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ABSTRACT

In the present paper we extend our recent work on the continuous

single module design problem to the multiple module cue. It is assumed

that there is a fixed cost associated with each additional module used

to solve the problem, The Kuhn-Tucker conditions characteriae local

optima among which is a global optimum. Modules are associated with

partitions and a special class, LAottnje yartitigs, are characterised.

Branch and bound, partial enumeration and heuristic procedures for finding

optimum or good guillotine partitions are discussed and illustrated with

examples.



1. IMTODUCTION

The one-module modular design prolelm was first stated by David

Evans in (3]. In the problem parts are to be grouped into a single module,

several of which can then be used to satisfy (or over satisfy) the require-

ments for parts in a given application. The objective is to minInuiL the

total cost of the parts used for all applications. The formal statement of

the problem is:

Minimize E cixi Z djyj
x,y ieI jeJ

Subject to

xjyj > } for is!, r J

XiYj*Ci,djrij 
i> 0 f

xi and yj are integers

where

I -[1,2,...,n)

ci - cost of part i

d - demand for application j (an integer)

r ij number of part i units required in application j (as Isteger'

x the number of part I units on the module (a decision variable)

yj - the number of modules needed for the ith application

(a decision variable)

The continuous modular design problem is obtained by d"opping the Integer

requirements on xi and yj. A simtlax-like solutios.procedure *or this

, roblem waas 7
4 .- by Shaftel and Thompson in [9). Seve:d 4100 proceadm cum

the problem were previously given by Evans 3), Charnes and Kirby (1), mnd, more

recently, Passey [6).
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Evans in [41 and Rutenberg and Shaftel in [71 have extended the

modular design (MD) problem to the case where more than one module can be

used. This neu problem is called the multiple modular design (MMD) problem.

Rutenberg and Shaftel formulated the problem for more than one market with

certain other costs and devised a heuristic aearcn procedure for locating good

integer solutions. Recently Silverman [10, 111 has presented a search proce-

dure for solving the HMD problem, as formulated by Evans, given a solution to

the MD problem.

In the present paper we shall extend the results of our earlier paper [91

to solve the continuous MMD problem. It is felt that solutions to the

continuous problem will lead to more efficient solutions of the integer

problem. We first sharpen the definition of the MMD problem by relating it

to partitions of the MD problem. We then define guillotine partitions and

study them in detail. Finally we develop branch and bound and heuristic

techniques for finding optimal and good guillotine partitions.

2. THE PRIMAL AND DUAL MMD PROBLEMS

The multiple modular design (MMD) problem for a sirnle market requires

that parts be grouped Into several modules and various combinations of these

modules be used in applications. There ts a fixed cost of producing each

additional module and certain other costs (such as handling costs) which are

a linear function of the number of modules needed in each application.

The MMD has been formally stated [7] as follows:

Minimize r-1 c (k) 1 d (k)] + E (k) + EEb (k)
x,y ,p k I k k j

"WANt
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Subject to

) ) J for W¢I, J4J
k k

(kc) (k),
c1, di j , AI X 0 for £31, jej, IcIK

(k), jk) integers

where

J (1,2,...,n)

K (1,29, p

and p (- the number of modules) is a decision variable;

c, = cost of !)art i

d J demand for application j

x -= number of units of part i required in application j

ki - cost of placing a module in application J

F(k) - fixed cost of producing the kth module

(k) number of units of part I on module k (a decision variable)

(k) . number of units of module k needed in application J

(a decision variable)

In this paper we shall concentrate on the continuous version of the MW

problem and, therefore will omit the integer rest'ictions on the x sad y

variables. For the continuous problem we can make the substitutions

x(k) =c (k) (k) d (.(k)

rU -c1 dj j, and bJ -b /d
jj i ij --J .J

in order to simplify the statement of the problem. Initially we will restrict

our attention to the problem where the number, p, of modules has been fixed.
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In this case we can drop the fixed charge term in the objective function

since it ts a constant. The problem then becomes:

399y k i j k j J p

subject to
k(Zk) y(k) >_ ri (2A)

X[k) , y (k), rj bj >_ 0 (3A)

Later we will show how to calculate an upper bound on p and give a

search proced'u-re for minimizing gp over all possible values of p. To do

this we will have to bring the fixed charge terms back into the objective

function.

We shall now derive a simplified primal problem, ar' then use the Kuhn-

Tucker conditions to derive a dual problem similar to the one we found for the

single module case in [9).

THRORIN 1. In searching for an optimal solution to problem (A) the

linear term in (LA) ,ilan be ignored.

(k) (k
PROOF. Let x , y(k) fo: k6K be feasible for problem (A). If Tk

is any number > 0 then x (k)/ k, Ykk for kcK is also feasible. By setting

*k a T < I for all k the second term of objective function for this solution

io reduced while the first term remains constant. By letting T -" 0 the

linear term can be made arbitrarily smell, so that problem (A) has no minimising

solution with y(k) > 0. However the objective function is nonnegative and

hence has an infimum M over the constraint set. If we solve problem (A) without

the linear term we can then use the above transformation to obtain a solution

with value arbitrarily close to M. Thus we are justified in solving the con-

tinuous problem without the linear term.



It should be remarked that for the integer problem there are additional
_(k%

constraints of the fota y 1 > 1 so that problem (A) has r minimum solution

that is attained vithin the constraint set. In the integer case the linear

term cannot be ignored, and Theorem 1 does not hold for the integer problem.

In order to solve the continuous iM problem we can (as in [3,91) isolate

one of the set of optimum solutions by requiring that E (k) - 1 for each k.
JcJ J

But me shall be even more explicit concerning the x(k) and y (k) variables, as
j 

r
follows.

S e that in the kth module we choose to make some of the x(k)Suppose taintekhodlwecostomksoeotex or

y(k)- variables equal to zero. In order to derive a dual problem that reflects

this we wish to record these zero constraints explicitly. Define p subsets

I1,..,I p and J 1 ,...,Jp such that ik C I, J k CJ for ksK and

I x J - (I x J1 ) U (12 X 32 ) J...U(Ip x J)

Notice that we do not (as yet) require ( 1h x Jh) x (Ik x Jk) 0 for h 0 k, i.e.,

we do not require that the Bets Ik x Jk partition I x J. We now call the

following problem the Primal problem with p modules:

Minimize £ E x(k) .(P)
x kcK iCIk J

Subject to

(k) (k) - zij -rj iCI, JCJ (2P)

k#K J j

E y (k) - I kcK
Je C. k (

x(k) - 0 ksK, iCI-Ik ()

(k) (5k)

y~k . 0 kcoK,JJJk()

ai k1 0(k) > 0 kes, il, JeJ (6P)

where z1j is a surplus variable.



"-6-

THEOREM 2. An optimal solution t0 p.eoblem (P) exists.

PECIF. Problem (P) is to minimize a continuous function over a compact

set and by a we!'ý-known theorem of mathematics has an optimal solution.

In this paper we shall indicate some algorithms and some heuristic

procedures for finding exact and approximate solutions to the continuous MMD

problem.

LIMA 1. If there are no zero rows or zero columns in the requirements

matrix, R, then in any fee, 1'le solution, for each ± there is at least one

k with xi(k) > 0, and for each j there is at least one k with y (k) > O.

PROOF. Since Z x (k)- y(k) > riJ > 0 for a feasible solution, it
k i ik

follows that there is at least one k with xk)" yk) > 0

Let XiJ be variables associated with the constraints (2P) and let S(k)

be variables associated with constrrints (3P). The Kuhn-Tucker conditions

aessociated with the primal problem can be shown to be:

Z •X y(k) . I for keK, isik (14

E X X (k) . g (k) for keK, ~Jk (2B)
i ielk i(a)

a QjXjf for iII, JeJ (31)

Xi > 0 for icl, JeJ (4B)

(k) (k)
LEMMA 2. For any pair of dual feasible 'olutions, x = gk)

for ksK. Wk

PROOF. Multiply equation (1B) by x~k) and stun over icIk; obtaining

E Z X k (k) E xk) for keK.161 k JSJk 'ii iI k

S1alarly, multiply (21) by y(k) and sum over Je3 k and use (3P) to obtain
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(kc) (kc) (kc) (k) (kc) frk
E Xij Y J X for key

J Gik £ e e k Je c k

Combining these two equations gives the desired result.

LEDKA 3. For any pair of dual feasible solutions Z g (k)
kcK p"

PROOF. This follows from Lemma 2 and (IP).

By analogy to the continuous MD problem (see [9]) and classical linear

programing, we shall create a dual problem from constraints (1B), (2B), and (43)

&n the objective functiorn. The dual problem is:

Maximize EEX rJ , f p (1D)
Xi iji ii

Subject to

E XJ y(k) . 1 for kcK, ieIk (2D)

( Xt x(k) * 9(k) for keK, JJk (3D)
Le k ij ik

XiJ 0- 0 for iWl, JcJ (4D)

Constraints (3B) can be interpreted as complementary slackness conditions.

They will be forced to hold by the solution procedures we shall present.

Note that for each module, the constraints for fixed k have a similar

fomat to that of the dual problem of the continuous MD problem (see 19]) but

restricted to Lhe Ik x Jk area of the matrix R. Many properties of the con-

tinuous MD problem will carry over to the continuous MMD problem.

LDI2A 4. For any pair of feasibl. primal-dual solutions (whether non-

negative or not) we have

P " fP - E XiJ z1J
ij
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PROOF. Multiply (2P) by X •, sum over all i and j and us6 (iD) to show:

E EE x(k y(k) . E Xj z E Xr o

As in the proof of Lemma 2 we also have

EE E x(k) ( x (k)'.

which proves the Imme. a

LUMA 5. (Complementary slackness). For any pair of dual feasible

solutions Sp a fp if and only if x•j zij - 0 for ieI, JeJ.

PROOF. The proof follows directly from Lemma 4 and the fact that both

Xi_ and zij are nonnegative.

THEOREM 3 (Duality Theorem). A necessary condition that x(k) (k)•i ~y be

optimal for problem (P) is that there exists a solution X to problem (D)

and that Sp a fp.

PROOF. Using Lomia 1, we can show that the Arrow-Hurwicz-Useva constraint

quilification C5, p. 1021 holds for problem (P). Therefore at the optimum

solution to problem (P) there exists a solution to the Kuhn-Tucker problem,

since problem (D) together with XiJ z-J ' 0 (which is true if and only if

sp - fp from Lema 5) make up the Kuhn-Tucker conditions. These conditions

muat hold at the optimum because of the constraint qualification [5, pp. 105-106].

The MD problem had a unique solution so the duality theorem for that case

was stronger than here. In the MHD problom there are many pairs of solutiona

satisfying the conditions of Theorem 5, and these correspond to local optima

of ap. Among these, of -eurse, is a global optimum.

3. CUAIACTUICZATIOM OF LOCAL OPTIMA

In the present section we shall give some properties of local optima

for thi case of a fixed number, p, of modules. It will be shown that a local

optimum to the problem can be found by solving p MD problems.

I1
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DFINITIOM. By a partitign of a N4D problem with data matrix R (here-

after called problem R) into p problems with data matrices R (k) (hereafter

called problem R(k)) for keK we mean R - E R(k) i.e.
keK

rjj £ r (k) where r(k) > 0.
keK

An &nmtezral partition is one that also satisfies,

(k) (k) (k)

,r~k - c i dj ik) where j4)i> 0 is an integer

We shall regard each R(k) as defining a MD problem with variables x(k), y*W

* (k)
and "Sij

THEOREK A. (A) Given an optimal primal dual solution x(k' y(k) and

XLj to problem R a partition R a E R(k)t can be defined in such a way that

(k) (k) (k)
x y and XiJ ata optimal primal-dual solutions to the MD problem R.

(B) Given a partition R - E R (k) let x(k) and y (k) be optimal

primal solutions for the MD problem . Then, if it is possible to choose

X(k) X for all keK as optimal dual solutions to R(k) for all keK, then
ij ii

Xk) and y(k) give a local optimum for problem R.

(C) If g(k) is the value of problem R (k) and the condition of (B)

holds then

r 5 (k)
8p kcK

PROOF. (A) From (2P) we have

(k)(k
kxi yj - i

_(k)j (xk)_ (k) P (k)j

heace we can choose r < x y so that Z r = rJ for each i and j

in at least one, and perhaps many different ways. If z - 0 then

zX( k) (k) kE r ( r so a k -0 for problem R (k). Hence X 0

implies k) 0 and complementary slackness holds. The primal and duali~mue.
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coaditions for problem R(k) are as follows:

)(k)(2) x Yj T.1 forke

() E Y(k) for keKJ x a k 

1

(3) Z xk) - (k) for keK

(6) E Xj y (k) a I for keK,tak jUi

(5) E IJ 0 for keK, Jkj
£iok

(6) E, r (k) . f (k) for kcK
(6) J 4 •ij ij

(7) x (k),I y (k), 7 0 for keK, W~k
ZI iY ij ji-ej

We have already shown that (1) holds. Equation (2) is the same as (3P); (3)

and (6) are true-by definition; (4) is (2D); (5) is (3D); and (7) is included

in (4P) and (4D). Hence x(k), y (k) and XiJ are primal-dual solutions to

problem R(k)

(B) If for a partition Z R (k) . R we can choose X(k) . x for all
ij ij

I and J, then the steps in the proof of (A) are reversible. We omit the rest of

the details.

(C) If we sum (6) over k and use the duality theorem for problem R(k)

and the partition formula we have

(r(k) (k) ffk) . ij r •iJ l E 9 " p "

k kcK itlk JcJk kc p

ecaleting the proof of the theorem.

By mans of this theorem we see that one way of finding local optima to

te NMD problam Is to partition R into MD problems R(k) and then use the

alsorithm of (9) to solve R(k). If it happens that the ame dual variables

tA'



can be used for each problem R(k) then we have found a local optimum to the

MMD problem. If vie can enumerate all local optima, we can choose the smallest

as the global optimum. There are, of course, an infinite number of arbitrary

partitions. We shall concentrate on integral partitions, since there are

only a finite number of them.

DEFINITION. By a guillotine partition with p pieces of R we shall

mean a partition of I x J into p "rectangular" subsets

I x J -(11 x Jl) U...U (Ip x J )

where

(I h x Jh) n (Ik x J 0k 0 for h # k

and a partition R =E R(k) where
keK

(k)
r = r if (ij) C I x J
ij ij k k

r (k) 0 if (ij) 6 I x J and h # k.ii

By a guillotine row partition we mean a guillotine partition with

Jka J for keK. Similarly by a guillotine column partition we mean a guillotine

partition with Ik a I for keK.

Clearly guillotine partitions are integral and there are only a finite

number of them. Also any guillotine partition can be constructed stepwise by

row and-or column guillotine partitions applied alternately to a series of sub-

problems.

THEOREM 5. Suppose problem R is divided Intl p rectangular pieces R(k)
(I).k) (k)

by a guillotine partition. If x k), y k) and X are primal-dual optimal

solutions for R (k) then x (k) (k) and (k) local optimumthny and give alclotm
Sk-I

to problem R.
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PROOF. Suppose R(k) consists of the matrix ri(k) defined by
ij

r (k) . r for (i,J) e k X J

r(k) . 0 [or (i,J) 9 k x Jijk k

where Ik C I and Jk C J define the rectangular piece R(k). Then if

ik we have x k) . 0 and if JOJk we have y k) . 0. Hence x ( 0 if
Therefore X (k) . 0 if (k,j) i I x J It follows that if we(tJ) i Ik k" Thrfr iJ k k

define X a it will satisfy the dual conditions (2B)-(4B). HenceLj k-1 ij

by Theorem 4 x and y (k) give a local optimum for problem R.

LEMMA 6. Let Ik x Jk be a rectangular piece of a guillotine partition

and let g be the optimal value of R(k) considered as an MD problem.
Then 8 (k) >_ rJ

(i,J)eIkxJk, (k)

PROOF. Since X ( 1 for (ij) e I x I is always dual-feasible and

g(k) f (k) by the duality theorem, the result is obvious.

DEFINITION. A sub problem R(k) defined on Ik x Jk is tight if

9(k) E r.

(iJ)e k Ikx k

THEOREM 6. Consider the MMD problem with all fixed costs equal to ".

(a) For guillotine partition g >. gp+l"

(b) Unless all pieces of a guillotine partition with p pieces are tight,

there is an additional row or colu,. guillotine partition that can be made such

that gp > gp+V

PROOF. (a) The guillotine partition with p+1 pieces is obtained from

that with p pieces by applying a row or column guillotine partition to one

of the original pieces. Suppose I, x J, is to be divided into

(I1 x JI ) U (112 x J 1) by a row partition (the proof for colurm partition
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is similar). Then the y vector that was optimal for 1 x Jl together with

the I11 components of x will be feasible for 1 x J V Similarly the same y
vector and the 112 components of x will be feasible for I12 x J Hence

(a) follows.

(b) If the I1 x J1 piece for the guillotine partition with p pieces

is not tight then some cell (i,J) R 11 x J1 has zij > 0. By making the next

partition isolate eithev the row or the column containing (i,j) we can assure

that gp > gp+l"

We give next an example of a problem for which the optimum partition is not

a guillotine partition. Consider the problem

R t2 3! 4
3 4 i 5

and suppose we require p - 2. The sum of the elemenls in R is 27, and the

reader may easily verify that every guillotine partition has g2 > 27. However

the following, non guillotine, partition achieves 82 - 27:

13-- 4- -5! •• 1_; 21 133.

R R(1) + R (2)

The optimum solution to R(1) is

x - (3, 3, 3), y - (0, ,

and the optimum solution to R (2) is

x - (3, 6, 9), y- (, 1, )

One optimum dual solution is Xij 1 for all i and J, and there are others.

i.
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It is interesting to note that the vertical guillotine partition that

defines colAn I as one subproblem and columns 2 and 3 as the other sub-

problem has A value g2 - 27.58 which is only slightly more than the optimum

of 27. We have generally found that guillotine partitions will give local

optimum values close to the optimum when they do not themselves provide the

optimum.

!n the rest of this paper we shall restrict ourselves to guillotine

partitioita. Other reasons why they are advantageous is that row guillotine

partitions restrict the number of different parts that appear on a given

module, while column guillotine partitions restrict the number of different

modules that appear in a given application. Both of these conditions are

probably desirable from a manufacturing point of view, even though they are

not specifically included in the objective function.

We intend to take up the question of non-guillotine partitions in

another paper.

4. SOLUTION PROCEDURES FOR GUILLOTINE PARTITIONS

Searching successive MD problems of a MMD problem is made easier by

the ability to use a type of parametric programming. Given the optimal

solution to a MD problem, we can readily determine a gc.id initial feasible

solution for any subproblem formed via a guillotine pjrtition, as follows.

Let xi, i€I, yj, JeJ be the optimal solution to a particular mxn MD problem.

Now assume that we partition the problem into two subproblems made of columns

of the original problem (the same reasoning would apply for rows). Let

Jk= (the set of columns which are positive in modulL ki, k - 1 or 2.
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And y(k) Yj J aJk and k 1 or 2

x,(k) = r /y(k)

Let the cells which determine x(k) be tight and by increasing the right

hand sides of other constraints force these cells to enter the basis until

a tree basic solution is formed with rjk)* - x (k) y(k) for (i,j) in the tree.
ij i j

THEOREM 7. (A) The solution described above is primal feasible.

(B) If m and n are > 1 and the original problem is nondegenerate

the sum of the objective functions for the initial primal feasible solutions

to the subproblems is less than the optimal solution for the original prohlem.

PROOF. (A) Let r / m (k) r/yk)iT T• =C ma j •;
JCk

then, x(k) y(k) r / (k) (k) > (k) (k)the, x Yj .r~/y Y r j /yj *yj rn1 1  for all i J and kc

(B) Let g be the optimal solution to the origtnal problem. And h

and h2  be the objective functions associated with the initial primal feasible

solutions of the two subproblems. Then,

g E• E xi yj. We also know that x1 =max rij/Yj for all i,

iCl jeJ jej

so that S E Z yj max r /y .
icI jCJ jJi

Now, x(k) y (k) . yj • max r (/Y(k)

SE Yj JCJk. J €kJk

a " y max r /Y

j c J kJ/k kJ

y• yj max r j/ill JCJ k rjY
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And, h+ h2 -['E jrI yj .ax rjj/Yj + y max rj//Y ]I g Jej1 Jc3 re /Y IJ•C2 jej 2

But for m and n > 1 (and a nondegenerate problem) there is at least one

row in R which contains only or.e tight cell so that

max r •j/yj > max r .j/yj
jgjJjk

Hence, g > hI + h 2 .

A solution for a subproblem formed in the above manner is usually

a very good initial primal feasible solution. It is, of course, an upper

bound on the value of the objective function for that sub"robiem. A lover

bound to the objective function velu of a subproblem is E E rij
iCIk JCJk

It is important to note that the upper bound calculation is the first (and,

probably, most time consuming) step of calculating the exact optimum for a

4ubproblem. Because of this, it seems likely that for any branch and bound

enumeration procedure it will pay to calculate exact solutions rather than use

approximate lower bounds. It is possible to enumerate, explicitly or implicitly,

all possible ways of partitioning the problem into p modules (bounds on the

value of p will be discussed in the next section). The organization of such

an enumeration, not the calculation of lower bounds, is what would make such

a complete enumeration difficult. Because of these difficulties we will present

some properties which sould make useful tools for obtaining good heuristic

solutions.

Given a solution to a particular MD problem, the greatest value by which we

can reduce the value of the objective function is E E z . If we form a partition
ij j

with a subproblm with a single positive column, then the objective function
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will reduce by at least E z for that row. Since m is generally largerj ij

than n, vertical partitions seem the most appropriate. Another rationale for

using only vertical partitions can be made by counting the number of new tight

cells which would be caused by vertical versus horizontal partitioning. Once

a vertical partition is made, subdividing the new subproblems into more vertical

partitions is even more appropriate. If a total of n partitions were to be

made, n modules each satisfy the needs of exactly one application would yield

the optimum value of E E rij.
i j

Given the value of p, or an estimate for that value, and using vertical

partitioning only, it becomes necessary to intelligently group applications to

be satisfied by certain modules. (Note that the techniques discussed here will

also apply to horizontal partitioning.) This fact would mean that we would

want to choose applications to group whose parts requirements have approximately

the same ratios. We would also like to group applications, with requirements

which are difficult to fulfill, into the smallest groups. Three possible

measures which may be used are:

1). The variance (or absolute difference) along each column is an

important measure. Since we are dealing with ratios, we would want a

measure of the variance of the normalized row entries. The measure of this

type that we shall use is

~Iij/Enij - l

2). The above value would be useless without some sort of indication

of the size order of the entries of a column. Ideally, of course, we would

compare each pair of columns to see how closely they fit. An easier, but

less informative, method is to compare each column with a given standard order.
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The sum of the absolute difference between the order and the standard order

will be used as a measure.

3). Civen that we make only vertical partitions the number of columns

in a given module is likely to be on the order of magnitude of n/p. In order

to determine which columns should be in the smaller partitions we look at

r zij for the single module solution. Columns with larger values of Z' zij
Ii

would be in partitions which satisfy the least number of applications.

We consider the effectiveness of the three heuristics for a specific

example in Section 6.

5. DETERMINING THE NUMBER OF MODULES

As mentioned earlier, n is an upper bound on the value of p while I

is a lower bound. The solutions for these two cases are quite easy to find;

the difference between the two solutions (excluding fixed costs) is exactly

E E Xij - Z(1) where zij is the surplus for the case where p 1 1. Reductioni j

in the value of Z (k) as p increases seems to decrease at least linearly.

As more experience in solving MMD problems is obtained, good estimates on p

should become available. At present a good estimate (assuming V is an

increasing function of p) is the largest value of p such that F(p) < -)

During a search for the exact value of p, an upper bound which is often better

than it, as well as a means for eliminating certain possible values betwecn I and n

can be achieved. These two procedures are outlined in the next two theorems.

THEOREM 8: Let Z(q) E -4 zij when q modules are produced. Then an£ j

upper bound on p is the largest integer such that:

Z(q) -I F(kq > 0
ksq+l
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where F(k) is the fixed cost of the kth additional module.

PROOF. By definition Z(q) is the maximum we can reduce the value of

the objective function by producing additional modules. As soon as the total

cost of additional modules surpasses this amount, adding a module cannot be

profitable.

THKOWIU 9: Given Z (q) and 8, the value of the best minimum solution

found so far, calculate c as the largest integer such that

c (k)E E rij + Z() + F < 0.
i j kal

Then any value of k from (and including) c to q cannot be the optimum.

PROOF. Since Z(q) is a nonincreasing function of q, it is a lower

bound on the value of Z(c), c < q. This implies that a lower bound on the

value of the objective function for any value of c < q is:

E E rij + Z( + F. We need only consider values of c which have a
i J k-l

lover bound less than the optimum found thus far. Hence the theorem.

6. EXAMPLE

We will give ao example problem, enumerate all possible guillotine

partitions, and indicate the values of the heuristic measures defined in

section 4. The problem we will use is symmetrical so that only vertical

partitions need be considered.

1 2 37 1I 4

2 9 6112
A- .- ±

Ru 3 16 i 6162 0 ! 25

1112 120 25; 23

4 1 ._25 23 36

Erij - 11 39 70 81 98
J

tL j
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For pal SM ) -367.36. Z -68.36. For p 2 there are

15 possible vertical guillotine nartitions. In the iollowing table 1,2,-3,4,5

means subproblem one has rij for columns 1 and 2 and zeros in columns 3, 4,

and 5, while subproblem 2 has columns 3, 4, a'id 5 at the value, rij, and zero's

in columns 1 and 2.

Partition Sub-module I Sub-inolule 2 Total

Optimum Excess Optimum Excess Optimum Excess

I - 2,3,4,5 11 0 343.0 55 354.0 55

2 - 1,3,4,5 39 0 299.1 39.1 338.1 39.1

3 - 1,2,4,5 70 285.1 56.1 355.1 56.1

4 - 1,2,3,5 81 0 266.9 48.9 347.9 48.9

5 - 1,2,3,4 98 0 247.0 46.0 345.0 46.0

1,2 - 3,4,5 57.4 7.4 276.6 27.6 334.0 35.0

1,3 - 2,4,5 91.1 10.1 262.5 44.5 353.6 54.6

1,4 - 2,3,5 100.7 8.7 245.0 37.9 345.7 46.7

1,5 - 2,3,4 118.8 9.8 226.0 36.0 344.8 45.8
2,3 - 1,4,5 126.9 17.9 221.9 31.9 348.8 49.8
2,4 - 1,3,5 134.6 14.6 198.5 19.5 333.1 34.1

2,3 - 1,3,4 160.2 23.2 185.4 23.4 245.6 46.6

3,4 - 1,2,5 165.6 14.6 179.9 31.9 345.5 46.5

3,5 - 1,2,4 176.4 8.4 153.0 22.0 329.4 30.4

4,5 - 1,2,3 200.3 21.3 145.4 25.4 345.7 46.7

For p a 2 then the optimus pb&L!#tion is 3,5 - 1,2,4 g (2) - 329.4, Z2 . 30.4.

From the enumeration of p a 2 we can enumerate all possible solutions for

p a 3 and p n 4. For p - 3 the best partitions are 1,2 - 3,5-4, g(3) . 314.4,

Z(3) u 15.4. For p a 4 the best partitions are 1,2 - 3-4-5, g(4) - 306.4,

Z(4) . 7.4. Note that the approximation for the reduction in Z(k) given in

the last section seems to be very accurate.

Finally, we will show the heuristic measures discussed in section 4.



S... ........ . . . .. .. . . ....... • • e .. , . .

-21-

zij for the single module case:

1 0 T .:5- 3- 8"

144

&IM 8.2 18.5 9.9 14.8 17

Normalized value of rij

.091 .051 .043 .012 .041

.182 10231 .086 .48 1.102

.273 .154 .229 .247 .225

.091 .308 .286 .309 1 .235

.364 ¶ .256 .357 .284 :..368

Ave. .2 .2 .2 .2 .2

Sum of the absolute
difference from
the mean .473 .528 .543 .480 .515

Order (ties are given the average value of their possible positions):

3 3 2 221

4 2 3 3 4

51 4 5t 3
tLL.4 5 4

~~4i
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Calculating the sIm of the absolute value of the differences between pairs of

columns we get

pair value pair value

1,2 7 3,4 2

1,3 5 3,5 2

1,4 7 4,5 4

1,5 3

2,3 4

2,4 2

2,5 6

Note that the optium. solution for p - 2 is 3,5 - 1,2,4 where two

rows which are similar along the order and variance measures (3 and 5) with

large xij'O have been grouped into a smaller module. Although these

measures are not perfect, they do give an a priori indication of which

partitions are reasonable.

As a second example, we will solve the problem presented by Evans

in [33, for p- 2.

15 23 44

13 13 0

15 17 35

La'. 12 22
Sum 77 65 101

For this problem Evans in [4) gives a solution of 270. Silverman (111 gives

an optimal solution of 269.06 via a search technique. (Both solutions are

for non-guillotine partitions.) We shall show one possible vertical guillotine

partion, chosen from the magnitude of E a j from the single module solution;
£
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these values are:

column 1 2 3
Lur

Ij 30.3 14.5 51.0

We shall solve the partitions 1, 2 - 3. In this case g82 166.9, g2 101,

2 s 267.9. This solution was found in a few minutes by hand via the

Shaftel-Thompson algorithm applied to the subproblem.

7. CONCLUSZIOS

In this peper we have extended the MD solution of [9) to the PMW

problem. We have characterized the local optimum and identified a useful

subset of those optimum as elements of a, possibly, exhaustive search. In

solving the )IBD problem by the methods outlined in this paper several advantages

are available, as follows.

(1). The solution is based on solving the MD problem which can be

solved quickly. Use of previous solutions for each MD subproblem will start

the Shaftel-Thoupson MD algorithm at an initially good primal feasible solution.

(2). We have stated conditions that limit the search for p. Also, any

branch and bound procedure for searching for an optimum solution to a given p,

generates a tree which can be used during the solutions procedure for a new

value p'. This means that rather than solving several problems from the

beginning we may merely extend the tree for each new value of p.

(3). The solutions for p - I and p a n can be found quickly and

give a good initial upper bound on the value of the objective function.

(4). There exist many good local solutions to the problem. so that a

heuristic search will tend to find a reasonable solution.

• _o. ... ." ... 4
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