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AB~STRACT

This paper considers a special class of transportation problems

in which the needs of each user are to be supplied entirely by one of

the available sources. We first show that an optimton solution to this

special transportation problem is a basic feasible solution to a slightly

different standard transportation problem. A branch and bound solution

procedure for finding the desired solution to the latter to then presented

and illustrated with an exaple. We then consider an extension of this

problem by allowiog t.e possibility of increasLng (at a cost) the source

capacities. The problem formulation is shown to provide a 8geeralization

to the wl.l-known assLsgment proble. The solution procedure appear*

to be rolativtly ,norQ efftciont •Ain the uimber of use greatly exceeds

Lho iiwabor of 3ource.s..



1. INTRODUCTION

In a recent paper [4], DeMaio and Roveda consider a special class

of transportation problems with a set of sources I a

having known capacities bi and a set of uses J - (i,2,...,j,...,nl with

known demands r for a homogeneous material (the bi and r are assumed

to be strictly pos!tive). The objective is to minimize the total transporta-

tion cost Z subject to the constraints that (i) each user'u demand is

fulfilled by exactly one of the sources, and (ii) the total amount shipped

from each source does not exceed its capacity. Denoting by cii the coat

of transporting all the r.1 units from the ith source to the jth use

and defintoitg l t to be 1 or 0 depending on whether or not use j is assigned

tu.sourcC i, the probl -.ts to

s1bbjec& to the con•tr4lnts.

'iT r X b for tel,()

JrI for NJ, mid (3)

X 0 or I for I a c I4" . (4)
iJ

"The. authort j (41 prosent an tplicit enumratton Wpproach to Solvtin

"thib pr obIet1. n hpctioli . e titt* thiat an opitimal solutito tO this probleua

can be characteriav s a basic feasible mltuttod to a slqgtly Modified

•rar~patatti probent and that such a solution can be Obtained by an algorithm

•. sioilIr to ths subtour eliminatiou method for solving traveling salelsm

Prblb:0s t5, t. et-cc our alf~orttha utilizes the• unaderlying structure of

the transportation problea, it is believed to be c.oautatiewally more etficleat

tha;4 thc I.-wiftit enumeratioi approah.. A viii be see ts Section 2 the
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present algorithm appears to be particularly suitable when the number of

uses far exceeds the number of sources. Furthermore, our approach can be

easily extended to problems where capacity expansion for warehouses is a

possibility. In Section 3 we consider this extension and provide other

practical applications covered by this model.

2. THE ALGORITHM

t! To bring the problem (l)-(4) into the standard transportation format,

we first make the transformations

-yj rjx.. for Jil and JeJ, and (5)

d C /r for icI and j•J; (6)

i..e. , dunotes Ohimount Miippad from i source i to use al unit

do T convert the inequalittes (2) into equations, se dopt the

u.sual proceduro ý31 of adding a slack use M + I and setting

•:. '- , H + ),(7)

0 (or icl. (8)

•i;.•-:. l• • • • b. - • (9)

11w- probkim (I)-(4) can theo be vorl•ied to be equivalentu to:

mill "ii atZ dYJ.(0

luh'j1-%;t to the e•,,s4rjinLs;

. " * " (or Jf r (11)

I1

. 0 - or icl alld js.', a.d (13)

Y 0 or r for Wi and JcJ. 14)
.!3
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I The problem (10)-(13) is a standard transportation problem and hence

can be solved by the primal transportation algorithm (also known as the MODI

method [31). We assume that the reader is familiar with the usual terminology

that a cell is an index pair (i,j) with row (source) i and column (use) jeJ;

"a basis B to the problem (10)-(13) is a collection of (W + M) cells without

cycles (loops or stepping-stone tours) and such that every row r1s and

column jeJ/ has at least one cell. A solution (ylj] is basic if y -j 0

for (i,j)i B. A basic s.olution is feasible if the 'yi s satisfy the con-

straints (11)-(13). It is well known (31 that the HODI method yields a basic

optimal zoolution (i.e., a basic feasible solution for which cost Z is

minimal) to the problem (10)-(13).

DEFINITION I. We define P to be the standard trgoasortation problM

(i0)-(13) and P' to be the special transportation RroblH (10)-(14). We

define a basis to be row-unq_, if corresponding to every tolumn JJ,

there is an ,nique row i such that (i,J)¢B if and only if i -a

}1: dVo[nitiLon, B has W + M cells. Since a row-unique basis has

eQaLtly oac, cell for Ž.ich column .lcJ, it follows that the M + Is colmn

has W cells; i.:., (,M+I).B for every l£ l. (Such a basis cannoz have

cycles since only the 1 + Ist column contains more than o*e cell.)

Theorem I below e:stablishes the connection betwoen the problems P

and P

ThEOREM 1. There is a one-to-one correspondence between feasible

solutions to P' kind row-unique basic feasible solutions to P.

PROOC. (Consider any feasible solution fyij to P'. By (12)-(l4)

and frum thy assumption that r > 0, it follows that cortesponding to every

usoe ,t.i there is an utique source i such that y~i > 0 if and only if
Cgn.

•: :i i. Corresponding to this solution we define B to be the set of V. *N
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cells [(i.,j) for j•J U (i,M+l) for icl). Consequently, the solution [ytj

is basiic since v,. 0 for (i,J)OB. It iB a feasible solution for P"L]

since tY.i is feasible for P'. Since B is defined uniquely, this

correspondence is unique.

To prove the converse, assume that we have a row-unique basic feasible

solution iY..1 to P. By (12)-(13) and row-uniqueness it follows that-cor-

responding to every column ýJ there is an unique roy i such that

y 0.-! r. if i = i and zero otherwise. Consequently (14) is satisfied

and from (1l)-(13) it follows that (yl) is feasible to P' as vell.

Furthermore this correspondence is unique thus completing the proof.

By Theorem I and from the fact that the problems P and P` share a

corunon objective function (10) it now follows that:

CORQLLARY' 1: There is a one-to-on1e corroespondetce between optimal

solutions to P' and the optima among the row-unique basic solutions to P.

A solution procedure to the problem P" now easily follows somewhat

aloug the lines of the subtour elimination algortthms for the travaling-

salehnau problem [5, 71.

This algorithmn is basically a branch-and-bound procedute which

bLgius by part-tioning the Set ut' o 'ow-.nlique basic fea4ibla solUtiotns and thm.jj

'sdL:otLing lower bounds on the costs of &l1 solutions iA a subiet. The

initial bound is found by solving the standard transportation problem P.

[f thli bhaic optutial solution to P is row-unique then we are finished in

the 8(eIlse that h, have at optimal solution to P as veil (Corollary 1).

tuppuqso .,n the von•rary that the basic optimal solution tO P is not eft-

unique. .•et uti *•onnte by J' one of the coluans jCJ which hab more than

tha0 one L.l'li huLonJing t B aol let (iL',') be one such basic cell.
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(1'hoUgh any such (i ',j') can be chosen, we diacuas below a heuristic for

cioosi.at; a 'good' (i , ') from the point of view of computetional af Ficincy.)

Wc now btranch into two subproblms (a) the subset In whtch (i ',j 'is a cell

iu the optimumw row-unique basic-optimal solution; end (b) the subset in wich

(i 'J is not a cell in the optimum solution. The two new transportation

1)probliens correspondiun, to (a) and (b) are solved to detegline the loer bounds

1-,r all row-unique basic optimal solutions in their tespctive subsots. If

tie optimal solution correspondit% to any one subset is roft-utque a&d the cost

o ot* rs s-turion is luss than or equal to the loaer boudAs on all other subsets

tlzenr ;wca ci zol~t~ioii is optimal. If not, then one selects that suabset having

~.uzI etlkower iiou41( ard branchas again, tato ~ao subproblems. 6 etually

~~mo ~ o f sire t ulinng ~An optimum~ rov-unique basic opeu.ml saluttoo end

'y- i •i',l,..L. •i the v algorttbo are no inotodr. lFrst, it t

li " ro for b nctins un a. bud
* ~ t * r~ th' ~ b~t~k~o tin exc usde u basi eo-.~ uo tois

r,:,,,., i ', } '• or •t•e h ii n tst 8or ste tbe Wotal in mber

e' ~441di~ kiin d it least x4.hee~ b ** i acl~a"4a at ýevety tteratlon.

$Vcold; O~ hý ,ti u n ediUIe 14t5uIU io a putttctt Ot the vW.-Ubiuo

zo.utxna 16% that subset MW hene the alpritt? caii be *zptted

o bIm ýŽffj~t~ Tirm . for the ,,ub t%)blm vi~ th Cj) tr alne to 1ho to

0--i- by V4- iique i@ it follOW tbet (I j 14 the only

ko V .l Cimse ntly, we can dr.V colu j fro twtbw C on-

~ ~~~t' b to b. - amd $*Iva a Matter tvaasortettoo

I'M todrdstion lu b 1 may, tutthersw ivoly the iptobta tioce tW

ii ' for iumich t to greatteý tben the am VOWS of b1 taaot
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pe~ssibly be in the optimum soluttmn (such cells cant be elimLuated by de-

finling d.. a) Fourth, the optimal solutions to the *ubprobtwma can be

Aicently obtained by the operator theory of p~cruoetric programing

de(veloped in (0. 91 rather thean re-solving. Moreover, the backtracking steps

of Owe bratich *Ind bound procedure may also be done this way. Finally, a

!Wf'V0'QO4e has s can have at most W coltass which hav, more than one

ctflt (this W tolw irl"~ the fact that a basis has WV+ K cells with at

lvasýt .'tw Cc~l toy Oacih of the H Columns). Consmequsotly the tracctoa of

rti ;& t& Ltheyr Ai coluzakn: whic do ot satisfy rov-uoiquenons ts WINl.

cle p~ropowtw4 ~1goriux= can be expected to bie relactivalv moire efficient

h~ ~*imsvhct' rh nk umber of uses greatly exceeds the mumber of soaurces.

V#-tww voitn*der the question oi Chboostri the cell ~ J)U"~ whtat
tztkAL,ý the os p~~t~ procedure btanch. Let us dn4ote by S the 60t, of

g ktbvg o or mave cells of the bole W JC, 5). Given a colao

iýl~ ~~ ratwbIAN on that basic cell (IJ) for wticb 4ý is OW

djoot. ht kg ctn* bran. h to which (LOI) is exclued* tv*. the flttsai

Or t 0v cct tali bW execý .-a to Utcrea4e .pprox~inately by (d -dd ly

kt thq flATI* 4=satlest Cost of-*a basic* rll 1s Coltant 3 a

lh%' wuft hbp$?A Via the sa"lint cost baoi- call (13)., Cocs0qsattyý,

br4raochi:14 toý 4flA Chou.. the COIMAn 3 ¶q3 for thtch A t the largest

.4 h $00 i Xii .ere (h'1 aa. the losnt coat swoeg alt basic

vsý .rc Olie above tO-SuL. in Algorithm I -torett u cue ecia

I I JI
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1, Se.t up the problemn P deflined by (10)-(13).- Let P dtaote the

problem P, i' 0 denocte the set of 4:ell- coastrained -to be itwi udod

illOWOptiVMZ2:~L:? ad Ye 0 deote~ the ofclselud

from the otmmslto.LtY b h piu ouint

with basis 8 nd cost 21 (this may be obtained by h pi..<'o)

inethod'l. Lot S fl) den~ote the set of problu tundor consideration and

let Ul 1 denote the total niumber of probloss generated so1 ar

S. eihaos the prol1vat P k or which Zto the smallest for UeS. If"

is row-ui'ique i~ to (5). Othemgise go to~ (3).

3. ka) Findi the Se~t ") CO1Ias J for which the basis tits two or

mat:'r bai;. cels 0i that column. For each col.tus jJ (tud thieJ.

tw )4sic c,ýljs (i..) alid (4.,J) for which the unit coatfj are -Aht

kl:;d Oto~ th.' 40 Ur whichi &, isUo lortost Saler,". the

44 '( ci'. pbeaotat ci ttoe for* Ortar

~s ~ ~* an tliot~ bo*tice iCe01 U (1'.

Iwo prip.b *lco Pv* can be abtsiined (rv I by
U1 e~ii~h . Ii It - ko o~mo

g~jth tit,'It 1, kltof.tae ii

Wf) t~e. P a% the p ý,,b I to btalined ftoo by etyxt4w OS W,

1 ý* hO Ort~~ C b4MA1 61S. Set - k YUL(i (ije., d

*1 1-knt t~t baple Op d~.tim~ olous to P~ am~ P tobtained by

the~ Wq1il Method) to be an V, Wil W.44 a j
Lkit4LWe iM soptivuIios~t to2 +I

ofLinad cost to& r1+zi
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ii* Drop k from Lhe set S and add (m+l) and (m+2) to S. Redefine m

as m+2. Go to k2).

5. The optimal soluticm to the special transportation problem (1-4) is given

by Y. and C' with the associated cost optimal cost to

P + Yrx.d... Stop.

We illustrate below the application of Algorithm I wvith the se

example as was solved in [4]. Fig. la :ihows this problem with four sources

Si ,...,S4, five uses UI,,....U5, costs cij, capacities bi and demands r

as shown, Note that since r 1 > b4 and r2 > b4, the cells (1,4) and

(2,4) cannot possibly be in the optimum solution. Consequently c 1 4  c .

Figure la -Id about here

At step (1) of Algorithm I we set up the transportation problem P P

as shown in Fig. Ib, by adding a dunmuy use U6 with demand

b. - , r. 14 - 11 3 (eqn. (9)) and defining costs d as
- .1 ij

per equatiens (6) and (8). For the problem P1  none of the calls are

.ons;trained to be included or excluded in the optimum solution so that

0. The optimum solution to P1  obtained by the primal method (the

S.(apacities o. were perturbed slightly to prevent cycling [3]) is also shown

•> in Fig. ta where the ci.rcled cells denote the basic cells with the amounts v

.i

writLtn oý,-r the circles (yj 0 for non-basic cells). The optimum value

for the. objective function can be verified to be Z 19/3. We now set m = 1

-a1 S (1}. In step (2) of th. alg,,rithm, we find that the basis of Fig. lb

is not cow-unique so Jhat we proceed to step (3).

in step 3(a) we find .] (1,2) so that 1 "(2/3- 1/3) x 1 1/3

and "2 (1 /3) x 2 4/3 so that J,2 aad (i 'j') (2,2). In

"!~
?'
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st:~p 3(b) problem P2 is defined as problom P1 with (2,2) constrained to

!e included in the basis (i.e., Ok2 - t(2,2)t and Y2 - 6). Consequently,

we drop use U2 and change b2 to b, - r 4 - 3 • . Since r, r 3 and r

arc- greater than b2 , the cells (2,1), (2,3), (2,4) can not be in the optimal

solution so that we set d2 1  d d = and obtain P2., The optimal

"*;olution to P2. shown i" Fig. ic., was obtained by the primal method. The

optimal cost of the solution t: P2 can be verified frce Fig. Ic to be 23/3

so that Z,- (23/3) +4 r dl a (23/3) + (3 x 1/3) a 2613. Similarly

P is obtained from P by excluding (2,2) from the optimal solution (fi =,

3 1 3

1 = 2,2)'). ýo equently d2 2  is set equal to oo in Fr.g. Id. The optimal

solution to P3 is also shown in this figure with Z3 2/3. The branching

- of PI to P2 and P3 on the basis of cell (2,2) can be aeen in Fig. 2

ills well. We now set S - (2,31 and m-3 and return to step (2).

Since Z < Z and since b3  is not row-unique we now branch the

problem P'3 into two bubsets. From Fig. Id. J* 1,41. A 2/ and

1. Ro that =4 and (ij') x (3,4). In step 3(b) we define P4

to be thu. saine as P3 but with (3,4) constrained to be included in the3

optimal solution (i.e., 04 =.(3,4)) and If -(2,2)1). Consequently we
4 '

drop Ii4 and change b3 to b - r 4 = 3 - 2 $. Since r,2 r2r3 are

greater tlhan b3 we make d31 d 32 d33 to obtairt Fig. le. The optimal

solution to P4 is shoun in Fig. le with cost 25/3 so that Zt 25/3+(r 4 x 3 4 ).28/3.

Figures le - ih about here

Fig. P1 shows the problem P obtained Irom P3 by constratning (3,4)

to L.' excluded from the optimal solution (i.e., T ((2,2), (3,4))). We

mark d4 3 and obtain the row-unique basic optimal solution of Fig. If. with

Z,• 9. In step (4), S becomes (2,4,51 and m 5.

(i
•'•, ,
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We now return to :,tep (2) of the algorithm to find that Z is the
2

smallest among the problems in S so that we branch P2  to P and P
2 6 7

on the basis of cell (3,1) as shown in Figs. Ig and lb. Now S becomes

[4,5,6,71 so that Z is the smallest cost. Since Y is row-unique,

the optimal solution to the special transportation problem is given by Fig. If

with cost Z = 9. This optimal solution assigns the uses UI, U2, U3, U4, U5

to sources S3, SI, S2, S4 and SI respectively, the same solution as in (4].

Figure 2 shows the branch-and-bound tree at the end of the computation.

Figure 2 about here

From a computational point of view, it is not necessary to store the

problems Pk for keS. It is enough if we store the sets 0. and Yk for

keS. To construct P from the original problem 2, we first set d
Ii

for (i,j) e Y. Next, fur every (i,j) s\ we drop column j and modify b.

to b..- r.. Finally we eliminate those cells (i,j) with ,j*.J for which1 3

r> b (by defining d ij o )

it Ls interesting to compare our algorithm to the implicit enumeration

approach int [41 . "he latter starts out with the solution of the total cost Z'

obtained when each use j is assigned to that source i with the least cost

C'i The feasibility condition (14) is -ittsfied at every Step but not (11).

On the other hand, our procedure starts with the least cost optImAl solution

to P of cost Z /and maintains the feasibility condition (11) but not (10.

Denoting by Z the optimal cost of the special traniportatan proIlem, the

rolt:ve effcieincy oft the algorithms• will vary across problems depending ou

whothvr X1 or" Z" is c loser to Z . As mentioned earlier, for probloem with

,u . the in',:1.i,;ibi liy ,of (14) is reltivIely stital so tnat our al-

Sgor thIM i :: etteLr 17uited Lor such ýrvblcma, On the other hand for probloms



ocr which thui ratio M/W is small, the all zero-one algorithm of [4) can

he .:xpected to be more efficient.

Finatly it. should be pointed out that although this algorittl has

been dV,.elopd using the primal method as a subroutine for solving transporta-

Lion -rt' lems, other methods such as the primal-dual methods could also be

2. ExF WIN- AND APPLICATIONS

We first formulate an extension of the special transportation problem

••here t~hi c.pac Lies h1t cmcn Lo increaser d by ,mnit cost.,g 1 . DOtin• by ug the

ad.il ion:iI "'apactý of source i, equatiows (10) and (II) are r'oidtied to

S. 2t- ' + 2:, dl i], an)

y. - 1b, + fI for lel ,16)

Vt :(-mstv by h, thOle mailmultu Jidittonal copacity that can be udded '.O

,o•2rct? . tif ht- ni ovno c on•ruint, h. can be set oqul to a very

large t•uu'orj. As. ;turther gecnrv.zacion ltt donote the utnit Coat

Ot not uttltizing tihe capacity 01 .c Se c t it this ivoltvea * unit crwVins

!i tI'I .,' W~fl'ik be .,ogative! ant lot (4 1.) doeote the minimum utiLtia-

l'LuI 1t'wI fur .4ou re 1. "Mfining qj b - the followung relations

)l 0 1od t't tlC " .';tiuck %t:wc + I It

i1\1+1 P6  lor ift, and

rYi,'M+I 4 for ifi. 18)

'.1Th1 3dd4'Liton:, capaciLies U can bmt thought of aa a surplusa we (H + 2).

We now dtfitine
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U = ',('+•)}, ,nd (19)

, h.-u. fcr icl. (20)y• YiM+2 i i

FurLlicrmur!. since 0 < u. wi. we haicve

0 +2 "h. for icl. (21)
i m+

IThe objective Lunct ion (15) becomes

"Z Z+ d..y,. (22)

it:t jcJa

Where z (23)

d - for teI. (24)
i 'M+2

i:.The emonstraint~s (16) becoine

Y to b+ It for is,. (25)

I'he *,t' in I w1 d as usuad for jeJ. But for the dmuay L.sea (M+I), (12)

-lould moudlsIiied to

- , " + ) - v r
-. ~jJ

(20) (e26)tii~i: .° . .,. ,. ,, ;' (bt + h•) r t(6
' ... 14. 1 1 ,,'44- " t, +21

-:h vtll.ttttai: 026" iq nor a re ulwar transportation constraint since it

n . v4tdti', two coluanim. To bring It to .t4tudan d tr nsport L

"4+

'." (28)

l•, N.,, ar, large pnsiltvi :umlbers ( o thatbecomes

/ . -' !

R¢
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yw+, YWIM2 Er j (bHi + NI + N

Consequently if we define y " 0 for jeJ (by vtLitig dwl, j
for jeJ), (29) becomes

E -r (bi+1.) +N +N N

jgj 1 29 ijiL'

Finally, by defining

I I U (W+i)) 0U 1
the constraints (27)-(28) can be rewritten as

Y , 1M+l N 1I and (2

1 1Yt4+2 "•

Figurea 3 tin arizes tfe capacitated (or c ipper bounded) t x!2l;i,, (aii -

formulation of this problem. The special transporttiioo probooi hais thl.

additional donstraint (14) that each use jej has t)c be suppl.ised .v oinUy

out (possibly different) source icl.

An algorithm for this generalized problem• sthould ho. ubvt,"us, W-,.

can utilize the same br-anch and bound procedure vf Sectionx 1 wit~h ch;,•

capacitated transportation formulation ot Figure 3. However, dlhe iaiplllt

enumeration aldoriphm of a41 is not capable ge. suclh an easy exth'. npaon (.t2-

though De•aio and Roveda S41 in tLeir concluding discussion sugjest thti

problem generalization considered here). •

Though the special transportation model concerns il.,,elf Wiuh Sour C,~

and uses typically considered as warehouses and market-s, we wi,,i t.tw 11,oItlv •uu•

that it offers an important generalization to assigiumwnt m•oderl.. (F~u other"

interesting and imtportant assignment problem geOt~e1',11•a!•i~ot1., ,-,ve th,ý pallei: (21

by Charnes, Cooper, Niehaus and Stedry.) Consider, for l~•,•,, ,:fa~•
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jobs to machines in a case when it may be prohibitive to do the same job

on more than one machine (perhaps because of set-up cost considerations).

Denoting by r the time required to perform the job J, bi the time

available on machine i and cij the cost of performing job j on machine i,

we obtain the special transporLation problem (l)-(4). Similarly, this model

can also be utilized in assigning workers to supervisors (or students to

advisors) where r is the time needed to supervise the j-th worker. These

applications suggest a further extension of problem (l)-(4) where (2) is

replaceu by

Sr x _b for 1W, (34)

i.e., ri3  is not necessarily constant for all icl; in other words Job j

might be done with differing efficiencies by each of the machines. Tha

branch and bound procedure of Section 2 would then have to be applied to a

g generalized transportation problem (1,61 with column demands equci to unity.

4, CONCLUSIONS

In this paper we have considered a special class of transportation

problems of assigning uses to sources and provided a branch and bound solution

procedure with the standard transportation problem as a subroutine. Coaparod

to the implicit enumeration approach in (41 this algorithm appears to be com-

putationally more efficient particularly for problems whore the nwtber of useus

greatly exceeds the number of sources.
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Fig Ia. 141

Trauaportation Tableaus for the~ lxample
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Ul U2 U3 U5 U6 b U1 U2 U3 U4 U5 U6 b

S2 @) 0 5 2/3 2 7/2 @1@1 -5

S2 02 0 2 8 @0 4 - 4/3 02 4 8 ®2 4
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Fig. le Fig. If
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P z =1 9/3

NR

(2,2) (2,2)

z 26/ P P = 25/3
2 26 2  3 3

NR

(3,1) (3,1) (3, (3,4)

-6 10 Z7  12 Z4 =f28/3 Z5

NR NR R
R Optimal Solution

Fig. 
2

Branch and Bound Tree Diagranm at Optimum

Note 1. R * Row-unique optimal basis; NR - Non row-unique optL."l basis

INote 2. The label (2,2) connectitig P1 and P indicatea that P2 is obtaeined

.fom P by constraining its optimum solution to include the cell

(2,2). Similarly P5 is obtained from P3 by excluding the cell (3.4)

from its optimal solution (denoted by (:ý4)).
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