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Abstract 

List processing systems should be designed to facilitate 
production of large programs to manipulate large complex 
symbolic data stores. This paper presents an overview of a 
number of system features which the author feels are Important 
to Improve the productivity of programmers working in such 
domains.  A systems view is taken, rather than focusing Just 
on language features, since algorithms not only must be coded 
in a language form, but debugged, modified, made efficient and 
run on data. Because of this general framework, the requirements 
specified are applicable to the design of advanced progrämmihg 
systems for a wide range of applications. 

Three aspects of programming systems are highlighted: 
good interactive facilities, programmable control structures, 
and sophisticated data communication mechanisms.  Interactive 
features are described to facilitate program composition, 
entry, testing debugging, editing, optimization and packaging. 
Implementation of a generalized environment structure model 
specified would allow programming of various control regimes 
including multi-processes, coroutines and backtracking. 
Alternative methods of procedure invocation required include 
invocation by pattern and by monitoring condition.  The need 
for extended data forms, storage management and extensibility 
are stressed, as Is the duality of data retrieval ana function 
evaluation.  Syntax directed input and output of data would 
facilitate use of complex data stores. 



Report No. 2339 Bolt Beranek and Newman Inc, 

TABLE OP CONTENTS 

page 

1. Introduction   1 

2. Interactive Facilities   i| 

2.1 Composition   i| 

2.2 Entry and Editing   5 

2. 3 Debugging   7 

2.4 Testing and Repetition   9 

2.5 Optimization and Packaging   10 

3. Program Semantics   12 

3.1 A Data Structure Model of Control ... 12 

3.2 Invocation of Procedures  18 

4. Data System  20 

4.1 Storage Management   20 

4.2 Dynamically Allocated Data Forms and 

Extensions   21 

4.3 External Data Forms and Syntax- 

Directed Data I/O  22 

4.4 Duality of Function Evaluation and 

Data Selection   24 

4.5 Data Access Methods ,'i  25 

5. Conclusion  2? 

6. Acknowledgements   27 

7. References   28 



Report No. 2339 Bolt Beranek and Newman Inc. 

RequiremeKts for Advanced Programmlne 

Systems for List Processing 

Daniel G. Bobrow* 
Bolt Beranek and Newman Inc. 

Cambridge, Massachusetts 02138 

1.  Introduction 

Programming systems are (or should be) vehicles for 

communication of an algorithm from a programmer to a computer 

in a manner which matches the needs of the programmer for 

this problem.  As so aptly stated by Perils in his 196^1 Turing 

lecture:2" 

"Programmers should never be satisfied with 
languages which permit them to program everything, 
but to program nothing of interest easily." 

List processing languages are designed to make it easier 

to program algorithms in domains requiring manipulation of 

complex symbolic data structures.  Examples of such problem 

domains are English language understanding (e.g. V.'lnograd, 40 
3 

Bobrow); program writing programs (e.g. Green); and programming 

system implemeritation (e.g. Wegbreit).  This paper is a 

collection of my prejudices about features wnich should be 

included in a orogramming system to facilitate program construction 

in these domains.  Because the general framework used is 

common to most difficult programming tasks, the requirements 

specified arc applicable to the design of advanced programming 

systems for a wide range of applications. 

Vhree aspects of programming systems are highlighted: 

good interactive facilities, programmable complex environment 

structures, and sophisticated data manipulation and communication 

Reproduced from 
best available copy. 
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facilities.  We stress the need for every system mechanism to 

be accessible to the programmer, following another aphorism 

attributed to Perils: "One man's constant is another man's 

variable." 

No existing system contains all of the features described 

below, though almost all of the ideas are implemented in some 

form in some current system.  In those cases where it has been 

appropriate, I have described Implementations as exemplars of 

requirements.  The systems most influential in my thinking have 

been LISP l.[3, on which I cut my programming teeth, BbN-LISP-5»-5 

for its interactive features and environment representation, 

PLANNER^and MICRO-PLANNER)3?,or their way of invoking procedures, 

and backtrack control structure, FLIP^dnd SNOBOL -* for their 
or 

pattern matching facilities, and KCL-5 for its data type handline 

and generalized control structure primitives.  These are typical, 

not necessarily original sources of these ideas; since this is 

not a survey paper, (cf. 6, 2'))  other references will be given only 

when they contain details which further explicate the ideas 

explored here. 

I have emphasized the idea of a programming system rather 

than language since the programmer does not just express his 

algorithm, but must enter his program, test it, find bugs, 

modify it, etc.  Because of the difficulty of this process for 

large complex programs, on-line interaction is mandatory. 

Natural modes of expressing desired actions must be available 

both in the algorithmic programming language and in the 

(somewhat different) context of direct user interaction with 

the system.  Eventually, after getting his algorithm debugged 

for the test problems chosen, the programmer must often make 

an equivalent program which is more efficient over his total 

problem domain.  To make his program useful to others, he 

must be able to isolate, specify ana document its interactions 

within svstems in which it can be embedded. 
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Because I feel future list processing systems must aid 

the programmer in his total task, I start by describing in 

section 2 some interactive features which facilitate construction 

of difficult programs.  These are basically independent of 

programming language form, and involve the use of an intelligent 

agent as an intermediary between programmer and interpreter. 

In section 3 I discuss some necessary semantics of the pro- 

gramming language.  This includes an (implementable) model for 

environmental (control and variable binding) structure, and 

emphasizes the rich variety of (necessary) control structures 

this makes possible.  These include backtracking, coprocesses, 

and capabilities for programming within the language a general 

resource-sharing operating system.  Section ^ describes data 

forms, a set of storage and access methods, and a general concept 

of syntax directed I/O for data. 
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2.  Interactive Facilities 

In the construction and debugging of complex programs, 

immediate interaction in an on-line fashion is mandatory. The 

usual cycle of program development has the following components; 

0) Define the problem 

1) Composition: Write algorithm in the chosen 
programming language 

2) Entry: Enter machine readable form into computer 

3) Testing:  Run test cases 
l\)     Debugging:  Explore reasons for 

a) non-concurrence of result with expectations 
("logic" bug) - often feeds back to 0 

b) unanticipated type or definition error 
("structural" bug) 

5) Editing:  Revise program 

6) Repetition:  Cycle through selected portions 0-5 

7) Optimization: Make a given version of a program 
more efficient 

8) Packaging: Making a set of routines available for 
use by other people and programs 

I shall indicate the facilities I believe most helpful 

for each of these components. 

2.1 Composition 

Programming systems become problem oriented systems when 

the unit forms available to the user closely match the unitary 

concepts in his problem domain.  Addition of new procedures 

are not sufficient to provide appropriate language forms.  Pre- 

processors are generally poor because debugging must be done 

in an interior language far removed from the external problem 

statement.  The problem oriented language should be an extension 

of a powerful core language.  For each problem domain the 
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objects, unit operations, relations and control behavior 

should be directly modelable in the base language augmented 

with new data types, new operators (or extensions of the old 

ones), new syntactic patterns, and new control structures, 

respectively.  Control and data structure extension facilities 

will be discussed in sections 3 and 4. 

Syntactic extension should be achievable by construction 

and modification of appropriate data forms.  Durin.p; the parsing 

of input, the parser should be able to Invoke any defined pro- 

cedure in the system.  For example, reading a particular statement 

should be able to change the grammar at that time, for some 

defined scope.  This allows somewhat Incompatible sublanguages 

to exist within a single encompassing language - e.g. "+" may 

be used for a format control character in a format statement and 

a concatenation operator within a string matching and reconstruct ion 

statement, although in arithmetic assignment it may maintain its 

usual meaning.  In addition to new forms, the language must allow 

extensions of old forms.  Thus the parser must be able to use 

context and type Information associated with variables and forms 

to allow generation of appropriate internal form.  The parser 

should also be callable as a subroutine; we discuss an important 

application for the parser subroutine in section 4, for syntax 

directed data input-output. 

I Reproduced 'rom 

2.2 Entry and Editing !>" availab'e "^ 

The internal form of programs generated by the parser 

should be list structures with unique internal pointers for 

each unique external symbol  (e.g. as in LISP and ECL).  This 

has several advantages.  First, it can be directly executed 

by the interpreter without reparsing each tine a line is 

encountered, as for example it would many times in executing 

a loop.  Second, a list structure is a convenient input for a 

compiler, which can be considerably simplified when working on 
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this preparsed input. Third, it is a good data structure on 

which a programmable syntax-directed editor can work. 

A good interactive editor is an important keystone in 

the rapid development of complex programs.  The edit program 

in BBN-LISP serves as a model for the breadth of scope I 

believe is necessary. This editor is oriented toward structures, 

and does not allow the user to put in non-well-formed structures 

accidently, although partial structures can be added. It 

provides a large variety of commands for moving around the 

structure, both incrementally and by search. Searches can be 

specified by general structural patterns, and/or by character 

oriented specifications of lexical units. Various forms of 

on-line output allow the user to track easily where he is in 

the structure, even when interacting through a slow output 

device such as a teletype.  Structural units can be deleted. 

Inserted and moved as units.  Substructures can be embedded in 

and extracted from larger units.  Iteration of operation 

sequences, and conditional operations are all easily expressible. 

New editing operations are definable as macros in terms of older 

ones. 

However, a major reason for the comfort and smoothness of 

operation in the BBN-LISP editor is the confidence the user 

can feel in making tentative changes in hin  program structure. 

This is achieved because the editor saves sufficient information 

about any changes made by an edit operation on a particular 

function that upon command it can UNDO that change.  The feeling 

is very different than that achieved by saving a copy of the 

function definition before editing because individual changes 

can be undone selectively.  Even after leaving the editor 

(which is a function called from the LISP executive) and per- 

forming other computations, the user can later reenter the 

editor to work on that function and UNDO changes made earlier 

which were unsatisfactory. 
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2.3 Dubugglng 

It is an axiom that no real program is ever written 

without any bugs.  The bugs that occur on running a test 

case are of two broad kinds - "logic" bugs and "form" bugs. 

In the first, the programmer is trying to follow the logic 

of his program through a test case which is returning a 

wrong result.  He must be able to trace parameters and values 

of individual functions and specific value changes within 

functions.  This can be done by declaring specific function calls 

and variable bindings "sensitive"; calls to sensitive functions, 

and modification of sensitive variable values are monitored, and 

processing is suspended whenever an associated programmer- 

specified predicate is true.  Another useful monitored 

condition in the system provides an interrupt (without con- 

text loss) at any function call when the programmer has 

pressed a special console key. 

In the "break" (suspended state), the programmer must 

be able to examine the environment in which the condition 

occurred.  A selective "backtrace" of the call structure 

(the sequence of function calls which lead to this point) and 

associated variable bindings must be available.  In accord with 

our general philosophy of mechanism accessibility, this should 

not just be a special system print facility; any process should 

be able to obtain the symbolic name of the Nth preceding function, 

and the names and values of any variables bound In thai environ- 

ment.  This information should be available for both regular 

compiled code as well as Interpreted code.  rr ■: ;  
I Reproduced from 
I best available copy, 

V/hen a problem is Isolated, an appropriate change In a 

function must be made.  The user should be able to call the 

editor while still in the break, have his changes take 

immediate effect and test a subcase without losing his context. 
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By having the editor work directly on the list structure 

processed by the Interpreter, effects of changes are propagated 

immediately. For some errors, it is Important (to allow 

continuation) for a user to have access to program substructures 

stored on the stack. 

The second class, "structural" errors, cause interruption 

without programmer intervention.  The^e include internal error 

conditions such as fixed or floating overflow, value-operator 

incongruence, or end-of-file. When an error is encountered the 

system should act as if the user had explicitly called a specific 

error handling routine, if the user had enabled such a call 

(e.g. say by defining an appropriately named function).  If not, 

the system should call the break routine, described above, which 

preserves the state of the computation and requests user inter- 

action from the console.  Asynchronous external interrupts, 

e.g. a clock time-out, can be treated similarly through specially 

enabled Interrupt handlers and the break package. 

There are a class of errors in programs which can often 

be fixed by a programmer knowledgeable about the system but 

with no knowledge of the particular program.  Automating such 

error correction, as Teltelman35 has done in a number of cases 

for BBN-LISP, greatly facilitates construction of complex 

programs because it allows the programmer to remain thinking 

about his program operation at a relatively high level without 

having to descend into manipulation of details.  Typical 

errors corrected by the BBN-LISP DWIM (Do What I Mean) facility 

include misspelled variable and function names, and syntax 

errors due to mistyping and mismatched parentheses. 

Machine aided debugging and verification of program 

correctness will be an important feature to be added to list 

processing systems.  Statements of a program's "intentions" 

and expected conditions at a point will become part of the 
17 

program. The simplest step will run these intention statements 



Report No. 2339 Bolt Beranek and Newman Inc. 

to verify them on test cases supplied by the user.  A next 

step will be for key test cases to be generated from the 

Intention statements.  Finally, proofs of the correctness of 

the program, and perhaps the program itself will be generated 

from the intention statements. For real problems however, I 

think that only the first two steps will take place in the 

next five years. 

2.4 Testing and Repetition 

A user at a console thinks of his sequence of inputs as 

related in terms of the program he is trying to construct and 

debug. However, most systems treat each interchange between 

the man and machine as an isolated event, and store no informa- 

tion from the interaction except possibly as a side effect of 

the computation reauested.  Facilities in BBN-LISP, which we 

describe briefly here, illustrate the power of having the user 

invoke system procedures through an (active) intermediary agent. 

For each input to the BBN-LISP executive, the agent saves 

a copy of the input, the resulting value and some other inform- 

atlon. The user can later retrieve this input by an inter- 

action sequence number, or through search on contents of the 

inputs or values. He may do this, for example, to redo a test 

case after making some program changes.  Or, he may have typed 

in a long expression with a slight error, and he wants to fix 

and reevaluate the input.  Fixing is done by calling the edit 

facility described earlier.  A set of inputs may be grouped to 

be done and redone as a unit.  Simultaneous substitutions for 

a number of lexical units and/or character strings in a single 

command allow after-the-fact parameterization and repetition 

of previous input commands.  Surveillance of the input by the 

agent provides a focusing mechanism for highlighting approp- 

riate candidates for comparison with misspelled or mistyped units 

to be corrected by DWIM. 
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In testing programs which work on complex data 

structures, programs which function Incorrectly may make 

changes In global data structure which are hard for the 

user to explicitly reverse.  The BBN-LISP executive allows 

execution of generalized assignment procedures in a test mode 

where enough additional information is saved with an input event 

to allow the resulting structural changes to be undone.  As with 

the undoing in the editor, this allows the user to try programs 

which might modify data structures in unexpected and not easily 

reversible ways, without preparing beforehand.  Being forced to 

think about possible destructive consequences could distract the 

programmer from the main task at hand. 

Another feature which facilitates experimentation in 

program interfacing is indirect procedure calls through a 

symbol table or transfer vector. This allows temporary use 

of "advice" to a function, that is a program fragment inserted 

between a caller and a callee; it is useful for special case 

handling, information gathering, and insertion of measuring 

probes without requiring changes in the procedure body.  This 

facility also allows implementation of trace and break features 

described earlier. 

2.5 Optimization and Packaging: 

Once a program has been written and successfully tested 

on a few samples of data, one often desires a version of 

the program which will be more efficient in some respects, 

e.g. time per example, temporary storage space utilized etc. 

Transformation of the form of the program to one more suitable 

for running by the computer hardware is one way of achieving 

some efficiencies.  However, since programs are only relatively 

stable, compiled and Interpreted code should be freely inter- 

mlxable, both in terms of running and debugging.  Compiling 

consists of making best use of information which is invariant 

with respect to the input data by performihg all allowable 

computations at compile time. Only decisions which depend upon 
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the input data must be postponed until runtime.  Compile-time 

activities can include transforming certain recursively written 

programs into equivalent iterative processes, data type and 

subscript bounds checking, data packing and extraction decisions, 

and evaluation of expressions by the compilerr" Such activities 

need not be limited only to the compiler.  Program transformation 

under special fixed conditions is useful in other cases, e.g. 

incremental computation or partial evaluation  in which an n 

argument function is transformed to an n-k argument function 

by supplying k values. 

The compiler should be able to make use of program 

behavior information provided by the user e.g. working set 

boundaries, and proportional choice of program branches.  In 

addition, facilities must be available for the user to gather 

appropriate data about resource use of particular subroutines. 

This allows him to Isolate those portions of his larger program 

which are critical to efficient operation of the program as 

a whole. 

Packaging a set of programs for use by other people 

requires both highlighting and hiding information.  Internal 

structure (e.g. local variable and function names) should 

be hidden so that, for example, use of a package doesn't 

surprisingly preempt the naive user's name-space.  This 

packaging should be obtainable after the fact, so that programs 

can be built Incrementally, as is most Important for complex 

tasks.  Preplanning the package boundaries beforehand should 

be unnecessary e.g. as in the BBN-LISP block-compiler.  To use 

the block-compiler, the user specifies a p;roup of functions 

previously debugged which are to be bound together.  Names which 

are to be used external to the block are specified, and all 

others are surpressed In this special form of compilation. 

Information to be highlighted in packaging includes Interface 

and operating specifications.  Easy association of commentary 

with program statements Is critical for adaptation of packages 

for new use.  Facilities which aid in documentation of programs 

will become more and more Important, e.g. automatic flow-charters, 

program formatters and syntax directed documentation (c.f. Mills). 

11 
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3.  Program Semantics 

The virtual machine a user sees is de;ermined by the 

primitive procedures he can call, the techniques allowable 

for invoking procedures and binding variables, and the 

richness of control structures available to express sequences 

of processing and modes of sharing. We will not consider 

here data manipulation primitives; we will assume a rich 

enough set to deal with the forms described in the next 

section, and also appropriate iteration operators.  Pattern 

decomposition and structure building from templates are 

assumed as well as standard imperative statements and ex- 

pressions.  Because flexible control and access structures are 

so vital, and arc usually Ignored, we describe in some detail a 
on 

data oriented model for control (in the spirit of Wegner  ). 

We specify three primitive functions for manipulating such environ- 

mental structures which allow flexible programming of control 

regimes, e.g. coroutine calls and backtrackinn;.  Finally, three 

distinct methods of procedure Invocation are described, tne usual 

explicit call, call by pattern, and call by monitoring condition; 

variable blndlnp; by pairing and binding by extraction are also 

discussed, 

3.1 A Data Structure Model of Control 

In our control structure model, the primitive unit of 

program is an accesr module,  e.g. a function or block, in 

which new nomenclature is Introduced. Bindings, name-value 

pairs, can only be introduced at entry to an access module, 

i.e. as function variables or as local parameters defined 

at the head of a block. New nodules are activated by calling 

or entering, and normally deactivated by exiting.  A particular 

activation can be continued by returning to it with a value (which 

may be ignored). 

12 
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In a single process environment, control resides in an 

activation of a particular module.  In conventional programming 

languages, such a module activation has a unique caller, „nlch 

in turn has a unique caller, etc;  that is, the activation 

(calling) sequence is strictly hierarchical.  We call this linear 

chain of activations a hierarchy in contrast to a dendrarchy, a 

more inclusive general control tree.  We note that in a hier- 

archy once an activation has been exited, It disappears and 

can not be continued again.  Reentering the module causes a new 

activation of the module to be created.  We create a dendrarchy, 

a tree of activations, by providing a way to preserve an activa- 

tion which has been exited, or to reference an activation from 

more than one successor.  Each activation will have a unique 

caller, but may be reachable from any number of other modules. 

To make our model clear, we consider the data structure 

required to implement it.  When an access nodule Is entered, 

storage is allocated for use within the module.  The allocated 

storage we call a frame; a frame contains two major components: 
a baslc fr'afne and a frame extension.  The basic frame is a fixed 

block wnlch contains the new named Items which are defined when 

the access moaule is entered.  In addition, it contains a, control 

^-ink and an access link. The control link points to the frame of 

the unique calling module.  The access link and bindings are used 

to determine the value of any variable used In the module.  The 

formal'parameters anu local variables of a module nay be accensea 

directly through the bindings component of the module frame. If 

a variable Is not a formal parameter or local variable, it is 

said to be free.  The value of a free variable is determined fron 

an environment specified by the access link. Three common alter- 

natives used for free variables are: 

^  stat3-c (or1 lexical) scoping - as in a block structured 

language such as Algol.  The access and control links in 

Algol are called the static and dynamic links respectively. 

Trie position of a variable declaration in the program text 

determines the free variable binding frame. 

1^ 

Reproduced from 
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2) dynamic scoping - as In LISP.  Variables are sloped 

according to the control flow, and the most recently 

defined variable of that name Is assumed.  The control 

and access links are usually Identical. 

3) global scoping - as in FORTRAN. A standard common area 

is used for free variables. 

What is wanted is a system which has sufficient variability 

so that the user can specify the free variable access environment 

independent of the control environment specification.  The orlg- 
20 inal LISP A-list  provided one way of doing it; this access 

25 problem is discussed by Moses  in connection with the LISP 

funarg problem.  Our frame model allows complete flexibility 

of access specification. 

The frame extension contains anonymous temporary intermediate 

results of computation.  At the time of a call (entry to a lower 

module), the caller stores in his frame extension a continuation 

polr.t for the computation.  For proper value checking, an expected 

return value type may also be stored.  Since the continuation 

point is stored in the caller, the generalized return is 

simply a pointer to the frame extension of the last active 

frame.  A point to note about a frame for an access 

module is that it has no pointer to any frame of a module 

below it; if an appropriate value (as specified by a return 

type) is provided, continuation in that access module can 

be achieved with only a pointer to the continued frame.  No 

information stored outside this frame is necessary.  Because 

independent returns to a frame nay renuire distinct continuation 

points and temporary storage, a separate copy of 'ehe frame 

extension must be made for each indeoendent successor.  This is 

the reason for separation of the frame extension and tiic basic 

frame. 

14 



In this model for function (and block) activation, each 

frame is generally released upon exit of that function.  Only 

if a frame is still referenced is it retained. Non-chained 

references to a frame (and to the environment structure it 

heads) are always made through a special data type called an 

environment descriptor.  Only three primitive functions are 

needed to manipulate environments in this model. The functions: 

1) environ creates an environment descriptor (ed) for a specified 

frame;  2) setenv changes the contents of an existing e_d tc 

point to a specified frame;  3) enveval creates a new frame 

with the access link specified by one ed and the control llnk 

specifled by another (perhaps different)ed; It executes a 

specified computation in the context of that new frame. 

We shall describe the environment structures for two 

common control regimes. Coroutines are coordinated processes which 

each maintain their own separate hierarchical control and access 

environments, with some shared base.  In Figure 1, two coroutines 

are shown which share common access and control environment A. 

Note that the frame extension of A has been copied so that returns 

from B and Q may go to different continuation points.  In Figure 

2, coroutine Q is shown calling a function D with external access 

chain through B, but with control to return to Q.  Coroutines 

maintain a current environment descriptor for themselves In a 

common data structure, and resume other coroutines through enveval. 

Backtracking is a control regime in which certain environ- 

ments are saved before a function return, and later restored if 

needed.  This can be simply implemented in the model by saving 

an environment descriptor for that frame.  As an example of its 

use, consider a function which returns one (selected) value from 

a set of computed values but can effectively return an alterna- 

tive selection if the first selection was Inadequate.  That is, 

the current process can fall back to a previously specified 
fallset Polnt and then redo the computation with a new selection. 
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A sequence of different selections can lead to a stack of 

fallset points, and successive falls can restart at each In turn. 

Backtracking thus provides a way of dolrif; a depth first-search 

of a tree with return to previous branch points.  Hewitt  , and 
1^ Golomb and Baumert ~ have discussed the use of backtracking In 

12 
problem solving, and Floyd  discusses It as an implementation 

of non-determlnlstlc programming. 

An Important point to note Is that as we have described It, 

backtracking restores the control and access environment chains, 

but not necessarily values of shared bindings or forms of data 

structures which previously existed at the backtrack point.  In 

many cases the undoing of operations to completely restore tne 

context of a computation Is what is wanted; however, control 

backtracking and automatic undoing of data modifications shoulü 

be separably programmable.  As indicated in sections 2.2 anu 2.4, 

there are other Important applications of undoing, and times 

when it Is worthwhile to maintain careful control of which oper- 

ations are reversed. 

Both of the control regimes described above are important, 

Lut more important is that these regimes (and others) should be 

programmable.  Addition of an Interrupt handling facility would 

allow programming the equivalent of a full time-sharing system. 
27 The framework used by Prenner  for ECL seems adequate for this 

purpose.  A distinguished process, called the control interpreter, 

is defined with two unlaue properties:  1) timer Interrupts pass 

directly to it, and 2)  there is a control primitive by which 

other processes can call for the execution of an arbitrary 

procedure In the environment of the control Interpreter and wait 

for the result.  The control Interpreter could be made to act 
q 

as a scheduler, and could also Implement the Dljkstra semaphore 

operators in a controlled environment. 

With the framework of the environment structures and a 

control interpreter. It is straightforward to Implement most 

16 
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other known control structures in addition to those already 

shown, e.g., multiple parallel returns,  fork/Join structures, 

etc., and to program others as needed.  This model is developed 
7 

more fully in Bobrow and Wegbreit.  In addition they describe 

a stack implementation technique which is much more efficient 

than the obvious heap allocation and garbage collection imple- 

mentation (as used, for example, in PAL),,  For the usual hier- 

archical structure, their algorithm acts identically to the 

standard stack allocation scheme. 



3.2 Invocation of Procedures 

A procedure P Is usually defined with a list of N 

argument names (XI, ..., 3fN) which have significance within 

the body of the procedure. An explicit procedure call 

P(A1, ...AN) provides N arguments to be passed to the procedure 

and paired as values with the N names In the definition 

(perhaps with data type checking and/or conversion). We 

call this mode of argument passing binding by pairing. 

An alternative binding scheme is often attractive when 

working with complex symbolic structures.  A procedure P is 

defined with a structural pattern of applicability. A 

single structural data unit is passed to the procedure and 

this data is decomposed to match the pattern.  A side effect 

of certain of the pattern matches Is to bind variables to 

matching substructures extracted from the input data, thus 

effecting what I call binding by extraction.  Such pattern 

matching sublanguages. Illustrated by SNOBOL, QA^I, FLIP and 

PLANNER among others, are a very important facility in some 

list processing applications.  All of those listed provide 

basic pattern matching facilities and more Important, ways 

of extending the set of primitive patterns by appropriately 

associating a new one with a matching procedure. 

As an alternative to explicit procedure call, patterns of 

applicability can be used implicitly to Invoke procedure execu- 

tion. This is the basic Invoking mechanism used In PLANNER.  A 

focus of control is a data structure; through'careful indexing, 

likely matching procedures are tried in some retrieval order. 

A matching procedure is one whose applicability pattern matches 

the focus data.  When a match is found the body of the procedure 

is executed.  In this pattern directed invocation of procedures, 

a choice can be made to use one, some, or all matching 

procedures, with backtrack control possible to reenter the 

invocation sequence after successful returns. BinuiriK is usually 

done Dy docoranosition in pattern directed invocation. 
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The two procedure Invocation methods described are Immediate 

In their effect.  Deferred procedure calls on occurrence of a 

specified condition are required. This monitoring function,11 

which is a generalization of the ON GONDITION of PL/I, should 

handle both external interrupt conditions, and changes to internal 

data structures. When more than one monitoring procedure is 

evoked by a particular environment change, a mediating priority 

decision maker must be invoked and must be programmable by the 
user. 



^. Data System 

The data system is the vehicle for handling all storage 

management and reference.  It must include primitives for 

handling dynamically allocated data types, and named external 

stores of both the random access (e.g. disc files) and data stream 

(e.g. mag-tape, network connection) type.  A rich variety of 

basic data types is not sufficient; general data type ex- 

tension mechanisms3^ are required. Data input and output 

requires syntax-directed processing.  The duality of selection 

of subparts of a data element and evaluation of a function can 

be broadened to good effect. 

4.1 Storage Management 

There are basically two types of storage to be allocated 

in user direct virtual memory. The first is storage auto- 

matically allocated and released on access module entry and 

exit.  As shown in Dobrow and Wegbreit this can be done using 

a single stack even if multiprocesses are allowed.  The 

second represents the storage independent of environment 

structures, and is allocated out of the heap?to use the Algol 

68 terminology.  Since keeping track of storage still in Übe 

can be a substantial unwanted burden for a programmer (i.e. an 

item may be referenced from many different places in a data 

structure), automatic storage reclamation is required.^ A 

requirement for garbage collection is that the system must 

have a well-defined, accessible base from which all storage 

still accessible in the system can be reached.  Easily used 

Interfaces with the allocation, pointer trace, mark, collect 

and relocate subroutines must be provided so that user can add his 

own data types, A data type extension facility which compiles and 

Inserts appropriate code from a data description should be 
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provided. ECL provides a good example of how this might be 

conveniently done. 

^.2 Dynamically Allocated Data Forms and Extensions 

Any modern programming language must include a variety 

of basic data types.  Integers and reals are required 

for numeric calculation, and extended precision numbers for 

some applications.  Basic data types also include Booleans 

for relational values, character-strings for labels, arrays 

for larger fixed units of structure, and pointers (perhaps 

typed) to reference any data element. An important data 

type in list processing is the symbol, (e.g. the literal atom 

in LISP) which is a data item with a name, and associated 

internal data.  It provides a mechanism for run-time symbolic 

interaction with a data base, i.e. a link between an external 

name and an internal data structure manipulable at run-time. 

An important trend in use of list processing languages 

is the representation of information in procedural form.1^ 

Program-construction programs and program-modification programs 

(e.g. the editor described earlier) will be a standard part of 

the library of users of these languages.  Those require that 

procedures be a manipulable basic data type in the system. 

No list of data types can be complete, and therefore a data 

type extension facility^ is mandatory.  Extension facilities 

provide several mechanisms for defining a new type; as a 

homogeneous array of previously defined type with subitems sel- 

ectable by index; as a heterogeneous structure with subitems 

selectable by name; as pointers (references) to other data 

types; and as a data type which is the union of previously 

defined types, (i.e. is one of several types, to be determined 

at runtime).  A data type description must be used (say by 

<il 
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compilation of appropriate code) for: 

1. Construction of objects of this type: Optimization 
of storage efficiency can be obtained by intelligent 
compilation of data procedures to pack components 
in minimal space. 

2. Selection of components from the item (for compound 
objects) 

3. Assignment to items of this type, and to components 
(for compound objects) 

4. Garbage collection, as describeu earlier. 

Certain operations are defined over each data type.  In 

some languages (e.g. SIMULA)  the user can extend a data type 

to a new subclass such that all operations on the original 

type are still applicable in addition to any new operations; 

e.g. a LISP-like cell could be extended to have n-additional 

data words, but still allow all the usual list operations 

such as car, cdr, cons. Procedures representeu as lists are 

another Important data subclass because all list manipulation 

operations are applicable for modifying these structures. 

All properties of a specific data type should be under 

possible control by the programmer by allowing him a simple 

way to interpose his own procedure for any of the standard 

assumed procedures associated with the object. This may some- 

times be costly, requiring runtime interpretation instead of 
open compiled coue. 

4.3 External Data Forms and Syntax-Directed Data I/O 

List processing systems work within operatinp; systems 

which provide permanent storage facilities, and methods 

for communicating with the user.  Care must be taken 

to ensure that these facilities are easily accessible and 

^2 
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manipulable from within the list processing system. We 

distinguish three basic categories of external data form: 

random access stores, sequential data streams, and graphical 

(two dimensional) I/O. 

Random access stores should be treatable as extensions 

of the main memory apace. The only differences are that an 

additional argument (the store-name) must be somehow provided 

for the access procedures; and the costs of operations to 

an external store may be different than to main virtual memory, 

Sequential data streams are one dimensional and must use 

implicit grammatical relationships to indicate structural 

links. In order to process an input stream, a language needs 

more than simple format statements.  Letting the user program 

his own input routine with primitives, while necessary, does 

not facilitate enough the construction of complex data bases. 

A sublanguage designed for the task is necessary, and this 

is where one car extend the use of the general parsing routine 

usually associated only with program input. The parsing 

tables can be modified to accept the external data form, and 

the code generators replaced by data constructors. 

Constructing data streams from structured data is also 

necessary.  If the data language input is defined by an unam- 

biguous context free grammar, a generator for the language 

(from the Internal data) should be able to be computed from 

the parsing tables.  Even if they must be defined separately, 

facilities for syntax-directed data input and output are 

important for future list processing systems. 

Graphical input-output has an important subcase which 

appears in a number of systems.  This is the generation of 

formatted listings of programs.  Printing programs in a 

"pretty" form which reflects their Internal structure is nice 

for file oriented systems, and Imperative where programs are 

23 
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modified or constructed within the system, and are only avail- 

able in the internal representation. 

General graphic output languages have been developed, 

and such facilities will be useful in problem domains where 

the two dimensions of the picture (perhaps with projections 

from higher dimensions) aid in understanding complex data 

structures. Graphic input is considerably less developed, 

and requires further work in parsing of 2 dimensional patterns1 

to be really useful. However, utilization of such a facility 

is Important when the problem domain has a natural expression 

in the form of line drawings (e.g. architectural design) or 

where spatial position has meaning (e.g. symbolic mathematical 
manipulation). 

b.1*    Duality of Function Evaluation and Data Selection 

Selection of a data item from a structure requires 

specification of the structure and the item name or index. 

For a multidimensional structure, several Indices may be 

provided.  Prom these inputs a location of the required item 

Is usually determined, aid the data extracted. Alternatively, 

one can think of selection as looking up a datum stored 

associated with an n-tuple of names. 

In evaluating a function we usually think of performing 

a sequence of computations based on the inputs to obtain a 

value.  Obviously evaluation and selection are Just two ends 

of a single spectrum, reflecting a trade-off in space and 

speed.  Both ends of the spectrum should be expanded toward the 

middle.  Selection of some data items should be allowed to invoke 

a user defined function, both generic for the data type and 

specific for an instance.  Such functional indirection would 

tm 
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I 
|        allow, for instance, automatic extraction of current inform- 

ation functionally dependent on other items, or propagating 
I        information on storage of new daJ;a. 

At the other end of the spectrum, the concept of "memo 
| functions" introduced by Michie22allows functlon evaluation 

to degenerate to data retrieval in common cases.  POP-210 

j doublets, in which an "updater" function (which stores values 
* for a specified set of arguments), is paired with an ordinary 

valued function, allows the usual assignment and selection oper- 
ations for data to apply to functions. An early use of a similar 
technique was made in Samuels31 rote learning of the evaluation 
of checker positions; in some cases he could look up a 
previously computed look-ahead value of a position.  This 

enabled him to extend the effective depth of his look-ahead 
significantly.  In general, noting the duality of function 
evaluation and data retrieval allows the flexibility of 

space-time tradeoffs so necessary In solving complex problems 
in list processing systems.  Gedanken is based in part on this 

principle of duality of function evaluation and data selection. 

^.5 Data Access Methods 
to 

In addition to data extraction, it is important in many 
domains to be able to retrieve data items by content. Given 
a pattern, all data items matching that pattern should be 
obtainable from a data base. Basic indexing and sorting 

facilities are necessary to implement such retrieval packages. 
Associative links from one, or combinations of key items, 
implemented by hash addressing techniques will allow access 
for certain classes of data; this is done in PLANNER, among 

others  QA4 sorts all input expressions through a discrimination 
tree, with equivalence over different variable names. A pattern 
there defines a set of nodes in the tree below which are all 
matching data items; these leaves of the tree are the retrieval 
nodes. 
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Not all data In the data base need have the same scope 

of applicability. Associated with each piece of data 

(perhaps implicitly) needs to be context information which 

defines the scope of its validity. If the contexts are tree 

structured, several incompatible data bases with different 

amounts of shared structure can exist (e.g. QA^0). 

Complex network structures with many explicit links are 

common in symbolic processing applications, especially those 

concerned with natural language processing. There are a 

number of cases in which additional information is required 

about a particular data structure node, but an explicit link 

from the data item to this information is forbidden - e.g. 

a large read-only data store, and temporary tags marking recent 

processing on the node.  Another example is associating a 

property SIMPLIFIED with a particular substructure of a symbolic 

expression without interfering with its mathematical form. A 

technique recently added to BBN-LISP allows such implicit links. 

It utilizes association arrays; a location in such an array Is 

computed on the basis of the internal address of the data item. 

In this hash-link location is stored the original address and 

the associated information.  Care must be taken to dlsarablguate 

collisions in this hash array, and to provide appropriate mech- 

anisms to garbage collect the implicit link when the data item 
Is no longer referenced. 

26 
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5. Conclusion 

Programs to solve complex problems often evolve over a 

long time period. A good environment will allow sets of users 

to build up a collection of consistent tools which aid in 

solving their problems.  Built on a core system which is rela- 
tively easily transferable to new hardware, it can provide a 

machine independent base for a wide range of ectlvities, 

A list processing system can't be all things to all 

people all the time.  However, with a flexible set of features 

which span the problem space, extension facilities, a large 

library of useful routines, and good documentation, a system 

should help a programmer to stand on the shoulders of his 

predecessors, not his toes. 
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