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ABSTRACT

We have investigated the conditions wlich must be imposed on the
microscopic equations of motion to obtain exact linear :aws for macroscopic
(phase averaged) variables. The starting point in this study has been the }
lowest order master equation (Pauli equation) which is a linear microscopic i
equation in the state probabilities with a time-independent transition matrix. q
Discrete and continuous variable master equations as well as their multivariate
generalizations have been considered. In the case of continuum state variables, |
welhaVc used various Fokker-Planck equations and their corresponding Langevin J
equations as our starting microscopic equation of motion. In each case the
conditions which must be imposed to obtain linear macroscopic transport equa-
tions have been derived and discussed. The problem of the derivation of linear
macroscopic laws from non-linear microscopic laws has been discussed in the
context of oﬁr results on linear microscopic laws. We find that exact linear
macroscopic laws can be derived even from linear microscopic laws only when

stringent conditions are imposed on the form of microscopic transition rates.

Key Words: Non-equilibrium statistical mechanics, stochastic processes,

transport laws, master equation, Fokker-Planck equation,
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I, INTRODUCTION

Linear macroscopic laws, by which we mean relations of the form

di

LR (t.1)

where @ is a set of macroscopic (phase averaged) variables and M a matrix of
time independent transport coefficients, play an important role in non-
equilibrium statisticai mechanics. They have.been the subject of much
theoretical work which can be divided into two classes: 1) the derivation of
linear macroscopic laws from microscopic equations of motion and 2) the
evaluation of the transport coefficient matrix M. It is to the first question
that this paper is addressed,

It is important to point out that we are -uncerned here only with
the derivation of exact linear laws of the form (1.1), i.e., with the condif
tions on the microscopic equations which lead to exact linear laws valid for
all times t and valid for all initial (microscopic) conditions. We do discuss
in the body of this paper some of the conditions and circumstances leading to
approximate linear laws, but we do so only in passing and to illustrate some
specific points.

The ultimate objective of such a study would be to determine the neces-
sa¥y and sufficient conditions on the Hamiltonian of the microscopic equations

of motion which lead to exact macroscopic linear laws. Such an objective is,

however, too ambitious since the relation hetween the Liouville equation and

the macroscopic equation is a quite distant one and the connection is not. easy
to make, We have therefore chosen as our starting point the lowest order

master equation (the Pauli equation)(l)

-
) 5B , (1.2)



where ?(t) is a vector of state probabilities and A is the transition rate
matrix which is taken. to be independent of time. In conjunction with Eq. (1.2)
we also consider the related Fokker-Planck equations and Langevin eguations

as suitable starting points for our inquiry,

In using the master equation (1.2) as our microscopic transport
equation we have greatly limited the scope of our study. The master equation
(1.2) is based on the aésumption of weak interactions between a subsystem and
8 time-invariant heat bath, 'Also, in using Eq. (1.2), we are restricting
ourse.vas tu Markovian processés since we do not consider time dependent transi-
tion matrices, i.e.,, transition kernels non-local in time. The master equatién
(1.2) is furthermore a linear microscopic equation; we do'not consider hcre
the problem of the derivation of linear macroscopic laws from non-linear
microscopic equations. It is important to note, and one of the main results
of this work, that severe restrictions must still be placed 6n the form of thé
transition matrix A to obtain an exact linear law even though the transifion
matrix is already independent of time and even though the microscopic trans-

port equation is already linear in the microscppic variables.

In a recent paper van l(ampen(zJ has pointed out that some known linear
macroscopic laws have their antecedents in what are probably non-linear
microscopic laws and thus should be derivable from such non-liﬁ;ar microscopic
laws. To quofe: "The basic remark is that linearity of the macroscopic law
is not at all the same as linearity of the microscopic equation of motion. In
most substances Ohm's law is valid up to a fairly strong field; but if one

visualizes the motion of an individual electron and the effect of an external

field E on it, it becomes clear that microscopic linearity is restricted to

oniy extremely small field strength., Macroscopic linearity, therefore, is not

due to microscopic linearity, but to a cancellation of non-linear terms when

averaging over all particles."
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Following up van Kampen's remarks, Bixon and Zwanzig(s) derived the macroscopic
transport squation for the average position and velocity for a non-linear oscil-
lator (Duffing's oscillator) under the influence of a random daussian force,
They succeeded in deriving a linear equation for the avaraged motion which was,
however, valid only for small Jeviations of the averaged variables from thermal
equilibrium and which contained a time dependent (non-Markovian) term that
depended on the non-linear term of the original microscopic equﬁtion of motion.
Their model thus did not yield an exact linear macroscopic equation valid fo?
all initial conditions and all times, As far as we are aware, tle van Kampen
and Bixon-Zwanzig papers are the first attempts so far to establish the relation
between non-linear microscopic and linear macroscopic lews of motion.

In view of the stringent conditions which must be imposed already on

linear microscopié laws to obtain linear macroscopic laws and in view of the

- serious difficulties encountered by van Kampen and by Bixon and Zwanzig it would

appeer that van Kampen's analysis of tlie problem as quoted above should ﬁe con-
sidered as a tentative working hypothesis. It is very reasonable but has not
yet been verified. The clarification of this problem presents an important
area of research in non-equilibrium stqtisgical mechanics and transport pro-
cesses, |

The following interesting point should be noted. If a linear law is ob-
tained for the mean of some variable, it will also apply to the mean of this
variable conditional on some given initial value. Since the time autocorrelation
function can be written as the average over the initial distribution of the
conditional mean it is clear that the time dependence of the autocorrelation
function is identical to that of the mean value of the variable itself. Thus,
& macroscopic linear law for the relaxation of an averaged variable implies
the exponential relaxation of the autocorrelation function of the microscopic

variable,

RS TEE



In our discussion we ;onsider separately, for the sake of convenience,
the case of discrate and continuous variables. In Section II we focus our
attention on the discrete, univariate master equation and develop the necessary
and sufficient conditions which must be imposed on the transition matrix. In
Section III we reforﬁulate the prob.em in terms of an eigenvalue - eigenfuncgion
analysis of the solution of the master equation. Section IV is devoted to
relating the linear law transition matrix to the corresponding Hamiltonian

through the perturbation responsible for the relaxation. As an example, we

consider a particular Hamiltonian which could be a model of phonon-phonon
interaction., In Section V we study the generalization to the multivariate
discrete master equation and treat spin relaxation, via the Redfield and Bloch
equation as an example of an approximate linear macroscopic law. In Section
VI we turn our attention to the continuous master equation. We investigate
there the conditions which must be imposed on various Fokker-Planck equations
and their counterpart Langevin equations to obtain exact linear macroscopic

laws., -
£
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I1. LINEAR LAWS FROM DISCRETE, UNIVARIATE MASTER EQUATIONS

In ordér that the master equation for the discrete states ns=0,l,...

dp_(t) '
—F " L Al (® (2.1)
n

‘where Pm(t) is the probability of finding the system in state m at time t and

where the.Amn are the transition rates between states n and m represent a

physically realistic situation we impose, for all n and t, the folloving

‘restrictions:
P (t) >0 ; % P (t) = 1; (2.2)
% Am; =0 (2.3)
AP = A () (2.4).

The conditions (2.2) state that the probabilities are positive and correspond
to a closed system. The conditions (2.2) in turn imply the sum rule (2.3).
Condition (2.4), where the Pée) are the equilibrium probabilities is a state-
ment of detailed balance. The above conditions are sufficient to prove that
the eigenvalues {Ai} of the matrix A are real and negative except for one
which is zero and corresponds to the equilibrium solution Pne. For the systems
studied in this paper Eqs. (2.2) - (2.4) are always satisfied,

We define the average value, u(t),of the state variable n as

| @

WD) = X 0 Py(®) | 2.5)

As has been shown(4) the necessary and sufficient condition to obtain a linear

law of the form (1.1) for the moment u(t) is
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]
M,

%:mAm-an+6 (2.6)

where a and § are constants. This linear law is, as can be seen from

Eqs. (2.1), (2.5) and (2.6),

95%31.. au(t) + 8 (2.7)

from which it follows that the constants o and are related by

6 (e)
5= - . (2.8)

where u(e) is the equilibrium value of the moment u(t) corresponuing to the
equilibrium distribution Pée). The two sum rules on the matrix A, Eq. (2.3)
and (2.6) are not sufficient to determine the form of the Amn' In order to
make some progress it is necessary to place further restrictions on the
systenm,

| As a specific example, we assume that only nearest neighbor transitions
are permitted but place no restrictions on the level spacing. For such a system
we have just enough conditions for an éxplicit determination of the Amn' From
Eqs. (2.3) and (2.6) we obtain
%; Ay = Anel,n - Apopn ® O+ (2.9).
We write the detailed balance equation (2.4) for a canonicdl ensemble as

- Be - Be

= A A (2.10)

A n,n+l 41 © !

n+l,n &n®

where is the energy of the k'th state and g, its degeneracy. Defining
% k Y

=8¢

. n+l
Sn B Bnep © An,n+1 (2.11)

one finds from Eqs. (2.6) through (2.9)
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n « .
S - s“fl " g (an+s); S_1 a0 (2.12)

S, =g O (2.13)

from which it follows that 6 = Ajo: The constant a can be expressed in terms

of the transition matrix by considering the limit

lin § =lin ge ",
N-beo n-+eo

n,nel 0 (2.14)

where we have noted that €n > €no1 Summing (2.12) over all n and using

(2.14) yields, in agreement with Eq. (2.8),

6% - “TeT ) . ’ (2.15)

where -B¢

u(®) g 220 (2.16)

> g

n=o

is the equilibrium average of the variable n. Summation of (2.12) up to a
finite n, and the use of Eqs. (2.9), (2.13) and (2.16) then gives our desired

result a -Be

e (1)
A s A k=o
n,n+l 10 -Be
Bhey ©

(2.17).
n+l

In the case of nearest neighbor transitions then, we find that the matrix A

is uniquely determined, albeit by a summation formula.

To give an example of the evaluatlon of Eq. (2.17) we consider the
case of harmonic oscillators in weak interaction with a heat bath as discussed
by Montroll and Shuler.(s) In this system, only nearest neighbor transitions

can take place. The degeneracies are



g, = 1 n=0,1,.. (2.18)

and the energies €, are given by

€, = ne (2.19).

Evaluating the sum in Eq. (2.17) yields

A = (n+1)AOl (2.20)

n,n+l

and from detailed balance

A = (n+1)e P A (2.21).

n+l,n 01

These are the transition probabilities used by Montroll and Shuler who indeed
féund that they led to a linear law for the mean vibrational energy.

The above formulation has been restricted to nearest neighbor transitions.
We now wish to remove this restriction. V: consider a system with a transition
matrix having a finite range, i.e., |m-n| < = and an infinité set of states
(-» < n < +w), The infinite set of states is not essential to the argument
but simplifies the analysis since it avoids difficulties with boundary conditions,

From Eqs. (2.3) and (2.6) one has

4+
mgzn mA = éi; KAnak,n = Anok,n) = on+s (2.22)

where k = m-n'and k=1,2,..p with p < », Introduction of the variable

p(e) “Ben-k
) n-k _ ®n-k ¢
£(n,k) E @ T (2.23)
n e

and the use of detailed balance leads to the condition

Eﬁ; KlApk,n = KA, ] = anes (2.24).



The condition (2.24) is the non-nearest neighbor transition analogue of
condition (2.9). Equation (2.24) does not suffice to determine the Amn
uniquely and additional restriction are required, |

We shall assume that the transition rates Anm are polynomials of
dégree Ninn

N

A ¢, (k) (n+k)J \ | (2.25).
P

=
n+k,n

It will be seen that this is a natural choice for the Amn when we make a
connection between the transition rate matrix and the Hamiltonia. >f the
relaxing system in Section IV, Substitution of Eq. (2.25) into (2.24)

yields

kfj e;(0) [(mek)? - £(n,k)n?] = anve (2.26).
=1 j=o

It follows from the form of £(n,k), Eq. (2.23), that (2.26) cannot be
satisfied unless f£(n,k) = £(k); i.e., f(n,k) is i~dependent of n. This
implies, as is evident from Eq. (2.23), that the energies, €n must be of

the form €, = NEj i.e., the encrgy levels are equally spaced. If Eq. (2.26)

is now rewritten as

& j I\ jen 2
gk Z cj (k) { [Q-£(k)]nd + n? ™ k*} = anes (2.27)
=i j=0 [ 2

it can readily be verified that the equality is obeyed only for N=1, We

have therefore shown that, subject to the polynomial form of A Eq. (2.25),

n+k,n’
a linear law for the moment can only be obtained if the ‘transition probabilities

are linear in the occupation number, n,

Ansin = o0 + € (0 [nsk] = 9 () + g, (n a2

n+k,n

and if the states of the system are uniformly spaced. Note that the harmonic

- 10 -



oscillator irapsition rates given by Eq. (2.20) are of this form,

In Eqs. (2.17) and (2,.28) we have derived for two well specified sys-
tems the forms of the transition rates which lead to linear laws. Evidently,
by making different assumptions about the level spacing, the types of allowed
transitions and the form of the transition rates [analogous to Eq. (2.25)], we
could obtain additional expression for transition ratcs which lead to linear
laws, The allowed transition rates can not be determined uniquely from
Eqs. (2.3) and (2.6) alonc since these are just conditions on the zeroeth
and fiyst aements of A, Only if the time dependence of higher moments of
A were specixricd would it be possible to determine the form of the transition
rates A which lead to a linear law without placing subsidiary restrictions

on the spacing of the states and the transitions between thenm,

=11 -



I11. EIGENFUNCTION ANALYSES FOR LINEAR LAWS

In the previous section we have presented "sum rule" conditions
for obtuining a linear law for macroscopic variables. These rules can be
reformulated in terns of an eigenvalue-eigenfunction analyses.
The eigenvalue solution of the master equation (2.1) is(lJ
e A, Ay At
Py = X (LBoykt e (3.1)
J=o
=y ' Y Ry
where P{o) is the initial value of the probability vector P, and where L’ and

'ij are, respectively, the left and right eigenfunctions of the transition matrix

A

j=0,1,2,... (3.2).

For the case of non-degencrate eigenvalues Aj' which is insured by the condi-

, Y A
tions (2.2) through (2.4), the Lj and R’ are orthonormal

Ay Ak
L RK . 8y (3.3).

It has been pointed out by van Kampencz) that in order to obtain a linear

law for the averaged variable it is necessary that the left eigenvector

-
Lj (expressed in component form) when operating on the matrix A yiclds

T LA = ames (3.4)

1 nm
nxn

wherc a is one of the eigenvalues Aj. This implies that the eigenvector

Y
L. must be
) 1 1
4 (2 (1 |
L) =l 3 + BL1 ‘(3051

- 12 -



This can readily be verified by substituting Eq. (3.5) into Eq. (3.4). In

component form one then finds

- I | '
; Ly AL Aj(m-tBJ (3.6)

which is of the form given in Eq. (3.4). A comparison of Eqs. (3.4) and (3.6)

and the use of the general relation (2.8) shows that

REVEIR KN ¥ g = @ (3.7).

It is clear from Eqs. (3.4) and (3.5} that van Kampen's condition is identical
with the sum rule (2.6) of Shuler and Weiss.(4)
. -3
If we now multiply Eq. (3.1) for P(t) by the eigenvector L’ given in

Eq. (3.5) and sum over all states, we find
u(t) - ul® - o) - w6t (3.8)

where we have used Eqs. (3.2), (3.3) and (3.7). One should note that the
linear law condition (3.4), or equivalently (3.5), implies that the relaxation
of the moment p(t) proceeds by the single exponential term et instead of a
sum of exponential terms. We shall return to this point at the end of this
section,

As an example of this formulation for linear law conditions we consider
the relaxation of harmonic oscillators in weak interaction with a heat bath
studied by Montroll and Shuler, (%) The transition rates for this process

are

-8 -6
A_ = ne Gn-l,m - [n+(n+l)e ]Gnm + (n+1)$

nm n+l,m

(3.9).
nm=0,1,....,

- 13 -



We have already remarked in Section II that these transition rates obey the
sum rule for a linear law, we want to demonstrate here that they also satisfy
the eigenfunction condition given above. The eigenfunctions and eigenvalues

¢f this transition matrix (3.9) have been computed in reference (5); they are
1) = 0738 g0 (1_¢76y-1 ,J (3.10)
m n )
I nod (126792
Ry = & (1-e7) | - (3.11)

where the function z%, the Gottlieb polynomial, is defined by

eI E e @)

for integer values of m, In particular

. =m0

b e [(1-e®mel] (3.13).

The Gottlieb polynomials satisfy the orthogonality relation

[

me k j ke
Y ™ il e (3.14)
26 m m kj

which implies that the left and right eigenvectors are orihogonal

kpd o
2 L R = (3.15).

S
It now remains to verify that the left eigenvector L1 given by Eqs. (3.10)

and (3.12) satisfies the linear law condition (3.4) with-Anm given by Eq.
(3.9). If the above indicated substitutions are made one finds, as can be
verified by straight forward calculation,
Y la = etyme® (3.16)
o nonm

which is clearly =f the form (3.4) with a = -(l-e'e) and 6 = e °. Note that

- 14 -



3

@ = =(1-e") = A, is indeed an eigenvalue of Eq. (3.2) and that -6/a = (6%-1)")
is the equilibrium moment u(e) (équilibrium vibrational energy) for an ensemble
of harmonic oscillators.

It is important to note that the above strict conditions on the eigen-
vector"t\.j are required only if one wants to obtain an exact linear law of

the form (3.8) valid for all times t, 0 st <o, If the eigenvalucs ), of

J

the solution (3.1) of the master equation are well separated, and in particular

if the first non-zero eigenvalue, IAII, is much smaller than all the subsequent
1 _

eigenvalues, |1 | << [3;1, |agl,..., then for ¢ >> T one can rewrite Eq.

(3.1) to a good approximation as

Alt

) =P® 4 el (il Boyjil (3.17).

It is clear that the approximate solution (3.17) leads tc an approximate
linear law of the form (3.8). In this case'one needs to place no restric-
tions on the form of the eigenvector'ij, one only requires that the eigen-
values Aj of the transition matrix A are well separated. The spacing of the
eigenvalues depends entirely on the form of the matrix A of the master equation,
For infinite matrices A, i.e., for systems with infinite (or semi-infinite)
number of states, as are usually found in physical applications, we kﬂow of
no general relations between the matrix A and its eigenvalues from which the
spacing of the eigenvalues could be predicted'g_gzigzi. Note that this is
entirely different from the exact linear case considered above. If the
éigenvectoriﬁ is chosen as in Eq. (3.5), the spectra of eigenvalues is com-
pletely irrelevant for obtaining a linear law as can be seen from Eq. (3.8)
which is exact and does not depend upon the separation of the eigenvalues.
The harmonic oscillator example studied above furnishes a good illustration

of this point since the eigenvalues Aj = -j(l-e'e) are equally spaced. -

- 15 -
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1V. RELATION OF TRANSITION RATES TO HAMILTONIAN FORMULATIONS

We now turn to the interpretation of the results of Section II in
terms of a Hamiltonian formulation. Consider a system whose Hamiltonian can
be written as a heat bath Hamiltonian, Hb' a relaxing subsy.tem Hamiltonian,

Hy, and an interaction V between the heat bath and subsystem
Ha= Hb + Hs +V (4.1)

According to the Golden Rule of time dependent perturbation theory the transi-

tion rates are given by

- 2
L Znh(h)Ianl , hal (4.2)
where the
Voo = (m|V[n) : (4.3)

are the matrix elements of the interaction V expressed in the basis In)‘
which diagonalizes Hs, and N(E) is the density of bath states at energy E,
As dempnstrated in the previous section, Eq. (2.28), in order to
obtain a linear law the transition matrix A must linear in the occupation
numbers for the case of equally spaced subsystem levels, This implies that
the interaction V must linear in the creation-annihilation operators of the

subsystem, b and b*, i.e.,
VA (b+b+) (4.4),

We thus conclude that for a subsystem with equally spaced levels the only
polynomial perturbation whick can give rise to a linear law are those given

by Eq. (4.4).

- 16 -



For the purpose of illustration we will derive, from a given Hamil-
tonian, the form of the transition matrix A which leads to a linear law.

For our Hamiltonian we chose(6)

E=H +H +V | | . (4.5)
where

Hy = 7 21:' oy B . | \4.6)

H = é‘90b+b | 4.7

v a2 ) Zn; ewl/? (atva) (4.8)

[goa) = 65 5 b'p) =1 4.9).

Such a Hamiltonian is applicable, for instance, to a one dimensional solid in
the harmonic approximation with a mass impurity. The {ak} are the modes of
the equal mass particles (the heat bath) with frequencies W s the operators

b and b* refer to the impurity (the subsystem) with frequency 2, and the
heat bath interacts with the subsystem with coupling constants {e ).

Since the Hamiltonian is a quadratic form it can be diagonalized but
in line with our present objective we shall use perturbation theory to calcu-
late A according to Eqs. (4.1) and (4.2). We take as a basis the direct
product of the bath oscillator states {Ml}’ {Mz}....{MN} and subsystem states
{m}, " The squares of the nonvanishing matrix elements of the perturbation are

given by the usual harmonic oscillator expressions

(M) s My poee e My ame [V o My My m) |2

2 (4.10)
€ .
- Zk“, m:—n: M, (n+1)6 (-0, )

- 17 -



where the delta function restricts one to a single energy shell and all equal
quantum numbers are suppressed. We now sum over all possible bath transitions
in the canonical ensemble and replace this sum by an integration over a

continuum of states to obtain from Eq. (4.2)

“M ¢, B8
) 2 Kk
Zk‘ % 6(n°-wk) Mk(ml)o:k e
) Ah R
+1,m =M, €, B
2 2: s k°k
Mh
Me. B (4.11)
W 2: Me KK
max, T k™ -0
> (m+1) duN(w)eW)e (o _-u) —K . = (mel)e © A
M, €, 8 01
o Xk
; e
k
where
: N(ﬂo)ez(ﬂo)
AOI T -—————-2 '“"o (4.12)
no(l-e )

and N(w) is the density of bath states. An analogous calculation for the

inverse transitions yields

A e (m+1)A01 ' : (4.13).

m,m+l

Since these transition probabilities are linecar in the occupation num-
bors of the subsystem a linear law is obtained for the mean value of the

microscopic variable m.

There are two important points to note in regard to Eq. (4.4). First,
we made a stipulation only about the subsystem interaction, i. e., the pertur-
bation must be linear in the creation — anihilation operators of the.subsystem,
This would seem to leave the bath interaction of arbitrary strength and form,
However, the master equation (Pauli equation) used in this study, Eq. (2.1),

is vaiid only in the limit of weak subsystem-bath coupling. One therefore

- 18 -
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'1mplicit1y assumes that the interaction V is of low order in the bath operators.

Secondly, the condition imposcd on the interaction V in Eq. (4.4) is necessary
if one wants to obtain an exact linear law. If one considers approximate
linear laws, as we do in the next section, the class of acceptable perturbaiions

V is more extensive,
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V. MULTIVARIATE DISCRETE LINEAR LAWS (Redfield and Bloch Equations)

In this section we considef the generalization of the univariate linear
law condition to éhe multivariate cﬁse. We shall also inéestigate if there are
additional restrictions which permit the reduction of these multivariate linear
laws to lower dimensions. Finally, as an important example of a multivariate -
linear law, we discuss the Bloch equations which play a central role in the .
theory of spin relaxation, (7) |

Let PN(aN,t) denote the joint probability for the variables
G128y oeedy which satisfies the master equation

N
ipﬁ;:i= 2 AG IR | (5.1)
L .
where the sum runs over all the states of the N variables Yyoeoa Yy The un-
conditional moment of Py with respect to the variable oy is defined as
NG ICID DD MR MRS 5.2)

aN#i a;

Multiplying Eq. (5.1) by o, and summing over all aN, one obtains the multi-
variate sum rule
NN
PO DEERY (CAR I M TR N (5.3)
NEi a, k=1
o i
which is the necessary and sufficient condition for the linear relaxation of

the moment ui(t) as given by

dui(t) N

- ° 2 bik uk(t) + di . (5.4).

This can be rewritten in matrix form as

a.t- = Eop-o-D (5.5)
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which is identical with Eq. (l.1) of the Introduction.

Before illustrating this multivariate sum rule with the example of
spin rclaxation we consider the problem of reducing'an N-variate linear law
to an n-variate linear law where n < N (n=1,2,...N-1). To carry out this
reduction it is necessary to ascertain first whether the N-variable master
equation reduces to an n-variable master equation. The condition under which

this reduction occurs has recently been derived by Bedeaux, Shuler and

(8)

Oppenheim and is
) DI AR Y (5.6).
aN-n

This implics that the transition matrix of the n-variate system must be

N-n

indepcndent of the initial states, y , of the vy variables. A formulation

of the above condition in terms of the eigenvalues and eigenfunctions of the
matrices A(aN,yN) and A(an,yn) may be found in ref. 8. Let us then assume
that condition (5.6) is fulfilled and that the n-variate master equation

P (a",t)
—— = IRECRBING (5.7)
: Y

as well as the N-variate master equation cxist. Then multiplying Eq. (5.1)
by a for iCn and summing over all aN one finds, using the linear law condi-

tion, Eq. (5.3),

ZN o AN(aN,yN) = Zn ay Nz-n AN(GN.YN)
o a o
(5.8).
= Y oa A (") = )
- in ’ e

‘ bigvk * 9
a .

For kcN-n and icn onc has
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by, = 0 (5.9)
so that

) DT WELR S SIS (5.10)

g G ALY 2 by e d '

a
which yields the linear law

n
duy (1) 2 byt Yy (i,ken) (5.11).
dt = '

We conclude that the condition (5.6) is sufficiently strong to reduce the
n-variate master equation to an n-variate linear law,

For our example of a multivariate linear law we consider the problem
of spin relaxation. It is well known that a non-equilibrium system of nuclear
spins immersed in a fluid will undergo a relaxation to its equilibrium state.
One conveniént measure of this relaxation is the time rate of change of the
average magnetization. 1In this example the fluid serves as a heat bath and
the spins.are assumed to be weakly coupled to this system. The wmaster
equation (Redfield equation) for the aa' matrix element of the spin density
matrix, o, has the form(9)

Egggl = luggr Oggr * EE, Raa'BB' “ag1? (5.12)

where Wogt * (EQ-EQ,)/h is the energy differcnce between spin states a and o
and Raa'BB' is the "relaxation matrix" for the transition between spin states
88' and aa'. Under certain conditions the average magnetization can be shown

tc obey the Bloch equations(7)

which are the linear laws corresponding to
the (microscopic) Redfield eguation. These Bloch cquations are approximate;
one does not rigorously obtain a linear law from Eq. (5.12). We now investi-
gate the reduction of the Redfield equation to the Bloch equations in the

context of the conditions which have been derived for multivariate linear

laws. The Redfield equation involve' = relaxation matrix R which is
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obtained from the Hamiltonian.of the complete system, It involves of course
the inteuaction V between the fluid and spins; this is taken to be of the form

Vs 2 F(q)A(q) (5.13)
q

where the sum is over the q interaction terms and where the F(q) are bath
operators and the A(q) are spin operators. If we assume thut the fluid is
classical, one may derive the following expression for the elements of the

relaxation matrix R(g)

8,8'
Ryatas? 2 IAQ A Jq(wus) 4 Jq(wu'ﬁ')]
\5.14)

ay,vB,q . B'v,va' q
B,u,zA A J(B) 6Ba2A Aq J(ws,y)l

where J(w) is the spectral density of the autocorrelation function of the
various bath functions,

4o T
3@ - 3 f g-iut (FF (6)) dt (5.15).

We shall also assume that only spin transitions that conserve energy contribute

significantly to the relaxation; i.e., we require
G-a' = B-g! | (s.16)

For convenience only the z component of the magnetization of a spin
of arbitrary value is considered here. Since we are working in a representa-
tion where the z component of spin is diagonal, the formalism developed above
is applicable. For the interaction V we choose the dipolar Hamiltonian since

it describes the most éommon mechanism of relaxation. In this case one has

the standard expressions(7)
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PRI sl

A0 | ;{ -FLs, e tas o 1_s+)}
A gl 1, } (5.17)

A(")-%-;Is

Oy

o -3y
where we have introduced the z, + and - operators for spins i and S of gyro-
magnetic ratio Y and Vg The specific form of the bath operators F(o)
F(l) and F(z) are of no concern to 3 in this context, The first term of
Eq. (5.12) always yields a linear law 80 we just concentrate on the relaxation
term, It is evident that for the calculntion of the average magnetization,
(I ),only the diagonal elements of the density matrix are required. This
feature, along with Eq. (5.16), the secular term restriction, implies that

the master equation of interest is, in the notation of Eq. (2.1)

do(a,,a.;t) ‘
172 . .
- . 32%3 R(a),ay;8,,8,)0(8,,8,;t) (5.18)
1'72 - ‘

where R is to be identified with our transition matrix A. We now compute
the spin sum rule, Eq. (5.3), by inserting Eq. (5.17) into Eq. (5.14), multiply-
ing by Iz and summing over all states. This ylelds in operator notation,

after a tedious calculation,

+87)

Iz-R_- 2: ulR(ul)uz;Blsz) = 62 [-—-Tg—JL-J(O)(wIBws) + 2s§ J(l)(wl)

182

(s2 + s

¢ 2L 0B g ] )

, [ a2+ 1d

+ £ - __ETE._)L..J(O)(wl-;S) + 215 J(l)(wl)

(5.19)

+ -—Z—LJ(Z) (wlms) ] Sz

- 24 .



ﬁ%

and a similar equation for Sz-R.

The terms in brackets correspond to the bik of Eq. (5.3) with N=2,
Owing to the appearence of the operators Sx’ %y, Ix' and Iy in the bik' thq,e
coefficients are not constants as they are in Eq. (5.3). Thus Eq. (5.18)
does not lead to an ei&qt linear law. However, in carrying out the final
summation
> ["11‘sx'sy'52)31 R blz(lx,Iy,IZ)Bz]o(Bl,Bz;t)

818,
one mekes a high temperature approximation in NMR. In this approximation

the coefficients bll(S) and blZ(I) become

L2 J(O)(wl-ws)

by = & |+ 73 wp + 3P wpug) |
. (5.20)
0)
IV (wy-wg)
by » &4 0 F0 W + §o@ (g tug)

and are now ihdependent of the spin operators I and S. An analogous result
is obtaiﬁed for b,, and b,,. The "sum rule" formalism we have developed here
is thus consistent with the well known result that the master equation for
nuclea. magnetic relaxation leads to an approximate linear law for the magne-

tization,
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Vi. LINEAR LAWS FOR CONTINUOUS VARIABLES (Fokker-Planck and Langevin Equations)

We shall now consider the linear law conditions for master equations

in continuous state space. The master equation is now written in the form

g{-'(x.t) -fA(x.y)P(y.t)dy (6.1).
Multiplying Eq. (6.1) by x and integrating over the range of the variable x we
obtain,(4)

[xA(x,y)dx =aqy + ¢ 4 (5.2)

J

as the necessary and sufficient condition to obtain linear law -

.d%t(;_tl = au(t) + 6 (6.3)

with u(t) given by

u(t) = fx P(x,t)dx (6.4),

Equation (6.2) is the continuum analogue of Eq. (2.6), and much of the dis-

cussion of Section II is applicable to relaxing systems described by Eq. (6.1).
In physicaliapplications one frequently approximates the global kernel

A(x,y) by a local operator. It is this case which we want to study here in

some detail. We accordingly write A(x,y) as a local operator of the form

AG,y) = by ()8 (x-y) + 3 b, (y) 6" (x-y) (6.5)

where the prime indicates differentiation with respect to the argument of the
delta function, Substituting Eq. (6.5) into Eq. (6.1) converts the differential-

integral equation to the local differcntial equation (Fokker-Planck equation)

) .
oP(x,t) _ 9 [b, (x)P(x,t)] + 18 b, (x)Plx,t) . (6.6).
T._ 3% 1 ] 76?-(2 : ]
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The coefficients]bl(x) and bz(x) are respectively the first and second transi-

tion moments of the matrix A:
by(x) = f dx (x-y) A(x,y) 6.7)
bz(x) = fdx(x-y)z A(x,y7) (5.8).

In terms of these moments the necessary and sufficient condition for a linear

law, as derived by Shuler and Weiss,(4)
by(x) = ax +d < (6.9)

where a, d are consFants. Note that bz(x) is arbitrar}; the condition for
a linear law involves only the first transition moment bl(x).(lo)

As an example of the condition (6.9) leading to a linear law we cite
the relaxation of the Rayleigh gas(ll) (heavy mass in heat bath of light
particles) where the mean kinetic energy follows the linear law (6.3) for ali
times t. For the Lorentz gas (light mass in heat bath of heavy particles),
Eq. (6.9) is not obeyed, and as has peen shown in ref, (11), the mean kinetic
energy of the light particles does not relax via a simple linear law. The
energy relaxation of neutrons in a heavy moderator obeys the same Fokker-Planck
equation as the relaxation of the Lorentz gas.(lz) Thus, as is well known, the
energy relaxation of neutrons in a reactor does not follow a simple one-term
exponential law. It is useful to realize that these predictions can be made
directly from the structure of the Fokker-Planck equations without the neéd of !
obtaining a solution for the distribution functions P(x,t).

The multivariate gencralization of Eq. (G.6) fur the vector??is

' S, 2 2 ~
ooy ol g (ho] e
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where

'ﬁ'l(o?) . fj @-a')A@',a)da (6.11)
B, (@) = ff @G-3)% AG',3)da" (6.12).
In component form one has
P@E,t) 3 [ai 1 2% ij >
I N ; o (Bl(a)P) ’ 7 Z;Z,: TR B ()P (6.13).

The linear law condition for this multivariate. case is obtained by multiplying
Eq. (6.13) by'ak and then integrating over all components o This yields

in component form

2w ol
rf fdaaP-- E/ fdaa B(&)P)*-%-?jzf..ld&uk 8;?&‘-;(3?(0)?)

(6.14)
. fdaa’;(a)p , ‘

where, in order to obtain the last expression on the r.h.s. of Eq. (6.14), we
have integrated by parts repeatedly and assumed that the probabilities go to
zero at the limits of integration, i e., on the boundhfy of the sphére in 2

space, Therefore, in order tovobtain a linear law of the form

3 M) - ‘j‘: M, 543 (8) o 618)
we require that

a'l‘(a‘) . };;: Moy ® M . (6.16).

Equation (6.16) is the multivariate generalization of Eq. (6.9).
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To obtain some insight into the import of these sum rules we consider
& number of special cases which are used frequently in the discussion of
physice) relaxation processes. The simplest case is the Gaussian-Markov pro-
cess. This process, by definition, fixes both conditional moments. They are

given by
Biﬁb ~ ? Mo (6.17)
séj @) = piJ | (6.18)

where y is independent of T, Comparing.Eqs. (6.16) and (6.17) we see that the
linear law condition is satisfied. As is well known, a lénear law is obtained
for a Gaussian-Markov process.(ls) It is to be noted from Eqs. (6.14) and
(6.16) that 22 need not be specified to obtain a linear law. Thus while a
Gaussian-Markov process necessarily leads to a linear law, there are other
processes which can also give rise to linear laws. Before studying such’
other types of stochastic processes, we briefly consider the Langevin equation

corresponding to the Gaussian-Markov process. This 15(13)

g:f— = -Bo'&‘ + ?(t) . ' (6.19)

where R is the "friction constant" matrix and T"(t) a fluctuatihg force which

is assumed to be Gaussian, i.e.,

(F(t)) = 0

) -l
(F(t)F(t')) = ps(t-t') T
(Feey).. Fley 1)) = 0 ) )
C & Y -
F(t,)...F(t, )) = (F(t,)F(t,)). .. (F(t, ,)F(t
(F(ep) .. Fee,) all,pgducts DF(E)) . (Fle, F(E, )
of pairs.

It is evident from the form of the Langevin equation (6.19) and the first
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relation in (6.20) that a linear law is obtained for the averaged variables (3).
The next case that we consider is a stationary Markov process where

both the "friction consiant" and the fluctuating force are space dependent.

For simplicity we consider only the univariate case; tﬁe generalization to many

variables does not introduce any new features. This process can be described

by the Langevin equation
Lypx e F() (6.21)
where

(F(t)) =0
(F(t))F(t;)) = D(x)6(t,-t,)

(6.22)

and where the higher correlations are of the form given in Eq. (6.20). The

Fokker-Planck equation which correSpondé to the Langevin equation (6.21) is
. .

Hetd - - & tewrn] + I pwre,n) (6.25).
X

Since this'equation does not have a transition moment bl(x) of the proper form
as given by Eq. (6.9), it ciearly does not lead to linear law for u(t) = (x(t)).
The third Fokker-Planck equation that we discuss corresponds to a

Caussian, non-Markovian process which may be shown to satisfy the Fokker-Planck

equation(14)
" 2
Pix,t) d D(t) 3P
= -B(t) - (xP) + (6.24)
ot ( ox 2 axi

where

%%%} = ¢ = constant

(6.25)

B(t) = dln:(t!
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and
p(t) = {xx(t)) | (6.26).

Equation (6.24) can be derived by differentiating the conditional probability
which defines a Gaussian process. If one multiplies Eq. (6.24) by x and then

integrates over all x one obtains

) o aceIuce) ' 6.27).

Since the coefficient B is now a fin'tion of time, no linear law of the form
(1.1) exists for this case., The Langevin equation corresponding to the

Fokker-Planck equation (6.24) is

g-t’i + B(t)x = F(t) | | (6.28)
with
(F(t)) = 0
(6.29)

(P(t)F(t2)> 3% D(tl)‘s(tl'tz)

and where it is assumed that thé variation in time of 8(t) and D(t) are suf-
ficiently slow so as to be essentially const;nt over the time required to
produce a small displacement of x. |

It shou}& bé noted that of the varieties of general Langevin (and
corresponding Fokker-Planck equations) considered here, onlyvthe simple
Gaussian-thkoV process (6.19) leads to a linear law. \

As an example of a mﬁltidimensional Markov process which cﬁn yield a
linear law under.the appropriate circumstances we consider the Kramers(IS)

equation, kramersf equation is a Fokker-Planck equation which describes the

Joint probability of being at a position x with a velocity v for a particle

-3 -
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in an external field of force. For simplicity we consider just the one

dimensional prohlem, Kramers' equation is

x Fft'v""'tl - g'; * :T E(") g’\;

(6.30)

where :E;(x) is the external force and m is the mass of the particle. In

our vector notation we have

9.".@.;.;;}.- S @) ¢ Qg s p

ot n
(6.31)
X=a, , Vs a,
where
0 -1 kT
mf 0 |
B'. B gl (6.32).
J.(a,)
e* 'l
' alm 8 0 2

Note that R is a function of a, except when :F;(al) = -Kq,. It is only in
this case, i.e., when the external force is a harmonic one, that one obtains

the linear law

$ oy (6.33)
P v 1) (2 o)
where u is the vector and where M = .
n (az) ' k -8

For the harmonic force :F;(x) considered here, the Kramers equation

for the average position, (x), and velocity, (v), can be written as
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by

AR e v

4 . (v
Qé%l = -k(x) + B(v)

(6.34).

These moment vquations ‘which are equivalent to vector equation (6.33) aic

clearly linear,
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