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ABSTRACT

This paper derives an efficient solution procedure for solving the
continuous version of the Evans modular design problem. The Kuhn-Tucker
conditions are used to derive a dual problem which can be solved easily
and whose ducl variables indicate which equations should be tight. The
technique retains a tree-basic solution throughout so that fast solution
routines can be employed which are quite similar to thoze for transporta-
tion problems, Because of these analogies, the solution of transportation

size problems can be vifected with only moderately increased computer time.




1. INTRODUCTION

The modular design problem was first presented by David Evans [4].
In this problem, parts are to be grouped into a single module, several of

which are then used in each application, The objective is to minimize the

total cost of parts used:

Min T c, x] © d,y,
x,y 1iel 11 Jjed 373

s.t x!y!>r/! 1
’ j= ij
For all i and }
’ 4 7
X yj, oo dJ, rij >0 b3
X. Yj integers

where

I ={1,2,...,m}

J = [l,2,...,n}

¢, = cost of part i

dj = demand for application j ;

/ . : . . . : . ;
rij = number of part i wunits required in application j.

x{ = the number of part i on the module

(decision variable)
y; = the number of modules needed in application j

(decision variable)

In the previous apprecaches to this problem listed in the bibliography

and also in the present paper, the problem is modified to the continuous

modular design proublem by dropping the integer requirements on x{ and y; for all

i and ji; it is believed that a solution to the continuous problem is a necessary

prelude to any solution of the integer version.
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After the Evans paper, a second paper on modular design was written
by A. Charncs and M. Kirby [2]. Both of these papers, proposc? solution
procedures based on searching the x-y space via specialized search routines.
A third paper [6], by A. Passy, modified Charnes and Kirby's procedure by
formulating the model as a geometric programming problem. The approach
nracented in Pacsy's paper is *c =owe from cone syctem of tight constraints
to another until the optimum is found. Although Passy's procedure avoids
the relatively slow search proc~dures of the first two papers, it has three
major drawbacks. First, convergence of the procedure was not proved. (The
results of the present paper might aid in proving convergence for Passy's
procedure,) Second, procedures outlined by Passy to solve the problem of
cycling could (and most likely, would) lead to an inordinate number ur pivots.
And, finally, the complexity of the calculations for each pivot step coutd

require excessive amounts of computer time even if convergence were proved.

It is the intent of the present paper to:
1.) Develop a dual problem (with properties similar to the linear
programming dual) from the Kuhn-Tucker optimality conditions.

2.) Use the dual solutions to develop a simplex-like solution algorithmn

and prove its convergence,
Preliminary tests indicate that the algorithm presented in this paper is :
very efficient, The authors have found that a continuous modular design problem %
can be solved with only slightly more computation time thanm a transportation
problem of the same size. They arc presently working on further computational

tests of the procedure which will be reported on elsewhere,

2, DUALITY IN THE MODULAR DESIGN PROBLEM

Fvans modified the ~riginal problem by making the following substitutions:

'-*—_—-——A




<
[
o
[
<

He also noted that there exists an infinite number of solutions to the problem
since 1f x and § are solution vectors, then so are x/€ and §.6 for any

g > 0, We may, therefore, add the restriction ¥ yj = 1 which singles out
h|

a unique member of the class without loss of generality. Thesc transformations

lead to the primal problem (P):

min T x, =g (1p)
x i
s.t, xiyj - zij = rij for all i and j 2r)
Ty. =1 (3p)
A |
J
250 ¥ Yy Y >0 For all 1 and ] (4P)
whevre z.. 1is a surplus variable,

t]

Theorem 1 (Evans) The solutfon to problem (P) exists and is unfque,

This theorem was rfirst proved by Evans [4]. The algorithm established
in the present paper gives an alternate, constructive proof of the existence of
a solution to prablem (P).

LEMMA 1. If the requirements matrix, R, has no zero rcws or columns,
then in eny solution, X yJ > 0 for all i and j.

Proof. The assertion is obvious since xjyj > 0 at least once for
each i and j.

Let }ij be associated with constraints (2P) and p be asseociated with
constraint (3P). Then it is easy to show that the Kuhn-Tucker conditions

associated with the primal problem are:




4=
? lijyj =1 for all iel (1c)
f xixij = . for all jeJ (2c)
zij'xij =0 For all { and j 3¢)
xij >0 For all i and j (4C)

LEMMA 2. For any pair of feasible solutions to the primal and dual
problems, g = g,
PROOF. Multiply (1C) by x,, sum over all i, and use (1P) to show:

DX MyYyTIYy ve
i i

Now multiply (2C) by y,» sum over all j and use (3P) to show:

z =uWZvy, =u
: bl

T x, A .
jliij i
Hence, u = g.

By analogy with classical linear programming we shall interpret con-
striints (3C) as "complementary slackness” conditions and insure that they
hold by the algorithmic solution techniques we develop. Again by analogy to

linear programming we add the objective function T T hi to constraints

AR AT
(1C), (2c), and (4C) to create the dual problem. The remainder of this section
is devoted to showing that most of the simplex method solution techniques involv-
ing interplay between the primal and dual problems can be carried over to the
modular design problem considered here. In later sections we show that they

are powarful enough to make possible an efficient simplex-1like algorithm for
solving the continuous modular design problem,

The dual problem is defined by:

Maximize T rU = f an)
X, {g

s.t, ZA,. s, = L ftous all i (2D)
J
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T x, Aij =g for all j (3D)
i A
Aij >0 for all i and j (4D)

LEMMA 3. For any pair of primal dual solutions (whether nonnegative

: - = ¥ . .
or not) g f ; ? Xij zij

PROOF, Multiply (2P) by xij’ sum over all i,j and use (1D) to show:

TTA,, X, ¥ TN . 2z,,=ZZA\,, T, =¢f
i ij "i 73 ij ij "1j ij iy i)
but TITA,, Xy yj = g (see proof of Lemma 2)

1]

hence, g - f = f ? Aij zij .

LEMMA 4., (Complementary Slackness.) For any pair cf primal dual feasible

solutions g = f iff Xij.zij = 0 for all i,}.

PROOF, The proof follows directly from Lemma 3 and the fact that lij and
zij are non-negative for all i and j.

THEOREM 2 (Duality Theorem). The quantities ii, §J. for all i and j
are a solution to problem (P) iff iij for all i and j are a solution to
problem (D) and g = £.

PROOF. [The proof of this theorem will be only briefly sketched.]
The Arrow-Hurwicz-Uzawa Constraint Qualification [5. p. 102] can be showm to
hold for the constraint set of the primal problem. This implies that, at the
optimum solution to the primal problem there exists a solution to the Kuhn-Tucker
problem [5, pp. 105-106]. The functions defining the constraint set can be
shown to be quasi-concave in the non-negative orthant while the

objective function is linear. Zangwill (12, p. 43] has shown that in

such a case a solution to the Kuhn-Tucker problem can nccur only at
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the optimum of the primal problem, Finally the K-T problem is madc up

of the constraint set of the dual problem together with the complementary

slackness conditions A, .z,
iy ij

(Lemma 4), This completes an outline for the proof of Theorem 2.

= 0 which are true if and only if g = [

A property of interest, although not used here is that problems (P)
and (D) are not mutuall,~-dual. If we form the dual of problem (D) we get

the following problem:

’

Min £l +g W =g (1E)
cony 1t )
i’y
T 4 IE
8.t. X5 5 “+ ijj > rij or all { and j§ (2E)

where, Qi is the dual variable associated with constraint (2D) and T, is

3

the dual variable associated with constraint (3D).

For fixed X, and yj problems (D) and (E) are mutually dual

generalized transportation problems, 1If ii and §j are solutions to (P)
then éi = §i’ ﬁj = 0 are a feasible solution to (E) from which it easily

follows that g g’.

3. THE RESTRICTED PROELEM AND ITS SOLUTION
In this section it is first necessary to define some preoperties of
graphs. For a general discussion of graph theory sce Berge [1]. The follow-

ing description was taken from [10, p.2].

"Let V be a set of n elements called vertices or nodes and let E be

a set of (some of the) pairs {(u,v) with u,v €V. A pair (u,v) 18 called an edge
between u and v, or alsoc between v and a (no direction is implied),
Then G = (V,E) is called a graph. A path hetween u and v in G is a list:

Uu=w, v ce W, =V
o’ 17T e
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where, (wj-l’ wj) e E for j=1,...,t. A path is a cycle if v =v in the

above list. A graph is acyclic if it has mo cycles, A graph is connected if

there is at least one path connecting each pair of distinct nodes, A tree

is a connected acyclic graph. Equivalently, a graph is a tree if and only if
there is a unique path between each pair of distinct nodes."

In addition to the definitions quoted above we shall need the following,
A forest is an acyclic graph. It is easy to show that a forest is the union of
trees, that is, a union of connected acyclic graphs,

In the modular design problem we shall consider the graph G = (V,E)
defined as follows: The set V of nodes consists of the rows and columns
of the requirements matrix R: the set E of edges consists of some of the
cells (i,j) of the R matrix.

Suprose G has a cycle

r = {(Sl’tl)l (Szatz),"',(sL’tL)}

= = ; 2
where, sp sp+1 or tp tp+1 for p = 1,2,...,4.
(Note Sb+l = s1 and t&+1 = tl) and 4 1is an even number, In each row or column
of the R matrix there are either zcro or two cells of the cycle, Then | can

be written, [ = Fl U T? where:

r] = {(.Sl~t1): (S:;:t3)1"-‘(sb-1) t‘{a‘l)}

rz = {(52":2)’ (Saxca)av-n:(sb»t")}

DETINITION. The value w(s £) of a cycle relative to anv element (s,t) e Tz ,
»
is dcfined to be the ratio
n U v
(u,\')er1 !
w(s,t) = ™ r

k,
(k,per, 'F

Wy

if all r ~ 0 for (k,p)efz; otherwise

kp w(s,t) "

.---n--lllllNllIlIlllIlIilIIIll-.l-.-.l-...-....-.-.-.-.-.....-.-i‘i
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DEFINITION. A nondegenerate problem is one having Yis.t) #1 for

all cycles [ and (s,t) € [,.

2
LEMMA 5. A problem with data rij for all i and j, may be replaced
* A4mj
by a nondegenerate problem with perturbed data rij = rij + & if
*
r.. ¥0 orr,, =0 if r., = 0 and where 8 can be chosen arbitrarily
ij ij i}

small,

PROOF. For given m and n there are only a finite number of possible
cycles [. For such a cycle to have value 1 with the perturbed data we must
have

- (ri.+éi+mj)- v (r
(,j)el J (s,t)el,

This expression is a polynomial in &, Moveover there is at least one power
of & that has a nou zero coefficiert. To show this, let (h,k) be the cell in
i with smallest k, and given this k the smallest h; suppose (ln,k)ef1 (a
o - , €+mk
similar proof holds for (h,k)alz). Then there is a term ¢ where

cC =
<

5 rij # 0 since the value n{ the cycle is one and all cother
(et -lagol &

terms have higher powcrs of S. Hence we need only cheose & small and not equal
to any of a finitc number of zeros of a finite rumber of polynomials to obtain a
nondegeacrate perturbed problem close to the eriginal one,

In the rest of this paper, we shnllﬁassume that we are dealing with a
nondcgenerate problem. The techniques for axtending the algorithm we shall
present to degenerate problems are similar to those for linear progranming
and will not be discussed,

DEFINITION. Given a fecasible solution to problem (P) by a tight constraint

Yy 7 Ty T %yt 0

in row 1 we shall mecan a cell (i,j) such that «x

M

|
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LEMMA 6. At an optimum solution of problem (P) there is at least one
tight constraint in each row and column of R.

PROOF, Assume the contrary, that we have an optimal solution and for
some row u no cell is tight, i.e., xuyj > ruj for all j. But then we
can decrease X, while keeping the solution feasible and, thercfore, decrease
the objective function, which is a contradiction. By the problem symmetry,

the same kind of proof is valid for columns of R,

LEMMA 7. 1If xi,yj, and z are solutions to problem (P) then the

1]
graph with nodes being rows and columns of R and edges being the tight cells

(i.e., 0) is a forest.

zij =
PROOF. The proof follows directly from Lemma 6 and the fact that we
are dealing with only non-degenerate problems, therefore eliminating the

possibility of cvcles.

We shall now define a forest-restricted problem associated with a given

forest, F, to be:

min T ox, = g (14)
® iel
i’yj
s.t. Ty, = 1 (2H)
jeJ J
XYy =T, (L)) s F (31)
%;2¥y 2 0 for all i and j (6H)

A trce restricted problem {s a forest-restricted problem where the forest is
made up of a single tree. 1n the algorithm to be presented in this paper

the authors retain a tree basis throughout the procedure. We are, therefore,
primarily interested in sclutions to t(rec-restricted problems. The solution
to a tree-restricted problem will now be characterized,

For any trce-restricted solution there exists a unique path connecting
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any two columns of R [1], [10]. This unique path may be presented as in
Figure 1, for the case that column 1 is connected to column q. We have
displayed only those columns aid rows from R that correspond to the path
between column q and colummn 1. In Figure 1 the cells where r's appear
are all tight and rows and columns have been permuted and relabeled to be in
the staircase form showed. Certain other cells may be tight in these rows and
columns but are not of interest at this time, hence they are not indicated in

Figure 1.

11 12

22 23

- -

rp-l,q-l

r
.q-1 r
P Pq

Figure 1

It is easy to see that

r
y, = 24 .y since xy =r
q r -1
0.q-1 q P’a  pq
and xpyq_1 = tp q-1° The procedure can be continued in a similar fashion until
finally:
“pq . Tp-l,g-t ... 23 . 12
yq T r T r ° dqul (1K)
p.q-1 p-1,q-2 22 11
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In general denote by d¢ the ratio Zg . It will always be the

Y

case, as above, that dut is the quotient of products of rij'e. We ran

ckoose an arbitrary column, say column k, in the matrix R and represent

all values of yj for jel, 1in terms of Vi by means of the equation

y1 = djk Y Note tt st dkk = 1, Using constraint (2H) we have the solution to
the tree restricted problemas ¥ y., = T d, °y, = 1 which yields
j : k "k
jed jeJ
. —Ll
4" T d
jed ]

and y, = dvkyk for all veJ. The values of x, are easily determined from
constraint (3H).

Given a tree basis T, the associated restricted tree dual solution
can be derived by using the fact that kij = 0 for (i,j) not contained in
the tree basis. This follows since these celils are not forced to be tight.
Also, zij = 0 for (i,j) contained in the tree basis. Taking constraint

(2P), multiplying by /g and summing over i and | separately yields:

X
1]

Aij x, yj/g - f Xij-zij/g = f \ij-rij/g

ity

and .. X, yj/g - LA

i %i : /g = L,A..'rij/g

i3 %13 J i

fu—y l\"l

using constraints (2D) and (3D) and complementary slackness we may modify these

equations to be:

y, = = A, .°t, ./8 for jeJ (1)
. i i
: G,per O H
and X, = T A, .-r, for iel (2L)
i (1,9)er 3 H

It is interesting to note that the form of thc equations for the variables

ij

are the same as the form derived by Passy [6, p. 450] for the geometric dual
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variables if we let pij = Xij-rij/g. The dual objective function developed
by Passy, however, is very different from the one used in this paper.
The tree structure of the nonzero variables in equations (1L) and (2L) means

that the equations can be solved by a simple solution procedure. Hote that they

can be rewritten as

y. = X P, . for jeJ (1L
! (. et
4 ’
x, = T p for iel (2L)
i (i,j)er 1
’
where we have made the substitutions x; xi/g and pij Kij rij/g. The

following algorithm finds the pij's given the primal solution x{,y.:

(1) Let TR(TIC) be the set of vows (columns) containing a unique
tight cell. Because we have a tree-restricted solution TRUTC is not empty.

(2) For all tight cells (i,§) with ieTR 1let Piy = x{. For all
tight cells (i,j) with jeTC let pij = yj. That this is correct follows
from the fact that these tight cells are unique in their rows or columns.

(3) "Cross out" the rows i eTR and j <TC, For the remaining

matrix define a new primal solution x, and ij as follows

i
x'.=x! -L y. for all i 1R
* ! jeTC ]
(i,j)eT
Yy, =y. ~ Z x, for all |} *TC
L |
(iAlj)GT

(4) 1f there are no uncrossed out rows stop; otherwies 8o back to
step (1) and repeat.

A few additional properties of tree-restricted solution will now he

presented,
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LEMMA 8. For any tree restricted solution let T be the tree basis
and let (p,h) be « cell not in T. Then TU{(p,h)} has a unique cycle
whose value is

o = 2h
(p,h) Toh ’
PROOF. Let us assume (without loss of gemerality) that h = 1 and

column 1 is connected to row p as in Figure 1, Adding the cell (p,h) = (p,l)

we obtain the cycle shown in Figure 2. We know that yq = dqul and

1 2 e 4 s a q
1 L2 Tyo cens v ees
2 . r22 cnee
' Tp-l,q-1

X r
P 'p.1 p,q-1 Peq
’ » -Y . L]
14
Figure 2
also that x = r_ Jy . Hence
4 Pq " q ‘
pg
Xy, =
p 1 dql

4 . = Il Y T T IV B T3 I
qal 'p,q-1 rp—l,q-Z 22 11

It tfollows that
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1 _Zpq Ipig-l Ip-l.ge2 22w |
- Al ,
o1 Tp1 Tpgq To-1,q-1 T23  Ti2 (p,1)

as was tn be shown,
COROLLARY. A tree-restricted solution xi,yj is primal feasible

if and only if cvery non basic cell determines a cycle whose value is > 1,
This corollary is used to check for primal feasibility in the algorithm

to be presented.

DEFINITION. Given a tree basis T and any cell (p,q)eT we define

the following four sets:

Iq = {set of all rows that can be reached in T using cell (p,q),
except for row p}
I =1-~-1
P q
Jp = {set of all columns that can be reached using cell (p,q),
except for column q}
J =3 -7
q P

Clearly p ¢ Ip and q ¢ Jq and thesc sets are never empty, Also at most

onc of the sets Iq and Jp is empty.

I .(p,q) :

Figure 3

Figure 3 shows the matrix R divided into the four subsets lp X Jp‘

I xJ , 1 %J,and T xJ_ . Of these four sets; I x J contains no
P q qQ p q q q p
cells of T Ip X Jq contains only the cell (p,q) € T; all the rest of

the cells of T are in the other two areas (Ip X Jp) U(Iq x Jq).
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In the algorithm to be presented later we are going to change data
elements rpq in a parametric fashion. The next two lemmas characterize
what happens,

LEMMA 9. Let xi, yj be a primal feasible tree~restricted solution

with tree basis T and let (p,q)el. If we replace rpq by a larger value
*
r >r

, then, provided
Pq Pq

r < Min Thd (s, £)
Pq (s,t)quxJp Pq 1%,

1

* kS
the tree-restricted solution L yj with the same basis, T, is primal feasible.
PROOF. By the corollary to Lemma 8 we need only show that every non

basic cell (u,v) determines a cycle with value > 1. Referring to

w -
(u sV ) =

Figure 3 it is obvious that non basic cells in the (Ip x Jp) or (Iq xJ)

areas have cycles entirely contained in these areas. Hence changing rpq

does not affect the values of their cycles.
Because every cycle goes alternately from row nodes to column nodes, every
non-basic cell (u,v) in the IP X Jq area determines a cycle 1" which includes (p,q)

in the Fl and (u,v) in the ré part. Hence w( increases if rpq increases and

u,v)
*

primal feasibility continues to hold for these cells however large we makc r

Finally consider cells (s,t) in the Iq % Jp area. Such cells determine a

.

- . ) - o ¥
cycle T with (s,t) and (p,q) in the Ty part, Let “(s,t) and Yis,t) be the value

*
of the cycle determined b s,t with r and r >r respectively.
y y (s,t) g pq = Tpq 1 Yy i

% *
Then w by the definition ol the value of a cycle.

(s,t) rpq = w(s.t) rpq
*

*
this means that we must have r < w U
pg —~ (s,t) pq

every (s,t) ¢ Iq X Jp and therefore the statement of the Lemma is true.

Since we want w > 1 for !
(S,t) - !

LEMMA 10. Let %5 yJ be a primal feasible tree-restricted solution

¥*
with the tree basis T and let (p,q)eT, If we replace rpq by a smaller

*k
value r - r_, then provided
Pq = P4

-
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%
*ode r
r > Max

Pq - (u,v)elpxlq-{(p,q)} w(u,v)

i

* %k
the tree-restricted solution X yj with the same basis, T, is primal feasible.
PROOF. The proof here is analogous to that for Lemma 9 and will not

be given.

4. THE MODIFIED PROBLEM

*
Given problem R with data rij we define the modified problem R

%
with data rij where < w for all i and j. We shall give an

13 S Ty
algorithm for finding an optimal tree-restricted solution to R* and show
how this can be used to find the optimal forest basis solution to Problem R.
THEOREM 3. Given an optimal tree-restricted solution to R* there
corresponds a unique forest-restricted optimal solution to R. Conversely,

to the optimal forest-restricted solution to problem R there correspond at

*
least one optimal tree-restricted solution to R .

* * v
PROOF. Given an optimal tree-restricted solution Xy yj, Aij with
* *
tree basis T to problem R drop from T all tight cells such that Xij = 0,

4

? %
The result is a forest F with xi'j >0 for (i,]) ¢ F and A;; = 0 for (i,3) £ F.
*

x %
Since x; yj > rij > Ty for all i and j these solutions are primal and
dual feasible, and hence by the duality theorem are optimal for problem R,

Given an optimal forest-restricted solution X yj and Aij with forest

basis F we shall give a constructive procedure for deriving an optimal forest

*
restricted solution to a problem R . Suppose F = Tl U T2 Ueoo U Tk where

each Ti is a tree. If row u contains a (tight) cell of Ti then it will
not contain a cell from any other tree, Similarly, if column v contains a

cell of Ti then it will not contain a cell of any other tree. We now show

one way to '"hook together' the trees in F and make them into a single tree.
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Reproduced from
est available copy.

Let 11 be the index cf any row containing a cell of Tl and let jz,...,jk

be indices of columns containing cells of T T Add the cells (Ll,jz),

2,..-, ko
(il,j3),...,(11,jk) to F which will make it into a connected tree and also

*
define problem R by

* *
r = X

X >r
i,jz

y _>_t. seeeyl = y -
73,7 L, Ly 1 The T il

and all other r* = r are still primal and

i} ij°®
*
dual feasible and hence optimal for R .

It follows that xi,yj and xij

Obviously, there are r.any other ways the trees TI’TZ""'Tk may be
connected to male a single tree so the above process is met unique,
. *
THEOREM 4. Let Xi» yJ be a feasible solution to problem R with

tree basis T and let A

i3 be the restricted dual solutiem; and consider

a cell (p,q) € T; then

* *
(a) 1{if qu < 0 we can decrease g by increasing rpq

* *
(b) 1if qu > 0 we can decrease g by decreasing rpq.

These results hold only over a sufficiently small ranga.

PROOF. Suppose we get r r.. + 8 . and urite ghe Lagrangism

* =
ij ij ij

function of the primal problem. It is

- (rij + bij)]

L("-.}’,X,u;z.& = T xi - ‘ZZ lij[xi }'J + lij
i i}
+u(Z y.-1)
j 3
Now holding all 6u v fixed at zero except for 5ij and letting g(Sij) be the

corresponding value of the primal problem we can rewrite the Lagrangiamn(for

small changes in 6 . ) as

ij

) = g(0) + 6 + o(6

8(8 13 %3

1) 1)

for which the two assertions are obvious,
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x %
THEOREM 5. Given a feasible tree-restricted solution xi, yj, Aij

*
to problem R with basfis T, let (p,q) ¢ T. Define r:q to be the value of

* *
r for which ) = 0, then
Pq Pq

z Ty T iy
{,j)eR e i,1)eC a
. (1,))e o ip (i1,1)e q 1q
T = °
Pg
z e = d
. ip : iq
1 eJ
Y% Jedg

where the quantities e s Rp’ and Cq will be explained in the proof

, d
ip’ iq
below. Then

% * a0
(a) )\pq =0e rpq B qu gfgrodused o By
: i i available copy, S
S A TR
pq e P
) A ~0er > °
. - T r

PROOF. Let the sets Ip, Iq, Jp and Jq be as previously defined, If

we remove (p,q) from T then as noted before all the remaining cells of T

are in the areas I x.J and I x J .
p P q q

For each j ¢ Jp let i be the smallest row index such that (4,j) ¢ T:

*
and let R, be the set of such cells (i,j). Then y, = rtj/”i for (1,1) ¢ L !
Also let eip be the ratio eip = xilxp. Similarly for esch i in Iq let

) be the smallest column index such that (i,}) ¢ T; and let Cq be the set of

*
all such cells. The -r / for (i, ¢ C . As before let d, =y /y .
* noxg mrgylyy for (L,J) e Cy € 19" Y37

Removing (p,q) from T forces qu to 0 and we can calculate the new

<

solution x, and yj for all i &and j. From this we can find rpq as
xpyq. Once (p,q) is dropped from T the primal problem (¥) becomgs
T .
Minimize z xi + ) X, = T e1 x + z —Eli” L
el tel, er, PP de, \ e Yq

subject to the constraint

I—
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(111) some cell (h,k) in IP x Jq - {(p,q)} becomes tight;
*
then add (h,k) to T remove (p,q) from T, setr =1 ,
Pq P9
and go to 2.
*
(c) All cells (p,q)eT satisfy qu > 0 and rpq = rpq or qu =0

*
and r =1° >r . Go to 4.
Pq P4 — Pq B
(4) The optimum tree-restricted solution to R is given by the

current T, X yj and li since these satisfy the duality theorem. The

j)
optimum forest F for R is obtained by dropping those cells (p,q) from

T with qu = 0; the same X, yj and Ai are optimal for R with forest

i
F.

THEOREM 7. For a non~degenerate problem the algorithm converges in an
Infinite number of steps to the optimum answer to problem R,

A proof of this theorem appears in Smeers [9],

An intuitive proof is the following. Suppose the algorithm always keeps
the same tree; i.e., steps 2 (a) (ii) and 2 (b) (iii) are never entered, Then
it is easy to show that the tree restricted problem (H), after making the sub-

stitutions X, = rij/yj for (i,j)eT, is a concave problem, and the algorithm

can easily be shown to converge (infinitely), see Zangwill [12). Clearly there

are only a finite number of possible tree structures, and each one has (In the
non-degenerate case) a different optimum value. It follows that steps 2(a) (ii)
and e(b) (iii) of the algorithm will be entered only a finite number of times so
that the processes eventually settles down on a single tree for which the pre-
vious argument holds,

Since the above algorithm involves finding square roots at cach step which

are implemented by algorithms that converge infinitely, there can be no strictly

finite procedure for solving the above problem., However, the following modifica-
tion of step (2) of the algorithm ensures that all the rest of the calculations

arc finite,
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(2’) Examine the cells (p.q) in the current basis T to [ind the set S of
all cells (p,q) such that either {(a) qu < 0 or (b) qu > 0 and r:q > rpq'
If S =0 go to (4). Otherwise let F =T - S and solve the resulting forest
restricted problem (H) by a Lagrangian procedure similar to that in the proof of
Theorem 5., 1If xpyq > rpq for all (p,q)eS then the optimum forest restricted
solution has been found. 1If not, add cells of S to F in all possible ways
and resolve until the condition holds, A branch and bound procedure can be de-
vised to simplify this calculation.

It is easy to show that with step (27) the algorithm becomes a finite one
(except for the square roots) since there are only a finite number of forest
bases, and step (2') finds the minimum objective value for each orne when it
is considered. Hence no forest basis can be considered more than once in the
computation process,

Since computers have limited accuracy, infinitely convergent processes

have to be (finitely) terminated after they converge to that accuracy. The
authors have found that the original algorithm with step (2) instead of (2°)
converges quickly to within the accuracy limit determined by the computer.
In fact, the number of pivet steps needed seems to be fewer than that needed
for a corresponding transportaticn problem (see {11]). Therefore, step (2°)
has noc (as yet) been programmed.

In our cod: we have implemented degeneracy prevention techniques similar

to thos« used in linear programming,

Smeers { 9] has proposed an alternate way of finite termination for

the algorithm,
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We now discuss two ways of implementing the starting routine of the
algorithm, The first procedure is similar to the improvement routine of the
algorithm.

Starting Routine 1. Find an initial tree basis T by any means. A

good heuristic is to try and get as many of the large entries in R as

possible into this initial basis, Now solve for Xs and yj using T.

*

replace rij by r = xiy..

For each non basic cell (i,j) if g Y <r ij

13

After this has been done go back and for each (i,j) such that r:j <r

i)

%
increase L until either a new ceil becomes tight and enters the basis

in place of (i,j) or else = r,, ., Note that this makes g constantly

T, .
1] 1]
increase and hence these steps are just the reverse of the improvement

routine of the algorithm, After a finite number of such steps a primal

feasible tree-restricted solution to the original problem will be attained,

Starting Routine 2. Select an arbitrary set of positive yj's such

ho

that ~.yj = 1. A good choice would be to select

it

v,

i (; rij)/(i Tr..)

i i] tJ

low choose X, Max (rij/yj) and put all tight cells into the basis. If

}
there is a column, say q. with no tight cells, select an arbitrary row,

say p, and raise r:q to the value xpyq and add this cell to the basis also.
We now have a primal feasible forest basis which can further be extended to
a primal feasible tree basis by using the techniques of the proof of
Theorem 3.

As a final remark, we would like to discuss how a primal feasible
tree-solution can b: used to determine the next trec solution., For the
first solution we have yj = djkyk for k fixed and all 1. If we now

change r;q for (p,q) being a tight cell, the values of djk will be




c =24

affected unly for those yj such that (p,q) 1is a part of the unique path

* ok
from column j to colummn k., If rpq is changed to rpq then either

* wik
- r * Y
d., =4 24 or djk = djk —%ﬂ—
T r
Pq Pq

depending on where (p,q) is in the path from column j to column k.
6. EXAMPLES

The first example is designed to demonstrate most of the steps of the

algorithm, We start with the data and an initial tree as

ORRONK
3 1@ @
(® 3 4

Cells (3,3) and (1,3) are not primal feasible since

-

754 5.7
no~ e - 2L _
w3 & and 4> 10 3.5

Following Starting Routine 1 we replace the problem by

OREO) 3.5
1 W | O

ol L@ :

whose value is g = 51.3, We now bring cell (3,3) into the basis and can

remove any cell in Fl = {(2,3), (1,2), (3,1)}. We choose to remove cell (3,1)
x

and now increase I3 3 from 2.8, trying to raise it to 4, without causing

primal infeasibilities. We succced and obtain the problem:

®10O
» | @

(v
.
w

®|e
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vhose value {s g = 55,93, We now bring cell (1,3) into the basis and can
remove either cell in [, = {(1,2), (2,3)} we choose to remove (2,3)
(although later it will become evident that the other choice is better) in
order to demonstrate more steps of the algoritim, We raise r:3 to &

without encountering primal infeasibilities and obtain the problem

® 16 |®
3 | @0 | 7
4 3 O)

whose value is g = 56, 1Its primal feasible solutions are

e (3. 5 iL)
Y= \Z 1%’ 14

and the dual solutions are given by

= -'—5- Ix’ci ty'-l
P11 TV T Ty P2 TR T2 P33T ET Y

- - T S v o oL 11
Pla " Y2 " P22 714 " 2% "1 PryTY3 T P33 Y14 T4 T 28

Since (1,2) is the only cell with negative dual variable we have p = 1, q = 2,

1 = {2}, 3, = {13}, R, = {(1,1),3,)}, ¢, = {(2,2)] end e =e

o
12

o 1 1 1
[~ E ——— - 4% =
rlZ\ 7 x 1 45 6.71

We also have I1 x Jz = {(2,1), (2,3)] as the twe cells that may become tight

d22 = 1. Hence we can calculate r from Theorem 5 as

as we increase r For them we have:

12°

_‘_.__________-_______,_._..........--i-ii========ll"|‘I
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* 5.10
1o < 3 = 16.67 from cell (2,1)
and
* L]
r, s Y 2 51 from celn (2,9).

The smallest constraint comes from cell (2,3) so we bring it into the basis

obtaining the problem:

® 5
3 | @

3

CJOlC

o~

whose value is g = 55.18, 1Its solution is
/35 40 28

y*{103° 103 ° 103/
103 103 103 ~

x= (50, 2, 2
’ ~’_4_ .Z_ i \

* =\ 15 > 15

The dual solution is given hy:
35 40 ' b

PI1 "Y1 T T03 0 P22 T Yy 703 b P33 T X T e
, 7 40 , L4 35
P23 7 %2 " P2 15 " 703 " %8 eyt R - et T - Ta5 = --07

Cell (1,3) ts the only one with negative dual variable so p=1l,q=3,1,= {2,3},

3 A = r i - .—1—0-
I3 = 0}, Ry = {1}, ¢ = {@2,2), 3,9}, and e " L dyy =5,
d33 = 1.
Hence we calculate
7 4
10, -
o 10 1
!‘13 = S x '_——i-b—- = 4.76
1+5
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We also have 11 x 33 = {(2,1), (3,1)} so that the other constraints on

*
T, are given by

tia< 2= 11,67  from cell (2,1)
13 3= ,
* 45 .
T3 < e 5 from cell (3,1}

Therefore we increase r to 4.76 obtaining the problem

®| s
3 | © | @
4 3 ®

whose value is g = 54.83. The primal and dual solutions are:

y = (.29, .41, .30)

x
n

(16.56, 24,35, 13,92)

(.30, .44, ,26)

x
]

5 - Py, = .44 - .41 = .03,

Since all cells satisfy 3(c) of the algorithm, we have the optimum solution to
% )
“oth R and R . We next solve Evans' prcblem [4], which is given with an

initial tree basis:

5| ®| @
@] 13 0
15 | 17 | 3
@ 12 |G

cells (2,2) and (4,2) are not primal feasible since

> 13 - 22 - 23
346 - 44

13 = 4.4
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23 .« 22

12 > WL

= 11.5

The modified primal-feasible problem is:

15 | @ |6
@ | 4.4 0
15 | 17 | @)

@

11.5

We now bring cell (2,2) into the basis and remove cell (2,1). The problem

*
remains primal feasible and we can increase the value of r.. to 13 while

22

remaining primal feasible.

(

5| @ @ |

13 [ @ | o

15 | 17 | @)

@[ 1s]@

23 - 22 . .

11,5 = =~ an so we bring cell (4,2) into the basis and remove cell

*
(4,3). We then increase L to 12 remaining primal feasible,

Initial primal feasible solution to the original problem:

v 1@ @
13 | @© 0
15 | 17 | G
| | 2

y = (.49, .17, .33)

x = (132,17, 74.70, 105.13, 68.96)

[

x = (.35, .20, .28, .18)

T ——— 1 |



Dual variables

Pa1 "Y1 T

- xl -
Pra T %4

= / =
P33 = %3

- x’ =
Pr2 T %
O13 T ¥3 ~
Pla ™ %1

Only cell (4,2) has

Take cell (4,2): Iq X Jp ={@a,n, 2,1), 3,1}
For (1,1) 15< 23 : 3 so r,, < 52.1
Y42
For (2,1) 1313+ 34 so r,,< 3.8
Y42
For (3,1) 15< 35 23 - 34 sor ,<4&l.4
= s 42 =
Y42
ke 0
Therefore T2 < 36.8 but o = 25.18
Therefore we can raise L to 25.18
v @ @
13 (:) 0
15 17
@) @8] 2
y = (.32, .23, .45)
x = (98,00, 55.43, 78.01, 107.33)
x' = (.29, .16, .23, .32)
g = 338,77

P13

.33 -

.35 -

-29-
49 = -.31
.28 = ,05
.05 = .30

a negative dual variable.
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Dual vasriables:

7.

Ppp = V1 < .32

Pup = X4 T 9y = 0.0
- ! = -

Oyy Xy .23
= XI = 15

P22 2 i

P13 = Y3 P33 45 - .23 = 22
= ! - -

P1o Xy 013 .29 .22 .07

Since we satisfv 3(c) of the algorithm, we have the optimal :otutirn’

CONCLUSIONS

The algorithm presented in this paper has several zdvantage..

a

A

+f we must stop before the optimuii scluvica to the problew i
reac:,d, the non-liig~rit, makes g ¢lose to the optimu~, Thi-
solution will be much closer tuoan would be the ca-e in a corres-
ponding similar linear problerr,
The method always keeps a primal feasil’e solution so tuat onc
R

can stop the preocedurc at any time and have a usable solution,
In order to find the negatier restricted dual variable, only the
basis tree must be scarched. A most negative indicater rule
would, therefore, be available at low computational cus . (This
is not the case tor transportation prohlicem (see [11)).
The scarch rfor unew limiting cells requires searching on -+ th
areas 1 x J or 1 xJ , and not the whole mitrix,

P q q by

Frevious solutions to the grimal protlem can be u<ed tn enerate

feasible solutiops co prob! -; with similar data.

™~
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f.) Accuracy is not a problen since a solution to a forest basis

can be found independently of any previous op:r¢tions,

Retention of a tree solution throughout the computaition and use of
previous solutions makes the steps in the algorithm very similar to those «f
transporiation problems. Srinivasan and Thompson report excellent computa-
tional results of 175 x 175 transportation problems in scves seconds [11].
The number of pivots required for the modular design probless tested so fa
are somewhat fewer than for a transportation probleam of the same size. This
means that modular design problems can be solved in only slightly more
computer time than that required for comparable transportation pr »lems.

The authors are currently preparing a report on computational experience

with their modular design code,




s}
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