be self-similar, then the shock 

must meet the free surface at an angle such that the wsve system generated 

behind the shock does not cause any change in the shock shape. This condition 

is satisfied when the speed of the rarefaction front behind the shock just 

matches the velocity of the point of intersection of the shock and the free surface, 

a condition which is referred to as "critical reflection". The expansion 

wavelet emanating at time from a given point on the free surface would be 

1 oc.ated * Lt later, as a circle whose radius has grown at the sound speed, 

and whose center has bien carried along at the particle speed behind the shock. 

Thus, the construction is (38) 
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SHOCK AND FREE SURFACE 

This leads to the formula 

For an infinite-strength shock in a perfect gas, this becomes 

(72) 

(73) 

When i-l.f , . The value that is found from Eq. (70) is 63.2°. 

The difference between these numbers is well within the accuracy inherent in 

the process of fairing the numerical data. * 

* The writer did not become aware of the formula for until after Eq. (70) 
had been established. It would be possible to adjust the constants so as to 
match Eq. (73) exactly, but this has not been done here. 
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T ht; papers by Collins (36), and Collins and Holt (37) contain an 

error in the derivation of t lie formula for • Instead of adding the velocity 

components ^ and CL) \ octorially, as in the figure above, these authors 

equate the sum of the absolute values of these components to the speed of the 

s hoch / free-surface intersection point (see Eq. (3,20) of Rei. 3b and o7). 

Their formula for the shock angle, expressed in the present notation, is: 

sifl Ô'i — 
! 4 I 

^v.OI.C/n/5 -HokT 

0 
For /= r.c , this formula gives^ =.f0.5* 

Walsh's data. 

_*>1__ 

¿ + fäUt-T) 
which differs considerably from 

(74) 

The shock velocity distribution corresponding to Eq. (69) was 

found by the usual method (39)I Eq- (69) was written in the form 

=o 

The expression for 
J C / 

^A~r/ jj. can be written as 
' j.t- 

(75) 

where the components of the shock velocity are 

(76) 

it +■ 'i- 
A 

(77) 

Aloi.g lines piTpendicula r t o the shock, the shock-velocity components have 

the ratio 

45 



3%2 

Thus Eqs. (76) and (78) can be rewritten as 

and 

ai7aí 

3F/W 

(78) 

(79) 

In terms of the similarity coordinates, then, the shock-velocity distribution 

is 

(HI) 

(8¿) 
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Using these velocities, the similarity functions can be evaluated at the 

shock, from 

^ = f = ±_IK 
f-l ’ 1 íTh ¿ io J ’*'= yt-l 

—; . • 
¿ ’ i'fl 

(83) 

so JO 

Elsewhere in the flow field, the similarity functions were found 

from Eqs. (11)-(14), using as normalizing quantities: 

= *1.2. C K i ^ 
‘-O = -f. 34 Mbutr 

The value of wns found from the relation 
■JO 

• A/ 
"" , So 4 so (84) 

with tJ — c. S'] T - C. 4-Cj kio ^ stc. -321 , 
j ^ ¿o 

These numbers can also be used to evaluate the constant 

apjjea ring in the shock trajectory. Analogously to Eq. (62), the formula for 

the axisymmetric case is 

so 

z \ Vi 

\ /* 

1 
6.37 

p5/ l.4n'/7 ! 

r/P t I - 
//° / J 

(85) 

From the above data, p//.“)is found tobe 1.6415. As in the plane-wave 

case;, this amplitude coefficient also depends on the details of the initiation 

process. The figure given above applies for a right-circular cylinder of 

length-to-diameter ratio unity. The calculations reported by Walsh et al (5,7) 

indicate that the coefficient would be essentially the same for a sphere, or for 
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a right-circular cylinder of length-to-diameter ratio between the limits 1/3 

and 3. 

where 

Equation (85) can be rewritten in terms of a scaling length 

/ 

3 (/+A) 

; 
/ 

(86) 

(87) 

2. The Similarity Functions 

Contour plots, showing the distributions 

the 'S.CT plane were prepared from the numerical data 

shown in Figs. 11- 14. 

of and u) in 

. These results are 

The density contours show a resemblance to what would be found 

for a spherically symmetric blast wave (2-4). The density falls very rapidly 

with distance normal to the shock, but it changes slowly with angular position. 

The constant-pressure contours show considerably greater vari¬ 

ation with angular position. They also display the feature, in common with the 

spherically symmetric explosion problem, that the pressure drops rapidly near 

the shock but quickly levels off to a relatively constant value. 

The two velocity components display a linear variation for £ 

greater than about 0.6; the distributions become more complicated at lower 
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Figure II CONTOURS OF CONSTANT DENSITY RATIO. = /o/yOQ 

1.5 
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values of £ , with the appearance of a region where the radial component is 

directed toward the axis. 

The numerical method produces a nonzero value for all of the 

dependent variables along the free surface, outside the target. It will be seen 

below that the solution i ear the shock/free-surface intersection should be of 

the centered-wave type, and that the plume boundary, along which the pressure 

ai d density fall to zero, should not coincide with the free surface for /. fT. 

The centered-wave nature of the solution is partially masked by the effect of 

the nonzero grid size. 

T he numerical result for the boundary between the elliptic and 

hyperbolic regions is shown in Fig. 12. This boundary should intersect the 

shock/free-surface juncture. Its failure to do so is another demonstration 

that the numerical method loses some of the details of the centered-w.ave 

flow structure in this region. 

It must be emphasized that a considerable amount of fairing and 

smoothing has gone into this reduction of Walsh's data, and that future research 

will undoubtedly lead to some adjustments in the locations of these contours. It 

is not possible to estimate their accuracy from the da t on hand. 

3. Particle Paths 

For the self-similar inviscid flow considered here, it is possible 

to display the path taken by any particle after it is processed by the shock. 

This is done by expressing the fact that the entropy of the particle remains con¬ 

stant, and equal to the value it acquired at tlie shock.* Since the entropy depends 

:|T1 is assumed that there are no shock waves other than the main one. 
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only on /• this becomes 

' i/o* = f'/o* 
"Z/ 'ft (88) 

where the subscript denotes conditions immediately after passage through 

the shock. In terms of the similarity functions, the relation is 

Sol 

soa 

(89) 

Here ¿^^denotes the shock speed at the present instant, when the particle 

being considered has the dimensionless pressure and density -p and ^ 

(without subscripts), and refers to the earlier time when the particle 

in question was processed by the shock. This equation can be rewritten as 

Vi 

i 

/m)' J (90) 

£ at Along the axis of symmetry, this relation alone can be used to find 

each value of £ , since the axis is also a particle path. At points off the 

axis of symmetry, the particle path must be found explicitly. In a time 

interval dt, the position of the particle changes by aùj = irdt and dt¿ =udt, 

in terms of the similarity functions, these become 

^ = rdzSo + ¿so dr = o) i%oJLt ^ J d 
’SO 

(91) 

= T ^2SC + 2So HSo = 

Thus displacements in the similarity plane take place at a rate proportional to 

the pseudovelocity components oû - T a nd f : 
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cLt - ( J - t) j- A«- 2So ^ (¢-^) ¿ ^2 (92) 

and the particle paths are the family of lines satisfying 

¿I_ £ 
d: t-x; 

(93) 

Solutions of this equation wert; found by the method of isoclines, and are shown 

as the dashed lines in Fig. 15. Contours of constant are shown as solid 

lines. Table II lists the conditions at the points where the particles enter the 

s hock. 

TABLE II 

INITIAL CONDITIONS FOR PARTICLE PATHS 

Path No . i ? 
La 3 4 5 6 7 8 9 

1.0 0.984 0.930 0.832 0.709 0.567 0.418 0.245 0.040 

<rs 0 0.160 0.330 0.488 0.612 0.697 0.742 0.751 0.700 

Several interesting features can be observed in Fig. 15. The first 

is the time history of the path of a particle which lies on the axis of symmetry, 

at a distance 1—^ below the free surface, before being shocked at r 

This particle follows the shock with decreasing speed, until = Z.4.5"at which 

time its velocity changes sign. This occurs (see Fig. 13) at - 0. 5H5; 

thus the maximum depth to which this partick' travels is 

£ ►via.* 

I 
*- I 

«via.* 2,,(0 
u \ 

C‘ ¿7 
= O. ÏS5- ( ¿4.5) =/.7/ 
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Thereafter the particle moves toward the free surface, crossing it at -125 

For comparison, the exact solution of the one-dimensional problem for ^=1. 4 

shows that the maximum penetration of 2. 60 i_ . occurs at /t =15. 6, and that 

the particle crosses the original free surface when =55.9. 

Next, it is of interest to follow the motion of a layer of particles, 

all of which lie initially in a plane a distance Z_ j below the free surface. 

Let ¿i denote the instant when the center of the shock arrives at £ - L • 

(For a chosen value of L | the quantity £| can be related to the mass and 

velocity of the projectile for any specific case by using Eq. (85)). Somewhat 

later, the point on the shock at which particle path number<í.begins (i. e. , 

^ = 0. 984, 0“= 0. 160) will reach the depth , i. e. , the shock scale at that 

instant will be 

ft*) / 

/-, 0.984 
= /. 0/8 

Thus the y-coordinate of this point will be 

L, L, 0.984 

The time at which this particle is shocked is 

r -j. /a. \ 'i 2 ! 4- \ 1 4-.1 l/j< 37 

-(/■ 0/8) = f. 049 
2 sc A = 

^ ^SO (O ) 

2s0 tts) 

) 
The location of this particle at any subsequent time can now be found. For 

/ ¿sJ*-) t Vo.n 
instance, if a later time £ is chosen such that -= 5 (i. e. , = , . 7 • 

then the time after shock crossing for this particle would be 

— - __77 

t, is/x 1.049 
- 73. 
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The location of this particle can then be found, from Fig. 15, as £ = 0. 25, 

CT = 0. 08, which gives ?/ =1.25,^=0.40. 
*■' L\ 

Calculations of this type were carried out for all nine particle 

paths, and for times such that was equal to 2, 3, 4, and 5 (the 

corresponding times are ¿/j. = 6.5, 19.5, 42.2, and 77). The results are 

shown in Fig. 16. The layer of particles is carried down into the target 

initially. Later on, particles which are sufficiently far from the axis begin 

to acquire a significant radial component, with those at very large values of 

being carried toward the free surface by the shock itself. At this 

later time, the particles which originally lay near the axis have reversed 

their downward motion and are traveling toward the free surface. 

This motion bears a resemblance to the type of deformation 

observed by Frasier and Karpov (40) in a target composed of alternate light and 

dark layers of wax. At some time before the motion was brought to rest by 

the strength effects, the particles near the axis were carried downward, while 

those away from the axis were sheared into a wave-like pattern. The present 

results display, at least qualitatively, the same sort of behavior, although they 

obviously have no quantitative relation to the wax experiments (which involve 

both nonsimilarity and strength effects). However, it is interesting to note that 

an inviscid treatment contains a mechanism for generating the type of deformation 

observed. The question of how this pattern is affected, and ultimately arrested, 

by the effects of nonsimilarity and of material strength remains a subject for 

further study. 
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Figure 16a POSITIONS, AT t=tf (Z5o=/.f) 

OF PARTICLES IN THE PLANE Z= Lf 
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Fisure ,6b íSílirj'¿Vt hl¿ Mlf2L'] 0f PARTICLES LÍMTEB 
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Figure I6c POSITIONS, AT t = 19.51, (?_ = 3 Lf) OF PARTICLES LOCATED 
INITIALLY IN THE PLANE 2 = L° 
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Fisuro I6d POSITIONS, AT £ = 42.2£, (2„= »£,) OF PARTICLES LOCATED 
INITIALLY IN THE PLANE 2 = L. 
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Figure 16e POSITIONS. AT ¿-= lit, ( * = SL.) OF PARTICLES LOCATED 
INITIALLY IN THE PLANE Z = L, 
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4. Solution Near the Shock/Free-Surface Intersection 

It is possible to derive an exact solution for the properties of the 

flow in the vicinity of the point where the shock meets the free surface. The 

derivation below follows that given in Section 108 of Courant and Friedrichs (41). 

a. Differential Equations 

The similarity equations are expressed in a coordinate system 

whose origin is located at the shock/free-surface intersection: 

X -= J. SW /*> 

l T = CT -t- 

(95) 

Figure 17 COORDINATE SYSTEM NEAR THE SHOCK/FREE-SURFACE INTERSECTION 

All of the dependent variables are expanded as a series in ; for example: 

If these expansions are now substituted into the full similarity equations (Eqs. 
.-/ 

(39)-(42))the leading terms (coefficients of j¿ ) are found to be (a prime 

Continuity: 

(97) 
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Axial 
Momentum: 

£ ' 

[ 4' ¿¿’S t - [J - T ^ ^ CÛS ß - C 
I ÍJ) ¡ v te> < / ! ) \o) Kp ' 

' (o) 

Radial 
Momentum: 

r 
l 

f. Co) 

( o) 

O 

Ene rqy: 

^ ^ ( o) 

^to) 

1 
O 

(98) 

(99) 

(100) 

Since these equations are homogeneous in the derivatives, they will have a 

nontrivial solution only if the determinant of the coefficients vanishes. This 

condition is 

(101) 

N 
r ,a 

a/ 
vO) 

(O) - 6 

w he re 

/7 = 
<3> 

cos ,-: - í ¿J " 'T ) 5nd 
\o) / ' 1 / (102) 

I I.is notation is prompted by the fact that the quantity on the right-hand side 

of Eq. (102) is just the /.ero^1 - order component, normal to a constant- 

ß line, of the vector whose components are and u>- <T (T is the tangential 

component): 
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(cJ-v) cosß 
(103) 

To make the determinant of the coefficients zero, the choice is made 

K" f..) 
A/1 = 

(O) ^ (104) 

(O') 

This expression is the counterpart, for the present problem, of the usual 

Prandtl-Meyer relation, which states that the velocity component normal to 

the rays is sonic (42). 

Since fJ is in general not zero, the energy equation can be written as 

= o (105) 

whose solution is the isentropic relation 

-f - Codât 'Z' 
<«>> (o) (106) 
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The continuity equation can be written 

^(O) / 

/ r, ( o) 

-»* i a/' + r \ -o 
(o) (o)y 

(107) 

The quantity ■V, appearing here is evaluated from Eqs. (104) and (106), 

/ Tco) 
giving 

ÍO) a/ <o) 

)C-i 
(108) 

(O) 

Thus the continuity equation becomes 

< = 

Y-[ 

tVi u) (109) 

A second relation betw< en a/ x and T" can be derived by adding the axial 
ko) 

momentum equation, multiplied by J, to the radial momentum equation, 

multiplied by co% I ; the result is 

T ' = 
(110) 

This is just a statement of the irrolationality condition, i. e. , 

cu.fl 
A 

= =J l ï So 
“il,0051 + ] * c(C) (111) 

Equations (109) and (110) can now be combined to give 

r" + 
(O) 

hi 

¿■H 
T ~ o 

(O) 
(112) 
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Thus 

T») = e. / fc'- > / r'-i 
sm >6 + ß cos /- /S 

./ ' i J V4.. / (113) 

^ ' - ÍOÍ 
r-i 
ÿ+l 

sm 
/ (114) 

b. Boundary Conditions 

In order to determine £3 and ß , boundary conditions on and 

~V must be assigned at some value of ß . Immediately behind the shock^where 

ß =^s and v'here the component of the shock velocity along the surface is 

rr ¿ , the dependent variables have the values (see Eq. (83)) 
So 

f = 
(o) 

*+ I 
/-1 

/+1 
(r, s,y%) = — 

(115) 

(116) 

<p = 
(o) 

s,« a cos/, =-•--/■— 
^+i / 5 ^ 

£l! 

r / /•*■< (117) 

¿J = 
/+. 

a 
—— s.n o - JL 

r* / (118) 

The quantities ando) remain constant at these values, for the region 

between the shock and the head of the expansion wave, i. e. , for ^ ^^ ’ 

Thus, in this region, a/ and T* vary with A according to 
fu) <o) / 

/V = r, 
(o> * 

-r = e 
(0) I +(y - 

COS á 

(119) 

(120) 
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The value ^ can be found, as the tangent to the rarefaction-wave circle 

in Fig. 10 

s,* ^ = jI - c«ds 
) V, 

cos 
> / /? 

J = — ,d. (121) 

For an infinite-strength shock in a perfect gas, this becomes 

.ir) 
yr-t 

i > ^ ~K (122) 

Thus, the initial conditions are 

r 
<o> 

(¿ ) - 0 
/ (J) / (123) 

After determining the constants and to match these boundary conditions, the 

solution can be written in the form 

r 
(O) 

5//1 (124) 

rJ - 
(o) (125) 

c. Properties of the Solution 

The two components of the particle velocity can now be found from 

these relations. To find the density and pressure, the constant in Eq. (106) 

is evaluated, from conditions at ß : 

(126) 
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Then, using Eq. (104), the density is found as 

and the pressure is calculated from Eq. (126). 

(127) 

The value ofy^ 

found by setting /v/(0^ = 0, 

at which the density and pres sure fall to zero is 

i. e. : 

Thus the "vacuum" boundary is 

(128) 

' VAcOurf (129) 

The total change in^ from the front of the rarefaction fan to the vacuum 

/ ^ 'rr boundary is — -jl , in complete correspondence to the total Mach-angle 

change for a steady Prandtl-Meyer flow (43). 

The variations of , A. , and/^ with 'S are shown in 
/ s //2 / VAqssm 

Fig. 19; it is interesting to note that the vacuum boundary interacts with the 

free surface for Y less than about 1. 37, and lies above it for values of Y 

greater than 1. 37. 

The above solution reveals the angle along wh:ch the various 

contours in Figs. 11-14 should approach the shock/free-surface intersection. 

These angular locations are in reasonable agreement with the results inferred 

from Walsh's solution, except in the region outside the target, as noted earlier. 

The singular characteristic, which divides the elliptic and hyperbolic regions, 
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Figure 19 ANGULAR POSITION OF SHOCK, RAREFACTION FRONT, AND 
ZERO-PRESSURE SURFACE 
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As mentioned in can be shown from the solution above to lie along 

the discussion of Fig. 12, the numerical data do not recover this location very 

well. 

It would be of interest to extend this solution to the next order 

in £ , as done for steady isentropic flow by Johannesen and Meyer, (44) 

and for flows having entropy gradients^ and discontinuities of streamline 

curvature by Häkkinen (45, 46). The solution is required to this order, if the 

details of the free-surface trajectory are to be found. 

D. APPROXIMATE SOLUTIONS 

Many authors have attempted to uncover some of the features of 

the perfect-gas solution by resorting to various approximations. The most 

significant of these is the work of Rayzer (15), who identified the analogy with 

the one-dimensional case, and extended Zeldovich's arguments (14) concerning 

the simultaneous conservation of energy and momentum. He worked out an 

axisymmetric solution based on the approximation that (in the present notation) 

<f> and ij should be linear functions of ^ and <T , respectively. This assumption 

produces a constant value (in the similarity coordinates) for the divergence of 

the velocity field, a condition which Rayzer suggests as a suitable generalization 

of the nearly constant value of that is found in the plane-wave case (it 

is exactly constant for ^ = 1.4). To work out the details of the solution, he 

assumes a crude shape for the shock, and is able to find a pair of values of 

* Dr. Sundaram has pointed out the interesting possibility that the solution to 
this order might reveal the existence of a lip shock, which is known to occur 
in steady supersonic flow when a highly vortical region undergoes a sudden 
expansion (47). 
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ts! and . The- point-impact case he presents has a/ =A 3H6, for 

/ = 1. 205. 

The distributions which he obtains for the various functions 

are admittedly crude, but they resemble in many respects the numerical 

solution described earlier. For example, the density ratio is predicted 

as0. 0187 along the \-C plane; reference to Fig. 11 shows that this is a 

reasonable value. 

Rayzcr presents a sketch of the shock shape that resembles the 

one found by Walsh, but he; does not cite any numerical evidence for Ibis shape. 

Finally, it should be mentioned that Rayzer has also studied the 

line-impact case. His results again reveal a shock-trajectory law that is 

very close to the constant-energy solution. In connection with the line- 

explosion problem, mention should be made of the experiments reported by 

Deribas and Pokho/.haev (48), who used an exploding wire at the surface of a 

tank of water. They present a brief discussion of some theoretical scaling 

concepts and indicate that their results favor a similitude based on the momentum 

acquired by the fluid. Later experiments by Minin (49), however, indicate that 

the effects of gravity were important in the Deribas-Pokhozhaev data. Minin's 

measurements showed that when this effect is eliminated the growth rate of the 

funnel, or plume (essentially <Tj ¿So (O ) has a power-law dependence, with 

the exponent 0.47, which is just slightly less than the value 0. 5 that would apply 

for a constant-energy, self-similar solution. In addition, Minin observed a 

0.¿8 
growth rate of £ for the case when the exploding wire was arranged as a 

small flat coil, so as to generate essentially a point explosion. 



Another approximate treatment of the point-source, perfect-gas 

problem was given by the present writer (16). In that work, the similarity 

equations were written along the axis of symmetry* 

(4> + ^ (<p' + ¿v) = 0 

- ^ <J> ± = o 

f + ( 4> - s) -f '- -T" = o 
si r 

(130) 

(131) 

(132) 

Here the prime denotes ¿6/^, and the function \/ is defined as 

*%r) “33' 
/(T =o 

If information could now be provided about the function ^ * the solution 

near the axis of symmetry could be carried out in complete analogy to the 

one-dimensional case. In particular, Eqs. (130)-(132) become singular at the 

point where = —— , which is obviously the point where the boundary 

between the elliptic and hyperbolic zones intersects the axis of symmetry. 

In order to provide an estimate of the function \/ , the radial 

momentum equation was differentiated, giving 

I — s/ 

SJ 
V + (4-s)\/ + (vZ-OV + -r~ Í ^ - & (134) 

(T-o 

This approach was motivated by the succ(;ss of analogous methods in 
treating the hypersonic flow over a blunt body (50). 
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The off-axis pressure distribution was approximated by 

!i-L\ = L _ i <-<>){ (135) 
l 3T ^ yc- .o V V*■ 

where the parameter /v^ is a measure of the rate of decrease of the pressure 

with distance from the axis. In the blunt-body case, this parameter is directly 

related to the shock shape; in the present problem, it is much more difficult 

to estimate. The particular form of this approximation corresponds, in a 

spherical coordinate system, to 

(136) 

where the coordinates are defined as 

r 
(137) 

^ = 

(138) 

sitf & (139) 

Figure 20 SPHERICAL POLAR COORDINATES 

¿»V/ f _ 
The Y/-factor in Eq. (136) was chosen so as to make /jqZ zeI ° dt Y( ~ 1, since 

it had already been assumed in Ref. 16 that the shock was a hemisphere with 

origin located at t' e impact point on the free surface. 

It was found that for values of from 2.0 to 6. 0, and A; set 

equal to 1.0 and 10.0, the value of required for a smooth transition through 
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the singular point of Eqs. (130)-(132) always lay between 0. 367 and 0. 4. These 

results are in good agreement with Rayaer's approximate treatment, and with 

Walsh's calculations. In all three of these papers, the value of a/ is found to 

be near, but slightly less than 2/5, the value that would apply for a symmetric, 

constant-energy solution. 

A direct comparison between the function \/ predicted by the 

approximation above and that revealed by Walsh's solution is difficult to make, 

partly because of the hemispherical shock-shape assumption, and partly because 

of the loss of accuracy encountered in differencing the numerical data. The 

general shape and magnitude of the ^ -distributions are in general agreement, 

however. 

Because of the high density at the shock, most of the mass processed 

is concentrated in a thin shell at the shock. This fact, together with the close¬ 

ness of the approximate values of A/ to the value 0.4, suggested that the flow 

could be approximated as one half of a spherically symmetric, constant-energy 

solution", and this further approximation is advocated in Ref. 16. 

assumed 

behind a 

To c alculate the shock trajectory in this approximation, it is 

that all of the the kinetic energy of the projectile goes into the flow 

hemispherical shock. Then an energy balance gives 

E = Z? X (O (140) 

where the ladius of the shock (equal to 25oalong the symmetry axis) is denoted 

In addition, the symmetry-axis distributions of f , v/^and d> agree fairly 
well with those found from the symmetric solution. ' 
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(141) 

by /£s (¿) , and where 

:£\ O ■- j i —i — + j- 4> ) 'J' y¡ dvi j ^ - /I?, {t) 

To evaluate this integral, the distributions of f , ^ , and must be found. 

The solution for these quantities was found numerically by G. I. Taylor (4), 

and a closed-fnrm solution was found by von Neumann (2), and by Sedov (3). 

^The closed-form solution was also derived, somewhat later, by J. L. Taylor 

(51), Latter (52), and Sakurai (53)). Values of J ( based on these papers 

can be found in Ref. 54 for I.Z £ Y ¿ . 

The solution of Eq. (140) for the shock trajectory is 

/ ¿5- e¿A \ 

ffir r i'i) 
(142) 

Using the value T.irJ) = 0. . and using a projectile of mass M and 

velocity Z v oultl give 

^ _ 1 
- < (t, 

' ï-I.S 

'Si 1 o. 4 

( ¿M . ^ \ 
(143) 

For comparis ■ i, Walsh's data (sec Eq. (H5)) give 

zr 
¿6 

Thus, the symmetric-solution approximation overestimates the shock 

penetration depth, except for extremely small values of t . 
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The first application of the symmetric solution to the impact 

problem was made by Davids et al (55), and by Davids and Huang(56). At the 

time of those papers, the relation of the symmetric model to the true solution 

was not clear, and consequently the proper basis for choosing the parameter/s/ 

was not appreciated. As a result, some of the effort in Refs. 55 and 56 was 

directed toward finding solutions for a/^ 0. 4. However, it appears that the 

only nonsingular solution of the symmetric problem is that for /J - o. 4. 
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V. THE REAL-FLUID CASE 

Inipact-gene rated shock propagation in solids rarely takes place 

at speeds large enough to permit the idealization that the material behaves 

thermodynamically like a perfect gas. There is a large range of conditions 

for which the inviscid-fluid model is still valid, but where a more realistic 

state equation is needed. In this section, some of the equations of state that 

more accurately describe a compressed solid are described. Following 

this, exact numerical solutions are discussed, with special reference to 

similitude considerations. Finally, some approximate solution methods are 

given. 

A. THE EQUATION OF STATE 

For the range of thermodynamic conditions encountered in 

hypervelocity impact, the Mie-Grúneisen equation of state (see, lor instance, 

Ref. 57) provides a suitable description. Workers at various laboratories in 

the United States have evolved fairly complicated expressions of this equation, 

especially for metals. (See, for example, the equations used by Bjork (58), 

Tillotson (59), and Riney ((>0), and 'he comparison of these given in Ret 54). 

For the purposes of this article, a somewhat simpler expression will suffice. 

1. General Form 

The Mie-Griineisen equation is usually written as (57) 

f - t- ‘-) 
* ( f, d - -C (/) - ,r( (145) 

win1 re the subscript c denotes the cohesive contributions, and where / is 
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the GrUneisen factor, which depends weakly on y0 

Along the Hugoniot, Eq. (145) takes the form 

(/) - (/) = 
t (/) - t </) 

/r</> 
(146) 

Subtracting the left and right sides of this from the corresponding sides of 

Eq. (145) gives 

e = 
/r(/> 

A (/) (147) 

where 

(.)= Ml -e (/>) -_ Ml _ e (,> 
' ¿> rí/) w /; / r(/) ^ 

(148) 

The presence of the second term in Eq. (147) precludes a self-similar solution 

(compare with Eq. (24)) except in the limit of extremely high pressure where 

the quantity A (yô) is negligible compared to the leading term. 

If this state equation is now substituted into the Rankine-Hugoniot 

conditions, the result is 

I + 
¿ A (A) 

í: 

A' - 1 
/ 

r (/>,) 
+1 r-*- 4 I -f - - O 

A r(/,) (149) 

This relation could be used to find the dependence of h/on , if 

information were available about the functions C) and A ('’i} 
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2. Specific Form for a C S Material 

This process can be reversed and the measured Hugoniot data 

used to infer information about n/,) and A • These relations take on a 

simple form for a substance whose Hugoniot displays a linear relation between 

the shock speed and particle speed 

C + S (150) 

The weak-wave speed c is approximately equal to the bulk dilatational wave 

speed in many cases (57). Such a substance is referred to here as a ¿ 

material. Many solids are well approximated by this relation; Reference 

57, for example, lists values of C and S for various substances. 

terms of the 

The shock-wave relations for a 

shock Macli number Ms - Jf— as : 

C s material can be written in 
J 

- K 

I F ( s -|)MS 

e, -e0 _ -1 ) 

c1- ¿ 

í‘ _ . 1 Mí 'Íl - . 
icL s c 6 / ° a 

(151) 

The sí" relations i an now be used to evaluate the resulting form of tin 
/ 

equation of state is 

U1 



g, - go (a '* {--A} 

/° J 
c l 

(152) Ä. S - ( s 

At very high shock strengths, the Grüneisen factor must be taken as £L(s-i) , 

in order to match the limiting density ratios of Eqs. (149) and (151). In the 

work reported in Ref. 54, this same constant value was used for all densities, 

although it would be more appropriate to allow ¡~ to vary with ^ in such a 

way as to reach the value ¿S-I at normal density (57). 

f0r r(f0j S)’ Eq' (152) 
Whatever dependence is chosen revea Is 

that equation-of-state data for many materials can be correlated in terms of 
& -m g 

, and -r-2- , with only <J remaining as a 
CZ 

parameter. Correlat ons of this type have been presented by Walsh (6), 

Gylden (61), and Gogolev et al (62), among others. 

It was observed earlier that the Mie-Grüneisen equation approaches 

the perfect-gas equation of state whenever the pressure becomes large enough 

that the leading term dominates. Eq. (152) can be used to make a quantitative 

assessment of the pressure level required. In particular, at the shock, use of 

Eqs. (151) shows that, as Ms —oo , the leading term is of order M x 

while the second term is of order Ms . At points removed from the shock, 

the relative order of the leading term is even greater ( M ¿ times as large) 

than that of the term A(y>) (see Eq. (183) below). Thus in the infinite- than that of the term 

Mach-number limit, Eq. (152) can be replaced by the perfect-gas equation of 

state, with / equal to ¿S-I 
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S' ietly speaking, Eq. (152) is not valid at pressures so high 

that the linear ?» ’ i< relation ceases to apply. A more serious limitation 

is that it sometimes leads to negative values of the pressure* and the square of 

the sound speed, for points along the isentropes at less than normal density 

(54). However, it does provide an adequate and simple representation for 

the high-pressure regions of the flow. 

3. Enig's Formulations 

Two other expressions for the state equation of a (T , S 

material have been presented by Enig (63), and by Enig and Petrone (64). 

These expressions are more satisfactory^at densities below normal,than the 

one described above. However, they appear to have escaped the attention of 

workers in the field of hypervelocity impact. 

The basis of the first expression (63) was to pursue the logical 

consequences of the "mirror-image" approximation, which states that the 

pressures and velocities experienced by a particle in an isentropic expansion 

process lie along a mirror image of the Hugoniot curve: 

Figure 21 THE MIRROR-IMAGE APPROXIMATION 

Negative pressures are also predicted for some conditions by the state 
equations of Rjork (58), Tillotson (59), and Riney (60). 
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This construction is consistent with the well-established approximation that 

the escape speed acquired by isentropic expansion from a point on the Hugoniot 

is close to twice the particle speed on the Hugoniot (65). Enig noted that the 

mirror-image assumption implies an equation of state, and he derived a closed- 

form expression of this equation for the case of a C , S material. In the 

present notation, his result (63) is 

A c 

where 

(154) 

and wnere the functional dependence of § on £ is given parametrically by 

(155) 

The parameter ^ is a monotonie function of the entropy; specifically, it denotes 

the velocity that a particle of given entropy had immediately after being processed 

by the shock: 

(156) 

Here the symbol stands for the value of the shock Mach number at the instant 

when the particle in question was processed by the shock. 

Enig observed that, in calculating the temperature, the simultaneous 

and the constancy of the thermal coefficient of volume expansion at low pressure 
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lead to a rather singular behavior for the specific heat at constant pressure. 

The latter problem does not, however, affect the usefulness of the expression 

involving only £ , , 

The state equation developed by Enig and Petrone (64) employs 

the isentropes that had previously been shown by Walsh and Christian (65) to 

yield the maximum possible free-surface velocity for expansion from a given 

point on the Hugoniot. These isentropes are based on the approximation that 

is a constant. This quantity is related to the density 

, the specific heat at constant pressure 6-p , and the coefficient of volume 

expansion \ by 

the quantity 
-nn 

In the present notation, this second equation 

V 
; KS)- 

of state is 

Pi CM 

+ J> 

(157) 

(158) 

f ^ 
e-e0 _ M -1 -0 _ JL" _ ( _ 

S M L -2. \ ' 

l/° L 
The function is defined as 

.Lm. 

(159) 

+ / 
_ 
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J 

=- 

M -I 

+ _!? 1 P - i )_ 

M j ^ P ( P -1 )_ 
s J \ 

(160) 
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and 
< _ -J±L- 
¿ - Zf? (161) 

Both of these formulations lead again to the conclusion that 

equation-of-state data are correlated by the quantities ^ "'•Vc* J 

and , with £ and S as parameters. They have the advantages of 

being relatively simple, and of describing the less-than-normal-density 

states in a manner consistent with observed free-surface behavior. The 

second equation has been applied successfully to the problem of shock initiation 

of liquid explosives. However, to the writer's knowledge, neither of these 

equations has yet been applied to the hypervelocity impact problem. 

B. EXACT SOLUTIONS 

The particle-in-cell method (66) and various modifications of 

it (67) have been used successfully to calculate the response of a half-space 

to either an impact or an explosion at the surface. Such calculations have been 

reported by Bjork (68), Brode and Bjork (69), Walsh et at (5, 6, 7) and by 

Riney and Heyda (70)-(76). These calculations have included various 

projectile shapes and have covered a wide range of impact speeds and types of 

material. In general, the response begins with a phase during which the shock 

propagates at a constant speed, and with a shape that is dictated by the shape 

of the projectile. Later, the shock takes on a roughly hemispherical shape, 

after the projectile itself has been severely deformed, and the shock has 

engulfed an amount of mass several times t' t of the projectile. Throughout the 

process, the particle-in-cell method sp ads the shock over several cell widths. 

Except for this region and the vincinity of the shock/free-surface intersection, 
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the solutions are satisfactory. In some cases, severe oscillations 

of the solution are encountered, particularly at low density. These erratic 

distributions can be partially eliminated by reducing the cell size, and an 

improvement is achieved by the continuous transport-of-niass modification (29). 

1. Similtude; Late-Stage Equivalence 

The solutions described above can be applied to conditions other 

than those for which they were specifically done, by using the similitude 

discovered by Walsh (6), which he named "late-stagc equivalence". The general 

features of this similitude were described earler in Section HID; they are 

formally derived in this section, in order to show their general applicability. 

a) Functional Forms 

The "late-stage" aspect of the similtude is simply the point- 

source assumption, i. e. , the scaling law will accurately represent the flow 

caused by a projectile of nonzero size only when ? is large compared to the 
So 

scale of the projectile. The fact that the similtude is that appropriate to a 

point source means that a nonzero amount of energy and momentum are 

deposited at i - O over an area of vanishing size. The early stages of the 

target's response to this excitation are characterized by self-similar behavior 

in which f-z] is infinite, the equation of state is approximated by that of a 

¿o tfiivx ’ W I 
perfect gas with X~ 2 ^-1» ar>d the quantity ^'Ji t**. 2 ~ 

the constant that will permit a smooth joining of the elliptic and hyperbolic 

r e gion s. 

is 

When the solution enters the non-self-similar phase, the only 
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new parameter that appears is • The shock shape and the boundary 

values ol -f , , d> etc. , change, but they depend only on M . The 
' T t so 

quantity d. A* Hjo / also changes as a function of Mio » and is found 
/a A*. 2 so 

as a part of the numerical solution of Eqs. (16)-(19). 

One specific way of finding is the following: 

an increment in *//^j chosen (thus giving the value that MJ# will have 

at the end of the step) and an average value for over the step is 

assumed. The method of characteristics can be used to calculate the entire 

flow field at the end of the step. In particular, one part of the solution is a 

new value for ; if this new value does not agree with the value corresponding 
So , • 

¿¿A. 2« / 
to the end of the step, a new value of / (which affects the slopes 

'dA* 2 so 

of the characteristics) is used, and the process is repeated until satisfactory 

agreement is achieved. 

After the solution is determined down to a desired minimum value 

of • the shock trajectory to that point must then be found, as indicated 

in Eq. (35). This is done by integrating the distribution found for ^^ ^ 
* So 

= ( 1 
(JLJU 2 

JL JU Z 
d. JU H 

So 
So 

XfJir 
(162) 

The initial conditions can be evaluated by taking(M 'N to be very large, so that 
v So'i*/it 

the self-similar solution applies. Use of Eq. (86) leads to 
*/ / 

’ So _ 
a/ /-/V F(f) 

/-A/ 

r KJ 
zvrr 

' f^s0 

€)tp • I tA 

(*Se) 

¿O 
50 (163) 

JfJIT 
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The important point to be noted is that, even though the scaling length ¥l0 

originates in the self-similar flow, nevertheless it continues to be the 

appropriate length throughout the non-similar portions of the flow. Thus the 

value of /v/ , or equivalently, the value of the parameter <X used by 

Walsh, depends only the limiting perfect-gas solution. 

Equation (163) can be written as 

-so 
* ^ (k. ; s, (164) 

where the three dots in the argument allow for the presence of any equation- 

of-state parameters other than 5 . In principle, this can be solved for 

io 

*¡. x(= F (i™ . r 

- d.i ¿ V Z. J . 
(165) 

Integration would then give 

T * / ^ (¾ ; V" 
(166) 

For A/ = , the quantity ^ is proportional to the cube root 

of the energy release divided by the characteristic pressure, which is the 

scaling length appropriate in symmetric explosion problems (77). 

Walsh et.al, employ the quantities / and (J[ , instead 
*”0 

of £ and P , in presenting the correlation. The correspondence 
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is: 

where 

(167) 

L.-nŸ 
Thus the similitude variables used by Walsh are related to those of the 

present treatment by 

OL = 
a/ 

/ -a/ 
(168) 

(*/<) 
o< + l 

si . liLif = 
4 J î-“ 1 ' 

ot-f 
cX-M 

(169) 

The last two factors in this expression depend on and S 

the correspondence of the dependent variables is 

■fis,*-]«,') 

Finally, 

(170) 

In both of these, the final factor on the right is a function of , 

and the other parameters in the state equation. 

To conclude this discussion of the point-source similitude, it 

should be repeated that other equation-of-state parameters, in addition to 

S , may be important for some materials. Even when they are, different 
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impacts into a single material will all be correlated by , since the 

other parameters remain the same for each of the different impacts. If 

different impacts into a series of different matt-rials are considered, and if 

each of these’ materials has different values for its other equation-of-statc 

parameters, then the re is no guarantee that alone will suceded in correlating 

the results. It appears that the effect of these parameters is stronger in the 

plane-wave case’ than in axisymmetric flow, but a quantitative estimate of 

their impe>rtance requires further study. 

b) Evaluation of the Similitude Functions 

The published shock-trajectory elata can be use>d to estimate the: 

function Fj . Figure: 22 shows a selection of the ava dable results. ' All 

of these trajectories begin with a constant-speed phase, during which the 

projectile is being deformed. The trajectory then makes a trmsition te> the 

point-source type of behavior. If the impact speed is extremely large (such 

that is initially on the order of 30 to 100), then the point-source solution 
io 

will lie in the self-similar range, where the slope ^^ £ is around 

0. 37. I or impacts at more moderate speed, (such that is initially on 

the order of 10 to ¿0), the early-time trajectory joins the point-source 

solution in a region where the logarithmic slope is more nearly 0.5 or 

0.0. Finally, if the impact speed is such that is initially on the order of 

3, the late-stagc or point-source phase of the solution will lie very (.lose to 

-The numerical data were taken from the collection given in Ref. 54. The 
results of It ¡ork et al. for porous aluminum striking solid aluminum at 72 
km/sec were taken directly from Ref. 78. The original calculations are 
presented only at certain discrete points. For purposes of clarity in this 
presentation, solid lines faired through the data points are shown. 
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the weak-wave limit, in which t* The effectiveness of the correlation 

derived above can be seen by comparing Walsh's data for iron striking iron 

at 40 km/sec with those of Heyda and Riney for aluminum-aluminum impart 

at 60 km/sec. 

It appears that the self-similar phase is limited to the regime 

^ , while the weak-wave limit is reached when > 10. 

Unfortunately, there are not enough data available in published form to 

evaluate the complete point-source trajectory. The dashed curve in Fig. 22 

is based on an approximation described in Section V C 1. 

There ar da., not enough published data to evaluate the contour 

plots of the dimensionless functions, such as "f ( ^ T j . This lack 

is particularly unfortunuie, since it leaves unresolved the question of what 

portions of the flow an' correctly represented by the point-source solution, 

as a function of the time after impact. Most of the evidence on which the 

point-source similitude is based consists of quantities like the shock trajectory 

or tin total momentum. The integrals which enter these quantities are dominated 

by the high-density layers near the shock, however. Thus, as pointed out in 

Refs. 54 and 7d, the possibility remains that two flows whose shock trajectories 

have converger! to the point-source behavior might still contain large regions in 

which the flow patterns differ, and still reflect the details of the initial impact 

phase, Walsh et al (5,7) have presented some data- which show that similitude 

is achieved if one waits long enough, but there is still a need for a more precise 

definition of the manner in which the transition from the early phase to the 

similitude phase occurs. 

-See Figs. 14, 15, 17, and IH of Ref. 5. 
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A second consequence of the lack of these contour plots for 

finite /W is that the similitude cannot be used to yield results for cases 

that have not yet been calculated. If, for example, one wanted to know the 

pressure distribution in the ^-direction, at a depth of 10 cm in a beryllium 

target, at 100 microseconds after being struck by an aluminum sphere one 

centimeter in diameter moving at 60 km/sec, there would be no recourse 

other than to do the calculation ab initio. However, if the contour plots 

mentioned above were available, the desired information could be taken 

directly from them. 

Thus, the present state of the exact solution for the axisymmetric, 

nonsimilar case can be summarized by stating that a powerful similitude exists, 

which can be derived directly from the differential equations for nonsimilar 

motion due to a point source, and is an extension of the self-similar, perfect- 

gas solution. However, the detailed structure of the nonsimilar solutions has 

not been published in sufficient detail to allow its application to a general set 

of conditions. 

c) The Plane-Wave Case 

The propagation of plane waves in real materials has been studied 

extensively (see, for example, Ref. 57), chiefly for the purpose of interpreting 

measurements of shock waves driven by explosives or by impacting slabs. Most 

of the attention in these studies has been devoted to the early time interval 

during which effects of the rarefactions coming from the loading side are not 

yet felt. Later studies (Ref. 79, for example) have examined the attenuation 

of the shock due to these rarefactions, and the possible influence of material 
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strength on this attenuation at lower shock intensities (80). 

If one waits long enough after the impact of a slab of finite 

thickness, the solution approaches a planar, "thin-sheet" similitude analogous 

to the point-source similitude that applies in the axisymmetric case. The 

existence of this similitude follows directlyfrom the equations for nonsimilar 

plane-wave motion (i.e. , Eqs. (16)-(19), with tJ , and derivatives with 

respect to g“ set equal to zero) once the scale of the impacting slab is 

neglected. Following an analysis similar to that of Eqs. (162)-(166), it can 

be shown that 

= /1« (.½ 
ï, ' ~ U, 

J°- , M 
' SO (172) 

where Y' Is the specific-heat ratio appropriate to the high-pressure limit of 

the equation of state, and where the three dots denote the presence of equation- 

of-state parameters other than ^ 

The scaling length ^ is defined as 

/ - 
P \ ¿a/-i 

I - n/ 
/ 

\ ^ 

oi-l 

L0 - 

oc 

; ^ 
/~/J 

(173) 

Here \/ is the characteristic exponent that produces a nonsingular solution in 

the high-pressure, or self-similar limit, where the solution (Eq. (eZ)) can be 

written in the power-law form shown in Eq. (63). 

Chou and Burns (28) presented method-of-cha racteri sties 

calculations for a perfect gas, with id = i .4. Tin.' pressure ahead of the 
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shock was taken as one atmosphere, and consequently the solution ultimately 

becomes non-self-similar, because of counterpressure. At sufficiently 

early time, and after termination of the impact phase, the solution is self¬ 

similar, and the values of rJ and (q (Y) are corroborated by the numerical 

results., as noted earlier. Chou and Burns reported the results of six 

calculations, which showed that, except for the early impact phase, the 

entire solution, all the way to the acoustic limit, is correlated by the thin- 

sheet similitude of Eqs. (172) and (173), where the parameter oL is the same 

as that given by the limiting self-similar solution. The results of the 

particular case in which LX was equal to 9. 144 km/sec was used to determine 

the similitude functions for the shock trajectory. These are shown in Fig. 7 • 

These authors also presented calculations for the case of 

aluminum and copper, using part of the equation of state developed by 

Tillotson (59), namely 

The values used for the parameters a, £>, ^0 > A antl ß are listed in 

Ref. 28. At very high pressure, this equation approaches that of a pefect- 

gas, with Ol =)^-1 , as pointed out by Tillotson (59). Chou and Burns use the 

value (X -0.S for both aluminum and copper. The analysis above predicts 

that the similitude parameter oi would be that corresponding to 

which is found by interpolating in Table I to be 1. 53. The results for copper 
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arc correlated by the value ot = 1. 50, in satisfactory agreement with this 

prediction. 

Their results for aluminum are anamalous, however, for they 

show that similitude is most nearly approached for the range of their 

calculations if <X is 1. 2d. This result agrees with the earlier caIculations, 

and experiments as well, of Chou and Allison (HI). 

In summary, it can be said that the calculations of Chou and 

Allison (81) and of Chou and Burns (28) comply with the thin-sheet similitude 

outlined above, both for a perfect gas with counterpressure, and for copper. 

The similitude which they found for aluminum, however, is not the same as 

the one that originates in the high-pressure limit. Further study of aluminum, 

including a direct comparison with the thin-sheet similitude solution itself, 

is required for an understanding of these results. 

2. Method of Characteristics 

Recently, the method of characteristics has been successfully 

applied to axisymmetric hypervelocity impact problems by Madden (82), and 

by Madden and Chang (83). These calculations have thus far been limited to 

relatively early times, where the shock travelling back into the projectile has 

not yet encountered its rear face. The results compare favorably with those 

of Walsh, and they provide considerable detail about the structure of the flow 

field. Future applications of this technique can be expected to add significant 

information in regions where the particle-in-cell and associated methods tend 

to smear out the details of the flow. The method should prove to be of part¬ 

icular value in sorting out the differences in the amplitude coefficient 
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associated with various loading histories. 

C. APPROXIMATE SOLUTIONS 

There have been many attempts to develop an approximate theory 

for the nonsimilar phase of impact-generated shock propagation. Several of 

these, which have enjoyed some success, are briefly described below. 

1. Oshima's Method 

Oshima (84)-(86) developed a method for approximating the non¬ 

similar effect due to counterpressure in a perfect gas. =:- The present writer 

(54) adapted this method to the conditions of the impact problem, where the 

nonsimilarity arises from the form of the state equation. 

The only cases to which Oshima's method has been applied are 

those in which the problem is specialized to the axis of symmetry, 

for this case, Eqs. (16)-(19) can be written as 

2^ . t. / 3\ ¿so 
V as 

\ ¢= 

= 

34* 

f**- ^ so t^l 

^£12- A, +(4=-0¾ + -f ^ 
jU 2so Y ^ + as 

ié + ± if = 3<4> 

JL JU 2 SO f ^ af = 

2 so 

2 So ã ^Sc 

_ 

_ d. b*. &S<. X 

(175) 

(176) 

(177) 
d- d**. 2So [ 3rd*. HSo /-= ^ 3jt*~ MSt 

The essential part of Oshima's method is to make what amounts 

to a loca 1-similarity" approximation of the derivatives with respect to io 

=:= Applications of the method are given by Lewis (87), and some comments 
on the approximation are made in Ref. 54. The method has recently been 
extended to imploding shocks and detonations by Lee (88). 
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J? \ U 

3M ~o 
ç-l 

(178) 

V 

where is any of the functions f or u) 

In Ref. 54, these terms are evaluated for a material having 

a linear shock speed-particle speed relation: 

^ 0 I Ms<.) = ¢(/, MJa>) = [- ; ! - t'- ) 

i M io 

1 + 1 

For this case, Eqs. Í17 5 )-(177 ) become : 

(179) 

^ > l S ] Ji &-V. ¿ J0 

+ (4> _ t;\ + i. 
X ¿Vv ¿ »o X Ç ^ jC^ 

1+ (--0^ 

^ ^ ¿S,_^_ 

^ ^v. Mio - / 

, X --Is-3 + = 
^ ^jo ^ f X7 

(180) 

(181 ) 

X -W 
I ->Jt_ - 

f/> 1 (182) 

X ¿50 ( M<o-( 1 + (--0¾ j 
The function ^ can now be expressed in terms of -f and ^ by using the 

equation of state*. In Ref. 54, this was taken as Eq. 152 with f” repl iced 

bY X ( * -I ) : 

:Tt should be noted that the right-hand side of Eq. (182) was obtained by applying 
Eq. (178) to the boundary value of ï' The final result would be different if the 
state equation had first been used to eliminate ^ , and if Eq. (178) hid then 
been applied to the boundary values of f and ^ . Thus, the form of the energy 
equation in Oshima's method is not unique. 
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[s-O-O*] 

With this choice, Eq. (18Z) becomes 

(183) 

jtJ¡^ ¿ 

Mr 

2. -î0 

5tf 
MSo-i 

■f 

[ t -(- (s-i)M5o ] (184) 

"50 

(M) 
where A is a dimensionless sound speed 

z ~ a 

io 

~ ( 

( B-\ 

= + 

(185) 

^ [ s - (s-O^J*2' 
If an approximation for V is now provided, Eqs. (180), (181), and (184) can 

be solved by the same method that is used for the plane-wave, perfect-gas 

at jU 2*./ 
equations, i. e. , the parameter Z is adjusted until a solution free 

d. ^ *io 
of singularities is found. These singularities occur at the points where 

L4>-ï) - * 
and where 

The fact that Oshima's form of the nonsimilar equations must be 

solved by the same method used in the self-similar limit may appear somewhat 

surprising, since the original equations that apply to the non-self-similar 

regime can be solved directly by the method of characteristics and the quantity 

JLÍak i . Ía/jL$** 2 cva^ua1;e<* as Pa rt the solution. However, because Oshima's 

method makes a local-similarity approximation, the solution acquires the same 

property manifested by the self-similar solution, i. e. , the flow fields at a 

series of adjacent instants must be related to each other in a manner consistent 
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with the assumed similarity. Consequently, this approximation leads to elliptic 

and hyperbolic zones, which can be smoothly joined only by proper choice 
» 

the eigenvalue, d-¿so / 

Solutions of this type were reported in Ref. 54 for the case 

S = ¿ , with M = 8, 4, 2, and 1. 5, and with \/ found from Eqs. (134) and 
So 

(135), with = 10. The results* are summarized in Table III, in terms of 

the quantity d ¿so/^ ^ j . The solution for = OO is the perfect-gas 

solution for = 3. 

TABLE III 

r M ¿O 

_ J. ^ ¿ io/ 

L- Ij. 

co 

0. 600 

8 

0.718 0. 843 

_i__ , 

2 

1. 22 

1. 5 

1.751 t 
j 
i 

These results were used, in Eq. (163), to find the approximate shock trajectory 

shown in Fig. 22. The initial conditons were taken from Walsh's perfect-gas 

solution for Y'-AiT (although, strictly speaking, this is not the correct perfect- 

gas limit for s = 2): 

\ - Sû 

IrJtr 

! ¿So 

{ ¿o 

. / \ 
- O. I 230 > I 

JiJTT l '“'■o i 

— 9. £9 X o -4 

iMrT 

* Ref. 54 also contains some results for the nonsimilar, spherically symmetric, 
constant-energy case. The values of for this case have 
approximately a constant ratio to those for the asymmetric case. The 
constancy of this ratio was erroneously interpreted in Ref. 54 as evidence for 
the validity of Walsh's similitude. As noted above, the validity of the similitude 
for a point-source disturbance follows without approximation directly from the 
governing differential equations. 
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The distribution of Mjo with isc/£ is shown in Fig. 23. This figure can 

be used, in conjunction with the Rankine-Hugoniot relations, to predict the 

variation of the peak pressure (and other peak quantities on the axis of symmetry) 

with distance into the target. This prediction is shown in Fig. 24, and is 

compared with the calculations of Walsh et al. (6), Heyda and Riney (74), and 

with the experimental data* of Charest (89). 

2. Variable - ^ Method 

One approach to the nonsimilar problem is to treat it as a 

succession of perfect-gas solutions, in which ^ is allowed to vary in such 

a way as to always produce the correct conditions at the shock. This 

approximation is usually coupled with an assumption that the shock shape is 

hemispherical, with center at the impact point; thus variations around the 

periphery of the shock are neglected. Finally, the approximation is usually 

carried one step further, by replacing the flow field by one half of a spherically 

symmetric, constant-energy solution. 

When all of these approximations are made, the only remaining 

problem is that of choosing the rule for allowing to vary. Davids et al 

(55), (56), chose a constant value of / , in the vicinity of 7. 0, to represent 

All of the data in Fig. 24 are shown 
results are experimental, however, 
of numerical calculations. 

as discrete symbols. Only Charest's 
while the other symbols are the results 
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Figure 23 APPROXIMATE PREDICTION OF THE SHOCK MACH NUMBER ALONG THE 
SYMMETRY AXIS FOR POINT-SOURCE SIMILITUDE 
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aluminum. The present writer (54, 90) worked out the solution for the case 

where ^ was allowed to vary with • 30 as t° match the quantities 

at the shock: 

A $3 
ï("so) - ¿ -I = 

’Jr~ * i í i <? 

A -, (186) 

A 

This functional dependence is then inserted in Eq. (140), which gives a relation 

between M and ^io/ , and a quadrature yields as a function of 

So 
' e0 

SO VCo 

, where the scaling length is defined as 

7, 

= 
¿TT c 

(187) 

Except for a constant factor, this is what jfo would reduce to for 

Calculated shock trajectories are correlated by these parameters 

nearly as well as by and C , as might be anticipated from the relatively small 

value of ¿rJ-f . In addition, the theoretical curves deduced from the quadrature 

mentioned above showed good agreement with the calculated data and led to the 

same conclusions (54, 91), regarding the various phases of the solution, as 

were presented in Section V B1 above. However, these symmetric - solution 

results are chiefly of historical interest today, in view of the general theoretical 

basis for the similtude based on ¿ „ 0 

3. Porzel-Zaker Method 

Another approximate solution which attempts to account for 

nonsimilarity was developed by Porzel (92) for strong shock motion in gases, 

and was later adapted by Zaker (93) to the problem of a point-source explosion 
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in a solid. The essence of the method is to assume the density distribution; the 

continuity equation can then be used to find the particle-velocity distribution. 

These two are then used in the momentum equation to find the pressure 

distribution. 

The present writer treated this method briefly (54), using the 

equation of state of a C , S material. This treatment was carried out in 

full detail by Bach and Lee (94), who showed that the method gives a more 

realistic particle-velocity distribution than those of the other approximate 

methods mentioned above. However, its predictions of the shock trajectory 

are essentially the same as those of the latter methods. 
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VI. CONCLUDING REMARKS 

A. PRESENT STATUS OF THEORY 

Many of the features of the response of a half space of an 

inviscid, compressible, Mie-Grüneisen fluid to a point release of energy and 

momentum on its free surface can now be said to be well understood. The 

solution begins with a self-similar regime, in which the shock scale grows 

as a power of the time, where the power is slightly less than the value appropriate 

to a symmetric point-source explosion. This phase continues up to the point 

is approximately lO"2. Later, the logarithmic slope of the shock- 

scale, time curve begins to increase as the solution enters the nonsimilar 

regime, and tends toward one as the weak-wave limit is reached. This occurs 

at approximately -/° . Throughout the solution, results for all cases 

are correlated by the parameters ^ and C , with a relatively minor 

additional dependence on equation-of-state parameters. (This latter dependence 

is much greater in the plane-wave case). 

In an actual impact, the projectile has nonzero size, and the 

shock trajectory begins with a constant-speed phase, which persists for a 

period on the order of the time required for a shock to travel through the 

projectile. After this period, the projectile becomes severely deformed anti 

the solution makes a transition to the point-source trajectory. The point at 

which this transition is completed depends on the initial speed of the shock 

at the impact point. Unless this initial value of is on the order of 
So 
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50 or greater, the self-similar phase is not observed. This extremely large 

value is not likely to occur, except for impact speeds on the order of 50 

km/sec. or greater. For most of the speed range of interest for meteroid 

impact, the transition to the point-source solution occurs in the nonsimilar 

range. A quantitative estimate of how long it takes to complete this transition 

is not available at present. After the transition is completed, the appropriate 

scaling factors are ^ and c ^ which originate in the self-similar phase. 

Details of the two-dimensional flow pattern are available only 

in the self-similar regime, and even there, the structure of the flow near the 

shock and near the shock/free-surface intersection is not known with great 

precision. In the nonsimilar regime, there are essentially no details of the 

flow pattern available. Thus, despite the existence of a powerful similitude, 

the fact remains that calculations of the flow pattern must be repeated for any 

specific case of interest, if anything more than the shock trajectory is desired. 

B. IMPLICATIONS FOR CRATER-SIZE PREDICTIONS 

It must be emphasized that all of the solutions described in this 

review deal exclusively with an inviscid fluid. There is no mechanism by which 

such a fluid can be permanently brought to rest at a finite time after impact. 

Consequently, these solutions offer no direct information regarding the ultimate 

configuration in which the target comes to rest. 

However, the inviscid solution has often been used as a basis 

for inferring the crater size by various auxiliary criteria. In applying such 
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criteria, a clear distinction must be made between what is explicitly given 

by the inviscid solution, and what is inferred from it on the basis of the 

auxiliary criterion. A failure to recognize this distinction led to a lengthy 

disagreement (1) between Bjork (68) and Walsh (6) over the dependence of the 

crater size on impact velocity. In fact, the source of their difference lay in 

the crater-formation criteria, since the evidence then available indicated that 

the shock trajectories found by both of these writers could be correlated by 

the same scaling law(90), a law that was very close to the constant-energy, 

spherically symmetric result. The further evidence that has subsequently 

become available (some of which is shown in Fig. 22) serves to confirm this 

conclusion. 

Walsh (6) adopts as his criterion the hypothesis that, if two 

different impacts generate the same flow pattern during the late stages of the 

inviscid motion, then the subsequent deformation during the strength-affected 

phases would also be the same. Thus, crater size would be scaled by the 

same parameters as those which govern the inviscid similitude, i. e, , crater 

size would be proportional to impact speed raised to the power. 

Bjork in his earlier papers (68) identified the crater boundary as 

a locus of points where the pressure was low, and the particle velocities 

randomly oriented, a condition which he interpreted (Ref. 68, p. 512) as a 

finite-difference representation of a stationary region of zero pressure. From 

this criterion, he arrived at the conclusion that the crater size would grow with 

the 1/3-power of the impact speed. 
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As noted above, a permanent aero-velocity region is not possible 

in an inviscid-fluid model; on the other hand, the locus corresponding to any 

nonzero pressure would scale with the U -power of £ , si since a given 

value of 

value of 

implies a fixed value of , which in turn yields a single 

is°/A ' 

In later work, Bjork and his associates (78) have adopted a 

different criterion, defining the crater boundary as the locus along which the 

kinetic-energy density* ± f (ul 4- xj‘) ts equal to the (temperature-dependent) 

yield stress of the material. The result is a prediction in which the crater 

size is proportional to a power of the impact speed. The power lies roughly 

between the limits 1/3 and 2/3, and depends on the density of the projectile. 

As noted earlier, the power would have to be the same as the 

parameter * (approximately 0. 58) if the temperature dependence of the 

yield strength were neglected, and if the crater boundary lay in a region of the 

flow field to which the point-source similitude applied. The fact that the 

criterion used by Bjork et al does not lead to a penetration prediction 

proportional to the cL power of impact speed is presumably due in part to 

their incorporation of the temperature dependence of the yield strength. In 

addition, it is important to note the suggestion made by Bjork et al (Appendix D 

of Ref. 78) that the crater takes shape in a region to which the point-source 

similitude does not apply. If this assertion is true in general, it clearly 

■They refer to this quantity as the dynamic pressure 
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invalidates the criterion used by Walsh. =:= To decide whether the assertion 

is true, it is necessary to compare the flow field predicted by the point- 

source similitude with that calculated for a specific case. Unfortunately, the 

point-source solution is not available at present in sufficient detail to allow 

such a comparison. Thus it is not possible to make a definitive assessment of 

the boundaries in space and time within which the point-source solution is 

valid, nor how this region of validity varies with the size, shape, speed and 

composition of the projectile. 

To put this discussion in proper perspective, it must be stressed 

that all of these attempts to predict a crater size on the basis of the inviscid 

solution represent a substantial further approximation. In the real case, 

quantities such as the temperature distribution in the flow are themselves 

affected by the material strength. To estimate the strength on the basis of 

an inviscid solution for the temperature is a complete decoupling of these 

effects; the error introduced by this decoupling cannot be judged on the basis 

of results available at the present time. 

The skill and ingenuity displayed in successfully achieving 

numerical solutions of the Euler equations in three independent variables have 

properly been the object of considerable acclaim. It is sometimes difficult 

to appreciate the limits of validity of these solutions and, specifically, 

to realize that inferences drawn about crater formation do not in any sense 

share the same firm theoretical basis as do the inviscid solutions themselves. 

•■Tn addition, it would imply that the crater boundary should be sensitive to 
the shape of the projectile. 
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In the present writer's opinion, there is no reliable basis in the 

inviscid solutions available at present for selecting a dependence of crater 

size on impact velocity. A satisfactory resolution of this question will require 

solutions in which the effects of material strength are accounted for. 

C. REMAINING PROBLEMS 

Many problems remain to be solved before the inviscid-flow 

solution itself can be called complete. The two-dimensional pattern of flow 

contours in the nonsimilar range must be found. In addition, an improved 

definition of the flow near the shock, and near the shock/free-surface 

intersection is needed. 

The effects of projectile shape play a dominant role in the period 

during which the transition to the point-source flow is occurring. The method 

of characteristics (82, 83) may prove particularly valuable in better defining 

this portion of the flow. 

There are also certain target-shape effects which merit attention. 

This survey has ignored entirely the thin-plate perforation problem (see Refs. 

95 and 96 , for example) and the intermediate-thickness regime in which spall 

fracture is the major damage mechanism (97), but in both these areas there 

are many unsolved problems. Even for a semi-infinite target, one unknown 

effect is that due to surface curvature, where some evidence (98) suggests 

that a convex surface leads to a more rapid decay of the shock than that 

encountered when the free surface is a plane. 
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The discussion above deals only with state equations of the 

Mie-Gruneisen type, and thus does not include many materials of technical 

importance, such as porous solids or materials which undergo a change of 

phase (99). The theory of impact-generated shock propagation in materials 

such as these is still very incomplete. 

Finally, a continuing theoretical attack on the response of 

materials to high-speed impact must always look toward the development of 

solutions in which the material strength is accounted for. Many efforts have 

already been made in this direction (100-102), but a satisfactory understanding 

of the problem still lies some years in the future. In the meantime, it is hoped 

that the present survey will provide a convenient point of reference for 

evaluating future progress. 

113 



References 

Much of the hypervelocity-impact literature that has originated in 

the United States has appeared in the form of company reports. In 

most cases, these are available from the Clearinghouse for 

Federal Scientific and Technical Information (CFSTI) of the United 

States Department of Commerce, according to the N- and AD- 

serial numbers listed below. 

Eichelberger, R.J., "Summary: Theoretical and Experimental 

Studies of Crater Formation" pp 683-704 of the Proceedings of the 

Sixth Hypervelocity Impact Symposium, Volume 2, Part 2 

(August, 1963) AD 423064 

Bethe. H. A. , Fuchs, K , Hirschfelder. J.O. . Magee, J.L. , 

Peierls, R.E., and von Neumann, J. : "Blast Wave" Los Alamos 

Scientific Laboratory, Report No. LA-2000 (Aug. 1947) 

Available from CFSTI 

Sedov, L. I. Similarity and Dimensional Methods in Mechanics 

Academic Press, New York (1959) 

laylor, G. I. "The Formation of a Blast Wave by a Very Intense 

Explosion. I. Theoretical Discussion" Proceedings of the Royal 

Society A201 (1950) 159-174 

Walsh, J.M. , Johnson, W.E., Dienes. J.K., Tillotson, J.H. , and 

Yates, D. R. "Summary Report on the Theory of Hypervelocity 

Impact General Atomic Division, General Dynamics Corporation, 

Report No. GA-51 19 (March 31, I 964) AD436251. Also published 

as pp. 343-387 of The Fluid Dynamics of Space Flight 

114 



AGARDograph 87, Volume 1. Gordon and Breach, New York (1966). 

Walsh, J. M. , and Tillot son, J.H. , "Hydrodynamics of Hyper¬ 

velocity Impact" General Atomic Division, General Dynamics 

Corp. , Report No. GA-3827 (.1 an. 22, 1963) AD 401 023. Also 

available as pp. 59-104 of the Proceedings of the Sixth Symposium 

on 1 lypervelocity Impact, Volume II. Part I (Aug. 1963) AD 423063 

Walsh, J. M. , and Johnson, W.E. "On the Theory of Hypervelocity 

Impact" pp. 1-75 of the Proceedings of the Seventh Hypervelocity 

Impact Symposium, Volume II (Feb. 1965) AD 463228 

See, for example: Bryan, George M. "Oblique Impact of High 

Velocity Steel Pellets on Lead Targets" pp. 511 -534 of the 

Proceedings of the Fifth Symposium on Hypervelocity Impact, 

Volume I. Part 2 (April 1962) AD 284280 

Eichelberger. R.J., and Gehring, J.W, "Effects of Meteoroid 

Impacts on Space Vehicles" American Rocket Society Journal 32 

(1962) 1583-1591 

Eichelberger, R.J., "Hypervelocity Impact" pp 155-187 of 

Behavior of Materials under Dynamic Loading, edited by N.J. 

Huffington. ASME, New York (1965) 

Deal, W. E. "Shock Wave Research on Inert Solids” pp 321-345 of 

the Proceedings ot the Fourth Symposium (International) on 

Detonation. Available as Office of Naval Research, Report No. 

ACR-126, from the Superintendent of Documents, U.S. Government 

Printing Office, Washington, D. C. 

Kynch, G.J. "Blast Waves" Modern Developments in Fluid 

115 



Dynamics, Ed. by L. Howarth, Volume I, Part IV, Section II, 

Clarendon Press, Oxford (1953) 

13. ) See Reference 3, page 154. 

14. ) Zeldovich, Ya. B, "Motion of a Gas Due to a Pressure of Short 

Duration (Shock)" Akusticheskiy Zhurnal, ¿(1956) 28-38. Trans¬ 

lation in Soviet Physics - Acoustics, ¿ (1956) 25-35 

15. ) Rayzer, Yu. P. "Motion of a Gas Under the Influence of a Point- 

Impact Shock on its Surface (An Explosion on a Surface)" Zhurnal 

Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, (Jan-Feb 1963) 

57-66. Translation, by M. T. Nowak, available as General Atomic 

Division, General Dynamicîi Corp. , Report No. GA-tr-5081, 

(May 28, 1964) AD 440513, and by Foreign Technology Division, 

Air Force Systems Command, as Report No. FTD MT 63-80, 

(24 Sept 1963) AD 434954 

16. ) Rae, W.J., and Kirchner, H. P. "Final Report on a Study of 

Meteoroid Impact Phenomena" Cornell Aeronautical Laboratory 

Report No. RM-1655-M-4 (February, 1 963) N63-16887 

17. ) Häfele, W. "Zur Analytischen Behandlung Ebener, Starker, 

Instationarer Stosswellen" Zeitschrift fur Naturforschung 10a 

(1955) 1006-1016 

18. ) V. Hoerner, S. "Losung der Hydrodynamischen Gleichungen mit 

Linearem Verlauf der Geschwindigkeit" Zeitschrift fur 

Naturforschung 10a (1955) 687-692 

19. ) Adamskii, V. B. "Integration of a System of Autosimulating 

Equations for the Problem of a Short Duration Shock in a Cold Gas" 

116 



Akusticheskiy Zhurnal £ (1956) 3-9. Translation in: Soviet 

Physics-Acoustics ¿ (1956) 1-7 

20. ) Adamskii, V. B. , and Popov, N.A. "The Motion of a Gas Under 

the Action of a Pressure on a Piston, Varying according to a Power 

Law" Prikladnaya Matematika i Mekhanika 2^(1959) 564-573. 

Translation in: Applied Mathematics and Mechanics 23 ( 1959) 

793-806 

21. ) Zhukov, A.I. , and Kazhdan, Ya. M. "Motion of a Gas Due to the 

Effect of a Brief Impulse" Akusticheskiy Zhurnal ¿_ (1956) 352-357. 

Translation in: Soviet Physics - Acoustics (1957) 375-381 

22. ) Dienes, J.K. "Late-Stage Equivalence and Similarity Theory for 

One-Dimensional Impacts" General Atomic Division, General 

Dynamics Corp, , Report No. GA-5755 (Nov. 1 1, 1 964) AD 608870. 

Reprinted as pp. 187-219 of the Proceedings of the Seventh 

Hypervelocity Impact Symposium, Volume II (Feb 1965) AD 463228 

23. ) Miréis, H. "Hypersonic Flow Over Slender Bodies Associated with 

Power-L^iw Shocks" pp. 1-54 of Advances in Applied Mechanics, 

Volume VII, Ed. by H. L. Dryden and T. von Karman, Academic 

Press, New York (1962) 

24. ) Zeldovich, Ya. B. , and Rayzer, Yu. P. Physics of Shock Waves 

and High-Temperature Hydrodynamic Phenomena, edited by 

W. D. Hayes ard R. F. Probstein, Volume II. Academic Press, 

New York ( 1967) 

25. ) Yakura, J. K. "Theory of Entropy Layers and Nose Bluntness in 

Hypersonic Flow" pp 421-470 of Hypersonic Flow Research, 

117 



edited by F. R. Riddell, Volume 7 of Progress in Astronautics and 

Rocketry, Academic Press, New York, (1962) 

26. ) Guiraud, J.P. "Asymptotic Theory in Hypersonic Flow" pp 70-84 

of Fundamental Phenomena in Hypersonic Flow tedited by J. G. Hall. 

Cornell tjniversity Press, Ithaca, N. Y. , (1966) 

27. ) Van Dyke, M. D. Perturbation Methods in Fluid Mechanics 

Academic Press, New York (1964) 

28. ) Chou, P. C. , and Burns, B. P. , "Late-Stage Equivalence in One- 

Dimensional Impacts" Journal of Applied Physics ¿8 (1967) 

553-560 

29. ) Johnson, W.E., "OIL: A Continuous Two-Di mensional Eulerian 

Hydrodynamic Code" General Atomic Division, General Dynamics 

Corporation, Report No. GAMD-5580 (January 7, 1 965) AD 477240 

30. ) Grib, A. A., Ryabinin, A.G., and Khristianovich, S.A. "On the 

Reflection of a Plane Shock Wave in Water from a Free Surface" 

Prikladnaya Matematika i Mekhanika 20 (1956) 532-544 

31. ) Ryzhov, O. S. , and Khristianovich, S.A. "On Nonlinear Reflection 

of Weak Shock Waves" Prikladnaya Matematika i Mekhanika 22 

(1958) 586-599. Translation in Applied Mathematics and 

Mechanics ¿2 (1958) 826-843 

32. ) Grib, A. A., Ryzhov, O.S. , and Khristianovich, S.A. "Theory of 

Short Waves" Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi 

Fiziki, (1960) No. 1, 63-74 

33. ) Zaslavskii, B. I. "Some Particular Solutions of the Equations of 

'Short Waves' " Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi 

118 



Fiziki (1962) No. 1 . 34-38 

34. ) Zaslavskii, B. I. "On the Reflection of a Spherical Shock Wave in 

Water from a Free Surface" Zhurnal Prikladnoi Mekhaniki i 

Tekhnicheskoi Fiziki (1963) No. 6, 50-58 

35. ) Zaslavskii, B. I. "On the Nonlinear Interaction of a Spherical Shock 

Wave, Arising as the Result of the Explosion of a Submerged 

Charge, with a Free Water Surface" Zhurnal Prikladnoi Mekhaniki 

i Tekhnicheskoi Fiziki (1964) No. 4, 57-65 

36. ) Collins, R. "Intense Explosions at the Ocean Surface" College of 

Engineering, University of California, Berkeley, Report No. 

AS-66-9 (Aug 1966) AD 800347 

37. ) Collins, R. , and Holt, M. "Intense Explosions at the Ocean 

Surface" Physics of Fluids J_l_ (1968) 701-713 

38. ) Hertzberg, A., and Kantrowitz, A.: "Studies with an 

Aerodynamically Instrumented Shock Tube" Journal of Applied 

Physics 2J_ (1950) 874-878 

39. ) See, for example: Streeter, V. L. : Fluid Dynamics, 1st Edition, 

Chapter 2, Section 8. McGraw-Hill, New York (1948) 

40. ) Frasier, J.T.: "Hypervelocity Impact Studies in Wax" Ballistic- 

Research Laboratories Report No. 1 124 (Feb 1961) AD255772. 

See also; Karpov, B. G. : "Transient Response of Wax Targets to 

Pellet Impact at 4 km/sec" Ballistic Research Laboratories Report 

No. 1226 (Oct I 963) AD 428221, Frasier, J.T., and Karpov. B.G. ,: 

"The Transient Response of Wax Targets Subjected to Hypervelocity 

Impacts" Experimental Mechanics 5^ ( 1 965) 305-312, Frasier, J.T., 

119 



41. ) 

42. ) 

43.) 

44. ) 

45. ) 

46. ) 

47.) 

Karpov, B. G., and Holloway, L. S. : "The Behavior of Wax Targets 

Subjected to Hypervelocity Impacts" Proceedings of the Seventh 

Hypervelocity Impact Symposium, Volume V, pp. 123-160 

(Feb 1965) AD 463231, and: Frasier, J.T.: "The Transient 

Response of Targets Subjected to Hypervelocity Impacts" 

Ballistic Research Laboratories Report No. 1290 (July 1965) 

AD 474604 

Courant, R. , and Friedrichs, K. O. Supersonic Flow and Shock 

Waves Interscience Publishers, New York (1948) 

Stanyukovich, K. P. Unsteady Motion of Continuous Media 

Pergamon Press, New York (I960) p. 362 

Liepmann, H.W., and Roshko, A. Elements of Gasdynamics 

Wiley and Sons, New York ( 1957) p. 99 

Johannesen, N. H. , and .Meyer, R.E. "Axially - Symmetrical 

Supersonic Flow near the Centre of an Expansion" Aeronautical 

Quarterly £ (1950) 127-142 

Häkkinen, R. J. "Supersonic Flow Near Two-Dimensional and 

Axially Symmetric Convex Corners and Curvature Discontinuities" 

Douglas Aircraft Company Report No. SM-27747 (July 1958) 

Häkkinen, R. J. "Further Results on Supersonic Flow Near Convex 

Corners" Douglas Aircraft Company Report No. SM-35992 

(March I960) 

Weiss, R.F., and Weinbaum, S. "Hypersonic Boundary-Layer 

Separation and the Base Flow Problem" AIAA Journal 4 (1966) 

1321-1330 

120 



"IN") Deribas, A. A,, and Pokhozhaev, S. I. : The Problem of an 

Explosion on the Surface of a Liquid" Doklady Akademii Nauk, 

SSSR 144 (1962) o24-526. Translation in: Soviet Physics- 

Doklady ]_ ( l(>62) 1H3-384. 

49.) Minin, V. F. , "Explosion on tlie Surface of a Liquid" Zhurnal 

Prikladnoi ,\h khaniki i Tekhnicheskoi Fiziki (1961), No. 3, 

139-161. 1 ranslat ion available as Air Force Systems Command, 

Foreign '1 echnology Division, Rept No. MT -64-3 1 9 (Feb ¿H, 1966) 

275-281. AD 636992 

60. ) Hayes, W. D. , and Probstein, R. F. Hypersonic Flow Theory 

Ac ademic Press, New York (1959). See especially Chapter 4. 

5 1.) Taylor, .1. L. , "An Exact Solution of the Spherical Blast-Wave 

Problem" Philosophical Magazine 46 (1955) 3 17-320 

52.) Latter, R.: "Similarity Solution fur a Spherical Shock Wave" 

Journal of Applied Physics _26 (1955) 954-960 

5 3.) Sakurai. A., "An Exact Solution of the Blast-Wave Problem" 

Journal of the Physical Society of Japan 10 (1955) 827-828 

54. ) Rae, W.J., "Nonsimilar Solutions tor Impact-Ce ne rated Shock 

Propagation in Solids" Cornell Aeronautical Laboratory Report 

No. AI-1821-A-2 (March 1965) N65-21625 

55. ) Davids, N. , Huang, Y.K., and Juanzemis, W. , "Some Theoretical 

Models of Hype rve locity Impact" Proceedings of the Fifth 

Symposium on Hypervelocity Impact, Volume I. Part I, (April 1962) 

I I I - I 32. AD 284282 

56. ) Davids, N. , and Huang, Y. K. "Shock Waves in Solid Craters" 

121 



Journal of the Aerospace Sciences ¿9 (1962) 550-557 

57. ) Rice, M.H., McQueen, R.G., and Walsh, J. M. , "Compression of 

Solids by Strong Shock Waves" pp. 1-63 of Solid State Physics, 

Advances in Research and Applications, Edited by F. Seitz and 

D. Turnbull, Volume 6. Academic Press, New York ( 1958) 

58. ) Bjork, R. L. "Analysis of the Formation of Meteor Crater, 

Arizona: A Preliminary Report" Journal of Geophysical Research 

66 (1961) 3379-3387 

99.) lillotson, J.U. "Metallic Equations of State for Hypervelocity 

Impact" General Atomic Division, General Dynamics Corporation, 

Report No. GA-3216, (July 18, 1 962) AD 48671 1 

! f). ) Riney, T.D. , "Solution of Visco-Plastic Equations for 

Axisymmetric !lypervelocity Impact. Second Summary Report, 

3 Nov 1961-2 Nov 1962" APGC TDR-62-74 (Dec 1962) AD 294959 

61. ) Gylden, N. , "On the Similarity between Compressible, Nonviscous 

Flows in Metals" Journal of Applied Physics _?6. (1965) 2082 

62. ) Gogolev, V. M. , Myrkin, V.G. , and Yablokov, G. I. 

"Approximate Equation of State of Solid Bodies" Zhurnal Prikladnoi 

Mekhaniki i Tekhnicheskoi Fiziki, No. 5 (Sept-Oct 1963) 93-98. 

Translation in Air Force Systems Command, Foreign Technology 

Division, Report No. FTD-MT-64-61 (8 Feb 1^65) 139- 148. 

N65-30413 

6 3.) Enig, J.W. "A Complete E.P.V.T.S, Theromodynamic 

Description of Metals Based on the P, u Mirror-Image 

Approximation" Journal of Applied Physics 34 (1963) 746-754 

122 



Enig, J.W., and Petrone, F.J., "Equation of State and Derived 

Shock Initiation Criticality Conditions for Liquid Explosives" 

Physics of Fluids 9 (1966) 398-408 

Walsh, .1, M. , and Christian, R. H. , "Equation of State of Metals 

from Shock Wave Measurements" Physical Review 97 (1935) 

1544-1556 

Harlow, F.H., 'The Particle-in-Ce 11 Method for Numerical 

Solution ol Problems in Fluid Dynamics" pp 269-Z88 of Experi - 

mental Arithmetic. High Speed Computing and Mathematics. 

Volume 15 of Proceedings of Symposia in Applied Mathematics. 

American Mathematical Society, Providence, Rhode Island (1963) 

For a sampling of articles describing the partie le-in-c.-11 method, 

various modifications of it, and other methods as well, see 

Fundamental Methods in Hydrodynamics. Volume 3 of Methods in 

ii2.tT1Putati°nal Physics, edited by B. Alder, S. Fernhach, and 

M. Rotenberg, Academic Prcos, New York (1964) 

Bjork, R. L. , "Effects of a Meteroid Impact on Steel and Aluminum 

m Space" Tenth International Astronautical Congress Proceedings, 

Volume 1, pp 505-514. Springer Verlag, Vienna (I960) 

Brode, H. L. , and Bjork, R. L. , "Cratering from a Megaton 

Surface Burst" RAND Corporation Report RM-2600 (June 30, I960) 

AD ¿50380 

Riney, r.D. , 'Theoretical Hypervelocity Impact Calculations 

I'sing the PICWICK Code" Interim Report, ¿4 June 1963 - 

2 3 December I 063, ATL-TDR-64-8 (March 1964). AD 434220. 

123 



Also available as General Electric Space Sciences Laboratory 

Report R64SD13 (February 1964) AD 430606. 

Riney, T. D. , "Behavior of Metals During Hypervelocity Impact 

Cratering" pp 419-445 of Developments in Mechanics. Volume 2. 

Part Solid Mechanics. Pergamon Press. New York (1965) 

Riney, T.D. , and Heyda, J.F., "Hype rve locity Impact 

Calculations and their Correlation with Experiment" General 

Electric Company Space Sciences Laboratory Report No. R64SD64 

(September 1964) AD 606123 

Riney, T. D. , and Heyda, .J.F., "Hypervelocity Impact Calcu¬ 

lations" pp 77-186 of the Proceedings of the Seventh Hypervelocity 

Impact Symposium, Volume 2 (February 1 965) AD 463228 

Heyda, J. F. , and Riney, T. D. , "Peak Axial Pressures in Semi- 

Infinite Media under Hypervelocity Impact" pp. 75- 122 of the 

Proceedings of the Seventh Hypervelocity Impact Symposium, 

Volume 3, (February 1965) AD 463229. Also available as General 

Electric Space Sciences Laboratory Report No. R64SD87 

(February 1964) AD 452991 

Heyda, -1.1., and Riney, 1 . I). , "Peak Pressures in Thick Targets 

Generated by Reduced Density Projectiles" National Aeronautics 

and Space Administration Contractor Report No. CR-609 

(September 1966) N66-36369 

Riney, 1 . D. "Depth of Penetration of Hypervelocity Projectiles" 

AIAA J ournal _3_ (1965) 52-60 

Cole, R.H. , I nderwater Explosions Princeton University Press, 

124 



«•»I*.. 

Princeton. N. .1.. (I94K) 

7K. ) Hiork. R. L. . Kreyenhagen, K. N. , and Wagner. M il. . "Analytical 

Study of Impart Efferts as Applied to the Meteoroid Hazard" NASA 

Contractor Report CR-757 (May 1967) N67-290ÍH 

7f». ) Fowles. (i. 1Ï. . "Attenuation of the Shot k Wave Produced in a 

Solid by a Flying Plate" lournal of Applied Physics (I960) 

655-661 

HO.) Curran. ID. It.. "Honhytlrodynamir Attenuatitin of Shock Waves in 

Aluminum" Journal of Applied Physics _F4 (I'tbi) ¿677-^685 

HI.) Chou, P. C. . and Allison, F.E.. "Strong Plane Shock Produced by 

Hypervelocity Impact anti I.ate-Stage Equivalence" lournal of 

Applied Phv its _F7 (1966) H53-H60 

H2.) Madtlen, R. "The Application of the Method of Charactt r’stits 1 i 

Three Indi pendent Variables to the Hypervelocity Impact T^roblem" 

PhD Thesis. V irginia Polytechnic Institute, (June 1967) 

Ht.) Madden, K. . and Chang. T.S. , "Axially Symmetric Hypervelocity 

Impact Calculations t'sing the Methotl of Characteristics' North 

Carolina State t niversity. Report No. TSC-6H-1 (February I96H) 

H4, ) Oshima, K. , "Blast Waves Produced by Exploding W ir««" 

Aeronautical Research Institute. Uni'e rsity of Tokyo, Report No. 

158 (July I960) 

H5. ) Oshima, K. . "Blast Waves Produced by Exploding Wires 

pp 159- 180 ot ! Ixpioding W ires, Volume Edited by W.Ci. Cha« e 

and H.K. Moore. Plenum Press, Nev. York (196¿) 

Hb. ) Oshima, i\. "Quasi-Similar Solutions of Blast Waves" 

I ¿5 



Aeronautical Research Institute, University of Tokyo, Report No. 

386 (March 1964) 

87.) Lewis, C. H. , "Plane, Cylindrical, and Spherical Hlast Waves 

Based upon Oshima's Quasi-Similarity Model" Arnold Engineering 

Development Center TN 61-157 (December 1961) AD 268654 

HH.) Lee, B. H. K. , "Nonuniform Propagation of Imploding Shocks and 

Detonations" AIAA Tournais (1967) 1997-2003 

89. ) Cha re st. .1. A. , "Measurements of Shock-Wave Pressures 

Generated by Hypervelocity Impacts in Aluminum" General Motors 

Corp. , Defense Research Laboratories, Technical Report No. 

TR64-58, NASA Contractor Report CR-78399 (November 1964) 

N66-37523 

90. ) Rae. W. I., and Kirchner, ILF3., "A Blast-Wave Theory of 

Crater Formation in Semi-Infinite Targets" Proceedings of the 

Sixth Symposium on Hypervelocity Impact, Volume 2, IJart 1. 

(August 1963) 163-227 AD 423063 

91. ) Rae, W.J. "A Critical Review of Impact Theories" Paper 

presented at the Highwater Conference on Meteoroid Impact, 

Highwater, Quebec, (July 14-15, 1966) Available from the 

Library. Cornell Aeronautical Laboratory, and from CFSTI: 

AD 815234 

92. ) Porr.el, 1.13., "Height of Burst lor Atomic Bombs, 1954, Part I, 

The F ree-Air Curve" Los Alamos Scientific Laboratory Report 

LA- 1664 (May 1954). Available from CFSTI. 

93. ) Zaker, T.A., "l^oint Source Explosion in a Solid" Armour 

126 



94. ) 

95.) 

96.) 

97. ) 

98. ) 

99. ) 

Research Foundation, Illinois Institute of Technology, Report No. 

-A. F -4132-6 (No- ember 1969) Available from CFSTI 

Bach, G. G. . and Lee, J.H. , "Shock Propagation in Solid Medie" 

A IAA Paper No. 67-141 (January 1967 ) 

Friend, W . H. . Murphy, C. L. , and Shanfield, I. , "Review of 

Meteroid-Bumper Interaction Studies at McGill University" 

McGill University, Space Research Institute Report No. SRI-R-15, 

NASA Contractor Report No. CR-54857 (August 1466) N67-35001 

Maiden, C.J., Gehring, J.W., and McMillan, A.R.. 

"Investigation of fundamental Mechanism of Damage to Thin 

largets by Hypervelocity Projectiles" General Motors, Defense 

Research Laboratories Report No. TR 63-208 (March 1963) 

AD 404274 

Rae. W.,1. , "Comments on the Solution of the Spall-Fracture 

Problem in the Approximation of Linear Elasticity" Cornell 

Aeronautical La boratory Report No. AI-1821-A-3, LASA 

Contractor Report CR-54250 (January 1965) Ms-lot^ 

Loe ffler, LJ.. Lieblein. S. . and Clough, N. , "Meteroid 

Protection for Space Radiators" pp 551-579 of Power Systems for 

Space Flight, Edited by M.A, Zipkin and R.N. Edwards. V.Jume II 

Progress in Astronautics , Academic Press, New York (190}) 

For an excellent summary, see: Doran, D. G. , and Linde, R.K. . 

Shock Eilet ts in Solids" pp 229-290 ot Solid State Physics, 

Advances in Research anti Applications, Edited by F. Seitz end 

D. Turnbull. Volume 19. Academic Press. New York ( 1966) 

127 



100. ) Hopkins, H.G., "Dynamic Expansion of Spherical Cavities in 

Metals" pp 8 3-164 of Progress in Solid Mechanics, Volume 1. 

Ed. by I. N. Sneddon and R. Hill. North Holland Publishing Co. , 

Amsterdam, (I960) 

101. ) Herrmann, W. , Jones, A.H., and Percy, J.H., "The Inclusion of 

Material Strength in Hydrodynamic Calculations" U. S. Air Force, 

Special Weapons Center, Report No. TDR-63-12 (April 1963) 

AD 410386 

102. ) McDowell, E. L. , "Deviatoric Effects in High Intensity Stress 

Waves" U.S. Air Force Weapons Laboratory Report No. TR-65-15 

(August I 965) AD 620334 

103. ) Lees, L. , and Kubota, T. "Inviscid Hypersonic Flow over Blunt- 

Nosed Slender Bodies" Journal of the Aeronautical Sciences 24 

(1957) 195-202 

128 



Appendix 1 

APPROXIMATE SOLUTION OF THE PLANE-WAVE, PERFECT-GAS CASE 

A determinate solution can be found if the small amount of mass 

neglected, and the constant in Eq. (23) are used as two parameters to match 

the total energy and momentum. To actually evaluate these parameters, it 

is necessary to begin by finding the asymptotic form of the solution at large 

negative values of £ . The fact that the pressure approaches zero in this 

region means that f1 can be neglected in Eq. (52), leading to the 

approximate solution 

( A - 1 ) 

This relation is now inserted in Eq. (51), to find the density: 

(A - 2) 

Finally, use of <p and ^ in Eq. (53) gives the asymptotic pressure 

formula 

(A - 3) 

The constants A and /), are not independent. Lees and Kubota (103) have 

shown that the similarity equations have the first integral 

r 
-f 

(A - 4) 
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Use of the asymptotic formulas in this relation shows that 

y-H 
A. («)' 

(A-5) 

I he value of must be found by integrating the similarity equations out to 

a large negative value of Ç . For example, in the case ^-1.4 , the 

exact solution shows that . In general, ^ depends on / . 

The small amount of mass to be neglected, yW.o , will be to the 

left of a point r (t) : 

wie=/>o/4¿ J ^ (A-6) 

-co 

The integral appearing here can be evaluated directly. The expression 

stating the conservation of the mass lying between the shock and a control- 

surface position £ .,(0 is 

(A-7) 
2¿ I “A ( *so ~U<) ~f(¿cS)[¿cs ~ (¿cS)] 

¿a ' 

Sedov (3) has pointed out that this relation, expressed in terms of the self¬ 

similar functions leads to the integral 

V 

vf A = - (A-K) 

a- 
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The same integral can be derived by integrating Eq. (51) by parts. If this 

relation is now used in Eq. (A-6), the result is 

(A - 9) 

The quantity yA0 is made independent of time by choosing 

T = -*,t (A - 1 0) 

This gives 

vn0 K, 

tJ 
i-*j 

I - a/ 

a/ /• (A -1 1 ) 

The parameters /^( and are the two that are used to match the 

quantities £ and . 

The energy-conservation integral, with >y\0 neglected, is 

I 
fJ X i . - 2 

)d\ (A-12) n A i j v¡r., 
To 

The integral appearing here can be evaluated from the expression for the 

conservation of the energy between the shock and the control-surface position: 

dt 

r 't 
j /J = ¿.o') ~ Lt“] 
-tS ■So 

' So 

(A - 1 3) 

JM!*-)] 1 + [ÿaj 
■tS 
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Rewriting this in terms of the self-similar functions yields (3) 

ï. . -A 
!'(i 

-tJ 

3d-z. 

(A- 14) 

-“O- 

As before, this integral can also be found by manipulation of the similarity 

equations. 

If this integral and the asymptotic solutions are now used in 

Eq. (A-12), the result is 

/ .2. ¿-W 1 

(A-15) 

Finally, the momentum-conservation integral 

P =/>o j' 

rQ 
(A -16) 

is evaluated by expressing the conservation of momentum for the fluid lying 

between the sho« k and a control surface 

S° 
ftidi (¿sa-u.,)-Om] ]¿cs-m.(Zc!)] 

2cs L ^ 

- It], 

*cs 

+ Lt] 

(A - 1 7) 

:S0 2cs 

When this is rewritten in terms of the self-similar functions, the result is 

(again shown by Sedov (3) and derivable by manipulation of the similarity 

equations) 

i i J ¿í = 
ï. 

-f + (A-l#) 
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With the use of this result, the momentum-conservation integral becomes 

(A -19) 

As ^ ^ — Qo ■ P vanishes. Thus, if all the mass were to be included in 

this integral, and described by the self-similar solution, its total momentum 

would be zero, as pointed out by Zeldovich (14). He takes the viewpoint that 

the solution should be interpreted in this light, namely, as one in which the 

input energy is matched to that of the flow by neglecting some of the mass, 

and in which the momentum acquired by the How is considered to be zero, a 

condition guaranteed by including all of the mass in the momentum- 

conservation integral. If this viewpoint is taken, Eqs. (A-11) and (A-lh) 

are solved for ^ and in terms of £. and w\0 ; the resulting 

expression for the shock trajectory is 

whe re 

g- W 

(A - 2 1 ) 
I -N/ 

An approximate result in which the length scale is determinate 

can be iound (16) hy neglecting ya0 in the momentum-conservation integral, 

which gives 

t-s/ 

2iJ-\ 
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Solving for /¡ and in terms of £ and P gives 

ç (O 
fZ /A? a. 

\ <? 

(A-23) 

= 
4/), g Vo 

f3 

I -n/ 
(A-24) 

where 

Gtt) = 
¿ (J-W) 

I - tJ 

2*J-I 

(3-4-1V 

44 (/-a/)(¿-w) 

(A - 25) 

This solution then takes the form 

2« 

(A-Z6) 

For ^ =. /,4 , the values = fJ ~ 0■ (o • lead to 

¢,(,.4) = (>2S/s),/r 

134 




