UNCLASSIFIED

Security Classification

e ——————
DOCUMENT CONTROL DATA - R&D

(Securily cisesitication of title, body of abetract and indeaing annotation muet be entered when the overeli report {8 ciassitied)

7%

1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 26 croup

NONE

3. REPORT TITLE
The Complexity of Finite Functions

N 4. DESCRIPTIVE NOTES (Type of report and inclueive detes)

Ph.D., Department of Electrical Engineering, February 1972

S. AUTHORIS) (Les! name, iirst name, initief)

Vilfan, Bostjan

6. REPORT DATE 78. TOTAL NO. OF PAGES 5. NO. OF REFS

March 1972 e 2] 25

ONTRACT OR G 90. ORIGINATOR'S REPORY NUMBER(S)

. C RANT NO.
N00014-70~A-0362-0001
b, PROJECT NO. MAC TR-97 (Thesis)

9. OTHER REPORT NOI(S) (Any other numbere thet mey be
seeigned thie report)

NONE

10. AVAILABILITY/LIMITATION NOTICES

Bt s e e

Distribution of this document 's unlimited !

t1. SUPPLEMENTARY NOTES 12, SPONSORING MILITARY ACTIVITY
dvanced Research Projects Agency
None 3D-200 Pentagon

X ashington, D. C. 20301

R

13. a8sTRACT The topics covered are the length of formulas for finite func-
tions, the order of cyclic perceptrons, and pattern counting machines.

Boolean function is 1 if the number mod p of arguments equal to 1 is 0
cannot be represented by a formula of length proportional to the number
of arguments if k-ary logic is used with p>k. The same thing can be
shown for arbitrary k if the only binary operators used are max(x,y)
and min(x,y). It is also shown that the connectivity predicate cannot
be represented by a formula of this kind, regardless of k and of the
operators used. Next shown is that the connectivity predicate and the
Euler number predicate cannot be represented by finite order cyclic per-
ceptrons. Finally, it is shown that the only topological predicates
that can be reconstructed from the k-=subpattern spectrum of a given
Square pattern of 0's and 1's are functions of the Euler number. The
k-subpattern spectrum of a pattern is a tuple given the number of
2 k_square subpattern in the igi

14. KEY WORDS
computational complexity

combinatorics
finite functions

DD .., 1473 (M.L.T.) UNCLASS\I;'I ED

Security Classification

Using a generalization of a theorem of Specker, it is shown that the !

A1

MAC TR-97
ERRATA

" +n and -n denote the n-th line from the top and ttre hottor
of the page respectively. With few exceptions, onlv the new, ror-
rect, text is shown since it is usuallyv clear vhere it is to Fn

inseried,
page line correct text
7 +2 g=f I E
7 -1 ID|
14 +12 a"
logdn
21 45 £ = ca®c /\/\? ecl\glxl
37 -4 ?(x, v), an 1nterna1 operator n€ F
37 -3 ¥a, v)IR = id,
40 +6 (1/2)+n
40 +8 (1/2)en = m«+ 1
40 -9 an SPCeC
42 +13 by ® by AT where 7= A X,
42 +14 co ® C;AT B
42 -9 WAQ = 0
46 3 in. from the top edge and 2 in. from tlre
left edge insert check mark (V). Also, 4 in.
from the bottom edge and 2 in. fromr the right
edge insert check rark.
49 +5 ':’x'i
49 +10 1@ A _1 X,
51 +7 arbit ;arv integer 2 3
52 -8 ¥ = #,(11...11,a,)
j times
54 -3 Wo, z) ML is the icentitv (id;) while #(1, 7) [L
54 -1 Pic, 2) ML

55 +1 Ple, 2) I L are 1-1, then P(c,)P L = F(e,) Pz,

ERRATA (page 2)

page line correct text
55 +9 ®(c, 2)IM L
1 if 2 p arquments are equal to 1
58 +9 sp =
0 otherwisge
61 -9 p>1
62 ~14 For an exact description of how to
62 -9 divided by £)
62 -5 Ye &
63 -3 O(L{t_, §)) where & , A€ P
64 +5 equals g
67 -2 end-around
74 -12 Papert
76 +6 i€ {j: a, £ 0}
76 -8 a certain basis
82 +4 pattern, is assumed
84 +8 that ey
86 +6 Pr"
98 +4 Delete the whole sentence beginning with

Also, csuppose

98 delete lines +5, +6, and +7
101 -7 ?((H‘i(l))g. cee s (H.i(s)):)
105 +3 (1/2) .t
105 +5 (1/2) -t
105 +8 (1/2) .t
106 -11 S(norm((Fi)g)) contains 2 t
110 -2 and any
replaces
for any

118 =14 November 1964

THE COMPLEXITY OF FINITE FUNCTIONS

Bostjan Vilfan

March 1972

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

THE COMPLEXITY OF FINITE FUNCTIONS

ABSTRACT

Lower bounds on the length of formulas for finite functions are
obtained from a generalization of a theorem of Specker. Let f:
{0,1,000,d=1}" + (0,1,...,d=1} be a function which can be represented
by a formula of length < cen., For any m, if n is sufficiently large,
there 1s a restriction f': {0,1,.,..,4=1)™ =+ (0,1,...,d=1) of f which
1s representable by a special class of formulas called homogeneous
e=-complexes. By showing that certaln functions do not have restric=
tions representable by homogeneous e-complexes, we are able to conclude
that the length of formulas representing the mod p sum, p & d, or the
connectedness of a pattern on a discrete retina cannot be bounded by
a linear function of the number of variables in the formula.

Also considered are perceptrons over finite fields (cyclic per=
ceptrons). It is shown that cyclic perceptrons of bounded order
cannot represent the geometric predicate connectivity. An interesting
aspect of this is that one proof of the corresponding result for
bounded order perceptrons over the rationals rests on the inability
of the latter to represent the parity function, However, the parity
function requires order 1 if the fleld has chracteristic 2; thus,
this proof breaks down in the case of cyclic perceptrons. Another
geometric predicate that cannat be represented by bounded order
cyclic perceptrons 1s Euler number equals k (for an arbitrary k).
However, this predicate can be represented by bounded order percep=-
trons over the rationals. It must be noted, however, that our proofs
are different and much simpler than the corresponding proofs derived
by Minsky and Papert for perceptrons over the rationals.

Finally, ye investigate k=pattern spectra of a discrete retina,
This is the 2K -tuple, each component of which corresponds to the
number of times a particular kxk pattern occurs on the retina. It
is shown that the only topological predicates that can be determined
from k-pattern spectra of discrete figures are functions of the Euler
number of the figure.

This report reproduces a thesis of the same title submitted to
the Department of Elecctrical Enginecring, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for

the degree of Doctor of Philosophy, February 1972.

ACKNOWLEDGEMENTS

In the first place, I owe a debt of gratitude to Professor
Albert R. Meyer in the course of association with whom I learned
the heuristics of research. In particular, he introduced me
to the problems described here, and then spent long hours with
me suggesting improvements and modifications.
I am also indebted to my readers, Professors Michael J. Fischer
and C. L. Liu for valuable suggestions.
I would like to thank Professor Frederick C. Hennie and
Project MAC for financial support during my study.
Last but not least, thanks are due to Miss Marsha Baker for

consenting to “ype this thesis.

CONTENTS
CHAPTER ONE: INTRODUCTION AND SURVEY 5
1.1 Finite Functions 5
1.2 Formulas 5
1.3 Measures of Complexity 9
1.4 Problems Related to the Length Measure 13
1.5 Specker's Theorem 20
1.6 Cyclic Perceptrons 23
CHAPTER TWO: A GENERALIZATION OF A THEOREM OF SPECKER 26
2,1 e=Complexes 26
2,2 The Generalized Specker's Theorem 38
2.3 On Specker's Theorem 41
CHAPTER THREE: APPLICATIONS OF THE GENERALIZED SPECKER THEOREM 50
3.1 Counting mod p 51
3.2 Connectivity 55
3.3 The Length of Symmetric Functions 60
CHAPTER FOUR: CYCLIC PERCEPTRONS 74
CHAPTER FIVE: PATTERN COUNTING MACHINES 89
APPENDIX A: CERTAIN PROPERTIES OF SHORT FORMUTAS 97
APPENDIX B: THE LENGTH OF THE MOD 2 SUM OVER I 112
LITERATURE 116

BIOGRAPHICAL NOTE 118

CHAPTER ONE

INTRODUCTION AND SURVEY

1.1 Finite Functions

. , . n .
Let n be nonzero and finite; then a partial functionIN -IN" , defined

on only finitely many n-tuples, is called a finite function. We will restrict

our attention to a subclass of finite functions. D = (0,1,...,d=-1} is an
initial interval of JN . Then we will consider F, the set of all (total)
functions D" < D for all possible D and (finite and nonzero) n.

Let f: D" #D. Then f is identified with a (functional) table with d"
rows (corresponding to all possible n-tuples over D) and n+l columns (corres-

ponding to the n arguments and the value of f). Obviously the number of func-

n dn
tions D -+ D is d .

Consider any function f: D" 4D for arbitre y D, n. We will say that f
depends on the ith argument 1f and only if there exist two n-tuples
a-= (al,...,ai,...,an) and b = (bl""’bi""’bn) such that aj = bj for j # 1,
a; # bi’ and f(a) # £(R). Suppose that f does not depend on its jth argument:

then we will say that the jth argument is a fictitious argument.

1,2 Formulas

Let there be given the countable sets E = [xl,xz,...} of variable symbols
and Q of operator symbols. Each element of Q is a name for a function in F,
and conversely each function in ¥ has a name in Q. Let ¢ € Q represent the

function f£: D" *D. Then we will write arg(®?) = n and dom(®) = D.

1,2,1 Definition
A D-formula 1is a finite expression F = w(Gl,...,Gn) such that v € Q,

arg(v) = n, dom(y) = D, and either Gi € 2 or Gi 1s a D-formula for 1 < i < n,

A formula is simply a D-formula for some D.

Let F be an arbitrary D-formula and let X be the highest numbered
variable symbol appearing in F. Then F represents a function f£: D" - D.

This correspondence is well-known and we will not describe it in detail.
Without danger of imprecision, F will also be considered as a representation
for all functions obtained from f by adding fictitious arguments,

Let there be given two formulas F and G. Suppose that F represents a
certain function f, and also a representation for f can be obtained from G
by possibly choosing different variable symbols, Then we will say that F
is equivalent to G (F = G).

Remarks, Usually, if we are dealing with D-formulas for a single domain
D, we represent the identity function by a variable symbols (i.e., we omit
the operator symbol for the identity). In the formal model we use, we cannot
do this since it would be ambiguous. Also, for purely technical reasons, we
insist that every operator has at least ore argument (otherwise, the wording
of several definitions and results would be more cumbersome). Thus, we do
not allow constants., Rather, instead of constants, we use operators with 'y
fictitious argument. Suppose we are given the formula F. Occasionally, we
will say "Replace the variable x (in F) by the constant a". This is to be
interpreted as "Replace the variable x with a(y) " where y 1s z wvariable

symbol not appearing in F,

Let f: D" + D and let g be an arbitrary finite function of n arguments
with domain E € D" and such that g = f E. Let F be a D-formula for (i.e.,
representing) f. Then we can also say the: (F,E) represents g. From now on
we will not be pedantic, and we will simply say that F represents g. Some of
the main results in this thesis are concerned with the question, given a
specific function D" 4D , how much can we simplify its representation if we
choose an E-formula for it with D ? E.

If F is an arbitrary formula, then the set of variables appearing in it
will be called its support (denoted by S(F)). The set of operators appeazring
in F will be called its bagis (denoted by B(F)).

Let 3 & Q. Then the set of formulas F such that B(F) & & will be called
the set of formulas gver %. Hopefully without too much danger of ambiguiky,
we will also say that & is a basis of operators (for formulas over $). All
the significant results we will describe deal with formulas over 3 when &
is finite (and representing a set of operators with domain D for a single
value of D). From now on, whenever a basis of operators ¥ is introduced,
it is always assumed finite, Usually, we are interested only in bases that
allow all function D" = D for a certain D and arbitrary n to be represented.
Such bases will be called complete bases (for D).

Notat‘on. Elements of ¥ will always be denoted by lower case Latin
letters. The various bases of operators we will use will be denoted by
capital Greek letters; operators (i.e., basis elements) will be denoted by
lower case Greek letters (except for well known operators for which established
notation exists); formulas will be denoted by capital Latin letters; and D

will always refer to the domain of formulas. d will denote D .

1.2.2 Example,

If D = (0,1}, then the functions Dn =+ D for arbitrary n are known as
Boolean functions. A complete basis for (0,1} conists of the binary operators
A (conjunction) and V (disjunction), and the unary operator = (complementation).
This basis shall be denoted by N. The formula F = V(A(-—(xl),x2),A(x1,-(x2)))
over II represents Xy e X, (the mod 2 sum of 3 and x2). Usually, this is
written as ;1 A X, \% Xy A §2. We have S(F) = [xl,xz], and B(F) = IT,

A convenient representation of formulas is by trees. This is a standard
device that will not be described; suffice it to say that to each formula F
there corresponds a tree T(F) whose terminal nodes are !abelled with variable
symbols and the nonterminal nodes with basis symbols. As an example, le' F
be as defined in Example 1.2.2. Then T(F) is shown in Fig., 1.1.

Given a formula F, we need a notation for subformulas of F,

The definition of subformula is the standard one: (1) F is a subformula
of F, (2) if F = m(Fl,...,Fk), then if Fi for 1 1 £k is not a variable
symbol, any subformula of Fi 1s a subformula of F, and (3) subformulas of F
are only objects satisfying (1) and (2). Subformulas distinct from F are
proper subformulas.,

Let G be a subformula of F such that G = u(Hl,...,Hz). Then we will say
Hi =G.i for 1 =i < 4. This notation can be iterated. In Example 1,2,2,
F.2.2 = ~(x2). However, note that F.2.l 1s a variable symbol which according
to our definition is not a formula. This can be remedied by replacing this
particular occurrence of the variable symbol Xq by id(xl). For this reason

we will require that all the bases we consider contain the identity function

whether this is specifically mentioned or not.

If G = F.j(l).j(Z)...j(r)’ then j = j(1)j(2)...j(r) is called the index
of G (for completeness, let N\ denote the index of F). If G is a proper sub-
formula of F, then F = H(X,G) where X U S(G) = S(F) and H(X,z) is a formula
(determined by j) where z appears only once. We write H = F/G. 1In this case,
with F and G as given, we will also write S?(G) =X (i.e., the variables of
F that appear outside of G). We define S?(F) = ¢ The subscript F will
generally be suppressed when it will be clear to what formula F we refer to.
In what follows, whenever we will deal with a subformula G of F, it will be
assumed that the index of G is also given; for if not, then, e.g., F/G and
§*(G) are not uniquely defined.

Frequently, formulas will occur where certain variables have been re-
placed with constants. Suppose F is a formula over &, X < S(F), and a € D;
then, F with all variables except those in X replaced by a will be denoted
by F:. Obvicusly, F: is a formula over ¢ U {a}. If f is an arbitrary function,
X a subset of its arguments, then fz has the analogous meaning, viz., the
function obtained from f by restricting the elements outside of X to a.

The functional table of fz is obtained from that of f by deleting all columns
except those that correspond to X and retaining only the rows with a

entries in the deleted columns.

1.3 Measures of Complexity

Let us introduce the three most widely studied measures on formulas:

(1) Length. The length of a formula F, denoted by L(F), is the number of
occurrences of variable symbols in F. In other words, it is the number of

terminal nodes of T(F).

10

(2) Cost. The cost of a formula F, denoted by C(F), is the number of opera-

tor symbols in F. In other words, it is the number of nonterminal nodes of

T(F)o

(3) Depth. The depth of a formula F, denoted by D(F), is the depth of nest~

ing of operators in F. 1In other words, it is the number of arcs on the long-

est branch of T(F).

Now, given an arbitrary function f: D" 4D and a (finite) basis &, we
define the length of f over § as
L(f,%) = min({4: There exists a formula F over 3 for f such that
L(F) = 14})
If f cannct be represented by a formula over ¥, we define L(f,%) = ®, Simil-

arly, for cost and depth.

It is noteworthy that all the measures above are closely related. In fact,

co L(£,3) S C(E,8) sc .L(£,3) (1.3.1)

c,*log, (L(£,3)) < D(f,8) = ¢4t log, (L(£,8)) (1.3.2)

for an arbitrary function f such that L(f,3), C(£,3), and D(f,3) are tinite,
and certain constants Cos €1 Coo and Cq that depends on $., The basis % is
also arbitrary, except in the case of the right inequality ot (1.3.2) where
it must be such that all the constants and the function g (see Lamma 1.3.1)

may be represented.

We first establish the relation between cost and length (1.3.1).

11

Any formula F over & can be built up from one whizh uses only one opera=-
tor symbol (an elementary formula) by successively replacing variable symbols
with new elementary formulas. If F does not contain one-argument operators,
then whenever we Increase the cost during the build=up (by adding an elenmentary
formula with cost 1), we also increase the length, Specifically, the length
increases by between nmin-l and nmax-l where noin and noay are respectively

the smallest number larger than 1 and the greatest number of arguments of an

operator of $. This results in the estimate

1 c
F— +L(F) s C(F) < —] -L(F) (1.3.3)
max min

where ¢ = 1. Suppose F contains one-argument operators. In other words, T(F)
contains nodes with hranching factor one. Let the maximal number of such nodes
that occur one after another on any branch of T(F) be c¢*; then (1.3.3) stili
applies with ¢ =c* + 1. (1.3.1) is obtained from (1.3.3) by noting that the
minimal length or cost representation uf any function (over the chosen bagis
%) can be achieved with a formula where c* < dd (the number of functions D - D).

The left inequality in (1.3.2) is established by a trivial counting argu-
ment (the maximal number of terminal nodes in a tree with branching factor <

d

n and depth d is n). The right side requires more effort (the following
max max

argument is due to R. W. Floyd). We first state the following obvious

1.3.1 Lemma.
Given a formula F such that F = Fl(Xl,Fz(Xz)) where F, is a proper sub-

formula of F and F, = F/Fz, the following holds:

12

F = F3(F1(X1,CO), Fl(xl’cl)""’Fl(xl’cd-l)’FZ(XZ))
where Ci for D i < d-1 is any formula representing the constants 0,...,d-1
(or, as we have remarked previcusly, the onc-argument function with constant

value), and F3 is any formula represeating the function g(zo,...,zd_l,zd_ =

" = 0 = = d-
24 if 24 0; 29 if z3 1,04, 24a1 if zy d-1.

Let F be an arbitrary formula over 3, and iet G be a proper subformula

of F. We already know that F = H(X,G). The claim is made that if L(F) s 1,

G can be chosen in such a way that

n
—max

oo L) (1.3.4)
max

L(H)-1,L(G) <€

where N ax is as defined previously. (Remark: L(H)~1 is the number of
occurrences of the variables of S*(G) in H.)

To find G use the following procedure: Start with F and proceed to sub-
formulas of F. Assume you are considering the subformula K. Then two cases

can arise. Either amongK , for 1 £ j < k where k is the number of arguments

h|
of the outermost operator of K there is one, j', such that L(K j,_) 2 a-L(F)

(0 <a <« 1l will be determined later with the purpose of obtaining the lowest
possible estimate of L(H)~1 and L(G)), or not. In the first case, proceed to
K 3 and containue. Otherwise, set G = K.j“ where j' is such that L(K.j") =

max (L(K j)) and terminate. Before the procedure terminates, L(K) 2 a-L(F).
1<j<k :

Thus < L(G) < a*L(F). This also means (1-0)+L(F) € L(H)-1 < (1-nOL)

Mmax max
+L(F) (because L(G) + L(H)=1 = L(F)). The lowest bound for L(G) and L(H)
is obtained by setting O = 1- na ; hence (1.3.4)

max

13

Now apply Lemma 1.3.1 with ¢ replacing F, and H replacing F,. F_ is of

2 1 3

depth c, depending on &, If the outlined procedure is applied recursively to

H(X,C,) for 0 £ i < d-1 and to G, we obtain in (1.3,2) ¢, = —= where
i 3 logzb
n +1 +
p o —DMax .
n
max

Note that unlike the cost~length relationship, the minimal value of
depth may not be achieved by the same formula as the minimal value for length,

Apart from the relationship between the various measures, depth and coc’
will not be treated further. Even though in what follows (in this chapter)

many things hold mutatis mitandis for depth and cost, most of the specific

discussion and the examples shall be confined to length.

1.4 Problems Related to the Length Meagsure

In this section we will mention several questions that have been asked
about the complexity of finite functions, their status as of this writing,

and how they relate to the work to be described here.

f A more precise expression is obtained if the right side of (1.3.2) is re-

placed by < 5 -logz(L(f))+E for some constant £. Namely, if we start out
2

log

with a formula F and decompose it according to (1.3.4) and Lemma 1.3.1, then
the length of H(X, Ci) and G is bounded by %L(F)+k where k 1s the length of Ci'

After n applications of Lemma 1.3.1, the lengths of the relevant formulas are

bounded by ﬁ% L(F) + kg%:T +ouot k%#k a:ﬁ% (L(F)) + ~£_T i hence the figurc
-3
above.

14

h oblem of regate Length

Let ¥ be a complete basis (for a certain domain D). The statement of the
problem is: What is the largest number L(n,3) such that there exists a function
£: D"+ D and L(f,$) = L(n,?)?

It has been studied by several authors, and is now effectively disposed
of. Riordan and Shannon [Ri42] first derived a lower bound for L(n,I).
Actually they studied series~parallel contact networks, but the two models
are equivalent. The first upper bound (for the same model) was obtained by
Shannon [Sh49]. Krichevskii [Kr59] derived a lower bound for L(n,%) for
arbitrary domains and bases, while Lupanov [Lu59] obtained the best upper
bound for the general case. The result is

dn

logan

0(L(n,%)) = (1.4.1)

where 0(f(n)) = g(n) means that 1lim ﬁ%ﬁ% is finite and nonzero. There
n-+®

are two remarks that are in order here. The first is that
Formulas represent finite functions efficiently; l.e.,
the total number of formulas (over a given basis $) of
length up to L(n,$) closely matches the number of func~
tions of n variables. (1.4.2)

The second is

The fraction of functions D" = D that can be represented

by formulas of length up to L(n,$)-(1~€)for an arbitrary

0 « €< 1 approaches zero as n = =, (1.4.3)

The interested reader may obtain more information in the literature cited

above,

15

Obviously, we could define functions C(n,3) and D(n,3) analogous to
L(n,%) in terms of the cost and depth measures, In general, such functiong
(aggregate complexity functions) can be defined in connection with any model
for the representation of functions D" = D and any measure on this model (an
obvious variation of L(n,3) is to remove the condition of completeness on 3).
It should be noted that the asymtotic behavior of aggregate complexity functions

remains un active area of research. For references ¢ the subject, see Lupanov

[Lu70].

The Minimization Problem
——=hlmization Problem

Investigation of the complexity of finite functions started on representa~
tions of Boolean functions by logical circuits. 1In fact, formulas can be
thought of as circuits with fan-out one, Thus, the first problems studied
were those a logic designer is likely to ask: Given a finite function, what
is the minimal circuit (formulsa) that represents it (i,e., find the complexity,
and do so "effectively"),

Unfortunately, no statisfactory solution to the minimization problem
exists (for any measure). This does not mean that it is impossible to obtain
a minimal formula for =» given furction f: D" = D; rather that existing
algorithms are impiactical. Thus, it is always possible to order formulas
according to length, and then search all formulas up to length L(n,%) for the
first formula that represents f; but since there are ddn functions of n argu-
ments this approach is absurb.

At the present, all existing algorithms for the minimization of functional

representations employ some sort of an exhaustive search (e.g., the Quine

algoxithm for the minimization of disjunctive form representations of Boolean

16

functions). 1In fact, there 1s reason to believe that a more efficient method

does not exist, il.e.,

1.4.1 Conjecture

Any generally applicable exact minimization procedure is comparable (in

terms of computational complexity) to an exhaustive search among formulas.

It is useful to consider a specific machine model. Let us consider
implementations of such a procedure as a deterministic one-tape Turing machine
M§(see, e.g., Arbib [Ar69]) that receives as its input the dn-tuple defining
an arbitrary function f: D" -+ D, and whose output is the minimal formula F
(over %) for f£. Conjecture 1.4.1 gives us that the computation time of
MQ may attain an exponential {in the length of the input). Let us venture

a more restrictive and precise verslon of Conjecture 1l.4.1:

1,4,2 Conjecture

Let My be as described, m 1s the length of its input, and let TM(m) be a
function such that Iuﬁl +0asm=> for an arbitrary constant ¢ > 1. Then
c
the proportion of inputs of length m at which the running time of M exceeds

N(m) approaches 1 as m -+ =,

Actually, the specific machine model on which the procedure of Conjecture
1.4.1 above is implemented is not particularly important, It cai: be easily
shown (see, e.g., Arbib [Ar69], Chapter 4) that different deterministic machine
models (this applies to the most widely used models, e.g., one-tape and multi-

tape Turing machines) can simulate each other in such a way that the running

17

time of one 1is related to the running time of another at most by a polynomial.
In this way, whenever the running time is exponential (in the length of the
input) in one case, it must be sc also in others.

It seems that Conjecture 1.4.1 was flrst expressed by Yablonskii [Ya59].
A very interesting result connected with this subject was recently obtained
by Cook [Co71]. He obtained strong evidence that a simpler problem requires
nonpolynomial time. The problem is that of recognizing whether a certain
disjunctive normal form (for a Boolean function) represents the constant 1.
Cook showed that 1f this problem could be solved in polynomial time (by a
deterministic one-tape Turing machine), then a number of other problems that
are regarded as very difficult (e.g., given the graphs G1 and G2’ determine
whether G1 1s izomorphic to a subgraph of GZ; the recognition of primes; etc.),
would also be rapidly computable. Note that a fast minimization machine
would give us also a fast constant recognizer; hence, Cook's results supports

Conjecture 1l.4.1.

The Classification Pioblem

In view of the difficulty of finding an exact nontrivial solution to the
minimization problem (i.e., one that does not employ exhaustive scarch), present
research is directed at establishing bounds for the length of functions. We
consider sequences of functions fl,... of 1,... arguments and study the
growth rate of the length of fi' Thus, we can talk of classes of linear
(length) sequences, quadratic (length) sequences, etc. Also of nonpolynomial
(length) sequences. Unfortunately, if a s~quence belongs to a nonlinear class,
it is very difficult to estimate its length. We cannot even assign represen=

tatives to the polynomial classes of degree > 2, let alone the nonpolynomial

18

classes. In fact, at the Present we have only a very limited store of examples
of nonlinear sequences.

n
Consider the Boolean function fﬁ = R X Subbotovskaya [Su6l] gave a

i=1 71°
striking proof that O(L(fi, m) = n3/2. It was known alrezdy to Shannon (see
[Sh49], or [Ya54]) that O(L(fi,n)) < n2 (the length cf this sequence, of course,
grows linearly if & is used). Unfortunately, it seems that the technique of
[Su6l] cannot be generalized to d > 2. Subbotovskaya's result has recently
been improved by Khrapchenko [Kh71]. He succeeded in showing that O(L(f:, m)
2 nz. Since this result employs a very interesting techninu», and since it

has not yet been translated into English, it is reproduced in Appendix B.

Neciporuk [Ne66] discovered a sequence of Boolean functions fn such that

O(L(fn,é)) = for an arbitrary basis 8, It is true that the functisns

n
logzn
involved in the Neciporuk sequence are rather "artificial" in that, while
defined in a straightforward way, they have no special sigaificance; however,
lately Harper and Savage [Ha7l] have succeeded in applving the Neciporuk tech-
nique to a practical combinatorial problem (The Marr{age Problem).

Neciporuk's construction is based on the following lemma: Let f be a
Boolean function of n arguments. Consider a subset X of the arguments of f
and the set of restrictions of f to X obtained by setting the arguments outside
of X to constants. Let the number of sulh restrictions be r. If ¥ is any
form+la over a finite basis & for f, then the number of occurrences of variables
representing the arguments in X is 2 c-logzr where ¢ depends on the basis §
(for the proof of this sec [Ne66] or [Ha71]).

The Neciporuk function fn of n arguments is then obtained as follows:

The n arguments are arranged in a rectangular array with dimensions as shown

in Fig. 1.2, Each argument xij is associated with a 0-1 valued m=~tuple gij

19

such that (1) not all components are 0, and (2) if (1,3) # (k,%) then
aij # a4 Then we define

£ = © X & K(,,,k)
noa1rg,y M 1#4 i3

where K(gij,k) denotes the conjunction of those arguments Xpee whose second
subscript (t) corresponds to nonzero components of Eij°

It can be verified that the number of restrictions of fn to the variables
of an arbitrary row (except, perhaps, the last which may be imcomplete) ob-
tained by replacing the variables of the other rows with constants is 2" .
This follows from the fact that any Boolean function can be uniquely represen-
ted by a Boolean polynomial (see Lamma 4.5). Then, by the lemma above, the
number of occurrences of variables of any row (except, perhaps the last) in
any fcrmula for fn is 2 c+(n=m); hence, the length of fn over % m1 ce % (n-m).
In other words, O(L(wn,é)) = T%ﬁ;; for an arbitrary basis ¢.

Neciporuk's construction may be viewed as a solution to a special case

of the following problem (the problem of exihibiting a function of arbitrary

Tength): Given a basis ¢ and a number ¥ < L(n,%), exhibit a function

£: D" -+ D of length 2 k over ¢. In Neciporuk's case O(k) = lgg o

Since so few exampies of functions that are known to be clearge length
exist (in spite of (1.4.3)), the reader has no doubt already gained the
impression that this problem too is very difficult. However, we again have
the trivial solution that consists in examining formulas in n variables in
the order of their length, recording the functions they represent, and
choosing the first previously unencountered function represented by a formula

of length 2 k. 1In fact, it is reasonable to state an analog of Conjecture

1.4.1:

20

1l.4.3 Coniecture

The problem of exhibiting a function of arbitrary length is comparable

(in terms of computational complexity) to an exhaustive search among formulas.

We again make this conjecture more precise on the example cof determin-

1stic one-tape Turing machines.

1,3.4 Coniecture

¢ 1s an arbitrary basis. NQ is a deterministic one-:ape Turing machine
with input (n,k) where n is arbitrary and k < L(n,%), and whose output {s the
dn-tuple describing a function f of n arguments such that L(f,3) 2 k. Then
there exists a constant ¢ > 1 such that if k 2 €L(n,$) for any 0 < €<},

n
the running time of Ny on input (n,k) exceeds c® when n 2 n(€),

We can sum up the discussion of the classification problem as follows.
The problem is far from understood. At the present no sequence of functions
18 known whose length grows faster than nz. Isolated examples of sequences
with growth rate < n2 are known, and present research {s directed at inven-
ting more general techniques that can be used for estimating the complexity
of whole classes of sequences. Also techniques have to be devised for d > 2,
The importance of this will be discussed belcw in Section 1.5.

r' s

The first general technique for proving the nonlinearity of a large

class of sequences (of Boolean functions) was discovered by Specker [HoG8],

Let the basis T U (x @y} be denoted by . Then

21

If £ 1s a Boolean function of n arguments, 1f L(f,L) < cen for s.me
constant c, then for any integer m, if n 2 ﬂs(m,c), a subset X = {xl,...,xm]

of the arguments of f can be found such that (1)

m
® x (1.5.1)

X m
fotcoecl-n (1€9xi)€¥?c2 {

i=] i1=1
where Cys Cqp» C, are Boolean constants and ﬂs(m,c) is a certain number-
f
theoretic function. Furthermore, (2) if the basis is I (the other assump-
tiors remaining unchanged), then c, * 0.
This theorem has been used by Hodes and Specker to show that the predi~

cate

n
b ¥
1=1

0 mod k (1.5.2)

for k 5 2 and X, F (0,1} is of nonlinear length over I,
Using the second statement of the theorem, they are also able to glve
an alternative proof of the nonlinearily of the length of g x, over I,
Another result obtained with Specker's Theorem 1is theizict that some
geometrical predicates (in particular, connectivity) discussed by Minsky
and Papert [Mi69] are of nonlinear length over L (see Hodes [Ho70]).
In Chapter Two we will formulate and prove a generalization of Specker's

Theorem (Theorem 2.2.2) to include the case d > 2 and multi-argument oper-

ators in ¢, Our proof reveals the nature of both results more clearly.

f
ns Will be discussed in Chapter Two.

22

They belong to a class of combinatorial results reminiscent of Ramsey's
Theorem (see Ryser [Ry63]). 1In fact, an earlier version of our proof

of Theorem 2.2.2 used Ramsey's Theorem. Besides this, Theorem 2,22
enables us to derive the nonlinearity of new functions ({sequences of
functions) such as counting mod p where p is a prime, d possibly equals

p, but therv are restrictions on the basis, etc. An example of an im=
provement over existing results is the connectivity predicate. Hodes
[Ho70]) proves that it is nonlinear if d = 2. However, in Automata Theory,
for example, the result that a certain language can be computed in non-
linear time if k states are used in the finite control would be considered
weak. Rather we search for proofs that work for arbitrary finite controls.
The Generalized Specker Theorem (Theorem 2.2.2) gives us a tool for proving
the nonlinearity of the length of the connectivity predicate regardless of
the domain U and basis ¥, We can apply it to connectivity by "reducing"
connectivity (for the meaning of "reduction" see [M169] or 3.2) to certain
symmetric functions.

We should note that the generalization of Specker's Theorem that we
prove is the obvious one to attempt; but, as the reader will see, the proof
turns out to be less straightforward. As an indication, consider (1.5.2).
It does not generalize directly to d > 2 since, e.g., the function (0,1) T
(0,1} defined by % X

{=1 1
d = 3. This is bucause

= 0 mod 6 can be represented in linear length with

-
~M3
b

m
o
note]

mod 6] = [

n
X, T0mod 3] A[L x, =0 mod 2]
1 i i

1 1 1=1

i

23

Hodes and Specker do not derive any bounds for the lengths of the
fuictions investigated by them. This question is asked (and to an extent

answered) in 3.3.

1.6 Cyclic Perceptrons

Cyclic Perceptrons will be treated in Chapter Four, They are an
application of ideas of Minsky and Papert to the representation of functions
by combinations of finite operators. In particular, one of the concerns
in [Mi69] is to formalize the intuitive idea that the connectivity predicate,
being "global" in nature, cannot be computed (or represented) by a "simple"
combination of "local" predicates.

The perceptron is the predicate

Y a
icl

. 2
1% =0

where I is an indexing set, a; € Q, the rationals, ¢1 € ¢, a set of Boolean
functions (whose value is interpreted as being either the rational O or 1.
The cyclic perceptron is defined as

r a

P, €Y
iel i

i

where a, € F, a finite field, Y < F, and other symbols have the same inter-
pretation as before. Thus, both represent a certain Boolean function.
Minsky and Papert introduce the concept of the order of a perceptron
(the maximal number of arguments on which wi depends where 1 ranges over I).
They define then the order of a predicate as the minimal order of a per-

ceptron that represents the predicate. They formalize "local' by defining

24

an infinite predicate sequence to be local if and only if every member is
representable by a perceptron of order < r, for some finite r. They are
then able to show that connectivity is nonlocal.

The concept of order can also be applied to cyclic perceptrons, Chapter
Four will contain results on the order of the various predicates introduced
in [(Mi69]. In particular, connectivity is shown to be nonlocal. This will
be an extension (to finite fields of arbitrary characteristic) of the results
described in [V1i70].

Chapter Five describes a model of computation (Pattern Counting Machines)
that again performs a 'local" computation followed by a "global' computation.
In this case the "local" computation is even more constrained than in the
case of perceptrons. The result is that no matter how cleverly we utilize
the "local" information in the subsequent 'global" phase, the connectivity

predicated cannot be computed.

25

T(F) for the formula F in Example 1,2.2

Fig. 1.1

jth column

1th row Xy

|

number of columns: m = rlog?nn + 1

number of rows: |n/ml

The array of arguments used in the definition of the
Neciporuk function fn

Fig. 1.2

26

CHAPTER TWO

A GENERALIZATION OF A THEOREM OF SPECKER

2.1 e-Complexes

Throughout this section, all formulas are D-formulas for some fixed (but
arbitrary) domain D, and all operators are functions D' - D.

Given the formulas Fl,...,Fr, we shall call the formula F = w(Fl,...,Fr)
where © is an arbitrary operator a parallel combination (PC)ofF&,...,Fr. 0 is
called the decoding operator of F.

Let F{X,z) be a formula where the distinguished variable z appears only
once, and let G be an arbitrary formula. Then F(X,G) shall be called a series

combination (SC) of F and G through z,

2,1.1 Definition
We give an inductive definition of an elongated n-component (en-component)
for n 2 0.

(1) Let win be an arbitrary unary operator and zan arbitrary variable symbol .

Then win(z) is an ep-component. 2z is the input variable while © , 1s the

i
input operator.

(2) Let © be an arbitrary binary operator, G an arbitrary e,-1"component,
and x ¢ S(G). Then F = ©(x,G) (or ©(G,x)) is an e, ~component. The input vari-
able and input operator of G are also the input variable and input operator

of F. x is a lateral variable of F. Any lateral variable of G is also a

lateral variable of F. © will be called an internal operator of F,

27

An example of an e, ~component is given in Fig. 2.1, Let F be an arbitrary
e,-component, and let x be the sequence of lateral variables arranged in the
order they are connected to the branch of T(F) extending to the input variable.
Then x is the lateral sequence of F. If F is an e,-component, then the lateral
sequence of F is A (the empty sequence). For example, the lateral sequence of
the e=component in Fig. 2.1 is XpseessX +

An e,-component with all internal operators equal is a homogeneous

en-comgonent .

2.1.2 Definition

e — 1]

A formula F is an e:-comglex i1f (1) F is a PC of the e ~components Fl""’

Fr’ and (2) the lateral sequence of Fi for 2 £1{ <r is either equal to the

lateral sequence of Fl’ or the reverse of it.

Fl,..., Fr are the components of F., If the variables of F1 are nunbered
as in Fig, 2.1, the second condition of Definition 2.1.2 means that any compo-
nent Fl,...,Fr either appears as in Fig. 2.1, or as in Fig. 2.2, The compo-
nents of the former kind will be known as standard components, while those of
the latter kind will be called the reverse components. The lateral sequence
of Fl will also be called the lateral sequence of F,

Both in the case of e -components and e:-complexes, one or both indices
will occasionally be omitted if the particular property they refer to is
irrelevant to the argument at hand.

An c-complex composed of homogencous e-components 1: a homogeneous

e-complex.,

28

One might wonder what the purpose of introducing e=complexes is since
for appropriate r and m every function of n variables can be represented by
an e;-complex. Thus, it would seem that this class of formulas is trivial.
However, we will be concerned with e;-complexes where r remains fixed as n
grows without bounds, and this will allow us to obtain interesting results.

We introduce some nota‘ion. Let F be an e, ~component with lateral
Sequence xi(l)’xi(Z)""’xi(n)' a € D is an arbitrary constant. ¢, denotes

3

the internal operator corresponding to x Also set ¢n+ Then

1)) 1~ P10

cpj(a,cpjﬂ(a,...,cpk_l(a,cpk)...)) 1f 1 <j <k <n+l
'a = =
\o(j’k) cpj 1f 15§ =k <+l

undefined otherwise

Note that wzi 1) 1s a unary operator if j = n+l, otherwise it is a binary
’
operator (if it is defined at all). Usually we will suppress the superscript
a because it will be clear what constant is referred to.

We now state the simple

2,1.3 Proposition

Let F be an e ~component with lateral sequence x and input variable z.
Y is an arbitrary subsequence of x of lengthm 2 0 and a € D 15 an arbitrary
constant, If we denote the set consisting of z and the elements of y by Y,

then F: is equivalent to an e, ~component G.

29

Proof

Let x = (xl,xz,...,xn) and y = (xi(l)’ xi(Z)""’xi(m)) Sx. Set 1(0) =0
and i(m+l) = n+l. Then G has the operators WJ = ¢(i(j-1)+1, 1(1)) for 1 < j <
m+1 (Wm+1 1s the input operator of G). (]

2.1.4 Remark
Obviously, Proposition 2.1.3 holds for e=complexes as well; one merely

has to perform the above construction for each component.

Proposition 2.1.3 will be frequently invoked. Namely, we will take an
e-complex F, gselect a subsequence Y S X, the lateral sequence of F, and obtain
G as above. 1In this case, G is called the result of an a~merger with basis
Y on F.

We introduce another restricted class of formulas.

2.).5 Definition

A series parallel combination of e-components (SPCeC) is obtained accor-
ding to the following rules:

(1) An e-component is an SPCeC.

(2) Let F and G be an e-component and an arbitrary SPCeC respectively.
Then the SC of F and G through the input variable of F is an SPCeC.

(3) 1f Fl,...,Fr are SPCeC's, then a PC of Fl,...,Fr is an SPCeC.

(4) An SPCeC is only an object satisfying (1), (2), or (3).

30

Given an arbitrary SPCeC F, we describe its set of components, If F
consists of the single e-component G, then G is the only component of F,
If F is the SC of an e-component G and another SPCeC H, then the set of
components of F consists of G and the set of components of H. If F isg a
PC of Fl""’Fr’ then the set of components of Fconsists of the sets of
components of Fi for 1 <1 <r. Among the components of F, those whose input
variable corresponds to a terminal node of T(F) will be called terminal
components while the others will be called internal components. An example
of an SPCeC is given in Fig. 2.3. This particular SPCeC has four terminal

components and two internal components,

2,1.6 _Proposition

An SPCeC is equivalent to a PC of r e=-components where r = d*I+J and I

and J respectively are the number of internal and the number of terminal component of F,

Proof F can be converted into a PC of e-components by using Lemma 1.3.1,
The estimate of the number of e-components in the PC is also obtained from

there. m

Remark It is a simple matter to verify that if F of Proposition 2.1.6

has k components, then I < k~1; and thus r < d- (k=1)+1.

2.1.7 Proposition

F is a SPCeC with k components Fl""’Fk' Fi for 1 £1 sk is an e -
component for n = 0, and, furthermore, the sets of lateral variables of Fi

and Fj are equal for 1 < i, j < k. Let X be the set of lateral variables

of Fi and let Z be the set of input variables of F, Then for any m 2 0 and

31

aecDita 2 ﬂl(m,k) qghere ﬂl(m,k) is a certain function (to be defined),

YUz

there exists a subset T & X vith |Y| = m such that Fa

is equivaleat to an

r
em-complex G with Y as the set of lateral variables. Furthermore, r S d°(k-1)+1,

Proof If m = 0, we can immediately apply Proposition 2.1.6 and obtain an
eg-complcx where r is as described in the statement of the proposition; thus

M (0.k) = 0. We assume, therefore, that m 5 O.

We recall the following familiar result:

Let 1(1), i(2),...,i((p-1)2+1) be a sequence of distinct integers. Then
we can extract a subsequence of length p that is either increasing or decrcasing
(for the proof see Berge [Be71] p. 16).

Without loss of generality, we can assume that the lateral sequence of
Fl is XpreoesXe Then the lateral sequence of F2 is X; (1) !1(2)""’x1(n)'
The sequeace i(l), 1(2),..., i(n) consists of distinct integers; therefore,
ifn2 (n1-1)2+1, we can apply the above result znd find a subset Xl & X of
n variables such that after performing an a-merger with basis Xl on all
components of F, the lateral sequences of the descendants of Fl and Fz arc
either the same or opposite. We can continue in this way, processing onc
after another all components. We end up with an SPCeC with components
Gl,...,Gk such that the lateral sequence of Gi for 2 < i < k is either equal
to that of 31 or the reverse of it. To obtain G, we apply Proposition 2.1.6.
In order that 'YI = m, we must have

2k-l
n? ”1(m,k) = (m=1)
for m 2 1. The estimate for r is obtained from the Remark following

Proposition 2.1.6. i

32

Another equivalence that will be used later is given by

2,1,8 lemma

E is an e:-complex, X 1is the set of its lateral variables, and Z is *he
set of its input variables. Then for anym 2 0 and a € D, if n 2 ?z(m,r),
there exists a sulset Y € X with 'Yl = m such that EZUZ 1s equivalent to a

r
honiogeneous em-complex F.

Proof If m = 0, we simply use Proposition 2.1.3, and the result is a homo-
geneous eg=complex (obviously, any eo-complex is homogeneous). Then T2(0,r) =0,
Thus, from now on we assume that m 2 1,

The proof will be given for the special case when E has two components:

a standard component El and a reverse component E It will then only be

2
indicated how to generalize the proof.

A procedure (The Homogenizing Procedure~=HP) will be described that will
transform an ei-complex G consisting of a standard component G1 and a reverse
component G, with p 2 ﬂ3(q) (for a function ﬂ3 that will be defined later)
and with the properties: (1) There exist (possibly empty) subsets Ry and

[b - o =
R, & D such that oi(a,y)r R1 id (identity on Rl) and .i(a,y)r R2 idR

R
1 2
for 1 =i < p where 0, and ﬁi 1s an operator of Cl and 02 respectively

and the first argument corresponds to the lateral variable, and (2)

V(1si, j sp) (o, (x,y) € R, = wj(x,y) =0 (x,y)] (2,1.1)

(i.e., the operators of G1 are identical on the inverse image of Rl)' Simil-

arly for the operators of GZ on R2‘

33

Remark Note that if R1 and R2 include the range of every operator,
Property 2 translates into the identity of the operators. In particular,
this holds 1if R1 = R2 = D,

Remark Note that an arbitrary ez-complex satisfies Properties 1 and 2
with R, =R, = ¢

The result of applying HP will be an ez-complex H that will either be
homogeneous, or will have Properties 1 and 2 with S1 and 82 replacing R1 and
RZ respectively and R1 ? S1 or R2 i SZ' Due to the Remarks above and to

the fact that D is finite, repeated application of HP on E finally yiclds F.

The condition on n is

ne nz(m,Z) = 1]3(“3(“'“3("‘)'“)) (2.1.2)
2d times

This bound for n corresponds to the worst case when R1 or R2 increase by only
1 on each application of HP.

Before describing HP, note the useful fact that because of Property 1,
Properties 1 and 2 are preserved under a-mergers.

Description of HP The lateral sequence of G is of length (v+1).u-1 for

certain values of u and v that will be defined later.

Consider the sequence

a a .
(m((k'1)°u+1,k-u)’ v ((v=1)eu+l, (v-k+1)-u)) (?.1.3)

for k = 1,...,v. Sequence (2.1.3) is illustrated in Fig. 2.4, The two
vertical lines represent G1 and G2; the numbered horizontal outlets represent

the lateral variables (with the corresponding number); the boxes indicate the

34

variables and operators that take part in the formation of any particular
m(i,j) and *(1,j); an 'x' beside a variable indicates that it is not set to
the constant while 'a' indicates that it is set to a; the two checked boxes
represent the first member of (2.1.3).

In the sequence (2.1.3), either (Case I) the ranges of w((k-l)-u+1,k'u)
and Q((v-k)'u+1,(v-k+1)-u) for 1 £k <v are included in R, and R, respectively,
or (Case II) not.

Case I. 1If v is large enough, we can find q identical elements in the
sequence (2.1.3). Let the indices k corresponding to thesc elements be
kl,...,kq. Performing an a-merger with this sct as basis, the desired
e-complex H is obtained. Note that in this case we use Property 1 of G,
Namely if ©* is the first component of a pair in (2.1.3) whose range & Ry
and if © ie an arbitrary operator of Gys then @(a,0*) = o* (similarly for

the second components of the pairs in (2.1.3) and operators of Gz). Thus,

the components of the identical pairs in (2.1.3) become the operators of H.

d2 2 d2 2
A bound for v is q+(d") (d is the number of operators D“ - D).

Case II. Assume w((i-l)-u+1, z.u)(b,c) ¢ Ry for some b, ¢ € D and
1 <4 sv (the case when w((v-l)-u+1, (v-b+1)'u)(b’c) ¢ R, can be treated

similarly). But then

Cheu-g, goy) (Bse) € R (2.1.4)

for all 0 S j £ u-1 (as a consequence of Property 1). Provided that u is
large enough, we can find an element e € D that appears w times in the se-
quence (2.1.4). Let the indices j corresponding to the appearances of e be
j@),eee,3(W) (sce Fig. 2.5). Obviously then (all the variables considered

except x, have been set to a),

35

Q(L'U'j(t), z'u-j(t-l)-l)(a)e) = e

for 2 £t €£w (the first argument of ¢ corresponds to the lateral
(1

»3)
variable). Thus,

m(z-u-j(t), L'U'j(t‘l)'l)(a’y)r Rl U [e} = id
At this point we consider separately two cases:

Case IIa £ =1 and J(w) = u-1. We perform an a-merger with the basis
consisting of the variables with indices u-j(t)~1 for 1 €t < w-1, As a re-

sult of this we obtain an ei_l-complex G' such that Property 1 holds for Gi

on R1 U (e (Gé satisfies Property 1 on Ré < Rz; in any event Rz'Ré = d).

Note that at this point Property 2 is still satisfied only on R1 and R, by

G, and G respectively.
1 2

Case IIb. £ #1or j(w) < u-1l. We perform an a-merger with the basis

consisting of the variables with indices £.u-j(t)-1 for 1 € t Sw. As a result

1
and Property

of this we obtain an ei'complex G" such that Property (almost) holds for G

(14

(the same remarks regarding G, and Property 1 as well as G, 62

2
2 apply as in Case IIa). The only exception may be wY (the operator of G

1

(-
that is closest to the decoding function). By definition, wl w(l,z-u-j(w)-l)’

and there is no assurance that wY(a,e) = e, We may rectify this situation

by absorbing m{ into the decoding function inthe following way: Let G"™ =

a(ar, Gg). Now set X, Ta (after the a-merger the variables have beaen

renumbered), Let S(G") - {xﬂ

1]

U. Then we have (C) ;’ = ¢ = 8©7(a,G), !

wherc G; equals G minus ¢! and G) equals G,

1 1 1 2 with the input operator modificc

as follows: V! y
in

- " "
= Ww(a,din)(remember that G2

is a reverse components, and,

2 , ,
hence, x, is attached to W;). Clearly, G' is an ¢ l-complex satisfying

w-

1

36

Property 1 with R1 U {e] replacing R,

We can now resume considering Cases IIa and b together. To obtain H
(with components H, and Hz) we must find among wi for 1 £1 < w-1l q operators
that are identical on the inverse image of Ry Ue] (1.e., (2.1.1) with
R, U (e] replacing Rl) and again perform an a-merger. We again emphasize

that the operators of H2 are identical only on the inverse image of R,, and

2

this property has not been violated by any of the transformations of the
original e-complex G.

To obtain q operators that are identical on the inverse image of R, Ulel,
2
it is sufficient that w-i 2 q-d? ; therefore, u 2 d.(q.d¢ +1) and

My(Q) = q°ed-624qed - (6%45)5d-1 (2.1.5)
2

where § = da . This is obtained from the values of u and v derived above.

Recall that ﬂ3(q) = (v+l)+u-1, the length of G, ﬂz for r = 2 can then be
obtained from (2.1.5) and (2.1.2).
The proof for the general casc is obtained by defining the Generalized

H Procedure (GHP) with the corresponding function “4. We consider instead

of (2.1.3) the sequence

1 r' 1 "
“la,eyr %, 600 Yisreryrre Wy

[}
where s = (k-1)*u+l, t = keu, s' = (v=k)+u+l, and t' = (v=-k+1).u. mi,...,w;

114
denote the operators of the standard components of G while wi,...,wr denote

i
the operators of the reverse components (r' + r" = r). Without detailed
r
argument we state that in the general case v = q.§ while u remains the same

(u is determined by the requirements of Case II at which time only one

37

component is considered). From this we obtain analogously to (2.1.5)
2
M@ = q”ed. 67 agede (6T48)4de1
ﬂzﬁn,r) can then be obtained from

My@m,e) = M, (M, (.ou, (@)...))

r*d times

which 1{s an analog of (2.1.2),

2.1.9 Remark

As we have seen, ﬂz in Lemma 2.1.8 depends on r, the number of components
of F. However, we shall mostly be using e-complexes that contain many components
that are identical except for the Input operator (such e-complexes are obtained
e.g., by the use of Proposition 2,1,7). It may be checked that in the application
of GHP only one representative from each such group of components need be
considered. This significantly reduces ﬂl. Similarly, in computing ﬂz from
(2.1.5), only £:d compositions are required where £ 18 the number of groups of
similar components (corresponding to d compositions for each group of similar

components).

2,1,10 Remark

The operators of a homogeneous e;-complex F obtained as a result of
applying Lemma 2.1.8 possess an added property that will be used later: Let
R be the range of ©(x,y) an internal operator of R (x corresponds to a lateral
variable); then wi(a,y) R = idR (the identity on R), This fact follows from
the definition of HP (GHP). This particular property of the operators of

the components of F will be called the If-grogertx relative to y. In what

38

follows, we will always suppress "relative to y" since there is no danger
of ambiguity. We will simiarly suppress ti.e subscript R unless we will be
interested in a specific range. We will abbreviate "F is an e-component
(complex) whose operators possess the Ia-property" to "F is an e=component
(complex) with the Ia-property".

A familiar and convenient way of representing a binary operator ©(x,y)
is by a labeled directed graph. The graph of ©, denoted by T'{), is defined
as follows: The nodes of TI'(0) are labeled with elements of D. A directed
arc labeled with a € D exists from b to ¢ if and only if @(a,b) = c.

If D =(1, 2, 3, 4) and R = (2, 3, 4} an example of a graph T(©) for
an operator ¢ with the I;-property is shown in Fig. 2.6.

Given an arbitrary e ~component F, the output of the operator wk is

mk(xk,wk+1(xk+1,...,wn(xn,win(Y))---));

in the case of a homogeneous e _-component with internal operator © this will

be abbreviated to

w(x oo X

win(y>).

K k+1 n’

2,2 The Generalized Specker's Theorem

We first give the following

2,2.1 Definition

Let ¢ be an arbitrary basis and a € D any constant. Let F be a formula
over ¢ with S(F) = X UY U z such that IXI < nmax-l (the maximal number of

arguments of an operator of é), Y is disjoint from X, but otherwise arbitrary,

39

and Z = {z]} is a singleton (disjoint from X and Y) such that z occurs only
once in F. The set of functions f(X,z) represented by all possible such
formulas F with the elements of Y replaced by tlic constant operator a will

be denoted by 32,

In particular, every operator of ¢ with all but k 2 1 arguments (k is
arbitrary) replaced by a is in $%. Note that if o(X,z) € Qa, then © may
qualify for 32 by virtue of a number of different representations. If =z
(or any variable of X) in any one of them corresponds to a variable that

occurs only once, it is called a distinguished argument). The other arguments

are called free arguments. Thus we may casily find a basis ¢ and an operator

® such that all arguments arc at the same time distinguished and free.

We now define a restricted class of e-components and c-complexes: ¥ is an
arbitrary basis and a € D 1s any constant. Llet F be an arbitrary ey compunent;
then F 1s an ep-component over 3%, Let o(x,z) « $3 be a binary operator, 2z
a distinguished argument (hence x is free), and G an ¢ . component over #n;
then ©(x,G) 1is an e ~component over 9. An e-complex over $2 1s an c-complex

such that all its components are e-components over 53,

The main result of this chapter is

2.2,2 Theorem

Let there be given the function f: D" 4 D such that L({,%) < c.n for some
constant ¢ and basis $. Then for anym 21 and a ¢ D if n 2 ﬂs(c,m),therc
Y
exists a subset Y of the arguments of { such that |Y| = m and [q is ecither a

r a1y 8 .
constant or is represented by F, ah°"ﬂ0geneouscm“c0mp10x over 2 with the I"=property,

Y as the set of lateral variables, constant input operators, and r = d- (2c=1)+}.

40

Proof

If £f has m fictitious arguments, then let Y be the set of these arguments,
and f: 1s a constant. From now on we assume that £ has < m-1 fictitious
argumente.

The statement of the theorem gives us that therec exists a formula E
over ? such that L(E) < c.n. Therefore, there are 2 1/2.n variable symbols
representing the arguments of f which either do not appear in E or appear
€ 2:c times. In other words, there are 2 1/2n-m+l1 variable symbols that
actually appear in E and such that the number of occurrences of each is s 2-c.
Denote the set of these variables by X1=

If n 2 20“8(n2,2c)Hn-1, we can ap§1y Lemma A.9 and obtain a subset
Xz < Xl with |X,| =n, and such that Eaz is equivalent to Ez, and SPCeC over

3% with at most 2¢ components and such that the set of lateral variables of
every component {s xz.
If n, 2 ﬂl(n3,2c) we can apply Proposition 2.1.7 and obtain a subset
X
3

r
X, s x2 with |x3| = n, and such that Ea is equivalent to E3, an e =complex

3 3 3
over 57 with r € d+(2c=1)+1). The cstimate for r is obtained at this point.
If n, 2 ﬁz(m,ch we can apply Lemma 2.1.8 and Remark 2.1.9 ard obtain

a
F, the desired homogeneous e;-complex over * with the I =property. The

1° property is a consequence of Lemma 2.1.8,

41

Iiscussion of ﬂs. The present proof yields

Tk(m,c) = z'ns(nl(nzﬁm,Zc),Zc),Zc)+m-l

The exact representation of ﬂs 1s extremely complex, and in what follows we
shall use only a very rough approximation. In Appendix A it is seen that
ﬂa(t,k) (as a function of k) grows faster than iexp(b,2k) for any constant b,
The functions ﬂl and ﬂz contribute only insignificantly to this, and thus we
state:
ﬂs(m,c) 2 {exp(b,4c) for ¢ 2 c(b)
(2.2.1)
and an arbitrary constant b
(Later we shall se that the size of ﬂs prevents us from obtaining any
interesting bounds for the functions investigated with Theorem 2.2.2. The size
of ﬂa which contributes rost to ﬂs results from the technique used in Lemma
A.J to obtain 4 nesting sequence for a given formula F. It 1{s not known

whether this technique can be improved. Our guess is that it cannot be.) O

2,3 On Specker's Theorem

In this section it will be shown how Specker's Theorem follows from
Theorem 2.2.2 (the statement of Specker's Theorem is given in scction 1,5).

In Theorem 2.2,2 set D = (0, 1}, # =7, a = 0 and let f be as described.
Then by Theorem 2.2.2, we obtain that for an appropriate choice of n, we can
find a subset X of the arguments of f with IXI = m and such that fg is either

a constant or represented by

*(Fl,...,Fr)

42

where ¥:(0, 1]r -+ {0, 1] and Fi for 1 €1 <r is either a standard or reverse
homogeneous em-component over Eo with the Io-property and constant input
operators. The value of r is bounded as described in Theorem 2.2. 2.

We now analyze the various functions that can be represented by e=compo-
nents with these restrictions. First note that Zo consists of all Boolean
binary operators; furthermore, if f(x,z) € Eo, then both x and z are free
(because every Boolean binary operator can be represented over L in such a
way that each variable appears only once), and thus there are no restrictions
on the use of operators in the e-components we encounter.

All possible graphs I'(w) for ¢ € 50 are shown in Fig., 2,7. The ones that
satisfy the Io-property are starred. The functions obtained by choosing a

value for the constant input operator for the starred graphs are shown in

m
Table 2.1. 1In general, this function is either bg a bl- M where m = 11 (1 mxi)
i=1
m
o NP &
or cq ®c 0 where o ig& X, for some values of bo, b1 Or ¢y, €4 Now, taking
into consideration the fact that TM¢ = 0, and that every V: (0, I]h -+ =0, 1}

can be uniquely expressed as a Boolean polynomial

where c; € (0, 1} and Mi 1s the monomial (of degree one in each variable) in
those among XpoeoesXy corresponding to nonzero bits of the binary representatior
of i(see Lemma 4.5) we obtain the first part of Specker's Theorem.

The second part of Specker's Theorem could be obtained directly at this
point; however, we will derive a generalization of it in Example 3.1.3, and thus

omit it here.

43

It must be pointed out that our derivation of Specker's Theorem results
in a slightly larger bound for n; however, since no known application requires
a specific value for the bound, this is immaterial. Specker's bound (see

[Ho68]) is obtained from the function

]

pm,0) =m

u(m,k)

6ku (m,k=1)
4 (kD) e (1 (m,k=1) ,k-1)

]

by setting ns(m,c) = 2u(m,2c). Our bound is slightly larger due to the addi-

tional processing implicit in the application of Proposition 2.1.7 and Lemma

2,1.8. However, u resembles n7 and this function by far contributes the most
to ﬂs; thus, we can state that the bounds are approximately equal,

Finally, let us note the fact that Theorem 2.2.2 allows us immediately
to amplify Specker's Theorem. Namely, the statement of the theorem involves
the basis consisting of all binary Boolean operators. However, the proof
of Theorem 2,2,2 works for bases consisting of operators of an arbitrary

number of arguments.

44

T(F) where F is an e -component

Fig. 2.1

T(F) where F is a reverse component of an e-complex

Fig. 2,2

45

COHD OO
2010 010: 0

CEEO®
OB CANC
(g

F is an SPCeC
Fig. 2.3

46

_/

u+l

2y-] m—

2u

p— o 00 o

(k-1).u+l

x({ .«
Ko =1 m———
keu

(v-1)eu+l

veu-1

Veu

(v+1)eu-1 ___+
G

X

Y =3

a

(W’l) ‘u - 1 —v——T
veutl-
veu
L
-
(k+1) su-1 emmeed

L

Ko ut] —i
keu

;e

|

3u-1 f

2ut] ——

2u

2u-1 —+

o gum—

ssw

u

ing

1

=@ ((k-1)sut1, keu)

"((v-k)eutl, (v-k+1).u)

Illustration of the HP procedure (1)
Fig. 2.4

G

1Y

(E-l)-u-l

Lou-3(w) ——

Qo

& g S @ sEw
P

L R I e
-

Layg-42) —1—4 a
¢

Lau-4(1)

*rwwE g

R S— ..

L
L]
L]

1
=

ﬂHJ'--:::*_-_J b

?((Be1yun1, deu) Pr)E Ry

Illustration of the HP procedure (II)

Fig. 2.5

T'®) for an operator © with the I
Fig. 2.6

2
(2,3 AJ-property
’ ’

o

(1)

*

~
Q.

~—

The graphs of all Boolean binary operators

Fig. 2.7

49

Te) |) Function
in
a 0 0
a 1 0
c 0 0
m
c 1 n(lexi)
i=1
d 0 0
d 1 1
m
g 0 ® x
j=1 1
m
g 1 18 & X,
i=1
m
h 0 19 19x,)
i
i=1
h 1 1
P 0 1
P 1 1

Table of functions that can be represented by e-components
with the Io-property (see Fig. 2.7) and constant input oper-
ators if D = (0, 1)

Table 2.1

50

CHAPTER THREE

APPLICATIONS OF THE GENERALIZED SPECKER THEOREM

The principal results obtained previously [Ho68, Ho70] by the use of
Specker's Theorem are
3.0.1

r

A new proof that the Boolean function igﬁ Xy is of nonlinear length over
I'. This is accomplished as follows. First note that the restriction of the
mod 2 sum of n variables obtained by setting certain variables to O is again
a mod 2 sum (but of a smaller number of variables). Now apply Specker's
Theorem (see 1.5). Suppose iéﬁ X, is of linear length over II. Choose n
large enough to obtain m = 3. The theorem states that for this particular
bases cy) = 0 in (l.5.1). However, it can be checked that in this case no

choice of o and ¢, will yield the mod 2 sum of three variables. A contra-

diction,

3.0.2

n
The function f: {0, l]n = (0, 1} defined by f = 1 if and only if ¥ X, 0
i=1

mod 3 is of nonlinear length over %. We proceed similarly as before. Assume

it is of linear length., Apply Specker's Theorem with n sufficiently large to

Of course the results of Subbotovskaya and Khrapchenko are stronger for this
particular example.

51

obtain m = 3, If we replace X1 X5 X in (1.5.1) once by 1, 0, 0, and

3
another time by 1, 1, 1, then the value of (1.5.1) remains unchanged. However,

the value of f (with all variables except Xps Xgs X replaced by the

3
constant 0) is different on these two assignments. Again a contradiction.
Both of these results were derived by Hodes and Specker in [Ho68].

We might note that the technique of 3.0.2 can easily be generalized to

counting mod k where k is an arbitrary integer (sce (1,5.2)).

3.0.3

Certaln geometric predicates (see [Mi69]), in particular the connectivity
predicate, are of nonlinear length if expressed with binary Boolean operators
(this result was obtained by Hodes in [HO70]). We will not discuss this in
greater detail now since this technique will be treated later in 3.2,

In this chapter we will use Theorem 2.2.2 to generalize all these results.,

3.1 Counting mod p

Consider the function (O, l}n + ({0, 1)

fi(xl,...,xn) =

0 otherwise

then

3.1.1 Theorem

If p is a prir.e, if |D, < p, then fﬁ is not of linear length cover an

arbitrary basis,

52

Proof

Suppose the statement of the theorem is not true. That 1is, there exists
a prime p, a finite set D such that IDI < p, a basis & of operators on D, and
L(fs, $) = cen for some constant c.

First note that if X is a subset of the arguments of fs and in = m, then
(fs)g = f:. We can now apply Theorem 2.2.2. For an arbitrary m, if n is
sufficiently large, there exists a subset X of the arguments of fﬁ with IXI = m
and such that (fs)g 1s represented by a homogeneous em-complex F (over QO and
with the Io-property) with X as the set of lateral variables. In addition,
since fg 1s a Boolean function, the lateral variables of F are restricted to
(0, 13,

Consider now any component Fi of F and T(mi) where wi is the internal
operator of Fi' Since o has the Io-property, F(wi) has the general appearance

of Fig. 3.1. Fi is determined by 0 and the constant input operator a Now

i.
let m 2 d and consider the sequence (sj) for 0 £ § <m where 89 = & and

sJ = wi(ll...ll,ai) for § 5 0. Let sk(i) be the first element in the sequence

J times
that is repeated at some later point; in fact, let k{{) be the position of the

first occurrence of this element. Let k(1)+£4(1) be the position of the second
occurrence of this same element. Then we shall call k(1) the prefix of Fi
while £(1) will be called the period of Fi'
Clearly, if Fi is a standard (reverse) component, then coi(xlxz...xm_k

o we o0 e 2
11...1,ai) (wi(x.mx.m_1 xk+111 l,ai)) where k 2 k(1) is a function of the

number of 1's among Xps Xppeee,X o (xk+1,...,xm) mod £(1).

53
Thus,
If we set Y = [xk1+1""’xm-k2} and choose kl(k2) to
exceed or equal the prefixes of all the reverse
(standard) compobnents of F, then Fg represents a
function of the number of 1's among the variables of

Y mod Lem(£(1),...,4(r)). (3.1.1)

Y
1

of 1's among the variables of Y mod p; this results in a contradiction since

On the other hand, by the initial assumption, F, 18 a function of the number

d <p,

On the basis of (3.1.1) we can obtain the following

3,1,2 eor
Let D be an arbitrary domain, ¢ is a certain basis, and p 18 an arbitrary
integer » 1. If Qo 18 such that any e=component over 60 with the Io-property

and constant input operator has period one, then fs i3 of nonlinear length

over §.
3,1.3 Exagmple

This is an example of a basis satisfying the hypothesis of Theorem 3.1.2.
Consider an arbitrary domain D = (0,1,...,d=1}). Then a complete basis
for D is *D = (min(x,y), max(x,y),0,1,...,d=1, eo(x),...,ed_l(x)} where min

and max are defined in the usual way, 0,...,d=1 are the constants, and

d-1 1{f = {
e (x) = { '

0 otherwise

54

(Note that V[O,l} = (A,V,0,1,-,1d}; thus, a result on the nonlinearity of the
length of a certain function over ¢[0,1] 1s also a result on the nonlinearity
of the same function over II; 1in particular, applying Theorem 3.1.2 to *{0,13’
we obtain (2) of Specker's Theorem.)

*D 18 interesting because it gives rise to an analog of the disjunctive
normal form for arbitrary D: Consider the table for an arbitrary function
£z D" 4 D. Then

d"-1

f = max (Mi)
i1=0

where Mi equals 0 if the current assignment is not the ith assignment and the

value of the function at the 1th agssignment otherwise. M1 is represented as

follows

M, = min(ea(i,l)(xl)""’ea(i,n)(xn)’fi)

k assignment.

where a(i1,j) is the jth component of the ¢
We ciaim that *D satisfies the hypothesis of Theorem 3.1.2. Note that

Wg = Wg for all a, b € D because *D contains all the constants, Therefore,

*
we will write simply WD

Civen 0 € &; with the Io-prOperty, the statement that there exists b € D
such that the homogeneous e-component with internal operator f and b for its
input operator has period £ is equivalent to saying that there exists a subset
L €D with |L| = £ and ©(0,z) L is the identity (1d,) while ©(1,2z) L is the

permutation with cycle length £ (pz).

*
We contend that for any L € D, ©0(x,z) ¢ &D and ¢, e € D, if 0w(c,z) L

35

and ©(e,z) L are 1-1, then o{(c,z) L = o(e,z) L. Since idL 1 py if L>1,
this will establish the original claim,

This can be proved by induction on the depth 6¢ of the distinguished
variable z in the formula F that represents © (since there may be many such
formulas, let F be one of the formulas where the depth of z is minimal.

If %p = 1 then either F = max(F',z), or F = min(F",z). Assume the first
case (the second can be argued similarly). By definition of j;, F' contains
only the variable x. If we replace x by c, F' represents a constant c¢' ¢ D.
Now i1f ¢' < L, then ©(c,z) L 1is the identity, otherwise it is not 1-1.

If 6co > 1, then either ©(x,z) = ei(w'(x,z)) where ©' ¢ i; and 60, < 6¢
or @9(x,z) = ©*(x,0"' (x,z)) where 0", o' ¢ g; and 6w", ém", < 6w (to sece this,
think of F). In any case ©®', 0", and ©"' satisfy the inductive hypothesis,

and we are done.

Note that Theorem 3.1.1 and 3.1.2 hold with fg replaced by the furction

P, pt L
e D -+ (0,1) given by T x

= O mod p since gz X (0,1 = fz.
i=1

i

3,2 Connectivity

The connectivity predicate was already discussed in 1.6. It attacted
considerable attention after Minsky and Papert [Mi69] succeeded in obtaining
interesting results on the complexity of perceptrons that represent the
connectivity predicate. Works that follows [Mi69] and that treat specifically
the representation of the connectivity predicate by finite operators are, c.g.,

(HO70], [Mi71], and [Vi70].

56

Minsky and Papert describe a circuit for computing the connectivity
predicate of depth (of the order of) (logzn)2 which on intuitive grounds
seems minimal. This circuit translates into a formula of nonpolynomial length.
Thus, the connectivity predicate seems to be a good benchmark for testing
estimation methods for the complexity of functions (i.e., any appropriately
general method which is presumed able to give estimates for length up to
f(n) < nlogzn should declare the connectivity predicate complex).

Consider a set of nz variables {xij] for 1 <1, j < n; then the connec-
tivity predicate is the function c ' (0, 1} 4 (0, 1) defined as follows:
(we will not give a formal definition since the formalization is obvious)
Given a specific assignment to the variables, consider it as a square array
of 0's and 1's. Then ¢, = 1 on the empty pattern (i.e., consisting of all 0's),
or if the 1's form a connected pattern. By "connected” we mean that any two
1's can be linked by a sequence of adjacent 1's (two 1's, corresponding to the
variables X3 and X, ¢ are adjacent if !1-k' + lj-ll = 1). For example, the
pattern in Fig. 3.2 is connected.

The general approach used here to obtain an estimate for the length of
q 1s to consider reductions of e

Given an arbitrary function £, a function g will be called a k-reduction
of f if g 1s obtained from f by replacing each argument of f by a function with
at most k arguments.

Suppose we want to prove that f, of { = 1,2,... arguments is of nonlinear

i

length (over the basis %). Assume there exists a k-reduction gy of fi such

that the number of arguments m in g, is m 2 Q.n for some constant 0 € a < 1.

Assume L(fn,Q) S c+'n for some constant c. That i1s, there exists a formula

57

F, for £ and L(Fn) S cen. Since the length of any function of k arguments

1s bounded by L(k,?), we obtain
L(g »®) < c'L(k,8)*n

by making substitutions for variables in Fn'
If [gil 18 rearranged (and renumbered) in the order of increasing number
of arguments, and all but one functions with the same number of arguments

are deleted, then we obtain

L(SmOQ) Sc'em

for some constant c'. Finally, if we can prove (e.g., by applying Theorem
2,2,2) that &, 1s nonlinear, we obtain a contradiction, and we are done.
Hodes [Ho70] shows the nonlinearity of the length of ¢ over Z by reducing

cn to the function

m
V (A y) Ay
i=1 31 3 i

(1.e., exactly one variable is 1) which can then be proved to be nonlinear
using Specker's Theorem. Unfortunately, this reduction does not work for

domains with more than two elements because this function is linear over an
appropriate basis in such domains. However:, another approach works, and we

can state

3.2.1 Theorem
Regardless of the size of D and the nature of 3, c, is of nonlinear

length (i.e., L(cn,ﬁ) < c-n2 1s not true for eny D, §, and constant c).

58

Proof
Minsky and Papert [Mi69] succeed in reducing ¢, to counting mod 2 by
exhibiting a contact nmetwork such that its connectivity depends on the number

mod 2 of contact variables equal to 1, and then by simulating this network
on the square array of variables (they call it the ™retina™). We shall proceed
similarly.

cy 1s reduced to the function sgz {0, l}n -+ (0, 1} (for an appropriate

t) defined as follows:
1 {f 2 arguments are equal to 1

n 0 otherwise

sﬁ, can be represented by the connectivity of a contact network Sg. Sg is

shown in Fig. 3.3a. It has p contact arms for each variable Yy The O value
of ¥y corresponds to the upward position of the corresponding arms while the
1 value of Yy corresponds to the downward position. The contact arm of Ss
are arranged in p rows (n arms in each row). Whenever an arm for Yy is 1in
the upward position, it is connected to an arm for Y41 in the same row; if
the am for ¥y is in the downward position, it is connected to an arm for

in the next row. Thus, it may be easily checked, point Al is connected

Yin

to Bp+1

verified that in this case all the contact arms in the network are connected

1f and only if at least p among yl,...,yn are 1. It may also be

either to AO or to Bp+1, and since these two are connected together, the whole

network 1is connected.
Sz in turn can be simulated by a rectangular array Rﬁ of 0's and 1's

where certain positions are constant and others depend on the yi's (see

p
Fig. 3.3b). The size of R, 1s (3(p+1)+1).(3n+p-1).

59

We now show that s: is a l-reduction of c, for some t. This is done
by cutting R: into smaller rectangular pieces along vertical lines. The
first piece is of length (4-1):q where q = 3(p+1)+1 and £ will be defined
later, the second through £-1st piece is of length (£-2).q, while the lth,
last, piece is of length between 1 and (£-1):q. These pieces are then
arranged into an £:q X £L:q square pattern Tg as shown in Fig. 3.4 (the
arrangement depends on the parity of £). Corresponding rows of adjacent
pleces are connected by D= or C- shaped patterns of 0O's (in the case when
one of the positions along the cut at the row in question is 0) or 1's.
The unused positions of T: (corresponding to the case when the last plece
1s not of the maximal length) are replaced by 0's,

t is set to £:q and the variable xij in c, is replaced by the correspon-
ding position in Tﬁ (one among 0, 1, Yy» OF ;i)' Obviously, the function
obtained by this replacement {is az. 1f 29€$:l 21, £ 18 obtained as X1 where

x 18 the positive solution of

x2-2(x-1) = 22%5:1
We also have that n ms(1/3q)t, and, thus (by the reasoning outline previously),
P
if c, is linear so 1is s
With the assumption that s: is linear, we apply Theorem 2.2,2 with a = 0,
In this way we obtain that (sz)g where Z is a certain subset of the arguments

of sﬁ of size m is represented by an em-complex F (with the requisite restric-

tions) where m is arbitrary. Note that (ss)g = sg.

60

As noted in 3.1, if a sufficiently large number of variables at the
beginning and end of the lateral sequence of F {3 replaced by 1, then F with
this substitution represents a function of the number of 1's among the
remaining variables mod the lcm of a set of integers < d. The number of
variables that have to be set of 1 18 u < 2(d=1) (at most d-1 at each end
of the lateral sequence). Thus we obtain a representgstion of the function
8::3 if p2u. Ifp = 2(d=1)+2, we obtain a function s; for 1 2 2. However,
it 13 clear that s; is not a function of the number of 1's mod k for any integer

k. Thus, we have arrived at a contradiction, and, hence, c, is of nonlinear

length over any basis $¥. [

Mamnmmnumm*

As we have seen in the previous examples, Theorem 2.2.2 has been applied
only to functions that are either symmetric or that can be reduced to symmetric
functions. While we know of no formal statement that can be proved and that
asserts that this indeed exhausts the applicability of Theorem 2.2,2, {t
Intuitively seems probable.

In this section we will discuss several bounds on the length of symmetric

functions (both specific functions and all symmetric functions). Recall that

in 1.4 we have already mentioned several such bounds (Subbotovskaya, Khrapchenko).

fA11 of the results in this section were suggested by A. R. Meyer.

61

Does Theorem 2.,2,2 (or Specker's Theorem) give us any information on the
length of the functions investigated? Hodes and Specker do not treat this
subject, and, in fact, the bound that can be obtained 18 very weak; however,
we do mention it for the sake of completeness.

In an application of Theorem 2.2.2 (or Specker's Theorem) to a certain
function £, we proceed with the asumption that L(f,3) < cen. To apply
Theorem 2.2.2 we must have n 2 ﬂs(m,c) where m 18 a sufficiently large number
to obtain a contradiction. However, m does not depend on c¢. Thus, n depends
only on ¢ and m 1s assumed constant.

Consider now ¢ as a function of n, We ask what is the maximal value
¢ for c(n) for which Theorem 2.2.2 can be applied (and a statement contradic-
ting L(£,%) < ceu obtained). c(n)en 18 then a lower bound for L(f,¥). Due
to (2.2.1) c grows slower than {1/4)+ht (p,n) where ht (p,n) = maximal x

such that n 2 iexp (p,x). Then we have
c(m)'n S (1/4)+ht (p,n)en (3.3.1)

for an arbitrary constant b > 1 and for sufficiently large n.

This bound seems unrealistically low, and it is useful to compare it
with known bounds for length for the particular function fg over some bases
consisting of Boolean operators (we will suppress the subscript n).

It has already been established that f3 is of nonlinear length 1f D =
(0, 1) (see 3.1). We introduce the following notation: f3 = f3’0, f3’1,

3,2 n
and f stand for T x

i=1

sent £3’0, f3’1, f3’2 by the formulas Fo, Fl, and FZ respectively. FO is

{ © 0, 1, and 2 mod 3 respectively. We will repre-

obtained by the following recursive relation

62

Fo(x) = FO(Y) A FO(Z) v Fl(y) A FZ(Z) v FZ(Y) A Fl(z) (3.3.2)
(If X is the singleton (x}, then FO(X) = x)

LEC X)) = LECILEY (2 +LEL (0))LE (2))+L F 2 (1))L EL (2))

Similar identities can be obtained for Fl(X) and FZ(X). When these identities
are used recursively, we obtain

log,6
o, 8)) sn 2 ~nd (3.3.3)

an exact description how we obtain a bound of the form (3.3.3) from a recur-
sive relation similar to (3.3.2), see [Ya54].

This upper bound can be further reduced by using multiargument operators.
2 R

Let y: (0,1,2]" < {0,1,2] be the operator T Yy mod 3. Then g3 can be
i=1

represented by a formula G which uses y recursively (i.e., the arguments of
f3 are repeatedly divided by £ together with an outermost decoding operator
(0,1,2) %+ (0,1}, G is of linear length., If we use D = (0,1}, y can be en-

coded by two operators y' and y", and G translates into a formula such that

1
1+ Togk
n (3.3.4)

logkn
0(L(G)) = (Zk) -
Thus, as £ increases, the upper hound for L(f3,§) (where v $) apprcaches
c¢*n. However, the gap between this bound and (3.3.1) is still huge. But,
the important thing to note is that any theorem that retains the same broad
assumption (bases with an arbitrary number of operators) as Theorem 2,2.2

cannnt yield a better bound for f3 than (3.3.4).

63

Another example of a function that is nonlinear in length (over all
Boolean binary operators) by Specker's Theorem is f4. However, it too has
a relatively short representation (the previous and this example show that
Theorem 2,2.2 is a sensitive tool for deriving the nonlinearity of functions;
i.e., it can be used on functions that are only "slightly" nonlinear).

A representation for f4 with Boolean operators is obtained by dividin
the arguments of f4 into disjoint (nonempty) pieces Y and Z, and adding the
bineary representations of f4(Y) and f4(2). Let the binary representations of
f4(x) be given by the formulas F'(X) and F"(X), obtained by the following

recursive relations

F"(X) F"(Y) o F"(2)

F'(X) = F'(Y) ®F'(z) ® F"(Y) A F"(2)

(If X is a singleton F"(x) = x and F'(x) = 0)

Consequently,
L(F"(X)) = L(F"(Y))+L(F"(2))
L(F' (X)) = L(F' (Y))+L(F' (Z)+L(F"(Y))+L(F' (2))

By choosing Y and Z always as equal as possible, we obtain

L(F'(X)) =n

O(L(F'(X))) = n'logzn

Since fA(x) 1s represented by F'(X) A F"(X) n'logzn is alsoc a bound for
O(L(iné) where €, A &,
We now turn our attention to an upper bound for the length of all

symmetric functions.,

64

Note that a symmetric function g: D" -+ D where D = -0,1,...,d-1} depends
exclusively on NyseeosNy_; where N, is the number of variables equal to 1.

It can be represented, e.g., as

g = max(M)
n(l)ttt’ n(d-l)

n(i) and 15 0 otherwise. The number

of combinations of n(l),...,n(d=1) is a polynomial in n =-- (n:fil) == and the

where Mn(l) n(d-1) equals ¥ 1f N,

max function can also be represented in polynomial length, regardless of the
basis . The latter fact is established by representing max using the two-
argument max recursively. Thus, if Mn(l),...,n(d-l) were polynomial, g would
also be.

M. J. Fischer and A. R. Meyer discovered that Mn can,

(1),¢.¢.,n(d=1)
indeed, be represented in polynomial length by using a special code for
integers described by Avizienis [Avé69].

We wili illustrate the construction on Boolean symmetric functions. It
will be seen that if the basis of operators 1s appropriately chosen, the
length of an arbitrary symmetric function is bounded above by a polynomial
of a surprisingly low degree.

The Avizienis code is a redundant positional representation of integers

to an arbitrary base b 5 2. We describe it for b = 3,

An integer n is represented by all possible rloganj = tuples

a rloan-l poree ,81

vwhere a, € (~2,-1,0,1,2) for 1 <1 < rlog3n-] and

65

Mog,nl
3 i-1
z ai3
i=1

=n

The property that is exploited is that there are no long carry's in
addition. Thus, 1f we want to add two Avizienis coded integers a = aa _qece

a, and b = bkbk-l"'bl’ we can do it in two steps using the following

3,3.1 Algorithm (Avizienis)

(1) Find the carry c and intermediate sum r such that

ai+bi = 3ci+ri

where a bi € (-2,-1,0,1,2) and ¢ T, € (-1,0,1).

3! 1’

(2) Compute the sum s according to

Let us estimate the length of the formula representing any ternary place
in the Avizienls representation of Nl for X = (xl,...,xn].
Again let X =Y U Z and YN Z = ¢, ri(x) and ci(X) can be represented

Ry () = (R, (V)R (2),C,_; (¥),C,_, (@)

and

C (X) = X(R, ()R, (2),C,) (V),C,_ (2))

If X {s a singleton, r, and c, are 01if { 51, or 1 and O respectively if
i =1. p and X are certain operators E-l,O,l]a = {(-1,0,1} which can be

obtained from the definition of Algorithm 3.3.1. Strictly speaking, the

66

domain used here is not permitted in our definition of finite functions;

however, the difference is merely one of coding. Thus,

L(Ri(x)) = L(Ri(Y)+L(Ri(Z)+L(Ci_1(Y))+L(Ci_1(2))

and

L}

L(c, (X)) L(Ri(y))+L(Ri(z))+L(Ci-1(Y))+L(C1-1(Z))

If we use these relations recursively and always make Y and Z as equal as

possible, we obtain

0(L(R,)), O(L(C,)) n’

for 1 <1 % rlog3n.]. If D = {0,1], we need two bits to encode r, and Cye

Therefore, using certain operators p', p", X', and X" to encode P and ¥,

we can encode Ri(x) and ci(x) and combine them into a (0,1)=-formula Ai

representing the ith ternary place of the Avizienis representation of Nl'

We have

3

O(L(A)) < n (3.3.5)

Let there be given a positive Avizienis coded number a = apap_l...ai.

We desire to convert it into its binary equivalent b = bqbq-l"'bl' Let

U< [ap,...,al}. Then we define bi(U) =1 if and only if the ith bit of

z ai3i-1 is 1. Note that even if a is positive, bi(U) may be negative
a, €u
i

for some i and U. This is further discussed beiow. For the moment we assume

that bi(U) is always positive. We can then again compute bi(ap...al) by a

t

recursive method. Let U=V UW, VN W =03, Then bi(U) is the i " bit of

the sum of bq(V)...bl(V) and bq(W)...bl(w).

67

bi(U) is represented by the formula Bi

where Gi represents the carry from the ith place;

G0 represents the constant O and B and y are certain Boolean operators. Then

we obtain

i
L(Biw)) s I L(B,(V))+L(B,(W))

j=1

If a is the Avizienis representation of a number < n then p = rlog3n1 and

]]

q = r1og2n-|. Thus, we obtain the following bound for L(Bi(a))

logologan
O(L(B; (a))) = (2q) ~

log,log.n
(210g2n) 2 3

(1+10g210g2n)log210g3n

logzn

M N (3.3.6)

Note that (3.3.6) means that O(L(Bi(a))) <n ¢(n) for 1< i < rlog2n1 where
€+0asn

It has already been remarked that b(U) need not be positive. Thus
b(U) must be treated as a signed number, If we use the 1l's complement
representation and the en-around carry technique (see, e.g., [Gr59]), addition

can be performed as follows. Let b(U,gO)=G(V)+b(W)+g0 where g, is either 0

68

or 1 and Iet g, denote the carry from the highest position of b(U,0). Then
b(U) = b(U,0) 1if g = 0 and b(U,1) 1if gy = 1. This means that in (3.3.4)
we obtain (L.q)exP for some constant £ instead of (Zq)exp where exp has the
value given above.

If a, for 1 <j < r10g3n1.in B

h| 1
Aj, we obtain formulas Fi(x) representing N

for 1 <1 < r10g2n1 1s replaced with
1 in binary form. Combining

(3.3.5) and (3.3.6) we obtain

O(L(F, (%),))) = a”+eM)

where €(n) % 0 as n <+ =,
To obtain the desired representation of an arbitrary Boolean symmetric

function, we proceed as follows: Consider the formula Si defined inductively

Sp = %0 VX

AS Vx,. AS (3.3.7)

Si41 = %10 " Sqa1 V *1 A Sy

Take Sr10g2n1 and replace X0 and X1 by F; and Fi respectively. It is easily
seen that S[iogznj with this replacement is identically 1 (this can be proved,
e.g., by induction; for S1 it is trivially true, and the general statement
follows from (3.3.7)).

Let there be given an arbitrary symmetric function g. It is defined by
a subset M € (0,1,...,n} of possible values of N, - Each branch of length
l10g2n7 in T(Sriogznj) corresponds to one value of N1 (given by the binary

number j(rlogzd1),...,j(1) where xrlogznj,j(rlog2n1)""’xl,j(l) define the

branch in question). If we remove branches of T(Srlog nj) corresponding to
2

ﬁ, thus obtaining the formula S', and perfsrm the substitution defined pre=-

viously to obtain the formula p, we obtair a representation for g.

69

4+€(n)

We have O(L(S™)) < n and thus O(L(P)) < n where €¢ * 0 as n * =,

Thus, if a basis 3 is given that contains all operators used to obtain P,
then L(g,%) < n4+€(n).
In Lu70 Lupanov announced a result of Khrapchenko to the effect that an
arbitrary symmetric function is of length < n4°93. Since the assumption were
not made explicit, and the result itself is unavailable as of this writing,

no exact comparison can be made with the estimate above.

70

Tcpi) where‘pi has the Io-property (only arrows labeled with
0 and 1 are drawn). ['' denotes the set of nodes mi(xmxm-l"'
x20,ai) vwhere m is as described in the text and xm, e Xy

may assume arbitrary values in {0, 1),

Fig. 3.1
06000000CO0CO
00001111
00001101
00001001
01101011
01111011
00000O0O0CO
0000O0O0O0O

A connected pattern of 1's

Fig. 3.2

AAA)

N - -
—0 —0 —0 0 —9 —o
e = 2

K";;j;x

y
é

hE)

72

L2 N — -

[] [} [] <+
o~ o~) o o o o o
@ M @) @ @ @ ;M M
R-—too-—*oo-—to)[-coo-‘oo-coo-‘oo-‘o

(]
-‘I>u-‘ >u-‘oo-‘o \HQOHoo—‘oo—‘oo—‘o
\

-a-a-ao|>§-a >,r-to

’_‘Oo'-‘,..op,,.q “‘.c{mﬂ.ﬂﬁﬂl—lngﬂg
e | :

= -
- ;:.-i;:oo.-n-i lh-..-- T e = - R - A
1> ™ : .
- ;‘:H :!:Ho }.—t-—-npﬁ—u “‘c”t':""}““‘i-ﬁi,
- (E-N ph = T
— NooN-t-‘o n -u-::.—-.--—:mmh.—-:u:--a
'

~ o000 O0OO0O~NO0OOHO

.-‘ u—i (=] (=]
th‘:H ;:NooN.-n-i >~ >‘t::'_‘c>c>'_‘r-‘r-‘c>|>u-‘ nrt O
(K BN] i (K K
-0 & £ © l-‘-‘o =} fF OO m~OmO
I > b > —
rr"-.-‘_'l"-l-\‘-_‘__'-_.-._'__,_h-‘.—,_—\._-_-_-_‘
=}] W W
#}:hp-p..-lmgﬁ-—-'hﬁ hﬂ‘:ﬂ-—ll—grh-ﬂhﬂa
|
o
v-n-iv-io|>,v-ihmﬁo\/-n-iopﬁ-cf—aoo—a—co—co
o | &
i St
-a|>,-a>,.-|oo.-n-4">.'-i>...-doo.-n-io|>,-a>,-ao
-n-‘-‘olw-‘:m-‘of-n-‘oh-cw-‘oo-c-co-co
o o
-‘-coo-n-iob.-‘<-‘oo-‘-‘olhr-‘h-coo-‘o
~ o~ o ™
Hl},r—‘},r—‘QQHr—l,/},H},v—iQQHr—‘oth‘>u-i°
~N o~
-a-c-ao|>,-c>,-ao>-c-cop..-ih-coo-a-co-ao
o~ ~N
\QHOOF"—‘OI%F‘\I COmMmMOIhM MmO O~O
| - — o~ o~
LIne Sr OO MmO ne b O
- -
(F‘F‘OI%F‘%F‘OOF‘F‘OHO
{ [[
)ﬁoo-—t-—tolh—‘hr—‘oo—‘o
) — —
F OO OO OIMhm 5O
HFerQ Do oS FoOO0OFNOoOO~NOOMHO~O
it = el =R = = YT OOHOO~" OO~ 0OO0O~O
o o~ — -
[] [} +
o o~ o o, o, o, o, o,
< < < < < < < < <

Planar connectivity simulation of SP
Fig. 3.3b

73

Le
— k! »|
s
A
. q
pt+1p——
N N
el
/)
/
/
3
k :
™ for £ =5
n
-~ Fig. 3.4a
L

AN

™ for L=4
1]
Fig. 3.4b

74

CHAPTER FOUR

CYCLIC PERCEPTRONS

The perceptron has already been discussed in 1.6. In the beginning
of this chapter, we will first expand on that discussion in order to further
motivate the study of cyclic perceptrons.

The classical perceptron (for references on the subject sec [Mi69]
became the subject of extensive research centered around concepts such as
pattern recognition, learning, adaptive behavior, etc. A whole myth had
been created around it =- about its capabilities and its potential for use.
The thing th;t attracted people most were its ability to learn from experience

and its simplicity =~ it combines many small decisions, the values of the

func tions wi, into a firal decision by considering their weighted sum.

Minsky and Paper deflated this myth by showing that such a scheme has its

inherent drawbacks. In particular, it cannot compute predicates such as

connectivity.,

The most general intuitive basis for the result that the connectivity
preclate cannot be represented by a perceptron is the following: TFirst of all
the reasoning makes sense only if the complexity of the functions 0, is limited
in some way; if not, we can choose 0, to be the function that we desire to
represent and then it can be represented by a perceptron trivially. Minsky and
Papert use the order and diameter restrictions (see [Mi69]). The former is also
used by us.

Suppose we want to represent connectivity. Then, if the wi's are bounded

in complexity (so the reasoning goes), the weighted sum is too simple a function

75

to be able to integrate all the information that is required in computing
connectivity,
We set out to apply the same basic reasoning to models where the inte-
grating function is constructed out of finite operatcrs, In particular,
we choose addition in a finite field because of the unique representation
property for functions in such a field (see 4.5) which makes proofs rather
simple, and because of the purely formal resenblance to perceptrons.
One particularly interesting aspect of using addition in a finite field as
the integrating function is that one proof of the inability of perceptrons to
compute connectivity is based on the reduction of connectivity to addition
mod 2., However, this function is precisely the simplest one possible in GF(2).
This underscores the need to make different reductions for different models
of computation that are presumed to be incapable of computing connectivity.
In this chapter we shall limit ourselves to Boolean functions,

We introduce cyclic perceptrons formally:

4.1 Definition

GF(pk) is the finite field consisting of pk elements, & (the basis)
is an infinite set of Boolean functions [0,1}w =+ (0,1} such that each ¢ €
(w is the first infinite ordinal) depends on a finite number of arguments,
Elements of ¢ are assumed to be ordered (in an arbitrary way). Then a (p,k)-
perceptron (over ¢) is a pair P = (a,Y), where 2 1s an w=vector such that the
th

i~ component a; € GF(pk) and ai#O for only finitely many values of 1i:

Y & GF(pk).

76

Given a function f: {O,I]w =+ (0,1], we will denote the set of arguments

on which it depends by S(f).
Let P = (a,Y) be a (p,k)-perceptron. Then P will represent the predicate

(Boolean function)

-]

f=[£ a, 9, €Y) .1)
1=0 171

where the value of ¢, € (0,1) € GF(p). Obviously, s(f) € U 5(¢;)

1€(j: 0,#0)
We will indicate the function represented by a (p,k)-perceptron P as in

(4.1), or simply [P].
Let us recall a concept from [Mi69]. Given a (p,k)=-perceptron P = (a,Y)

over a certain basis &, its order (ord(P)) is max (Scpi) .

1€(3: aji‘O]

We can also introduce the order of a function.

4,2 Definition
The (p,k)-order of a Boolean function f over a given basis & ((p,k)-ordQ(f)
1s the smallest £ such that there exists a (p,k)-perceptron of order £ repre-

senting f. If no such perceptron exists, the (p,k)-order of f is defined to

be *,

Let (1 be the set of all Boolean functions with finite support. Note then
that for an arbitrary Boolean function f, (p,k)-ordn(f) 1s finite and < S(f),

for all primes p and avbitrary k. Also note that for an arbitrary basis &

(p,k)=ord(f) < (p,k)=ordy(f) (4.2)

77

We show now, as 1s done in [M169], that we can choose for the basis a

i

more restricted set, Let the set of arguments of the basis functions be

(xl,xz,...]; then we define the set of masks M = { A Xt S 1s a finite sub=-
1€s

set of [N }. A convenient way of ordering M is to assign to 9€M the binary

number bjbi-l"'bl where bk = 1 1f and only {f X, appears in the conjunction

-

defining o.

4.3 Propesition

Any Bonlean function f can be represented by a (p,k)-perceptron over M

for any prime p, and arbitrary k.

The proof i{s the same as that of Theorem 1.5.1 in [ML69], i.e., we util-
1ze the following correspondence between Boolean operations and operations in

GF(pk) Lf the variables assume only the values O and 1:

X, A x2 ~ X

X * Xy Xy VX, ~ X) + Xy =X, 0 xy, x ~1-x

1

If f 18 a function of n arguments, then from its disjunctive normal form, by

using this correspondence and by multiplying out afterwards, we obtain the

following representations for f:
2" o .c

Y aixl x2 e xm -1
1=0

k
where oij is the jth bit of the binary representation of i and a, € GF(p).
Note that the mask o (see the ordering above) is represented by the monomial

with exponents corresponding to the binary representation of 1i.

78

Theorem 1.5.3 of [Mi69] also holds in our case. We state it as

4.4 Proposition

The following holds for an arbitrary Boolean function f, an arbitrary

basis §, and an arbitrary integer k and prime p:
(p,k)-ordM(f) < (p,k)rordé(f)

Proof

The same as in [Mi69].

Note that if we take 0 for the basis in Propositicn 4.4, and combine it
with (4.2), we obtain that (p,k)-perceptrons over M achieve minimal order.

We state without proof the following well=known

4.5 Lemma

Every function GF(pk)n -+ GF(pk) can be uniquely represented as a polynomial
in n variables over GF(pk) that is at most of degree pk-l in each variable.

(see, e.g., [La67].)

It has already been noted that we will be interested in whether a function

can be represented by a (p,k)-perceptron with a limitation on its order. For

this we nced the following

4,6 Definition

A sequence of Boolean functions fl’f2"“ of 1,2,... arguments is of

*
finite (p,k)-order (over a given basis $) if there exists a finite r such

Bounded would be a better word, but we conform to the terminology of [Mi69]

79

that for all i (p,k)-ordg(fi) <r.,
Let there be given a (p,k)=perceptron (a,Y). If Y = (yl,...,ym], then,
k
recalling that GF(p) is a vector space of dimension k over GF(p), and desig=
th
nating the j component of a, by aij (similarly for Yy €Y), we have
-]

[T a, v, €Y] =
i=0 171 h

k @

A [% a, o

1 j=1 1=0 1j 1 = yhj] (4.3)

n <8

We can restrict the diversity of perceptrons we are dealing with by noting

4.7 Proposgition
Let % be a basis closed under conjunction (i.e., 0, ¥ € & = ¢ A § €),

If a Boolean function f is of finite (p,k)-order over $, then it is of finite

(p,1)=order (but the order may change).

Proof
We have f = [(a,Y)] where (a,Y) 1s a (p,k)=perceptron. Suppose Y| =m

and the (p,k)-order of f is 4. From ¢.3) we have

m k i
£= V A [T a .0 =y .] (b.4)
h=1 j=1 4=0 3 1 ~h
where a,_ ,, € GF(p).

13> Ynj
By Lemma 4.5, we know that for all a € GF(p) there always exists a poly-

nomial Pa(x) over GF(p) of degree p-1 which takes on the value of 1 if X =a
and is O otherwise (the degree follows from the number of zeros of the poly-
nomial). Thus substituting the Boolean operations with the field operations

introduced in the proof of Proposition 4.3, we obtain from (4.4)

80

k ® k o
f=QC I P (2 a,.*9)yeee, I P (= 0,)) 4.5
j=1 Y13 a0 1371 j=1 Imj 1=0 13" @.3)

where Q(xl,...,xm) 1s the polynomial (of degree m) that represents the Boolean
m

function V Xy - Each P 1s of degree p-~l. Hence f can be expressed as
h=1 Y13

a polynomial in the wi's of degree < m*(p-1). Obviously, wi for j > 1 can be
replaced by wi since it assumes only the values O and 1, Also, ¢+{ represents
the function 9AY and [S@® A §)| < |S(9)| + [S(¥)|); thus, 1f the basis is closed
under conjunction (as, e.g., QQ or M), (4.5) describes a (p,1)=perceptron for f

of order < me (p-1)+£. O

Remark
Incidentally, this proof also shows that we can assume the cardinality

of Y to be 1.

Since we shall subsequently be concerned only in whether the order of cer-
tain functions is finite or not, we will be able to limit ourselves to (p,1)-
perceptrons. For convenience, we will write simply 'p-perceptrons”. Also, we
will be only concerned in whether there exists a basis over which a function is
of finite order. This is equivalent to whether a function is of finite order

over M.

-t
Q(xl,...,xm) is obtained by using Y, v Yo ~ YV + Yo =¥ ' Yy recursively;

i.e., Q(xl,...,xm) t Q(xl,...,xm_1)+ X + xm-Q(xl,...,xm_l). If Q is a poly-
nomial over GF(2), then Q = @ Il y whkere the sum ranges over all nonempty

y€s
subsets S & [xl,...,xm].

81

We first turn our attention to the case when p = 2. Instead of "2-percep=
tron", we will say "Boolean perceptron',

From Lemma 4.5 we conclude that every Boolean function can be uniquely
represented as a polynomial over GF(2) that is at most of degree one in each
variable (a Boolean polynomial).

Noting that the terms of a Boolean polynomial represent marks, we conclude
that every Boolean function f has a unique representation as a Boolean perceptron
over M. Furthermore, by Proposition 4.4, this representation is a minimal order
representation for f. Note then that 2-ordM(f) corresponds to the degree of
the Boolean polynomial for f,

This unique representation property allows us to establish the minimal
order of certain interesting predicates very easily. As in 3.2, we are again
interested only in functions (0,1]n =+ (0,1} that are interpreted as functions
of nxn patterns of O's and 1's, In particular, we are interested in the Boolean
function of n2 variables y (introduced in 3,2) and en,k (the Euler number of
a pattern of 1's on a square array of 0's and 1's is equal to k). It is well
known (see, for example [Mi69]) that the Euler number of a planar figure is
the difference between the number of its components and the number of its holes.

If we use the notion of connectivity introduced in 3.2, then the Euler number

of the pattern in Fig. 4.1 is 1.

4.8 Theorem

The connectivity predicate is not of finite 2-order over M (hence, over

any basis).

82

Proof
We use the One-in-a-box construction introduced in [Mi69]. Before pro-
ceeding, however, we must define certain auxiliary predicates. n, the size
of the pattern is assume odd (henceforth, we will suppress the subscript n
in the notation for functions), The variables representing positions in the

square array will, as usual, be denoted by x,, for 1 i, § <n. Then we define

1}

r = (x11 A x12 Ao A xln) A
&niﬁﬁzA...Axh)A...A

A A
(xnl Xn2 oo A xnn)

and
s = (x21 \% X599 V..V x2n) A
V L X N]
Gy YRy Vieer Vi,) Al A

Vaan Vx);

1,1V *n-1,2 n=1,n

i.e., r is 1 only on patterns with odd rows consisting exclusively of 1's,
and s is 1 only on patterns where each even row has at least one 1 (the One=-

in-a-box predicate). Then,

rAc=rAs 4.6)

(c is the connectivity predicate).
Now, for arbitrary functiomsf, g, h,if h = f A g, then 2-ordM(h) < 2-ordM

(f)+2-ordM(g); i.e.,

2-ordM(g) p] 2-ordM(h)-2-ordM(f) 4.7)

83

Replacing h by r A s, f by r, and g by ¢ we obtain

2-ordM(c) 2 2-ordM(r A s)-2-ordM(r) (4.8)

We have 2-ordM(r) = ﬂgl *n; 2-ordM(h) = Eéé ‘n (recall the Boolean

m

polynomial for V X, described in the footnote on p. 80) 2-ordM(r As) =
i=1

n(n-1) (because ;the Boolean polynomial representations of r and s have no

variables in common). Using this we obtain from (4.8) 2-0rdM(C) 2 Biﬂgﬁ ;

1.e., the 2-order over M of the connectivity predicate is not finite. 0

We next establish

4,9 Theorem

The predicate "the Euler number of a pattern equals k" 18 not of finite

2-order,

Proof

We again ~onsider the case when M is the basis. The general case follows
from Proposition 4.4, n is the size of the pattern. We need to consider a
subset T& § = {xij: 1+j even] (note that all points of S are disconnected
from each other, in the sense we use this word), ITI = t will be determined
subsequently,

We define the following predicates

PT =1 1if and only 1if all points of T are 0; 1.e.,

pr = I (1 @x)
x§¢T

q =11f and only if k points of T are 1; 1.e.,

84

q= M T x. I Q1&y)
x€U y€ET=-U
where the sum ranges over all possible subsets U S T with IUI = k., When the
expression for q is multiplied out each term produces exactly one term of the
form I x and thus the above Boolean polynomial is of degree t if and only

XE€T
if the number of terms in the s?m is odd. The number of terms is (;). But

y
2% +
(1) 1s odd for all 0 <k <2 «1 and all 4. Thus if t = 2‘-1, 0<k st
k
then 2-ord(q) = t. Also, 2-ord(pr) = ITI = nz-t.
Recalling once again the e, is the differ:nce between the number of compo~

nents of a figure and the number of holes, we have the relationship
pr A e = Pr A q

Again using (4.7) with g = e h =pr A q, £ = pr we obtain
2-ordM(ek) 2n? - IT| = 2‘-1

No matter how large we choose £, we can find an n such that we can obtain
a set T with |T! = 2£-1. Thus, the Euler predicate is not of finite order

over M. m]

Theorems 4.8 and 4.9 can be extended to p-perceptrons for arbitrary

p. The generalization will only be indicated for Theorem 4.8.

L
TProof: First show that (i{) is even for all £ and all k#0, 2", This is done

- -1
by induction. Now observe that due to (:) = (nkl) + (:_1% and the fact that
L4 L L

(z fl) is odd, (2 ;1) is also odd (for otherwise (i) would not be even). We

can continue this way and establish the claim.

85

The obvious difficulty is that Boolean functions do not have a unique
representation as polynomials over GF(p) for p » 2. Specifically, in the
case of Boolean perceptrons over M, we were able to reduce the problem of
the order of connectivity to the order of r and s (see above). The orders
of these predicates (equal to the degrees of the corresponding Boolean poly-
nomials) were easily computed due to Lemma 4.5.

Suppose ¢ 1s of finite p-order over M (we have already remarked that this
brings no loss of generality) for some p > 2. Due to Proposition 4.7 we can
assume that we have an expression of the form of (4.5) for c When multiplied

out, we obtain

w

c. = £ am modp 4.9)
n i=0 11

where m, is the monomial representing the 1th

mask. m, is of degree one in
each variable, and the values of the variables are restricted to (0,1}. Since
the perceptron from which we obtained (4.9) is finite order, we can assume that
the degrec of (4.9) is < £,

We can now extend c, to the domain GF)p) (i.e., to square patterns A =

[bij]’ 1<i, j <n, and b, € GF(p)) by defining c&(A) =1 1f and only 1f

3

cn(f(A)) = 1 where f[bij]) = [cij] such that cij =11f bij = 1, otherwise
cij = 0. We have from (4.9)
®
c; = 155 ai.mi mod p (4.10)

where mi is obtained from m by replacing each variable xj by Pl(xj) such that

Pl(xj) = 1, otherwise Pl(xj) = 0 (see the proof of Proposition 4.7 how to ob-

tain Pl(xj))' Now we have a total function cé over GF(p), and thus 1its

86

polynomial representation obtained by multiplying out (4,10) must be unique.

Since the degree of (4.9) is < 4,
the degree of the polynomial (4.10) < (p=1)4 (4.11)

Another estimate of the degree of the polynomial for c& 1s obtained using
the predicates r' and s' obtained from r and s of Theorem 4.8 similarly as
c& was obtained from ' The polynomial Pr’ representing r', 15 obtained from
the polynomial representing r by substituting each variable x with Pl(x).

Similarly, for the polynomial representation Ps, of 8'. The degrees of P

and Ps' are then found to be < 2%1 ne (p~1) and < E%Q n(p=1) respectively

(2-ordM(r) and 2-ordM(s) multiplied by deg(Pl)). Since the analogs of (4.6)
ad (4.8) again hold, we obtain that deg(Pc,) is not bounded, contradicting
(4.11), and thus also the finite order of c.

Note that the obvious generalization, i.e., 1f a function is of finite
2-order, then it is also of finite p-order (over M), is not true: Consider
the Boolean function ;* X We will investigate the degree of the polynomial
representation of 6¥i?ibtained in the same way from ® as c' was from c above).
If a p-perceptron over M of finite order exists for @, then we obtain a poly-

nomial representation of bounded degree for & similarly as (4.10) was

obtained from (4.9). On the other hand we have the following representation

for &

r T x I (1-x,) mod p (4.12)

1€s i i¢s J

where S ranges ovar all subsets of {1,...,n] of even size. When multiplied
n

out, each term produces exactly one monomial of the form Il X, The number
i=1

87

of such monomials appearing in the developed form of (4.12) is

n
L2]
T
1=0

(1) = 2
(use the identity (:) = (nzl) + (2:%)). Since this number is not O
mod p, (4.12) yilelds a p=-perceptron over M of order n for @ If X, is
replaced by Pl(xi) Wwe obtain a (unique) polynomial representation for
@' of degree n*(p-1), contradicting the existence of a finite order

p-perceptron over M for &

88

Coocooococoo
O-“~ooooo
O-“roocoooco
Cooocoococo
COoOOrr-H~OO
SCoo~o~woo
CoOO-H~OO
SCoocococooco

A pattern with Euler number 1

Fig. 4.1

89

CHAPTER FIVE

PATTERN COUNTING MACHINES

In this chapter we shall permit ourselves a certain degree of informality,

We are again concerned with the power of machines that combine a large
number of '"local" computations through an integrating function. Only this
time we shall not be limited to functions that can be represented as a combin-
ation of finite operators,

This class of machines again operates on gquare patterns of O's and 1's.
The operation is divided into two phases: 1In Phase I the pattern is scanned
with a square "window" of a certain size. Each time a nonzero pattern appears
in the window, we take note of it (there is a finite number of nonzero patterns
since the window is of finite size). At the end of the scan we have a count
of the various patterns,and we are then allowed to utilize this data in Phase
IT which consists of computing the valus of a partial recursive function for
this data. The formalization of this model is obvious and we omit it.

What can sur'. a machine do? Clearly the computation of this machine is
divided into a local phase and a global phase, so that it fits into the broad
class of problems considered in [Mi69] and Chapter Four.

Note that the boundedness of the window size is essential, If we insis-
ted only that the window contain a given number of points, but otherwise
allowed it to be of any shape with arbitrary digtances between its points,
then Phase II could reconstruct the whole figure as was observed already in
[Mi69].

We again inquire whether these machines can recognize the familiar

90

topological predicates connectivity and Euler number.

5.1 Theorem

Pattern Counting Machines (PCM) cannot recognize the connectivity pred-
icate.
Proof

We need only exhibit two patterns, one connected and the other discon-
nected, with the uame pattern spectrum. In this case, no algorithm of Phase
IT could establish the difference between them,

Two such patterns are given in Fig. 5.1,

Specifically, these patterns are equivalent under windows of size 2x2.
However, it is easily seen that increasing the dimensions of the patterns
in Fig. 5.1 linearly by a factor of k makes them equivalent under windows
of size up to k + 1. We can arrive at this conclusion by setting up a 1-1
map Letween occurrences of the same pattarn in the window in the two pat-

terns

5.2 Theorem
PCM's can compute the Euler number.
Proof
It is shown in /Mi69] how to compute the Euler number from the spectrum

of patterns of the shape

1 Cl -

91

Before proceeding, we need a notion of continuous deformation. Pattern
B can be obtained from ps tern A by continuous deformation if B arises from
A by a sequence of additions or deletions of 1's of the following kind: Let
us {ix attention on a 3x3 square with the central position in the place of
the 1 being added (deleted). Fex simplicity assume that the boundary positions
are always 0. Each position of the periphery of the square which has a 1 in
it 1s either connected or disconnected to another 1 on the periphery (not
necessarily by a path in the square). This set of connections may be described

by a symmetric 8x8 0-1 valued connection matrix, i.e., a
h

11 =1 4if and only if

the it and jth positions on the periphery have 1's and are connected. The
proposed addition (deletion) is permitted cnly if (1) the connection matrix
remains unchanged as a result of it, and (2) there is a 1 adjacent to the
proposed addition (deletion).

Any predicate whose value remains unchanged if the pattern A is replaced
by B, obtained from A by continuous deformation, is called a topological
predicgte. We assert without proof that connectivity and Euler number are
topological predicates. The reader is warned, however, that there is a pitfall
in proving this fact for the Euler number predicate. The number of holes in
Fig. 5.2 should be one, not two (i.e., 0's are connected diagonally in addition
to their usual connections). This is discussed more fully in [My71]. However,

if the holes are sufficiently large (so that all the 0's in them are connected

in the usual way) this difficulty is not encountered.

5.3 Theorem

Any topological predicate recognized by a PCM must be a function of the

Euler number.

92

Proof

We will have established the theorem if we succeed in shawing that,
given any PCM P computing a topological predicate, then for two figures
X, and X, with EULER(XI) = EULER(XZ),we also have P(Xl) = P(xz).

In [Mi69] it is shown that for every figure X there exists an '"Euler
canonical" figure C(X) such that EULER(X) = EULER(C(X)) and if for two
figures X1 Xy, EULER(XI) = EULER(XZ), then C(Xl) = C(Xz). If the Euler
number of X is n > 0, then C(X) consists of n components without holes. If
the Euler number of X is n < 0, then C(X) consists of 1 component with-ntl
holes.

We will show that we can deform any figure X into C(X) without changing
the value of P,

The detormations available to us are:

(1) Continuous deforme*Lrn., If we subject X to this kind of deformation,
then P(X) remains unchanscd because it computes a topological predicate.

(2) Deformations that leave the pattern spectrum unaltered. By defini-
tion of PCM's,

As a consequence, we have

(3) Removal of components inside holes. To accomplish this without
changing the value of P(X), we first apply (1) until the window cannot scan
simultaneously an interior component and the wall of the hole in which it
resides. Then it is obvious that the pattern spectrum will remain unchanged
if we remove the component from inside the hole. After this we can apply

(1) irn the raverse direction.

93

If we are given two figures Xl and X2 with same pattern spectra, then
we can add equally shaped holes to the figures in such a way that the pattern
spectra remain the same. The Loles have only to be placed in such a way that
the window cannot scan any other boundary while scanning the newly introduced
hole. We can then repeat this to add any number of holes,

Specifically, given two figures of the shape of A and B in Fig. 5.1, we
can add holes in this way and still have the same pattern spectra. For example,
C and D in Fig. 5.3 have the same pattern spectra for a sufficiently small
window size. Note that given any two components, one of which has a hole,
we may apply deformation (1) to obtain a figure proportional in dimensions
to C and they apply (2) to obtain D. We call this sequence of deformations
"cancelling a hole and a component'!,

We deform X into C(X) by cancelling as many holes and components as

possible. We first apply (3) until no component remains within a hole.
Then we may either have a hole and a component not containing this hole, or
not. In the latter case, we are done. In the former, we select a hole and
a component not containing it and cancel them. After this we are left with
one less component and hole. We repeat this until we arrive at C(X).

We can summarize the results on the recognition of topological predicates
contained in [Mi69], Chapter Four, and in the present gsection in the following

table

94

Recogzition Cyclic PCM Classical
Predicates Perceptrons Perceptrons
Connectivity NO NO NO
Euler NO YES YES

Other Functions of Functions of
Topological ? Euler number Euler number
Predicates only only

Thus, all these results support the conjecture expressed in [Mi69] that
no "local-global" computer can recognize connectivity.

It appears, however, that all models are axtremely sensitive to altera-
tions., We have already mentioned how PCM's can be converted into universal
machines with the removal of the restriction on the size of the window.

A. R, Meyer noticed that ordinary perceptrons may be modified to recognize

(-]

any Boolean function with order oiie. Instead of T ai) 2 0 consider
i=0

[+

bX ai 9, € Y for some subset of integers Y. Now we can choose the coeffi-
1=0

cients a, in such a way that the sums of the coefficients in no two subsets

of the set K of all coefficients is the same, le,,

VX, Y&SK) [T a, = z a, =X = Y]
a, € X a, €Y
We can define the coefficients inductively, i.e., choose a_ to be greater
than :ii a. This is in the spirit of stratification (see [Mi69]). Now

notice that if ¢ is the set of mu.ks of order 1, then a Boolean function ¢

95

1s simply a collection of subsets of K. Thus, Y can be chosen as the set

of integers representing the sums of coefficients in individual subsets

belonging to ®.

96

OCOO0OOoOOOO
OO~ 00O
[eRelol NoNole
OQrd =l =l =l = O
(ai-Nol NoNolNe)
Coo~o0o0
CoOococoo0oO

Coo0Coooo
COr-e-~0OO0O
OO~ 0OO0o
CO-re0o0o
=R eloleNoNoNol
OO ~MOOO
[=leNeNeNoNoNo]

Two figures with the same 2x2 pattern spectra

Fig. 5.1

Coocoooo0oco
[=NeNoNolNeNoNole)
QO+ ~0OO0O
oo~ ~0OO0O
Co-—o~o0o0o
CO-r=e-~~>OO0O
CoOoO0OOoO0OCOCOCO
Cooocoocoo

The number of holes in this pattern is ome

Fig. 5.2

Cancelling a hole and a component

Fig. 5.3

97

APPENDIX A

CERTAIN PROPERTIES OF SHORT FORMULAS

The purpose of this appendix is to modify certain results of [Ho68] in
the light of our different fequirements. Our goal is Lemma A.92 which is used
directly in the proof of Theorem 2.2.2. We prove it by way of a series of
intermediate results, none of which are used elsewhere.

In what follows we would frequently use the phrase "F is a formula in
n variables over #, and such that no variable occurs more than k times".

This will be abbreviated to "F is a (§,n, k)~formula’. If any of the para-
meters is not present, we will replace it by *. For example, "F is a (3,%,k)~
formula" and "F is a (¥,n,*)-formula™ mean "F is a formula over &, and such
that no variable appears more than k times" and ™F is a formula in n vari-

ables over $™ respectively.

A.1 Definition
Let there be given the sequence of formulas G = (Gl(xl,z),...,Gp_1

(Xp_l,z),Gp(XP)). If 1 < i < p-1, then G, contains the distinguished

i

variable z, occurring only once. X, for 1 <1 < p is nonempty and is

i
either a singleton or & | Xjn Let F be an arbitrary formula, and
<i
G = G1(x1=G2(~X2""’Gp«1(xp-1cp(xp))'“))' If F =G, then G is a nesting

sequence of length p for F. 1If, in addition, the total number of occur-
rences of any variable (except z) in G is < the corresponding number in F,

then G is a proper nesting sequence for F.

98

A.2 Remark

Let G and G be as described in Definition A.1. Furthermore, let all
Xi for 1 £ 1 < p be singletons and distinct. Then G is equivalent to an
ep_l-component. Also, suppose Xi is arbitrary and Gi is a formula over 9,
Now replace all variables except possibly one in Gi for 1 £ 1 < p-1 by the
constant a. Let the set of variables that have not been touched be Y.

Then GZ 1s equivalent to an e-component over 3%,

Let F be an arbitrary formula over ¢, x i S(F), and a ¢ D; then we

would like to obtain a formula over $2 with the following properties:

Ff (2) 8(G) = X, and (3) the number of occurrences of any vari-

1) ¢
able of X in G is < the corresponding number in F. G can be obtained
by a straightforward replacement of operators in F such that the variable
symbols that are replaced with a in forming Ff (and subformulas of F

where S(F) consists entirely of such variable symbols) are removed, and

the remaining operators are changed to preserve equivalence with F:.
More precisely, 1if w(Fl,...,Fk) 1s a subformula of F, then if S(Fi) & X
for all i, ¢ remains the same; if S(Fi) < X and S(Fj) ¢ X for j#i, then
¢ 1s replaced with @(xl""’xi-l’Fi’xi+1""’xk) where all variables of

Fi have been replaced with a (if there are more such indices 1, we proceed

in the obvious way); and if S(Fi)C X for all i, then © is eliminated. This

transformation will be called normalization and G will be denoted by norm(Fz).

99

A.3 Lemma

If Fis a (#,n,%)-formula, then for any p, q 21 and a € D, if
n 2 ﬂ6 (P,q), there exists a subset X S S(F) such that either

(1) lX! = q and F: is equivalent to a PC of the formulas Fl""’Fr
Where r = 0 ax and Fi for 1 €41 <r is a formula over %% such that each element
of X occurs in at least two among Fl""’Fr’ and the total number of
occurrences of any x ¢ X in Fl""’Fr is s the number of occurrences of X
in F; or

(2) |xlis arbitrary and Fﬁ has a proper nesting sequence G = (Gyyeery

Gp—l’ Gp) where Gi for 1 < { <p is a formula over $%.

Proof

Assume there is no X S S(F) such that Fz is as described in (1) of
the statement of the lemma.

We will describe a (proper) nesting sequence extraction procedure
(NSE) whose inputs will be a formula H over % and a set of variables
Y. The output of NSE will be two formulas H'(Z,z) and H"™ over $2 such
that Z is either a singleton or € Y; furthermore, Hgss H'(Z,H") for some
U & S(H).

G will be obtained by the repeated use of NSE. Initially, the input

of NSE will be F = F, and ¢. 1In the first application of NSE, the output

0

will be G1 and F1 (F1 is an intermediate formula whose significance will

be describe immediately). 1In general, the ith application of NSE will

receive the input F and ! Xj ard yield as output G

and Fi' We will
i< i

i-1 i

100

show that if n 2 ﬂ6(p,q), we can apply NSE p-1 times and end up with Fp_2
from which Gp is obtained as will be described below.

Description of NSE. The input to NSE is as describe above. Then
we can distinquish two cases:

Case I. L(H) = 1. In this case we cannot apply NSE, and the output

is undefined.
Case II. L(H) > 1. In this case we can assume that H has no unary

operators; for suppose there exists a subformula J of H such that J = o(¥(

J ,...,Jr)) where J

1 i
subformula of H. In this case @¥*§ = p € %% and we can replace J by the

for 1 €1 <r is either a variable symbol or another

equivalent formula p(Jl,...,Jr). Similarly, if J = w(Jl,...,t(Ji),...,Jk),
we can eliminate ¥ because w(xl,...,w(xi),...,xk) = p(xl,..;,xi,...,xk)

e 32 (thus, if a unary operator of H corresponds to an internal node of
T(H), we can eliminate it by either of these two means; oa the other hand,
if a unary operator of H corresponds either to the root node or to a node
next to a terminal node of T(H), then we can use only one of the two methods
described). Now choose i' such that S(H.i') is maximal among S(H.i) for
1<1i<r. Since support is defined only for formulas, S(H.i') may be
undefined if all arguments of the outermost operator of H are variable
symbols. In this case replace one of them by the identity operator

which is possible since id ¢ 32, Gonsider H/H.i' = K(Z,z). Again two

cases can arise:

101

Case ITa. Y N Z = ¢. Choose any variable of Z, e.g., x, and let

[x;z]). z is a distinquished argument (hence x is free).

H' = norm(K

In this case set V = S(H.i)-z U(x]. The significance of V will be
seen immediately.

Case IIb. YN Z £ ¢, H' = norm(KYUEIZ})] z is again a distinguished
argument V = S(H.i,)-z Uy.

In both cases H™ = norm((H.i,)Z).

Analysis of NSE. Let Is(H)] = m, and let us estimate IS(H")I.

Obviously, !S(H i‘)' 2 I;EL- . In the case that H results from a chain

nax
of applications of NSE to a formula F, and F does not satisfy (1) of the

statement of the lemma, then we claim that in Cases IIa and b less than
q variables are set to a in 4 i Suppose this is not true. Let the
set of variables that is set to a on this occasion be W. Then W & Z-(x}
(Case IIa), or WS Z-Y (Case IIb). 1In eny case consider FZ. This is
)W
i(1)%a

indices corresponding to the subformulas H I where all varlables have

equivalent :o cp(H seee,y (H i(s))Z where i(1l),...,1(s) are the

not been replaced by a (if in H K all variables have been replaced by a,

W W
then it is absorbed into 9¥). But then w(norm((ﬁ.i(l))a),...,norm((H.i(s))a))

satisfies (1) of the statement of the lemma. A contradiction.

m

n
max

Thus, ls@"| = -q+1

Hence, if we define

102

T (l,q) =1

M (p+1,q) = ('nG(P,q)+q-1)°nmax,

i.e.,

p-1 n&;:-l
ﬂe(p,q) = nmax.q+ n =1 " (q-1)
max

for p,q 21 (and if F does not satisfy (1)), we will be able to apply NSE
p=1 times and obtain Fp-l' Gp can then be obtained as follows: If S(Fp_l)

N S(Gi) =@ for 1 £1i = p-1, then choose any variable y € S(Fp-l) and
p-1

obtain Gp from (Fp-l)(Z} by normalization; otherwise, denoting U S(Gi)
i=1
by U, obtain Fp-l from (Fp-l): by normalization. It can be checked that

Gi for 1 <1 < p satisfy the conditions of (2) of the statement of the lemma.

m

Consider a sequence of (nonempty) sets X, for 1 < i < p such that

i

Xi 1s either a singleton, or is included in U Xj. We will call such
i<
a sequence of sets a normal sequence (of length p). Note that the sequence

xl,...,xp In Definition A.l is a normal seqdence. Then

A.4 Lemma
Let Xl,...,Xp be a normal sequence of sets with the additional pro-

perty that each element of El Xi appears in at most k elements of the
i=1
sequence. Then if p 2(k+1)™, there exists a subset Y © E' X, and an
i=1
increasing sequence of indices 1(1),1(2),...,1(q) such that (1) q 2 m,

103

(2) i(1) =1, (3) Xi(j) NY is a singleton for 1 < § < q, (4) Xy Ny = ¢
if £ si(q) and £ $1(j) for 1 < j £q, and (5) if x € ¥, jl < jz < j3

and x € xi(Jl)’ x € Xi(ja), then also x € xi(jz)'

Proof

(this is a direct translation of the proof of Lemma 2 of [Ho68] into
our terminology). Let CJ Xi = {xl,xz,...}. Without loss of generality
assume that X € Xl. Ifi;1= 1, set Y = fxl], i(l) = 1, and conditions
1-5 are satisfied. For the inductive step two cases are distinguished.

Case 1. X, occurs in none of the sets X,, 2 s j < (k+1)m-1 + 1,

j’
Setting r = (k+1)m-1+1, the sequence Xz,...,Xr is normal and each element

r
occurs in at most k of the X,, 2 < §sr, IfzS] Xj and the sequence

¥ =
3(1)5e40,3(q=1) are obtained by the inductive hypolhisis, then {xl} Uz=Y
and 1(1) =1, 1(2) = 3(1),.0.,1(q) = j(q=1) satisfy conditions 1-5.

Case II. Assume that X, occurs in some Xj, 2<3js (k+1)m-1+1 and
let h be the smallest such number j. Furthermore, let V be the set of
elements different from Xq» and occurring in xz,...,xh_l. Delete the
elements of V from Xl,Xh,...,Xp, and delete those among xlxz,...,xp
that remain empty. Let the resulting sequence be Yl,...,Yp. The length
of the sequence (xl,xh,xh+1,...,xp) is at least p-(k+1)m-1+1.

There are less than (k+1)m-1 distinct variables in x2""’xh-1’
each one occurring in at most k-1 of the formulas X o X ,.n.,XP.

1°h

Therefore,

104

r 2 po (kD)™ Lh1e k- 1) G4 1)™ L e

r 2 k)™ L
The sequence Y2""’Yr 1s normal and its length is at least (k+1)m-1.
X, occurs in Y2. Let 2 < EL Yj and the sequence j (1) = 2, j2),.00,
(q=1) be obtained accordiné to the inductive hypothesis for Y2,...,Yp.
Then Z and i(1) = 1, 1(2) = 3(),000,1(q) = j(q=1) (where q 2 m), satisfy

conditions 1-5.

Let there be given a (*,*,k)-formula F with the proper nesting
sequence G = (Gl,...,Gp) such that Gi i1s a formula over &, As has
already been remarked above, Xl,...,Xp (see Definitior. A.1) 1s a normal
sequence of sets,

If p 2 (k+1)m, then by Lemma A.4 there exists a set Y & P' Xi and
q indices 1(j) for 1 £ j < q such that conditions 1-5 hold. i&ite that
if m = k*t, then IY! 2 t since no variable appears more than k times
in G (G is proper). In particular, consider only Z = (xl,...,xt] Sy
where Xpseee X, are numbered in the order of their appearance in G.
Note that due to condition 5 of Lemma A.4, if x, y €Yand y follows x
in G, then x cannot appear again after y in G, Let G be as defined in
Definition A.1. Then we will let the reader convince himself that G:
(hence also F:) 1s equivalent to K(Z,G') where K(2,z) is an e -component

a . R a
over $" with input variable z, and G' is a certain formula over & such

that each variable of G' occurs at most k-1 times.

105

Note that in this case we do not know the size of S(G'). This
can be remedied in the following way: There are two cases; either
|S(G’)| 2 1/2+t, or not. In the first case perform an a~merger on K
with basis S(G'), after which we obtain an SC of an e-component K'
of length = 1/2°t and a formula G" (through the input variable) such
that S(G") equals the set of lateral variables of K'; in the second
case perform an a-merger on K(Z,G') with basis Z-S(G') in which case we
obtain an e-component K' of length = 1/2°t with a constant input operator.

We summarize the preceding in the following

A.5 Lemma

Let there be given a (*,* ,k)~formula F with a proper nesting sequence

2k
of length p 2 1 composed of formulas over $. Then if p 2 (k+l) k t, there

exists a set Z & S(F), |F| 2 t, and F: is either equivalent to an SC of
an e -component K over 3% and a formula G over 32 such that S(G) 1is the

set of lateral variables of K, and no variable of G occurs more than

k=1 times in G; or to an e_-component K over $ with constant input

t

operator.

Let there be given a PC F of the formulas Fl""’Fr where r < 0 oax
such that !S(F)l = q and each variable appears in at least two among
F.yees,F_ (L.e., a situation as described in (1) of the statement

1 r

of Lemma A.3). We are interested in obtaining a (nonempty) subset

X € S(F) such that when the variables outside of X have been replaced

106

by the constant a, lS(norm(Fi)i))! for those Fi where not all variables
heve been replaced with a is equal or larger than a predetermined number
t (as large as possible),

We could solve the problem as follows: Each variable of S(F) appears
in a certain subset of the formulas Fl""’Fr' The number of such

max
)

r
subsets is 2° (in general, < 2 ; thus, we are sure to find a subset X

with IXl 2 _;g__ such that all elements of X appear in the same subset
p max
of Fl,...,Fr.

However, we can improve this number. Let us construct the occurrence
table of F. The table consists of rows corresponding to elements of S(F),
and of columns corresponding to Fi for 1 <i < r. The entry aij is 1
if X, oceurs in Fj and 0 otherwise. We will try to extract a subset
X & S(F) such that either all variables of Fi are replaced by a, or
S(norm(Fi):)) contains 2 elements (t will be determined later).

If all columns in the occurrence table contain 2 t 1's, we are
done and X = S(F). Suppose not. Let the column j contain « t 1's,

Delete all rows corresponding to the 1's in column j and column j
itself. Let the set of variables corresponding to the remaining rows
be Xl' Consider the remainder of the occurrence table (i.e.,, minus

the deleted rows and column); and again look for the column with < 1's,

If it does not exist, we are done and X = X If such a column exists

1
continue. Now two things can happen. Either at some point we end up

with a certain subset of columns, all of whirh contain 2 t 1's, or we

end up with two columns that both contain < t 1l's, We shall see that by

107

an appropriate choice of t, the latter case cannot happen. The number

of 1's in the whole table 2 2q (each variable occurs in at least two
formulas). The smallest number of 1's remaining after all but two columns
have been deleted 2 2q-m where m is largest possible number of 1's that
can be deleted in the course of this procedure. m = (t~1). (r+r-l4r=2+...
+3) = (t-1)* isiﬁléE:Zl (this corresponds to the case when each deleted
row contains only 1's and at each stage t-1 rows are deleted). If, after
the table is reduced to two columns, both columns are to contain 2t 1's
(both have to contain the same number of 1's since each variable occurs

in at least two formulas), then

2%;m >t

or sincer £ n
max

Aqtc X a -
t < v where ¢ (nmax+3)(nmax 2)
For large noax this is better than the previous bound. This result

can be summarized in

A.6 Lemma

Let there be given a PC F of the formulas F .,Fr over $ where

1,..
r < noax such that IS(F)l = q and each variable appears in at least

two among Fl""’Fr' Then if

108

q2 isiﬁ%g;g where t 2 1

we can find a subset X € S(F) such that F_ is equivalent to a PC of

7/ o

the formulas Gl""’Gs over 32 and S(Gi) t for 1 €1 < s<r,

Lemmas A.3, A.5, and A.6 can be combined into

A.7 Lemma

Let F be an (%,n,k)~formula. Then for any t 2 1 and a ¢ D if

n 2 T (1) 20t () Ley

(see Lemma A.6 for the value of c), there exists a subset X & S(F)
such that either
(L) F: is equivalent to a PC of the formulas Fl""’Fr over §°
where r < N oax? each variable of Fi occurs at most k-1 times in it,
and Fi contains at least t variables of X or
(2) F: is equivalent to an SC of an e, ~component K over &2
with a formula G over 3% (through the input variable) such that S(G)
1s the set of the lateral variables of K and no variable occurs more
than k~1 times in G; or to an e -component K over 3" with a constant

input operator,

A.8 Lemma

Let F be a (%,n,k)-formula. Then for any t 2 1 and a € D if

n 2 ﬂ7(t,k)

109

then there exists a subset X & S(F) such that Fz is equivalent to an
SPCeC over # G such that (1) G has s n;ax components, (2) each
component is of length 2 t, and (3) the terminal components of G

have constant input operators.

Proof
ﬂ7(t,1) = n;ax' In this case T(F) has at least one branch
connected to t+l variable symbols (k=1 and thus all variable symbols
are distinct) at different nodes. This branch can be converted into
an e _-component with constant input operator. The idea is illustrated

t
in Fig. A.1l.

N, (e,kek) = N (Ger2)? CFD Ty (€20 7 (eta). ZZ(t,k)-c)

We can apply Lemma A.7. The result is either (1) an e=component K

of the correct length and constant input operator, (2) an SC of an
e-component over 3® of the correct length and a formula to which we

can apply the inductive hypothesis, and (3) a PC of formulas to which
we can apply the inductive hypothesis. In each case we obtain an SPCeC

with the desired properties. x

A.9 Lemma

Let F be a ($,nk)~formula, Then for any t 2 1 and a ¢ D if

n 2 'ns(t:,k)

110

there exists a subset X € S(F) such that F: is equivalent to an SPCeC
over § G such that (1) G has < k components, (2) each component has X

as the set of its lateral variables, (3) the terminal components have

constant input operators and (4) 'XI = t,
Proof
nk nk nk
Set M, (t,k) = M, (s.t,k) where s =[max +| max/| +...+ | max
8 7 k k=1 1

Apply Lemma A.8 to obtain a SPCeC G' with all components having length

2 s*t. Since each variable appears at most k times, it can occur in

at most k components. s is the number of nonempty subsets of < k elements.
Thus, if the number of variables is as indicated we are sure to kind

in G' a subset of t variables that all occur in the same set of components

of G'. After performing an a-merger with this set as basis, we obtain
the desired SPCeC G. M
Remarks on the bounds in Lemmas A,3-A.9. 1If ﬂ6 is approximated by
P o i A
N ax"ds then ﬂ7 is inductively defined as follows:
t
ﬂ7(t,1) = Mnax
()2k~ﬂ7(t,k-1)
k+1
‘n7(t)k) = Y'nmax 'n7(tsk 1) b
b’ k times

for a certain constant y. Thus we see that ﬂs(t,k) 2 1exp(b,2k) = b
for k 2 k(b) for any constant b (t has not been included in the estimate

because in applications it is constant).

111

Conversion of a formula F where each variable occurs only once
into an equivalent e-component by setting certain variables to a.

Fig. A.1l

112

APPENDIX B

THE LENGTH OF THE MOD 2 SUM OVER Hf

There is an isomorphism betiwreen the set of formulas over II and series-
parellel contact networks. We assume the reader is familiar with this model
as well as with the isomorphism in question. In this case if F is a formula
over II, then L(F) corresponds to the number of contacts in the network corres-
ponding to F.

For convenience, we will derive the result in contact netwcrk terminology.

Given a (series~parallel) contact network C, a chain is set of contacts

such that when they are all closed, C conducts (we will say "C is 1'"); a cut
set 1s a set of contacts such that when they are all open, C does not conduct
(we will say "C is 0"), In the obvious way, we define minimal chain, minimal

cut set (i.e., when one contact is deleted the corresponding property does not

hold).
B.1 Lemma

Given a contact network C and any minimal chain and minimal cut set, their

intersection is a singleton.

fThis result is due to Khrapchenko [Kh71].

113

Proof
By induction on the number m of contactsin C. For m = 1 the assertion

1s obviously true. If m s 1, C must be either a series combination of smaller

networks C1 and Cys or a pareilel combination of smaller networks C, and C,.

1 2
In each case it is simple to establish the lemma. ()

n
Suppose now we have a contact network S that represents ® x,. Let mj

i=1
denote the number of contacts labeled with xj or xj . Then we are interested
n
in ¥ m,.
j=1

Consider n=tuples (ai) for 1 <1 <n and a, € (0,1}, An n-tuple of this

i

kind will be called even if it has an even number of 1's,otherwise it is odd.
Obviously S must be 1 on odd n~tuples and O on even ones.

Consider an arbitrary odd n-tuple a = (al,...,ai,...,an) and an even

n-tuple b = (bl"'°’bi""’bn) at Hamming distance 1 from g, 1If bi =a,, then

i’

all other components of a and b are equal. e, will denote the n=tuple with

i
a single 1 in the 1™® place. Then we will write b = a B,

To each odd n-tuple a we can assign a minimal chain c(a) (consisting of
a subset of contacts of S that are closed at g and that do form a minimal
chain); similarly, to each even n=-tuple b we can assign a minimal cut set
s(b) (consisting of a set of contacts of S that are open at b and that do form
a minimal cut set).

Let a be odd, b = a @’gi even, Then by Lemma B.1, c(a) N s(b) is a

singleton; in fact, it is easy to verify that it must be a contact labele~

either with xi or X,

114

We build now Tables I and II. The rows of Table I correspond to odd
n-tuples while those of Table II correspond to even n-tuples. Thus both

have 2n~1 rows. The columms of both tables correspond to the variable X,

for 1 =i <u. The entry 0(a,j) in Table I is c(a) N s(a @~§j)' This euntry

will be represented by a number between 1 and mj.
Let tij denote the number of times contact number i (among those labeled
with X, or Ej) appears in column j of Table I. Then

3
P,
1=1

n-1

2 (B.1)

tyy =
The entry B(b,j) of Table II is s(b) Nc(b Q§gj). (B.1) again holds.
Construct now Table III. The rows of Table III correspond to all possible
pairs (a,b) where a and b are odd and even n-tuples respectively. The columns
of Table III again correspond to variables. An entry of Table III is y(a,b,j) =
(a(a,jr, B,1).
Consider now the diagonal entries of Table III (i.e., (0,B) such that
a =B)., Let (0(a,j), B(u,j)) be such an entry. Then Q(a,j) = B(b,J) =

c(a) Ns(b). Thus, by Lemma B.1l, there can be only one such entry in a row.

n m§
2
The number of diagonal entries is £ ¥ t,,. Thus,
1]
j=1 1=l
n m
R c‘z'j < 22("1) (B.2)
j=1 i=1
Combining a version of Cauchy's inequality
m, m
i]
nTl—(b cij)zs b) tfj
j i=1 i=1

115

with (B.1) and (B.2), we obtain

L
1 ™

3

<1

M3

3

This time we apply the inequality

n \
m).(T L)=2q°

(
1 3 g™

3

ns

(for both inequalities see, e.g., [Mt64]p. 9), and obtain the desired result

Ar69

Av69

Be71

Co71

Gr59

Ha71

Ho68

Ho70

Kh71

Kr59

La67

Lu59

Lu70

116

LITERATURE

M. A. Arbib, Theories of Abstract Automata, Prentice-Hall, 1969,

A. Avizienis, On the Problem of Computational Time and Complexity of
Arithmetic Functions; Proc. ACM Symposium Theory of Computing,
May 5-7, 1969, Marina del Rey, California, pp. 255-258,

C. Berge, Principles of Combinatorics, Academic Press, 1971.

S. A. Cook, The Complexity of Theorem Proving Procedures, Proc. 3rd
Ann, Symposium Theory Computing, Shaker Heights, Ohio, May 3-5, 1971
pp. 151-158,

Editors, Eugene M. Grabbe et al., Handbook of Automation Computation
and Control, Vol., 2, John Wiley, 1959.

L. H. Harper and J. E. Savage, On the Complexity of the Marriage Problem
(unpublished) .

L. Hodes and E. Specker, Lengths of Formulas and Elimination of Quanti-
fiers I, Contributions to Mathematical Logic, K. Schutte, editor, North
Holland Publ. Co., 1968, pp. 175-188.

L. Hodes, The Logical Complexity of Geometric Properties in the Plane,
Journal ACM, 17, No. 2, pp. 339-347,

V. M. Khrapchenko, On the Complexity of the Realization of the Linear
Function in the Class of m=-Circuits, Mat. Zametki, 9, No. 1, 1971,
pp. 35-40 (Russian).

R. E. Krichevskii, Realization of Functions by Superpositions, Prob.
Cypernetics II, 1961, pp. 458=477, Pergamon Press (translated from the
Russgian).

S. Lang, Algebra, Addison-Wesley, 1967,

0. B. Lupanov, Complexity of Formula Realizations of Functions of
Logical Algebra, Prob. Cybernetics III, A, A. Lyapunov, editor,
Pergamon Press, 1962, pp. 782-811 (translated from the Russian).

0. B. Lupanov, On Some Results in the Mathematical Theory of Synthesis
of Control Systems, Information Materials 5(42), Ac. Sci. USSR, Moscow
1970, pp. 16-22 (Russian).

Mi69

Mk71

Mt64

My71

Ne 66

Ri42

Ry63

Sh49

Su6l

Vi70

Ya54

Ya59

117

M. Minsky and S. Papert, Perceptrons, MIT Press, 1969.

R. McKenzie, et al. On Boolean Functions and Connected Sets, Math,
Systems Theory, 5, No. 3, pp. 259-270,

D. S. Mitrinovic, Elementary Inequalities, P. Noordhoff Ltd. Groningen,
1964,

J. P. Mylopoulos and T. Pavlidis, On the Topological Properties of
Quantized Spaces I, II, Journal ACM, 18, No. 2, pp. 239-254,

E. I. Neciporuk, A Boolean Function, Soviet Math. Dokl., 2, No. 4,
1966, pp. 999-1000.

J. Riordan, C. E. Shannon, The Number of Two Terminal Series-Parallel
Networks, J. Math. and Phys. 21, 1942, pp. 83-93,

H. J. Ryser, Combinatorial Mathematics, MAA Math. Monographs, No. 14,
John Wiley, 1963,

C. E. Shannon, The Synthesis of Two-Terminal Switching Circuits, Bell
System Tech. J., 28, No. 1, 1949, pp. 59-98.

B. A. Subbotovskaya, Realizations of Linear Functions by Formulas Using
V, &, -, Soviet Math. Dokl., 2, No. 2, 1961, pp. 110-112,

B, Vilfan, Cyclic Perceptrons and Pattern Counting Machines, Proc.
4th Ann, Princeton Conf. Info. Sci. and Syst., Princeton U., March 1970

S. V. Yablonskii, The Realization of the Linear Function in the Class
of m-Circuits, Dokl, Ac. Sci. USSR, 94, No. 5, pp. 805-806 (Russian).

S. V. Yablonskii, On the Impossibility of Eliminating Exhaustive Search
of Boolean Functions in the Solution of Some Problems in the Theory of
Circuits, Dokl. Ac. Sci. USSR, 124, No. 1, pp. 44=47, (Russian).

