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ABSTRACT 

Many control and access environment structures require 

that storage for a procedure activation exist at times when 

control is not nested within the procedure activated.  This is 

straightforward to implement by dynamic storage allocation with 

linked blocks for each activation, but rather expensive in both 

tine and space.  This paper presents an implementation technique 

using a single stack to hold procedure activation storage which 

allows retention of that storage for durations not necessarily 

tied to control flow.  The technique has the property that in 

the simple case, it runs identically to the u^'al automatic 

stack allocation and deallocation procedure.  Applications of 

this technique to multi-tasking, coroutines, backtracking, 

label-valued variables, and functional a.^uments are discussed. 

In the initial model, a single real processor is assumed, and 

the implementation assumes multiple-processes coordinate by 

passing control explicitl:. to one another. A multi-processor 

implementation requires only a few changes to the basic technique, 

as described. 

11 
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1.  Introduction 

Most of the older programming languages have a function 

call/return structure that operates in a strictly last-in-first- 

out discipline.  This, particularly when coupled with recursion, 

invites the use of a LIFO stack to hold the storage required by 

function activations'.  Such a stack provides an elegant mech- 

anism for control, local storage, temporary storage and argu- 

ment passage.  A function call entails pushing the arguments 

onto the stack, leaving a program continuation point for the 

caller on the stack, and transferring to the called function. 

;       The called function uses the next k stack locations for its 
f 
*       locals, and the remainder of the stack for temporary storage 

,       used in calculating the arguments to functions which it calls. 

Since stacks can be implemented directly in Hardware, the mech- 

anism is not only elegant, but efficient as well. 

In several programming languages currently under design 

or construction, this happy marriage of implementation technique 

and language form breaks down.  If, for example, a language 

permits co-routines, then during execution, control will jump 

between several co-processes, each with its own call structure. 

If ea^.h environment is given its own stack then it becomes 

difficult or impossible to allow sharing of environments among 

co-processes, or a dynamically varying number of co-processes. 

Similarly, if a language permits a function F to return a func- 

tional result G, and if G's environment includes part of F then 

the storage associated with F's activation may not be deleted 

+For example, FORTRAN, ALGOL 60?2 MAD* LISPi9 APL*5 and SNOBOL*3 
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on P's exit, since part of the necessary environment of G 

would be prematurely destroyed. A related problem arises in 

multiprocessing where a language allows a function P of task 

T to spawn a new task T" ,  If the environment of F is shared 

with T1, and if the environment of P is deleted, T1 must be 

forcibly terminated or T' will proceed with part of its 

necessary environment destroyed.  Similar problems arise with 

label-valued variables, explicit pointers into the stack, and 

"non-deterministic" or "backtrack" programming.  All these cases 

arise from a common circumstance:  the storage associated with 

function activation does not obey a LIFO discipline.  It is 

necessary to retain storage blocks for durations not related to 

the order of their creation. 

It is fairly straightforward to allow retention if the stack 

is abanaoued entirely.  Storage blocks are obtained by dynamic 

storage allocation and are returned to the free storage pool 

when no longer accessible, either through garbage collection or 

deletion with a reference count.  A number of languages, including 

Gedanken1;5 PAL? Simula-5, OPL11, Lisp 1.5, PPL20, nrefceno2, anu 
1 7 

PL/I  employ one or more facets of this technique, though not 

all use the full power of dynamic block storage allocation. 

However, this is an unsatisfactory solution to the problem 

of retention.  Compared to a stack, dynamic storage allocation 

for function activation storage suffers a number- of defects. 

First, it requires substantially more tine to allocate ana 

reclaim blocks.  Second, it results in a substantial amount of 

wasted space since the storage block for each function activation 

must be allocated large enough to hold trie maximum number of 

temporaries that will ever be required while control resides in 

tnat activation, yet the maximum will almost never be simultan- 

eously reacheu by all activations.  Third, there is wasted time 

in a function call, since arguments must first be held in temporaries 
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of the calling block and then moved at the time of call to 

the parameter positions of the called block. Fourth, in a 

paging environment, dynamically stored allocation blocks tends 

to result in more page faults, since there is no contiguity 

of stack end to aid in localizing references. 

This paper presents a technique for retention of function acti- 

vation blocks on the stack. The technique has the property that if 

no retention is actually required by any portion of a program 

then activation storage behaves as a conventional LIFO stack; 

if particularly simple sorts of retention are used, the stack 

is as effective as the 2-stack technique which has been oroposed 
23 

for backtracking   .  If more complex forms of retention are 

used, the technique still works correctly.  In general, arbitrary 

retention can be achieved and unneeded activation blocks can 

be freed either implicitly or explicitly.  Further, illegal use 

of an explicitly freed activation block is always detected. 

Section 2 of the paper presents a data structure model of control 

which is the basis of the implementation.  Section 3 discusses 

implementation details, and Secion k  discusses extensions to 

handle shallow binding, label-valued variables, interrupts, 

monitoring, cooperating sequential processes, and use of multi- 

processors. 

i 
I 
I 
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2   A Formal Model of Environment Structures and Control 

V/e present an information structure model (similar in 

spirit to Wegner "^ ) v/hich deals with control and access 

contexts in a programminp, language; it is based on consideration 

of the form of run-time data structures which represent program 

control and variable bindings.  The model is designed to help 

clarify some relationships of hierarchical function calls, 

backtracking, co-routines, and multiprocess structure. Although 

multiprocess structures are considered, in this section only 

one real processor is assumed to exist and only one process is 

considered active at any given time.  This implies that processes 

must explicitly hand control from one to another.  This greatly 

simplifies interprocess conmunication; Dykstra's P and V operators 

can be written in terms of the three control primitives defined. 

We cal1 0 set of processes which communicate in this way 

^coordinated sequential processes".  In Section 4.5 we extend 

the implementation to true multiprocessor systems. 

2.1 The Basic Environment Structure 

In a language which has blocks and procedures, new nomen- 

clature (named variables) can be introduced either by declarations 

in block heaas or through named parameters to procedures.  Since 

both define access environments, we call the body of a procedure 

or block a uniform access module. Upon entry iu an access module, 

certain storage is allocated for those new named items which are 

defined at entry.  V/e call this named allocated storage the 

basic frame of the module.  In addition, certain additional storage 

for the module may be required for temporary intermediate results 

of computation; this additional allocated storage we call the 

frame extension.  The total storage is called the total frame of 

the module, or usually just the module frame. We refer to the 

two frame pieces generically as segments. 
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A frame contains other information, in addition to named 

variable and temporaries. When a module is entered, the callee's 

frame is initialized with two pointers (perhaps implicitly); 

one, called AL1NK, is a linked access pointer to the frame(s) which 

contains the highe. level free variable and parameter bindings 

accessible within this module.  The other, called CLINK, is 

associated with control and is a generalized return which points 

to the calling frame.  In Algol these are called the static and 

dynamic links respectively.  In LISP, the two pointers usually 

reference the same frame since Dlndings for variables free in a 

module are found by tracing up the call structure chain. (An 

exception is the use of functional arguments, and we illustrate 

that below.) 

At the time of a call (entry to a lower module), the caller 

stores in his frame extension a continuation point for the 

computation.  For proper value checking, an expected return value 

type may also be stored.  Since the continuation point is stored 

in the caller, the generalized return is simply a pointer to 

the last active fram^. 

The si.se of a basic frame is fixed on module entry.  It 

is just large enough to store the parameters and the link 

informar.ion.  However, during one fun :tion activation, the 

required size of the frame extension can vary widely (with of 

course a computable maximum) since the amount of temporary 

storage used by this module before callinp; different lower 

modules is quite variable.  Therefore, the allocation of these 

two fnme segments may sometimes (advanta^eously) be done 

separately and noncontigu^usly.  This requires a link back 

from the frame extension to the basic frame (denoted as BLINK 

below).  Figure 1 summarizes the contents of a frame. 
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L F*p,ure 3 shows two examples in •.Jhich more than one Inuependont 

environment structure is maintained.  In Figure 3a, two coroutines 

are shown which snare connon access and control environment A. 

However, note that the frame extension of A has been conieu so 

j that returns from D and 0 may no to different continuation points. 

Since frame A is used py two processes, if either coroutine were 
i        deleted, the basir frame for A should not be deleted.  Note 

however, that one frame extens-   A* could be deleted In that case, 
_        since frame extensions are never ref renccd directly by more than 

4        'Jiif process.  In figure 3b, coroutx.. Q is shown calllnr a function 

:• with external access cnain tiirou^h r, but w'th coritrol to return 

to 3. 

1 
I 
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Picure 2a shows a sketch of an algorithm programmed In 

a block structure l&nguage such as Algol 60 with contours 

(c.f. 18) drawn around access nodules. Bl has locals N 

and P, P has parameter N, and B3 locals Q and L.  Figure 2b 

is a snapshot of the environment structure after the following 

sequence:  Bl Is entered; P is called (just above P., the 

program continuation point after this outer call);  B3 is 

entered; and P is called from within B3.  For each access 

module there are two separate segments - one for the basic 

frame (denoted by the module name) and one for the frame exten- 

sion (denoted by the module name*).  Note that tte sequence 

of access links (shown with dotted lines) p;oes directly from 

P to Bl* and is different than the control chain of calls. 

However, each points higher (earlier) on the stack. 

A point to note about an access module is that it has no 

knowledge of any module belov- it; if an appropriate value (as 

specified by the return value wype) is provided, continuation in thet 
access module cm be achieved with only a pointer to the con- 

tinued frame.  No information stored outside this frame is 

necessary. 

I 
I 
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2.2 Primitive Functions for Retention 

In this model for access module activation, each frame is 

generally relea&fd upon exit of that module. Only if a frame 

is still referenced is it retained.  All non-chained references 

to a frame (and to the environment structure it heads) are 

made through a special data type called an environment descriptor. 

Note tnat heads of a11 environment chains but that for the 

currently active process are referenced from this space of 

environment descriptors. The three primitive functions:  I) 

create an environment descriptor (ed) for a specified frame; 

2) change contents of an ed;  3) create a new frame with access 

and control chains specified by ed's and execute a computation 

in that context.  Note that none of the primitives manipulate 

existing frames or pointers; therefore only well formed frame 

chains exist (e.g. no ring structures). 

environ(pos,n) creates an environment descriptor for 

the frame specified by pos. If n is 

given and non-zero it copies the n 

precedinr frames.  This allows creation 

of identical contexts which do not share 

bindings,  n is usually omitted. 

setenv(olded,pos) changes the contents of an existing 

environment descriptor olded to point 

to the frame specified by pos. Heleases 

storage referenced only through previous 

contents rf olded. 

10 
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initiates a computation within an 

environment structure; it creates a 

new frame, with ALINK pointing; to the 

frame speclfloci by apos; CLINK pointing 

to the frame specified by epos; and 

form the code or expression to be 

executed or evaluated in this new 

environment.  If the epos argument 

Is omitted, it is taken to be identical 

to apos. 

A frame specification (e.g. pos; apos; and epos) is one of 

the followinp: 

1. An integer N: 

a. fl=0 specifies the frame allocated on activation of 

trie function environ, setenv, or enveval.  In each 

case, the continuation point is set up so that a 

value returned to thia frame (uoinn enveval)  is 

returned as a value of the original call to environ, 

setenv or enveval. 

b. i'i>0 specifies tne frame N links down the control 

link chain from trie 11=0 frame. 

c. N<0 srecifif s tne frame |i'i| links dov/n the access 

link chain from t;.e M"0 frame. 

2. The distinguished constant NIL.  This value specifies global- 

access only to be shared, and/or control-return to the system 

(process halt).  Doin^ a setenv(ed,NIL) releases frame storage 

formerly referenced only through ed, without tyin- up any -'•w 

storage. 

3. An ed (environment descriptor).  When rriven an ed ai^ument 

created by a prior call on environ, environ creates a new 

descriptor with the same contents as ed; setenv copies the 

contents of ed into olded. 

11 
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4.  A list "(ed)" consisting of exactly one ed. The contents 

of the listed ed arc used identically to that of an 

unlisted ed.  However, after this value is used in any 

of the three functions, setenv( ed,NIL) is done, thus 

releasing the frame storage formerly referenced only 

through ed. This has been combined into an argument form 

rather than allowing the user to do a setenv explicitly 

because in the call to enveval the contents are needed, 

so it can not De done before the call; it can not be done 

explicitly after the enveval since control might never 

return to that ooint. 

2.3 Non-Primitive Control Functions 

To illustrate the use of these control functions, we will 

define some non-prinitive functions which are more familiar. 

(We use here the syntax and semantics of a LISP-like system; 

although we use the LISP idion, the conversion to other lang- 

uages is straightforward.) We will define function which creates 

a functional oojecc which carries its own context, and snow how 

the language evaluator uses this object.  We will then define in 

terms of our basic environment manipulators some non-hierarchical 

nontrol functions for backtracking and coroutine calls. 

We begin with an obvious extension of enveval; we can define 

envapply which takes as arguments a function name and list of 

(already evaluated) arr,uinonts for that function.  hnveval requires 

a form and envapply slr.ply creates the appropriate form for 

enveval.  (Uppercase items are literal objects in LISP). 

envapply (fn,arr;s ,arrame ,cfrane ) = 

enveval(list(APPLY,list(QUOTE,fn),list(QUOTH,args)), 

aframe,cframe) 

12 
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A central notion for control structures is a pairing of 

a function with an environment for its evaluation. Following 

LISP, we call such an object a funarg. Funargs are created 

by the procedure function, defined 

function(fn)=list(FUNARG,fn,environ(l)) 

I That is. In our implementation, a funarg is a list of three 

elements: the indicator FUNARG, a function, and an environment 

I descriptor.  (The argument to environ makes it reference the 

frame which called function. To get an environment other than 

.. the current one, function can be evaluated within an enveval.) 

J,        A funarg list, being a globally valid data structure, can be 

passed as an argument, returned as a result, or assigned as the 

value of approoriately typeu variables.  When the language 

•valuator gets a form (fen argl arg2 ... argn) whose functional 

object fen is a funarg, i.e. a list (FUNARG <fn-narne> <ed> ), 

it creates a list, args,of (the values of) argl, arg2, ..., argn- 

and does 

envapply(second(fen),args,third(fen),1) 

The environment in this case is used exactly like the original 

LISP A-list.Moses^1 has disc ,;3ed the use of function in LISP 

for preserving binding ccntr ^s.  Figure 'I illustrates the 

environment structure where a functional IKLS been passed down; 

the function foo with variables X and L liar, been called;  foo 

called mapcar(x,furction(flc)) and fie has been entered.  Mote 

that along tne access chain the first free L seen in fie is 

bound in foo, although there is a bound variable L in mapcar 

which occurs first in the control chain.  Since frames are 

retained, a funarg can be returned to higher eontexts and still 

13 
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work. Further, as described below, funargs serve as the basis 

for a number of control regimes, in addition to acting as a 

device to save a binding environment. 

Coroutines, i.e. coordinated processes which each maintain 

their own separate hierarchical control and access environment, 

are easily implemented using these primitives. A coroutine is 

simply a funarg used in a particular way.  It is created by 

function and manipulated by the routines start and resume. To 

initiate a process represented by the funarg fp, use start: 

start (fp,args) = curproc-fp; 

(comment  curproc is a g]oc?1 variable set to 
the current process lunarg); 

envapply(second(fp),args,third(fp), third(fp)) 

Once the variable curproc is initialized, and any coroutine 

started, resume will transfer control betxveen n coroutines. 

resume(fnarg,args,backfn)= 

prog((result,flg) 

(comment prog introduces an access modulo with local 
variables result and fig. 

backfn is the function to be called when 
this process is resumeu) 

second (curproc )-«-backf n 

(cor.mcnt  replace old backfn for resur.o back nere) 

rcsult-«-setenv(thira (curproc),0); 

(comenl  result Is set when a resume cones back here. 

fir will have been set when a resume comes back through 
.«^,^         /   -14.1                    setenv.) if  fir- tnen returrurcr.ult);   

flr^-T; 
curprcc^fnarg; 

enva; p ly (second(fnarg),arm ,third(f narg Jthird (f narg)) 

(comment  only done first time)) 

15 
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We call a funarg used in this way a process funarg. The 

state of the "process" Is updated by destructively modifying 

the list to change the continuation function, and similarly 

directly modifying the environment descriptor in the list.  A 

pseudo-multiprocessing capability can be added to the system 

using these process funargs if each process takes responsibility 

for requesting additional time for processing from a supervisor 

by explicitly passing control.  A more automatic multi-processing 

control regime using interrupts is discussed in section ^.H, 

Backtracking is a technique by which certain environments are 

saved before a function return, and later restored if needed. 

As an exEmple of its use, consider a function which returns one 

(selected) value from a set of computed values but can effect- 

ively return an alternative selection if the first selection was 

inadequate. That is, the current process can fail back to a 

previously specified failset point and then redo the computation 

with a new selection. A sequerce of different selections can lead 

to a stack of failset points, and successive fails can restart 

at eacn in turn.  Backtracking thus proviues a way of aoinr; a 

aepth first-search of a tree with return to previous branch 

points. 

V/c define fail anu failset below.  We use pusn(L,a) which 

adds a to tnc front of L, and pop(L) which removes one clement 

and returns the first element of L.  Fallist is the stack of 

failset points.  As defined below, fail can reverse certain changes 

when returning to the previous failset point by explicit oirection 

at the point of failure. (To automatically undo certain side effects 

and i)i:,di;;~ changes we could define "undoable" functions which 

add to failist forms whose evaluation will reset appropriate 

cells.  Fail coulu tuen eval ail forms tnrough the next ec and 

then call enveval.) 

16 
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failset()=push(failist,environ(l)) 

(comment  1 means environment of failset) 

fallfmessage)=enveval(message,list(pop(faillst))) 

select(set,undolist) = 

if null(set) then falKundollst) (comment reset values) 

else prog((flrJ 

fallsetO; 

if flp; then ••eturn(select (s'-,:,undolist)); 

(comment  fig is set if we have failed to this point, and 
then set has been popped.) 

flg^-T; 

return(pop(set)) 

Floyd, Hewitt, Golomb, and Baumert have discussed uses for 

backtracking in  problem solving.  An example of its use is the 

following program for placing 8 nueens on a chess board such 

that no two can take each other.  The function conflict(s,cans) 

(not shown) checks whether square s chosen by select for column 

N will fit with the previously /renerateu answer for the first 

Ii-1 columns. 

17 
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queens()= 

progCCn.anSj.m) 

n*-0; 

Ip: n-^n+l; 

If n>8 then return(ans); 

pi: m*3electi(lt2t3tH,5>St7tB)t 

(PROG ()i^N-1; POP (ANS))); 

(comment Both arguments are quoted forms. 

The prog form in the select Is evaluated 
only in case of a failure in select.) 

if conflict(m,an&) then fail(); 

(comment  continue selection until select produces a 
good value, or fails and resets n and ans.) 

push(ans,rn); 

go (lp) ) 

Figure 5 shows the control structure saved for queens after 

it has successfully moved to the third column. 

18 
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3. Implementation 

3.1 Retention on the Stack 

The model cf section 2.1 assumes that a frame Is retained 

so long as it is actively referenced. With a bit of bookkeeping, 

it is possible to determine when each frame ceases to be 

referenced, so that each frame can be freed by the evaluator as 

soon as this occurs.  Further, frames can all be allocated on 

a single stack. This section presents the technique for 

so doing. 

The first issue, bookkeeping of frame references, is handled 

by two new fields added for this purpose to each frame.  A 

basic frame segment can be referenced only from its corresponding 

frame extensions.  The CXT field in the basic frame counts the 

number of frame extensions for that basic frame. A frame 

extension segment can be referenced in any of three ways:  1) by 

tne basic frame of an immediate control descendent (i.e. "callee"), 

2) by the basic frame of an Immediate access descendent (e.g. 

lower lexical range), 3) by an environment descriptor.  Tho USE 

field in the frame extension counts tne number of references to 

that frame extension. 

In the case of sinple LIFO control, CXT ana USE are always 

equal to 1.  Environ creates an environment üescriptcr and 

therefore, as part of its actions, increments by 1 the USE count 

of the appropriate frame extension,  when the USE of a frame 

extension exceeos 1, the frame extension cannot bo used for 

running in (i.e. execution) since the several users of that frame 

extension renuire the state to remain the sane, but further 

computation in that frame extension would change the state (e.g. 

.* 
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destroy some temporaries and/or move the continuation point). 

Hence, whenever control returns to an access module where the 

USE count exceeds 1, a cony of the frame extension Is made, 

USE Is decremented by 1 (since there Is one loss user of that 

frame extension) and CXT Is Incremented by 1 (since there Is 

one additional frame extension which references the basic ^rame). 

Figure 6 shows the structure resulting from a program in which 

PI calls P2 which calls ENVIRON(l), thereby creating an environ- 

ment descriptor refering to P2.  When exiting any access module, 

the frame extension is always deletea.  If the CXT in the basic 

frame is 1, then fie basic frame is also deleted; otherwise, 

the basic frame remains.  This, then, is the basic retention 

technique.  Ue return to the details below. 

The second issue, storage management with a stack, is 

handled as follows.  On entrance to an access module, a basic 

frame ani frame extension are pushed in contiguous locations 

on the end of the stack.  On exit from the module, if both basic 

frame and frame extension are deleted, then ti.c eno of stack 

pointer is restored to its position on entrance.  If, however, 

the basic frame is not deleted (CXT>1), then it remains where 

it is on the stack.  In general, therefore, wuen control returns 

to an access module with frame extension K*, it may be that 

tnere is a uasic frame immediately below E*.  Suppose, for example, 

tnat procedure I'D call:; PI v/nich call:; environ(l) creating 

PI next calls enveval( IVU ) ,2,2) ;  P2 then calls environ(l) 

to create hh,,.  F: 

reference counts ■. 
causes control to 

cut';.~ enveval (V! 

to run PI* 

gure Ta shows t;.e stack structur* 

c o n ty ro i 

ana 

■•' oso 

;:,i:si(;,u )).) . t-   . s   nc-L   p( .:Si.Li.c 

lies,  s'nee  the  ua^ic   frame  of  Pi.'  LIOC-CS  tut. 

stack,     hence,   the  evaluator makes  a  cory  of PI*,   calleu  PI1*, 

at  tiie  soack OKU  ana  aecrencnts   the imiÄi i K. 
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Whenever control returns to a fraiiie extension E* which cannot 

be run where it lies (due to another segment beneath and 

blocking it), a copy of E* is used in its place, perhaps 

deleting the original frame extension.  Such deleted 

segments provide h'-les for the growth of the frame exten- 

sions directly above them when (if) the basic frame 

immediately above the hole is deleted.  Hence, they serve as 

mini-stacks.  It is the responsibility of the Delete Segment 

routine to appropriately record the space made available by a 

segment deletion so that it nay be reused.  V/e return to this 

issue and the issue of stack overflow in section 2.5. 

With the above description of intention as an extended 

comment, v/e an  now state the algorlthns for using and maintaining 

the reference counts.  Tv/o action points during evaluation are 

crucial: 

(1) entering an access module 

(2) exiting an access module and returning ^o its caller 

Also, the retention primicives each manipulate the reference 

counts 

(3) environ 

(4) setenv 

(5) enveval 

Note that these five routines cannot properly be written 

in the prograr.ninr language.  The actions uncd (e.g. deleting a 

segment) anu data types employed (e.g. pointers to fram s) arc 

incompatible with the security of the evaluation mechanism, 

since they could be used to cause system errors.  Partially to 

emphasize this point and partially for convenience, we switch 

notation.  English descriptions are used where this simplest and 

2^ 
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an Algol-like syntax is used elsewhere. Liberal use is made 

of pointer-valued variables and the convention that if P is a 

pointer to a frame then P.USE, P.CXT, P.ALINK, etc. denote the 

field? of the basic frame and frame extension.  In the case of 

environment descriptors, we employ a field, FPTR, which points 

to the frame extension for the appropriate environment. 

Enter Access Module (F) = 

begin 

[1] push F and F* on stack; 

[2] F.ALINK*-F.CLINK*-address of caller; 

[31  P.CXT+P.USh>l 

end 

Exit Access Module (F) = 

begin 

[1] Delete Serrnent (P*);  coninent  no one else can be in It, since 

we are running in it; 

[2] if F.CXT«! 

then begin    Delete  Sefrment   (F); 

if F.CLINK^P.ALINK then ~ ' 
Release Access Chain (F.ALINK) 

end 

else begin P.CXT*-F.CXT-1; 

comment  next, propogate back (by incrementing 

USE of caller) the fact that a callee still 

exists; 

F.CLINK. USI'>F. CLINK . USE+1 

end > 

25 
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[3] let E be F.CLINK; 

comment.  now return to E, the caller; 

[4] if E.USE=1 

then if Sufficient Room beneath E* to run 

then Run In E* 

else begin Copy E*; Delete Segment (E*); Run In copy end 

else begin E.USE^E.USE-1; 

E.CX'iVE.CXT+l; 

Copy E*; 

Run In copy 

end 

end 

Environ (POS) = 

begin 

[1]  Create a null environment descriptor, ED; 

[2] £nviron2 (ED, POS); 

[3]  Return UD) 

end 

26 



I 

I 
I 
I 
I 
I 

J 

I 
Report No. 233^ Bolt Beranek and Newman Inc. 

Environ2UD,P0S) 

begin 

[1]  1et F be the frame specified by POS; 

[2]  If F Is the null frame then Return; 

[3] ED.FPTR^address of F*; 

[4]  F.USE^P.USE+1; 

[5] if POS is a list of an environment descriptor, e.g. of 

format "(ED1)", then Setenv (ED',NIL) 

end 

I 
I 
1 
1 Setenv (ED,POS)= 

begin 

[1]     tenp^ED.PPTR ; 

[2]     Environ2(ED,P0S)J 

[3]     if temp^NIL then  F^clease  Franc   (tent ); 

['lj     leturn   (ED) 

end 

. Enveval(F,APOS,CPOS) = 

begin 

[1]  let A be_ the frame specified by APOS, and C be the frame 

specified by CPUS; (if CPOS is missing, let C be A); 

I [2]  C.ÜSE-HC.USH+1; 

if C^A then A.USE+A.USE+l; 

27 I 
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[3] let E be the frame for this call on I'iivevalj 

Release Frame(E); 

[4] If segment E* is not deleted in step [3] then set the 

continuation point for E* such that if control returns 

to E* with value V, then Enveval will return to its 

caller with value V; 

[5]  if APOS is a list of an environment descriptor, i.e. 

"(ED)" then Setenv(ED,NIL); if CPOS is a list of an 

environment descriptor, "(ED')", then Setenv(EDt,NIL); 

[6] Push a frame on the stack, with ALINK and CLINK pointing to 

A and C respectively, and evaluate form P 

end 

Release Frame (P) = 

comment P is always pointing to a frame extension 

begin 1 - 

[1]  if P.USE>1 then begin P.U3E^P.USE-1; He turn end: 

[2]  if P.CXT>1 

then begin P.CXT^P.CXT-l; 

Delete .Segment (P*); 

Return 

end ; 

cor.ment if neither [1 I nor [2] applies then the 

entire frame is to be released ; 

28 
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[3] i£ P.CLINK^P.ALINK then Release Access Chaln(P.ALINK); 

[4] temp*?.CLINK; 

[5] Delete Segments (?,?»); 

[6] P-^temp; 

[7] £0 to [1] 

end 

Release Access Chain (A)» 

comment almost identical to Release Frame (P) except this 

follows access pointers; 
m 

begin 

[1]  if A.USE>1 then begin A.USE*-A.üSE-l; Return end 

[2]  if A.CXT>1 then begin A.CXT-A.CXT-1; 

Delete Segment (A*); 

Return 

end; 

[31 temp^A.ALINK; 

[4]  Delete Segments(P,?*); 

L5]  A^temp; 

[6] go to [1] 

end 

29 
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As an example of the operation of these algorithms, consider 

the 8-queens problem.  Figure 8a shows the stack immediately 

after environ(l) is executed in the first failset encountered. 

Figure 8b shows the stack when the third column of the board is 

being considered (situation is identical to that of Figure 5). 

Figure 8c is the stack configuration that would result were a 

conflict to occur, causing failure back to the second column. 

(Note that in the case of backtracking, "tack storage is used 

arid freed in strict LIFO order). 

3-2 Storage Management, Compactlficatlon, and Garbage Collection 

The above algorithms auffer from three omission?.  First, 

they leave undefined the auxiliary routines which perform segment 

deletion and the test to joe whether there is sufficient room 

beneath a module for running.  Second, since a copy is made at 

the stack end whenever a frame extension cannot be run where it 

lies, the stac;: tends to grow ever downward. As this commonly 

occurs in conjunction with deleted sogments occuring in the 

used portion of the stack, the stack nay overflow although its 

total size aoes not exceea the storage actually renuireci. 

Possible solutions are stack cor.pactification to saueeze out all 
the holes, or keening the holes available for running in. Thira, 

while environment descriptors are explicitly created (by calls on 

environ) tney nay not be explicitly freed (since several pointers 

might reference the same environment descriptor),  hence 

reclaiming environment descriptors (ana tracing the appropriate 

rrames) must be carried out automatically, by garbage collection. 

The basic technique for segment deletion ant. testing for 

room to run is relatively Simple.  ' Two additional fields are 
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used In each segment." Each segment holds both a gize field which 

specifies its current extent (this is fixed for basic frames 

but varies in time for frame extensions) and a max field 

which is the amount of free stack storage immediately below that 

segment.  (A segment having another segment Immediately below 

it has max=o). 

The general, situation is as followc.  Computation proceeds 

at some point in the stack described by a local stack descriptor, 

(^n general, thin is not the real end of the stack but rather 

some hole created previously).  Computation stays within the 

local stack region until (1) the local stack overflows, (2) a 

return is made from an access module G in the region to a caller F 

wnich is not in the region.  In case (1), the segment which over- 

flowed is copied elsewhere and the nax field of the last 

segment remaining it*  the  old local stack region is sot to 

reflect tie amount of storage left in the region.  In case 1.2), 

tne region is being abandoned, so the region size is added to 

tne max component of the last segment above the region. 

V/hen returning to F, P's max is used to determine the local 

stack descriptor for the new stacK region.  There is room to 

run if max exceeds zero.  Whenever a sejment is deleted, its 

max field plus its size field is added to the max field 

of no segment immediately above it. 

The effect of this techninue is to break the stack up into 

a number of n'ihstaeks (wh never multiprocessing occurs).  When 

control returns to a nodule, the nodule is run where it lies if 

possible.  If stack overflov/ occurs due to a segment g, that 

segment is copieu to sone free storage and the local stack region 

is temporarily abandoned.  Storage for the new segment copy may 

be at the real end of the stack or elsewnere.  We return to this 

point below. 

32 
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As an example, consider the stack structure corresponding 

to the coroutine pair of Figure 3. Specifically, suppose that 

processes P, and Pp are created by the following sequence: 

Module A calls B which calls C which creates a process point 

FT and returns to B which returns to A which calls Q which 

creates a process point Pp. The 3tack structure is shown in 

Figure 9a. Suppose ?2  resumes P,.  Since C* cannot be run where 

it lies, a copy is made at the stack end creating a hole above. 

If module C calls module D, Figure 9b results.  When D returns 

to C the stack is simply flushed; however, when C returns to B, 

segments C* and C are deleted. The deletion of C provides 

stack space for B* to run where it lies» as shown in Figure 9c. 

Two different strategies are available for handling the 

overflow of local stack regions.   The first, the non-linearizing 

strategy, is the simplest and gives preferential treatment to 

the real end cf stack. VJhenever a local stack overflows, the 

copy is made at the real end of stack, and the remainder of the 

stack becomes the "current local stack".  The hole at the enu of 

the old local stack will be used only if control comes back to 

the corresponding frame extension.  Essentially, mini-stack 

regions are used only by th<-l- creators, so that fragmentation 

is relatively common whenever co-processes occur.  When au over- 

flow occurs at the real end of stack, a stack compactification 

can be used to move all segments up by squeezin,, out all the holes. 

(Max fields are, of course, set to zero).  This creates a 

single block of free storage at the real end of stack whose size 

is the sum of the old hole regions.  Suoh a conpactlflcation can 

be carried out in a single linear swet^. of the stack and requires 

no additional storage. 
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The second, the linearizing strategy, gives no preferential 

treatment to the real end of stack.  A pool is maintained of 

all the free regions on the stack.  This includes the block 

composing the real end of stack as well as holes created by 

segment deletion.  When control returns to a frame extension E*, 

it is run where it lies If the storage region beneath it is free. 

If not, ov  if the frame extension overflows its region during 

running, some block in the free stack region pool Is chosen as 

tiie place to copy E* and continue computation.  Since use of a 

storage block is not restricted to the process which created it, 

the frequency of required compuctifications is substantially 

less than with the non-linearizing strategy.  Compactification 

is st .1 required, however, since fragmentation may still occur, 

resulting; in many small useless free blocks.  Further, since 

reuce of storage blocks is not tied to processes, there will be 

inore interleaving of storage of different processes and more 

frequent overflow of local stack regions.  Hence, this strategy 

includes linearization as part of compactification.  That ij, 

stack segments are reordered so that for each module A, some 

modulo D cal-ed by A is placeu immediately below A.  Tecnnioues 

for such a linearization "re well-knowr [ Minsky,*"  Bobro^."3]. 

They suffer only In requiring additional storage - either in the 

address space or in the file system. 

With either strategy there is the possibility that compact- 

ification will find fev; or no hoics to collect.  That ic, stack 

overflow due to a lar~c computation re-mains possible.  V.'ith our 

technique this presents no problem.  Computation can proceed in 

a ne.; stack scgnent which need not be contiguous to the existing 

stack. Since the technique of this paper does not assume con- 

ti-uity of caller anu calloe, non-contiguity of stack segments 

doesn't hurl and renuiri.s no auditional mechanism. 
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Garbage collection of environment descriptors is a separate 

issue not necessarily coupled with stack compactiflcation.  All 

environment descriptors are allocated in the free storage region, 

i.e. heap. To make reclaimatlon simple, a region (or regions) 

of the heap is reserved to hold only environment doscriptors. 

The trace and mark phase of garbage collection is standard, 

except that all elements of the environment descriptor block free 

list are marked.  Hence, during the sweep phase, the only environ- 

ment descriptor blocks which are picked up are those which are 

reclaimed by this collection.  Each such environment descriptor 

is treated as if the program had executed setenv(ed,lJIL) on this 

ed. That is, the associated frame is freed using the Release 

Frame algorithm of section 3.1»  Once frame release has been 

carried out, the environment descriptor block is added to the 

existing free list of environment descriptors. 

Since garbage collection of environment descriptors may 

free some number of stack segments, it may  be  useful to include 

such a garbage collection whenever stack compactiflcation occurs. 

Alternatively, a stack comnactification might be included as 

part of each garbage collection. Which (if either) of these is 

performed depends on the relative expense of rarbage collection 

and stack comnactificaticn. 

36 



■.-;■■= ^~—:-^ 

I 
1 

Report No. 233^1 Bolt Beranek and Newman Inc. 

^1. Extensions 

4.1 Shallow Binding 

The mode] used in section 2.1 suggests that non-local 

variables are accessed by searching the ALINK chain of frames. 

In the case of simple lexical identification for free variables 

(e.g. as in Algol 60) there is a well-known implementation 

alternative - the display of Dljkstra.       If, however, 

dynamic identification is used for free variables (or if enveval 

is used to sec up arbitrary environments not known at compile- 

time) then the display technique cannot be used.  But there is 

a different technique for immediate access to free variables which 

is compatible with the general model and our implementation. 

With appropriate enhancements, shallow binding works correctly 

and efficiently." * 27, *l 

The basic technique of shallow binding has been used in 

LI3P implementations for some time.  The method is to associate 

with each atom (i.e. symbol table entry for an identifier) a 

special cell, the value cell, wnich points to the current para- 

meter binding for that identifier.  Each non-local variable in 

a procedure is represented by a pointer to the atom (or directly 

to its value cell);  hence, a non-local variable can be accessed 

by indirecting ohrough the value cell for that atom.  Whenever 

a parameter binding is made or a local variable is declared, say 
for the variable X, the value cell is updated.  The new binding 

for X includes a field old-adr which is set (during binding) to 

point to the previous parameter binding for X.  When a module is 

exited either explicitly or implicitly (e.g. by a non-local goto) 

the value cell for the olu value is reinstated. 
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With the introduction of enveval, the simple shallow binding 

strategy no longer works since application of er veval can cnange 

the entire set of "current" bindings. It would, of course, be 

possible to handle enveval by updating all variables, searching 

the new ALINK chain to find the new bindings.  However, this 

is needlessly expensive. 

A more sophisticated technique is to update value cells 

only when values are actually required. Each value cell contains 

an indicator (described belcw) which specifies whether or not 

the value is current. A variable is then accessed as follows: 

if the indicator specifies that the value ceül is current, then 

it is used directly; otherwise, tha access environment is 

searched, the proper binding founa, the value cell is set to 

point to the current binding, and the indicator is set to reflect 

this. 

The indicator is an access chain descriptor (ACD). At any 

point in tire there is a global ACD which specifies the current 

access environment.  An indicator in a value cell is current 

if and onlv if it is eaual to the global ACD.  When enveval is 

called, if ihc new (i.e. specified) access environment is not 

identical to the current environment then a new, unique, ACD 

is generated and becomes the global ACD.  Further, if the access 

and control links are different, and the control environment is 

the environment of enveval, then the old ACD is saved (e.g. as 

a hidden parameter to the new frame being formed).  On frame 

exit, there are then three possibilities:  (1) if ALINK=CLINK 

then the normal (i.e. local) updating of parameters occurs; (2) 

if ALINKVCLINK and there is an ACD which was previously saved 

by enveval, then it is restored as the global ACD;  (3) other- 

wise, a new unique ACD is generated and becomes the new global 

ACD. 
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As to implementation, ACD's can be ^ny unique descriptors 

of environments, e.g. integers or pointers to blocks allocated 

in the heap for this purpose. The latter has the advantage of 

allowing garbage collection of ACD's wnen they become unused. 

^.2 Other References to Frames: Pointers and Label-Valued 

Variables 

Viewed functionally, the technique of section 3.1 is merely 

an efficient means for insuring that frames will be retained so 

long as they are needed.  The control primitives of section 2.2 

use such frames to preserve environments for variable access 

and control return.  There are, hov/ever, a number of other uses 

of frame retention for which the proposed implementation tech- 

nique provides an efficient realization.  Most notable are 

label-valued variables and explicit pointers to data objects in 

frames. (Reynolds uses label variables as a basis for his control 

structure operations in Gedanken.) 

Label-valued variables present a classic problem to the 
9 

language implementor (e.g. Fenichel  ).  Such a variable V may 

be assigned a label value belonging to a local ran^e, for 

example 

begin ... ; L: ... ; V-*-L; ... end 

If the scope of V is larger than the range, then the phrase .n;oto 

V nay be encountcrea after the block has exited.  It is then 

necessary to reenter the exited block.  With the proposed reten- 

tion techninue, this presents no probier, since the frame for the 

block can he retained so  long as any label variable references 

a label value in the block. 
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Specifically, the technique is as follows.  Two sorts of 

label values are distinguished by the implementaticn* - private 

label values and public label values.  Label constants are 

private label values; the values of label-valued variables are 

public label values.  A private label value may be used only in 

ranges lexographlcally contained within the module where it io 

defined, for example in 

begin 

• « • 

F • AJ •    • • •    y 

begin ... goto L ... end ; 

• • • 

end 

Since they can only be used under safe circumstances, private 

label values can be inplemonted usinj- standard techniques, e.g. 

as a pair <program address, static olock nuiTiber> or as a pair 

<progran address, frame pointer>.  A public label value, on 

the otiier hand, oan be carried anywhere.  It is implemented as 

a pair program address, environment descriptor for the (least) 

frame containing that program address> .  To insure the integrity 

of the public value, it is treated as a primitive data type not 

deconposable into its two parts.  However, since the ed of such 

an object may want to be used in other contexts, we can extend 

pos to include such a possible object with the obvious interpret- 

ation. 

*The distinction Is an implementation i.e. compilation concent 
and is made only for efficiency.  The programmer sees no 
difference and simply transacts with label values. 
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When an ass;* -nment of a constant label value to a 

label-valued variable occurs, the private label value is 

converted,by the evaluator,to a public one by a call on 

environ to create the appropriate environment descriptor. 

Subsequent assignments or parameter bindings using the public 

label value need not (i.e. do not) cause the creation of new 

environment descriptors.  All label-valued variables which 

possess that public label value share the same environment 

descriptor.  With this implementation, it is guaranteed that 

a frame is retained so long as any active label-valued variable 

references it.  The normal garbage collection of environment 

descriptors frees such frames when all the relevant label-valued 

variables are given new values or destro/ed. 

Similar considerations apply to variables which can point 

to data objects stored in frames; i.e. problems arise if a frame is 

deleted while pointers to it persist.  The situation does not occur 

in LISP since all actual data objects reside in the heap. However, 

in languages such as Algol 68 arm PL/I, this is both possible* 

anci grevious.  (In both languages, the result is an undefined 

program).  Again, there is a straightforward solution based on 

the proposed retention techninue.  Whenever a variable V whose 

scope exceeds a nodule H is assignee the address jf a variable 

local to K, the (private) address is converted to a global value 

by pairing it (indivisibly) with an environment descriptor weich 

references P..  So lon^; as the pointer value exists, the environ- 

ment descriptor will not be garbage collecteu, and the frame for 

R and its supporting frames will be retained. 

Reproduced  from 
best available  copy. 

* In PL/I sucij a pointer value can be obtained by the built-in 
function AUÜR, 
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4.3 Interrupts and Monitoring 

4.3.1 Interrupts 

In a practical system, provision must be made for handling 

the occurehce of conditions which demand the interruption of an 

ongoing process and transfer of control by a processor to 

another specified process.  Examples arc hardware interrupts 

for floating point underflow/overflow, end-of-file indicator 

r^ad, suspension of activity demanded by another processor, and 

e. istertce of a specified monitored condition (see 4.3.2).  Such 

interrupts are handled in our model as follows.  When the 

interrupt occurs, the current frame is closed off.  That is, the 

machine registers and other state information are saved in tne 

frame extension, and the continuation point field is set to 

the address of a routine which will cause state restonticn. 

Then a process funarg associated with the interrupt condition 

is resumed as though it were explicitly called from the 

cloned frame, with an argument ed specifying this closed frame 

tc be restarted. 

At the poir.t of interrupt the state of the process may be 

clean or unclean. An unclean state is one in which basic communi- 

cation assumptions about states of pointers, aueues, buffers,etc. 

are not true.  For example, certain machine registers may contain 

pointers which snould be traced in a narbare collection. Obviously, 

processes which operate when environments fail to meet appropriate 

assumptions must nuarantee not to interact inappropriately, e.g. 

cause a narbap^e collection in the cited example.  Standard tech- 

niques exist to ensure clean states when required.  Software 

interrupts can be programmed to occur at only such points.  Asyn- 

chronous hardware or real-timo interrupts can perforn the minimal 

necessary operations and induce a software interrupt for contin- 

uation at the next available time.  For timely interaction, such 

software interrupts should be allowable at all clean points. 
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Each interrupt condition is identified by name. After the 

current frame is closed off, the Interrupt dispatch table is 

searched for an entry labeled with the interrupt name.  The entry 

has two fields: a level number and an action funarg. Tne 1*" ^l 

snecli'ies the relative priority of t.ie Interrupt. Higher 

priority interrupt conditions take precedence over (ana hence 

interrupt) lower priority levels;  lov/er priority interrupts 

are queued while higher priority interrupts continue processing. 

When an interrupt is to be processed (i.e. its priority exceeds 

that of any waiting interrupt) the funarg action is applied 

(c.f section 2.3  Thomas u  discusses a variation of this model.) 

^.3.2 Monitoring 

A useful control regime  which can be built from our 

primitives using interrupts is lhat provided by a generalization 

of the ON CONDITION of PL/I.  In essence, this allows the moni- 

toring of a process P for attainment of a condition C.  Whenever, 

C holds, the execution of P is interrupted and a process P 

associated with the condition is executcu.  Since P is programmer- 

defined, the effect of monitoring can be any of the following: 

halting execution of the Job, journalizim- an error but continuing, 

recovering from the error and continuing, normal program flow 

(e.r. tne condition monitoring is used for f isnatcn logic in the 

main program loop). 

Monitoring arbitrary conditions on contemporary machines re- 

quires a mixture of hardware and software. That it,  hardwars is 

usually used for floating point overflow, software for testing 

the condition X+Yi2*Z and sometimes hardware, sometimes software 

for subscript out of range,  A general techniaue for software 
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monitoring entails changing ordinary variables to "sensitive" 

ones; e.g. to monitor for the condition X+Yj2*ZJ the variables 

XjY, and Z are made "sensitive" by the evaluator. (This can be 

implemented for example bv hardvare flag bits, special data 

types in interpreters, and special code generators in compilers). 

All accesses to X,Y, or Z then pass control to a general moni- 

toring process which tests whether the variable has been changed 

by the access, and, if so, whether the condition being monitored 

now holds. 

h.l\    Coordinated Sequential Processes and Parallel Processing 

It should be noted that in the model of section 2, control 

must be explicitly transfereu from one active environment to 

another (by means of enveval or resume).  We use the term 

coordinated sequential process to describe such a control regime. 

There are situations in which a problem stetement is simplified 

by taking a nulte different point of view - assuming parallel 

processes which synchronize only when required (e.g. by means 

of Dijkstra's  P and V operatioms).  Using our coordinated 

sequential processes with interrupts, we can define such a control 

regime. 

In our model of environment structures, there is a tree 

formed by the control links, a "dendrarchy" of frames.  One 

terminal node is marked for activity by the current control 

bubble (the point where the language evaluator is operating). All 

other terminal nodes are referenced by environment descriptors 

or by an access link pointer of a frame In the tree.  To extenu 

the mouel to multiple parallel processes, k brandies of trie tree 

must be simultaneously narked active.  Then the control bubble 
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of the proosssor must be switched from one active node to 

another accoi'dlng to some scheduling algorithm. To meet Dljkstra's 

assumption of non-zero progress for each cooperating sequential 

process, the algorithm must guarantee each active node a minimum 

service. 

TO Implement cooperating sequential processes in our model, 

it is simplest to think of adjoining to the set of processes a 

distinguished process, PS, which acts as a supervisor or monitor. 

This monitor schedules processes for service and maintains 

several privileged data structures (e.g. queues for semaphores 

and active processes) which are used by the parallel process 

manipulations functions defined below. (A somewhat similar tech- 
2'K nique is used by Prenner  ). 

The basic functions necessary to manipulate parallel active 

processes allow process activation, stopping, continuing, 

synchronization and status querying.  In our single processor 

coordinated sequential process model these can all be defined 

by calls (through enveval) to the monitor PS.  Specifications 

for these functions are: 

process(form,apos,epos)  this is similar to enveval except 

that it creates a now active process 

P' for the evaluation of form, and 

returns to the creating process P, a 

process descriptor (ml) which acts as 

a iianüle on P'. 

In this model, the jrd could be a pointer to a list wnich has been 

placed on a "runnable" auouc in PS, and which is interpreted by 

PS when the scheduler in PS gives this process a tine quantum. 

One element of the process descriptor gives the status of the 

process e.g. RUNNING or STOPPED.  Process is defined usin-- environ 
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(to obtain an environment descriptor used as part of the £d) and 

enveval (to call PS). 

;top(pd) halts the execution of the process 

specified by pd - PS removes the process 

from the runnable queue.  The value 

returned is an ed of the current environ- 

ment of pd. 

continue(nd) returns pd to the runnable nueuea 

status(nd) value is an inalcatlon of status of pd. 

obtain(semaphore) this Dijkstra P operator transfers 

control to PS (by enveval) which deter- 

mines if a rcoource is available (i.e. 

semaphore count positive).  PS eitner 

(1) nands control back to PI (with 

enveval) havinr decremented the senaohor 

count, or  (2) entern PI on that sema- 

phore's queue in PC's environment. 

release (r.onanhore)       i.Mn DMu-Ktr« '. envrntur   1 ncrer.ents inc 

semaphore count, and if it roes positive, 

it moves one process from the semaphore 

nueue (if any exist) onto to*- runnable 

nucue.  It then hands control Lac!: to the 

en 111:.- process. 

l/e emphasize that these six functions can bo cefined in terms 

of the control primitive of section 2.2 coupled '..'ith use of the 

interrupt syrter;. 
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Scheduling of runnable processes could be done by having 

each process (by agreement) ask for a tine resource at appropriate 

intervals.  In this scheduling model, control never leaves a 

process without its knov/ledge, and the monitor simply acts as 

a bookkeeping mechanism.  Alternatively, ordinary tirne-sharing 

among processes on a tine quantum basis could be implemented 

through the interrupt mecho.nism of ^.3.  Timer interrupts could 

be handled by PS after the frame of the interrupted process hac 

been closed off.  The ed of the interrupted process is sufficient 

to restart it, and can be saved on the runnable queue 

within a process descriptor.  Because timer interrupts 

are asynchronous with other processing in such a simulated 

multiprocessor system, evaluation of-forms in the dynamic environ- 

ment of another running process cannot be done consistently; the 

e(i obtained from stopping a process nrovlues a consistent environ- 

ncnt.  because of this interrupt asynchrony, in oruer to ensure 

system integrity, queue and semaphore management in PS must be 

unlntorruntible e.g. at the highest priority level. 

Having augmented our simple coordinated sequential 

process system with a multi-proces:> supervisor,  a variety 

of additional control structures may bo readily created.  As 

an examnle, we consldej.- multiple parallel returns - the ability 

to return from a single call on a module G several different 

times with several (different) values.  A slight generalization 

is to allow G to give multiple returns, nerhans to different 

modules higher on its control chain.  For G to return from 

the current position to a frame fr^ with value given by val 

and still continue  to run, P simply calls process(val,fr fr). 

Then the current G and the new process nroceed in nuasl parallel. 

I 
I 
I 
I 
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I 
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I 
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4.5 Extension of Stack Mechanism For Multiple Processors 

Section h.H  describes a set of functions for handling 

multi-processinp; based on the environment primitives of section 

2.3, and the interrupt facility of section 4.3. However, only 

one active processor was assumed.  Somewhat surprisingly, the 

implementation technique described in section 3 still works for 

more than one active processor with only a few modi fie "'„ions 

in the basic technique, i.e. it Implements a dendrarchy in c 

multiprocessor configuration. 

We believe the functions for manipulation of multiple 

processes described in section 4.4 are a good basis set. To 

assure system integrity, process descriptors must be made primi- 

tive, i.e. not modifiable except through the routines described, 

and therefore those six functions must be built in.  That is, 

the functions of section 4.4 anu the data type process descriptor 

become primitives.  However, for the purpose of this section, the 

details of process maninulatlon are of secondary concern; other 
? 4 

semantic bases for multiorocessing would cio as well (e.g. Prenner; 
28 Thomas  . ) In this section we depend only on some general under- 

lying structures.  V.'hnt in of concern here is that the stack 

retention mechanism is ntill applicable unuer a multiprocessor 

regime. 

Regardless of details, the general situation presents some 

m physical processors and k processes to be run.  The process 

descriptors provide a handle on (i.e. "names" for) the processes. 

Assuming k>m, the m processors multiplex themselves over the k 

processes according to some scheduling algorithm (primitives to 

program the scheduler are not discussed here).  The processes 

waiting for processors are kept on a queue; a processor takes 

a process from the queue, runs it, returns it to the nueue, and 

repeats the cycle.  Wo assume tnat processes Interlock themselves 

(e.g. by a test-and-set busy wait loop) so that no process is 

ever run simultaneously by more than one processor. 
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I Given this situation, the implementation technique of 

section 3 requires two sorts of augn.ents:  (1) use of critical 

I        resources must be properly synchronized, (2) appropriate processor- 

tc-processor interrupts must be included in the system. At any point 

I        in time, each proces or is unning some process, using a 

* local stack segment. These local stack segments are disjoint. 

* Since at most one processor is running a process at one time, 

* each frame extension that is actively running has a unique 

proce&sor owning it. However, a basic frame or a non-running 

„        frame extension may be used y many processors; e.g. two 

processors can simultaneously exit the same basic frame.  Hence, 

the CXT, USE, and max fields are always locked (test and 

set) by each processor before access and unlocked afterward.* 

With this processor-processor exclusion, it is guaranteed that 

(1) no segmert will be imoroperly deleted, and (2) a frame 

extension will never be simultaneously run by more than one process. 

Since the local stack segments are disjoint, there is no 

problem on module entrance, so long as frames can be accomodated 

j ' the segment.  When a local stack segment overflows, the 

processor must obtain a new stack segment for its exclusive use. 

If there is a free segment pool (as in the linearizing technique 

of section 3.2), the pool is locked, a segment is obtained, and 

the pool is unlocked.  If the pool is empty or not used (as 

in the non-linearizing technique of section 3.2), then the pro- 

cessor PI in need of stack space calls a storage allocator which 

might provide a new bli :k from the heap. Alternatively, if space is 

*A process which attempts to i^ck a resource and finds the 
resource already locked goes into a busy wait loop repeatedly 
trying to lock it (or perhaps reschedules itself for another 
activity). 

M9 



Report Mo. 233^ Bolt Beranek and Newman Inc. 

available in a stack segment of another processor, say P2, the 

allocator can obtain a portion of that space. It interrupts P2, 

and the interrupt routine "or P2 transfers part of P2,s local 

stacJ: storage to PI and changes its local stack descriptor to 

reflect tiie transfer.  Thus the multiprocessor implementation 

still requires only one £;lc^al pool of stack storage which can 

be dynamically allocated and reallocated among the several 

nroccssors. 
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5. Conclusion 

In providing linguistic facilities more complex than 

hierarchical control, the key problems are (1) finding a 

model that clearly exhibits the relation between processes, 

access modules, and their environment and (2) developing tech- 

niques for implementing this model with acceptable efficiency. 

This paper has presented a solution to both problems.  The 

model of section 2.1 is applicable to languages as diverse as 

LISP, APL and PL/I and can be used for the essential aspects 

of control and access in each.  The control primitives intro- 

duced section 2.2 provide a small basis on which one can define 

almost all known regimes of control. The implementation 

presented in section 3 is perfectly general, yet for several 

sub-cases (e.g. simple recursion, simple backtracking) is as 

efficient as each of the best known special technioues.  Further, 

the model and technique are robust, in that they can^ be extended 

to a number of other applications and situations. 
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