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ABSTRACT

In the present paper we extend our recent work on the continuous
single module design problem to the multiple module casa, It is assumed
that there is a fixed cost associated with cach additional moduls used
to solve the problem, The Kuhn-Tucker conditions characterise local
optima among which is a global optimum. Modules are associated with
partitions and a special class, guillotine partitions, are characterised,

Branch and bound, partial enumeration and heuristic procedures for finding

optimum or good guillotine partitions are discussed and illustrated with

examples.




1, INTRODUCTION

The one-module modular design proliem was first stated by David
Bvans in [3]. In the problem parts are to be grouped intc a single module,
several of which can then be used to satisfy (or over satisfy) the require-
ments for parts in a given application. The objective is to minimize the
total cost of the parts used for all applications. The formal statement of
the problem is:

Minimize ¥ e¢,x, £ d.y
x,y lel 11_10.! ¥3

Subject to

x’.yj > rij
for ie¢I, jeJ
xi,yj,ci,dj,r” >0

X

4 and y 3 are integers

where
I={1,2,...,m}
J={1,2,...,n]
¢ " cost of part 1
d j = demand for application j (an integer)
r, 3 * number of part i units required {n application j (an integer
x = ‘the number of part 1 units on the module (s dacision wariable)
y'1 = the number of modules needed for the jth application
(a decision variable)
The continuous modular design problem {s obtained by dropping the integer
requirements on x, and Yy A simplex-like solutiom procedure for this
sroblem was ;'~en bv Shaftel and Thompson in [9]. Sevezeh sqimeh procedmsss :nn

the problem were previously given by Evans 3], Charnes and Kirby (1], and, more

recently, Passey [6].




Evans in [4] and Rutenberg and Shaftel in [7] have extended the
modular design (MD) problem to the case where more than one module can be
used. This new problem is called the multiple modular design (MMD) problem,
Rutenberg and Shaftel formulated the problem for more than one market with
certain other costs and devised a heuristic search procedure for locating good
integer solutions. Recently Silverman [10, 11] has presented a search proce-
dure for solving the MMD problem, as formulated by Evans, given a solution to
the MD problem.

In the present paper we shall extend the results of our earlier paper [9])
to solve the continuous MMD problem. It is felt that solutions to the
continuous problem will lead to more efficient solutions of the integer
problem, We first sharpen the definition of the MMD problem by relating it
to partitions of the MD problem, We then define guillotine partitions and
study them in detail. Finally we develop branch and bound and heuristic

techniques for finding optimal and good guillotine partitions,

2., THE PRIMAL AND DUAL MMD PROBLEMS

The muitiple modular design (MMD) problem for a singzle market requires
that parts be grouped into several modules and various combinations of these
modules be used in applications. Therc {s a fixed cost of producing each
additional module and certain other costs (such as handling costs) which are
a linear function of the number of modules needed in each application,

The MMD has been formally stated [7] as follows:

Minimtze T lse, 10 to, g+ zr® 4oy, z;k) -g
k k .1

~
X, ¥,P h| J k




Subject to

(k) _ (k)
Eggi xj ?-513 for 1ie¢I, jeJ
(k) (k)
F I xﬂ » S5 dj’ xij’ hg > 0 for ieI, jeJ, keK
gik), xjk) integers

where

I=1{1,2,...,m}

J={1,2,...,n}

K= {1,2,...,p}

and p (= the number of modules) is a decision variable;

NOM
(k)
Xy
k
o -

In this paper

cost of nart 1
demand for application }
number of units of part i required in application }

cost of placing & module {n spplication }

fixed cost of producing the kth module

number of units of part i on module k (a decision variable)

number of units of module k needed in application }§
(a decision variable)

we shall concentrate on the continuous version of the MMD

problem and, therefore will omit the integer restrictions on the x and y

variables,

xfk) -

r

1
in order to simplify

our attention to the

For the continuous problem we can make the substitutions

(k)

k) (k
k) (k) N

d , db, =b /d
y Eryr and By = R/,
the statement of the problem. Initially we will restrict

problem where the numbar, of modules has been fixed,

| 4]




alym

In this case we can drop the fixed charge term in the objective function

since it is a constant. The problem then becomes:

Minimize I [I x{k) )] y§k)] +TT bjy§k) -g (1A)
X,y k1 3 k 3 P
subject to
(k) (k)
Exi yJ ar“ (2A)
xf"), yj(“), ¥y g By 2 0 (34)

Later we will show how to calculate an upper bound on p and give a
search proced:re for minimizing gp over all possible values of p. To do
this we will have to bring the fixed charge terms back into the objective
function,

We shall now derive a simplified primal problem, ard then use the Kuhn-
Tucker conditions to derive a dual problem similar to the one we found for the
single module case in [9].

THREOREM 1. 1In searching for an optimal solution to problem (A) the
linear term in (1A) ¢an be ignored.

(k)

PROOF, Let x' 7, y(k) for k€K be fcasible for problem (A). If 7T

k

is sny number > 0 then x(k)/'rk, YTk for keK is also feasible. By setting

Tk » 1< 1 for all k the second term of objective function for this solution
is reduced while the first term remains constant, By letting T — 0 the

linear term can Ye made arbitrarily smell, so that problem (A) has no minimising

solution with y(k) > 0. However the objective function is nonnegative and

hence has an infimum M over the constraint set. If we solve problem (A) without
the linear term we can then use the above transformation to obtain a solution
with value arbitrarily close to M, Thus we are justified in solving the con-

tinuous problem without the linear term.
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It should be remarked that for the integer problem there are additional
constraints of the foram ygk) > 1 so that problem (A) has s minimum solution
that is attained within the constraint set. In the integer case the linear
term cannot be ignored, and Theorem 1 does not hold for the integer problem,

In order to solve the continuous MMD problem we can (as in [3,9)) {solate

one of the set of optimum solutions by requiring that ¥ y}k)
jed

and ygk) variables, as

= ] for each k.

But we shall be even more explicit concerning the x{k)

follows.

Suppose that in the kth module we choose to make some of the xfk) or

yjk) variables equal to zero. In order to derive a dual problem that reflects
this we wish to record these zero constraints explicitly. Define p subsets

Ilguocyl and Jl’...'Jp ‘uch th.t Ik c I, Jk cJ for keK and

P
IxJ= (Il X Jl) U (I2 X 32) U...U(Ip X Jp)

Notice that we do not (as yet) require (Ih X Jh) x (I x Jk) = @ for h ¢ k, {,e.,

we do not require that the scts I, x Jk partition I x J. We now call the

following problem the primal problem with p modules:

Motmize Tz x(% =y (1P)
x keK 1cIk P
Subject to
(k) (k)
T x y -z, =r ., i€I, j&J (2P)
kek * J i) 1)
T yj(k) .1 keK (3)
ijk
xfk) = 0 keK, ieI-Ik (4P)
y}k) =0 kekK, ij-Jk (5P)
'13’ x{k), ygk) >0 keK, ie¢I, jeJ (6P)
where z is a sur;lus variable.

i}
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THEOREM 2. An optimal solution t> pcooblem (P) exists,

PRCIF. Problem (P) {s to minimirze & continuous function over a compact
set and by a well-known theorem of mathematics has an optimal solution.
In this paper we shall indicate some algorithms and some heuristic

procedures for finding exact and approximate solutions to the continuous MMD

R L S TN

problex.

LEMMA 1. 1f there are no zero rows or zero columns in the requirements
matrix, R, then {n any feasi;le sclution, for each 1 there is at least one
k with xfk) > 0, and for each § there is at least one k with y}k) > 0.

PROOF. Sinee T x(*) yj(“) 21, >0 for a feastble solution, it

k
follows that there is at least one k with xfk) ygk) > 0,

Let Klj be variables associated with the constraints (2P) and let g(k)
be variables associated with constreints (3P). The Kuhn-Tucker conditions
associated with the primal problem can be shown to be:

£ A,y ® ey for keK, Lel (1)
iy 73 k
jed,
L 2 x(k) - g(k) for keK, jeJ (2B)
13 ™t k
iclk
'15 Xij =0 for iel, jeJ (38)
*11 >0 for iel, jeJ (4B)
LEMMA 2. For any pair of dual feasible -olutions, I xfk) = g(k)
ilel ’
for keK. «
PROOF. Multiply equation (1B) by xfk) and sum over icIk; obtaining
L I o2, yj“‘) x w2 X0 for ek,
1¢Ik ijk 1clk

Similarly, multiply (2B) by y

(k)
3

and sum over ijk and use (3P) to obtain
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m e X i i i -

£ =z )‘ij y;k) x’(.k) - s(k) z ygk) - g(k) for keK
jdk 1eIk ijk

Combining these two equations gives the desired result,

LEMMA 3, For any pair of dual feasible solutions T g(k) =g .

kekK P , |
PROOF. This follows from Lemma 2 and (1P),.
By analogy to the continuous MD problem (see [9]) and classical linear
programning, we shall create a dual prcblem from constraints (1B), (2B), and (4B)

«nd the objective functior, The dual problem is:

B e e m—— - R

Maximize T T\, r,, = f ' (1D)
"u 1 1) 1) p
Subject to
£ A (k) - f keK, iel
19 ’j 1 or kek, iel, (2D)
jed,
b X“ x{k) ) g(k) for kek, jeJk (3D
uIk
)‘ij >0 for iel, jeJ (4D)

Constraints (3B) can be interpreted as complementary slackness conditions.
They will be forced to hold by the solution procedures we shall present,

Note that for each module, the constraints for fixed k have a similar
format to that of the dual problem of the continuous MD problem (see [9]) but
restricted to the ll.k x .Jk area of the matrix R, Many properties of the con-
tinuous MD problem will carry over to the continuous MMD problem,

LEMMA 4, For any pair of feasibl. primal-dual solutions (whether non-

negative or not) we have

8, - f =L T, 2
P P “1511




rm < sy

PROOF. Multiply (2P) by )‘U' sum over all { and | and use {1D) to show:

=TI
i)

19 r“-fp .

(k) (k) _
TEZI A, x y.1 f?kuz“

13K 13 7t
As in the proof of Lemma 2 we also have

(k) (k) (k)
TLE\, x y -=TIx =g
ty ML P

which proves the lemma.

LEMMA S. (Complementary slackness). For any pair of dual feasible
solutions .P - fp if and only if Aij zij « 0 for iel, jeJ.

PROOF. The proof follows directly from Lemma 4 and the fact that both
7\“ and zij are nonnegative,

THEOREM 3 (Duality Theorem). A necessary comiition that xfk), ygk) be

optimal for problem (P) i{s that there exists a solution {4 to problem (D)

J
and that -f,

“H"%

PROOF, Using Lemma 1, we can show that the Arrow-Hurwicz-Uzaws constraint
quelification [S5, p. 102] holds for problem (P). Therefore at the optimum
solution to problem (P) there exists a solution to the Kuhn-Tucker problem,

since problem (D) together with ) = 0 (which is true if and only if

13 *1y

;’ - fp from Lexmsa 5) make up the Kuhn-Tucker conditions. These conditions

must hold at the optimum because of the constraint qualification [5, pp. 105-106}.
The MD problem had a unique solution so the duality theorem for thst case

was stronger than here. In the MMD problem there are many pairs of solutions

satisfying the conditions of Theorem 5, and these correspond to local optima

of gp Anong these, of ~curse, is a global optimum,

3, CHARACTERIZATION OF LOCAL OPTIMA
In the present section we shall give some properties of local optima

for th» case of & fixed number, p, of modulea, It will be shown that a local

optimum to the problem can be found by solving p MD problems,




DEFINITION. By a partition of a MMD problem with data matrix R (here-
after called problem R) into p problems with data matrices R(k) {hereafter

called problem R(k)) for keK we mean R = T R(k), i.e.
kekK

r.,= L t{6) yhere r(k)g_o.

1 keK 13 i
An integral partition is one that also satisfies,
| x) _ (k) (k)
_l."_.1 ¢y dj E‘U where L!.j > 0 is an integer
We shall regard each R(k) as defining a MD problem with variables xfk). yjm
and 2 (K |

iy °
THEOREM /., (A) Given an optimal primal dual solution x(k), y(k) and

l“ to problem R & partition R = T R(k) can be defined in such a way that
x(h), y(k) and )\1 at2 optimal primal-dual solutions to the MD problem R(k).

)
(B) Given a partition R = T R(k), let x(k)

primal solutions for the MD problem R(k). Then, if it is possible to choose

and y(k) be optimal

)‘1(.:) = )‘ij for all keK as optimal dual solutions to R(k) for all keK, then
xék) and ygk) give a local optimum for problem R,

(k)

(C) 1t g(k) is the value of problem R and the condition of (B)

holds then
g o(®)

‘p-kcls ]

PROOF. (A) PFrom (2P) we have

(k) (k)
Exi yj 2 r“
k) . (k) (k) P,
hence we can choose r“ < X, yj so that k§1 rij tij for each 1 and }§

in at least one, and perhaps many different ways, If z , = O then

19
£ 10 () (k) 03]

£ Yy -k}:rg)-r“ 0 2, = 0 for problem R' ‘. Hence \u>0

implies :(k) = 0 and complementary slackness holds, The primal and dusl
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are as follows:

(1) xik) y§k) 2 r§§) for iclk, JeJk

(2 ¢ yj"’ -1 for keK
jeJ,

3) z xik) - g(k) tor kek
itlk

@ T g yj"’ .1 for keK, Lel
Jedy

(5) T Xij xfk) - 3(k) for ke¢K, jeJ
1¢Ik

6) T T A (k) f(k) for kek

r
1313
1c1k ijk

=P, y$,

We have already shown that (1

and (6) are true by definition; (4) 1s (2D); (5) is (3D); and (7) is included

in (4P) and (4D). Hence xfk)

problem R(k).

(B) If for a parcition TR

{1 and j, then the steps in the proof of (A) are reversible,

the details.

13 2

) holds. Equation (2) is the same as (3P); (3)

(k)

' y-1 and lij are primal-dual solutions to

(k)

0 for kek, icIk, jeJk

= R we can choose

e F

We omit the rest of

(C) 1f we sum (6) over k and use the duality theorem for problem R(k)

and the partition formulu we have

t®e g 2 o g, B g W

r r g =g = f
K ke fel, jeJ, 1 P P

completing the proof of the theorem,
By means of this theorem we see that one way of finding local optima to
the MMD prodblem is o partition R into MD problems R(k) and then use the

algorithm of [9] to solve R(k). If it happens that the same dual variables
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(k)

can be used for each problem R then we have found a local optimum to the

MMD problem., If we can enumerate all local optima,we can choose the smallest

as the global optimum. There are, of course, an infinite number of arbitrary
partitions. We shall concentrate on integral partitions, since there are
only a finite number of them.

DEFINITION, By a guillotine partition with p pieces of R we shall

it itvmin et smabed AR |

mean a partition of I x J into p 'rectangular" subsets
IxJa= (I1 x Jl) Ueou U (1p x Jp)
where

(Ih x Jh) n (Ik x Jk) =@ for hek
()

and a partition R = I R where
kek
(k)
rij rij if (1,3) ¢ Ik % Jk

®) Lo1f @,§) e 1, xJ

r1j X and h ¥ k.

1

By a guillotine row partition we mean a guillotine partition with

J, = J for keK. Similarly by a guillotine column partition we mean a guillotine

k
partition with Ik = [ for kekK.,

Clearly guillotine partitions are integral and there are only a finite
nuaber of them. Also any guillotine partition can be constructed stepwise by
row and-or column guillotine partitions applied alternately to a series of sube
problems,

THEOREM 5. Suppose problem R is divided into p rectangular pieces R(k)

(k) y(k) (k)

by a guillotine partition, 1f L Yy and xii are primal-dual optimal
solutions for R(k) then x:k), yjk) and xi’ = % Aiﬁ) give a local optimum
- kal "l

to problem R,
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PROOF, Suppose R(k) consists of the matrix r(k)

i3 defined by
rig) = ri-1 for (i,3) ¢ I, x Jk
ri?’ -0 for (1,1) €1, x J,

where L C1 and I CJ define the rectangular piece R(k) Then {f

1¢Ik we have xik) = 0 and if jéJk we have y(k) = 0, Hence xfk) =0 1if

hj
(1,3) ¢ I * I Therefore kik) =0 if (k,}) ¢ I xJ,. 1Lt follows that if we
define lij - % Xfﬁ) it will satisfy the dual conditions (2B)-(4B). Hence
k=l
(k) (k)

by Theorem & Xy and yj give a local optimum for problem R,
LEMMA 6. Let Ik x Jk be a rectangular piece of a guillotine partition

and let 3(k) be the optimal value of R(k) considered as an MD problem,
W,

Then g 2
(i,j)clkx.lk

rij.

PROOF. Since ng) =1 for (1,§) e I, x J,
(k)

g = f(k) by the duality theorem, the result is obvious.

J, 1is always dual-~feasible and

DEFINITION. A sub problem R®) defined on 1

k X Jk is tighet if

8(k) - v "

(4,161 13

THEOREM 6. Consider the MMD problem with all fixed costs equal to s

(a) Por guillotine partition gp > gp+1.
(b) Unless all pieces of a guillotine partition with p pieces are tight,
there is an additional row or colu... guillotine partition that can be made such
that > . 1
Sp 8p+1
PROOF. (a) The guillotine partition with p+l pieces is obtained from

that with p pieces by applying a row or column guillotine partition to one

of the original pieces. Suppose I x J1 is to be divided into

(111 x Jl) U (112 x Jl) by A row partition (the proof for columr partition
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ie similar). Then the y vector that was optimal for I1 x J1 together with
tha 111 components of x will be feasible for Iy xJq- S3iwilarly the same y

vector and the I1 components of x will be feasible for 112 x Jl‘ Hence

2
(a) follows.

(b) If the I1 b Jl piece for the guillotine partition with p pileces

is not tight then some cell (i,}) « 11 x J1 has z, > 0. By making the next

]

partition isolate eithey the row or the column containing (i1,j) we can assure
that > .
8p ~ Bp41
We give next an example of a problem for which the optimum partition is not

a guillotine partition, Consider the problem

1 2 1 3
R= 2 3 1 4
3 04 5

and suppose we require p = 2, The sum of the elements in R 1s 27, and the
reader may easily verify that every guillotine partition has 8, > 27. However

the following, non guillotine, partition achieves 8, = 27:

1 2 0 ] 1 21 1 ;1'3. T 1
TS S : .
R= |2 3 = go 1 ~EJ + |2 2 2
3 4 rb_‘d 1 2 |3 T- 3 3
« gD 4 g @
The optimum solution to R‘l) is

xe(3,3,3), y=, 3 3,

)
and the optimum solution to R(z' is

x-(3, 6, 9). y.(%: %' %)

One optimum dual solution is xij =1 for all 1 and §, and there are others,




L T e ES e AP i o e S o ]

-14-

It is interesting to note that the vertical guillotine partition that
defines coluun 1 as one subproblem and columns 2 and 3 as the other sub-
problem has & value g, * 27.58 which is only slightly more than the optimum
of 27. We have generally found that guillotine partitions will give local
optimum values close to the optimum when they do not themselves provide the
optimum,

*n the rest of this paper we shall restrict ourselves to guillotine
partiticiisa. Other reasons why they are advantageous is that row guillotine
partitions restrict the number of different parts that appcar on a given
module, while column guillotine partitions restrict the number of different
modules that appear in a given application. Both of these conditions are
probably desirable from a manufacturing point of view, even though they are
not zpecifically included in the objective function,

We intend tn take up the question of non-guillotine partitions in

another paper.

4. SOLUTION PROCEDURES FOR GUILLOTINE PARTITIONS

Searching successive MD problems of a MMD problem is made easier by
the ability to use a type of parametric programming. Given the optimal
solution to a MD problem, we can readily determine a gcud initial feasible
solution for any subproblem formed via a guillotine partition, as follows,
Let X iel, yj, jeJ be the optimal solution to a particular mxn MD problem.
Now assume that we partiticn the problem into two subproblems made of columns
of the original problem (the same reasoning would apply for rows). Let

Jk = {the set of columns which are positive in modulc %}, k = 1 or 2,
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And y(k)'}'/Z y jeJ, and k =1 or 2
3 3 e, k
k
xfk) = max rij/yfk)
Jedy,

Let the cells which determine xfk) be tight &nd by increasing the right

hand sides of other constraints force these cells to enter the basis until

W% () (k)

a tree basic solution is formed with rij { yj for (1,§) in the tree.

THEOREM 7. (A) The solution described above is primal feasible.

(B) If m and n are > 1 and the original problem is nondegenerate

the sum of the objective functions for the initial primal feasible solutions

to the subproblems is less than the optimal solution for the original prohlem.

PROOF. (A) Let riT/yik) = max rij/yjk) i
jQJk €
then, xfk) yfk) - riT/yik)- yjk) > rij/yjk)-y§k) = rij for all i,j and k. f

(B) Let g be the optimal solution to the original problem. And h1 !

and h2 be tbs objective functions associated with the initial primal feasible

solutions of the two subproblems, Then,

g = £ T x, y,. We also know that x, = max r, /y, for all {,
per ge3 74 by 8
sothat g = £ ¢ y, -maxr, Jy,.
| ' el Jo3 3 gey Y74
|
i
W 0 o 1 (k)
Now, x, yj 5 yj ?:;k rij/yj

jeJk
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And, h, +h, =| & Y y,max r, /y,+ T y, max r,,K/y .
12 [ur jea, d e, M yg T oy, 1
1 1 2 2
But for m and n > 1 (and a nondegenerate problem) there is at least one
row in R which contains only ore tight cell so that

mex r, . Jy,>max r, . /y, .
jed 1373 je3, 13773

Hence, g > h1 + hz.

A solution for & subproblem formed in the above manner is usually
a very good initial primal feasible solution. It is, of course, an upper
bound on the value of the objective function for that subrrobiem, A lower

bound to the objective function value of a subproblem is § > rik' .
1e1k jeJk ]

It is important to note thet the upper bound calculation is the first (and,
probably, most time consuming) step of calculating the exact optimum for a
«<ubproblem. Because of this, it seems likely that for any branch and bound
enumeration procedure it will pay tc calculate exact solutions rather than use
approximate lower bounds. It is possible to enumerate, explicitly or implicitly,
all possible ways of partitioning the problem into p modules (bounds on the
value of p will be discussed in the next section)., The organization of such
an enumeration, not the calculation of lower bounds, is what would make such

a4 complete enumeration difficult, Because of these difficulties we will present

some properties which sould make useful tools for obtaining good heuristic

solutions.

Given a solution to a particular MD problem, the greatest value by which we

bl i < .

can reduce the value of the objective function is T % ztj’ If we form a partition
i
wvith a subproblem with a single positive column, then the objective function
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will reduce by at least T zi.1 for that row. Since m 1is generally larger
b

than n, vertical partitions seem the most appropriate. Another rationale for
using only vertical partitions can be made by counting tie number of new tight
cells which would be caused by wvertical versus horizontal partitioning. Once
8 vertical partition is made, subdividing the new subproblems into more vertical
partitions is even more appropriate. If a total of n partitions were to be
made, n modules each satisfy the needs of exactly one application would yield

the optimum value of T I r, ,.
(g 4

Given the value of p, or an estimate for that value, and using vertical
partitioning only, it becomes necessary to intelligently group applications to
be satisfied by certain modules. (Note that the techniques discussed here will
also apply to horizontal partitioning.) This fact would mean that we would
want to choose applications to group whose parts requirements have approximately
the same ratios. We would also like to group applications, with requirements
which are difficult to fulfill, into the smallest groups. Three possible
measures which may be used are:

1). The variance (or absolute difference) along each column is an
important measure. Since we are dealing with ratios, we would want a
measure of the variance of the normalized row entries. The measure of this
type that we shall use is

1
e, /Zr,, ~=
1‘“1” m

2). The above value would be useless without some sort of indication
of the size order of the entries of a column, Ideally, of course, we would '

compare each pair of columns to see how closely they fit., An essier, but

less informative, method 1s to compare each column with a given standard order.
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The sum of the absolute difference between the order and the standard order
will be used as a measure,

3). Given that we make only vertical partitions the number of columns
in a given module is likely to be on the order of magnitude of n/p. In order
to determine which columns should be in the smaller partitions we look at

for the single module solution. Columns with larger values of £ zij
i

e
g 1
would be in partitions which satisfy the least number of applications.

We consider the effectiveness of the three heuristics for a specific

example in Section 6,

5. DETERMINING THE NUMBER OF MODULES
As mentioned earlier, n {is an upper bound on the value of p while 1
is a lower bound, The solutions for these two cases are quite easy to find;

the difference between the two solutions (excluding fixed costs) {s exactly

zZ :1j = 2(1) where zlj is the surplus for the case where p = 1. Reduction
1)
in the value of Z(k) as p 1Increases scems to decrease at least linearly.

As more experience in solving MMD problems is obtained, good estimates on p

(p)

should become available. At present a good estimate (assuming F is an

(1)
increasing function of p) is the largest value of p such that F(p) S-EETT .
2

During a search for the exact value of p, an upper bound yhich is cften better
than n, as well as a means for eliminating certain possible values between 1 and n
can be achieved, These two procedures are outlined in the next two theorems.

THEOREM 8: Let 2% = £ I 2
gy i

when q modules are produced. Then an

upper bound on p 1is thae largest integer such that:

Z(Q) - % F(k) >0
keq+l
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vhere F(k) is the fixed cost of the kth additional module.

PROOF. By definition Z(q) is the maximum we can reduce the value of
ths objective function by producing additional modules, As soon as the total
cost of additional modules surpasses this amount, adding a module cannot be

profitable.

(q)

THEOREM 9: Given 2 and @, the value of the best minimum solution

found so far, calculate c as the largest integer such that

+2@ 4 & PR <,

L
13 kel

r“

Then any value of k from (and including) ¢ to q cannot be the optimum.

PROOF. Since z(q) is a nonincreasing function of ¢, it is a lower

(c¢)

bound on the value of Z' ", ¢ < q. This implies that a lower bound on the

value of the objective function for any value of ¢ < q 1is:

. ¢
+ z(‘) + T Fk. We need only consider values of ¢ which have a

k=1

ZZLr
1)

lower bound less than the optimum found thus far. Hence the theorem.

1]

6. EXAMPLE

We will give ar example problem, enumerate all possible guillotine
partitions, and indicate the values of the heuristic measures defined in
section 4, The problem we will use 18 symmetrical so that only vertical

partitions need be considered.

[T 2T5] 1]
R S —
2:91! 6 7 12 | 10
h—---.a‘..... b e . R
R= |3 l 6 i 16 | 20| 25 {
- 1 - -
}12 j20 | 25 | 23
r-»...., .-~ i el
L4 10 25 23 %
f T, 1139 70 81 98
£ELr,, =29
1§ 4
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For po1 gt = g{” - 367.36. 2} 268.3. For p =2 there are
15 possible vertical guillotine vartitions, In the following table 1,2,-3,4,5

wmeans subproblem one has r for columns 1 and 2 and zeros in columns 3, 4,

i}

and 5, while subproblem 2 has columns 3, 4, and 5 at the value, rij' and zero's

in columna 1 and 2.

Partition Sub-module 1 Sub-mojule 2 Total
Optimum Excess Optimum Txcess Optimum Excess
1+ 2,3,4,5 11 0 343,0 55 354.0 55
2 - 1,3,4,5 39 0 299.1 39,1 338.1  39.1
3 -1,2,4,5 70 J 285,1 56,1 355.1 S56.1
4 - 1,2,3,5 81 0 266.9 48,9 347.9  48.9
5 - 1,2,3,4 98 0 247.0 46,0 345,0 46,0
1,2 - 3,4,5 57.4 7.4 276.6  27.6 334,0 35,0
1,3 - 2,4,5 91.1 10.1 262.5 44,5 353.6  54.6
1,4 - 2,3,5 100.7 8.7 245,00  37.9 345.7 46,7
1,5 - 2,3,4 118.8 9.8 226.0 36,0 344.8  45.8
2,3 - 1,4,5 126.9 17.9 221.9  31.9 348.8 49.8
. 2,4 - 1,3,5 134.6 14.6 198.5 19.5 333.1 34,1
; 2,5 - 1,3,4 160.2 23,2 185.4  23.4 245.6  46.6
' 3,6 - 1,2,5 165.6 14.6 179.9 31.9 3.5,5 46,5
3,5-1,2,4 176.4 8.4 153,0 22.0 329.4 30,4
4,5 - 1,2,3 200.,3 21.3 145.4  25.4 345.7 46,7

For p = 2 then the optimum pusiition is 3,5 - 1,2,6 g2 = 329.4, 22 « 30.4.

from the enumeration of p = 2 we can enumerate all possible solutions for
p=3and p=&t, For p =3 the bes: partitions are 1,2 - 3,5-4, g(3> = 314.4,
2(3) = 15,4, For p = 4 the best partitions are 1,2 - 3-4-5, g(a) = 306.4,

2(“) = 7.4, Note that the approximation for the reduction in z(k)

given in
the last section scems to be very accurate.

Finally, we will show the heuristic measures discussed in section &,
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’13 for the single module case:
0 1 1.2 4 | 2
RS S . )
1 (1] 6.5 3 | 8
U S
1.2 |6.5 | 1.4 .8 }0
. .1.__..-.4._._.1. J—
[ 4 3 .s_i N
2 18 ! 0 ;,7]0)
M 8.2 18.5 9.9 1“.8 17
Normalized value of rij
— . —
091 ' ,051 | ,043 | .012 j
-Tﬁzhr.z'n ["oss | 148 1",
/ SRS ARV SRS SO U
.273 . .1%4 | ,229 | $247 ¢ ,225
| SR .. . H NS TR
.091 ,308 1 ,286 .309 ; .235
_— ke - - . ._4*—-.--—.—_.1‘
.366_J~,25§'§ JJA57  .284 :368
Ave, .2 .2 02 o2 .2
Sum of the absolute
difference from
the mean 473 .528 .543 .480 .515
Order (ties are given the average value of their possible positions):

— S
‘ Ti 1 1 1 1
{3 |3 2 22
| 6 12 313 4
£ e w0 LERY R f -4 ..
i s 4 ls s
V—""""’" P S ..i 1

s 6 s la s
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Calculating the sum of the abasolute value of the differences between pairs of

colunns we get

pair value pair value
1,2 7 3,4 2
1,3 5 3,5 2
1,4 7 4,5 4
1,5 3

2,3 4

2,4 2

2,5 6

Note that the optimum solution for p = 2 {s 3,5 - 1,2,4 where two
rows which are similar alﬁng the order and variance measures (3 and 5) with
large ‘15" have been grouped intc a smaller module. Although these
measures are not perfect, they do give an a priori indication of which
partitions are reasonable.

As a second example, we will solve the problem presented by Evans

in [3), for p = 2,

15 | 23 | 44
13 | 13 0
1§ § 17 | 35
w2
Sum 77 65 101

For this problem Evans in [4] gives a solution of 270. Silverman [11) gives
an optimal solution of 269.06 via a search technique., (Bcth solutions are
for non-guillotine partitions.) We shall show one possible vertical guillotine

partion, chosen from the magnitude of T 'tj from the single module solution;
i

§
i
t
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these valuss aras:
column 1 2 k}
f z“ 30.3 14.5 51.0

We shall solve the partitions 1, 2 - 3, In this case si = 166.9, gi = 101,
gz = 267.9. This solution was found in a few minutes by hand via the

Shaftel-Thompson algorithm applied to the subproblems,

7. CONCLUSIONMS
In this psper we have extended the MD solution of {9] to the MMD
problem, We have characterized the local optimum and identified a useful
subset of these optimum as elements of a, possibly, exhaustive search. 1In
solving the MMD problem by the methods outlined in this paper several advantages
are available, as follows,
(1). The soluticn is based on solving the MD problem which can be
solved quickly, Use of previous solutions for each MD subproblem will start
the Shaftel-Thompson MD algorithm at an initially good primal feasible solution.
(2). We have stated conditions that limit the search for p. Also, any

branch and bound procedure for searching for an optimum solution to a given p,

generates a tree which can be used during the solutions procedure for a new
value p’. This means that rather than solving several problems from the
beginning we may merely extend the tree for each new value of P.

(3). The solutions for p =1 und p = n can be found quickly and
give a good initial upper bound on the value of the objective function.

(4). There exist many good local solutions to the problem so that a

heuristic ssarch will tend to find a reasonable solution.

T —_—

N
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