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ABSTRACT 

We have Investigated the conditions which must be imposed on the 

microscopic equations of motion to obtain exact linear iaws for macroscopic 

(phase averaged) variables. The starting point in this study has been the 

lowest order master equation (Pauli equation) which is a linear microscopic 

equation in the state probabilities with a time-independent transition matrix. 

Discrete and continuous variable master equations as well as their multivariate 

generalizations have been considered. In the case of continuum state variables, 

we have used various Fokker-Planck equations and their corresponding Langevin 

equations as our starting microscopic equation of motion. In each case the 

conditions which must be imposed to obtain linear macroscopic transport equa- 

tions have been derived and discussed. The problem of the derivation of linear 

macroscopic laws from non-linear microscopic laws has been discussed in the 

context of our results on linear microscopic laws. We find that exact linear 

macroscopic laws can be derived even from linear microscopic laws only when 

stringent conditions are imposed on the form of microscopic transition rates. 

Key Words: Non-equilibrium statistical mechanics, stochastic processes, 

transport laws, master equation, Fokker-Planck equation. 



Z. INTRODUCTION 

Linear macroscopic laws, by which we mean relations of the form 

da  „ .A 
Ht  "Ä,a (1.1) 

where "A is a set of macroscopic (phase averaged) variables and J£ a matrix of 

time independent transport coefficients, play an important role in non- 

equilibrium statistical mechanics. They have been the subject of much 

theoretical work which can be divided into two classes: 1) the derivation of 

linear macroscopic laws from microscopic equations of motion and 2) the 

evaluation of the transport coefficient matrix J^. It is to the first question 

that this paper is addressed. 

It is important to point out that we are roncerned here only with 

the derivation of exact linear laws of the form (1.1), i.e., with the condi- 

tions on the microscopic equations which lead to exact linear laws valid for 

all times t and valid for all initial (microscopic) conditions. We do discuss 

in the body of this paper some of the conditions and circumstances leading to 

approximate linear laws, but we do so only in passing and to illustrate some 

specific points. 

The ultimate objective of such a study would be to determine the neces- 

sary and sufficient conditions on the Hamiltonian of the microscopic equations 

of motion which lead to exact macroscopic linear laws. Such an objective is, 

however, too ambitious since the relation between the Liouville equation and 

the macroscopic equation is a quite distant one and the connection is not easy 

to make. We have therefore chosen as our starting point the lowest order 

master equation (the Pauli equation)^^ 

TT^APCt) (1.2) 
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where P(t) is a vector of state probabilities and ^ is the transition rate 

matrix which is taken to be independent of time. In conjunction with Eq. (1.2) 

we also consider the related Fokker-Planck equations and Langevin equations 

as suitable starting points for our inquiry. 

In using the master equation (1.2) as our microscopic transport 

equation we have greatly limited the scope of our study. The master equation 

(1.2) Is based on the assumption of weak interactions between a subsystem and 

a time-Invariant heat bath. Also, in using Eq. (1.2), we are restricting 

ourselves tu Markovian processes since we do not consider time dependent transi- 

tion matrices, i.e., transition kernels non-local in time. The master equation 

(1.2) is furthermore a linear microscopic equation; we do'not consider here 

the problem of the derivation of linear macroscopic laws from non-linear 

microscopic equations. It is important to note, and one of the main results 

of this work, that severe restrictions must still be placed on the form of the 

transition matrix A to obtain an exact linear law even though the transition 

matrix is already independent of time and even though the microscopic trans- 

port equation is already linear in the microscopic variables. 

In a recent paper van Kampen*1 ^ has pointed out that some known linear 

macroscopic laws have their antecedents in what are probably non-linear 

microscopic laws and thus should be derivable from such non-linear microscopic 

laws. To quote: "The basic remark is that linearity of the macroscopic law 

is not at all the same as linearity of the microscopic equation of motion. In 

most substances Ohm's law is valid up to a fairly strong field; but if one 

visualizes the motion of an individual electron and the effect of an external 

field E on it, it becomes clear that microscopic linearity is restricted to 

only extremely small field strength. Macroscopic linearity, therefore, is not 

due to microscopic linearity, but to a cancellation of non-linear terms when 

averaging over all particles." 
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Following up van Kämpen's remarks, Bixon and Zwanzig' ' derived the macroscopic 

transport aquation for the average position and velocity for a non-linear oscil- 

lator (Duffing*s oscillator) under the influence of a random Gaussian force. 

They succeeded in deriving a linear equation for the averaged motion which was, 

however, valid only for small deviations of the averaged variables from thermal 

equilibrium and which contained a time dependent (non-Markovian) term that 

depended on the non-linear term of the original microscopic equation of motion. 

Their model thus did not yield an exact linear macroscopic equation valid for 

all initial conditions and all times. As far as we are aware, tie van Kampen 

and Bixon-Zwanzig papers are the first attempts so far to establish the relation 

between non-linear microscopic and linear macroscopic lews of motion. 

In view of the stringent conditions which must be imposed already on 

linear microscopic laws to obtain linear macroscopic laws and in view of the 

serious difficulties encountered by van Kampen and by Bixon and Zwanzig it would 

appeer that van Kampen's analysis of the problem as quoted above should be con- 

sidered as a tentative working hypothesis. It is very reasonable but has not 

yet been verified. The clarification of this problem presents an important 

area of research in non-equilibrium statistical mechanics and transport pro- 

cesses. 

The following interesting point should be noted. If a linear law is ob- 

tained for the mean of some variable, it will also apply to the mean of this 

variable conditional on some given initial value. Since the time autocorrelation 

function can be written as the average over the initial distribution of the 

conditional mean it is clear that the time dependence of the autocorrelation 

function is identical to that of the mean value of the variable itself. Thus, 

a macroscopic linear law for the relaxation of an averaged variable implies 

the exponential relaxation of the autocorrelation function of the microscopic 

variable. 
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In our discussion we consider separately, for the sake of convenience, 

the case of discrste and continuous variables. In Section 11 we focus our 

attention on the discrete, univariate master equation and develop the necessary 

and sufficient conditions which must be imposed on the transition matrix. In 

Section III we reformulate the prob.em in terms of an eigenvalue - eigenfunction 

analysis of the solution of the master equation. Section IV is devoted to 

relating the linear law transition matrix to the corresponding Hamiltonian 

through the perturbation responsible for the relaxation. As an example, we 

consider a particular Hamiltonian which could be a model of phonou-phonon 

interaction. In Section V we study the generalization to the multivariate 

discrete master equation and treat spin relaxation, via the Redfield and Bloch 

equation as an example of an approximate linear macroscopic law. In Section 

VI we turn our attention to the continuous master equation. We investigate 

there the conditions which must be imposed on various Fokker-Planck equations 

and their counterpart Langevin equations to obtain exact linear macroscopic 

laws. 



II. LINEAR LAWS FROM DISCRETK. UNIVARIATE MASTER EQUATIONS 

In order that the master equation for the discrete states n>0,l,... 

<iPm(t) 

where Pm(t) Is the probability of finding the system In state m at time t and 

where the Amn are the transition rates between states n and m represent a 

physically realistic situation we impose, for all n and t, the following 

restrictions: 

Pn(t) >0 ;  £ Pn(t) - 1; (2.2) 
n 

E V ' » (2.5) 

The conditions (2.2) state that the probabilities are positive and correspond 

to a closed system. The conditions (2.2) in turn imply the sum rule (2.3). 

Condition (2.4), where the pjje' are the equilibrium probabilities is a state- 

ment of detailed balance. The above conditions are sufficient to prove that 

the eigenvalues U^} of the matrix ^ are real and negative except for one 

which is zero and corresponds to the equilibrium solution P c. For the systems 

studied in this paper Eqs. (2.2) - (2.4) are always satisfied. 

We define the average value,u(t),of the state variable n as 

y(t) ■ 2 n PnW (2.S) 
n 

(4) As has been shownv ' the necessary and sufficient condition to obtain a linear 

law of the form (1.1) for the moment u(t) is 
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E ,n Amn " an * 6 C2.6) n 

where a and 6 are constants. This linear law is, as can be seen from 

Eqs. (2.1), (2.5) and (2.ft), 

^■" o.M(t) * 6 (2.7) 

from which it follows that the constants a and 6 are related by 

|--WCe) (2.8) 

fe) where MV •' is the equilibrium value of the moment ij(t) corresponuing to the 

equilibrium distribution P^ ^. The two sum rules on the matrix^, Eq. (2.3) 

and (2.6) are not sufficient to determine the form of the A . In order to mn 
make some progress it is necessary to place further restrictions on the 

system. 

As a specific example, we assume that only nearest neighbor transitions 

are permitted but place no restrictions on the level spacing. For such a system 

we have just enough conditions for an explicit determination of the A . From mn 
Eqs. (2.3) and (2.6) we obtain 

I>AmnBAn+l,n-
An.l,n"an+6 <2'9)' m '     ' 

We write the detailed balance equation (2,4) for a canonical ensemble as 

Vl,n «n6 G B An.n*l *n+l e ^ '  ß " ^ C2'10) 

where t^ is the energy of the k'th state and g. its degeneracy. Defining 

Sn B 8n+l ^^ An,n+1 V'1" 

one finds from Eqs. (2.6) through (2.9) 
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-ße 
S 'n ■ Sn-1 " V  " Con+6^  s-i m0 (2.12) 

-Be 
So"«oe   6 (2.13) 

from which It follows that 6 « A10. The constant a can be expressed in terms 

of the transition matrix by considering the limit 

Urn S - lim g e  n+1 A  , - 0 to  141 
n-*»  n  n-H«  n      n'n+1 (Z,14J 

where we have noted that en > e^. Summing (2.12) over all n and using 

(2.14) yields,  in agreement with Eq. (2.8), 

""JtT (2.1S) 

where 

2 nge  n 

fe) ..n.0  n 

W    "^    ^T" (2.16) 
r in^~n 
n^o  n 

is the equilibrium average of the variable n. Summation of (2.12) up to a 

finite n, and the use of Eqs. (2.9), (2.13) and (2.16) then gives our desired 

result 

t v"0ek(i-k/.(e)) 
A    »A   ^0       V      / 

n,n+l  A10        TpT";  (2.17). 
a       e  n+1 gn+l e 

In the case of nearest neighbor transitions then, we find that the matrix ^ 

is uniquely determined, albeit by a summation formula. 

To give an example of the evaluation of Eq. (2.17) we consider the 

case of harmonic oscillators in weak interaction with a heat bath as discussed 

by Montroll and Shuler.(5) In this system, only nearest neighbor transitions 

can take place. The degeneracies are 
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«n-1 n ■ 0, 1,... (2.18) 

and the energies e are given by 

e. ■ nc n (2.19). 

Evaluating the sum in Eq.   (2.17) yields 

Vn+1 " Cn-DA, 01 

and from detailed balance 

(2.20) 

Vl.n '  C"*1^"36 AQ! (2.21). 

These are the transition probabilities used by Montroll and Shuler who indeed 

found that they led to a linear law for the mean vibrational energy. 

The above formulation has been restricted to nearest neighbor transitions. 

We now wish to remove this restriction. V; consider a system with a transition 

matrix having a finite range, i.e., |m-n| < « and an infinite set of states 

(-» < n < +"). The infinite set of states is not essential to the argument 

bat simplifies the analysis since it avoids difficulties with boundary conditions. 

From Eqs. (2.3) and (2.6) one has 

♦» n 

m»-» mn k(A .  - A ,  ) e an+6 ^ n+k,n  n-k,n' (2.22) 

where k » m-n and k = l,2,..p with p < ». Introduction of the variable 

t>(e)  .    -Be. 

f(n,k) E 
rn-k  8n-k e n-k 

n 
g. (2.23) 

and the use of detailed balance leads to the condition 

£ ktAn+k,n * f(n'k>An.n.k} ' on+6 (2.24). 
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The condition (,2.24)  is the non-nearest neighbor transition analogue of 

condition (2.9). Equation (2.24) does not suffice to determine the A 
mn 

uniquely and additional restriction are required. 

We shall assume that the transition  rates A  are polynomials of 

degree N in n 

N 

Vk.n " ß   «jOOC»^)3 (2.25). 

It will be seen that this is a natural choice for the A  when we make a 
mn 

connection between the transition rate matrix and the Hamiltonla.- if tne 

relaxing system in Section IV. Substitution of Eq. (2.25) into (2.24) 

yields 

2>E CjOO [(n+k)^ - f(n,k)njJ - an*6 (2.26). 

It follows from the form of f(n,k), Eq. (2.23), that (2.26) cannot be 

satisfied unless f(n,k) = f(k); i.e., f(n,k) is independent of n. This 

implies, as is evident from Eq. (2.23), that the energies, e must be of 
n 

the form En «= ne; i.e., the energy levels are equally spaced. If Eq. (2.26) 

is now rewritten as 

kt v4ci-fck)]nj + kiiy iki '  on*6      (2.27) 

it can readily be verified that the equality is obeyed only for N»l. We 

have therefore shown that, subject to the polynomial form of A .  , Eq. (2.25), 

a linear law for the moment can only be obtained if the transition probabilities 

are linear in the occupation number, n, 

An+k,n " 
co(k) + ci00M0 = a0(k) * a^^n (2.28) 

and if the states of the system are uniformly spaced. Note that the harmonic 

- 10 



oscillator transition rates given by Eq. (2.20) are of this form. 

In Eqs. (2.17) and (2.28) we have derived for two well specified sys- 

tems the forms of the transition rates which lead to linear laws. Evidently, 

by making different assumptions about the level spacing, the types of allowed 

transitions and the form of the transition rates [analogous to Eq. (2.25)], we 

could obtain additional expression for transition rates which lead to linear 

laws. The allowed transition rates can not be determined uniquely from 

Eqs. (2.3) and (2.6) alone since these are just conditions on the zeroeth 

and fitrit  aiumentü of A. Only if the time dependence of higher moments of 

& were specitiud would it be possible to determine the form of the transition 

rates A  which lead to a linear law without placing subsidiary restrictions 

on the spacing of the states and the transitions between them. 

11 



III. EIGENFUNCTION ANALYSES FOR LINEAR LAWS 

In the previous section we have presented "sum rule" conditions 

for obtuininp a linear law for macroscopic variables. These rules can be 

reformulated in terfs of an eigenvalue-eigenfunction analyses. 

The eigenvalue solution of the master equation (2.1) is") 

PCO - £ f#.P(o)]Rj eV (3.1) 
J"0 

where P(o) is the initial value of the probability vector P, and where LJ and 

R"* are, respectively, the left and right eigenfunctions of the transition matrix 

LJ.A " X.L-' y 
i '  0,1,2,... (3.2). 

^•RJ - X .tJ 

For the case of non-dogonorate eigenvalues \.,  which is insured by the condi- 

tlons (2.2) through (2.4), the lJ  and RJ are orthonormal 

L ,R " 6jk (3.3). 

It has been pointed out by van Karapen^ ■' that in order to obtain a linear 

law for the avoraged variable it is necessary that the left eigenvector 

lJ  (expressed in component form) when operating on the matrix ^ yields 

E L,J)Anm B am+6 (3.4) 

where a is one of the eigenvalues A.. This implies that the eigenvector 
-A 
L. must be 

tj -1 3 j + ß I 1 (3.5) 
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This can readily be verified by substituting Eq. (3.5) into Eq. (3.4). In 

component form one then finds 

£ Ln Anm " V"^ (3.6) 

which is of the form given in Eq. (3.4). A comparison of Eqs. (3.4) and (3.6) 

and the use of the general relation (2.8) shows that 

a Xj ;  6 = aXj ;  ß . ./e) (3.7). 

It is clear from Eqs. (3.4) and (3,M that van Kampen's condition is identical 

with the sum rule (2.6) of Shuler and Weiss.^ 
- ,\ ... 

If we now multiply Eq. (3.1) for P(t) by the eigenvector L^ given in 

Eq. (3.5) and sum over all states, we find 

M(t) - M(e) - [vi(o) - M^]e0t (3.8) 

- 

where we have used Eqs. (3.2), (3.3) and (3.7). Ore should note that the 

linear law condition (3.4). or equivalent^ (3.5), implies that the relaxation 

of the moment p(t) proceeds by the single exponential term eat instead of a 

sum of exponential terms. We shall return to this point at the end of this 

section. 

As an example of this formulation for linear law conditions we consider 

the relaxation of harmonic oscillators in weak interaction with a heat bath 

studied by Montroll and Shuler.(^  The transition rates for this process 

are 

A_ « ne"6 6      r-w-^.-e 
•nmene  6n.l,m " ^n+1)e"Xm Mn+1) W 

(3.9). 
n,m = 0,1,  

• 13 



We have already remarked in Section II that these transition rates obey the 

sum rule for a linear law; we want to demonstrate here that they also satisfy 

the eigenfunction condition given above.    The eigenfunctions and eigenvalues 

cf this transition matrix (3.9) have been computed in reference (5); they are 

I^ - .-J" e"18 (l-e-V1 *£ (3.10) 

4" li (1-e'e)2 t'-1" 
where the function iK  the Gottlieb polynomial, is defined by 

-me   » 

1-e ö k=o 

for integer values of m. In particular 

'»■7^,£ (i-e9)k (DU) *■"> 

Äm- g- [(l-ee)m+l] (3.13). 

The Gottlieb polynomials satisfy the orthogonality relation 

Ejne .k J  ,   ke ,, ... 
m*     Äm ^i0 ökj e C3'14) m«o •' 

which implies that the left and right eigenvectors are orthogonal 

t   i^'hi "-is). m=o        ' 

-^1 It now remains to verify that the left eigenvector L given by Eqs. (3.10) 

and (3.12) satisfies the linear law condition (3.4) with A  given by Eq. nm a '    ^ 
(3.9). If the above indicated substitutions are made one finds, as can be 

verified by straight forward calculation, 

2 LlnAnm
B (e"9-l)m*e-e (3.16) 

n 
6 6 which is clearly of the form (3.4) with o «= -(1-e ) and 6 » e . Note that 
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-6 
o ■ -(1-e ) ■ Xj is indeed an eigenvalue of Eq. (3.2) and that -6/a ■ (e6-!)'1 

is the equilibrium moment u^ (equilibrium vibrational energy) for an ensemble 

of harmonic oscillators. 

It is important to note that the above strict conditions on the eigen- 

vector i/ are required only if one wants to obtain an exact linear law of 

the form (3.8) valid for all times t. 0 g t a *. If the eigenvalues >. of 

the solution (3.1) of the master equation are well separated, and in particular 

if the first non-zero eigenvalue, jxj, is much smaller than all the subsequent 

eigenvalues., [xj « |x2|, |x3|,..., then fcr t » yj-r one can rewrite Eq. 

(3.1) to a good approximation as 

X,t 
■p(t) »"pCe) + e 1 [L1 P^JR1 

(3.17). 

It is clear that the approximate solution (3.17) leads to an approximate 

linear law of the form (3.8). In this case one needs to place no restric- 

tions on the form of the eigenvector I3,  one only requires that the eigen- 

values Xj of the transition matrix ^ are well separated. The spacing of the 

eigenvalues depends entirely on the form of the matrix ^ of the master equation. 

For infinite matrices ^, i.e., for systems with infinite (or semi-infinite) 

number of states, as are usually found in physical applications, we know of 

no general relations between the matrix ^ and its eigenvalues from which the 

spacing of the eigenvalues could be predicted a priori. Note that this is 

entirely different from the exact linear case considered above. If the 

eigenvector l}  is chosen as in Eq. (3.5), the spectra of eigenvalues is com- 

pletely irrelevant for obtaining a linear law as can be seen from Eq. (3.8) 

which is exact and does not depend upon the separation of the eigenvalues. 

The harmonic oscillator example studied above furnishes a good illustration 

of this point since the eigenvalues X. = -j(l-e"e) are equally spaced. 

- 15 - 



IV« RELATION OF TRANSITION RATES TO HAMILTONIAN FORMULATIONS 

We now turn to the interpretation of the results of Section II in 

terms of a Hamiltonian formulation. Consider a system whose Hamiltonian can 

be written as a heat bath Hamiltonian, H^ a relaxing subsystem Hamiltonian, 

Hg, and an interaction V brtween the heat bath and subsystem 

H-^ + H^V C4il) 

According to the Golden Rule of time dependent perturbation theory the transi- 

tion rates are given by 

Amn"2lfN^|Vmn|
2 . "hoi (4#2) 

where the 

Vmn-<m|v|n> (4.3) 

are the matrix elements of the interaction V expressed in the basis |n) 

which diagonalizes Hs, and N(E) is the density of bath states at energy E. 

As demonstrated in the previous section, Eq. (2.28), in order to 

obtain a Hnear law the transition matrix ^ must linear in the occupation 

numbers for the case of equally spaced subsystem levels. This implies that 

the interaction V must linear in the creation-annihilation operators of the 

subsystem, b and b+, i.e., 

V^b+b^ (4.4). 

We thus conclude that for a subsystem with equally spaced levels the only 

polynomial perturbation which can give rise to a linear law are those given 

by Eq. (4.4). 

16 



For the purpose of illustration we will derive« from a given Hamil- 

tonian, the form of the transition matrix £ which leads to a linear law. 

For our Hamiltonian we chose^ 

E " "b * Hs * v (4'55 

where 

Hs -^nob
+b (4.7) 

V - ill112 (b%b)  2  cnW-1/2 (a%an) (4.8) 
n 

[a-.a.] - 6k.    ;   [b+,b] «1 (4.9). 

Such a Hamiltonian is applicable, for instance, to a one dimensional solid in 

the harmonic approximation with a mass impurity. The {a. } are the modes of 

the equal mass particles (the heat bath) with frequencies w. , the operators 

b and b refer to the impurity (the subsystem) with frequency ü   and the 

heat bath interacts with the subsystem with coupling constants {e }. 

Since the Hamiltonian is a quadratic form it can be diagonalized but 

in line with our present objective we shall use perturbation theory to calcu- 

late £ according to Eqs. (4.1) and (4.2). We take as a basis the direct 

product of the bath oscillator states {M.}, {M2},...{MN} and subsystem states 

{m}. The squares of the nonvanishing matrix elements of the perturbation are 

given by the usual harmonic oscillator expressions 

|(Mj,..«»M^^j,...,M^,m*l|v|Mj,...»M^,...,M^,m)| 

c2 (4.10) 

' ? ^k Mk(m+i)6(v^ 
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where the delta function restricts one to a single energy shell aüd .11 equal 

quantum numbers are suppressed. We now sum over all possible bath transitions 

in the canonical ensemble and replace this sum by an integration over a 

continuum of states to obtain from Eq. (4.2) 

E Z «CVoiJ Mk(m*l}cJ e" *** 

"+i»m " —      -M.E, 8 ~ w 

/""max. Z 

" (m+1)  1   du.N((ü)e2(u))fCn -w) -J 
Jo 0 

£ M.c ■MkEk0 (4,11) 

Y 
'k -en 0 

£ 
TR-^T- ("'♦De   A01 

where 

A  .. Wo>*\) 
01  T 1   -^7" C4.12) 

and NCoO is the density of bath states. An analogous calculation for the 

inverse transitions yields 

Vn.*! e O^Ol (4>13) 

Since these transition probabilities are linear in the occupation num- 

bers of the subsystem a linear law is obtained for the mean value of the 

microscopic variable m. 

There are two important points to note in regard to Eq. (4.4). First, 

we made a stipulation only about the subsystem interaction, i.e.. the pertur/ 

bation must be linear in the creation - anihilation operators of the subsystem. 

This would seem to leave the bath interaction of arbitrary strength and form. 

However, the master equation (Pauli equation) used in this study. Eq. (2.1). 

is valid only in the limit of weak subsystem-bath coupling. One therefore ' 
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Implicitly assumes that the interaction V is of low order in the bath operators. 

Secondly, the condition imposed on the interaction V in Eq. (4.4) is necessary 

if one wants to obtain an exact linear law. If one considers approximate 

linear laws, as we do in the next section, the class of acceptable perturbations 

V is more extensive. 
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V. MULTIVARIATE DISCRETE LINIiAR LAWS (Radfield and Bloch Equations) 

In this section we consider the generalization of the univariate linear 

law condition to the multivariate case. We shall also investigate if there are 

additional restrictions which permit the reduction of these multivariate linear 

laws to lower dimensions. Finally, as an important example of a multivariate 

linear law, we discuss the Bloch equations which play a central role in the 

theory of spin relaxation.^ 

Let PN(o ,t) denote the joint probability for the variables 

«l»^ •••
U
M which satisfies the master equation 

aPN(a
N.t) 

—5t  
LAC N N,n , N .... 

A(a ,Y )PN(Y .t) 
N        N 

y 

(5.1) 

where the sum runs over all the states of the N variables Yii.-.Y^ The 

conditional moment of P^ with respect to the variable a. is defined as 

un- 

^(o -  E E a^oAt) 
O r    1 

(5.2) 

N Multiplying Eq. (5.1) by a. and summing over all a , one obtains the multi- 

variate sum rule 

N 
S  2 ai M« ,YN) * £ b.kYk ♦ d. 
0Wi aj  1 k-1  ik k   x (5.3) 

which is the necessary and sufficient condition for the linear relaxation of 

the moment y.(t) as given by 

dMt)   N 
1 E bik \M  + d 

KBl 
dt ik \S -      -i (5.4). 

This can be rewritten in matrix form as 

^ ji 

3F - Ä'^D (5.5) 
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which is identical with Eq. (1.1) of the Introduction. 

Before illustrating this multivariate sum rule with the example of 

spin relaxation we consider the problem of reducing an N-variatc linear law 

to an n-variate linear law where n < N (n»l,2,...N-l). To carry out this 

reduction it is necessary to ascertain first whether the N-variable master 

equation reduces to an n-variablc master equation. The condition under which 

this reduction occurs has recently been derived by Bedeaux, Shuler and 

Oppenheim^ ' and is 

V  Ar N N,  ., n n.. ,, ,v 
iL  Ma »y )  = A(o ,Y ) (5.6). 
N-n 

N N 
Li       MC 

N-n 
a 

This implies that the transition matrix of the n-variate system must be 

N-n 
independent of the initial states, y      , of the Y variables. A formulation 

of the above condition in terms of the eigenvalues and eigenfunctions of the 

N N      n n 
matrices A(a ,Y ) and A(a ,Y ) may be found in ref. 8. Let us then assume 

that condition (5,6) is fulfilled and that the n-variate master equation 

öPJaV) 
-^ E A(a

n
(Y
n)Pn(Y

n) (5.7) 
n 

Y 

as well as the N-variate master equation exist. Then multiplying Eq. (5.1) 

by ai for icn and summing over all a   one finds, using the linear law condi- 

tion, Eq. (5.3), 

N n     N-n a a     a 

n n    N 

« E ai Va 'Y > = 2 bikYk + di 
an k=l 

For kCN-n and icn one has 

(5.8). 
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bikB0 (5.9) 

so that 

E «i ^C« ,Y ) - £ bikYk + d. 
aN 

which yields the linear law 

n 

k»l 
(5.10) 

f^L.^m-h        ci.^ (5.11). 

We conclude that the condition (5.6) is sufficiently strong to reduce the 

n-variate master equation to an n-variate linear law. 

For our example of a multivariate linear law we consider the problem 

of spin relaxation. It is well known that a non-equilibrium system of nuclear 

spins immersed in a fluid will undergo a relaxation to its equilibrium state. 

One convenient measure of this relaxation is  the time rate of change of the 

average magnetization. In this example the fluid serves as a heat bath and 

the spins are assumed to be weakly coupled to this system. The master 

equation (Redfield equation) for the aa' matrix element of the spin density 

matrix, o, has the form (9) 

do 
CIO' 

It •iu 
00'  00' ßß' oa'ßß' i-Jß" (5.12) 

where waa, " (Ea"
E
0,•^

,1 is the energy difference between spin states o and o' 

and Raaigg, is the "relaxation matrix" for the transition between spin states 

ßß' and ao*. Under certain conditions the average magnetization can be shown 
(7) 

tc obey the Bloch equations   which are the linear laws corresponding to 

the (microscopic) Redfield equation. These Bloch equations are approximate; 

one does not rigorously obtain a linear law from Eq. (5.12). We now investi- 

gate the reduction of the Redfield equation to the Bloch equations in the 

context of the conditions which have been derived for multivariate linear 

laws. The Redfield equation involv z  relaxation matrix £ which is 
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obtained from the Harailtonian of the complete system. It involves of course 

the interaction V between the fluid and spins; this is taken to be of the form 

V - 2 F(^A(^ 
q 

(S.13) 

where the sum is over the q interaction terms and where the F^ are bath 

operators and the A(q) are spin operators. If we assume thmt the fluid is 

classical, one may derive the following expression for the elements of the 

relaxation matrix R^ 

q 

.aB.ß'a' C [J,'v ♦ AV6,)] 

■ v.. i Ar<A%). «6o z *q
B'vj,cv.' 

CS,14) 

where J(w) is the spectral density of the autocorrelation function of the 

various bath functions, 

J(q)(aO » 
/•+" 

U, „      e"iWt<Vq^>dt (5.15). 

We shall also assume that only spin transitions that conserve energy contribute 

significantly to the relaxation; i.e., we require 

a-a' n ß.ßi 
(5.16) 

For convenience only the z component of the magnetization of a spin 

of arbitrary value is considered here. Since we are working in a representa- 

tion where the z component of spin is diagonal, the formalism developed above 

is applicable. For the interaction V we choose the dipolar Hamiltonian since 

it describes the most common mechanism of relaxation. In this case one has 

the standard expressions^ 
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(S.17) 

where we have introduced the z, * and - operators for spins 1 and S of gyro- 

Magnetic ratio yl  and YS. The specific form of the bath operators F^, 

F  and F  are of no concern to J? in this context. The first term of 

Eq. (5.12) always yields a linear law so we just concentrate on the relaxation 

term. It is evident that for the calculation of the average magnetization, 

<I2># only the diagonal elements of the density matrix are required. This 

feature, along with Eq. (5.16), the secular term restriction, implies that 

the master equation of Interest is, in the notation of Eq. (2.1) 

do(a1,a2;t) 

 HF"" ■ .%  R(öi.a2J0l'ß2)o(Bl'ß2;t) (5.18) 

where ^ is to be identified with our transition matrix &. We now compute 

the spin sum rule.Eq. (5.3).by inserting Eq. (5.17) into Eq. (5.14), multiply, 

ing by I2 and summing over all states. This yields in operator notation, 

after a tedious calculation, 

V* "    2 OjRtVVSjßj) a ^ 
ala2 
,2      .2, 

2        2 

(Sx + V    (?) 
(Wj+Wg) 

♦ *' 
<'l * 'i) 

TIT-^^CW 
+2ii JW^J) 

(5.19) 

(I? ♦ if) 
♦ 2   y   J(2)(Va.s) 
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and a similar equation for S «R. 
z, 

The terms in brackets correspond to the b.. of Eq. (5.3) with N»2. 

Owing to the appearence of the operators S . S . I. and I in the b... these 
a y ** 

coefficients are not constants as they are in Eq. (S.3). Thus Eq. (5.18) 

does not lead to an emvt linear law. However, in carrying out the final 

summation 

E  [bli(Sx'Sy'S2)ßl * VVVV^l'^ 
1 2 

one mtV.'s a high temperature approximation in NMR. In this approximation 

the coefficients b^S) and b12(I) become 

bll ■ «' 

b12 - ? 

j7 + jjilhu1) * jj^cv^ 
(5.20) 

and are now independent of the spin operators I and S. An analogous result 

is obtained for b21 and b22. The "sum rule" formalism we have developed hero 

is thus consistent with the well known result that the master equation for 

nuclear magnetic relaxation leads to an approximate linear law for the magne- 

tization. 
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VI. LINEAR LAWS FOR CONTINUOUS VARIABLES (Fokker-Planck and Langevin Equations) 

We shall now consider the linear law conditions for master equations 

in continuous state space. The master equation is now written in the form 

||(x,t) - /A(x.y)P(y.t)dy (6.1). 

Multiplying Eq. (6.1) by x and integrating over the range of the variable x we 

obtain,(4) 

f. xA(x,y)dx ■ ay ♦ 6 (6.2) 

as the necessary and sufficient condition to obtain linear law • 

^- » otMCt) + 6 (6.3) 

with ii(t) given by 

H(t) - Ix P(x,t)dx (6.4). 

Equation (6,2) is the continuum analogue of Eq. (2.6), and much of the dis- 

cussion of Section II is applicable to relaxing systems described by Eq. (6.1). 

In physical applications one frequently approximates the global kernel 

ACx.y) by a local operator. It is this case which we want to study here in 

some detail. We accordingly write A(xly) as a local operator of the form 

A(x,y) « b1(y)6'(x.y) * j b2(y)d"(x-y) (6.S) 

where the prime indicates differentiation with respect to the argument of the 

delta function. Substituting Eq. (6.5) into Eq. (6.1) converts the differential« 

integral equation to the local differential equation (Fokker-Planck equation) 

2 

^^H1,8 "Ix CV'OPO'.t)] ♦|%7 [b2(x)Prx.t)]       (6.6), 
ox 
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The coefficients bjCx) and b2(x) are respectively the first and second transi- 

tion moments of the matrix A: 

bjCx) - J dx(x-yMCx,y) (6.7) 

b2(x) - Jdx(x-y)2 A(x,/) (5,8). 

In terms of these moments the necessary and sufficient condition for a linear 

law, as derived by Shuler and Weiss, ^ 

bjfx) ■ ax + d (6.9) 

where a, d are constants. Note that b2(x) is arbitrary; the condition for 

a linear law involves only the first transition moment b.(x).^10^ 

As an example of the condition (6.9) leading to a linear law we cite 

the relaxation of the Rayleigh gas' ^ (heavy mass in heat bath of light 

particles) where the mean kinetic energy follows the linear law (6.3) for all 

times t. For the Lorentz gas (light mass in heat bath of heavy particles), 

Eq. (6.9) is not obeyed, and as has been shown in ref. (11), the mean kinetic 

energy of the light particles does not relax via a simple linear law. The 

energy relaxation of neutrons in a heavy moderator obeys the same Fokker-Planck 

equation as the relaxation of the Lorentz gas/ f Thus, as is well known, the 

energy relaxation of neutrons in a reactor does not follow a simple one-term 

exponential law. It is useful to realize that these predictions can be made 

directly from the structure of the Fokker-Planck equations without the need of 

obtaining a solution for the distribution functions P(xl't). 

The multivariate generalization of Eq. (6.6) for the vector "a is 
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where 

B iß) •     I"-I    (o-ol')A(ä,,a)do' (6.11) 

Ä2(o) -  L.f (S-a')2 AÖ',a)da' (6.12). 

In component form one has 

aP(ä.t) ^- ■ E ^ (»JAP) ' ^f f %  »^ÄP   C6.13,. 

The linear law condition for this multivariate case is obtained by multiplying 

Eq. (6.13) by a. and then integrating over all components ct.. This yields 

in component form 

d 
5t 

(6.14) 

/ 
däBj(Ä)P . 

where, in order to obtain the last expression on the r.h.s. of Eq. (6.14), we 

have integrated by parts repeatedly and assumed that the probabilities go to 

zero at the limits of integration, i e., on the boundary of the sphere in a 

space. Therefore, in order to obtain a linear law of the form 

|FMk(t) » E Mkj^Ct) (6.15) 

we require that 

BJ[Ä  B   S Mkj0j e &'* (6.16). 
J 

Equation (6.16) is the multivariate generalization of Eq, (6.9). 
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To obtain some insight into the import of these sum rules we consider 

a number of special cases which are used frequently in the discussion of 

physicrl relaxation processes. The simplest case is the Gaussian-Markov pro- 

cess. This process, by definition, fixes both Conditional moments. They are 

given by 

BJÖ) - 2 M-.Oj (6.17) 

B^(a) - D1^ (6.18) 

where ^ is independent of a. Comparing Eqs. (6.16) and (6.17) we see that the 

linear law condition is satisfied. As is well known, a linear law is obtained 
* 

for a Gaussian-Markov process.^ ' It is to be noted from Eqs. (6.14) and 

(6.16) that £2 need not be specified to obtain a linear law. Thus while a 

Gaussian-Markov process necessarily leads to a linear law, there are other 

processes which can also give rise to linear laws. Before studying such 

other types of stochastic processes, we briefly consider the Langevin equation 

corresponding to the Gaussian-Markov process. This is' " 

^2. . .ß.ä ♦ F(t) (6.19) 

where j* is the "friction constant" matrix and F(t) a fluctuating force which 

is assumed to be Gaussian, i.e., 

(fit))  - 0 

<F(t)F(t')> - J36(t-f) 
^    -A     , (6.20). 
(FCtp.-.F^p) - 0 

(FCtj)...^ )> -   1   (Htl)Ht2)>...(Ht2n .mt-J) 1     *n        all products   1   2      2n-1   2n 

of pairs. 

It is evident from the form of the Langevin equation (6.19) and the first 
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relation in (6.20) that a linear law is obtained for the averaged variables <a>. 

The next case that we consider is a stationary Markov process where 

both the "friction constant" and the fluctuating force are space dependent. 

For simplicity we consider only the univariate case; the generalization to many 

variables does not introduce any new features. This process can be described 

by the Langevin equation 

3* ♦ ß(x)x - F(t) (6.21) 

where 

<F(t)> = 0 
(6.22) 

(FUpF^)) » D(x)6(t1-t2) 

and where the higher correlations are of the form given in Eq. (6.20). The 

Fokker-Planck equation which corresponds to the Langevin equation (6.21) is 

h?llft) ° -  fj [xß(x)P(x,t)] * ly [D(x)P(x.t)] (6.23). 
ox 

Since this equation does not have a transition moment b1(x} of the proper form 

as given by Eq. (6.9), it clearly does not lead to linear law for u(t) ■ <x(t)(>. 

The third Fokker-Planck equation that we discuss corresponds to a 

Gaussian, non-Markovian process which may be shown to satisfy the Fokker-Planck 

equation^ ^ 

«^i. .6(t) |_ W, . !!|il a!| (6.M) 
ox 

where 

Bit) jrfrr B ^ = constant 

ß(t) . ||M 
(6.25) 
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and 

P(t) - <xx(t)> (6;26) 

Equation (6,24) can be derived by differentiating the conditional probability 

which defines a Gaussian process. If one multiplies Eq. (6.24) by x and then 

integrates over all x one obtains 

Since the coefficient 6 is now a fin-tion of time, no linear law of the form 

(1.1) exists for this case. The Langevin equation corresponding to the 

Fokker-Planck equation (6.24) is 

a?+ß^x-FCt) (6.28) 

with 

<F(t)> - 0 

<F(t)F(t2)> - DttjWtj-tj) 
(6.29) 

and where it is assumed that the variation in time of ß(t) and D(t) are suf- 

ficiently slow so as to be essentially constant over the time required to 

produce a small displacement of x. 

It should be noted that of the varieties of general Langevin (and 

corresponding Fokker-Planck equations) considered here, only the simple 

Gaussian-Markov process (6.19) leads to a linear law. 

As an example of a multidimensional Markov process which can yield a 

linear law under the appropriate circumstances we consider the Kramers^15^ 

equation. Kreme«' equation is a Fokker-Planck equation which describes the 

Joint probability of being at a position x with a velocity v for a particle 
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in an external field of force. For simplicity we consider just the one 

dimensional problem. Kramers' equation is 

(6.30) 

where JJ^W is the external force and m is the mass of the particle. In 

our vector notation we have 

^•^ I«-» A" 
(6.31) 

where 

-1 *l0   0 m 

MM 
a (6.32). 

o.m 

Note that R is a function of a^  except when JFlfo,) ■ -KO,. It is only in 

this case, i.e., when the external force is a harmonic one, that one obtains 

the linear law 

at W (6.33) 

where \i  is the vector and where J^ c :)■ 
For the harmonic force oL(x) considered here, the Kramers equation 

for the average position, <x>, and velocity, <v>, can be written as 
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^.<v> dt 

^ ■   -K<X>   ♦   0<V> 

(6.34). 

These moment aquations which are equivalent to vector equation (6.33) ate 

clearly linear. 
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