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Abstract

List processing systems should be designed to facilitate
production of large programs to manipulate large complex
symbolic data stores. Thls paper presents an overview of a
number of system features which the author feels are important
to improve the productivity of programmers working in such
domains. A systems view is taken, rather than focusing just
on language features, since algorithms not only must be coded
in a language form, but debugged, modified, made efficient and

run on data. Because of this general framework, the requirements

specified are applicable to the design of advanced programming
systems for a wide range of applications.

Three aspects of programming systems are highlighted:
good interactive facilities, programmable control structures,
and sophisticated data communication mechanisms. Interactive
features are described to facilitate program composition,
entry, testing debugging, editing, optimization and packaging.
Implementation of a generalized environment structure model
specified would allow programning of various control regimes
including multi-processes, coroutines and backtracking.
Alternative methods of procedure invocation required include
invocation by pattern and by monitoring condition. The need
for extended data forms, storage management and extensibility
are stressed, as is the duality of data retrieval and function
evaluation. Syntax directed input and output of data would
facilitate use of conplex data stores.
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Requirements for Advanced Programming
Systems fdf'List Processing

Daniel G. Bobrow#
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts 02138

l. Introduction

Programming systems are (or should be) vehicles for
communication of an algorithm from a programmer to a computer
in a manner which matches the needs of the programmer for
this problem. As so aptly stated by Perlis in his 1964 Turing

lecture:26

"Programmers should never be satisfied with
languages which permit them to program everything,
but to program nothing of interest easily."

List processing languares are designed to make it easier
to program algorithms in domains requirings manipulation of
complex symbolic data structures. Examples of such problem
domains are English languare understanding (e.g. 'v.’ino;,g:r'ad,u0
Bobrow)% program writing programs (e.g. Green); and programming
system implementation (e.g. Wegbreit).7 This paper is a
collection of my prejudices about features wnich should be
included in a programming system to facilitate prcgram construction
in these domains., Because the general framework used 1s
common to most difficult prosrammine tasks, tue reguirenents
specified arc applicable to the desirn of advanced procrammin-
systens for a wide ranpge of applications.

""hree aspects of programming systems are highlignteu:

rmood interactive facilities, programmable cormplex environment
structures, and sophisticated data manipulation and communicatilon

Reproduced from
b:?{ available copy. e
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facilities. We stress the need for every system mechanism to
be accessible to the programmer, following another aphorism
attributed to Perlis: "One man's constant is another man's

variable."

No existing system contains all of the features described
below, though almost all of the ideas are implemented in some
form in some current system. In those cases where 1t has been
appropriate, I have described implementations as exemplars of
requirements. The systems most influential in my thinking have
been T.ISP 1.5§lon which I cut my programming teeth, BBN-LISP5’36
for its interactive features and environment renresentation,
PLANNERQand MICRO-PLANNER)3Tor their way of invoking procedures,
and backtrack control structure, FLIP3gnd SNOBOL15 for their
pattern matchinp facilities, and }-ICL38 for its data type handline
and reneralized control structure primitives. These arc typlical,
not necessarily orisinal sources of these ideas; since this 1s
not a survey paper, (cf. 6, 29) otherreferences will be given only
when they contain details which further explicate the ideas
explored hcre,

I have emphasized the idea of a programming system'rather
than languagse since the programmer does not just express his
algorithm, but must enter his program, test it, find bugs,
modify it, etc. DBecause of the difficulty of this process for
large complex programs, on-line interaction is mandatory.
Natural modes of expressing desired actions must be availlable
both in the algorithmic programming languasec and in the
(somewhat different) context of direct user interaction with
the system. Eventually, after getting hils algorithm debugged
for the test problems chosen, the programmer must often make
an equivalent program which 1s more efficlent over his total
problem domain. To make his progsram useful to others, he
must be able to isolate, specify ana document 1ts interactions
within systems in which it can be embedded.
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Because I feel future list processing systems must aid
. the programmer in his total task, I start by describing in
section 2 some interactive features which facilitate construction
of difficult programs. These are basically independent of
programming language form, and involve the use of an intelligent
agent as an intermediary between programmer and interpreter.
In section 3 I discuss some necessary semantics of the pro-
gramming language. This includes an (implementable) model for
environmental (control and variable binding) structure, and
emphasizes the rich variety of (necessary) control structures
g thls makes possible. These include backtracking, coprocesses,
and capabilities for programming within the lanpguage a general
resource-sharing operating system. Section 4 describes data
forms, a set of storage and access methods, and a general concept
of syntax directed I/0 for data.
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2. Interactive Facilities

In the construction and debugging of complex programs,
immediate interaction in an on-line fashion is mandatory. The
usual cycle of program development has the following components:

0) Define the problem

1) Composition: Write algorithm in the chosen
programming language

2) Entry: Enter machine readable form into computer
3) Testing: Run test cases
) Debugging: Explore reasons for

a) non-concurrence of result with expectations
("logic" bug) - often feeds back to O

b) unanticipated type or definition error
("structural® bvug) '
5) Editing: Revise program
6) Repetition: Cycle through selected portions 0-5

7) Optimization: Make a glven version of a program
more efficient

8) Packaging: Making a set of routines available for
use by other people and programs

I shall indicate the facilities I believe most helpful
for each of these components.,

2.1 Composition

Programming systems become problem oriented systems when
the unit forms avallable to the user closely match the unitary
concepts in his problem domain. Addition of new procedures
are not sufficient to provide appropriate language forms. Pre-
processors are generally poor because debugging must be done
in an interior languarge far removed from the external problem
statement. The problem oriented language should be an extension
of a powerful core language. For each problem domain the



Report No. 2339 Bolt Beranek and Newman Inc.

objects, unit operations, relations and control behavior
should be directly modelable in the base language augmented
with new data types, new operators (or extensions of the old
ones), new syntactic patterns, and new control structures,
respectively. Control and data structure extension facilities
will be discussed in sections 3 and 4.

Syntactic extension should be achievable by construction
and modification of appropriate data forms. During the parsing
of input, the parser should be able to invoke any defined pro-
cedure in the system. For example, reading a particular statement
should be able to change the grammar at that time, for some
defined scope. This allows somewhat incompnatible sublanguages
to exist within a single encompassing language - e.g. "+" may
be used for a format control character in a format statement and
a concatenation operator within a string matching and reconstructior
statement, although in arithmetic assipgnment it may maintain its
usual meaning. In addition to new forms, the lanpguare must allow
extensions of old forms. Thus the parser must be able to use
context and type information associated with variables and fornms
to allow sreneration of appropriate internal form. The parser
should also be callable as a subroutine; we discuss an important
application for the parser subroutine in section 4, for syntax

duced from }
t:'s’troavuacifable copy.

The internal form of programs geneﬁated by the parser

directed data input-output.

2.2 Entry and LEditing

should be list structures with unique internal pointers for
each unique external symbol (e.g. as in LISPdand ECL). This
has several advantages. First, it can be directly executed

by the interpreter without reparsing each time a line is
encountered, as for example it would many times in executing

a loop. Second, a list structure is a convenient input for a
compiler, which can be considerably simplified when working on
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this preparsed input. Third, it is a good data structure on
which a programmable syntax-directed editor can work.

A good interactive editor is an important keystone in
the raplid development of complex programs. The edit program
in BBN=LISP serves as a model for the breadth of scope I
believe 1s necessary. This editor is oriented toward structures,
and does not allow the user to put in non-well-formed structures
accidently, although partial structures can be added. It
provides a large variety of commands for moving around the
structure, both incrementally and by search. Searches can be
specified by general structural patterns, and/or by character
oriented specifications of lexical units., Various forms of
on-line output allow the user to track easily where he 1s in
the structure, even when interacting through a slow output
device such as a teletype. Structural uniﬁs can be deleted,
inserted and moved as units. Substructures can be embedded in
and extracted from larger units. Iteration of operation
seyuences, and conditional operations are all easily expressible.
New editing operations are definable as macros in terms of older

ones.

However, a major reason for the comfort and smoothness of
operation in the BBN-LISP editor is the confiuence the user
can feel in making tentative changes in his program structure.
This is achieved because the editor saves sufficient information
about any changes made by an edit operation on a particular
function that upon command it can UNDO that change. The feeling
is very different than that achleved by saving a copy of the
function definition before editing because individual changes
can be undone selectivelv. Even after leaving the editor
(which is a function called from the LISP executive) and per-
forming other computations, the user can later reenter the
editor to work on that function and UNDO changes made earlier
which were unsatisfactory.
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2.3 Dubugging

It 1s an axlom that no real program is ever written
without any bugs. The bugs that occur on running a test
case are of two broad kinds - "logic" bugs and "form" bugs.
In the first, the programmer is trying to follow the logic
of his program through a test case which 1is returning a
wrong result. He must be able to trace parameters and values
of individual functions and specific value changes within
functions. This can be done by declaring specific function calls
and variable bindings "sensitive"; calls to sensitive functions,
and modification of sensitive variable values are monltored, and
processing 1s suspended whenever an assocliated programmér-
specifled predicate is true. Another useful monitored
condition in the system provides an interrupt (without con-
text loss) at any function call when the programmer has
pressed a special console key.

In the "break" (suspended state), the programmer must
be able to examine the environment in which the condition
occurred. A selective "backtrace" of the call structure
(the sequence of function calls which lead to this point) and
assoclated variable bindings must be avallable. In accord with
our general phllosophy of mechanism accessibility, this sihould
not just be a special system print facility; any nrocess shoulu
be able to obtain the symbolic nanie of the Nth nreceding function,
and the names and values of any variables bound in that environ-
ment. This informatlion should be available for both rerular

complled code as well as interpreted code. Reproduced from j
PY.

est available co

When a problem is isolated, an appropriate change in a
function must be made. The user should be able to call the
editor while still in the break, have his changes take
immediate effect and test a subcase without losing his context.
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By having the editor work directly on the list structure
processed by the interpreter, effects of changes are propagated
immediately. TFor some errors, it is important (to allow
continuation) for a user to have access to progcram substructures
stored on the stack.

The second class, "structural" errors, cause interruption
without programmer intervention. These include internal error
conditions such as fixed or floating overflow, value-operator
incongruence, or end-of-file. When an error is encountered the
system should act as if the user had explicitly called a'specific
error handling routine, if the user had enabled such a call
(e.g. say by defining an appropriately named funection). If not,
the system should call the break routine, described above, which
preserves the state of the computation and requests user inter-
action from the console. Asynchronous external interrupts,

e.g. a clock time-out, can be treated similarly through specially
enabled interrunt handlers and the break package.

There are a class of errors in programs which can often
be fixed by a programmer knowledgeable about the system but
wilth no knowledge of the particular program. Automating such
error correction, as Teitelman35 has done in a number of cases
for BBN-LISP, greatly facilitates construction of complex
programs because 1t allows the programmer to remain thinking
about his program operation at a relatively high level without
having to descend into manipulation of details. Typical
errors corrected by the BBN-LISP DWIM (Do What I Mean) facility
include misspelled variable and function names, and syntax
errors due to mistyping and mismatched parentheses.

Machine alded debugping and verification of progranm
correctness will be an important feature to be added to list
processing systems. Statements of a program's "intentions"
and expected conditions at a point will become part of the
program%7 The simplest step will run these intention statements
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to verify them on test cases supplied by the user. A next
step wlll be for key test cases to be generated from the
intention statements. Finally, proofs of the correctness of
the program, and perhaps the program itself will be generated
from the intention statements. For real problems however, I
think that only the first two steps will take place in the
next five years,

2.4 Testing and Repetition

A user at a console thinks of his sequence of inputs as
related in terms of the program he is trying to construct and
debug. However, most systems treat each interchange between
the man and machine as an isolated event, and store no informa-
tion from the interaction except possibly as a side effect of
the computation reauested. Facilities in BBN-LISP, which we
describe briefly here, illustrate the power of having the user
Invoke system procedures through an (active) intermediary agent.

For each input to the BBN-LISP executive, the agent saves
a copy of the input, the resulting value and some other inform.-
ation. The user can later retrieve this input by an inter-
action sequence number, or through search on contents of the
inputs or values. He may do this, for example, to redo a test
case after making some program changes. Or, he may have typed
in a long expression with a slight error, and he wants to fix
and reevaluate the input. Fixinpg is done by calling the edit
facility described earlier. A set of inputs may be prouped to
be done and redone as a unit., Simultaneous substitutions for
a number of lexical units and/or character strings in a single
command allow after-the-fact parameterization and repetition
of previous input commands. Surveillance of the input by the
agent provides a focusing mechanism for highlipghting approp-
riate candidates for comparison with misspelled or mistyped units
to be corrected by DWIM,
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In testing programs which work on complex data
structures, programs which function 1ncorrectly may make
changes in global data structure which are hard for the
user to explicitly reverse. The BBN-LISP executive allows
execution of generalized assignment procedures in a test mode
where enough additional information is saved with an input event
to allow the resulting structural changes to be undone. As with
the undoing in the editor, this allows the user to try programs
which might modify data structures in unexpected and not easily
reversible ways, without preparing beforehand. Being forced to
think about possible destructive consequences could distract the

programmer from the main task at hand.

Another feature which facilitates experimentation in
program interfacing 1s indirect procedure calls through a
symbol table or transfer vector. This allows temporary use
of "advice" to a function, that is a program fragment insertea
between a caller and a callee; i1t is useful for special case
handling, information gathering, and insertion of measuring
probes without requiring chanmes in the procedure noday. 'Ihis
facility also allows implementation of trace and hreal featurcs

deseribed earlicr.

2.5 Optimization and Packagine

Once a program has been written and successfully tested
on a few samples of data, one often desires a version of
the program which will be more efficient in some respects,
e.g. time per example, temporary storage space utilized ete.
Transformation of the form of the program to one more suitable
for runni.g by the computer hardware is one way of achieving
some efficlencies. However, since programs are only relatively
stable, compiled and interpreted code should be freely inter-
mixable, both in terms of running and debugging. Compiling
consists of making best use of information which is invariant
with respect to the input data by performing all allowable
computations at compile time. Only decisions which depend unon
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the input data must be postponed until runtime. Compile-time
activities can include transforming certain recursively written
programs 1lnto equivalent iterative processes, data type and
subscript bounds checklng, data packing; and extraction decisions,
and evaluation of expressions by the compiler?9 Such activities
need not be limited only to the compiler. Program transformation
under speclal fixed conditions 1s useful in other cases, e.g.
incremental computation or partilal evaluation10

argument function is transformed to an n-k argument function

in which an n

by supplylng k values.

The compiler should be able to make use of program
behavior information provided by the user e.g. working set
boundaries, and proportional choice of program branches. 1In
addition, facllities must be avallable for the user to gather
‘appropriate data about resource use of particular subroutines.
This allows him to 1isolate those portions of his larger program
which are critical to efficient operation of the program as

a whole.

Packaging a set of programs for use by other people
requires both hipghlighting and hiding information. Internal
structure (e.g. local variable and function names) should
be hidden so that, for example, use of a package doesn't
surprisingly preempt the nalve user's name-space. This
packaging should be obtainable after the fact, so that programs
can be built incrementally, as 1s most important for complex
tasks. Preplanning the package boundaries beforehand should
be unnecessary e.g. as in the BBN-LISP block-compiler. To use
the block-compiler, tne user specifies a sroup of functions
previously debugged which are to be bound together. iNames which
are to be used external to the block are specified, and all

others are surpressed in this special form of compilation.

Information to be highlighted in packaging includes interface
and operating specifications. Lasy association of commentary
with program statements is critical for adantation of packages
for new use. Facilities which aid in documentation of proprams
will become more and more important, e.s. automatic flow=-charters,

program formatters and syntax directed documentation (c.f. #Mills).

11
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3. Program Semantics

The virtual machine a user sees is de:ermined by the
primitive procedures he can call, the techniques allowable
for invoking procedures and bindingx variables, and the
richness of control structures available to express sequences
of processing and modes of sharing. We willl not consider
here data manipulation primitives; we will assume a rich
encugh set to deal with the forms described in the next
section, and also apprcpriate iteration operators. Pattern
decomposition and structure building from templates are
assumed as well as standard imperative statements and ex-
pressions. Because flexible control and access structures are
so vital, and arc usually ignored, we descrlbe in some detall a
data oriented model for control (in the spirit of Wemner39).
We speclfy three primitive functions for manlpulating such environ-
mental structures which allow flexlble programming of control
regimes, e.r. coroutine calls and backtrackling. Finally, three
distinet methous of procedure 1lnvocation are described, tne usual
explicit call, call by pattern, and call by monitoring éondition;
variable bindine by palrine and binding vy extraction are also
dlscussed,

3.1 A Data Structure Model of Control

In our control structure model, the primitive unit of
program 1is an accesc module, e.r. a function or block, in

which new nomenclature is introduced. Bilndings, name-value
pairs, can only be introduced at entry to an access module,
i.e. as function variables or as local parameters defined

at the head of a block. New modulcs are activated vy calling
or enterinpg, and normally deactivated by exitings. A particular

)

activation can be continued by returninpg to it with a valuc (which
may be ignored).

N

y .
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In a single process environment, control resides in an
activation of a particular module. In conventional programming
languages, such a module activation has a unique caller, wnich
in turn has a unique caller, etc; that is, the activation
(calling) sequence is strictly hierarchical. We call this linear
chain of activations a hierarchy in contrast to a dendrarchy, a
more inclusive general control tree. We note that in a hier-
archy once an activation has been exlted, it disappears and
can not be continued again., Reentering the module causes a new
activation of the module to be created. We create a dendrarchy,
a tree of activations, by providing a way to preserve an activa-
tlon which has been exited, or to reference an activation from
more than one successor. Each activation will have a unigue
caller, but may be reachable from any number of other modules.

To make our model clear, we consider the dats structure
required to implement i1t. UWhen an access module is entcred,
storage is allocated for use within the module. "The allocated
storage we call a frame; a frame contains two major components:

a basic frame and a frame extension. The basic frame is a fixed

block wunich contains the new named items whieh arc defined when

the access moaule is entered. In addition, it contains a control

link and an access link. The control link points to the framc of

the unique calling module. The access link and bindings are used
to determine the value of any variable used in the module. “The
formaf'parameters and loeal variables of a module may be accessea
directly throurh the bindirgs component of the module frame. 1f

a variable is not a formal narameter or local variable, 1t is
sald to be free. The valuc of a free variable is determined from

an environment specified by the access link. Three cormon alter-

natives used for free variables are:

1) static (or lexical) seoping - as in a bloek struetured
lanmuare such as Algol. The access and control links in
Algol arc called the static and dynamic lirnks respectively.

ne position of a variable declaratiocn in the progran text

determines the free variable bindinem frame.

Reproduced from
best available copy.
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2) dynamic scoping ~ as in LISP., Varlables are sc.oped
according to the control flow, and the most recently
defired variable of that name 1s assumed. The control

and access links are usually identical.

3) global scoping - as in FORTRAN, A standard common area
is used for free varlables.

What is wanted is a system which has sufficient variability
so that the user can specify the free variable access environment
independent of the control environment specification. The orig-
inal LISP A-list20 provided one way of doing 1t; this access
problem 1s discussed by l‘-’loses25 in connection witn the LISP
funarg problem. Our frame model allows complete flexibllity

of access specification.

The frame extension contains anonyrious temporary intermedlate
results of computation., At the time of a call (entry to a lowecr

module), the caller stores in his frame extension a continuatlon

poirt for the computation. Tor proper value checking, an expected

return value type may also be stored. Since the continuation
point is stored in the caller, the generalized return is

simply a pointer to the frame extenslon of the last active
frame. A point to note about a frame for an access .

module is that it has no pointer to any frame of a module

below it; if an appropriate value (as specifled by a return
type) is provided, continuation in that access module can

be achleved with only a pointer to the continued frame. No
information stored ocutside tnls frame 1is necessary. Decause
independent returns to a frame mav reauire distinct continuation
noints and tenmporary storage, a separate copy of the frame
extension nust be made for each independent successor. This is
the reason for separation of the frane extension and tne basic

frame,

14
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In this model for function (and block) activation, each
frame 1is generally released upon exit of that function. Only
1f a frame is still referenced is it retained, Non-chained
references to a frame (and to the environment structure it
heads) are always made through a special data type called an
environment descriptor. Only three primitive functions are
needed to manipulate environments in this model. The functions:
1) environ creates an environment descriptor (ed) for a spz=cified
frame; 2) setenv changes the contents of an exlsting ed tc
point to a specified frame; 3) enveval creates a new frame

wilth the access link specified by one ed and the control 1link
specified by another (perhaps different) ed; it executes a
specified computation in the context of that new frame.

We shall describe the environment structures for two
common control regimes. Coroutines are coordinated processes which
each maintain their own separate hierarchical control and access
environments, with some shared base. 1In Figure 1, two coroutines
are shown which share common access and control environment A.
Note that the frame extension of A has been copied so that returns
from B and Q may go to different continuation points. In Figure
2, coroutine Q is shown calling a function D with'external access
chain through B, but with control to return to Q. Coronutines
maintain a current environment descriptor for themselves in a
common data structure, and resume other coroutines through enveval,

Backtracking 1is a control rerime in which certain environ-
ments are saved Lefore a function return, and later restored if
needed. This cai be simply implemented in the model by saving
an environment descriptor for that frame. As an example of its
use, consider a function which returns one (selected) value from
a set of computed’values but can effectively return an alterna-
tive selection if the first selection was inadequate. That is,
the current process can fall back to a previously specified
fallset point and then redo the conputation with a new selection.
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A sequence of different selections can lead to a stack of

failset points, and successive fails can restart at each in turn.
Backtrackinr thus provides a way of doing a depth first-search
of a tree with return to previous branch points. Hewittl8, and
Golomb and Baumert13 have discussed the use of backtracking in

1

2
problem solving, ard Floyd © discusses 1t as an implementation

of non-deterministic prograrming.

An important point to note 1s that as we have described it,
backtracking restores the control and access environment chains,
but not necessarily values of shared bindings or forms of data
structurcs wnich previously existed at the backtrack point. In
many cases the undoilng of operations to completely restore tue
context of a computation is what l1s wanted; however, control
backtracking and automatic undoing of data modifications shoula
be separably programmable. As indicated in sections 2.2 and 2.4,
there are other important applications of undoing, and tines
when it is wortliwhile to maintain careful control of which oper-

ations are rcversed,

Both of the control recimes described above are important,
Lut more important is that these repgimes (and others) should be
programmable, Addition of an interrupt handling facility would
allow propgramming the equivalent of a full time-sharing system.
The framework used by Prenner27 for ECL seems adequate for this
purpose, A dlistinpguished process, called the control interpreter,

is defined with two uniaue properties: 1) timer interrupts pass
directly to it, and 2) there is a control primitive by wnhich
other processes can call for the execution of an arbitrary
procedure in the envirorment of the control interpreter and wait
for the rcsult. The control interpreter could be nade to act

9

as a scheduler, and could also implement the Dijkstra” semaphore

operators in a controlled environment.

V/ith the framework of the environment structures and a
control interprcter, it 1s straiphtforward to implement most

16
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other known control structures in addition to those already
shown, e.g., multiple parallel returns,ll fork/join structures,
etc., and to program others as needed. This model 1s developed
more fully 1in Bobrow and Wegbreit.7 In addition they describe
a stack implementation technique which is much more efficient
than the obvious heap allocation and garbage collection imple-
mentation (as used, for example, in PAL), For the usual hier-
archical structure, their algorithm acts identically to the

standard stack allocation scheme.
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3.2 Invocation of Procedures

A procedure P is usually defined with a list of N
argument names (X1, ..., ¥N) which have significance within
the body of the procedure. An explicit procedure call
P(Al, ...AN) provides N arguments to be passed to the procedure
and paired as values with the N names in the definition
(perhaps with data type checking and/or conversion). We
call this mode of argument passing binding by pairing.

An alternative binding scheme is often attractive when
working with complex symbolic structures. A procedure P is
defined with a structural pattern of applicability. A
single structural data unit is passed to the procedure and
this data is decomposed to match the pattern. A side effect
of certain of the pattern matches is to bind variables to
matching substructures extracted from the input data, thus

effecting what I call binding by extraction. Such pattern

matching sublanguages, illustrated by SNOBOL, QAL4, FLIP and
PLANNER among others, are a very important facility in some
list processing applications. All of those listed provide
basic pattern matching, facilities and more important, ways
of extending the set of primitive patterns by appropriately
associating a new one with a matching procedure.

As an alternative to explicit procedure call, patterns of
applicabllity can be used implicitly to invoke procedure eXxecu-
tion. This is the basic invoking mechanism used in PLANNEK. A
focus of control is a data structure; through careful indexing,
likely matching procedures are tried in some retrieval order.

A matching procedure is one whose applicability pattern matches
the focus data. When a match is found the body of the procedure
is executed. In this pattern directed invocation of procedures,
a choice can be made to use one, some, or all matching
procedures, with backtrack control possible to reenter the
invocation sequence after successful returns. Binuing 1s usually

dore by decomnosition in pattern directed invocaticn,
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The two procedure invocation methods described are immediate
in thelr effect. Deferred procedure calls on occurrence of a
specified condition are required. This monitoring function,11
which 1s a generalization of the ON CONDITION of PL/I, should
handle both external interrupt conditions, and changes to internal
data structures. When more than one monitoring procedure is
evoked by a particular environment change, a mediating priority
decision maker must be invoked and must be programmable by the
user,



4, Data System

The data system is the vehicle for handling all storage
management and reference. It must include primitives for
handling dynamically allocated data types, and named external
stores of both the random access (e.g. disc files) and data stream
(e.g. mag-tape, network connection) type. A rich variety of
basic data types is not sufficient; general data type ex-
tension mechanisms33 are required. Data input and output
requires syntax-directed processing. The duality of selection
of subparts of a data element and evaluation of a function can
be broadened to good effect.

4.1 Storage Management

There are basically two types of storage to be allocated
in user direct virtual memory. The first is storage auto-
matically allocated and released on access module entry and
exit. As shown in Bobrow and Wepbreit this can be done using
a single stack even if multiprocesses are allowed. The
second represents the storage independent of environment
structures, and is allocated out of the Qggg,to use the Algol
68 terminology.8 Since keeping track of storage still in use
can be a substantial unwanted burden for a programmer (i.e. an
item may be referenced from many different places in a data
structure), automatic storage reclamation is required.“ A
reguirement for garbapge collection is that the system must
have a well-defined, accessible base from which all storage
still accessible in the system can be reached. Easily used
interfaces with the allocation, pointer trace, mark, collect
and relocate subroutines must be provided so that user can add his
own data types, A data type extension facility which compiles and
inserts appropriate code from a data description should be
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provided. ECL provides a good example of how this might be
conveniently done.

4,2 Dynaﬁigally'Allocated Data Forms and Extensions

Any modern programming language must include a variety
of basic data types. Integers and reals are required
for numeric calculation, and extended precision numbers for
some applications. Basic data types also include Booleans
for relational values, character-strings for labels, arrays
for larger fixed units of structure, and pointers (perhaps
typed) to reference any data element. An important data
type in list processing 1s the symbol, (e.g. the literal atom
in LISP) which 1s a data item with a name, and assoclated
internal data. It provides a mechanism for run-time symbolic
interaction with a data base, 1.e. a link between an external
name and an internal data structure manipulable at run-time.

An 1important trend in use of list processing languages
1s the representation of information in procedural f‘orm.l8
Program-construction programs and program-modification programs
(e.g. the editor described earlier) will be a standard part of
the llbrary of users of these languages. These require that
procedures be a manipulable basic data type in the systen.

No list of data types can be complete, and therefore a data
type extension faecllity' is mandatory. Extension facilities
provlide several mechanisms for defining a new type; as a
homogeneous array of previously defined type with subltems sel-
ectable by index; as a heterogeneous structure with subitems
selectable by name; as pointers (references) to other data
types; and as a data type which 1s the union of previously
defined types, (i.e. 1is one of several types, to be determined
at runtime). A data type description must be used (say by

21
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compilation of appropriate code) for:

1.

Construction of objects of this type: Optimization
of storage efficiency can be obtained by intelligent
compilation of data procedures to pack components

in minimal space.

Selection of components from the item (for compound
objects)

Assignment to items of this type, and to components
(for compound objects)

Garbage collection, as describeu earlier,

Certaln operations are defined over each data type. In
some languages (e.g. SIMULA)19 the user can extend a data type
to a new subclass such that all operations on the original
type are still applicable in addition to any new operations;
e.s. a LISP=-1ike cell could be extended to have n-additional
data words, but still allow all the usual list operations

such as car, cdr, cons. Procedures representeu as lists are

another important data subclass because all list manipulation

operations arc applicable for modifying these structures.

All properties of a specific data tvpe should be under
possible control by the programmer by allowing him a simple
way to interpose his own procedure for any of the standard
assumed procedures associated with the object. This may some-

times be costly, requiring runtime interpretation instead of
open compilea coue,

4.3 External Data Forms and Syntax-Directed Data I/0

List processing systems work within operatins systems
which provide permanent storage facilities, and methods

for communicating with the user. Care must be taken

to ensure that these facilities are easily accessible and

e

e e
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manipulable from within the list processing system. We
distinguish three basic categories of external data form:
random access stores, séquential data streams, and graphical
(two dimensional) I/0.

Random access stores should be treatable as extenslons
of the main memory space. The only differences are that an
additional argument (the store-name) must be somehow provided
for the access procedures; and the costs of operations to
an external store may be different than to malin virtual memory.

Sequential data streams are one dimensional and must use
implicit grammatical relationships to indicate structural
links. In order to process an input stream, a language needs
more than simple format statements. Letting the user program
his own input routine with primitives, while necessary, does
not facilitate enough the construction of complex data bases.
A sublanguage designed for the task 1s necessary, and this
is where one car extend the use of the general parsing routine
usually associated only with program input. The parsing
tables can be modified to accept the external data form, and
the code generators replaced by data constructors.

Constructing data streams from structured data 1s also
necessary. If the data languame input 1s defined by an unam-
biguous context free grammar, a generator for the language
(from the internal data) should be able to be computed from
the parsing tables. Even if they must be defined separately,
facilities for syntax-directed data input and output are
important for future 1list processing systems.

Graphical input-output has an important subcase which
appears in a number of systems. This 1s the generation of
formatted listings of programs. Printing programs in a
"pretty" form which reflects thelr internal structure is nice
for file oriented systems, and imperative where programs are
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modified or constructed within the system, and are only avail-
able in the internal representation.

General graphic output languages have been developed,
and such facilities will be useful in problem domains where
the two dimensions of the picture (perhaps with projections
from higher dimensions) aid in understanding complex data
structures. Graphiec input is considerably less developed,
and requires further work in'parsing of 2 dimensional patterng'
to be really useful. However, utilization of such a facllity
is Important when the problem domain has a natural expression
in the form of line drawings (e.g. architectural design) or
where spatial position has meaning (e.g. symbolic mathematical
manipulation).

4.4 Duality of Function Evaluation and Data Selection

Selection of a data item from a structure requires
specification of the structure and the item name or index.
For a multidimensional structure, several indices may be
provided. From these inputs a location of the required item
is usually determined, snd the data extracted. Alternatively,
one can think of selection as looking up a datum stored
associated with an n-tuple of names.

In evaluating a function we usually think of performing
a sequence of computations based on the inputs to obtain a
value. Obviously evaluation and selection are Just two ends
of a sincle spectrum, reflecting a trade-off in space and
speed. Both ends of the spectrum should be expanded toward the
middle. Selection of some data items should be allowed to invoke
a uscr defined function, both generic for the data tyne and
specific for an instance. Such fdnctional indirection would

24
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allow, for instance, automatic extraction of current inform-
ation functionally dependent on other items, or propagating
information on storage of new da%a.

At the other end of the spectrum, the concept of "memo
functions" introduced by Michie%zallows function evaluation
to degenerate to data retrieval in common cases. POP-210
doublets, in which an "updater" function (which stores values
for a specified set of arguments), is paired with an ordinary
Valued function, allows the usual assignment and selection oper-
ations for data to apply to functions. An early use of a similar
technique was made in Samuels31 rote learning of the evaluation
of checker positions; 1n some cases he could look up a
previously computed look-ahead value of a position. This
enabled him to extend the effective depth of his look~-ahead
significantly. 1In general, noting the duality of function
evaluation and data retrieval allows the flexibility of
space-time tradeoffs so necessary in solving complex problems
in 1list processing systems. Gedanken 1s based in part on this
principle of duality of function evaluation and data selection.

4,5 Data Access Methods

In addition to data extraction, it is important in many
domains to be able to retrieve data items by content. Given
a pattern, all data items matching that pattern should be
obtainable from a data base. Basic indexing and sorting
facilities are necessary to implement such retrieval packages,
Associative links from one, or comblnations of key items,
implemented by hash addressing techniques will allow access
for certain classes of data; this is done in PLANNER, among
others. QAU sorts all input expressions through a discrimination
tree, with equivalence over different variable names. A pattern
there defines a set of nodes in the tree below which are all

matching data items; tliese leaves of the tree are the retrieval
nodes,
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Not all data in the data base need have the same scope
of applicability. Assoclated with each plece of data
(perhaps implicitly) needs to be context information which
defines the scope of its validity. If the contexts are tree
structured, several incompatible data bases with different
amounts of shared structure can exist (e.g. QAM3°).

Complex network structures with many explicit links are
common in symbolic processing applications, especially those
concerned with natural language processing. There are a
number of cases in which additional information is required
about a particular data structure node, but an explicit link
from the data item to thils information 1s forbidden - e.g.

a large read-only data store, and temporary tags marking recent
processing on the node. Another example is associating a
property SIMPLIFIED with a particular substructure of a symbolic
expression without interfering with 1ts mathematical form. A
technique recently added to BBN-LISP allows such implicit links.
It utilizes association arrays; a location in such an array 1is
computed on the basis of the internal address of the data item.
In this hash-1link location 1s stored the original address and
the associated information. Care must be taken to disambiguate
collisions 1n this hash array, and to provide appropriate mech-
anisms to garbage collect the implicit link when the data item
is no longer rcferenced.

26
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5. Conclusion

Programs to solve complex problems often evolve over a
long time period. A good environment will allow sets of users
to build up a collection of consistent tools which aid in

solving thelr problems. Built on a core system which is rela-
tively easily transferable to new hardware, it can provide a ~

machine independent base-for-a-w1d¢ raﬁgg of sctivities,

A list processing system can't be all things to all
people all the time. However, with a flexible set of features
which span the problem space, extension facilities, a large
library of useful routines, and good documentation, a system
should help a programmer to stand on the shoulders of his

predecessors, not his toes.
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