
; t :?^Sl:0:i T ft E Ä AN E K ■' A N D ; N ■i^W^'M-A-H-^^-^t^

I C O N $ U I T I HO • :' 0 I V 8 I O ^ü^^^^^^^-' t i ■ S , l^^|g^if
.<■, v^

vssjKSSie&ä

II ^:^Ä^:r&:>;/BBN Report No. 2339
i - vv^v.'>.vi ., : ■■. ■■ ■.'■."■.■,■; ■.■;... .■■■| ^ :■' ;..'■. .■|. ..■:.' :,'.■■.;'.■.,■. .r^-^.-''^.''■■■■■■•:■■■■(;■ .i'-1. ■.■■•-■■■■■■■■■'■:■:■■:■■■■■■: ■■■, ■.■;■:,;■ ,".■.■.■•...;■;:■■.■■: ■■■, . . .■'■., •■.■■■■

1 March 1972

Ü:

m
m

REQUIREMENTS FOR ADVANCED PROORAMMING

SYSTEMS FOR LIST PROCESSING

by

Daniel G. Bobrow

I
I
I

- i

«

i'' -^m
'§$£00^MMl

I
^^M|^5|f

Computer Science Division
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

■'"■ M--' ■■•■;■■

D D

sliii

The vi^ws and conclusions contained in this document are
those of the author and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects
Agency ,or the U.S. Government. I(

This research was supported Distribution of this
by the Advanced Research document is unlimited.
Projects Agency under ARPA ■ may be released to thi
Ordef^No. 1967; Contract No. Clearinghouse, Department

of Commerce for sale to i- DAHC^Zl-C^OOieS

'-)■

Reproducod by
NATIONAL TECHNICAL i
INFORMATION SERVICE J

Sprin^fisld, Va. 221SI ||

general public.

BEST
AVAILABLE COPY

Unclassified
Security Classification

DOCUMENT CONTROL DATA R&D
(Security clasjilicalion of litle, body of abstract and indexing annolation mu.il be entered when the overall report Is rlassilier*

. ORIGINATINJ ACTIVITY fCorpora«« aulhor;

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge. Massachusetts 02138

2a. REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

3. REPORT TITLE

REQUIREMENTS FOR ADVANCED PROGRAMMING SYSTEMS FOR LIST PROCESSING

4. DESCRIPTIVE NOTES fTVpe of report and.incfusive dafesj

 Scientific
5- AUTHOR(S) (First name, middle Initial, last name)

Daniel G. Bobrow

«■ REPORT DATE

1 March 1972
8a. CONTRACT OR GRANT NO.

DAHC-71-C-0088
6. PROJECT NA

ARPA ON 196?

7a. TOTAL NO. OF PAGES

33
7fc. NO. OF REFS

bo
9a. ORIGINATOR'S REPORT NUMBER(S)

BBN Report No. 2339

96. OTHER REPORT NO(S) (Any other numbers that may be asslened
this report)

10. DISTRIBUTION STATEMENT

Distribution of this document Is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
public.

tl. SUPPLEMENTARY NOTES

This research was sponsored by the
Advanced Research Projects Agency
under ARPA Order No. 1967.

13. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

List processing systems should be designed to facilitate production
of large programs to manipulate large complex symbolic data stores.
This paper presents an overview of a number of system features which
the author feels are Important to Improve the productivity of program-
mers working In such domains. A systems view Is taken, rather than
focusing just on language features, since algorithms not only must be
coded In a language form, but debugged, modified, made efficient and
run on data. Because of this genral framework, the requirements
specified are applicable to the design of advanced programming systems
for a wide range of applications.

DD FORM I47O
1 NOV 6D I m9 I Sj

S/N 0101 -807-681 1

(PAGE I)
Unclassified

Security Classification
A-,1140S

Unclassified
Security Classification

KEY WORDS
ROLE

LINK C

list processing

programming languages

design of programming languages

Interactive systems

control structures

data structures

programming primitives

semantics

advanced programming systems

DD FORM
I NOV SS 1473 (BACK)

S/N 0101-807-6821
Unclassified

Security Classification

üwnssw*3tti«iot.

REQUIREMENTS FOR ADVANCED PROGRAMMING

SYSTEMS FOR LIST PROCESSING

by

Daniel G. Bobrow

Computer Science Division
Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

Report No. 2339 Bolt Beranek and Newman Inc.

Abstract

List processing systems should be designed to facilitate
production of large programs to manipulate large complex
symbolic data stores. This paper presents an overview of a
number of system features which the author feels are Important
to Improve the productivity of programmers working in such
domains. A systems view is taken, rather than focusing Just
on language features, since algorithms not only must be coded
in a language form, but debugged, modified, made efficient and
run on data. Because of this general framework, the requirements
specified are applicable to the design of advanced progrämmihg
systems for a wide range of applications.

Three aspects of programming systems are highlighted:
good interactive facilities, programmable control structures,
and sophisticated data communication mechanisms. Interactive
features are described to facilitate program composition,
entry, testing debugging, editing, optimization and packaging.
Implementation of a generalized environment structure model
specified would allow programming of various control regimes
including multi-processes, coroutines and backtracking.
Alternative methods of procedure invocation required include
invocation by pattern and by monitoring condition. The need
for extended data forms, storage management and extensibility
are stressed, as Is the duality of data retrieval ana function
evaluation. Syntax directed input and output of data would
facilitate use of complex data stores.

Report No. 2339 Bolt Beranek and Newman Inc,

TABLE OP CONTENTS

page

1. Introduction 1

2. Interactive Facilities i|

2.1 Composition i|

2.2 Entry and Editing 5

2. 3 Debugging 7

2.4 Testing and Repetition 9

2.5 Optimization and Packaging 10

3. Program Semantics 12

3.1 A Data Structure Model of Control ... 12

3.2 Invocation of Procedures 18

4. Data System 20

4.1 Storage Management 20

4.2 Dynamically Allocated Data Forms and

Extensions 21

4.3 External Data Forms and Syntax-

Directed Data I/O 22

4.4 Duality of Function Evaluation and

Data Selection 24

4.5 Data Access Methods ,'i 25

5. Conclusion 2?

6. Acknowledgements 27

7. References 28

Report No. 2339 Bolt Beranek and Newman Inc.

RequiremeKts for Advanced Programmlne

Systems for List Processing

Daniel G. Bobrow*
Bolt Beranek and Newman Inc.

Cambridge, Massachusetts 02138

1. Introduction

Programming systems are (or should be) vehicles for

communication of an algorithm from a programmer to a computer

in a manner which matches the needs of the programmer for

this problem. As so aptly stated by Perils in his 196^1 Turing

lecture:2"

"Programmers should never be satisfied with
languages which permit them to program everything,
but to program nothing of interest easily."

List processing languages are designed to make it easier

to program algorithms in domains requiring manipulation of

complex symbolic data structures. Examples of such problem

domains are English language understanding (e.g. V.'lnograd, 40
3

Bobrow); program writing programs (e.g. Green); and programming

system implemeritation (e.g. Wegbreit). This paper is a

collection of my prejudices about features wnich should be

included in a orogramming system to facilitate program construction

in these domains. Because the general framework used is

common to most difficult programming tasks, the requirements

specified arc applicable to the design of advanced programming

systems for a wide range of applications.

Vhree aspects of programming systems are highlighted:

good interactive facilities, programmable complex environment

structures, and sophisticated data manipulation and communication

Reproduced from
best available copy.

*Now at Xerox Palo Alto Research Center, Palo Alto, California

Report No. 2339 Bolt Beranek and Newman Inc.

facilities. We stress the need for every system mechanism to

be accessible to the programmer, following another aphorism

attributed to Perils: "One man's constant is another man's

variable."

No existing system contains all of the features described

below, though almost all of the ideas are implemented in some

form in some current system. In those cases where it has been

appropriate, I have described Implementations as exemplars of

requirements. The systems most influential in my thinking have

been LISP l.[3, on which I cut my programming teeth, BbN-LISP-5»-5

for its interactive features and environment representation,

PLANNER^and MICRO-PLANNER)3?,or their way of invoking procedures,

and backtrack control structure, FLIP^dnd SNOBOL -* for their
or

pattern matching facilities, and KCL-5 for its data type handline

and generalized control structure primitives. These are typical,

not necessarily original sources of these ideas; since this is

not a survey paper, (cf. 6, 2')) other references will be given only

when they contain details which further explicate the ideas

explored here.

I have emphasized the idea of a programming system rather

than language since the programmer does not just express his

algorithm, but must enter his program, test it, find bugs,

modify it, etc. Because of the difficulty of this process for

large complex programs, on-line interaction is mandatory.

Natural modes of expressing desired actions must be available

both in the algorithmic programming language and in the

(somewhat different) context of direct user interaction with

the system. Eventually, after getting his algorithm debugged

for the test problems chosen, the programmer must often make

an equivalent program which is more efficient over his total

problem domain. To make his program useful to others, he

must be able to isolate, specify ana document its interactions

within svstems in which it can be embedded.

Report No. 2339 Bolt Beranek and Newman Inc.

Because I feel future list processing systems must aid

the programmer in his total task, I start by describing in

section 2 some interactive features which facilitate construction

of difficult programs. These are basically independent of

programming language form, and involve the use of an intelligent

agent as an intermediary between programmer and interpreter.

In section 3 I discuss some necessary semantics of the pro-

gramming language. This includes an (implementable) model for

environmental (control and variable binding) structure, and

emphasizes the rich variety of (necessary) control structures

this makes possible. These include backtracking, coprocesses,

and capabilities for programming within the language a general

resource-sharing operating system. Section ^ describes data

forms, a set of storage and access methods, and a general concept

of syntax directed I/O for data.

Report No. 2339 Bolt Beranek and Newman Inc.

2. Interactive Facilities

In the construction and debugging of complex programs,

immediate interaction in an on-line fashion is mandatory. The

usual cycle of program development has the following components;

0) Define the problem

1) Composition: Write algorithm in the chosen
programming language

2) Entry: Enter machine readable form into computer

3) Testing: Run test cases
l\) Debugging: Explore reasons for

a) non-concurrence of result with expectations
("logic" bug) - often feeds back to 0

b) unanticipated type or definition error
("structural" bug)

5) Editing: Revise program

6) Repetition: Cycle through selected portions 0-5

7) Optimization: Make a given version of a program
more efficient

8) Packaging: Making a set of routines available for
use by other people and programs

I shall indicate the facilities I believe most helpful

for each of these components.

2.1 Composition

Programming systems become problem oriented systems when

the unit forms available to the user closely match the unitary

concepts in his problem domain. Addition of new procedures

are not sufficient to provide appropriate language forms. Pre-

processors are generally poor because debugging must be done

in an interior language far removed from the external problem

statement. The problem oriented language should be an extension

of a powerful core language. For each problem domain the

Report No. 2 339 Bolt Beranek and Newman Inc.

objects, unit operations, relations and control behavior

should be directly modelable in the base language augmented

with new data types, new operators (or extensions of the old

ones), new syntactic patterns, and new control structures,

respectively. Control and data structure extension facilities

will be discussed in sections 3 and 4.

Syntactic extension should be achievable by construction

and modification of appropriate data forms. Durin.p; the parsing

of input, the parser should be able to Invoke any defined pro-

cedure in the system. For example, reading a particular statement

should be able to change the grammar at that time, for some

defined scope. This allows somewhat Incompatible sublanguages

to exist within a single encompassing language - e.g. "+" may

be used for a format control character in a format statement and

a concatenation operator within a string matching and reconstruct ion

statement, although in arithmetic assignment it may maintain its

usual meaning. In addition to new forms, the language must allow

extensions of old forms. Thus the parser must be able to use

context and type Information associated with variables and forms

to allow generation of appropriate internal form. The parser

should also be callable as a subroutine; we discuss an important

application for the parser subroutine in section 4, for syntax

directed data input-output.

I Reproduced 'rom

2.2 Entry and Editing !>" availab'e "^

The internal form of programs generated by the parser

should be list structures with unique internal pointers for

each unique external symbol (e.g. as in LISP and ECL). This

has several advantages. First, it can be directly executed

by the interpreter without reparsing each tine a line is

encountered, as for example it would many times in executing

a loop. Second, a list structure is a convenient input for a

compiler, which can be considerably simplified when working on

Report No. 2339 Bolt Beranek and Newman Inc.

this preparsed input. Third, it is a good data structure on

which a programmable syntax-directed editor can work.

A good interactive editor is an important keystone in

the rapid development of complex programs. The edit program

in BBN-LISP serves as a model for the breadth of scope I

believe is necessary. This editor is oriented toward structures,

and does not allow the user to put in non-well-formed structures

accidently, although partial structures can be added. It

provides a large variety of commands for moving around the

structure, both incrementally and by search. Searches can be

specified by general structural patterns, and/or by character

oriented specifications of lexical units. Various forms of

on-line output allow the user to track easily where he is in

the structure, even when interacting through a slow output

device such as a teletype. Structural units can be deleted.

Inserted and moved as units. Substructures can be embedded in

and extracted from larger units. Iteration of operation

sequences, and conditional operations are all easily expressible.

New editing operations are definable as macros in terms of older

ones.

However, a major reason for the comfort and smoothness of

operation in the BBN-LISP editor is the confidence the user

can feel in making tentative changes in hin program structure.

This is achieved because the editor saves sufficient information

about any changes made by an edit operation on a particular

function that upon command it can UNDO that change. The feeling

is very different than that achieved by saving a copy of the

function definition before editing because individual changes

can be undone selectively. Even after leaving the editor

(which is a function called from the LISP executive) and per-

forming other computations, the user can later reenter the

editor to work on that function and UNDO changes made earlier

which were unsatisfactory.

Report No. 2339 Bolt Beranek and Newman Inc.

2.3 Dubugglng

It is an axiom that no real program is ever written

without any bugs. The bugs that occur on running a test

case are of two broad kinds - "logic" bugs and "form" bugs.

In the first, the programmer is trying to follow the logic

of his program through a test case which is returning a

wrong result. He must be able to trace parameters and values

of individual functions and specific value changes within

functions. This can be done by declaring specific function calls

and variable bindings "sensitive"; calls to sensitive functions,

and modification of sensitive variable values are monitored, and

processing is suspended whenever an associated programmer-

specified predicate is true. Another useful monitored

condition in the system provides an interrupt (without con-

text loss) at any function call when the programmer has

pressed a special console key.

In the "break" (suspended state), the programmer must

be able to examine the environment in which the condition

occurred. A selective "backtrace" of the call structure

(the sequence of function calls which lead to this point) and

associated variable bindings must be available. In accord with

our general philosophy of mechanism accessibility, this should

not just be a special system print facility; any process should

be able to obtain the symbolic name of the Nth preceding function,

and the names and values of any variables bound In thai environ-

ment. This information should be available for both regular

compiled code as well as Interpreted code. rr ■: ;
I Reproduced from
I best available copy,

V/hen a problem is Isolated, an appropriate change In a

function must be made. The user should be able to call the

editor while still in the break, have his changes take

immediate effect and test a subcase without losing his context.

Report No. 2339 Bolt Beranek and Newman Inc.

By having the editor work directly on the list structure

processed by the Interpreter, effects of changes are propagated

immediately. For some errors, it is Important (to allow

continuation) for a user to have access to program substructures

stored on the stack.

The second class, "structural" errors, cause interruption

without programmer intervention. The^e include internal error

conditions such as fixed or floating overflow, value-operator

incongruence, or end-of-file. When an error is encountered the

system should act as if the user had explicitly called a specific

error handling routine, if the user had enabled such a call

(e.g. say by defining an appropriately named function). If not,

the system should call the break routine, described above, which

preserves the state of the computation and requests user inter-

action from the console. Asynchronous external interrupts,

e.g. a clock time-out, can be treated similarly through specially

enabled Interrupt handlers and the break package.

There are a class of errors in programs which can often

be fixed by a programmer knowledgeable about the system but

with no knowledge of the particular program. Automating such

error correction, as Teltelman35 has done in a number of cases

for BBN-LISP, greatly facilitates construction of complex

programs because it allows the programmer to remain thinking

about his program operation at a relatively high level without

having to descend into manipulation of details. Typical

errors corrected by the BBN-LISP DWIM (Do What I Mean) facility

include misspelled variable and function names, and syntax

errors due to mistyping and mismatched parentheses.

Machine aided debugging and verification of program

correctness will be an important feature to be added to list

processing systems. Statements of a program's "intentions"

and expected conditions at a point will become part of the
17

program. The simplest step will run these intention statements

Report No. 2339 Bolt Beranek and Newman Inc.

to verify them on test cases supplied by the user. A next

step will be for key test cases to be generated from the

Intention statements. Finally, proofs of the correctness of

the program, and perhaps the program itself will be generated

from the intention statements. For real problems however, I

think that only the first two steps will take place in the

next five years.

2.4 Testing and Repetition

A user at a console thinks of his sequence of inputs as

related in terms of the program he is trying to construct and

debug. However, most systems treat each interchange between

the man and machine as an isolated event, and store no informa-

tion from the interaction except possibly as a side effect of

the computation reauested. Facilities in BBN-LISP, which we

describe briefly here, illustrate the power of having the user

invoke system procedures through an (active) intermediary agent.

For each input to the BBN-LISP executive, the agent saves

a copy of the input, the resulting value and some other inform-

atlon. The user can later retrieve this input by an inter-

action sequence number, or through search on contents of the

inputs or values. He may do this, for example, to redo a test

case after making some program changes. Or, he may have typed

in a long expression with a slight error, and he wants to fix

and reevaluate the input. Fixing is done by calling the edit

facility described earlier. A set of inputs may be grouped to

be done and redone as a unit. Simultaneous substitutions for

a number of lexical units and/or character strings in a single

command allow after-the-fact parameterization and repetition

of previous input commands. Surveillance of the input by the

agent provides a focusing mechanism for highlighting approp-

riate candidates for comparison with misspelled or mistyped units

to be corrected by DWIM.

Report No. 2339 Bolt Beranek and Newman Inc.

In testing programs which work on complex data

structures, programs which function Incorrectly may make

changes In global data structure which are hard for the

user to explicitly reverse. The BBN-LISP executive allows

execution of generalized assignment procedures in a test mode

where enough additional information is saved with an input event

to allow the resulting structural changes to be undone. As with

the undoing in the editor, this allows the user to try programs

which might modify data structures in unexpected and not easily

reversible ways, without preparing beforehand. Being forced to

think about possible destructive consequences could distract the

programmer from the main task at hand.

Another feature which facilitates experimentation in

program interfacing is indirect procedure calls through a

symbol table or transfer vector. This allows temporary use

of "advice" to a function, that is a program fragment inserted

between a caller and a callee; it is useful for special case

handling, information gathering, and insertion of measuring

probes without requiring changes in the procedure body. This

facility also allows implementation of trace and break features

described earlier.

2.5 Optimization and Packaging:

Once a program has been written and successfully tested

on a few samples of data, one often desires a version of

the program which will be more efficient in some respects,

e.g. time per example, temporary storage space utilized etc.

Transformation of the form of the program to one more suitable

for running by the computer hardware is one way of achieving

some efficiencies. However, since programs are only relatively

stable, compiled and Interpreted code should be freely inter-

mlxable, both in terms of running and debugging. Compiling

consists of making best use of information which is invariant

with respect to the input data by performihg all allowable

computations at compile time. Only decisions which depend upon

iic^uxt/ nw, CJJ? oujLb oeraneK ana ««»»"an ±nc.

the input data must be postponed until runtime. Compile-time

activities can include transforming certain recursively written

programs into equivalent iterative processes, data type and

subscript bounds checking, data packing and extraction decisions,

and evaluation of expressions by the compilerr" Such activities

need not be limited only to the compiler. Program transformation

under special fixed conditions is useful in other cases, e.g.

incremental computation or partial evaluation in which an n

argument function is transformed to an n-k argument function

by supplying k values.

The compiler should be able to make use of program

behavior information provided by the user e.g. working set

boundaries, and proportional choice of program branches. In

addition, facilities must be available for the user to gather

appropriate data about resource use of particular subroutines.

This allows him to Isolate those portions of his larger program

which are critical to efficient operation of the program as

a whole.

Packaging a set of programs for use by other people

requires both highlighting and hiding information. Internal

structure (e.g. local variable and function names) should

be hidden so that, for example, use of a package doesn't

surprisingly preempt the naive user's name-space. This

packaging should be obtainable after the fact, so that programs

can be built Incrementally, as is most Important for complex

tasks. Preplanning the package boundaries beforehand should

be unnecessary e.g. as in the BBN-LISP block-compiler. To use

the block-compiler, the user specifies a p;roup of functions

previously debugged which are to be bound together. Names which

are to be used external to the block are specified, and all

others are surpressed In this special form of compilation.

Information to be highlighted in packaging includes Interface

and operating specifications. Easy association of commentary

with program statements Is critical for adaptation of packages

for new use. Facilities which aid in documentation of programs

will become more and more Important, e.g. automatic flow-charters,

program formatters and syntax directed documentation (c.f. Mills).

11

Keport no. o.3y . DOJ-Z tseraneK ana wewman inc.

3. Program Semantics

The virtual machine a user sees is de;ermined by the

primitive procedures he can call, the techniques allowable

for invoking procedures and binding variables, and the

richness of control structures available to express sequences

of processing and modes of sharing. We will not consider

here data manipulation primitives; we will assume a rich

enough set to deal with the forms described in the next

section, and also appropriate iteration operators. Pattern

decomposition and structure building from templates are

assumed as well as standard imperative statements and ex-

pressions. Because flexible control and access structures are

so vital, and arc usually Ignored, we describe in some detail a
on

data oriented model for control (in the spirit of Wegner).

We specify three primitive functions for manipulating such environ-

mental structures which allow flexible programming of control

regimes, e.g. coroutine calls and backtrackinn;. Finally, three

distinct methods of procedure Invocation are described, tne usual

explicit call, call by pattern, and call by monitoring condition;

variable blndlnp; by pairing and binding by extraction are also

discussed,

3.1 A Data Structure Model of Control

In our control structure model, the primitive unit of

program is an accesr module, e.g. a function or block, in

which new nomenclature is Introduced. Bindings, name-value

pairs, can only be introduced at entry to an access module,

i.e. as function variables or as local parameters defined

at the head of a block. New nodules are activated by calling

or entering, and normally deactivated by exiting. A particular

activation can be continued by returning to it with a value (which

may be ignored).

12

uwj.1/ ucxeuicn. aiiu ixcwiuaii J.JiU(

In a single process environment, control resides in an

activation of a particular module. In conventional programming

languages, such a module activation has a unique caller, „nlch

in turn has a unique caller, etc; that is, the activation

(calling) sequence is strictly hierarchical. We call this linear

chain of activations a hierarchy in contrast to a dendrarchy, a

more inclusive general control tree. We note that in a hier-

archy once an activation has been exited, It disappears and

can not be continued again. Reentering the module causes a new

activation of the module to be created. We create a dendrarchy,

a tree of activations, by providing a way to preserve an activa-

tion which has been exited, or to reference an activation from

more than one successor. Each activation will have a unique

caller, but may be reachable from any number of other modules.

To make our model clear, we consider the data structure

required to implement it. When an access nodule Is entered,

storage is allocated for use within the module. The allocated

storage we call a frame; a frame contains two major components:
a baslc fr'afne and a frame extension. The basic frame is a fixed

block wnlch contains the new named Items which are defined when

the access moaule is entered. In addition, it contains a, control

^-ink and an access link. The control link points to the frame of

the unique calling module. The access link and bindings are used

to determine the value of any variable used In the module. The

formal'parameters anu local variables of a module nay be accensea

directly through the bindings component of the module frame. If

a variable Is not a formal parameter or local variable, it is

said to be free. The value of a free variable is determined fron

an environment specified by the access link. Three common alter-

natives used for free variables are:

^ stat3-c (or1 lexical) scoping - as in a block structured

language such as Algol. The access and control links in

Algol are called the static and dynamic links respectively.

Trie position of a variable declaration in the program text

determines the free variable binding frame.

1^

Reproduced from
best available copy.

2) dynamic scoping - as In LISP. Variables are sloped

according to the control flow, and the most recently

defined variable of that name Is assumed. The control

and access links are usually Identical.

3) global scoping - as in FORTRAN. A standard common area

is used for free variables.

What is wanted is a system which has sufficient variability

so that the user can specify the free variable access environment

independent of the control environment specification. The orlg-
20 inal LISP A-list provided one way of doing it; this access

25 problem is discussed by Moses in connection with the LISP

funarg problem. Our frame model allows complete flexibility

of access specification.

The frame extension contains anonymous temporary intermediate

results of computation. At the time of a call (entry to a lower

module), the caller stores in his frame extension a continuation

polr.t for the computation. For proper value checking, an expected

return value type may also be stored. Since the continuation

point is stored in the caller, the generalized return is

simply a pointer to the frame extension of the last active

frame. A point to note about a frame for an access

module is that it has no pointer to any frame of a module

below it; if an appropriate value (as specified by a return

type) is provided, continuation in that access module can

be achieved with only a pointer to the continued frame. No

information stored outside this frame is necessary. Because

independent returns to a frame nay renuire distinct continuation

points and temporary storage, a separate copy of 'ehe frame

extension must be made for each indeoendent successor. This is

the reason for separation of the frame extension and tiic basic

frame.

14

In this model for function (and block) activation, each

frame is generally released upon exit of that function. Only

if a frame is still referenced is it retained. Non-chained

references to a frame (and to the environment structure it

heads) are always made through a special data type called an

environment descriptor. Only three primitive functions are

needed to manipulate environments in this model. The functions:

1) environ creates an environment descriptor (ed) for a specified

frame; 2) setenv changes the contents of an existing e_d tc

point to a specified frame; 3) enveval creates a new frame

with the access link specified by one ed and the control llnk

specifled by another (perhaps different)ed; It executes a

specified computation in the context of that new frame.

We shall describe the environment structures for two

common control regimes. Coroutines are coordinated processes which

each maintain their own separate hierarchical control and access

environments, with some shared base. In Figure 1, two coroutines

are shown which share common access and control environment A.

Note that the frame extension of A has been copied so that returns

from B and Q may go to different continuation points. In Figure

2, coroutine Q is shown calling a function D with external access

chain through B, but with control to return to Q. Coroutines

maintain a current environment descriptor for themselves In a

common data structure, and resume other coroutines through enveval.

Backtracking is a control regime in which certain environ-

ments are saved before a function return, and later restored if

needed. This can be simply implemented in the model by saving

an environment descriptor for that frame. As an example of its

use, consider a function which returns one (selected) value from

a set of computed values but can effectively return an alterna-

tive selection if the first selection was Inadequate. That is,

the current process can fall back to a previously specified
fallset Polnt and then redo the computation with a new selection.

1\^LJV^X V 11V/ • *~ J J J t~f\J J. W i^r«« J. b4iAAV«<% bUAUi *»%* vvaiaui,««

A sequence of different selections can lead to a stack of

fallset points, and successive falls can restart at each In turn.

Backtracking thus provides a way of dolrif; a depth first-search

of a tree with return to previous branch points. Hewitt , and
1^ Golomb and Baumert ~ have discussed the use of backtracking In

12
problem solving, and Floyd discusses It as an implementation

of non-determlnlstlc programming.

An Important point to note Is that as we have described It,

backtracking restores the control and access environment chains,

but not necessarily values of shared bindings or forms of data

structures which previously existed at the backtrack point. In

many cases the undoing of operations to completely restore tne

context of a computation Is what is wanted; however, control

backtracking and automatic undoing of data modifications shoulü

be separably programmable. As indicated in sections 2.2 anu 2.4,

there are other Important applications of undoing, and times

when it Is worthwhile to maintain careful control of which oper-

ations are reversed.

Both of the control regimes described above are important,

Lut more important is that these regimes (and others) should be

programmable. Addition of an Interrupt handling facility would

allow programming the equivalent of a full time-sharing system.
27 The framework used by Prenner for ECL seems adequate for this

purpose. A distinguished process, called the control interpreter,

is defined with two unlaue properties: 1) timer Interrupts pass

directly to it, and 2) there is a control primitive by which

other processes can call for the execution of an arbitrary

procedure In the environment of the control Interpreter and wait

for the result. The control Interpreter could be made to act
q

as a scheduler, and could also Implement the Dljkstra semaphore

operators in a controlled environment.

With the framework of the environment structures and a

control interpreter. It is straightforward to Implement most

16

W fc/W* V «W» ** J ^ S U\J ^ W US* A bbAA\«<V bfc««Vft «W **«a«A

other known control structures in addition to those already

shown, e.g., multiple parallel returns, fork/Join structures,

etc., and to program others as needed. This model is developed
7

more fully in Bobrow and Wegbreit. In addition they describe

a stack implementation technique which is much more efficient

than the obvious heap allocation and garbage collection imple-

mentation (as used, for example, in PAL),, For the usual hier-

archical structure, their algorithm acts identically to the

standard stack allocation scheme.

3.2 Invocation of Procedures

A procedure P Is usually defined with a list of N

argument names (XI, ..., 3fN) which have significance within

the body of the procedure. An explicit procedure call

P(A1, ...AN) provides N arguments to be passed to the procedure

and paired as values with the N names In the definition

(perhaps with data type checking and/or conversion). We

call this mode of argument passing binding by pairing.

An alternative binding scheme is often attractive when

working with complex symbolic structures. A procedure P is

defined with a structural pattern of applicability. A

single structural data unit is passed to the procedure and

this data is decomposed to match the pattern. A side effect

of certain of the pattern matches Is to bind variables to

matching substructures extracted from the input data, thus

effecting what I call binding by extraction. Such pattern

matching sublanguages. Illustrated by SNOBOL, QA^I, FLIP and

PLANNER among others, are a very important facility in some

list processing applications. All of those listed provide

basic pattern matching facilities and more Important, ways

of extending the set of primitive patterns by appropriately

associating a new one with a matching procedure.

As an alternative to explicit procedure call, patterns of

applicability can be used implicitly to Invoke procedure execu-

tion. This is the basic Invoking mechanism used In PLANNER. A

focus of control is a data structure; through'careful indexing,

likely matching procedures are tried in some retrieval order.

A matching procedure is one whose applicability pattern matches

the focus data. When a match is found the body of the procedure

is executed. In this pattern directed invocation of procedures,

a choice can be made to use one, some, or all matching

procedures, with backtrack control possible to reenter the

invocation sequence after successful returns. BinuiriK is usually

done Dy docoranosition in pattern directed invocation.

Report No. 2339 Bolt Beranek and Newman Inc.

The two procedure Invocation methods described are Immediate

In their effect. Deferred procedure calls on occurrence of a

specified condition are required. This monitoring function,11

which is a generalization of the ON GONDITION of PL/I, should

handle both external interrupt conditions, and changes to internal

data structures. When more than one monitoring procedure is

evoked by a particular environment change, a mediating priority

decision maker must be invoked and must be programmable by the
user.

^. Data System

The data system is the vehicle for handling all storage

management and reference. It must include primitives for

handling dynamically allocated data types, and named external

stores of both the random access (e.g. disc files) and data stream

(e.g. mag-tape, network connection) type. A rich variety of

basic data types is not sufficient; general data type ex-

tension mechanisms3^ are required. Data input and output

requires syntax-directed processing. The duality of selection

of subparts of a data element and evaluation of a function can

be broadened to good effect.

4.1 Storage Management

There are basically two types of storage to be allocated

in user direct virtual memory. The first is storage auto-

matically allocated and released on access module entry and

exit. As shown in Dobrow and Wegbreit this can be done using

a single stack even if multiprocesses are allowed. The

second represents the storage independent of environment

structures, and is allocated out of the heap?to use the Algol

68 terminology. Since keeping track of storage still in Übe

can be a substantial unwanted burden for a programmer (i.e. an

item may be referenced from many different places in a data

structure), automatic storage reclamation is required.^ A

requirement for garbage collection is that the system must

have a well-defined, accessible base from which all storage

still accessible in the system can be reached. Easily used

Interfaces with the allocation, pointer trace, mark, collect

and relocate subroutines must be provided so that user can add his

own data types, A data type extension facility which compiles and

Inserts appropriate code from a data description should be

Report No. 2339 Bolt Beranek and Newman Inc.

provided. ECL provides a good example of how this might be

conveniently done.

^.2 Dynamically Allocated Data Forms and Extensions

Any modern programming language must include a variety

of basic data types. Integers and reals are required

for numeric calculation, and extended precision numbers for

some applications. Basic data types also include Booleans

for relational values, character-strings for labels, arrays

for larger fixed units of structure, and pointers (perhaps

typed) to reference any data element. An important data

type in list processing is the symbol, (e.g. the literal atom

in LISP) which is a data item with a name, and associated

internal data. It provides a mechanism for run-time symbolic

interaction with a data base, i.e. a link between an external

name and an internal data structure manipulable at run-time.

An important trend in use of list processing languages

is the representation of information in procedural form.1^

Program-construction programs and program-modification programs

(e.g. the editor described earlier) will be a standard part of

the library of users of these languages. Those require that

procedures be a manipulable basic data type in the system.

No list of data types can be complete, and therefore a data

type extension facility^ is mandatory. Extension facilities

provide several mechanisms for defining a new type; as a

homogeneous array of previously defined type with subitems sel-

ectable by index; as a heterogeneous structure with subitems

selectable by name; as pointers (references) to other data

types; and as a data type which is the union of previously

defined types, (i.e. is one of several types, to be determined

at runtime). A data type description must be used (say by

<il

Report No. 2339 Bolt Beranek and Newman Inc.

compilation of appropriate code) for:

1. Construction of objects of this type: Optimization
of storage efficiency can be obtained by intelligent
compilation of data procedures to pack components
in minimal space.

2. Selection of components from the item (for compound
objects)

3. Assignment to items of this type, and to components
(for compound objects)

4. Garbage collection, as describeu earlier.

Certain operations are defined over each data type. In

some languages (e.g. SIMULA) the user can extend a data type

to a new subclass such that all operations on the original

type are still applicable in addition to any new operations;

e.g. a LISP-like cell could be extended to have n-additional

data words, but still allow all the usual list operations

such as car, cdr, cons. Procedures representeu as lists are

another Important data subclass because all list manipulation

operations are applicable for modifying these structures.

All properties of a specific data type should be under

possible control by the programmer by allowing him a simple

way to interpose his own procedure for any of the standard

assumed procedures associated with the object. This may some-

times be costly, requiring runtime interpretation instead of
open compiled coue.

4.3 External Data Forms and Syntax-Directed Data I/O

List processing systems work within operatinp; systems

which provide permanent storage facilities, and methods

for communicating with the user. Care must be taken

to ensure that these facilities are easily accessible and

^2

MHMaMBgsBsmuMmtuMgOTffii.-»«

Report No. 2339 Bolt Beranek and Newman Inc.

manipulable from within the list processing system. We

distinguish three basic categories of external data form:

random access stores, sequential data streams, and graphical

(two dimensional) I/O.

Random access stores should be treatable as extensions

of the main memory apace. The only differences are that an

additional argument (the store-name) must be somehow provided

for the access procedures; and the costs of operations to

an external store may be different than to main virtual memory,

Sequential data streams are one dimensional and must use

implicit grammatical relationships to indicate structural

links. In order to process an input stream, a language needs

more than simple format statements. Letting the user program

his own input routine with primitives, while necessary, does

not facilitate enough the construction of complex data bases.

A sublanguage designed for the task is necessary, and this

is where one car extend the use of the general parsing routine

usually associated only with program input. The parsing

tables can be modified to accept the external data form, and

the code generators replaced by data constructors.

Constructing data streams from structured data is also

necessary. If the data language input is defined by an unam-

biguous context free grammar, a generator for the language

(from the Internal data) should be able to be computed from

the parsing tables. Even if they must be defined separately,

facilities for syntax-directed data input and output are

important for future list processing systems.

Graphical input-output has an important subcase which

appears in a number of systems. This is the generation of

formatted listings of programs. Printing programs in a

"pretty" form which reflects their Internal structure is nice

for file oriented systems, and Imperative where programs are

23

Report No. 2339 Bolt Beranek and Newrnan Inc.

modified or constructed within the system, and are only avail-

able in the internal representation.

General graphic output languages have been developed,

and such facilities will be useful in problem domains where

the two dimensions of the picture (perhaps with projections

from higher dimensions) aid in understanding complex data

structures. Graphic input is considerably less developed,

and requires further work in parsing of 2 dimensional patterns1

to be really useful. However, utilization of such a facility

is Important when the problem domain has a natural expression

in the form of line drawings (e.g. architectural design) or

where spatial position has meaning (e.g. symbolic mathematical
manipulation).

b.1* Duality of Function Evaluation and Data Selection

Selection of a data item from a structure requires

specification of the structure and the item name or index.

For a multidimensional structure, several Indices may be

provided. Prom these inputs a location of the required item

Is usually determined, aid the data extracted. Alternatively,

one can think of selection as looking up a datum stored

associated with an n-tuple of names.

In evaluating a function we usually think of performing

a sequence of computations based on the inputs to obtain a

value. Obviously evaluation and selection are Just two ends

of a single spectrum, reflecting a trade-off in space and

speed. Both ends of the spectrum should be expanded toward the

middle. Selection of some data items should be allowed to invoke

a user defined function, both generic for the data type and

specific for an instance. Such functional indirection would

tm

3Bgp^a^?>1^^gwaBM^Mw^^^q^l^!flafgffij^^[^g

Report No. 2339 Bolt ^^^ ^ NeHman Inc-

I
| allow, for instance, automatic extraction of current inform-

ation functionally dependent on other items, or propagating
I information on storage of new daJ;a.

At the other end of the spectrum, the concept of "memo
| functions" introduced by Michie22allows functlon evaluation

to degenerate to data retrieval in common cases. POP-210

j doublets, in which an "updater" function (which stores values
* for a specified set of arguments), is paired with an ordinary

valued function, allows the usual assignment and selection oper-
ations for data to apply to functions. An early use of a similar
technique was made in Samuels31 rote learning of the evaluation
of checker positions; in some cases he could look up a
previously computed look-ahead value of a position. This

enabled him to extend the effective depth of his look-ahead
significantly. In general, noting the duality of function
evaluation and data retrieval allows the flexibility of

space-time tradeoffs so necessary In solving complex problems
in list processing systems. Gedanken is based in part on this

principle of duality of function evaluation and data selection.

^.5 Data Access Methods
to

In addition to data extraction, it is important in many
domains to be able to retrieve data items by content. Given
a pattern, all data items matching that pattern should be
obtainable from a data base. Basic indexing and sorting

facilities are necessary to implement such retrieval packages.
Associative links from one, or combinations of key items,
implemented by hash addressing techniques will allow access
for certain classes of data; this is done in PLANNER, among

others QA4 sorts all input expressions through a discrimination
tree, with equivalence over different variable names. A pattern
there defines a set of nodes in the tree below which are all
matching data items; these leaves of the tree are the retrieval
nodes.

Report No. 2339 Bolt Beranek and Newman Inc.

Not all data In the data base need have the same scope

of applicability. Associated with each piece of data

(perhaps implicitly) needs to be context information which

defines the scope of its validity. If the contexts are tree

structured, several incompatible data bases with different

amounts of shared structure can exist (e.g. QA^0).

Complex network structures with many explicit links are

common in symbolic processing applications, especially those

concerned with natural language processing. There are a

number of cases in which additional information is required

about a particular data structure node, but an explicit link

from the data item to this information is forbidden - e.g.

a large read-only data store, and temporary tags marking recent

processing on the node. Another example is associating a

property SIMPLIFIED with a particular substructure of a symbolic

expression without interfering with its mathematical form. A

technique recently added to BBN-LISP allows such implicit links.

It utilizes association arrays; a location in such an array Is

computed on the basis of the internal address of the data item.

In this hash-link location is stored the original address and

the associated information. Care must be taken to dlsarablguate

collisions in this hash array, and to provide appropriate mech-

anisms to garbage collect the implicit link when the data item
Is no longer referenced.

26

Report No. 2339 Bolt Beranek and Newman Inc.

5. Conclusion

Programs to solve complex problems often evolve over a

long time period. A good environment will allow sets of users

to build up a collection of consistent tools which aid in

solving their problems. Built on a core system which is rela-
tively easily transferable to new hardware, it can provide a

machine independent base for a wide range of ectlvities,

A list processing system can't be all things to all

people all the time. However, with a flexible set of features

which span the problem space, extension facilities, a large

library of useful routines, and good documentation, a system

should help a programmer to stand on the shoulders of his

predecessors, not his toes.

6. Acknowledgements

The writing of this paper was supported by the Advanced

Research Projects Agency. The author would like to thank Bob

Balzer, Peter Deutsch, Gerald Sussman, Warren Teltelman, Robert

Thomas and Ben Wegbrelt for discussions concerning various

aspects of the material contained here; and Madeline Morln for

her help In preparation of this manuscript.

*'(

Report No. 2339 Bolt Beranek and Newman Inc.

REFERENCES

1. Anderson, R.H. Syntax directed recognition of hand
printed two dimensional mathematics. Ph.D. Thesis
Harvard university, J^n. 1968.

2. Berkeley, E.G. and Bobrow, D.G. (eds) The programming
language LISP: Its operation and appllGatlons"—MIT
Press, Cambridge, 1966.

3. Bobrow, D.G. Natural language Input for a computer
problem solving system. Ph.D. Thesis MIT 19
In Mlnsky [23]

i». Bobrow, D.G. Storage management In LISP. Proc. IFIP
Conf. on Sy^ol Manipulation Languages NoHF Holland,

5. Bobrow, D.G. and Murphy, D.L. Structure of a LISP
system using two-level storage. Comm ACM 10.3
(March 1967) 155-159

6. Bobrow, D.G. and Raphael, B. A comparison of list-
processing computer languages. Comm ACM 7.i»
(April 1961) *

7. Bobrow, D.G. and Wegbreit, B. A stack implementation
of retention in coordinating sequential processes.
BBN Report No. 233^, February 1972 (submitted to CACM)

8.

10

11

Dranquant, P., Lewi, J., Sintzoff, M., and Wodon, P.L.
"The composition of semantics in Algol 68.
Comm ACM 14, 11 (Nov. 1971) 697-708

9. Dijkstra, E.W.. Cooperating sequential processes. In
Genuys (Ed.) Programming: Languages. Academic Press 1967.

Burstall, R.M., Collins, J.S. and Popplestone, R.J.
Programming in POP-2 Edinburgh University Press
Edinburgh 1971 "

Fischer, D. Control structures for programming languages.
Ph.D. Thesis Carnegie-Mellon University 19/(57 —

12. Floyd, R.W. Nondeterministlc Algorithms. JACM 14, 4 Oct. 1967.

13. Golomb, S.W. and Baumert, L.D. Backtrack orop;ramminp„
JACM 12, H (Oct. 196b) 516-524.

14. Green, C.C., Theorem proving by resolution as a basis
for question-answering systems. Machine Intelligence 4
American Elsevier Publishing Company, Inc. New York 1969

Report No. 2339 Bolt Beranek and Newman Inc.

15. Griswold, R.E., Poage, J.R. and Polonsky, L.P. The SNOBOL
^programming language Prentice-Hall Englewood, N.J.

16. Hewitt, C. PLANNER: a language for manipulating models
and proving theorems in a robot. Proc IJCAI
Washington, D.C. 1969

17. Hewitt, C. Description and theoretical analysis (using
schemata) of PLANNER; a language for proving; theorems
and manipulating models in a robot. Ph.D. Thesis MIT
Feb. 1971

18. Hewitt, C. Procedural embedding of knowledge in PLANNER
Proc Second IJCAI London 1971

19. Ichbiah, J.D. and Morse, S.P. General concepts of the
SIMULA 67 programming language Companie Internationale
pour le Informatique DR. SA. 69. 132 ND Paris Sept. 1971

20. McCarthy, J. Recursive functions of symbolic expressions.
Comm ACM 3 I960 18^-95

21. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P.
and Levin, M.I. LISP 1.5 programming manual MIT Press
Cambridge, Mass. 1962

22. Michie, D. Memo functions: a language feature with rote-
learning properties. Proc IFIP Edinburgh 1968

23.. Mills, H. Syntax directed documentation for PL360
Comm ACM 13, ^ 1970 216-222.

24. Minsky, M.L. (ed.) Semantic information processing MIT
Press, Cambridge, Mass. 1958

25. Moses, J. The function of function In LISP ACM SIGPLAN
Notices June 1969

26. Perils, A.J. The synthesis of algorithmic systems,
J. ACM 14, (Jan. 1967) 1-9

27. Prenner, C. Multi-path control structures for programming
languages. Ph.D. Thesis, Harvard University, June 1972.

28. Prenner, C, Spitzer, J., Wegbreit, B. An implementation
of backtracking for programming languages. Submitted
to ACM 72.

Report No. 2339 Bolt Beranek and Newman Inc.

29. Raphael, B., Bobrow, D.G., Fein Lt», and Young, J.W,, A brief
survey of computer languages for symbolic and algebraic
manipulation Proc IFIP Conf on Symbol Manipulation
Languages North Holland, Amsterdam 1967

30. Rulifson, J.F., Waldinger, R.J., Dirksen, J.A. QA4, a
language for writing problem-solving programs Proc
IFIP Congress TA-2 Plll-115 1966

31. Samuels, A.L. Some studies in machine learning using
the game of checkers IBM J of Res and Dev 3,3 (1959)

32. Sussman, G.J. and V/inograd, T. Micro-planner reference
manual, AI Memo 203, Project MAC MIT Cambridge. Mass.
(1970)

33. Standish, T.A. A data definition facility for programming
languages Ph.D. Thesis Carnegie Institute of
Technology, Pittsburgh, Pennsylvania May 1970

31*. Teitelman, W. Design and implementation of FLIP, a LISP
format directed list processor BBN Report AFCRL-67-0514
July 1967

35. Teitelman, W. Toward a programming laboratory Proc IJCAI
Washington, D.C. (1969) 1-8

36. Teitelman, W., Bobrow, D.G., Hartley, A. K. and Murphy, D.L.
DBN-LISP. TENEX reference manual Bolt Beranek and Newman
July 1971

37. Wegbreit, B., Studies in extensible programminp: lannuages
Ph.D. Thesis Harvard University 1970 (aväiläbleas—
ESD-TR-70-297)

38. Wegbreit, B., The ECL programming system Proc FJCC 197
p. 253-262

39. Wegner, P. Information structure models Proc SIGPLAN
Symposium on data structures in programming languages
SIGPLAN Notices FTTFeh 197l) pp. 1-5^1 ^—

^0. Wlnograd, T. Procedures as a representation for data in
a computer program for understanding natural language
Ph.D. Thesis MIT WlO Project MAC TR-8^1—WIT ~
Cambridge, Mass. Feb. 1971

