
PfnB M M M LA I .15 ..2,1+,,

CSO

Carnegie-MellIon University

PITTSBURGH, PENNSYLVANIA 1521'

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WIWAM L"MR MEaoN, FOUNO f., "

NATIONAL TEýCHNICAL

INFORMATION SERVICE



IS CLAIER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



Management Sciences Research Report No. 248

A SIMPLEX-LIKE ALGORITHM FOR THE

CONTINUOUS MODULAR DESIGN PROBLEM

by

Timothy L. Shaftel
and

Gerald L. Thompson

May 1971

Revised January 1972

* University of Arizona
** Carnegie-Mellon University

This report was prepared as part of the activities of the Management Sciences
Research Group, Carnegie-Mellon University, under Contract N00014-67-A-P;i4-0007
NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole or
in part is permitted for any purpose of the U. S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

:j



Unclassified
Security CIMssificatiofl

DOCUMENT CONTROL DATA. R & D
rSe.urlty classifiat,• • of ,itle, body of abs.trat and . dexing Annotation .au.t be onerrd when th. overall report is. I.•.la .id)

OC INA TING AC TtVITV (Corpora1te author) 2a. REP'ORT SECURITY CLASSIFICATION

Graduate School of Industrial Administration Unclassified
Carnegie-Mellon University 2 GROUt pNot applicable

3 NEPORT VITLE

A SIMPLEX-LIKE ALGORITHM FOR THE CONTINUOUS MODULAR DESIGN PROBLEM

4 CE[SCRItl='rVE NOTES (Type of report and.lncluot Va da1te.)

Management Sciences Research Report May 1971
S A•U TNORs) (First name, middle 'titlal. lost name)

Timothy L. Shaftel
Gerald L. Thompson

i REPORT OATE 74. TOTAL NO. OF PA5ES 1Tb. NO. OF REPS

May 1971 32 T 12
Ca. CONTRACT OR GRANT NO. ia. ORIGINATO"'S REPORT NUMUERISi()

NO0014- 67 -A- 0314- 0007b.NPROJECT0NO. Management Sciences Research Report No. 248

NR 047-048
C. Ob. OTHER REPOR1t NO(SI (Any other numbers that may be asslg ted

this report)

d. W.P.# 103-70-1
- DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

11 SUPPLEMENTARY NOTES It. SPONSOPING MIL.I TARY ACTIVITT

Logistics and Mathematical Statistics Br.

Not applicable Office of Naval Research
Washington, D. C. 20360

IV. AiUSTRACT

This paper derives an efficient solution procedure for solving the continuous
version of the Evans modular design problem. The Kuhn-'rucker conditions are used
to derive a dual problem vhich can be solved easily and whose dual variables
indicate which equations should be tight. The technique retains a tree-basic
solution throughout so that fast solution routines can be employed which are quite
similar to those for transportation problems. Because of these analogies, thep
solution of transportation size problems can be effected with only moderately
increased computer time.

DD FORM 1A~ (PAGE 1)DDo..V *S0, Unclassi fied
S/N O 10t -8OT-681 security Classification A-3tiOf

S.... li __ . .. .i .. i __ __:•--2•r 1I40 h



Security Claswificatn

14 LI.q A LIN( a LINK C

RO.L l WY NOL[ WT ROLE WT

Modulat design

Kuhn-Tucker

Tree-basic

Primal-dual

Simplex-like

DD ''1473 (BACK) Unclassified
Security C|I tiR ialloll?



ABSTRACT

This paper derives an efficient solution procedure for solving the

continuous version of the Evans modular design problem. The Kuhn-Tucker

conditions are used to derive a dual problem which can be solved easily

and whose dual variables indicate which equations should be tight. The

technique retains a tree-basic solution throughout so that fast solution

routines can be employed which are quite similar to tho'e for transporta-

tion problems. Because of these analogies, the solution of transportation

size problems can be effected with only moderately increased computer time.

U



1. INTRODUCTION

The modular design problem was first presented by David Evans [4].

In this problem, parts are to be grouped into a single module, several of

which are then used in each application. The objective is to minimize the

total cost of parts used:

Min Z ci x i _- dJ yj
x,y isI ieo

s.t. x' y' > r'.
1 .3 - ij

For all i and j
x;', yj, ci, di, r./.> 0

I 3

x YJ integers

IIwhere

J = l,2,...,n}J

c. cost of part i

d] demand for application j

r.. = number of part i units required in application j.

' the number of part i on the module i
I (decision variable)

y= the number of modules needed in application J
(decision variable)

In the previous approaches to this problem listed in the bibliography

and also in the present paper the problem is modified to the continuous

modular design problem by dropping the integer requirements on x and yj for all

i and J; it is believed that a solution to the continuous problem is a necessary

prelude to any solution of the integer version.
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After the Evans paper, a second paper on modular design was written

by A. Charncs and M. Kirby [21. Both of these papers, proposcc solution

procedures based on searching the x-y space via specialized search routines.

A third paper 161, by A. Passy, modified Charnes and Kirby's procedure by

formulating the model as a geometric programming problem. The approach

•--nted in Poesy's paper is tr -c-'c front nri syntem of tight cuOnt rraints

to another until the optimum is found. Although Passy's procedure avoids

the relatively slow search proc-dures of the first two papers, 4 t has three

major drawbacks. First, convergence of the procedure was not proved. (The

results of the present paper might aid in proving convergence for Passy's

procedure.) Second, procedures outlined by Passy to solve the problem of

cycling could (and most likely, would) lead to an inordinate number uL pivots.

And, finally, the complexity of the calculations for each pivot step could

require excessive amounts of computer time even if convergence were proved.

It is the intent of the present paper to:

1.) Develop a dual problem (with properties similar to the linear

programming dual) from the Kuhn-Tucker optimality conditions.

2.) Use the dual solutions to develop a simplex-like solution algorithin

and prove its convergence.

Preliminary tests indicate that the algorithm presented in this paper is

very efficient. The authors have found that a continuous modular design problem

can be solved with only slightly more computation time than a transportation

problem of the same size. They are presently working on further computational

tests of the procedure which will be reported on elsewhere.

2. DUALITY IN THE MODULAR DESIGN PROBLEM

Vvans modified the -riginal problem by making the following substitutions:

Xi = ci x
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yj dj yj1

S i i i

He also noted that there exists an infinite number of solutions to the problem

since if x and y are solution vectors, then so are x/e and y.0 for any

6 > 0. We may, therefore, add the restriction F. yj 1 1 which singles out
S

a unique member of the class without loss of generality. These transformations

lead to the primal problem (P):

min Z xi = g (IP)
x i

s.t. x iy. zij - rij for all i and j (2P)

.yj= I (3P)

z. xi, yj r.. > 0 For all i and j (0P)l~j ij --

where z.. is a surplus variable.

Theorem I (Evans) The solution to problem (P) exists and is unique.

This theorem was first proved by Evans (4]. The algorithm established

in the present paper gives an alternate, constructive proof of the existence of

a solution to problem (P).

LEMXNA I. If Lh. requirements matrix, R, has no zero rcws or columns,

then in any solution, xi, yj > 0 for all i and j.

Proof. The assertion is obvious since x iy > 0 at least once for

each i and j.

Let • j be associated with constraints (2P) and p be assnciated with

constraint (3P). Then it is easy to show that the Kuhn-Tucker conditions

associated with the primal problem are:
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ijYj I for all ieI (IC)J

E x. X for all jeJ (2C)
i 1 •

z.ijxij 0 For all i and j (3C)

X.. > 0 For all i and j (4C)ii -

LEMMA 2. For any pair of feasible solutions to the primal and dual

problems, p - g.

PROOF. Multiply (IC) by xi, sum over all i, and use (1P) to show:

E . xI ij Y j ra g

Now multiply (2C) by y,, sum over all j and use (3P) to show:

S Zx X y L Z
Sj i i j

Hence, 4 - g.

By analogy with classical linear prograuming we shall interpret con-

strnints (3C) as "complementary slackness" conditions and insure that they

hold by the algorithmic solution techniques we develop. Again by analogy to

linear programming we add the objective function Z E Xij rij to constraints
i j

(IC), (2C), and (4C) to create the dual problem. The remainder of this section

is devoted to showing that most of the simplex method solution techniques involv-

ing interplay between the primal and dual problems can be carried over to the

modular design problem considered here. In later sections we show that they

are powerful enough to make possible an efficient simplex-like algorithm for

solving the continuous modular design problem.

The dual problem is defined by:

Maximize 1:. Exi- r ij f (ID)

wj i

Sj



-5-

X. 4 g for all J (3D)
ij

Xij >0 for all i and j (4D)

ij -

LEMA 3. For any pair of primal dual solutions (whether nonnegative

or not): g - f X • X .ij.
iij

PROOF. Multiply (2P) by X j, sun over all i,j and use (10) to show:

E xi YJ " i y Jj zE = XZ r r f
ij i J i j

but X ij xi yj =g (see proof of Lemina 2)

hence, g - f - ij z .

LE14MA 4. (Complementary Slackness.) For any pair cf primal dual feasible

solutions g = f iff X ij-Zij = 0 for all iJ.

PROOF. The proof follows directly from Lemma 3 and the fact that ij and

z.. are non-negative for all i and J.

THEOREM 2 (Duality Theorem). The quantities xi, y. for all i and j

are a solution to problem (P) iff X for all i and j are a solution to

problem (D) and g = f.

PROOF. (The proof of this theorem will be only briefly sketched.]

The Arrow-Hurwicz-Uzawa Constraint Qualification [5. p, 1021 can be shown to

hold for the constraint set of the primal problem. This Implies that, at the

optimum solution to the primal problem there exists a solution to the Kuhn-Tucker

problem [5, pp. 105-1061. The functions defining the constraint set can be

shown to be quasi-concave in the non-negative orthant while the

objective function is linear. Zangwill (12, p. 43] has shown that in

such a case a solution to the Kuhn-Tucker problem can occur only nt
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the optimum of the primal problem. Finally the K-T problem is made up

of the constraint set of the dual problem together with the complementary

slackness conditions Xij zij - 0 which are true if and only if g = f

(Lemma 4). This completes an outline for the proof of Theorem 2.

A property of interest, although not used here is that problems (P)

and (D) are not mutuall)-dual. If we form the dual of problem (D) we get

the following problem:

Min Fi + g Z. 1j = g (IE)CiT ,1 i 3

s.t. x.i , - C jy > rij for all i and J (2E)

where, Ci is the dual variable associated with constraint (2D) and Jj is

the dual variable associated with constraint (3D).

For fixed x,. and y. problems (D) and (E) are mutually dual

generalized transportation problems. If xi and Y_ are solutions to (P)

then Ci = xi., = 0 are a feasible solution to (E) from which it easily

follows that g > g'.

3. THE RESTRICTLD PROBLEM AND ITS SOLUTION

In this section it is first necessary to define some properties of

graphs. For a general discussion of graph theory see Berge [11. The follow-

ing description was taken from [10, p,21.

"Let V be a set of n elements called vertices or nodes and let E be

a set of (some of the) pairs (u,v) with u,v eV. A pair (u,v) is called an

between u and v, or also between v and a (no direction is implied).

Then C = (V,E) is called a graph. A path between u and v in G is a list:

U = W, W.' .... Wt = V

..t
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where, (wj-1 , wj) e E for j = 1,... ,t. A path is a cycle if u = v in the

above list. A graph is acyclic if it has no cycles. A graph is connected if

there is at least one path connecting each pair of distinct nodes. A tree

is a connected acyclic graph. Equivalently, a graph is a tree if and only if

there is a unique path between each pair of distinct nodes."

In addition to the definitions quoted above we shall need the following.

A forest is an acyclic graph. It is easy to show that a forest is the union of

trees, that is, a union of connected acyclic graphs.

In the modular design problem we shall consider the graph G = (V,E)

defined as follows: The set V of nodes consists of the rows and columns

of the requirements matrix R; the set E of edges consists of some of the

cells (i,j) of the R matrix.

Suprose G has a cycle

F = [(Sl,t 1 ), (s 2 ,t 2 ),...,(s4,t )3

where, sp Sp+1 or tp tp+1 for p =,2

(Note s -f'4- sI and tt+1 tI) and t is an even number. In each row or column

of the R matrix there are either zero or two cells of the cycle. Then '- can

be written. F = F1 "J F2 where:

2 (s 2 t 2) (s,'t 4 )' .. t

DErINITION. The value w(s't) of a cycle relative to any element (s,O) C-12

is defined to be the ratio

Sr

(st) ( rk,p

(k,p)eF 2

if all rkp 0 for (k,p)ef 2 ; otherwise w(t) .

k _ m n -- hSlnlmlm ll'll ilmm.l - .m- mm m
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DEFINITION. A nondegenerate problem is one having W(st) 0 1 for

all cycles r and (s,t) e 1 2.

LEMMA 5. A problem with data rij for all i and j, may be replaced

by a nondegenerate problem with perturbed data r*j = r.+ i+mj

rij . 0 or r = 0 if r 0 and where 5 can be chosen arbitrarily

sm ill.

PROOF. For given m and n there are only a finite number of possible

cycles T. For such a cycle to have value 1 with the perturbed data we must

have

-7 (r ij + 6 i-mj (rst + s+mt) O.

(i,j)•l 'J(st)r±-2

This expression is a polynomial in 6. Moveover there is at least one power

of 5 that has a non zero coefficiert. To show this, let (h,k) be the cell in

with smallest k, and given this k the smallest h; suppose (h,k)eF (a

similar proof holds for (h,k)ar'2 ). Then there is a term c where

C 7 0 since the value nf the cycle is one and all other
(i, j)£ 7,- (hjjk)j 'ýi

L

tirms have higher powcrc of S. Hence we need only choose 5 small and not equal

to any of a finitc number of zeros of a finite number of polynomials to obtain a

nondegecerate pertxlrbed problem close Lo the original one.

In the rest of this paper, we shall assume that we are dealing with a

nondegenerate problem. The techniques for extending the algorithm we shall

present to degcnerate problems are ;imilar to theo.- for linear progranuning

and will not be discussed.

DEFINITION. Given a feasible solution to problem (P) by a tight constraint

in row i we shall, mean a cell (i,j) such that x y- rjj " 'ij 0.
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LEMMA 6. At an optimum solution of probl.m (P) there is at least one

tight constraint in each row and column of R.

PROOF. Assume the contrary, that we have an optimal solution and for

some row u no cell is tight, i.e., x UY > ruj for all j. But then we

can decrease x while keeping the solution feasible and, thercfore, decrease

the objective function, which is a contradiction. By the problem symmetry,

the same kind of proof is valid for columns of R.

LEMMA 7. If xi.,yj, and z are solutions to problem (P) then the

graph with nodes being rows and columns of R and edges being the tight cells

(i.e., z 0j = O) is a forest.

PROOF. The proof follows directly from Lemma 6 and the fact that we

are dealing with only non-degenerate problems, therefore eliminating the

possibility of cycles.

We shall now define a forest-restricted problem associated with a given

forest, F, to be:

mi xn g (Ill)
xi.,y iel

"s.t. y. 1 (211)
jeJ

xiY = rij, (i,j) s F (3H)

xiY y O for all i and j (4H)

A tree restricted problem is a forest-restricted problem where t0e forest is

made up of a single tree. In the algorithm to be presented in this paper

the authors retain a tree basis throughout the procedure. We are. therefore,

primarily interested in sclutions to tree-restricteJ problems. The solution

to a tree-restricted problem will now be characterized.

For any tree-restricted solution there exists a unique path connecting
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any two columns of R [i], [10]. This unique path may be presented as in

Figure 1, for the case that column 1 is connected to column q. We have

displayed only those columns a.id rows from R that correspond to the path

between column q and column 1. In Figure 1 the cells where r's appear

are all tight and rows and columns have been permuted and relabeled to be in

the staircase form showed. Certain other cells may be tight in these rows and

columns but are not of interest at this time, hence they are not indicated in

Figure 1.

rl I r12

r 22 r 23

rp r
pq

Figure 1

It is easy to see that

r
Yq -3 * yq-I since x y y r

rpq. 1  Pq pq

and Xpyq 1  r p,q-l" The procedure can be continued in a similar fashion until

finally:
r r r2  __

Yq r r -r Yl M (IK)
p.q-I p-l,q-2 r22 11 qlyl
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In general denote by d the ratio Yu It will always be the
Yt

case, as above, that dut is the quotient of products of rij . We ran

choose an arbiLtrary column, say column k, in the matrix R and represent

all values of y. for je.J, in terms of yk by means of the equation

yj = djk Yk Note tN>t dkk = 1. Using constraint (2H) we have the solution to

the tree restricted problem as E yj = Z djk'Yk '1 which yields

1
jej jk

and y. = dvkyk for all veJ. The values of x ' are easily determined from

constraint (3H).

Given a tree basis T, the associated restricted tree dual solution

can be derived by using the fact that X = 0 for (i,j) not contained in

the tree basis. This follows since these cells are not forced to be tight.

Alsso, zij = 0 for (i,j) contained in the tree basis. Taking constraint

(2P), multiplying by ijj/g and summing over i and j separately yields:

Z .ij xi y./g - X ij .z i/g - Z *r.j.g
i £ i

and 7- ij Xi v j/g- ij "ij/g i /g

.IJ J"

using constraints (2D) and (3D) and complementary slackness we may modify these

equations to be:

y "k ij r .|/g for jeJ (11,)
ki,j)eT

and x, *r ij for ieI (2L)(i, j)cT •J'r

It is interesting to note that the form of the equations for the variables .ij

are the same as the form derived by Passy [6, p. 4501 for the geometric dual

3,J
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variables if we let pij = ý..rij/g. The dual objective function developed

by Passy, however, is very different from the one used in this paper.

The tree structure of the nonzero variables in equations (IL) and (21.) means

that the equations can be solved by a simple solution procedure. iNote that they

can be rewritten as

Y 27 P.- for jeJ (IL')
(ij)eT

x( i iJ for iel (2L')Ji,j)cT l

where we have made the substitutions x. = xi/g and Pi. X. r./g. The

following algorithm finds the pij 's given the primal solution xi.,y.

(1) Let TR(TC) be the set of rows (columns) containing a unique

tight cell. Because we have a tree-restricted solution TRUTC is not empty.

(2) For all tight cells (i,J) with ierR let pij - xi" For all

tight cells (i,j) with jeTC let p.j z yj. That this is correct follows

from the fact that these tight cells are unique in their rows or columns.

(3) "Cross out" the rows i eTR and j ETC. For the remaining

matrix define a new primal solution x' and y. as follows
S=x -i y- for all i .IR

jsTC
(i,j)sT

y y x for all j JTC
J =Y ic TR

(i J,)eT

(4) If there are no uncrossed out rows stop; otherwiae Poa back to

step (1) and repeat.

A few additional properrIes of tree-restric ted solution ,7'l1 now be

presented.
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LEMMA 8. For any tree restricted solutton let T be the tree basis

and let (p,h) be ; cell not in T. Then TU•(p,h)] has a unique cycle

whose value is

x Yh

(p,h) r ph

PROOF. Let us assume (without loss of generality) that h I and

column I is connected to row p as in Figure 1. Adding the cell (p,h) - (p,l)

we obtain the cycle shown in Figure 2. We know that yq d qjY1  and

1 2 . . . .

r r

2 r 22  ....r

rp,1 p-lq-1pq

__.. .. . . . . ..___ __ . . . .

.r - r ;lw.1 .P. _ __

Figure 2

also that x = r pq/yq Hence

r

dql

where, as in (1K),

rP r .1qlr23 r1
d2~ ---k- -- 12

q1 rp,q-1 rp-l,q-2 r22 r 11

It tollows that



-14-

X r rrr rp = .q r~- -lq22 ru1
rs p rpl rpq rp-l,q-I r 2 3  r 1 2  (pi)'

as wac to be shown.

COROLLARY. A tree-restricted solution xy j is primal feasible

if and only if every non basic cell determines a cycle whose value is > 1.

This corollary is used to check for primal feasibility in the algorithm

to be presented.

DEFINITION. Given a tree basis T and any cell (p,q)eT we define

the following four sets:

I = (set of all rows that can be reached in T using cell (p,q),q
except for row pi

I =I - I
p q

J = [set of all columns that can be reached using cell (p,q),p

except for column q1

j =J- J
q p

Clearly p e I and q e J and thcse sets are never empty. Also at most

one of the sets I and J is empty.q p

J J
P q

.(pq)
Ip

Figure 3

Figuire 3 shows the matrix R divided into the four subsets I x JP p

I x Jq, I x J , and I x J . Of these four sets; I x J contains noP q q pq q q p

cells of T; I x .1 qcontains only the cell (p,q) e T; all the risL of
P q

the cells of T are in the othcr two areas (0 x J )U (I x J
p p q q



-15-

In the algorithm to be presented later we are going to change data

elements r in a parametric fashion. The next two lemmas characterize
Pq

what happens.

LEMMA 9. Let xi, y. be a primal feasible tree-restricted solution

with tree basis T and let (p,q)eT. If we replace rpq by a larger value

r > r pq then, providedpq - q

r q < Min r pq w(s, t)

rpq -(s,t)i rp

the tree-restricted solution xi, y1  with the same basis, T, is primal feasible.

PROOF. By the corollary to Lemma 8 we need only show that every non

basic cell (u,v) determines a cycle with value w(,v) v 1. Referring to

Figure 3 it is obvious that non basic cells in the (I x J ) or (Iq x J )

areas have cycles entirely contained in these areas. Hence changing rpq

does not affect the values of their cycles.

Because every cycle goes alternately from row nodes to column nodes, every

non-basic cell (u,v) in the Ip x Jq area determines a cycle F which includes (p,q)

in the and (u,v) in the 12 part. Hence w(u'v) increases if rpq increases and

primal feasibility continues to hold for these cells however large we make rpq

Finally consider cells (s,t) in the I x J area. Such Lells determine a

cycle 7 with (st) and (p,q) in the -2 part. Let w and w be the value
2(s,t) (s,t)

of the cycle determined by (s,t) with r and r > r respectively.
pq pq - pq

Then w(s,t) rpq W(,t) r by the definition oi the value of a cycle.pq Ws~t)pq
* *eha emuthv r f(.

Since we want w(st) :_ 1 this means that we must have rfor w r
pq - pq

every (s,t) c I x J. and therefore the statement of the Lemma is true.
'1 P

LEMMA 10. Let xi, yj he a primal feasible tree-restricted solution

with the tree basis T and let (p,q)CT, If wc replarce rpq by n smaller

value r r then provided
pq -pq
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**r*

r Max -2
pq (u,v)ip xJ -q(p,q) W(uv)

P q

the tree-restricted solution xl, yY with the same basis, T, is primal feasible.

PROOF. The proof here is analogous to that for Lemma 9 and will not

be given.

4. THE MODIFIED PROBLEM

Given problem R with data r.. we define the modified problem R

with data rij where rij ' rij < c for all i and j. We shall give an

algorithm for finding an optimal tree-restricted solution to R and show

how this can be used to find the optimal forest basis solution to Problem R.

THEOREM 3. Given an optimal tree-restricted solution to R there

corresponds a unique forest-restricted optimal solution to R. Conversely,

to the optimal forest-restricted solution to problem R there correspond at

least one optimal tree-restricted solution to R

PROOF. Given an optimal tree-restricted solution xi' Yip Xii with

tree basis T to problem R drop from T all tight cells such that Xij = 0.

The result is a forest F with A.. > 0 for (i,j) e F and A.. 0 for (i,j) 0 F.

Since x y' > ri, , ri, for all i and j these solutions are primal and

dual feasible, and hence by the duality theorem are optimal for problem R.

Given an optimal forest-restricted solution xi, y. and Xij with forest

basis F we shall give a constructive procedure for deriving an optimal forest

restricted solution to a problem R . Suppose F = T U T 2 U ... U Tk where

each T.I is a tree. If row u contains a (Light) cell of Ti then it will

not con~tain a cell from any other tree. Similarly, if column v contains a

cell of T. then it will not contain a cell of any other tree. We now show
o

one way to "hook together" the trees in F and make them into a single tree.
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Let i1 be the index of any row containing a cell of Ta 1 let j22"'A

be indices of columns containing cells of T 2 ... ,Tk. Add the cells (i,,

(ilji3) il,jk) to F which will make it into a conncted tree and also

define problem R by

r1iJ2 - i2,J2  r'rjk 1 ri lik

and all other r * = r it follows that x1 ,y and X are still primal and
iji j .) ij

dual feasible and hence optimal for R

Obviously, there are r.any other ways the trees TVIT 2 1...,Tk may be

connected to mate a single tree so the above process is not unique.

THEOREM 4. Let xi, yj be a feasible solution to problem R with

tree basis T and let Xij be the restricted dual solu•ts; and consider

a cell (p,q) e T; then

(a) if Xp < 0 we can decrease g by increasing rPq pq

(b) if X pq> 0 we can decrease g by decreasing r .

These results hold only over a sufficiently small range.
*

PROOF. Suppose we set rlj , rij + 6ij and writecoe Lagrangian

function of the primal problem. It is

L(o,y,X,t,z,6) m E xi - F Z Xij[xi y. + a - (rij + 615j

j yJ-

Now holding all 68uv fixed at zero exccpt for 6ij and letting g(6Ij) be the

corresponding value of the primal problem we can rewrite the Lagrangian(for

small changes in 6 ij) as

g(6 1 j) g(O) + XiI 6 j + o( 6 l)

for which the two assertions are obvious.

.t i
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THEOREM 5. Givt-, a feasible tree-restricted solution x,, yi, xij

to problem R with basis T, let (p,q) s T. Define r0 to be the value of
Pq

r for which p = 0, thenPq pq

r r

E
0 Pip_ eiip JCq d A
r
pq I s

where the quantities eip d1q, Rp, and Cq will be explained in the proof

below. Then

* -* 0

pq pq pq v;j

(b ) A < O0 r 
o p

pq pq pq

* * 0

pq Pq pq

PROOF. Let the sets I p, Iq J and J be as previously defined. Ifp p q

we remove (p,q) from T then as noted before all the remaining cells of T

are in the areas I x J and I x Jp p q c;

For each j e J let i be the smallest row index such that (ij) e T,P
*

and let Rp be the set of such cells (i,j). Then y, - r* Ix for (i1J) e Pp
pi p

Also let eip be the ratio eip W x/x. Similarly for asch i in I let
i p

j be the smallest column index such that (i,J) e T; and let C be the set of
q

all such cells. Then x, * r /YJ for (i,j) c C . As before let d y YJ/Yq"

Removing (p,q) from T forces X to 0 and we can calculate the new
Pq

solution x. and y. for all i and j. From this we c4a find rO as
1. j pq

x pyq Once (p,q) Is dropped from T the primal probla (,) becomts

Minimize Z X, + E i e~ P + (t)C
ielp q ipJq q

subject to the constraint
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(iii) some cell (h,k) in Ip x J - ((p,q)} becomes tight;p q

then add (h,k) to T remove (p,q) from T, set r rPq
pq q

and go to 2.

(c) All cells (p,q)sT satisfy \> 0 and rpq rpq or pq 0

* 0

and r = r > r . Go to 4.
pq pq - pq

(4) The optimum tree-restricted solution to R is given by the

current T, xi, yj and ) ij since these satisfy the duality theorem. The

optimum forest F for R is obtained by dropping those cells (p,q) from

T with Xpq 0 0; the same xi, y. and Xij are optimal for R with forest

F.

THEOREM 7. For a non-degenerate problem the algorithm converges in an

infinite number of steps to the optimum answer to problez R.

A proof of this theorem appears in Smeers [9].

An intuitive proof is the following. Suppose the algorithm always keeps

the same tree; i.e., steps 2 (a) (ii) and 2 (b) (iii) are never entered. Then

it is easy to show that the tree restricted problem (H), after making the sub-

stitutions xi - r ij/Y. for (i,j)PT, is a concave problem, and the algorithm

can easily be shown to converge (infinitely), see Zangwill [121. Clearly there

are only a finite number of possible tree structures, and each one has (in the

non-degenerate case) a different optimum value. It follows that steps 2(a) (ii)

and e(b) (iii) of the algorithm will be entered only a finite number of times so

that the processes eventually settles doun on a single tree for which the pre-

vious argument holds.

Since the above algorithm involves finding square roots at each step which

are implemented by algorithms that converge infinitely, there can be no strictly

finite procedure for solving the above problem. However, the following modifica-

tion of step (2) of the algorithm ensures that all the rest of the calculations

are finite.
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(2 ) Examine the cells (p.q) in the current basis T to find the set S of

all cells (p,q) such that either (a) ), < 0 or (b) X > 0 and r '> r
pq pq pq pq

If S = 0 go to (4). Otherwise let F = T - S and solve the resulting forest

restricted problem (H) by a Lagrangian procedure similar to that in the proof of

Theorem 5. If Xpyq > rpq for all (p,q)eS then the optimum forest restricted

solution has been found. If not, add cells of S to F in all possible ways

and resolve until the condition holds. A branch and bound procedure can be de-

vised to simplify this calculation.

It is easy to show that with step (2') the algorithm becomes a finite one

(except for the square roots) since there are only a finite number of forest

bases, and step (2') finds the minimum objective value for each one when it

is considered. Hence no forest basis can be considered more than once in the

computation process.

Since computers have limited accuracy, infinitely convergent processes

have to be (finitely) terminated after they converge to rbat accuracy. The

authors have found that the original algorithm with step (2) instead of (2')

converges quickly to within the accuracy limit determined by the computer.

In fact, the number of pivet steps needed seems; to be fewer than that needed

for a corresponding transportation problem (see [11]). Therefore, step (2')

has noc (as yet) been programmed.

In our cod.: we have implemented degeneracy prevention techniques similar

to thos,, used in linear programming.

Smeers [ 91 has, proposed an alternate way of finite termination for

the algorithm.
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We now discuss two ways of implementing the starting routine of the

algorithm. The first procedure is similar to the improvement routine of the

algorithm.

Starting Routine 1. Find an initial tree basis T by any means. A

good heuristic is to try and get as many of the large entries in R as

possible into this initial basis. Now solve for xi and yj using T.

For each non basic cell (i,j) if x, y. J rij replace rij by rij = xiYj-

After this has been done go back and for each (i,j) such that rij < rij

increase r.o until either a new cell becomes tight and enters the basis

in place of (i,j) or else r.. = r, . Note that this makes g constantly

increase and hence these steps are just the reverse of the improvement

routine of the algorithm. After a finite number of such steps a primal

feasible tree-restricted solution to the oriRinal problem will be attained.

Starting Routine 2. Select an arbitrary set of positive y.'s such

that Tv. 1= . A good choice would be to select".3

Y. ( ri.)/( r..)
* j j ij

Now choose x.i Max (r ij/Yj) and put all tight cells into the basis. If

there is a column, say q. with no tight cells, select an arbitrary row,

say p, and raise r to the value x y and add this cell to the basis also.
pq p q

We now have a primal feasible forest basis which can further be extended to

a primal feasible tree basis by using the techniques of the proof of

Theorem 3.

As a final remark, we would like to discuss how a primal feasible

tree-solution can b- used to determine the next tree solution. For the

first solution we have yj .djkyk for k fix.'d and all 1. If we now

change r for (p,q) being a tight cell, the values of d will bepq Jk
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affected unly for those yj such that (p,q) is a part of the uniqLe path

from column j to column k. If r is changed to r then either
pq pq

*r * r
d d q ord d

jk jk ** jk jk *r r
pq pq

depending on where (p,q) is in the path from column j to column k.

6. EXAMPLES

The first example is designed to demonstrate most of the steps of the

algorithm. We start with the data and an initial tree as

~OO '4

® 3 4

Cells (3,3) and (1,3) 3re not primal feasible since

.7 = 2.8 and 4 > -"7 = 3.5
1 10

Following Starring Routine 1 we replace the problem by

Q3

whose value is g = 51.3. We now bring cell (3,3) into the basis and can

remove any cell in F, - [(2,3), (1,2), (3,1)). We choose to remove cell (3,1)

and now increase r3, 3  from 2.8, trying to raise it to 4, without causing

primal infeasibilities. We succeed and obtain the problem:

3 @ ®

4 3



-25-

whose value is g - 55.93. We now bring cell (1,3) into the basis and can

remove either cell in r1- [(1,2), (2,3)) we choose to remove (2,3)

(although later it will become evident that the other choice is better) in

order to demonstrate more steps of the algorithm. We raise r 1 3  to 4

without encountering primal infeasibilities and obtain the problem

3 7

4 3

whose value is g - 56. Its primal feasible solutions are

/5 5 4)

Y14 ' 14 ' 14

x- (14, 28, 14

x

and the dual solutions are given by

5 = =
Pl =yl 14' P2 2  •2  P33 ' 3  4

5 1 2 4 1 1P12 Y2" P22 =-' " "T 1' F13 'y3- P33"74- 4- 2

Since (1,2) is the only cell with negative dual variable we have p - 1, q - 2,

I- r2, 12 ( (1,3], R2  [ ((1,1),(3,3)), C, = ((2,2)1 and e e 1,

d 1 Hence we can calculate r1 from Theorem 5 as
22 1

o 1+I 1 1 7145- 6.71
"12• 2-E L

We also have I1 x J2 - 1(2,1), (2,3)) as the two cells that may become tight

as we increase r 12* For them we have:
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* 5.10
*12 < 3 16.67 from cell (2,1)

and

* 10-4
*12 < = 5.71 from cell (2,3).

The smallest constraint comes from cell (2,3) so we bring it into the basis

obtaining the problem:

4 3 4

whose value is g - 55.18. Its solution is

(35 40 28 \

y lO3 - 103 1032

(1 03 103 0

7 , 4 7

15 15 15

The dual solution is given by:

35 40 4
Pll "l 1 03' P2 2 ' ̀ 2 103 P33 ' 5 1

7 40 4 35
P2 3 ' -2 p22  E1 63 o-.8, P • IT5 7 0--• 07

Cell (1,3) is the only one with negative dual variable so p 1 1, q -3, 11 (2,3),

=. -• ."10J (1), R3  3 -(1,1), ((2,2). (3,3)), and e 1, d23  -

d 3 3 " 1.

Hence we calculate

0 1i .7 + 4 -

513 0+ 4.76
1+-7
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We also have II x J3 ((2,1), (3,1)) so that the other constraints on

r 1 3 are given by

r < 5"7 11.67 from cell (2,1)
13- 3

* 4.
r* < 4-5- 5 from cell (3,1)

13- 4

Therefore we increase r 1 3  to 4.76 obtaining the problem

g 5_

43 _4 3

whose value is g - 54.83. The primal and dual solutions are:

y = (.29, .41, .30)

x = (16.56, 24.35, 13.92)

x (.30, .44, .26)

Pl1  = Yl .30, P13  'l p l 0, P2 2  ' Y2  - .41

p2 3  -x p2 2  .44 - .41 - .03, p3 1 - x' .26.

Since all cells satisfy 3(c) of the algorithm, we have the optimum solution to

both R and R . We next solve Evans' problem [4], which is given with an

initial tree basis:

15~

S13 0

15 17

(ý 12

cells (2,2) and (4,2) are not primal feasible since

13 > 13 -22 . 4.4
34 • 44
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12 > 23 22 = 11.5
44

The modified primal-feasible problem is:

S4.4 0

15 17 3

We now bring cell (2,2) into the basis and remove cell (2,1). The problem

remains primal feasible and we can increase the value of r 2 2 to 13 while

remaining primal feasible.

15 @ Q
13 @ 0

15 17

® 11.50
11.5 - 23 22 so we bring cell (4,2) into the basis and remove cell

44

(4,3). We then increase r 4 2  to 12 remaining primal feasible.

Initial primal feasible solution to the original problem:

13 0

15 17 @

@ 22

y - (.49, .17, .33)

x - (132.17, 74.70, 105.13, 68.96)

=x - (.35, .20, .28, .18)
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Dual variables

P41 Yl =49

p4  18 - .49 -. 31P42 ' 4 "P41="

=.28P33 =x3

P = x2 .20
2

013 = Y' - P 3 3 a.33 - .28 = .05

p1 2  - PI 3  .35 - .05 = .30

Only cell (4,2) ha,; a negative dual variable.

Take cell (4,2): I x J = [(1,1), (2,1), (3,1)}q P

For (1,1) 15 < 23 • 34 so r 4 2 < 52.1
r 42

For (2,1) 13 K 13 • 34 so r 4 2 _ 36.8
r442

For (3,1) 15 < 35 - 23 • 34 so r4* < 41.4
44 , r42

Therefore r 36.8 but r = 25.18

Therefore we can raise r142 to 25.18

13 9 0

15 17 3

y = (.32, .23, .45)

x = (98.00. 55.43, 78.01, 107.33)

x' = (.29, .16, .23, .32)

g = 338.77
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Dual variables:

P4 1  Y= .32

2 x, =0.0P42 Y' P41

n / .23

*i~ 3

P22 = x2 .1

P 1 3 = Y3 - P3 3 = .45 - .23 = .22

P 1 2 = - P1 3 =.29 - .22 = .07

Since we satisfy 3(c) of the algorithm, we haw h.-he optimal ojuti, n

to R and R

7. CONCLUSIONS

The algorithm presente.d in this paper has sexeral .dva.tagv-

a.. if we must stop before the optimk,,; s,-u.ic'. to the problea i,

reac..-d, the non-lii..:ritý makes g Close to the optima-,. rhi

solution will be much closer titan would be the ce-. in a curres-

ponding 'irmilar linear problerr.

b.) The method always keeps a primal 'easi,,. solutior, so tndt. one

can stop the prcocedurc at any tinw: and havL a usable solution.

c.) In order to find the ncgat 4 ..=, restricted dual vatiable, only th,

basis tree must be sicarched. A most negative indicator rule

would, therefore, be available at low computational cvs (This

i not the case tor transportation probehm (see i11]).

d. ) The search for netw limiting cells requires sear(.hing on .h

areas I x J or 1. x J , and not the whole m-irrix.
p q

c.1 Previous solutions to the [rimal problem can be u'•ed to enernto

feasible solutioVe. LO probl -,,; with similar data.
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f.) Accuracy is not a problen Aince a solution to a forest basis

can be found independently of any previous op~r tions.

Retention of a tree solution throughout the computition and use of

previous solutions makes the steps in the algorithm very similar to those (Jr

transporLation problems. Srinivasan and Thompson report excellent computa-

tional results of 175 x 175 transportation problems in scen seconds [11i.

The number of pivots required for the modular design proI, le-'s tesLte so fa:

are somewhat fewer than for a transportation problem of the sar,. size. This

means that modular design problems can be solved in only slightly more

computer time than that required for comparable transportation pr •leLi.

The authors are currently preparing a report on computational experience

with their modular design o•oe.
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