
- '.■wrrwovwJ«ÄSW3äa<«WJWI1*K:'^'rv«TT ^^»■iW'tg8WSBimottiaiBH»i«jiiyMDaffgTO^

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
 (U"""y ''•""''•"Q" ol IHI: body ol «>.lf«el and Ind.Mlng m,net,tlon mu.i 6. ,nl,„d whin Ih, oyrmll report i. cl.$,lll,d)

I. OWIOINATING ACTIVITY rCoipof«(,ju»»IOf; Tt __ — l

Massachusetts Institute of Technology
Project MAC

3. HEPOHT TITLE ————_

The Complexity of Finite Functions

2«. HEPOHT SECURITY CLASSIFICATION

UNCLASSIFIED
26 GROUP

NONE

4. DESCRIPTIVE NOTES (Typ» ol fpotl and inclylv dmf)

Ph.D.. Department of Electrical Engineering. February 1972
AUTHORISI (Lmitnun: UtilnZnZ. Inlil.l\ * * 9. AUTMOR(S) (Lail namrn, Uflnmn; Initial)

Vilfan, Bostjan

8. REPORT DATE

March 1972
«•• CONTRACT OR GRANT NO.

N00014-70-A-0362-0001
«>. PROJECT NO.

7a. TOTAL NO. OP PAGES 76. NO. OF REFS

25
9m. ORIGINATOR'S REPORT NUMBERISI

MAC TR-97 (Thesis)
•6, OTHER REPORT NOIS) Mnr ol6« nian6«r« thai may 6*

»»»Igntd 16/a fpotl)

NONE
10. AVAILABILITY/LIMITATION NOTICE« ~

Distribution of this document is unlimited

SUPPLfMENTARY NOTES

None

t2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
3D-200 Pentagon
Washington, D. C. 20301

is. A.STRACT The topics covered are the length of formulas for finite func-
tions, the order of cyclic perceptrons, and pattern counting machines.
Using a generalization of a theorem of Specker, it is shown that the
Boolean function is 1 if the number mod p of arguments equal to 1 is 0
cannot be represented by a formula of length proportional to the number
of arguments if k-ary logic is used with p>k. The same thing can be
shown for arbitrary k if the only binary operators used are max(x,y)
and min(x,y). it is also shown that the connectivity predicate cannot
be represented by a formula of this kind, regardless of k and of the
operators used. Next shown is that the connectivity predicate and the
Euler number predicate cannot be represented by finite order cyclic per-
ceptrons. Finally, it is shown that the only topological predicates
that can be reconstructed from the k-subpattern spectrum of a given
square pattern of O's and I's are functions of the Euler number. The
k-subpattern spectrum of a pattern is a tuple given the number of
occurrences of ^ny ^1. ^^ subpath^rn in the nriainal n^thsrn... f"

14. KEY WORDS

computational complexity
combinatorics
finite functions

DD FORM
I MOV •(1473 (M.I.T.) UNCLASS

Security Classification

MAC TR-97

ERRATA

• -fn and -n denote the n-th line from the top and tho hottoi"

of the page respectively. With few exceptions, only tho nnv, ror-

rect, text is shown since it is usually clear whem it is to '-<-.

inserted.

page line correct text

7 ^2 g = f f E

7 -1 |D|

14 +12 dn

■

37 -4

37 -3

40 46

40 + 8

40 -9

42

51 + 7

52 -R

54 -3

54 -1

55 + 1

21 +5 fj =

logdn

X rr rr
n = cn 0 c.A Ax, 0 c9A 0 x. u u i i=l ^ z i=l 1

^(x, y), an internal operator or F

9{a, y) r R = idp
(1/2).n

(1/2).n - m + 1

an SPCeC
rr

+ 13 b0 © bjATT where T<= Ax".

42 +14 c0 0 c.AC

42 -9 fTAO' = 0

46 3 in. from the top edge and 2 in. from, the

left edge insert check mark (v^'), Also, 4 in.

from the bottom edge and 2 in. from the right

edge insert check mark,
m

49 +5 A"x.
i=l 1

m
49 +10 10 A "•

arbitrary integer 2 3

s. = ^,(11...11,a.)

j times

^AO, z) f L is tho identity (idL) while ^(1, ?) f L
^(C 7.)tL

9(e, 7.) t L arp 1-1, then ^(c, 7) ^ L = ^(p, r^ T I.

ERRATA (page 2)

page line correct text

55 +9 9»(c, z) f L

ri if ^ p arguments are equa] to 1

58 +9 sPJ

I 0 otherwise

P > 1
For an exact description of how ho

divided by £)

0(L(fn, §)) where © , A € $
equals g

end-around

Papert

i€ {j« aj / 0}
a certain basis

pattern, is assumed

that en

61 -9

62 -14

62 -9

62 -5

63 -3

64 + 5

67 -2

74 -12

76 + 6

76 -8

82 +4

84 + 8

86 + 6

98 +4

98 dele

101 -7

105 + 3

105 + 5

105 + 8

106 -11

110 -2

'k
P-,. r
Delete the whole sentence beginning with

Also, suppose

delete lines +5, +6, and +7

?<<".i(l)>a' ••• • <H.i(s)0
(1/2).t

(l/2)-t

(1/2).t

S(norm((F.)^)) contains t t

and any

replaces

for any

118 -14 November 1964

THE COMPLEXITY OF FINITE FUNCTIONS

Bostjan Vilfan

March 1972

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

THE COMPLEXITY OF FINITE FUNCTIONS

ABSTRACT

Lower bounds on the length of formulas for finite functions are
obtained from a generalization of a theorem of Speaker. Let f:
[0,1,,.,,d-l]n -* {0,1,...,d-l] be a function which can be represented
by a formula of length ^ c«n. For any m, if n is sufficiently large,
there is a restriction f: [0,1,... ,d-l]m -♦ {0,1,... ,d-l] of f which
is representable by a special class of formulas called homogeneous
e-complexes. By showing that certain functions do not have restric-
tions representable by homogeneous e-complexes, we are able to conclude
that the length of formulas representing the mod p sum, p > d, or the
connectedness of a pattern on a discrete retina cannot be bounded by
a linear function of the number of variables in the formula.

Also considered are perceptrons over finite fields (cyclic per-
ceptrons). It is shown that cyclic perceptrons of bounded order
cannot represent the geometric predicate connectivity. An interesting
aspect of this is that one proof of the corresponding result for
bounded order perceptrons over the rationals rests on the inability
of the latter to represent the parity function. However, the parity
function requires order 1 if the field has chracteristic 2; thus,
this proof breaks down in the case of cyclic perceptrons. Another
geometric predicate that cannot be represented by bounded order
cyclic perceptrons is Euler number equals k (for an arbitrary k).
However, this predicate can be represented by bounded order percep-
trons over the rationals. It must be noted, however, that our proofs
are different and much simpler than the corresponding proofs derived
by Minsky and Papert for perceptrons over the rationals.

Finally, we investigate k-pattern spectra of a discrete retina.
This is the 2^ -tuple, each component of which corresponds to the
number of times a particular kxk pattern occurs on the retina. It
is shown that the only topological predicates that can be determined
from k-pattern spectra of discrete figures are functions of the Euler
number of the figure.

This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy, February 1972.

ACKNOWLEDGEMENTS

In the first place, I owe a debt of gratitude to Professor

Albert R. Meyer in the course of association with whom I learned

the heuristics of research. In particular, he introduced me

to the problems described here, and then spent long hours with

me suggesting improvements and modifications.

I am also indebted to my readers, Professors Michael J. Fischer

and C. L. Liu for valuable suggestions.

I would like to thank Professor Frederick C. Hennie and

Project MAC for financial support during my study.

Last but not least, thanks are due to Miss Marsha Baker for

consenting to ''ype this thesis.

CONTENTS

CHAPTER ONE: INTRODUCTION AND SURVEY

1.1 Finite Functions

1.2 Formulas

1.3 Measures of Complexity

1.4 Problems Related to the Length Measure

1.5 Speaker's Theorem

1.6 Cyclic Perceptrons

CHAPTER TWO: A GENERALIZATION OF A THEOREM OF SPECKER

2.1 e-Complexes

2.2 The Generalized Speaker's Theorem

2.3 On Speaker's Theorem

CHAPTER THREE: APPLICATIONS OF THE GENERALIZED SPECKER THEOREM

3.1 Counting mod p

3.2 Connectivity

3.3 Thi-« Length of Symmetric Functions

CHAPTER FOUR: CYCLIC PERCEPTRONS

CHAPTER FIVE: PATTERN COUNTING MACHINES

APPENDIX A: CERTAIN PROPERTIES OF SHORT FORMUIAS

APPENDIX B: THE LENGTH OF THE MOD 2 SUM OVER H

LITERATURE

BIOGRAPHICAL NOTE

5

5

5

9

13

20

23

26

26

38

41

50

51

55

60

74

89

97

112

116

118

CHAPTER ONE

INTRODUCTION AND SURVEY

1.1 Finite Functions

Let n be nonzero and finite; then a partial function]Wn -♦IKr , defined

on only finitely many n-tuples, is called a finite function. We will restrict

our attention to a subclass of finite functions. 0 = (0,1,...,d-l] is an

initial interval ofJfT. Then we will consider 5, the set of all (total)

functions D -» D for all possible D and (finite and nonzero) n.

Let f: D -♦ D. Then f is identified with a (functional) table with dn

rows (corresponding to all possible n-tuples over D) and n+1 columns (corres-

ponding to the n arguments and the value of f). Obviously the number of func-
,n

tions Dn -+ D is d .

Consider any function f: D -♦ D for arbitrr y D, n. We will say that f

depends on the i argument if and only if there exist two n-tuples

a = (a1.... ,a.,... ,a) and b = (b ,... ,b ,... .b) such that a = b for i / i,
x j. n iin 11

a^^ ^ bi) and f(a) t f(b). Suppose that f does not depend on its jth argument;

then we will say that the j argument is a fictitious argument.

1.2 Formulas

Let there be given the countable sets H = [x^x^...] of variable symbols

and 0 of operator symbols. Each element of Q is a name for a function in $,

and conversely each function in ? has a name in 0. Let (p f Cl represent the

function f: 0 -»0. Then we will write arg(«P) = n and dom(cp) = D.

1.2.1 Definition

A D-formula is a finite expression F = 9(0^...^) such that co 6 Q ,

arg(cp) = n, doin(cp) = D, and either Gi € E or G^^ is a D-formula for 1 <: i e n.

A formula is simply a D-formula for some D.

Let F be an arbitrary D-formula and let xn be the highest numbered

variable symbol appearing in F. Then F represents a function f: Dn -» D.

This correspondence is well-known and we will not describe it in detail.

Without danger of imprecision, F will also be considered as a representation

for all functions obtained from f by adding fictitious arguments.

Let there be given two formulas F and G. Suppose that F represents a

certain function f, and also a representation for f can be obtained from G

by possibly choosing different variable symbols. Then we will say that F

is equivalent to G (F - G).

Remarks. Usually, if we are dealing with D-formuJas for a single domain

D, we represent the identity function by a variable symbols (i.e., we omit

the operator symbol for the identity). In the formal model we use, we cannot

do this since it would be ambiguous. Also, for purely technical reasons, we

insist that every operator has at least one argument (otherwise, the wording

of several definitions and results would be more cumbersome). Thus, we do

not allow constants. Rather, instead of constants, we use operators with -n.

fictitious argument. Suppose we are given the formula F. Occasionally, we

will say "Replace the variable x (in F) by the constant a". This is to be

interpreted as "Replace the variable x with a (y) " where y is a variable

symbol not appearing in F.

Let f: D ■♦ D and let g be an arbitrary finite function of n arguments

with domain E = Dn and such that g = f E. Let F be a D-formula for (i.e.,

representing) f. Then we can also say thti; (F,E) represents g. From now on

we will not be pedantic, and we will simply say that F represents g. Some of

the main results in this thesis are concerned with the question, given a

specific function 0° -♦ D , how much can we simplify its representation if we

choose an E-formula for it with D ? E.

If F is an arbitrary formula, then the set of variables appearing in It

will be called its support (denoted by S(F)). The set of operators appearing

in F will be called its basis (denoted by B(F)).

Let $ c 0. Then the set of formulas F such that B(F) = $ will be called

the set of formulas over $. Hopefully without too much danger of ambiguity,

we will also say that $ is a basis of operators (for formulas over $). All

the significant results we will describe deal with formulas over $ when $

is finite (and representing a set of operators with domain D for a single

value of D). From now on, whenever a basis of operators $ is introduced,

it is always assumed finite. Usually, we are interested only in bases that

allow all function D -♦ D for a certain D and arbitrary n to be represented.

Such bases will be called complete bases (for D).

Notat-'.on. Elements of ^ will always be denoted by lower case Latin

letters. The various bases of operators we will use will be denoted by

capital Greek letters; operators (i.e., basis elements) will be denoted by

lower case Greek letters (except for well known operators for which establlsheJ

notation exists); formulas will be denoted by capital Latin letters; and D

will always refer to the domain of formulas, d will denote D .

1.2.2 Example.

If D = (0,1), then the functions Dn -♦ D for arbitrary n are known as

Boolean functions. A complete basis for (0,1) conists of the binary operators

A (conjunction) and V (disjunction), and the unary operator - (complementation).

This basis shall be denoted by 11 . The formula F = V(A(-(X),x),A(x ,-(x)))

over n represents x1 P x,, (the mod 2 sum of x1 and x,,). Usually, this is

written as ^ A X;, V x1 A ^ We have S(F) = (x^x^, and B(F) = 0 0

A convenient representation of formulas is by trees. This is a standard

device that will not be described; suffice it to say that to each formula F

there corresponds a tree T(F) whose terminal nodes are labelled with variable

symbols and the nonterminal nodes with basis symbols. As an example, le' F

be as defined in Example 1.2.2. Then T(F) is shown in Fig. 1.1.

Given a formula F, we need a notation for subformulas of F.

. The definition of subformula is the standard one: (1) F is a subformula

of F, (2) if F =CD(F1,...,Fk), then if F;l for 1 ^ i ^ k is not a variable

symbol, any subformula of Fi is a subformula of F, and (3) subformulas of F

are only objects satisfying (1) and (2). Subformulas distinct from F are

proper subformulas.

Let G be a subformula of F such that G = cp^,... ,Hg). Then we will say

Hi =G.i for 1 ^ i * ^ This notation can be iterated. In Example 1.2.2,

F.2.2 = "(x2)' However. note that F^^ is a variable symbol which according

to our definition is not a formula. This can be remedied by replacing this

particular occurrence of the variable symbol x1 by id(x1). For this reason

we will require that all the bases we consider contain the identity function

whether this is specifically mentioned or not.

If G ~ F.j(l).j(2)...j(r)' then j = J<1)J(2)--J(r) is called the Index

of G (for completeness, let \ denote the index of F). If G is a proper sub-

formula of F, then F = HCx.G) where X U S(G) = S(F) and H(X,z) is a formula

(determined by j) where z appears only once. We write H = F/G. In this case,

with F and G as given, we will also write S*(G) = X (i.e., the variables of
F '

F that appear outside of G). We define S*(F) = $. The subscript F will
r

generally be suppressed when it will be clear to what formula F we refer to.

In what follows, whenever we will deal with a subformula G of F, it will be

assumed that the index of G is also given; for if not, then, e.g., F/G and

S^(G) are not uniquely defined.

Frequently, formulas will occur where certain variables have been re-

placed with constants. Suppose F is a formula over $, X =S(F), and a € D;

then, F with all variables except those in X replaced by a will be denoted

X X
by Fa. Obviously, Fa is a formula over $ U (a). If f is an arbitrary function

X a subset of its arguments, then f has the analogous meaning, viz., the
a

function obtained from f by restricting the elements outside of X to a.

The functional table of f is obtained from that of f by deleting all columns

except those that correspond to X and retaining only the rows with a

entries in the deleted columns.

1.3 Measures of Complexity

Let us introduce the three most widely studied measures on formulas:

(1) Length. The length of a formula F, denoted by L(F), is the number of

occurrences of variable symbols in F. In other words, it is the number of

terminal nodes of T(F).

10

(2) Cost. The cost of a formula F, denoted by C(F), is the number of opera-

tor symbols in F. In other words, it is the number of nonterminal nodes of

T(F).

(3) Depth. The depth of a formula F, denoted by D(F), is the depth of nest-

ing of operators in F. In other words, it is the number of arcs on the long-

est branch of T(F).

Now, given an arbitrary function f: D" -♦ D and a (finite) basis $, we

define the length of f over $ as

L(f,$) = rain((^: There exists a formula F over $ for f such that
L(F) = i])

If f canned be represented by a formula over f, we define L(f,f) = «>. Simil-

arly, for cost and depth.

It is noteworthy that all the measures above are closely related. In fact,

c0-L(f,$) ^(f^) ^ci.L(f>$) (1.3.1)

c2-log2(L(f,$)) äD(f,$) ^ c3-log2(L(f,$)) (1.3.2)

for an arbitrary function f such that L(f,$), C(f,$), and D(f,$) are finite,

and certain constants CQ, C., C2, and c» that depends on f. The basis $ is

also arbitrary, except in the case of the right inequality of (1.3.2) where

it must be such that all the constants and the function g (see Lamma 1.3.1)

may be represented.

We first establish the relation between cost and length (1.3.1).

11

Any formula F over $ can be built up from one which uses only one opera-

tor symbol (an elementary formula) by successively replacing variable symbols

with new elementary formulas. If F does not contain one-argument operators,

then whenever we increase the cost during the build-up (by adding an elementary

formula with cost 1), we also increase the length. Specifically, the length

increases by between n , -1 and n -1 where n J and n are respectively mln max min max

the smallest number larger than 1 and the greatest number of arguments of an

operator of $. This results in the estimate

- 1 IT •L(F) * C(F) 5 - c - .L(F) (1.3.3)
max min

where c = 1. Suppose F contains one-argument operators. In other words, T(F)

contains nodes with ^ranching factor one. Let the maximal number of such nodes

that occur one after another on any branch of T(F) be c*; then (1.3.3) still

applies with c = c* + 1. (1.3.1) is obtained from (1.3.3) by noting that the

minimal length or cost representation of any function (over the chosen basis

$) can be achieved with a formula where c* ^ d (the number of functions D -♦ D).

The left inequality in (1.3.2) is established by a trivial counting argu-

ment (the maximal number of terminal nodes tn a tree with branching factor <:

n and depth d is n). The right side requires more effort (the following

argument is due to R. W. Floyd). We first state the following obvious

1.3.1 Lemma.

Given a formula F such that F = F.(X,,F_(X.)) where F„ is a proper sub-

formula of F and F. = F/F-, the following holds:

12

F = F3(F1(X1,C0), F1(X1,C1),...,F1(X1>CdÄl),F2(X2))

where (^ for D ^ i ^ d-1 is any formula representing the constants 0,...,d-l

(or, as we have remarked previously, the one-argument function with constant

value), and F- is any formula representing the function %{zn,... ,z, ,,2
U d-1 d-

"zo if zd =0' zi if zd = 1'--" zd-i if zd =d"1-

Let F be an arbitrary formula over $, and let G be a proper subformula

of F. We already know that F = H(X,G). The claim is made that if L(F) > 1,

G can be chosen in such a way that

n
L(H)-1,L(G) < --—j^ •L(F) (1.3.4)

max

where nmax is as defined previously. (Remark: L(H)-1 is the number of

occurrences of the variables of S*(G) in H.)

To find G use the following procedure: Start with F and proceed to sub-

formulas of F. Assume you are considering the subformula K. Then two cases

can arise. Either among K for 1 «: j ü k where k is the number of arguments
• J

of the outermost operator of K there is one, j', such that L(K ,,) ^ a'L(F)
• J

(0 < a < 1 will be determined later with the purpose of obtaining the lowest

possible estimate of L(H)-1 and L(G)), or not. In the first case, proceed to

K , and containue. Otherwise, set G = K „ where j" is such that L(K .„) =
• J • J . j

max (L(K)) and terminate. Before the procedure terminates, L(K) >■ a-UF).

Thus ^ L(G) < a-L(F). This also means (l-a)'L(F) S L(H)-1 < (1- a)
max max

.L(F) (because L(G) + L(H)-1 = L(F)). The lowest bound for L(G) and L(H)

is obtained by setting a = 1- ; hence (1.3.4)
max

13

Now apply Lemma 1.3.1 with G replacing F2 and H replacing F . F is of

depth c, depending on $. If the outlined procedure is applied recursively to

H(X,C.) for 0 £ i <: d-1 and to G, we obtain in (1.3.2) . = ~-Z— where
n +1 . 3 log2b , _ max T
n
max

Note that unlike the cost-length relationship, the minimal value of

depth may not be achieved by the same formula as the minimal value for length,

Apart from the relationship between the various measures, depth and co-

will not be treated further. Even though in what follows (in this chapter)

many things hold mutatis mitandis for depth and cost, most of the specific

discussion and the examples shall be confined to length.

l^t—Problems Related tn the Lpnpfh MeasurP

In this section we will mention several questions that have been asked

about the complexity of finite functions, their status as of this writing,

and how they relate to the work to be described here.

t
A more precise expression is obtained if the right side of (1.3.2) is re-

placed by j^ .log2(L(f))fi for some constant i. Namely, if we start out

with a formula F and decompose it according to (1.3.4) and Lemma 1.3.1, then

the length of H(X, C.) and G is bounded by ^L(F)+k where k is the length of C

After n applications of Lemma 1.3.1, the lengths of the relevant formulas are

bounded by -w L(F) + k i- r + 4- k-=-f-W — n fv\\ a. b . , ,-. j bn uyi i -r n-bn-T -r. ••f K^-t-K RS hn (L(F),) + - ; hence the figure

above. b

14

The Problem of Ap;preeate Length

Let ?' be a complete basis (for a certain domain D). The statement of the

problem is: What is the largest number L(n,$) such that there exists a function

f: Dn-» D and L(f,$) = L(n,$)?

It has been studied by several authors, and is now effectively disposed

of. Riordan and Shannon [RiA2] first derived a lower bound for L(n,n).

Actually they studied series-parallel contact networks, but the two models

are equivalent. The first upper bound (for the same model) was obtained by

Shannon rsh49]. Krichevskii rKr59] derived a lower bound for L(n,$) for

arbitrary domains and bases, while Lupanov [Lu59] obtained the best upper

bound for the general case. The result is

dn 0(L(n'$)) =T^ d^-i)

where 0(f(n)) = g(n) means that lim -f^ is finite and nonzero. There
n -» oo SW

are two remarks that are in order here. The first is that

Formulas represent finite functions efficiently; I.e.,

the total number of formulas (over a grven basis $) of

length up to L(n,$) closely matches the number of func-

tions of n variables. (1.4.2)

The second is

The fraction of functions Dn -» D that can be represented

by formulas of length up to L(n,$)'(l-G)for an arbitrary

0 < e ^ 1 approaches zero as n -♦ 00. (1.4.3)

The interested reader may obtain more information in the literature cited

above.

15

ions

Obviously. „e c(Juld deflne functlons c(n>f) ^ D(njf) ^^ ^

L(n>$) I„ terns of the cost ^ dei)Ch ^^^^ ^ ^^^ ^^ ^^^

(aggregate c»pl8xlty functlons) can be defined ln ^^ ^ ^ ^

for the representation o£ functions D" -. D and any „eaaure on this „odel (an

obvious variation of L(n,« Is to ra.ove the condition of completeness on «.

It should be noted that the aptotic behavior of aggregate coepUxlty functions

r^alns an active area of research. For references o- the subject, see Lupanov

[Lu70].

The Minimization Problem

Investigation of the complexity of finite functions started on representa-

tions of Boolean functions by logical circuits. In fact, formulas can be

thought of as circuits with fan-out one. Thus, the first problems studied

were those a logic designer is likely to ask: Given a finite function, what

is the minimal circuit (formula) that represents it (i.e.. find the complexity,

and do so "effectively").

Unfortunately, no statisfactory solution to the minimization problem

exists (for any measure). This does not mean that it is impossible to obtain

a minimal formula for a given function f: Dn - D; rather that existing

algorithms are impractical. I^us. it is always possible to order formulas

according to length, and then search all formulas up to length L(n>$) for the

first formula that represents f; bur. since there are d^ functions of n argu-

ments this approach is absurb.

At the present, all existing algorithms for the minimization of functional

representations employ some sort of an exhaustive search (e.g.. the Quine

algorithm for the minimization of disjunctive form representations of Boolean

16

functions), m fact, there is reason to believe that a more efficient method

does not exist, i.e.,

1.4.1 Con^prt-nro

Any generally applicable exact minimization procedure is comparable (in

terns of computational complexity) to an exhaustive search among formulas.

It is useful to consider a specific machine model. Let us consider

implementations of such a procedure as a deterministic one-tape Turing machine

M$(see, e.g., Arbib rAr69]) that receives as its input the d
n-tuple defining

an arbitrary function f: Dn -» D, and whose output is the minimal formula F

(over $) for f. Conjecture 1.4.1 gives us that the computation time of

M$ may attain an exponential (in the length of the Input). Let us venture

a more restrictive arid precise version of Conjecture 1.4.1:

1.4.2 Conlecti^ry

Let M$ be as described, m is the length of its input, and let Tl(m) be a

function guch that ^ - 0 as m -» » for an arbitrary constant c 1# -^
c

the proportion of inputs of length m at which the running time of M exceeds

^(m) approaches 1 as m ■* <*>,

Actually, the specific machine model on which the procedure of Conjecture

1.4.1 above 1§ implemented is not particularly Important. It cat:, be easily

shown (see, e.g., Arbib rAr69], Chapter 4) that different deterministic machine

models (this applies to the most widely used models, e.g., one-tape and multi-

tape Turing machines) can simulate each other in such a way that the running

17

time of one Is related to the running time of another at most by a polynomial.

In this way, whenever the running time is exponential (in the length of the

input) in one case, it must be sc also in others.

It seems that Conjecture 1.4.1 was first expressed by Yablonskii [Ya59].

A very interesting result connected with this subject was recently obtained

by Cook rCo71]. He obtained strong evidence that a simpler problem requires

nonpolynomial time. The problem is that of recognizing whether a certain

disjunctive normal form (for a Boolean function) represents the constant 1.

Cook showed that if this problem could be solved in polynomial time (by a

deterministic one-tape Turing machine), then a number of other problems that

are regarded as very difficult (e.g., given the graphs G^ and G», determine

whether Gj is isomorphic to a subgraph of G»; the recognition of primes; etc.),

would also be rapidly computable. Note that a fast minimization machine

would give us also a fast constant recognizer; hence. Cook's results supports

Conjecture 1.4.1.

The Classification Problem

In view of the difficulty of finding an exact nontrivial solution to the

minimization problem (i.e., one that does not employ exhaustive search), present

research is directed ut establishing bounds for the length of functions. We

consider sequences of functions f,,... of 1,... arguments and study the

growth rate of the length of f . Thus, we can talk of classes of linear

(length) sequences, quadratic (length) sequences, etc. Also of nonpolynomial

(length) sequences. Unfortunately, if a !>**quence belongs to a nonlinear class,

it Is very difficult to estimate Its length. We cannot even assign represen-

tatives to the polynomial classes of degree > 2, let alone the nonpolynomial

18

classes. In fact, at the present we have only a very limited store of examples

of nonlinear sequences.

Consider the Boolean function f* ^ x^ Subbotovskaya [Su61] gave a

striking proof that OaCf^, IT)) ^ n3/2. It was known already to Shannon (see

[Sh49], or [Ya54I) that 0(1(^,0)) ^ n2 (the length of this sequence, of course,

grows linearly if 6 is used). Unfortunately, it seems that the technique of

fSu61] cannot be generalized to d > 2. Subbotovskaya's result has recently

been improved by Khrapchenko [Kh71]. He succeeded in showing that 0a(f2 11))
2 n

- n . Since this result employs a very interesting techniru.j, and since it

has not yet been translated into English, it is reproduced in Appendix B.

Neciporuk [Ne66] discovered a sequence of Boolean functions f such that

n2 n

0a(fn,$)) = Y^ for ^ arbitrary basis «. It is true that the functions

involved in the Neciporuk sequence are rather "artificial" in that, while

defined in a straightforward way, they have no special aignlficance; however,

lately Ilarper and Savage [Ha71] have succeeded in applying the Neclpoi'uk tech-

nique to a practical combinatorial problem (The Marriage Problem).

Neciporuk's construction is based on the following lemma: Let f be a

Boolean function of n arguments. Consider a subset X of the arguments of f

and the set of restrictions of f to X obtained by setting the arguments outside

of X to constants. Let the number of su^h restrictions be r. If V is any

fomrnla over a finite basts $ for f, then the number of occurrences of variables

representing the arguments in X is S c-log^ where c depends on the basis ?

(for the proof of this see (Ne66l or [Ha?!]).

The Neciporuk function fn of n arguments is then obtained as follows:

The n arguments are arranged in a rectangular array with dimensions as shown

in Fig. 1.2. Each argument x is associated with a 0-1 valued m-tuple a
J ij

19

such that (1) not all components are 0, and (2) if (l,j) j* (k.-O then

a. . t a .. Then we define

fn = © x ® K(a k)
all l,j 1J W lJ

where K^.jk) denotes the conjunction of those arguments x. whose second

subscript (t) correspondi? to nonzero components of a...
~lj

It can be verified that the number of restrictions of f to the variables
n

of an arbitrary row (except, perhaps, ^he lasjt which may be imcomplete) ob-

tained by replacing the variables of the other rows with constants is 2n"m.

This follows from the fact that any Boolean function can be uniquely represen-

ted by a Boolean polynomial (see Lemma 4.5). Then, by the lemma above,, the

number of occurrences of variables of any row (except, perhaps the laat) in

any formula for f is ^ c«(n-m); hence, the length of f over ? w c« - (n-m). n n m
n2

In other words, 0(L(cpn,?)) » "j^r^ for an arbitrary basis *.

Neciporuk's construction may be viewed as a solution to a special case

of the following problem (the problem of exhibiting a function of arbitrary

length): Given a basis * and a number k ^ L(n,?), exhibit a function

f: D -♦ D of length ^ k over i. In Neciporuk's case 0(k) » r^
logj"

Since so few examples of functions that are known to be of large lengtli

exist (in spite of (1.4.3)), the reader has no doubt already gained the

impression that this problem too is very difficult. However, we again have

the trivial solution that consists in examining formulas in n variables In

the order of their length, recording the functions they represent, and

choosing the first previously unencountered function represented by a formula

of length 2 k. In fact, it Is reasonable to state an analog of Conjecture

1.4.1:

20

1.4.3 Conlecturp

The problan of exhlbltlnß a function of arbitrary length is comparable

(in terns of computational complexity) to an exhaustive search among formulas.

We again make this conjecture more precise on the example of determin-

istic one-tape Turing machines.

1.3.4 Conjecture

* is an arbitrary basis. N^ is a deterministic one-iape Turing machine

with input (n,k) where n is arbitrary and k * L(n,*), and whose output is the

d -tuple describing a function f of n arguments such that L(f,9) * k. Then

there exists a constant c > 1 such that if k a e.L(n,*) for any 0 < e^ 1,

n
the running time of N$ on input (n,k) exceeds c

c when n s n(e).

We can am up the discussion of the classification problem as follows.

The problem is far from understood. At the present no sequence of functions

is known whose length grows faster than n . Isolated examples of sequences

2
with growth rate s n are known, and present research is directed at inven-

ting more general techniques that can be used for estimating the complexity

of whole classes of sequences. Also technlquep have to be devised for d > 2.

The importance of this will be discustied below in Section 1.5.

1L5—Soecker'a Thp?ran

The first general technique for proving the nonlinearity of a large

class of sequences (of Boolean functions) was discovered by Soecker [HoOS).

Let the basis H U (x © y] be denoted by Z . Then

21

Theorem (SDPC^^).

If f is a Boolean function of n arguments, if L(f ,Z) s on for s „me

constant c, then for any integer m, if n ^ Vm,c), a subset X = (x, ,...,x]
o I'm

of the arguments of f can be found such that (1)

v m m
fj-cec • n (iex)ec ex (1.5.D

i-l i z i-l i

where c0, CJ, c2 are Boolean constants and ^(m.c) is a certain number-

theoretic function. Furthermore, (2) if the basis is H (the other assump-

tioni remaining unchanged), then c- "• 0.

This theorem has been used by Hodes and Specker to show that the predi-

cate

n

E x1 = 0 mod k (1.5.2)
i«l

for k > 2 and xi e (0,1) is of nonlinear length over E.

Using the second statement of the theorem, they are also able to give

n
an alternative proof of the nonlinearily of the length of ® x over 11.

i-l 1

Another result obtained with Specker*s Theorem is the fact that some

geometrical predicates (in particular, connectivity) discussed by Minsky

and PapertrMi69l are of nonlinear length over S (see Hodes rHo70]).

In Chapter TWo we will formulate and prove a generalization of Specker's

Theorem (Theorem 2.2.2) to include the case d > 2 and multi-argument oper-

ators In *. Our proof reveals the nature of both results more clearly.

TZ
^s Will be discussed In Chapter Two.

22

They belong to a class of combinatorial results reminiscent of Ramsey's

Theorem (see Ryser [Ry63]). In fact, an earlier version of our proof

of Theorem 2.2.2 used Ramsey's Theorem. Besides this, Theorem 2.2.2

enables us to derive the nonlinearity of new functions (sequences of

functions) such as counting mod p where p is a prime, d possibly equals

p, but there are restrictions on the basis, etc. An example of an im-

provement over existing results is the connectivity predicate. Hodes

[Ho70] proves that it is nonlinear if d = 2. However, in Automata Theory,

for example, the result that a certain language can be computed in non-

linear time if k states are used in the finite control would be considered

weak. Rather we search for proofs that work for arbitrary finite controls.

The Generalized Specker Theorem (Theorem 2.2.2) gives us a tool for proving

the nonlinearity of the length of the connectivity predicate regardless of

the domain D and basis $. We can apply it to connectivity by "reducing"

connectivity (for the meaning of "reduction" see [Mi69] or 3.2) to certain

symmetric functions.

We should note that the generalization of Specker's Theorem that we

prove is the obvious one to attempt; but, as the reader will see, the proof

turns out to be less straightforward. As an indication, consider (1.5.2).

It does not generalize directly to d > 2 since, e.g., the function [0,1] n-»

(0,1] defined by I x. = 0 mod 6 can be represented in linear length with
i=l 1

d = 3. This is because

n n n

[T x - 0 mod 6] = [£ x = 0 mod 3] A [E x - 0 mod 2]
i=l i=l i i=I i

Lons

23

Hodes and Specker do not derive any bounds for the lengths of the

functions investigated by them. This question is asked (and to an extent

answered) in 3.3.

1.6 Cyclic Perceotrons

Cyclic Perceptrons will be treated in Chapter Four. They are an

application of ideas of Minsky and Papert to the representation of functic

by combinations of finite operators. In particular, one of the concerns

in rMi69I is to formalize the intuitive Idea that the connectivity predicate,

being "global" in nature, cannot be computed (or represented) by a "simple"

combination of "local" predicates.

The perceptron is the predicate

Z a.'Cp * 0
i€I

where I is an indexing set, ai € Q, the rationals, cp. € $, a set of Boolean

functions (whose value is interpreted as being either the rational 0 or 1.

The cyclic perceptron is defined as

£ a -cp € Y

ifl

where ai € F, a finite field, Y ^ F, and other symbols have the same inter-

pretation as before. Thus, both represent a certain Boolean function.

Minsky and Papert introduce the concept of the order of a perceptron

(the maximal number of arguments on which co depends where i ranges over I).

They define then the order of a predicate as the minimal order of a per-

ceptron that represents the predicate. They formalize "local" by defining

24

an infinite predicate sequence to be local if and only if every member is

representable by a perceptron of order ^ r, for some finite r. They are

then able to show that connectivity is nonlocal.

The concept of order can also be applied to cyclic perceptrons. Chapter

Four will contain results on the order of the various predicates introduced

in [Mi69]. In particular, connectivity is shown to be nonlocal. This will

be an extension (to finite fields of arbitrary characteristic) of the results

described in [Vi70].

Chapter Five describes a model of computation (Pattern Counting Machines)

that again performs- a "local" computation followed by a "global" computation.

In this case the "local" computation is even more constrained than in the

case of perceptrons. The result is that no matter how cleverly we utilize

the "local" information in the subsequent "global" phase, the connectivity

predicated cannot be computed.

I

25

T(F) for the formula F in Example 1.2.2

Fig. 1.1

• th 1 row

J column

number of columns: m = fiog^nl + j

number of rows: rn/ml
2'

The array of arguments used in the definition of the
Neciporuk function f

n

Fig. 1.2

26

CHAPTER TWO

A GENERALIZATION OF A THEOREM OF SPECKER

2.1 e-Complexea

Throughout this section, all formulas are D-formulas for some fixed (hut

arbitrary) domain D. and all operators are functions Dr -» D.

Given the formulas F^...^, we shall call the formula F = CO(FF)

where co is an arbitrary operator a parallel combination (PC) of F1 F . co is

called the decoding operator of F.

Let FOC.z) be a formula where the distinguished variable z appears only

once, and let G be an arbitrary formula. Then F(X,G) shall be called a series

combination (sc) of F and G through z.

2.1.1 Definition

We give an inductive definition of an elongated n-component (e^component)

for n ^ 0.

Th

(1) Let cpin be an arbitrary unary operator and z an arbitrary variable symbol

en cpin(z) is an e0-component. z is the input variable while to, is the
in

input operator.

(2) Let co be an arbitrary binary operator, G an arbitrary e^-componcnt,

and x * S(G). Then F = cp(x,G) (or cp(G,x)) is an e^component. The input vari-

able and input operator of G are also the input variable and input operator

of F. x is a lateral variable of F. Any lateral variable of G is also a

lateral variable of F. co will be called an internal operator of F.

27

An example of an en-component is given in Fig. 2.1. Lot F be an arbitrary

en-component, and let x be the sequence of lateral variables arranged in the

order they are connected to the branch of T(F) extending to the input variable.

Then x is the lateral sequence of F. If F is an e -component, then the lateral

sequence of F is \ (the empty sequence). For example, the lateral sequence of

the e-component in Fig. 2.1 is x.,...^ .
1 ' n

An en-component with all internal operators equel is a homogeneous

e -component.

2.1.2 Definition

r
A formula F is an e^-complex if (1) F is a PC of the e-components F.,...,

Fr, and (2) the lateral sequence of Fi for 2 S i s: r is either equal to the

lateral sequence of F.., or the reverse of it.

Fp"., Fr are the components of F. If the variables of F are numbered

as in Fig. 2.1, the second condition of Definition 2.1.2 means that any compo-

nent Fi F
r either appears as in Fig. 2.1, or as in Fig. 2.2. The compo-

nents of the former kind will be known as standard components, while those of

the latter kind will be called the reverse components. The lateral sequence

of Fj will also be called the lateral sequence of F.

Both in the case of e^components and e^-complexes, one or both indices

will occasionally be omitted if the particular property they refer to is

irrelevant to the argument at hand.

An o-complex composed of homogeneous e-components i* a homogeneous

e-complcx.

28

One might wonder what the purpose of introducing e-complexes is since

for appropriate r and m every function of n variables can be represented by
r

an em-complex. Thus, it would seem that this class of formulas is trivial.

However, we will be concerned with e^-complexes where r remains fixed as n

grows without bounds, and this will allow us to obtain interesting results.

We introduce some nota'.ion. Let F be an e -component with lateral

sequence \(i)»\/2) xi(n)* a ^ D i3 an arbitrary constant, cp denotes

the internal operator corresponding to x, .,,». Also set cp = cp. . Then
l(j.J n+1 in

f Va'Cpj+l(a',,,'Vl(a,V,,,)) if ! ä J < k ^ n+1

^ undefined otherwise

Note that cp^ . is a unary operator if j • n+1, otherwise it is a binary

operator (If it is defined at all). Usually we will suppress the superscript

a because it will be clear what constant is referred to.

We now state the simple

2.1.3 Propoaition

Let F be an en-component with lateral sequence x and input variable z.

X is an arbitrary subsequence of x of length m ^ 0 and a € D is an arbitrary

constant. If we denote the set consisting of z and the elements of ^ by Y,
Y

then F. is equivalent to an e -component G. a m

29

Proof

Let x - (Xl,x2,...,Xn) and 1 = (xl(1), x1(2),...,xi(m)) = x. Set i(0) = 0

and i(m+l) = n+1. Then G has the operators ^ = 9(1(j.1)+1 1(j)) for i ^ j ^

In+1 ^m+i
i8 the Input operator of G). g

2.1.4 Remark

Obviously, Proposition 2.1.3 holds for e-complexes as well; one merely

has to perform the above construction for each component.

Proposition 2.1.3 will be frequently invoked. Namely, we will take an

e-complex F, select a subsequence I = x, the lateral sequence of F, and obtain

G as above. In this case, G is called the result of an a-merger with basis

y on F.

We introduce another restricted class of formulas.

2.1.5 Definition

A series parallel combination of e-components (SPCeC) is obtained accor-

ding to the following rules:

(1) An e-component is an SPCeC.

(2) Let F and G be an e-component and an arbitrary SPCeC respectively.

Then the SC of F and G through the input variable of F is an SPCeC.

(3) If F1,...,Fr are SPCeCs, then a PC of F.,...,F is an SPCeC.

(4) An SPCeC is only an object satisfying (1), (2), or (3).

30

Given an arbitrary SPCeC F, we describe its set of components. If F

consists of the single e-component G, then G is the only component of F.

If F is the SC of an e-component G and another SPCeC H, then the set of

components of F consists of G and the set of components of H. If F is a

PC of F1,...,Fr, then the set of components of Fconsists of the sets of

components of Fi for 1 s i =i r. Among the components of F, those whose input

variable corresponds to a terminal node of T(F) will be called terminal

components while the others will be called internal components. An example

of an SPCeC is given in Fig. 2.3. This particular SPCeC has four terminal

components and two internal components.

2.1.6 Proposition

An SPCeC is equivalent to a PC of r e-components where r = d'I+J and I

and J respectively are the number of internal and the number of terminal component of F.

Proof F can be converted into a PC of e-components by using Lenrna 1.3.1.

The estimate of the number of e-components in the PC is also obtained from

there. |-)

Remark It is a simple matter to verify that if F of Proposition 2.1.6

has k components, then I <: k-1; and thus r £ d« (k-l)+l.

2.1.7 Proposition

F is a SPCeC with k components F.,...,F, . F, for 1 <: i <: k is an e -
J- K i n

component for n S 0, and, furthermore, the sets of lateral variables of F.

and F^ are equal for 1 ^ i, j ^ k. Let X be the set of lateral variables

of ?^ and let Z be the set of input variables of F. Then for any m ^ 0 and

31

a c D it u a ^.(njjk) ^here T (m.k) is a certain function (to be defined),

there exists a subset I c x vith |y| " in such that F is equivalent to an

e -complex G with Y as the set of lateral variables. Furthermore, r * d'Ck-D+l.
m

Proof If m ■ 0, we can immediately apply Proposition 2.1.6 and obtain an

e0-complex where r is as described in the statement of the proposition; thus

Tl.(0,k) = 0. We assume, therefore, that m > 0.

We recall the following familiar result:

2
Let 1(1), 1(2),... ,i((p-l) +1) be a sequence of distinct integers. Then

we can extract a subsequence of length p that is either increasing or decreasing

(for the proof see Berge [Be71] p. 16).

Without loss of generality, we can assume that the lateral sequence of

F, is x.,...^ . Then the lateral sequence of F2 is x.,.*, ^ ov* * * ,xl(n)*

The sequence i(l), i(2),..., i(n) consists of distinct integers; therefore,

if n ^ (n.-l) +1, we can apply the above result snd find a subset X. ^ X of

n variables such that after performing an a-merger with basis X. on all

components of F, the lateral sequences of the descendants of F. and Fj arc

either the same or opposite. We can continue In this way, processing one

after another all components. We end up with an SPCcC with components

G.,...,G. such that the lateral sequence of G. for 2 5 I « k Is cither equal

to that of 3. or the reverse of It. To obtain G, wo apply Proposition 2.1,6.

In order that 'Y| ■ m, we must have

2k-l
n s Mm.k) = (m-1)

for m s 1. The estimate for r Is obtained from the Remark following

Proposition 2.1.6.

32

Another equivalence that will be used later is given by

2.1,8 Lenina

E is an en-complex, X is the set of its lateral variables, and Z is fhe

set of its input variables. Then for any m ^ 0 and a f D, if n a "^ (m.r),

there exists a subset Y c x with 'Yj - m such that E is equivalent to a

honiogeneous e -complex F.
in

Proof If m » 0, we simply use Proposition 2.1.3, and the result is a homo-

geneous CQ-complex (obviously, any e0-complex is homogeneous). Then T (0tr) =0.

Thus, from now on we assume that m ^ 1.

The proof will be given for the special case when E has two components:

a standard component E. and a reverse component E . It will then only be

indicated how to generalize the proof.

A procedure (The Homogenizing Procedure--HP) will be described that will

2
transform an e -complex G consisting of a standard component G. and a reverse

component G2 with p a ^(q) (for a function \ that will be defined later)

and with the properties: (1) There exist (possibly empty) subsets R. and

R2 C D such thai c^U^fRj - idR (identity on R^ and i' (a.y)^ = Id

for 1 ^ i s p where v. and ilr. is an operator of G. and G, respectively

and the first argument corresponds to the lateral variable, and (2)

"(1 5 i, j s p) [(^(x.y) ? R1 = cMx.y) = ^(x.y)! (2.1.1)

(i.e., the operators of G1 are Identical on the Inverse Image of R.). Simil-

arly for the operators of G- on R«.

33

Remark Note that If R. and R Include the range of every operator,

Property 2 translates Into the identity of the operators. In particular,

this holds if R. « R. ■ D.

2
Remark Note that an arbitrary e -complex satisfies Properties 1 and 2

with Ri " R? * ^

o
The result of applying HP will be an e -complex H that will either be

«I

homogeneous, or will have Properties 1 and 2 with S1 and S, replacing R and

R2 respectively and R1 if S1 or R2 ? S2. Due to the Remarks above and to

the fact that D is finite, repeated application of HP on E finally yields F.

The condition on n is

n ^ n2(m,2) - ^(^(...^(m)...)) (2.1.2)
• „^ _—«

2d times

This bound for n corresponds to the worst case when R. or R- increase by only

1 on each application of HP.

Before describing HP, note the useful fact that because of Property 1,

Properties 1 and 2 are preserved under a-mergers.

Description of HP The lateral sequence of G is of length (v+l)«u-l for

certain values of u and v that will be defined later.

Consider the sequence

(CD((k-l).u+l,k-u)' * ((v-l).u+l, (v-k+l).u)) (".1-3)

for k = l,...,v. Sequence (2.1.3) is illustrated in Fig. 2.4. The two

vertical lines represent G.. and G»; the numbered horizontal outlets represoni.

the lateral variables (with the corresponding number); the boxes indicate the

34

variables and operators that take part In the formation of any particular

^(i.j) and *(i,J); an ,x, be8ide a variable Indicates that It Is not set to

the constant while 'a' Indicates that It Is set to a; the two checked boxes

represent the first member of (2.1.3).

In the sequence (2.1.3), either (Case I) the ranges of o
((k-l).u+l,k'u)

and ,i,((v-k)-u+l,(v-k+l).u) for 1 ^ k ^ v are Included In ^ and R2 respectively,

or (Case II) not.

Case_I. If v Is large enough, we can find q identical elements in the

sequence (2.1.3). Let the indices k corresponding to these elements be

kl'*,,'kq* Perforinin8 an a-merger with this set as basis, tho desired

e-complex H is obtained. Note that in this case we use Property 1 of G.

Namely if cp* is the first component of a pair in (2.1.3) whose range C R

and if (0 IP an arbitrary operator of G^ then 9(a,co*) = co* (similarly for

the second components of the pairs in (2.1.3) and operators of Gj. Thus,

the components of the identical pairs in (2.1.3) become the operators of H.

d2 2 d2
A bound for v is q« (d) (d is the number of operators D2 -♦ D).

Ca3e II- Assume ^((je-D-u+l, Je.u)
(b'c) ^ Rl for some b, c € D and

1 ^ ^ v (the case when t((v.£).u+1> (v.Ul).u)(b,c) t R2 can be treated

similarly). But then

Vu-j, >e.u)(b'c) ^i (2-i^)

for all 0 s j s u-1 (as a consequence of Property I). Provided that u is

large enough, we can find an element e 6 D that appears w times in the se-

quence (2.1.4). Let the indices j corresponding to the appearances of e be

j(1),...,j(w) (see Fig. 2.5). Obviously then (all the variables considered

except Xa have been set to a),

35

Vu-jCt), ^u-J(t-l)-l)(a'e) =e

for 2 i t i w (the first argument of tp. . corresponds to the lateral

variable). Thus,

Vu-jCt), l-u-Sit-D-D^-y^h "^ =id

At this point we consider separately two cases:

Case Ila * = 1 and j(w) = u-1. We perform an a-merger with the basis

consisting of the variables with indices u-j(t)-l for 1 ^ t ^ w-1. As a re-

2
suit of this we obtain an e _.-complex G1 such that Property 1 holds for G'

W X i

on Rj U {e] (G^ satisfies Property 1 on Rj c R2; in any event Rj-Rö = 6^

Note that at this point Property 2 is still satisfied only on R. and R0 by 1 *.

Gl and Gl respectively.

Case lib. ^ ^ 1 or j(w) < u-1. We perform an a-merger with the basis

consisting of the variables with indices ^•u-j(t)-l for 1 ^ t ^ w. As a result

2
of this wc obtain an e "complex G" such that Property (almost) holds for G."

w i

(the same remarks regarding G" and Property 1 as well as G", G''and Property

2 apply as in Case Ila). The only exception may be co'.' (the operator of G"

that is closest to the decoding function). By definition, O" = m.. - w s ^N.
'1 (1,£'U-j(w)-l)

and there is no assurance that cp"(a,e) = e. We may rectify this situation

by absorbing co" into the decoding function in the following way: Let G" =

6(G?, G,r). Now set x. = a (after the a-merger the variables have been

renumbered). Let 8(0") - (xJ = U. Then we have (G'r) U = G' - e(cp"(a)G'), C'.
i all

where G' equals Gl minus to,' and Gl equals G' with the input operator modified

as follows: i!;.1 = il'"(a,il'I') (remember that G'' is a reverse components, and, in w in 2 r » >
2

hence, x1 is attached to <lf"). Clearly, G' is an c -complex satisfying

36

Property 1 with Rj U {e] replacing K^

We can now resume considering Cases Ha and b together. To obtain H

(with components ^ and H2) we must find among co' for 1 S 1 S w-1 q operators

that are identical on the inverse image of R. U (e) (i.e., (2.1.1) with

R1 U {e] replacing R,) and again perform an a-merger. We again emphasize

that the operators of H2 are identical only on the inverse image of R,,, and

this property has not been violated by any of the transformations of the

original e-complex G.

To obtain q operators that are identical on the invtrse image of R, U (e],
.2 2 1

it is sufficient that w-I * q.da ; therefore, u ^ d.(q.dd +1) and

^(q) = q2.d-63+q.d.(6
2+6)5d-l (2.1.5)

.2

where 6 = d . This is obtained from the values of u and v derived above.

Recall that ^(q) = (v+D-u-l, the length of G. J\2 for r = 2 can then be

obtained from (2.1.5) and (2.1.2).

The proof for the general case is obtained by defining the Generalized

H Procedure (GHP) with the corresponding function V We consider instead

of (2.1.3) the sequence

(CD'
(s.t) "(s.t)' '''(s'.t') ♦(s',t))

where s = (k-l)-u+l, t = k-u, s' = (v-k).u+l, and t' = (v-k+l).u. coj,...,^'

denote the operators of the standard components of G while it1 \lrr" denote

the operators of the reverse components (r' + r" = r). Without detailed

argument we state that in the general case v = q.6r while u remains the same

(u is determined by the requirements of Case II at which time only one

37

component is considered). From this we obtain analogously to (2.1.5)

\(q) = q 'd.f +qVl-(6r+6)+d-l

^("»ir) can then be obtained from

Tl2(m,r) = Tl4(Tl4(...n4(m)...))

r*d times

which Is an analog of (2.1.2).

2.1.9 Remark

As we have seen, ^ in Lenrna 2.1.8 depends on r, the number of components

of F. However, we shall mostly be using e-complexes that contain many components

that are identical except for the input operator (such e-complexes are obtained

e.g., by the use of Proposition 2.1.7). It may be checked that in the application

of GHP only one representative from each such group of components need be

considered. This significantly reduces Tl.. Similarly, in computing ^ from

(2.1.5), only l-d compositions are requlied where I is the number of groups of

similar components (corresponding to d compositions for each group of similar

components).

2.1.10 Remark

The operators of a homogeneous er-complex F obtained as a result of

applying Lenma 2.1.8 possess an added property that will be used later: Let

R be the range of co(x,y) an internal operator of R (x corresponds to a lateral

variable); then CO (a,y) R = idR (the Identity on R). This fact follows from

the definition of HP (GHP). This particular property of the operators of

the components of F will be called the I^-propertv relative to y. In what

38

follows, we will always suppress "relative to y" since there is no danger

of ambiguity. We will simiarly suppress tl.e subscript R unless we will be

interested in a specific range. We will abbreviate "F is an e-component

(complex) whose operators possess the I -property" to "F is an e-component

(complex) with the I -property".

A familiar and convenient way of representing a binary operator (p(x,y)

is by a labeled directed graph. The graph of CO, denoted by T(':), is defined

as follows: The nodes of r(co) are labeled with elements of D. A directed

arc labeled with a 6 D exists from b to c if and only if cp(a,b) = c.

If D = fl, 2, 3, 4] and R = (2, 3, 4] an example of a graph r(ü) for

2
an operator cp with the I -property is shown in Fig. 2.6.

Given an arbitrary e -component F, the output of the operator cp is

VvWvn Vw^»---»;
in the case of a homogeneous e -component with internal operator w this will

bo abbreviated to

cp(x. x.x , co (y)).
k k+1 n in J

2.2 The Generalized Speckcr's Theorem

We first give the following

2.2.1 Definition

Let $ be an arbitrary basis and a c D any constant. Let F be a formula

over $ with S(F) = X U Y U Z such that |x| ^ n -1 (the maximal number of
max

arguments of an operator of ^), Y is disjoint from X, but otherwise arbitrary,

39

and Z = (z) Is a singleton (disjoint from X and Y) such that z occurs only

once in F. The set of functions f(X,z) represented by all possible such

formulas F with the elements of Y replaced by the constant operator a will

be denoted by $.

In particular, every operator of $ with all but k ^ 1 arguments (k is

may arbitrary) replaced by a is in $a. Note that if a)(X,z) f §a, then Cp

qualify for $ by virtue of a number of different representations. If z

(or any variable of X) in any one of them corresponds to a variable that

occurs only once, it is called a distinguished argument). The other arguments

are called free arguments. Thus we may easily find a basis $ and an operator

cp such that all arguments are at the same time distinguished and free.

We now define a restricted class of e-components and e-coroplexos: 5 is an

arbitrary basis and a ? D is any constant. Let F be an arbitrary e0-component;

a n

then F is an eQ-component over ? . Let CDfx,z) r. $ be a binary operator, z

a distinguished argument (hence x is free), ami G an e _.-component over #n;

then (o(x,G) is an e -component over ? . An e-complox over ?a is an o-con^lcx

such that all its components are e-components over $a.

The main result of this chapter is

2.2.2 Theorem

Let there be given the function f: D -♦ D such that L(f,?) ^ c.n for some

constant c and basis $. Then for any m 2 1 and a c D if n S l1 (c ,m), there

exists a subset Y of the arguments of f such that |Y| = m and f is either a

constant or is represented by F, a homogeneous cm-complex over ?
a with the I -propcrt >,

Y as the set of lateral variables, constant input operators, and r < d-(2c-l)+I.

40

Proof

If f has m fictitious arguments, then let Y be the set of these arguments,
Y

and f^ Is a sonstant. From now on we assume that f has S m-1 fictitious

argument».

The statement of the theorem gives us that theit exists a formula E

over i such that L(E) i en. Therefore, there are > l/2.n variable symbols

representing the arguments of f which either do not appear In E or appear

« 2«c times. In other words, there are ^ l/2n-m+l variable symbols t^at

actually appear In E and such that the number of occurrences of each Is « 2«c.

Denote the set of these variables by X..

If n ^ 2'^8(n2,2c)Hn-l, we can apply Lemma A.9 and obtain a subset

X2 C Xl Wlth 'X?' " n2 and such that Ea
l8 equivalent to E , and SPCeC over

a

* with at most 2c components and such that the set of lateral variables of

every component Is X2.

If n2 * ^(n.^c) we can apply Proposition 2.1,7 and obtain n subset

X3 < X2 w4th 'X3' * n3 and 8uch that E Is equivalent to E3, an er -complex

over * with r s d«(2c-l)+l). The estimate for r Is obtained at this point.

If n^ * ^2(m,2c). we can apply Lcnma 2.1.8 and Remark 2.1,9 and obtain

F, the desired homogeneous e -complex over ?a with the Ia-property. TI10

I property Is a consequence of Lemma 2,1.8,

41

Dtacusalon of Tj^. The present proof yields

T15(ia,c) - 2.Tl8(Tlin2(in,2c),2c),2c)-to-l

The exact representation of T^ Is extremely complex, and In what follows we

shall use only a very rough approximation. In Appendix A It Is seen that

^(t.k) (as a function of k) grows faster than lexpO^k) for any constant b.

The functions ^ and ^ contribute only Insignificantly to this, and thus we

state:

Tl5(m,c) i lexp(b,4c) for c > c(b)

(2.2.1)
and an arbitrary constant b

(Later we shall se that the size of \ prevents us from obtaining any

Interesting bounds for the functions Investigated with Theorem 2.2.2. The size

of Tig which contributes Post to 115 results from the technique used In Lcmna

A.3 to obtain a nesting sequence for a given formula F. It Is not known

whether this technique can be Improved. Our guess Is that It cannot be.) D

2.3 On decker's Theorem

In this section It will be shown how Specker's Theorem follows from

Theorem 2.2.2 (the statement of Specker's Theorem is given In section 1,5).

In Theorem 2.2.2 set D • (0, 1], « - 7, a - 0 and let f be as described.

Then by Theorem 2,2.2, we obtain that for an appropriate choice of n, we can

find a subset X of the arguments of f with |x| - m and such that fij Is either

a constant or represented by

♦(Fj Fr)

42

where ^:[0, I] ■* [0, 1} and F1 for 1 s i ^ r is either a standard or reverse

homogeneous e^-component over E with the I -property and constant input

operators. The value of r is bounded as described in Theorem 2.2.2.

We now analyze the various functions that can be represented by e-compo-

nents with these restrictions. First note that E consists of all Boolean

binary operators; furthermore, if f(x,z) ^ £ , then both x and z are free

(because every Boolean binary operator can be represented over T. in such a

way that each variable appears only once), and thus there are no restrictions

on the use of operators in the e-components we encounter.

All possible graphs r(cD) for cp c Z are shown in Fig. 2.7. The ones that

0
satisfy the I -property are starred. The functions obtained by choosing a

value for the constant input operator for the starred graphs are shown in

Table 2.1. In general, this function is either bQ ** b • TT where TT = 17 (1 * x)

m i=l i

or c0 c1'a where a = ^ ^ for some values of b0, bj or CQ, C.. Now, taking

into consideration the fact that rr«o » 0, and that every \jf: (0, l]h -» -0, 1}

can be uniquely expressed as a Boolean polynomial

2h-l

® c.'M
i=0 1 1

whore ^ ^ (0, 1) and ^ is the monomial (of degree one in each variable) in

those among x^ xh corresponding to nonzero bits of the binary representatior

of i(seo Lemma 4.5) we obtain the first part of Specker's Theorem.

The second part of Specker's Theorem could be obtained directly at this

point; however, we will derive a generalization of it in Example 3.1.3, and thus

omit it here.

43

It must be pointed out that our derivation of Speaker's Theorem results

in a slightly larger bound for n; however, since no known application requires

a specific value for the bound, this is immaterial. Specker's bound (see

[H068]) is obtained from the function

n(m,0) = m

H(m,k) = 4^+i; .n(|i(m,k-l),k-l)

by setting T|s(in,c) = 2(j.(m,2c). Our bound is slightly larger due to the addi-

tional processing implicit in the application of Proposition 2.1.7 and Lemma

2.1.8. However, \JL resembles IL and this function by far contributes the most

to T] • thus, we can state that the bounds are approximately equal.

Finally, let us note the fact that Theorem 2.2.2 allows us immediately

to amplify Specker's Theorem. Namely, the statement of the theorem involves

the basis consisting of all binary Boolean operators. However, the proof

of Theorem 2.2.2 works for bases consisting of operators of an arbitrary

number of arguments.

44

© 0 0
T(F) where F is an e -component

Fig. 2.1

Kp (5^>—<3>—0

© © ©
T(F) where F la a reverse component of an e-complex

Fig. 2.2

45

F Is an SPCeC

Fig. 2.3

46

C
"I a (v+l)«u • 1 f"

)

u-1
u

u+1

2u-l
2u

(k-l).u+l

X (

k.u-l
k«u

(V-^'U+l1

v.u-1

v.u

(v+l).u-l

X = C3

Y = ♦

• • •

• ■

w a
x

a

4

V«U+1'
v«u

(k+l).u-l

'1

((k-l)«u+l,k.u)

k.u+1
k»u

3u-l

2u+l
2u

2u-l

U-rl.

U •

a
x

• • •

m
• • • • • i

ti I' =::HX

}Y

• • •
• J • • • •

— I

— ►

1 G,

((v-k).u+l,(v-k+l).u)

Illustration of the HP procedure CI)

Fig. 2.4

47

(4-1)

• « *

£.u-j(w) [—1 I

(p
((X-i).u-i.je.u)(b'c)$f Ri

Illustration of the HP procedure (II)

Fig. 2.5

2. 3

1 f?) for an operator 0 with the 17

Fig. 2.6

(2)3)4)-property

48
0, 1

(a)'

(b)

1) (d)*

1) (e)

fc#-

M (i)

1 } (j)

1) (c)* (o

 1(1) (^)

0. 1

1) (m)

1 1 (n)

1) (o)

1 J (P)'

The graphs of all Boolean binary operators

Fig. 2.7

49

rm Vt (y)
In

1

0

Function

m
Cld® x.)
1=1 1

m
® x.

1=1 1

m
1 ® ® x,

1=1 1

m
i ® n (i ®x,)

1=1 i

Teble of functions that can be represented by e-components

with the I -property (see Fig. 2.7) and constant Input oper-

ators If D » {0, 1}

Table 2.1

50

CHAPTER THREE

APPLICATIONS OF THE GENERALIZED SPECKER THEOREM

The principal results obtained previously [H068, Ho70] by the use of

Speaker's Theorem are

3.0.1

r
A new proof that the Boolean function .ffi. x, is of nonlinear length over

IJ . This is accomplished as follows. First note that the restriction of the

mod 2 sum of n variables obtained by setting certain variables to 0 is again

a mod 2 sum (but of a smaller number of variables). Now apply Speaker's

n
Theorem (see 1.5). Suppose $. x. is of linear length over H. Choose n

large enough to obtain m = 3. The theorem states that for this particular

bases c2 = 0 in (1.5.1). However, it can be checked that in this case no

choice of c0 and ^ will yield the mod 2 sum of three variables. A contra-

diction.

.n n

3.0.2

The function f: (0, l]n -♦ (0, I] defined by f = 1 i f and only if F. x 0

i = l 1

mod 3 is of nonlinear length over F.. We proceed similarly as before. Assume

it is of linear length. Apply Speaker's Theorem with n sufficiently large to

Of course the results of Subbotovskaya and Khrapchenko are stronger lor this
particular example.

51

obtain m = 3. If we replace x-, x», x„ in (1.5.1) once by 1, 0, 0, and

another time by 1, 1, 1, then the value of (1.5.1) remains unchanged. However,

the value of f (with all variables except x., x., x replaced by the

constant 0) is different on these two assignments. Again a contradiction.

Both of these results were derived by Hodes and Specker in [Ho68].

We might note that the technique of 3.0,2 can easily be generalized to

counting mod k where k is an arbitrary integer (see (1,5.2)).

3.0.3

Certain geometric predicates (see [Mi69]), in particular the connectivity

predicate, are of nonlinear length if expressed with binary Boolean operators

(this result was obtained by Hodes in [HOyQ]). We will not discuss this in

greater detail now since this technique will be treated later in 3.2,

In this chapter we will use Theorem 2.2.2 to generalize all these results.

3.1 Counting mod p

Consider the function [0, l)n -♦ (0, 1)
n

fn(xl'--"Xn) =

1 if I x = 0 mod p
i=l

0 otherwise

then

3.1.1 Theorem

If p is a priiv^, if |D| < p, then f" is not of linear length ever an

arbitrary basis.

52

Proof

Suppose the statement of the theorem Is not true. That Is, there exists

a prime p, a finite set D such that |D| < p, a basis 9 of operators on D, and

LC^, ?) ^ c«n for some constant c.

First note that if X is a subset of the arguments of fp and ixl - m. then
n

^n^ " fn,' We can now ^P^ Theorem 2.2.2. For an arbitrary m, if n is

sufficiently large, there exists a subset X of the arguments of fp with Ixl « n

and such that (fP)0 is represented by a homogeneous em-complex F (over i0 and

with the I -property) wich X as the set of lateral variables. In addition,

since fj is a Boolean function, the lateral variables of F are restricted to

CO, 1).

Consider now any component F1 of F and F^) where cp is the internal

operator of F^ Since c^ has the I0-property, T^) has the general appearance

of Fig. 3.1. Fi is determined by «^ and the constant input operator a.. Now

let m ^ d and consider the sequence (s.) for 0 s J s m where SQ - a. and

8J " cP1(
11«'«11.a1) for J > 0. Let 8k(1) be the first element in the sequence
J times

that is repeated at some later point; in fact, let kCt) be the position of the

first occurrence of this element. Let k(i)+je(i) be the position of the second

occurrence of this same element. Then we shall call k(i) the prefix of F

while X(i) will be called the period of F .

Clearly, if Fi is a standard (reverse) component, then co. (x-x-.^x

11...!^) (VVm-r"Xk+lll,--1'ai)) where k * k(1) l8 a function of the

number of I's among Xj, x2,...,xm_k (\+1."',*m) mod i(i).

53

Thus,

If we set Y » (^ ^V"',\.k I and choose k^kp to

exceed or equal the prefixes of all the reverse

(standard) components of F, then F. represents a

function of the number of 1's among the variables of

Y mod icm(l(l),...ti(T)). (3.1.1)

On the other hand, by the Initial assumption, F^ Is a function of the number

of I's among the variables of Y mod p; this results In a contradiction since

d < p.

On the basis of (3.1.1) we can obtain the following

3.1.2 Theorem

Let D be an arbitrary domain, 9 Is a certain basis, and p Is an arbitrary

Integer > 1. If i is such that any e-component over * with the I -property

and constant input operator has period one, then fp is of nonlinear length

over *.

3.1.3 Example

This Is an example of a basis satisfying the hypothesis of Theorem 3.1.2.

Consider an arbitrary domain D - {0,1,... ,d-l). Then a complete basis

for D la fjj - (min(x,y), max(x,y) ,0,1,... ,d-l, e0(x),..., e^fr)) where mln

and max are defined In the usual way, 0,...,d-l are the constants, and

fd-l if x * 1

c.OO i

0 otherwise

54

(Note that t,0 j. ■ {A,V,0,l,-,ld}; thus, a result on the nonllnearity of the

length of a certain function over t,0 j, is also a result on the nonlinearity

of the same function over 11; in particular, applying Theorem 3.1.2 to ^fn ..,

we obtain (2) of Specker's Theorem.)

*D is interesting because it gives rise to an analog of the disjunctive

normal form for arbitrary D: Consider the table for an arbitrary function

f: D -• D. Then

dn.l
f - max (M.)

1-0 l

where M^ equals 0 if the current assignment is not the 1" assignment and the

value of the function at the i assignment otherwise. M. is represented as

follows

M1 ='"in(ea(i|1)(V'--"
ea(i,n)<Xn)'fi)

where a(i,J) is the j component of the i ' assignment.

We claim that it satisfies the hypothesis of Theorem 3.1.2. Note that
a b
^D = *D ^or a^ a» b ^ D because ♦ contains all the constants. Therefore,

it
we will write simply *

* 0
Given W € i with the I -property, the statement that there exists hfl)

such that the homogeneous e-component with internal operator f and b for its

input operator has period i is equivalent to saying that there exists a subset

LSD with |LI = / and co(0,z) L is the identity (id) while (0(1,z) L is the

permutation with cycle length A (Pt)-
*

We contend that for any L ^ D, cp(x,z) € JL. and c, e ^ D, if co(c,z) L

55

and o(c,z) L are 1-1, then (D(C,Z) L - c?(c,z) L. Since id t p^ if I > I,

this will establish the original claim.

This can be proved by induction on the depth 6^ of the distinguished

variable z in the formula F that represents o (since there may be many such

formulas, let F be one of the formulas where the depth of z is minimal.

If 6 ■ 1 then either F - max(F',z), or F - min(,F"tz). Assume the first

*
case (the second can be argued similarly). By definition of jfc , F contains

only the variable x. If we replace x by c, F* represents a constant c' <: D.

Now if c' ^ L, then o(c,z) L is the identity, otherwise it is not 1-1.

If 6 > 1, then either (o(x,z) - e. (co* (x,z)) where ©' ^ jL and 6 , < 6
CO 1 ^u vp *P

it
or cp(x,z) « co-(x,«)"l(x,z)) where cp", cp'" r jfD and 6^,,, 6 , < 6^ (to see this,

think of F). In any case co', co", and co"' satisfy the inductive hypothesis,

and we are done.

Note that Theorem 3.1.1 and 3.1.2 hold with f^ replaced by the function

gp: Dn ■♦ (0,1) given by E xi - 0 mod p since g£ f (O.lf» fj.

3.2 Connectivity

The connectivity predicate was already discussed in 1.6. It attacted

considerable attention after Minsky and Papert [Mi69] succeeded in obtaining

Interesting results on the complexity of perceptrons that represent the

connectivity predicate. Works that follows [Mi69l and that treat specifically

the representation of the connectivity predicate by finite operators are, e.g.,

[H070], [M711, and [Vi701.

56

Mlnsky and Papert describe a circuit for computing the connectivity

predicate of depth (of the order of) (log^)2 which on intuitive grounds

seems minimal. This circuit translates into a formula of nonpolynomiol length.

Thus, the connectivity predicate seems to be a good benchmark for testing

estimation methods for the complexity of functions (i.e., any approprl^ely

general method which is presumed able to give estimates for length up to
82n

f(n) < n "' should declare the connectivity predicate complex).

Consider a set of n2 variables (x^) for 1 s 1, j i n; then the connec-

tivity predicate is the function cn: {0, l)n -♦ (0, IT defined as follows:

(we will not give a formal definition since the formalization is obvious)

Given a specific assignment to the variables, consider it as a square array

of O's and I's. Then cn - 1 on the empty pattern (I.e., consisting of all O's),

or if the I's form a connected pattern. By "connected" we mean that any two

I's can be linked by a sequence of adjacent I's (two I's, corresponding to the

variables x^ and x^ are adjacent if li-kl + lj-i| - 1). For example, the

pattern in Fig. 3.2 is connected.

The general approach used here to obtain an estimate for the length of

c is to consider reductions of c . n n

Given an arbitrary function f, a function g will be called a k-reduction

of f if g is obtained from f by replacing each argument of f by a function with

at most k arguments.

Suppose we want to prove that ^ of 1 = 1,2,... arguments is of nonlinear

length (over the basis *). Assume there exists a k-reduction ^ of f such

that the number of arguments m in gn is m ^ a.n for some constant 0 < a s i.

Assume L(fn,*) « c-n for some constant c. That is, there exists a formula

57

Fn f0r fn and L(Fn) ^ c,n- Slnce the len8th of any function of k arguments

Is bounded by L(k,f), we obtain

Mgn,«) ^ c.L(k,«)'n

by making substitutions for variables in F .
n

If [gi) is rearranged (and renumbered) in the order of increasing number

of arguments, and all but one functions with the same number of arguments

are deleted, then we obtain

L(gm,«) ^ c'-m

for some constant c'. Finally, if we can prove (e.g., by applying Theorem

2.2.2) that gm is nonlinear, we obtain a contradiction, and we are done.

Modes [Ho70] shows the nonllnearlty of the length of c over E by reducing

c to the function
n

m
V (A y.) Ay

1-1 J»*l J i

(i.e., exactly one variable is 1) which can then be proved to be nonlinear

using Specker's Theorem. Unfortunately, this reduction does not work for

domains with more than two elements because this function is linear over an

appropriate basis in such domains. However, another approach works, and we

can state

3.2.1 Theorem

Regardless of the size of D and the nature of *, c is of nonlinear

2
length (i.e., L(cn,$) i c.n is not true for *my D, *, and constant c).

58

Proof

Minsky and Papert [M169] succeed in reducing c to counting mod 2 by

exhibiting a contact network such that Its connectivity depends on the number

mod 2 of contact variables equal to 1, and then by simulating this network

on the square array of variables (they call it the "retina"). We shall proceed

similarly.

c is reduced to the function s. (0, 1] -» (0, 1] (for an appropriate
t n

t) defined as follows:

1 if ^ arguments are equal to 1

sn "
0 otherwise

s , can be represented by the connectivity of a contact network S . Sp is

shown in Fig. 3.3a. It has p contact arms for each variable y.. The 0 value

of y. corresponds to the upward position of the corresponding arms while the

1 value of y. corresponds to the downward position. The contact arm of Sp

are arranged in p rows (n arms in pach row). Whenever an arm for y. is in

the upward position, it is connected to an arm for y. . in the same row; if

the anr for y. is in the downward position, it is connected to an arm for

y . in the next row. Thus, it may be easily checked, point A1 is connected

to B if and only if at least p among y. y are 1. It may also be

verified that in this case all the contact arms in the network are connected

either to A« or to B ,, and since these two are connected together, the whole
U p+1

network is connected.

SP in turn can be simulated by a rectangular array RP of O's and I's
n " n

where certain positions are constant and others depend on the VJ'3 (see

Fig. 3.3b). The size of / is (3(p+l)+l).(3n4p-l).

59

We now show that sj la a 1-reductlon of ct for some t. This Is done

by cutting Rn into smaller rectangular pieces along vertical lines. The

first piece Is of length (i-l)-q where q - 3(p+l)+l and i will be defined

later, the second through Jt-lst piece Is of length (1-2).q, while the ith,

last, piece Is of length between 1 and (i-D-q. These pieces are then

arranged Into an l'q * t'q square pattern T55 as shown In Fig. 3.4 (the

arrangement depends on the parity of I). Corresponding rows of adjacent

pieces are connected by =>- or c- shaped patterns of O's (In the case when

one of the positions along the cut at the row In question Is 0) or I's.

The unused positions of T£ (corresponding to the case when the last piece

Is not of the maximal length) are replaced by O's.

t Is set to X-q and the variable x.. In c Is replaced by the correspon-

ding position In TJJ (one among 0, 1, y^ or y^. Obviously, the function

obtained by this replacement Is sp. If ^n'fp'1 * 1, I is obtained as rx1 where n q

x Is the positive solution of

x2-2(x-l) - 3ffiä£l
q

We also have that n ftj(l/3q)t, and, thus (by the reasoning outline previously),

If c Is linear so Is sp.
t n

With the assumption that sP Is linear, we apply Theorem 2.2.2 with a = 0.

In this way we obtain that (9P)0 where Z Is a certain subset of the arguments

of sn of size m Is represented by an e -complex F (with the requisite restric-

tions) where m is arbitrary. Note that (s1*)« = sp.
n 0 m

60

As noted In 3.1, If a sufficiently large number of variables at the

beginning and end of the lateral sequence of F U replaced by 1, then F with

this substitution represents a function of the number of I's among the

remaining variables mod the 1cm of a set of integers s d. The number of

variables that have to be set of 1 Is u i 2(d-l) (at roost d-1 at each end

of the lateral sequence). Thus we obtain a representation of the function

8ro-u lf P ^ u- If P ^ 2(d-l)+2, we obtain a function sj for 1 ^ 2. However,

It Is clear that Sj Is not a function of the number of I's mod k for any integer

k. Thus, we have arrived at a contradiction, and, hence, c is of nonlinear

length over any basis $. Q

3.3 The Length of Svmnctrte FunrMnn«1

As we have seen in the previous examples, Theoran 2.2.2 has been applied

only to functions that are either sywnetric or that can be reduced to symnetric

functions. While we know of no formal statement that can be proved and that

asserts that this indeed exhausts the applicability of Theorem 2.2.2, it

Intuitively seems probable.

In this section we will discuss several bounds on the length of symnetric

functions (both specific functions and all synmatric functions). Recall that

in 1.4 we have already mentioned several such bounds (Subbotovskay*, Khrapchenko),

All of the results In this section were suggested by A. R. Meyer.

61

Does Theorem 2.2.2 (or Speaker's Theorem) give us any Information on the

length of the functions Investigated? Hodes and Specker do not treat this

subject, and, In fact, the bound that can be obtained Is very weak; however,

we do mention It for the sake of completeness.

In an application of Theorem 2.2.2 (or Specker*s Theorem) to a certain

function f, we proceed with the assumption that L(f,5) ^ c«n. To apply

Theorem 2.2.2 we must have n ^ TL (m,c) where m Is a sufficiently large number

to obtain a contradiction. However, m does not depend on c. Thus, n depends

only on c and m Is assumed constant.

Consider now c as a function of n. We ask what Is the maximal value

c for c(n) for which Theorem 2.2.2 can be applied (and a statement contradic-

ting L(f,*) ^ c«i4 obtained). c(n)'n Is then a lower bound for L(f,?). Due

to (2.2.1) c grows slower thun (l/4)'ht (p,n) where ht (p,n) • maximal x

such that n ^ lexp (p,x). Then ws have

c(n)'n s (l/4)'ht (p,n)'n (3.3.1)

for an arbitrary constant b > 1 and for sufficiently large n.

This bound seems unreallstlcally low, and It Is useful to compare It

3
with known bounds for length for the particular function f ove" some bases

consisting of Boolean operators (we will suppress the subscript n).

3
It has already been established that f Is of nonlinear length If D =

3 3 0 3 1
(0, 1] (see 3.1). We introduce the following notation: f = f ' , f ' ,

3 2 n

and f ' stand for I x. - 0, 1, and 2 mod 3 respectively. We will repre-
1-1 1

sent £3,0, f3,1, f3,2 by the formulas F0, F1, and F respectively. F is

obtained by the following recursive relation

62

F0(x) = F0(Y) A F0(Z) V F1(y) A F2(Z) V F2(Y) A F^Z) (3.3.2)

0
(If X Is the singleton (x], then F (X) = x)

L(F0(X)) = L(F0(Y))+L(F0(Z))+L(F1(Y))+L(F2(Z))+L(F2(Y))+L(F1(Z))

1 2
Similar identities can be obtained for F (X) and F (X). When these identities

are used recursively, we obtain

1 log26 9 fi
0(L(fJ,$)) ^ n an'0 (3.3.3)

an exact description how we obtain a bound of the form (3.3.3) from a recur-

sive relation similar to (3.3.2), see [Ya54].

This upper bound can be further reduced by using multiargument operators.

i, R 3
Let y: {0,1,2} -» {0,1,2} be the operator E y. mod 3. Then f can be

i=l 1

represented by a formula G which uses y recursively (i.e., the arguments of

3
f are repeatedly divided by l together with an outermost decoding operator

{0,1,2} -♦ {0,1}. G is of linear length. If we use D ■ (0,1}, y can be en-

coded by two operators y* and Y"» and G translates into a formula such that

log n log k
0(L(G)) - (2k) K » n ^ (3.3.4)

3
Thus, as i> increases, the upper hound for L(f ,f) (where y $) approaches

c'n. However, the gap between this bound and (3.3.1) is still huge. But,

the important thing to note is that any theorem that retains the same broad

assumption (bases with an arbitrary number of operators) as Theorem 2,2.2

3
cannot yield a better bound for f than (3.3.4).

63

Another example of a function that is nonlinear in length (over all

Boolean binary operators) by Speaker's Theorem is f4. However, it too has

a relatively short representation (the previous and this example show that

Theorem 2.2.2 is a sensitive tool for deriving the nonlinearity of functions;

i.e., it can be used on functions that are only "slightly" nonlinear).

4
A representation for f with Boolean operators is obtained by dividing

the arguments of f into disjoint (nonempty) pieces Y and Z, and adding the

bineary representations of f (Y) and f4(Z). Let the binary representations of

4
f (X) be given by the formulas F'tX) and F'^X), obtained by the following

recursive relations

FM(x) = Fn(Y) a FM(Z)

F* (X) = F' (Y) ® F' (Z) e Fn(Y) A F'^Z)

(If X is a singleton F'^x) = x and F^x) = 0)

Consequently,

L(F,,(X)) = L(F-(Y))+L(F"(Z))

L(F,(X)) = L(F,(Y))+L(F,(Z)+L(F"(Y))+L(F,(Z))

By choosing Y and Z always as equal as possible, we obtain

L(F"(X)) = n

0(L(F'(X))) = n-log2n

4
Since f (X) is represented by F'(X) A F"(X) n'log n is also a bound for

0CL(t «) where ©, A 5. n

We now turn our attention to an upper bound for the length of all

symmetric functions.

64

Note that a symmetric function g: Dn •♦ D where D » -0,1,... ,d-l] depends

exclusively on Nj Nj^ where N. is the number of variables equal to 1.

It can be represented, e.g., as

g " inax(M)
n(l)•••' n(d-l)

where ^^^ ^ n(d-l) e<lual8 ♦ If N " n(i) and is 0 otherwise. The number

of combinations of n(l),... ,n(d-l) is a polynomial in n — ("/1") — and the
d-l

max function can also be represented in polynomial length, regardless of the

basis i. The latter fact is established by representing max using the two-

argument max recursively. Thus, if M .j. n(d-l)
were P01^01"1«1» 8 would

also be.

M. J. Fischer and A. R. Meyer discovered that M ,,* /„ ,v can,
n(l),...,n(d-l) '

indeed, be represented in polynomial length by using a special code for

integers described by Avizienla [Av69].

We will illustrate the construction on Boolean symmetric functions. It

will be seen that if the basis of operators is appropriately chosen, the

length of an arbitrary symnetric function is bounded above by a polynomial

of a surprisingly low degree.

The Avizlenis code is a redundant positional representation of integers

to an arbitrary base b > 2. We describe it for b » 3.

An integer n is represented by all possible Tlog-n"! - tuples

ariog3nV-'ai

where ai € (-2,-1,0,1,2] for I sS i * ^og n1 and

65

flog n1

1 = n
i-1

The property that is exploited is that there are no long carry's in

addition. Thus, if we want to add two Avizlenis coded integers a = a a
k k-1

aj and b = W.]/»«1^» we can do it in two steps using the following

3.3.1 Algorithm (Avizlenis)

(1) Find the carry c and intermediate sum r such that

a1+b1 = 3ci+ri

where a^ 4 b1 € (-2,-1,0,1,2] and c^ ^ € (-1,0,1).

(2) Compute the sum s according to

8i " Wi

Let us estimate the length of the formula representing any ternary place

in the Avizlenis representation of K. for X = (x.,...,x].

Again let X = Y U Z and Y fl Z = (i. r^X) and cAX) can be represented

as

R^X) = P(R1(Y),R1(Z),Clt>1(Y),C1_1(Z))

and

C^X) = X(R1(Y),R1(Z),Ci_1(Y),Ci_1(Z))

If X is a singleton, r^^ and c are 0 if 1 > 1, or 1 and 0 respectively if

1 = 1. P and X are certain operators (--l.O.l] -» (-1,0,1) which can be

obtained from the definition of Algorithm 3.3.1. Strictly speaking, the

66

domain used here is not permitted in our definition of finite functions;

however, the difference is merely one of coding. Thus,

KR^X)) = L(Ri(Y)+L(Ri(Z)+L(Ci_1 (¥»+1(^^(2))

and

UC^X)) = L(R1(Y))+L(R1(Z))+L(C1_1(Y))+L(Ci_1(Z))

If we use these relations recursively and always make Y and Z as equal as

possible, we obtain

oacR^), oac^» ^ n2

for 1 ^ i ^ IXog n1. If D = (0,1], we need two bits to encode r and c..

Therefore, using certain operators p1, p", X', and X" to encode P and X,

we can encode R.(X) and C.(X) and combine them into a (0,1]-formula A,

representing the i ternary place of the Avizienis representation of N,.

We have

0(L(Ai)) s n
3 (3.3.5)

Let there be given a positive Avizienis coded number a = a a ,...a,.
P P-1 i

We desire to convert it into its binary equivalent b = b b ,...b,. Let
Q q-1 1 q q-

,....a,]. Then we define b.(U) = 1 if and onlv i
P

U 5 (aaj]. Then we define b (U) = 1 if and only if the ith bit of

I! a.3 is 1. Note that even if a is positive, b (U) may be negative
a.aj 1 i

X

for some i and U. This is further discussed below. For the moment we ass

that b.(U) is always positive. We can then again compute b.(a ...a.) by a

recursive method. Let U = V U W, V 0 w = 0. Then b (U) is the i'1 bit of

the sum of b (V)...b1(V) and b (W)...b1(W). q 1 q 1

umo

67

b^U) is represented by the formula B.

B^U) = P(Bi(V),B1(W),Gi.1(U))

where Gi represents the carry from the i
th place;

G^Y) = Y(Bi(V),Bi(W),Gi-1(U))

G0 represents the constant 0 and ß and y are certain Boolean operators. Then

we obtain

L(B (U)) « I L(B,(V))+L(B.(W))
j=l J J

If a is the Avizienis representation of a number ^ n then p = Tlog n1 and

q = riog2n1. Thus, we obtain the following bound for L(B,(a))
i

loj?,log3n
Oa(Bi(a))) i (2q)

J «

(21og2n)
log2log3n

(l+log2log2n)log2log3n

log2n

«n (3.3.6)

Note that (3.3.6) means that 0(L(B (a))) < n e(n) for Is: i ^ flog nl where

€ -♦ 0 as n -♦ oo.

It has already been remarked that b(U) need not be positive. Thus

b(U) must be treated as a signed number. If we use the I's complement

representation and the en-around carry technique (see, e.g., fGr59]), addition

can be performed as follows. Let b(U,gn)=G(V)+b(W)+g where g- is either 0

68

or 1 and let g1 denote the carry from the highest position of b(U,0). Theii

b(U) = b(U,0) if gj^ = 0 and b(U,l) if g1 = 1. This means that in (3.3.4)

we obtain (/.q)eXp for some constant X instead of (Zq)6*1* where exp has the

value given above.

If a, for 1 s: j «: Tlog^l. in Bj^ for 1 ^ i ^ riog2n1 is replaced with

A., we obtain formulas F.(X) representing N. in binary form. Combining

(3.3.5) and (3.3.6) we obtain

0(L(F1(X),))) «:n
3+S(N)

where e(n) -♦ 0 as n -» •».

To obtain the desired representation of an arbitrary Boolean symmetric

function, we proceed as follows: Consider the formula S. defined inductively

Sl ' X10 V Xll

si+i
= xi0 A Vi v xii A si-i (3-3-7)

Take Sr. -i and replace x.0 and x.. by F. and F. respectively. It Is easily

seen that S p. -i with this replacement is identically 1 (this can be proved,

e.g., by induction; for S.. it is trivially true, and the general statement

follows from (3.3.7)).

Let there be given an arbitrary symnetrlc function g. It is defined by

a subset M C {0,l,...,n] of possible values of N.. Each branch of length

flog-nl in KSr. -i) corresponds to one value of N. (given by the binary

number j(riog2n1) j(l) where ^Tlog^l, j (Tlog^) " '''Xl, j (1) define the

branch in question). If we remove branches of T(sri0a n"P corresponding to

M, thus obtaining the formula S', and perform the substitution defined pre-

viously to obtain the formula p, we obtain a representation for g.

69

We have OCLCS'')) ^ n and thus 0(L(P)) i n
4+e(n' where e -» 0 as n -» » .

Thus, if a basis $ is given that contains all operators used to obtain P,

then L(g,?) ^ n4^")'

In Lu70 Lupanov announced a result of Khrapchenko to the effect that an

4 93
arbitrary symmetric function is of length ^ n * Since the assumption were

not made explicit, and the result itself is unavailable as of this writing,

no exact comparison can be made with the estimate above.

70

r(tpi) where ipi has the I -property (only arrows labeled with

0 and 1 are drawn). P denotes the set of nodesCp.Cx x ,...
i m m-1

x90,a) where m Is as described in the text and x , ... , x„
^ 1 m 2

may assume arbitrary values in {0, 1}.

Fig. 3.1

0 0 0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 0 0 0
0 1 1 0 0 1
0 1 1 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A connected pattern of I's

Fig. 3.2

71

1
rH r-i

a t
pa to

1
(X

pa

O rH
< <

CNI

<
CO st u-f' og

< < < 1

<

Contact network SP for sp

n n

Fig. 3.3a

i-i
i

<
<

72

O r
« BQ

CN CO

en
i
a

I
a,

pa « PQ' PQ

-H .-H o Ot-l O Of-* O] /lHOO»-IOOr-<00>-"OOl-IO

■"< l^»-1 >»r-l OOrHQ)r-IOOi-<00'-loo>-'OOr-lo

P P \
r* r* r-l O (5>M-I >,i-lo (r-tOO^OOt-IOOr-loOr-lo

H rH rH O . P P Oil

-y CsP Or-* r* O a

" ^ ^ 0 1^>,^0l \^ 0 ^ ^o O M ^ o -H o

r-tr-l OOrHi-<o|>,rH/'r^

iH i-t r-l © l^^ ^^t OU iH H O 6»^ >ff-l O O r^ ^1 © ^ O

t-tr-IOOrHr-IO|>%r-tv rH O O rH rH Q | f^-« >^-t Q O fl O

rH 1^ ^ O O rH ^ i (I^JH ^ Q O ^ ^ O l^rH >f,H Q

rH r-t ^1 o |>^l f^t« O (' rH rH o t^ ^OO^^O^Q

OOt-<r-)0|>.i-' {^f-«00r-40

rH IJ^-, 5^ O O ^ rH ; ^ ^ ^ O O rH ^ Q IfT^ ►TrH O

i-H i-l rH O |>,rH >, ,-(0 / j ^| ,_!

rH / ' CM CM
^OOrHrHO|>,r^jl,HOOrHMO|^'-" >,rHOOr-IO

'-<'-|0|fM-l >,rH00<-lr-t0r-t0

/i-IOOrHrHO|>,rH ^rHOOr-lo

i-H i-l
•-•OOi-<OOr-'r-<0|>,rH >,l-IO

'-lOO>-tOOrHOO<-<»-"0>-<0

'-1 O O rH O o rH O O r-l o O r-i O

O >%rH >MH O O r-l I-I O r-t O

O f < <
i

CN
I
a

i a. +

Planar connectivity simulation of SP

Fig. 3.3b

Vn- rs"

/

73
je..

TH for i * 5 n
Fig. 3.4a

Ö

y
?0

H^

Fig. 3.4b

74

CHAPTER FOUR

CYCLIC PERCEPTRONS

The perceptron has already been discussed in 1.6. In the beginning

of this chapter, we will first expand on that discussion in order to further

motivate the study of cyclic perceptrons.

The classical perceptron (for references on the subject see [Mi69]

became the subject of extensive research centered around concepts such as

pattern recognition, learning, adaptive behavior, etc. A whole myth had

been created around it -- about its capabilities and its potential for use.

The thing that attracted people most were its ability to learn from experience

and its simplicity — it combines many small decisions, the values of the

functions co , into a final decision by considering their weighted sum.

Mlnsky and Paper deflated this myth by showing that such a scheme has its

inherent drawbacks. In particular, it cannot compute predicates such as

connectivity.

The most general intuitive basis for the result that the connectivity

preciate cannot be represented by a perceptron is the following: First of all

the reasoning makes sense only if the complexity of the functions (D. is limited

in some way; if not, we can choose co, to be the function that we desire to

represent and then it can be represented by a perceptron trivially. Minsky and

Papert use the order and diameter restrictions (see [Mi69]). The former is also

used by us.

Suppose we want to represent connectivity. Then, if the CD.'s are bounded

in complexity (so the reasoning goes), the weighted sum is too simple a function

75

to be able to integrate all the information that is required in computing

connectivity.

We set out to apply the same basic reasoning to models where the inte-

grating function is constructed out of finite operators. In particular,

we choose addition in a finite field because of the unique representation

property for functions in such a field (see 4.5) which makes proofs rather

simple, and because of the purely formal resenblance to perceptrons.

One particularly interesting aspect of using addition in a finite field as

the integrating function is that one proof of the inability of perceptrons to

compute connectivity is based on the reduction of connectivity to addition

mod 2. However, this function is precisely the simplest one possible in GF(2).

This underscores the need to make different reductions for different models

of computation that are presumed to be incapable of computing connectivity.

In this chapter we shall limit ourselves to Boolean functions.

We introduce cyclic perceptrons formally:

4.1 Definition

k u
GF(p) is the finite field consisting of p elements. $ (the basis)

is an infinite set of Boolean functions (0,1]U -► [0,1] such that each CD € $

(w is the first infinite ordinal) depends on a finite number of arguments.

Elements of $ are assumed to be ordered (in an arbitrary way). Then a (p.k)"

perccptron (over $) is a pair P = (a,Y), where a is an w-vector such that the

th k
i component ai € GF(p) and a^O for only finitely many values of i;

Y £ GF(pk).

76

Given a function f: {0,1) -» (0,1], we will denote the set of arguments

on which it depends by S(f).

Let P - (a,Y) be a (p,k)-perceptron. Then P will represent the predicat«

(Boolean function)

f - f S a cp € Y] (4.1)
i=0 1 1

where the value of cp € (0,1) c GF(pk). Obviously, S(f) = U S(cpi)
i€(j: 0 ^0)

We will indicate the function represented by a (p,k)-perceptron P as in

(4.1), or simply [P],

Let us recall a concept from [Mi69]. Given a (p,k)-perceptron P = (a,Y)

over a certain basis *, its order (ord(P)) is max (S(cp.) .

We can also introduce the order of a function.

4.2 Definition

The (p,k)-order of a Boolean function f over a given basis i ((p,k)-ord (f,

is the smallest X such that there exists a (p,k)-perceptron of order I repre-

senting f. If no such perceptron exists, the (p,k)-ordei of f Is defined to

be 00.

Let Q be the set of all Boolean functions with finite support. Note then

that for an arbiträr}' Boolean function f, (p,k)-ordn(f) is finite and < S(f),

for all primes p and arbitrary k. Also note that for an arbitrary basis $

(p,k)-ordn(f) £ (p,k)-ord$(f) (4.2)

77

We show now, as Is done In [Mi69l, that we can choose for the basis a

more restricted set. Let the set of arguments of the basis functions be H =

fx1,x2,...J; then we define the set of masks M « { A x.: S is a finite sub-

i€S 1

set of IW }. A convenient way of ordering M is to assign to CD€M the binary

number bjbwl...b1 where bk - 1 if and only if xk appears in the conjunction

defining cp.

4.3 Proposition

Any Boolean function f can be represented by a (p,k)-perceptron over M

for any prime p, and arbitrary k.

The proof is the same as that of Theorem 1.5.1 in rMi69l, i.e., we util-

ize the following correspondence between Boolean operations and operations in
k

GF(p) if the variables assume only the values 0 and 1:

x1 A x2 ~ x1 • x2, x1 V x2 ~ x1 + x2 - Xj • x2, x ~ 1 X

If f is a function of n arguments, then from its disjunctive normal form, by

using this correspondence and by multiplying out afterwards, we obtain the

following representations for f:

2 "1 Cil 'ai2 ain
T a1x1 x2 ... xm B l

i=0

where a is the j bit of the binary representation of i and a € GF(p).

Note that the mask co. (see the ordering above) is represented by the monomial

with exponents corresponding to the binary representation of i.

78

Theorem 1.5.3 of [Mi69] also holds in our case. We state it as

4.4 Proposition

The following holds for an arbitrary Boolean function f, an arbitrary

basis $, and an arbitrary integer k and prime p:

(p,k)-ordM(f) s (p,k)-ords(f)

Proof

The same as in [Mi69].

Note that if we take Q for the basis in Proposition 4.4, and combine it

with (4.2), we obtain that (p,k)-perceptrons over M achiave minimal order.

We state without proof the following well-known

4.5 Lgmma

Every function GF(p)n -» GF(P
k) can be uniquely represented as a polynomial

in n variables over GF(p) that is at most of degree pk-l in each variable,

(see, e.g., [La67].)

It has already been noted that we will be interested in whether a function

can be represented by a (p,k)-perceptron with a limitation on its order. For

this we need the following

4.6 Definition

A sequence of Boolean functions f^f.,,.. of 1,2,... arguments Is of

t
finlt:c (p,k)-order (over a given basis $) if there exists a finite r such

Bounded would be a better word, but we conform to the terminology of [M169]

79

that for all i (p.lO-ord^f.) a r.

Let there be given a (p,k)-perceptron (a,Y). If Y = (y1 yj, then>

recalling that GF(p) Is a vector space of dimension k over GF(p), and desig-
th

nating the j component of ai by ai (similarly for yh € Y), we have

m k
[S a^ CD4 € Y] = V A

h=l j=l 1=0 1=0 *■ h=l 1=1 <=n iJ i "J

We can restrict the diversity of perceptrons we are dealing with by noting

4.7 Proposition

Let $ be a basis closed under conjunction (i.e., co, \|r € $ =» cp A i|f € *).

If a Boolean function f is of finite (p,k)-order over $, then it is of finite

(p,l)-order (but the order may change).

Proof

We have f = [(a,Y)I where (a,Y) is a (p,k)-perceptron. Suppose |Y| = m

and the (p,k)-order of f is i. From ^.3) we have

m k o"
f - V A [£ a .(p = y] (4.4)

h=l j=l 1-0 1J 1 hJ

where a1 , yh € GF(p).

By Lemna 4.5, we know that for all a € GF(p) there always exists a poly-

nomial Pa(x) over GF(p) of degree p-1 which takes on the value of 1 if x = a

and is 0 otherwise (the degree follows from the number of zeros of the poly-

nomial). Thus substituting the Boolean operations with the field operations

introduced in the proof of Proposition 4.3, we obtain from (4.4)

80

f - Q(n P (I a -cp),..., n P (E a.,.cp,)) (4.5)
j=i yij i-o 1J 1 j»i ymi i.o ^ i

where Q(x1,...,xm) is the polynomial (of degree m) that represents the Boolean
m f

function V v . Each p is of degree p-1. Hence f can be expressed as
h-1 n ^ij

a polynomial In the cp^s of degree ^ m« (p-1). Obviously, cpj for j > 1 can be

replaced by ^ since It assumes only the values 0 and 1. Also, cp'ilr represents

the function cp At and |s(cp A ij,) (^ |s(cp) | + |s0|f) |); thus, if the basis is closed

under conjunction (as, e.g., Cl or M), (4.5) describes a (p,l)-perceptron for f

of order ^m^p-l)*/. □

Remark

Incidentally, this proof also shows that we can assume the cardinality

of Y to be 1.

Since we shall subsequently be concerned only in whether the order of cer-

tain functions Is finite or not, we will be able to limit ourselves to (p,l)-

perceptrons. For convenience, we will write simply "p-perceptrons". Also, we

will be only concerned in whether there exists a basis over which a function is

of finite order. This is equivalent to whether a function is of finite order

over M.

t

QO^ xm) is obtained by using 3^
V J^ ~ ^i + 3^2 " yl * y2 recursivfily;

i.e., Q(x1,...,xra) « Q^!»«".^.!)-*- ^ + xin.Q(x1
x
m_i)' If Q is a poly-

nomial over GF(2), then Q » ® IT y where the sum ranges over all nonempty
y€s

subsets S c (x.,...,x }. 1 1 ' m

81

We first turn our attention to the case when p = 2. Instead of "2-percep-

tron", we will say "Boolean perceptron".

From Lemna 4.5 we conclude that every Boolean function can be uniquely

represented as a polynomial over GF(2) that is at most of degree one in each

variable (a Boolean polynomial).

Noting that the terms of a Boolean polynomial represent marks, we conclude

that every Boolean function f has a unique representation as a Boolean perceptron

over M. Furthermore, by Proposition 4.4, this representation is a minimal order

representation for f. Note then that 2-ord^f) corresponds to the degree of

the Boolean polynomial for f.

This unique representation property allows us to establish the minimal

order of certain interesting predicates very easily. As in 3.2, we are again
2

interested only in functions {0,l]n ■* (0,1) that: are interpreted as functions

of nxn patterns of O's and I's. In particular, we are interested in the Boolean

2
function of n variables c (introduced in 3.2) and e , (the Euler number of n n,k

a pattern of I's on a square array of O's and I's is equal to k). It Is well

known (see, for example [Mi69]) that the Euler number of a planar figure is

the difference between the number of Its components and the number of its holes.

If we use the notion of connectivity introduced in 3.2, then the Euler number

of the pattern in Fig. 4.1 is 1.

4.8 Theorem

The connectivity predicate is not of finite 2-order over M (hence, over

any basis).

82

Proof

We use the One-in-a-box construction introduced in [Mi69]. Before pro-

ceeding, however, we must define certain auxiliary predicates, n, the size

of the pattern is assume odd (henceforth, we will suppress the subscript n

in the notation for functions). The variables representing positions in the

square array will, as usual, be denoted by x^ for 1 ^ i. j S „. Then we define

r = (x11 A x12 A ... Ax) A

(x31 A x32 A ... A x3n) A ... A

(Xn] A X o A ••• A X) m n^ nn

and

s » (x21 V x22 V ... V x2n) A

(X41 Vx42 V •'• V ^n) A ••• A

(xn-l 1 V xn-l , v ... v x .); n-i,i n-1,2 n-l,n '

i.e., r io 1 only on patterns with odd rows consisting exclusively of I's,

and s is 1 only on patterns where each even row has at least one 1 (the One-

in-a-box predicate). Then,

r A c = r A s (4>6)

(c is the connectivity predicate).

Now, for arbitrary functions f, g, h,if h = f A g, then 2-ord (h) ä 2-ord
M M

(f)+2-ordM(g); i.e..

2-ordM(g) ^ 2-ordM(h)-2-ordM(f) (4.7)

83

Replacing h by r A s, f by r, and g by c we obtain

2-orcyc) ^ 2^^^ A s^-oryr) (4.8)

We have 2-ordM(r) = Sf •„; l-or^h) = ^ •„ (recall the Boolean
m

polynomi.i for ^ ^ described in the footnote on p. 80) 2-orcl (r A s) =

n(n-l) (because ;the Boolean polynomial representations of r and s have no

variables in common). Using this we obtain from (4.8) 2-ord (c) ä ^Släi .

i.e., the 2-order over M of the connectivity predicate is not finite. □

We next establish

4.9 Theorem

The predicate "the Buler number of a pattern equals k" is not of finite

2-order.

Proof

We again consider the case when M is the basis. The general case follows

from Proposition 4.4. n is the size of the pattern. We need to consider a

subset T = S = (x^: i+j even) (note that all points of S are disconnected

from each other, in the sense we use this word). \T:\ = t will be determined

subsequently.

We define the following predicates

Pr = 1 if and only if all points of T are 0; i.e.,

pr = n (1 e x)
xfT

q = 1 if and only if k points of T are 1; i.e.,

84

q=® n x • 11 (1 ffi y)
x€ü yCT-U

where the sum ranges over all possible subsets U = T with |u| = k. When the

expression for q is multiplied out each term produces exactly one term of the

form n x and thus the above Boolean polynomial is of degree t if and only
xtT J

if the number of terms in the sum is odd. The number of terms is (t). But

2-1 t
() is odd for all 0 £ k ^ 2 -1 and all i. Thus if t = 2^-1, 0 ^ k s t

k

then 2-ord(q) = t. Also, 2-ord(pr) = |T| = n2-t.

Recalling once again the ek is the difference between the number of compo-

nents of a figure and the number of holes, wa have the relationship

pr A ^ » pr A q

Again using (4.7) with g * e^ h » pr A q, f - pr we obtain

2-ordM(ek) ^ n
2 - [TI - 2l-l

No matter how large we choose i, we can find an n such that we can obtain

a set T with (TI = 2 -1. Thus, the Euler predicate Is not of finite order

over M. Q

Theorems 4.8 and 4.9 can be extended to p-perceptrons for arbitrary

p. The generalization will only be Indicated for Theorem 4.8.

t 2^
Proof: First show that () is even for all I and all MO, f. This is done

by induction. Now observe that due to (") = ("f1) + C'\\ and the fact that
o , K k . k-i
2-1 2-1 2

(j) is odd, (9) is also odd (for otherwise („) would not be even). We

can continue this way and establish the claim.

85

The obvious difficulty is that Boolean functions do not have a unique

representation as polynomials over GF(p) for p > 2. Specifically, in the

case of Boolean perceptrons over M, we were able to reduce the problem of

the order of connectivity to the order of r and s (see above). The orders

of these predicates (equal to the degrees of the corresponding Boolean poly-

nomials) were easily computed due to Lenma 4.5.

Suppose c is of finite p-order over M (we have already remarked that this

brings no loss of generality) for some p > 2. Due to Proposition 4.7 we can

assume that we have an expression of the form of (4.5) for c . When multiplied

out, we obtain

00

c " T. a.m. mod p (4.9)
n i-0 1 1

th
where m. is the monomial representing the 1 mask. m. is of degree one in

each variable, and the values of the variables are restricted to (0,1}. Since

the perceptron from which we obtained (4.9) is finite order, we can assume that

the degree of (4.9) is n i.

We can now extend c to the domain GF)p) (i.e., to square patterns A =

(b ,], 1 ^ 1, J * n, and b € GF(p)) by defining c^(A) - 1 if and only if

c (f(A)) = 1 where ffb^ J) = (c.,.) such that c^, = 1 if b^ =1, otherwise
nN N ij Ij ij IJ

c. . * 0. We have from (4.9)

00

c' « T a .m' mod p (4.10)
n 1=0 1 1

where m' is obtained from m. by replacing each variable x by PjU.) such that

P. (x) = 1, otherwise P, 00 = 0 (see the proof of Proposition 4.7 how to ob-
^ J -J

tain P1(:c.)). Now we have a total function c^ over GF(p), and thus its

86

polynomial representation obtained by multiplying out (4.10) must be unique.

Since the degree of (4.9) is £ Ji,

the degree of the polynomial (4.10) s (p-DX (4.11)

Another estimate of the degree of the polynomial for c' is obtained using

the predicates r1 and s' obtained from r and s of Theorem 4.8 similarly as

c^ was obtained from cn. The polynomial Pr, representing r', is obtained from

the polynomial representing r by substituting each variable x with P.fr).

Similarly, for the polynomial representation P , of s'. The degrees of P
8 r '

and Pg, are then found to be =S ^ n-(p-1) and ^ ^ n(p-l) respectively

(2-ordM(r) and 2-ordM(s) multiplied by deg^)). Since the analogs of (4.6)

aid (4.8) again hold, we obtain that deg(Pcl) is not bounded, contradicting

(4.11), and thus also the finite order of c.

Note that the obvious generalization, i.e., if a function is of finite

2-order, then it is also of finite p-order (over M), is not true; Consider
n

the Boolean function $ x^ We will investigate the degree of the polynomial
1=1

representation of #' (obtained in the same way from ft as c' was from c above).

If a p-perceptron over M of finite order exists for (P, then we obtain a poly-

nomial representation of bounded degree for ©' similarly as (4.10) was

obtained from (4.9). On the other hand we have the following representation

for *

I n x n (l-x.) mod p (4.12)
16S 1 i?S J

where S ranges ovar all subsets of (1 n] of even size. When multiplied

n
out, each term produces exactly one monomial of the form H x.. The number

1=1 i

87

of such monomials appearing In the developed form of (4.12) is

n

S (*) ' 2n-1

1-0 Z1

(use the Identity (") ■ ("J) + (JlJ)). Since this number Is not 0

mod p, (4.12) yields a p-perceptron over M of order n for <*, If x. Is

replaced by P^faj) we obtain a (unique) polynomial representation for

£»' of degree n'(p-l), contradicting the existence of a finite order

p-perceptron over M for &*.

88

0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A pattern i with Euler number 1

Fig. 4 .1

89

CHAPTER FIVE

PATTERN COUNTING MACHINES

In this chapter we shall permit ourselves a certain degree of informality.

We are again concerned with the power of machines that combine a large

number of "local" computations through an integrating function. Only this

time we shall not be limited to functions that can be represented as a combin-

ation of finite operators.

This class of machines again operates on square patterns of O's and I's.

The operation is divided into two phases: In Phase I the pattern is scanned

with a square "window" of a certain size. Each time a nonzero pattern appears

in the window, we take note of it (there is a finite number of nonzero patterns

since the window is of finite size). At the end of the scan we have a count

of the various patterns,and we are then allowed to utilize this data in Phase

II which consists of computing the valui) of a partial recursive function for

this data. The formalization of this model is obvious and we omit it.

What can sur' a machine do? Clearly the computation of this machine is

divided into a local phase and a global phase, so that it fits into the broad

class of problems considered in [Mi69l and Chapter Four.

Note that the boundedness of the window size is essential. If we insis-

ted only that the window contain a given number of points, but otherwise

allowed it to be of any shape with arbitrary dicUnces between its points,

then Phase II could reconstruct the whole figure as was observed already in

00.69].

We again inquire whether these machines can recognize the familiar

90

topological predicates connectivity and Euler number.

5.1 Theorem

Pattern Counting Machines (PCM) cannot recognise the connectivity pred-

icate.

Proof

We need only exhibit two patterns, one connected and the other discon-

nected, with the uatne pattern spectrum. In this case, no algorithm of Phase

II could establish the difference between them.

Two such patterns are given In Fig. 5.1.

Specifically, these patterns are equivalent under windows of size 2x2.

However, it is easily seen that increasing the dimensions of the patterns

in Fig. 5.1 linearly by a factor of k makes them equivalent under windows

of sire up to k + 1. We can arrive at this conclusion by setting up a 1-1

map between occurrences of the same pattern In the window in the two pat-

terns

5.2 Theorem

PCM's can compute the Euler number.

Proof

It Is shown In fM169] how to compute the Euler number from the spectrum

of patterns of the shape

J3) O

91

Before proceeding, we need a notion of continuous deformation. Pattern

B can be obtained from p# tern A by continuous deformation If B arises from

A by a sequence of additions or deletions of I's of the following kind: Let

us fix attention on a 3x3 square with the central position in the place of

the 1 being added (deleted). For simplicity assume that the boundary positions

are always 0. Each position of the periphery of the square which has a 1 in

it is either connected or disconnected to another 1 on the periphery (not

necessarily by a path in the square). This set of connections may be described

by a symnetrlc 8x8 0-1 valued connection matrix, i.e., a = 1 if and only if

the 1 and j positions on the periphery have I's and are connected. The

proposed addition (deletion) is permitted cnly if (1) the connection matrix

remains unchanged as a result of it, and (2) there is a 1 adjacent to the

proposed addition (deletion).

Any predicate whose value remains unchanged if the pattern A is replaced

by B, obtained from A by continuous deformation, is called a topological

predicate. We assert without proof that connectivity and Euler number are

topological predicates. The reader is warned, however, that there is a pitfall

in proving this fact for the Euler number predicate. The number of holes in

Fig. 5.2 should be one, not two (i.e., O's are connected diagonally in addition

to their usual connections). This is discussed more fully in [My71I. However,

if the holes are sufficiently large (so that all the O's in them are connected

in the usual way) this difficulty is not encountered.

5.3 Theorem

Any topological predicate recognized by a PCM must be a function of the

Euler number.

92

Proof

We will, have established the theorem If we succeed in shewing that,

given any PCM p computing a topologlcal predicate, then for two figures

Xj and X2 with EULER(X1) = EULER(X2), we also have PCX.) = P(X2).

In [Mi69] it is shown that for every figure X there exists an "Euler

canonical" figure C(X) such that EULER(X) = EULER(C(X)); and if for two

figures X1, X2, EULER(X1) = EULER(X2), then CCX^ = C(X2). If the Euler

number of X is n > 0, then C(X) consists of n components without holes. If

the Euler number of X is n ^ 0, then C(X) consists of 1 component with-n+1

holes.

We will show that we can deform any figure X into C(X) without changing

the value of P.

The deformations available co us are:

(1) Continuous de formt« ^i^n. If we subject X to this kind of deformation,

then P(X) remains unchan^cü because it computes a topologlcal predicate.

(2) Deformations that leave the pattern spectrum unaltered. By defini-

tion of PCM's.

As a consequence, we have

(3) Removal of components inside holes. To accomplish this without

changing the value of P(X), we first apply (1) until the window cannot scan

simultaneously an interior component and the wall of the hole in which it

resides. The-i It is obvious that the pattern spectrum will remain unchanged

if we remove the component from inside the hole. After this we can apply

(1) in the reverse direction.

93

If we are given two figures X1 and X2 with same pattern spectra, then

we can add equally shaped holes to the figures in such a way thac the pattern

spectra remain the same. The holes have only to be placed in such a way that

the window cannot scan any other boundary while scanning the newly introduced

hole. We can then repeat this to add any number of holes.

Specifically, given two figures of the shape of A and B in Fig. 5.1, we

can add holes in this way and still have the same pattern spectra. For example.

C and D in Fig. 5.3 have the same pattern spectra for a sufficiently small

window size. Note that given any two components, one of which has a hole,

we may apply deformation (1) to obtain a figure proportional in dimensions

to C and they apply (2) to obtain D. We call this sequence of deformations

"cancelling a hole and a component".

We deform X into C(X) by cancelling as many holes and components as

possible. We first apply (3) until no component remains within a hole.

Then we may either have a hole and a component not containing this hole, or

not. In the latter case, we are done. In the former, we select a hole and

a component not containing it and cancel them. After this we are left with

one less component and hole. We repeat this until we arrive at C(X).

We can summarize the results on the recognition of topological predicates

contained in [Mi69], Chapter Four, and in the present section in tte following

table

94

Recognition
of

Predicates

Connectivity

Euler

Other
Topologlcal
Predicates

Cyclic
Perceptrons

NO

NO

PCM

NO

YES

Functions of
Euler number

only

Classical
Perceptrons

NO

YES

Functions of
Euler number

only

Thus, all these results support the conjecture expressed In [Mi69] that

no "local-global" computer can recognize connectivity.

It appears, however, that all models are a^tremely sensitive to altera-

tions. We have already mentioned how PCM's can be converted into universal

machines with the removal of the restriction on the size of the window.

A. R. Meyer noticed that ordinary perceptrons may be modified to recognize
00

any Boolean function with order oue. Instead of E d. cp. ^ 0 consider
1»0 i 1

S ^ ^ € Y for some subset of integers Y. Now we can choose the coeffi-
1=0 l 1-

dents ai in such a way that the sums of the coefficients in no two subsets

of the set K of all coefficients is the same, ie.,

V(X,Y = K) [S a1 = E ai =» X = Y]

a1 € X ^i € Y

We can define the coefficients Inductively, i.e., choose a to be greater
n-1 n

than S a1. This is in the spirit of stratification (see [Mi69]). Now
1=1

notice that if $ is the set of mj^ks of order 1, then a Boolean function cp

' ■ ■■■■:-

;■

95

Is simply a collection of subsets of K. Thus, Y can be chosen as the set

of integers representing the sums of coefficients in individual subsets

belonging to ©.

96
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
1
1
1
1
1
0

B

Two figures with the same 2x2 pattern spectra

Fig. 5.1

0
0
0
0
0
0
0
0

The number of holes in this pattern is one

Fig. 5.2

C D

Cancelling a hole and a component

Fig. 5.3

■ ■ ■ ■ ■■■■ - ;• ■ ■

97

APPENDIX A

CERTAIN PROPERTIES OF SHORT FORMULAS

The purpose of this appendix is to modify certain results of [H068] in

the light of our different requirements. Our goal is Lemma A.9 which is used

directly in the proof of Theorem 2.2.2. We prove it by way of a series of

intermediate results, none of which are used elsewhere.

In what follows we would frequently use the phrase "F is a formula in

n variables over i, and such that no variable occurs more than k times".

This will be abbreviated to "F is a ($,n, k)-formula". If any of the para-

meters is not present, we will replace it by *. For example, "F is a (*,*,k)-

formula" and MF is a (*,n,^-formula'' mean "F is a formula over ?, and such

that no variable appears more than k times" and "F is a formula in n vari-

ables over $n respectively.

A. 1 Definition

Let there be given the sequence of formulas G = (G.(X.,z),... ,G ,

(X ,,z),G (X)). If 1 £ i ^ p-1, then G, contains the distinguished

variable z, occurring only once. X. for 1 £ i ^ p is nonempty and is

either a singleton or c I) X .. Let F be an arbitrary formula, and

G = G1(X1.G2(X2,...,G ^(X 1G (X))...)). If F = G, then G is a nesting

sequence of length £ for F. If, in addition, the total number of occur-

rences of any variable (except z) in G is ^ the corresponding number in F,

then G is a proper nesting sequence for F.

98

A. 2 Remark

Let G and G be as described in Definition A.l. Furthermore, let all

Xi for 1 s i ^ p be singletons and distinct. Then G is equivalent to an

ep_^component. Also, suppose Xi is arbitrary and G1 is a formula over f.

Now replace all variables except possibly one in Gi for 1 S i s p-i by the

constant a. Let the set of variables that have not been touched be Y.

Y
Then Ga Is equivalent to an e-component over fa.

Let F be an arbitrary formula over $, X J S(F), and a ^ D; then we

would like to obtain a formula over $a with the following properties:

(1) G = Fa (2) S(G) => X, and (3) the number of occurrences of any vari-

able of X in G is ^ the corresponding number in F. G can be obtained

by a straightforward replacement of operators in F such that the variable

symbols that are replaced with a in forming FX (and subformulas of F
a

where S(F) consists entirely of such variable symbols) are removed, and

the remaining operators are changed to preserve equivalence with FX.
a

More precisely, if co(F1 Fk) is a subformula of F, then if S(F) <? X

for all i, cp remains the same; if S^) ex and S(F) «^X for j#., then

cp is replaced with 9(V... .x^.F^X^,... ,xk) "here all variables of

Fi have been replaced with a (if there are more such indices i, we proceed

in the obvious way); and if S(Fi)c x for all i, then cp is eliminated. This

transformation will be called normalization and G will be denoted by norm(FX)

99

A.3 Lemma

If F is a («,n,*)-formula, then for any p, q & 1 and a 6 D, if

n ^ ^ (P.q), there exists a subset X = S(F) such that either

(1) |xl = q and Fa is equivalent to a PC of the formulas F^...,?

Where r * "max and ^ for 1 ^ i S r is a formula over $a such that ^ ^^

of X occurs in at least two among F^...^^ and the total number of

occurrences of any x ^ X in F^...^ is ^ the number of occurrences of x

in F; or

(2) Mis arbitrary and F^ has a proper nesting sequence G = (G ,...,

Gp-r V Where Gi for ! ^ i ^ P is a formula over $a.

Proof

Assume there is no x = S(F) such that FX is as described in (1) of
a x '

the statement of the lemma.

We will describe a (proper) nesting sequence extraction procedure

(NSE) whose inputs will be a formula H over $a and a set of variables

Y. The output of NSE will be two formulas H'CZ.z) and Hw over fa such

that Z is either a singleton or = Y; furthermore, HU = H'CZ.H") for some

U C S(H).

G will be obtained by the repeated use of NSE. Initially, the input

of NSE will be F - F0 and 6. In the first application of NSE, the output

will be G1 and F1 ^ is an intermediate formula whose significance will

be describe immediately). In general, the ith application of NSE will

receive the input F and I I X and yield as output G, and F . We will
1 ' j< i J i i

100

Show that If n S TL (p,q), we can apply NSE p-1 times and end up with F _2

from which G is obtained as will be described below.
P

Description of NSE. The input to NSE is as describe above. Then

we can distinquish two cases:

Case I. L(H) = 1. In this case we cannot apply NSE, and the output

is undefined.

Case II. L(H) > 1. In this case we can assume that H has no unary

operators; for suppose there exists a subformula J of H such that J = coCM

J-,...,J)) where J. for 1 ^ i ^ r is either a variable symbol or another
1' ' r i

subformula of H. In this case cp'i|f = p ? $ and we can replace J by the

equivalent formula PC^ J). Similarly, if J = CD(JJ >... ^(J^) ,. •. ,Jk),

we can eliminate i(r because cp(x.,... ,i|r(x.),... ,x,) - p(x-,.. c ,x^,... ,x^)

p $a (thus, if a unary operator of H corresponds to an internal node of

T(H), we can eliminate it by either of these two means; on the other hand,

if a unary operator of H corresponds either to the root node or to a node

next to a terminal node of T(H), then we can use only one of the two methods

described). Now choose i' such that S(H ,,) is maximal among S(H ,) for
.1 •'■

1 s i <: r. Since support is defined only for formulas, S(H ,) may be

undefined if all arguments of the outermost operator of H are variable

symbols. In this case replace one of them by the identity operator

which is possible since id c $a. Consider H/H i, = K(Z,z). Again two

cases can arise:

101

Case Ha. Y fl Z = d. Choose any variable of Z, e.g. , x, and let

fx z]
H' = norm(K ^). z Is a distinqulshed argument (hence x is free).

In this case set V = S(H .^--Z U[x]. The significance of V will be
• J.

seen inmediately.

Case lib. Y f) Z t $. H' = nonn(K ^Zb] z is again a distinguished
a

argument V - S(H ,)-Z U Y.

In both cases H" = norm((H , ,)).
• i a

Analysis of NSE. Let ls(H)l = m, and let us estimate IsCH")'.

Obviously, ^(H^j)] ^ T~
L- . In the case that H results from a chain

max
of applications of NSE to a formula F, and F does not satisfy (1) of the

statement of the lemma, then we claim that in Cases Ha and b less than

q variables are set to a in H .,. Suppose this is not true. Let the

set of variables that is set to a on this occasion be W. Then W = Z-(x)

(Case Ha), or W = Z-Y (Case lib). In any case consider FW. This is
a

CD \W W
equivalent to Y(H i(1))a>'• • > (H i(g0 «here i(l),... ,i(s) are the

indices corresponding to the subformulas H . where all variables have
• J

not been replaced by a (if in H . all variables have been replaced by a,

then it is absorbed into cp). But then ^(norm^H ./1N)) ,... ,norm((H Jf J
1^))

,t\L) a ,t{3) a

satisfies (1) of the statement of the lemma. A contradiction.

Thus, I SOI") | ^ -2L- -q+1
max

Hence, If we define

102

\(l,q) - 1

Tl(p+l,q) = (U.(p,q)+q-l)-n . D o ^ max»

1. e.,

max

for p,q ä l (and if F doeg not satisfy (1))) we will be able to apply NSE

p-1 times and obtain F . G can then be obtained as follows: If S(F)

0 S(Gi) = (Ä for 1 ^ i -. p-l, then choose any variable y <: S(F .) and

obtain Gp from (Fp-1)
yJ by normalization; otherwise, denoting PU S(G,)

by U, obtain F^ from (Fp-;L)^ by normalization. It can be checked that

G1 for 1 ä i <: p satisfy the conditions of (2) of the statement of the lemma.

n

Consider a sequence of (nonempty) sets X. for 1 s: i «: p such that

Xi is either a singleton, or is included in U X . We will call such

J<i j

a sequence of sets a normal sequence (of length p). Note that the sequence

Xl'*,''Xp in Definl-tion A. 1 is a normal seqdence. Then

A. 4 Lemma

Let Xp.-^Xp be a normal sequence of sets with the additional pro-

perty that each element of (j X appears in at most k elements of the
i=l

sequence. Then if p a(k+l)m, there exists a subset Y = Pj X and an

i=l i

increasing sequence of indices i(l),i(2),... ,i(q) such that (1) q a m,

103

(2) 1(1) - 1, (3) Xi^ n Y is a singleton for 1 ^ j ^ q, (4) y^ 0 y = 0

if I * i(q) and i f* i(J) for 1 ^ j S q, and (5) if x <= Y, j < j < j

andx€X1(Ji). x€Xi(J3), then also x € X^^.

Proof

(this is a direct translation of the proof of Lemma 2 of IHOöS] into

P
oar terminology). Let IJ Xi = (x^x^...]. Without loss of generality

assume that x1 € X^ If m = 1, set Y = (Xj), i(l) = 1, and conditions

1-5 are satisfied. For the inductive step two cases are distinguished.

Case I. Xj^ occurs in none of the sets X , 2 i j ^ (k+l)"1"1 + 1.

Setting r « (k+l) +1, the sequence X2,...,X is normal and each element

r
occurs in at most k of the X , 2 <: j «: r. If Z c U X and the sequence

.1 "2 J

J(l).«...J(q-l) are obtained by the inductive hypothesis, then (xj U Z = Y

and 1(1) = 1, 1(2) - J(l),...,l(q) = j (q-1) Batisfy conditions 1-5.

Case II. Assume that Xj^ occurs in some X , 2 s: j S (k+l^'^l and

let h be the smallest such number j. Furthermore, let V be the set of

elements different from x^ and occurring in X-,...,^ . Delete the

elements of V from X^X^,..^ , and delete those among XX-,...,X

that remain empty. Let the resulting sequence be Y^....Y . The length

of the sequence (X^X^X^,... ,X) is at least p-(k+l)m"1+l.

There are less than (k+l)"1"1 distinct variables in X-,...,*

each one occurring In at most k-1 of the formulas X ,XX .

Therefore,

104

in-1,1 „. ,w, .^m-l
r * p-(k+l)m-i+l-(k-l)(k+l)m"1,l.e.J

r 2= (k+D^+l

The sequence Y2,...,Yr is normal and its length is at least (k+l)1""1.

x1 occurs in Yj. Let Z = IJ Y and the sequence j(l) = 2, j(2),...,
j«=2 ^

(q-1) be obtained according to the inductive hypothesis for Y0,...,Y .
2 P

Then Z and i(l) = 1, i(2) = j(l),...,i(q) = j(q-l) („here q a tn), satisfy

conditions 1-5.

Let there be given a (*,*,k)-fommla F with the proper nesting

sequence G = (Gj G) such that Gi is a formula over $. As has

already been remarked above, X1,...,X (see Definition A.1) is a normal

sequence of sets.

If p ^ (k+l) , then by Lemma A.4 there exists a set Y C N X and

i=l I

q indices i (j) for 1 s: J si q such that conditions 1-5 hold. Note that

if m = k't, then JYl i t since no variable appears more than k times

in G (G is proper). In particular, consider only Z « {x.,...,x] C Y

where x1,...,xt are numbered in the order of their appearance in G.

Note that due to condition 5 of Lemma A.4, if x, y €Y and y follows x

in G, then x cannot appear again after y in G. Let G be as denned in

Definition A.l. Then we will let the reader convince himsplf that GZ
a

(hence also F^ is equivalent to J^Z.G') where K(Z,z) is an e^component

a
over $ with input variable z, and G' is a certain formula over *a such

that each variable of G' occurs at most k-1 times.

D

105

Note that in this case we do not know the size of 8(0'). This

can be remedied in the following way; There are two cases; either

13(0')I ^ 1/2«t, or not. In the first case perform an a-merger on K

with basis S(G'), after which we obtain an SC of an e-component K'

of length ^ 1/2' t and a formula G" (through the input variable) such

that S^'*) equals the set of lateral variables of K*; in the second

case perform an a-merger on KCZ.G') with basis Z-SCG') in which case we

obtain an e-component K1 of length ^ 1/2*t with a constant input operator.

We summarize the preceding in the following

A. 5 Lemma

Let there be given a (*,*,k)-formula F with a proper nesting sequence

2k« t
of length p a 1 composed of formulas over $. Then if p ä (k+1) , there

exists a set Z = S(F), |F| * t, and F is either equivalent to an SC of
ä

an e-component K over $ and a formula G over $ such that S(G) is the

set of lateral variables of K, and no variable of G occurs more than

k-1 times in G; or to an e-component K over $ with constant input

operator.

Let there be given a PC F of the formulas F.,...^ where r s n
1 r max

such that !s(F)| = q and each variable appears in at least two among

Fj Fr (i.e., a situation as described in (1) of the statement

of Lemma A.3). We are interested in obtaining a (nonempty) subset

X C S(F) such that when the variables outside of X have been replaced

106

by the constant a, |s(norm(F,)))[for those F. where not all variables
■L a 1

h?ve been replaced with a is equal or larger than a predetermined number

t (as large as possible).

We could solve the problem as follows: Each variable of S(F) appears

in a certain subset of the formulas F1}...,F . The number of such
n

subsets is 2 (in general, ^ 2 nlax); thus, we are sure to find a subset X

with |x| ^ -^— such that all elements of X appear in the same subset
„ max

of F ,...,F .

However, we can improve this number. Let us construct the occurrence

table of F. The table consists of rows corresponding to elements of S(F),

and of columns corresponding to F, for 1 s i ^ r. The entry a is 1
1 ij

if x^^ occurs in F and 0 otherwise. We will try to extract a subset

X c S(F) such that either all variables of F. are replaced by a, or

S(norm(F))) contains ^ elements (t will be determined later).

If all columns in the occurrence table contain ^ t I's, we are

done and X = S(F). Suppose not. Let the column j contain <- t I's.

Delete all rows corresponding to the I's in column j and column j

itself. Let the set of variables corresponding to the remaining rows

be Xy Consider the remainder of the occurrence table (i.e., minus

the deleted rows and column); and again look for the column with < I's.

If it does not exist, we are done and X = X.. If such a column exists

continue. Now two things can happen. Either at some point we end up

with a certain subset of columns, all of whi'rh contain ^ t I's, or we

end up with two columns that both contain < t I's. We shall see that by

107

an appropriate choice of t, the latter case cannot happen. The number

of I's in the whole table ^ 2q (each variable occurs in at least two

formulas). The smallest number of I's remaining after all but two columns

have been deleted ^ 2q-in where m is largest possible number of I's that

can be deleted in the course of this procedure, m = (t-1).(r+r~l+r-2+...

+3) = (t-1)' 2 (this corresponds to the case when each deleted

row contains only I's and at each stage t-1 rows are deleted). If, after

the table is reduced to two columns, both columns are to contain s t I's

(both have to contain the same number of I's since each variable occurs

in at least two formulas), then

or since r £ n
max

2q-m ^
2 St

4a+c
t *-rj- where c = (n +3)(a -2)

c+^ max max

For large n this is better than the previous bound. This result max

can be summarized in

A. 6 Lemma

Let there be given a PC F of the formulas F.,...^ over f where

such that |S(F)| = q and each variable appears in at least r ^ n
max

two among F^,...,F . Then if

108

q * iS+A^c where t ^ 1

v
we can find a subset X = S(F) such that F is equivalent to a PC of

a

the formulas Gp... ,Gs over $a and S(G.) ^ t for I ^ i ^ s^r.

Lemmas A.3, A.5, and A.6 can be combined into

A.7 Lemma

Let F be an ($,n,k)-formula. Then for any t * 1 and a f D if

nM6((k+l)
2k,t,(^^)

(see Lemma A.6 for the value of c), there exists a subset X C S(F)

such that either

(1) F is equivalent to a PC of the formulas F,,...,F over $a

viiere r s; n , each variable of F. occurs at most k-1 times in it,
max i '

and F, contains at least t variables of X or

y
(2) F is equivalent to an SC of an e -component K over $a

with a formula G over f (through the input variable) such that S(G)

is the set of the lateral variables of K and no variable occurs more

than k-1 times in G; or to an e -component K over f with a constant

input operator.

A.8 Lemma

Let F be a ($,n,k)-formula. Then for any t 2; 1 and a € D if

n ^ lyt.k)

109

y
then there exists a subset X C S(F) such that F is equivalent to an

ct

SPCeC over $a G such that (1) G has £ nk components, (2) each
max > v '

component is of length ^ t, and (3) the terminal components of G

have constant input operators.

Proof

Tl7(t,l) = nt . in this case T(F) has at least one branch

connected to t+1 variable symbols (k=l and thus all variable symbols

are distinct) at different nodes. This branch can be converted into

an et-component with constant input operator. The idea is illustrated

in Fig. A.1.

yt.k+l) = 116((k+2)
2(k+1)-Tl7<t.k>| (c-f4J. ülltjclzc)

We can apply Lemma A.7. The result is either (1) an e-component K

of the correct length and constant input operator, (2) an SC of an

e-component over $ of the correct length and a formula to which we

can apply the inductive hypothesis, and (3) a PC of formulas to which

we can apply the inductive hypothesis. In each case we obtain an SPCeC

wLth the desired properties. p

A.9 Lemma

Let F be a ($,nk)-formula. Then for any t ^ 1 and a <= D if

n ^ n8(t,k)

110

there exists a subset X = S(F) such that F is equivalent to an SPCeC
a

over $ G such that (1) G has ^ k components, (2) each component has X

as the set of its lateral variables, (3) the terminal components have

constant input operators and (4) |x| = t.

Proof

Set n8(t,k) = Tl7(s.t,k) where s =/nmaxJ + f nmax) +...+ Kiax)

Apply Lemma A.8 to obtain a SPCeC G' with all components having length

^ S't. Since each variable appears at most k times, it can occur in

at most k components, s is the number of nonempty subsets of s k elements.

Thus, if the number of variables is as indicated we are sure to kind

in G' a subset of t variables that all occur in the same set of components

of G*. After performing an a-merger with this set as basis, we obtain

the desired SPCeC G. pi

Remarks on the bounds in Lemmas A.3-A.9. If T| is approximated by

n "Ch then T| is inductively defined as follows:
TIlclX /

Vt,i) = ^ i m max

2k-Tl7(t,k-l)

V'.« ' V-n^1' .Vt,k.l)

for a certain constant y» Thus we see that TL(t,k) 2 iexp(b,2k) = b

for k ^ k(b) for any constant b (t has not been included in the estimate

because in applications it is constant).

b* fek ti imes

Ill

y-Q-Q

Conversion of a formula F where each variable occurs only once
into an equivalent e-component by setting certain variables to a.

Fig. A.l

11.2

APPENDIX B

THE LENGTH OF THE MOD 2 SUM OVER 11

There is an isomorphism between the set of formulas over H and series-

parellel contact networks. We assume the reader is familiar with this model

as well as with the isomorphism in question. In this case if F is a formula

over IT, then L(F) corresponds to the number of contacts in the network corres-

ponding to F.

For convenience, we will derive the result in contact network terminology.

Given a (series-parallel) contact network C, a chain is set of contacts

such that when they are all closed, C conducts (we will say "C is 1"); a cut

set is a set of contacts such that when they are all open, C does not conduct

(we will say "C is 0"). In the obvious way, we define minimal chain, minimal

cut set (i.e., when one contact is deleted the corresponding property does not

hold).

B. 1 Lenina

Given a contact network C and any minimal chain and minimal cut set, their

intersection is a singleton.

This result is due to Khrapchenko [Kh71].

113

Proof

By induction on the number m of contacts in C. For m = 1 the assertion

is obviously true. If m > 1, C must be either a series combination of smaller

networks (^ and C2, or a parallel combination of smaller networks C1 and C .

In each case it is simple to establish the lemma. D

Suppose now we have a contact network S that represents 6 x.. Let m

i=l 1 J
denote the number of contacts labeled with x. or x, . Then we are interested

n J J
in £ m..

j=l J

Consider n-tuples (a^ for 1 ^ i ^ n and ai € [0,1]. An n-tuple of this

kind will be called even if it has an even number of 1's,otherwise it is odd.

Obviously S must be 1 on odd n-tuples and 0 on even ones.

Consider an arbitrary odd n-tuple a = (a.,,...,a. a) and an even
i 1 n

n-tuple b = (bj^..,, .b^,... .b^) at Haimning distance 1 from a. If b = ä , then

all other components of a and b are equal, e. will denote the n-tuple with

a single 1 in the i place. Then we will write b = a $> e,.

To each odd n-tuple a we can assign a minimal chain c(a) (consisting of

a subset of contacts of S that are closed at a and that do form a minimal

chain); similarly, to each even n-tuple b we can assign a minimal cut set

s(b) (consisting of a set of contacts of S that are open at b and that do form

a minimal cut set).

Let a be odd, b = a ^ e. even. Then by Lemma B.l, c(a) H s(b) is a

singleton; in fact, it is easy to verify that it must be a contact labelf"

either with x. or x..

114

We build now Tables I and II. The rows of Table I correspond to odd

n-tuples while those of Table II correspond to even n-tuples. Thus both

n-l
have 2 rows. The columns of both tables correspond to the variable x.

for 1 ^ i ^ n. The entry a(a,j) in Table I is c(a) fl s(a <£ G.). This entry

will be represented by a number between 1 and vn..

Let t.. denote the number of times contact number i (among those labeled

wi th x. or x.) appears in column j of Table I. Then

mj

S t = 2n-1 (B.l)
i=l 1J

The entry ß(b,j) of Table II is s(b) H c(b ^ e.). (B.l) again holds.

Construct now Table III. The rows of Table III correspond to all possible

pairs (a,b) where a, and]J are odd and even n-tuples respectively. The columns

of Table III again correspond to variables. An entry of Table III is Y(a.b,j) =

(a(ä,j), ß(b,j)).

Consider now the diagonal entries of Table III (i.e., (a,ß) such that

a = ß). Let (a(a,j), ß(u,j)) be such an entry. Then a(a,j) = ß(b,j) =

c(a) n 3(b). Thus, by Lenma B.l, there can be only one such entry in a row.

n mj 2
The number of diagonal entries is t! £ t . Thus,

j=l i=l 1J

m

I i t**!2^ (B.2)
j=l i=l 1J

Combining a version of Cauchy's inequality

m. m,

•i (i t)2 ^ T. t2
m
j i=l lj i=l ij

115

with (B.l) and (B.2), we obtain

n 1
S — * 1

This time we apply the inequality

n n 1 2
(T. m.).(E -±-) ^ n
j=l j j=l "j

(for both inequalities see, e.g., [Mt64]p. 9), and obtain the desired result

n 2

Um. * n

116

LITERATURE

Ar69 M. A. Arblb, Theories of Abstract Automata, Prentice-Hall, 1969.

Av69 A. Avlzlenls, On the Problem of Computational Time and Complexity of
Arithmetic Functionsf Proc. ACM Symposium Theory of Computing,
May 5-7, 1969, Marina del Rey, California, pp. 255-258.

Be71 C. Berge, Principles of Combinatorics, Academic Press, 1971.

Co71 S. A, Cook, The Complexity of Theorem Proving Procedures, Proc. 3rd
Ann. Symposium Theory Computing, Shaker Heights, Ohio, May 3-5, 1971
pp. 151-158.

Gr59 Editors, Eugene M. Grabbe et al., Handbook of Automation Computation
and Control, Vol. 2, John Wiley, 1959.

Ha71 L. H. Harper and J. E. Savage, On the Complexity of the Marriage Problem
(unpublished) .

Ho68 L. Hodes and E. Specker, Lengths of Formulas and Elimination of Quanti-
fiers I, Contributions to Mathematical Logic, K. Schutte, editor, North
Holland Publ. Co., 1968, pp. 175-188.

Ho70 L. Hodes, The Logical Complexity of Geometric Properties in the Plane,
Journal ACM, 17, No, 2, pp. 339-347.

Kh71 V. M. Khrapchenko, On the Complexity of the Realization of the Linear
Function in the Class of tr-Circuits, Mat. Zametki, 9, No. 1, 1971,
pp. 35-40 (Russian).

Kr59 R. E. Krichevskii, Realization of Functions by Superpositions, Prob.
Cypernetics II, 1961, pp. 458-477, Pergamon Press (translated from the
Russian).

La67 S. Lang, Algebra, Addison-Wesley, 1967.

Lu59 0. B. Lupanov, Complexity of Formula Realizations of Functions of
Logical Algebra, Prob. Cybernetics III, A. A. Lyapunov, editor,
Pergamon Press, 1962, pp. 782-811 (translated from the Russian).

Lu70 0. B. Lupanov, On Some Results in the Mathematical Theory of Synthesis
of Control Systems, Information Materials 5(A2), Ac. Sei. USSR, Moscow
1970, pp. 16-22 (Russian).

117

Mi69 M. Minsky and S. Papert, Perceptrons, MIT Press, 1969.

Mk71 R„ McKenzie, et al. On Boolean Functions and Connected Sets, Math.
Systems Theory, 5, No. 3, pp. 259-270.

Mt64 D. S. Mltrinovic, Elementary Inequalities, P. Noordhoff Ltd. Groningen,

196^.

My71 J. P. Mylopoulos and T. Pavlidis, On the Topological Properties of
Quantized Spaces I, II, Journal ACM, 18, No. 2, pp. 239-254.

Ne 66 E. I. Neciporuk, A Boolean Function, Soviet Math. Dokl., 2, No. 4,
1966, pp. 999-1000.

Ri42 J. Riordan, C. E. Shannon, The Number of Two Terminal Series-Parallel
Networks, J. Math, and Phys. 21, 1942, pp. 83-93.

Ry63 H. J. Ryser, Combinatorial Mathematics, MAA Math. Monographs, No. 14,
John Wiley, 1963.

Sh49 C. E. Shannon, The Synthesis of Two-Terminal Switching Circuits, Bell
System Tech. J., 28, No. 1, 1949, pp. 59-98.

Su61 B. A. Subbotovskaya, Realizations of Linear Functions by Formulas Using
V, &, -, Soviet Math. Dokl., 2, No. 2, 1961, pp. 110-112.

Vi70 B. Vllfan, Cyclic Perceptrons and Pattern Counting Machines, Proc.
4th Ann. Princeton Conf. Info. Sei. and Syst., Princeton U. , March 1970

Ya54 S. V. Yablonskii, The Realization of the Linear Function in the Class
of n-Circuits, Dokl, Ac. Sei. USSR, 94, No. 5, pp. 805-806 (Russian).

Ya59 S. V. Yablonskii, On the Impossibility of Eliminating Exhaustive Search
of Boolean Functions in the Solution of Some Problems in the Theory of
Circuits, Dokl. Ac. Sei. USSR, JL24, No. 1, pp. 44-47, (Russian).

