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13 AOSTRACT

Many control and access environment structures require that storage
for a procedure activation exist at times when control 1is not nested
within the procedure activated. Thils is straightforward to imple-
ment by dynamic storage allocation with linked blocks for each
activation, but rather expensive in both time and space. This paper
presents an implementation technique using a single stack to hold
procedure activation storage which allows retention of that storage
for durations not necessarily tled to control flow. The technique
has the property that in the simple case, 1t runs identlcally to the
usual automatic stack allocation and deallocation procedure.
Applications of this technlque to multi-tasking, coroutines, back-
tracking, label-valued variables, and functional arguments are
discussed. . In the initial model, a single real processor is assumed,
and the lmplementation assumes multiple-proceases coordinate by
passing control explicitly to 1lne another. A multi-processor imple-
mentation requires only a few changes to the baslc technique, as
described.
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ABSTRACT

Many control and access environment structures require
that storage for a procedure activation exist at times when
control is not nested within the procedure activated. This is
straightforward to implement by dynamic storage allocation with
linked blocks for each activation, but rather expensive in both
time and space. This paper presents an implementation technique
using a single stack to hold procedure activation storage which
allows retenticn of that storage for durations not necessarily
tied to control flow. The techniqus has the property that in
the simple case, it runs identically to the u-—ral automatic
stack allocation and deallocation procedure. Applications of
this technique to multi-tasking, coroutines, backtrackirg.
label-valued variables, and functional a.;uments are discussed.
In the initial model, a sinple real :rocessor is assumed, and
the implementation assumes multiple-processes coordinats by
passing control explicitl; to one another. A multi-nrocessor

implementation requires only a few changes to the basic technique,

as described.,
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1. Introduction

Most of the older programmirg languages.r have a function
call/return structure that operates in a strictly last-in-first-
out discipline. This, particularly when coupled with recursion,
invites the use of a LIFO stack to hcld the storage required by
function activations’. Such a stack provides an elegant mech-
anism for control, local storage, temporary storage and argu-
ment passage. A function call entails pushing the arguments
onto the stack, leaving a program continuation point for the
caller on the stack, and transferring to the called function.
The called function uses the unext k stack locations for its
locals, and the remainder of the stack for temporary storage
used in calculating the erpguments to functions which it calls.
Since stacks can be implemente¢ directly in hardware, the mech-

anism is not only elegant, but efrficient as well.

In several programming languiges currently under designu
or construction, this happy marriage of implementation technique
and language form breaks down. If, for example, a language
permits co-routines, then during execution, control will jump
between several co-processes, each with its own call structure.
If ea*h environment is given its own stack then it beconies
difficult or impossible to allow sharing of environments among
co-processa2s, or a dynamicaily varying number of co-processes.
Similarly, if a languaje permits a function F to return a func-
tional result G, and if G's environment includes part of F then
the storage associated with F's activation may not be deleted

< 1

16
thor example, FORTRAN, ALGOL 602% map} L1spt? apLl® ana swopoL?3
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on F's exit, since part of the necessary environment of G

would be prematurely destroyed. A related problem erises in
multiprocessing where a language allows a function F of task

T to spawn a new task T'. If the environment of F is shared
with T', and if the environment of F is deleted, T' must be
forcibly terminated or T' will proceed with part of its
necessary environment destroyed. Similar problems arise with
label-valued variables, explicit pointers into the stack, and
"non-deterministic" or "backtrack" programming. All these cases
arise from a common circumstance: the storage assoclated with
function activation does not obey a LIFO discipline. It is
necessary to retain storage blocks for durations nnt related to
the order of their creation.

It is fairly stralghtforward to allow retention if the stack
is abanadoned entirely. Storage blocks are obtained by dynamic
storare allccation and are returned to the free storage pool
when no longer accessible, either through marbage collection or
deletion with a reference count. A number of languages, including

25 X 5 i &
tedankens? PALS Simula?, arrll) nise 1.5, PPLPC, arereno?, anc
PL/IlI erinloy one or more facecs of this techniaue, thcugh not

all use the full power of dynamic block storare allocation.

flovever, th.is is an unsatisfactory solution to the problen
of retentior. Compared to a stack, daynamic storase allocaticn
for function activation storare suffers a number of defects.
First, it requires substantiallv more tine to allocate and
reclain blocks. Zecond, it results in a sutstantial amount of
wasted snace since the storare block for each function activation
rnmust be allocated larse enourh to hold the maximum number of
termoraries that will ever be required while control resides in
tnat activation, vet the maximum will almost never bve simultan-
eouslv reacheu vy all activations. ‘Third, there is wasted tire

in a function call, since arguments must first be held in temporaries
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of the calling block and then moved at the time of call to
the parameter positions of the called block. Fourth, in a
paging environment, dynamically stored allocation blocks tends
to result in more page faults, since there is no contiguity
of stack end to aid in lo:alizing references.

This paper presents a technique for retention of function acti-
vation blocks on the stack. The technique has the property that 1if
no retention is actually required by any »ortion of a program
then activation storage behaves as a conventional LII'O stack;
if particularly simple sorts of retention are used, the stack
is as effective as the 2-stack technique which has been »roposed
for backtracking 23 « If more complex forms of retention are
used, the technique still works correct.y. In general, arbitrary
retention can be achieved and unneeded activation blocks can
be freed <ither implicitly or explicitly. Further, illegal use
of an explicitly freed activation block is always detected.

Section 2 of the naper presents a data structure model of control
which is the bas.s of the implementation. Secticn 3 discusses
implementation details, and Secion 4 discusses extensions to
handle shallow binding, label-valued variables, interrupts,
monitoring, cooperating sequential processes, and use of multi-

processors.
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2 A Formal Model of Environment Structures and Control

Vle present an information structure model (similar in
spirit to Wegner 33 ) which deals with control and access
contexts in a programming language; it 1s based on consideration
of the form of run-time data structures which represent program
control and variable bindings. The model is designed to help
clarify some relationships of hierarchical function calls,
backtrackir,, co-routines, and multiprocess structure. Although
multiprocess structures arc cocnsidered, in this section only
one real processer is assumed to exist and only one process 1is
considered active at any given time. This implies that processes
must explicitly hand control from one to another. 7This greatly
simplifies interprocess communication; Dykstra's P and V operators
can be written in terms of the three control primitives defined.
We ¢al' = set of processes which communicate in this way
"coordinated sequential processes". In Section 4.5 we extend

the implementation to truc multiprocessor systenms.

2.1 The Basic Environment Structure

In a language which has blocks and procedures, new nomen-
clature (named variables) can be introduced either by declarations
in block headas or through named parameters to procedures. Since
both define access environments, we call the body of a procedure
or block a uniform access rmouule. Upon entry Lov an access module,

certain storare is allocated for thosc new named items which are
defined at entry. We call this named allocated storage the
basic frame of the module. In addition, certain additicnal storage

for the module may be reauired for temporary irntermediate results
of computaticn; this additional allocated storare we call the
frame cxtension. The total storagc is called the total frame of

tne module, or usually just the module frame. We refer to the
two frame pleces generically as segnents.

4
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A frame contains other information, in addition to named
variable and temporaries. Whe. a module is entered, the callee's
frame 1s initialized with ¢two pointers (perhaps implicitly);
one, called AL1NK, 1s a linked access pointer tn the frame(s) which
contains the highe. level free variable and parameter bindings
accessible within this module. The other, called CLINK, is
assoclated with control and 1is a generalized return which points
to the calling frame. In Algol these are called the static and

dynamic links respectively. In LISP, the two pointers usually
reference the same frame since bindings for variables free in a
module are found by tracing up the call structure chain. (An
exception is the use of functional arguments, and we illustrate
that below.)

At the time of a call (entry to a lower modules), the caller
stores in his frame extension a continuation point for the
computation. For proper value checking, an expected return value

EZEE nay also be stored. Since the continuation point is stored
in the caller, the generalized return is simply a pointer to

the last active framer.

The si.e of a basic frame is fixed on medule entry. 1t
1s just larpge enougn to store the parameters and the link
informavion. However, durinpg one fun:tion activation, the
required size of the frame extension can vary widely (with of
course a computable maximum) since the amount of temporary
storapge used by this module before callinpg different lower
modules 1is quite variable. Therefore, the alloucation of these
two frame sepments may sometimes (advantareously) be done
separately and noncontigfgunusly., Thic requires a iink back
from the frame extension to the basic frame (denoted as BLINK

below). Figure 1 summarizes the contents of a frame,
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Figure 2a shows a sketch of an algorithm programmed in
a block structure language such as Algol 60 with contours
(c.f. 18) drawn around access modules. Bl has locals N
and P, P has parameter N, and B3 locals Q and L., Figure 2b
is a snapshot of the environment structure after the following
sequence: Bl Is entered; P is called (just above Pl, the
program continuation point after this outer call); B3 is
entered; and P is called from within B3. For each access
module there arc two separate segments - one for trhe basic
frame (denoted by the module name) and one for the frame exten-
sion (dencted by the module name¥*). Note thut tre sequence
of access links (shown with dotted lines) goes directly from
P to B1¥ and is different than the control chain of calls.
However, each poinis higher (earlier) on the stack.

A point to note about an access module is that it has no
knowledge of ary module belov it; if an approp:rriate value (as

specif'ied by the return value .yne) is provided, continuation in thet
access module con be achlieved with only a peinter tce the con-

tinued frame. Ho information stored outside thls frame is
necessary.

F pure 3 shows two examples in which more than one independent
environment structure is maintained. In Figure 3a, two coroutines
are shown which snare cornon access and control environment [,
liowever, note that thce frame extension of A has been copieu so
that returns from B and 9 may ro to daifferent continuation roints.
Since frame L is used vy two processes, if cither coroutine were
deleted, the basir frame for A should not be ueleted., Hote

nowever, that onc frame extens® . ¥ could be deleted in that case,
since frame extensiens are never ref enced directly by more than
wiue rroecess, In fi~ure 3b, corouti.. Q is siown caliinm a funcllion
oowith external access cnali: throush ¢, but w'th control to return
to Q.
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2.2 Primitive Functions for Retention

In this model for access module activation, each frame is
generally released upon exit of that mcdule., Only if a frame
is still referernced is it retained. All non-chained references
to a frame (and to the environment structure it heads) are
made through a special data tyre called an environment descriptor.

Note tnat heads of a’l environment chains but that for the
currently a:tive process are referenced from this space of
environment descriptors. The three primitive functions: 1)
create an cnvironment descriptor (ed) for a specified frame;

2) chanre contents of an ed; 3) create a rew frame with access
and control chains specified by ed's and execute a computation
in that context., Note that none of the pr.mitives manipulate
existing frames or pointers; therefore only well formed frame
chairs exist (¢.g. no riag structures).

environ(pos,n) creates an environment descriptor for
the frame specitied by pos. If n is
given and non-zero it copies the n
precedin~ framcs. This allows creation
of identical contexts whichk do not share

bindings. n is usually omitted.

setenv(olded,pos) chanres tlie centents of an existing
enviroament descriptor olded to poiut
to the freme specified by pos. HReleases
storare referenced onlyv throuch previcus

contents ¢ f olded.

10
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enveval (form,apos,cpos) initiates a computation within an
environment structure; it creates a
new frame, with ALINK pointing to the
frame specificd by apos; CLINK pointing
to the frame specified by cpos; and
form the code or expression to be
executed or evaluated in this new
ervironment. If the cpos argument
is omitt.d, it is taken to be identical

to apos.

A frame specification (e.g. £os; apos; and cgos) is one of
the following::

1. An integer H:
a. li=0 specifies tnrz frame allocated on activation of

the functicn environ, setenv, or enveval. In each

case, the cortinuation point is set up so that a
value returned to tnis frame (usine enveval) 1is
returned as a value of the orirsinal call to environ,
setenv or enveval.

b. 1i>0 specifies the frame i links dcwn the ccntrol
link chain from the =0 frame.

¢c. <0 sprecifies tne frame |il] links down the access
link chain from t:.e Ns0 frane.

2. The distinsuished constant iIL. This value specifiecs rlobal~-
access only to be shared, and/or control-return to the systen
(process halt). Doines a setenv(ed,lIL) releases frame stnrare
formerly referenced only tnhrourh ed, without tyine up any ~-u
storapge.

3. An ed (environment descriptor). When riven an ed arpument

created by a prior call on environ, environ creates a new

descriptor with the same contents as eld; setenv copies the
contents of ed into olded.

11
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4, A 1list "(ed)" consisting of exactly one ed. The contents
of the listed ed are used identically to that of an
unlisted ed. However, after this value is used in any
of the three functions, setenv(ed,NIL) is done, thus
releasing the frame storage formerly referenced only
through ed. This has been combined into an argument form
rather than allowing the user to do a sctenv explicitly
becausc in the call to enveval the contents are needed,
so it can not be done before the call; it can not be done
explicitly after tae enveval since control might never

return to that noint.

2.3 Non-Primitive Control Functions

To illustrate the use of these control [unctions, we will
defire some non-prinitive functions wnich are more familiar.
(We use here the syntax and semantics of a LISP-1like system;
although we use tice LISP idiom, the conversion to cther lang-
uages 1is straightforward.) We will define function which creates
a functicnal ooject which carries its own context, and snow how
the lanpguare evaluator uses this object. Ve will then define in
terms of our vasic environment manipulators sorie non-hierarchical

sontrol functions for backtrackin;; and coroutine calls.

e berin with an obvious extension of enveval; we can define
envapply which takes as arguments a function name and list of
(already evaluated) aresuments for that function. Enveval requires
a form and envapply sirply creates the appronriate form for
cnveval. Unpercase itens ure literal objects in LISP).

envarply {fn,arrs,alrame,cfrane) =

enveval(list (APPLY,1list (QUOTE,fn), 1ist(QLUOrL,ares)),

aframe,cframe)

12
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A central notion for control structures is a pairing of
a funct%ion with an environment for its evaluation. Followiig
LISP, we call such an object a funarg. Funargs are created
by the procedure function, defined

function(fn)=11ist (FUNARG,fn,environ(l))

That is, iu our implementation, a funarg is a 1list of three
elements: the indicator FUNARG, a function, and an environment
descriptor. (The argument to environ makes it reference the
frame which called function. To get an environment other than
the current one, function can be evaluated within an enveval.)
A funarg list, being a globally valid data structure, can be
passed as an argument, returned as a result, or assigned as the
value of appronriately typed variables. When the language
valuator gets a form (fecn argl arg?2 ... argn) whose functioral
object fcn is a funarg, i.e. a 1ist (FUIAKG <fn-name> <ed> ),
it creates a list, args,of (the values cf) arrl, arf2, ..., arsn.
and does

envapply(second’/fcn),args,third(fen),1)

The environment in this case 1s used exactly like the oripinal
LISP A-list.foses“" has disc ssed the use of function in LISP
for preserving bindine certe .5, Figure ! 1llustrates the
environment structure whcre a functional has been passed down;
the function foo with variables X and L has been called; foo
called mapcar(x,furction(fie)) and fie nas been entered. ilote
that along tne access chain the first free L seen in fie 1s
bound in foo, althioush there is a bound variable L in mapcar
which occurs first in the control chain. Since frames are

retained, a funarg can be returned to nirher contexts and still

13
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work. Further, as described below, funargs serve as the basis
for a number of control regimes, in addition to acting as a
device to save a binding environment.

Coroutines, i.e, coordinated processes which each maintain
thelr own separate hierarchical control and access environment,
are easily implemented using these primitives. A coroutine is
simply a funarg used in a particular way. It is created by
function and manipulated by the routines start and recune. To

initiate a process represented by the funarg fp, use start:

start (fp,args) = curproc«fp;

(comment curproc is a glou21 variable set to
the current process luacarg);

envapply (second(fp),args,third(fp), third(fp))

Once the variable curproc is initializea, and any coroutine
R S
started, resume will transfer control between n coroutires.

resume( fnare,arrs,backfn)=
prog((result,fig)

(comment prop introduces an access module with local
variables result and flg.

backfn is thc function to be called when
this process is resurneua)

second(curproc)<«backfn

(comment replace old bacrfn for resume back nere)
result+setenv(thira (curproc),O) 9

(comment result is set wien a resume cores back here.

flc will have been set wien a resume cores back through\
g setenv.

if fl~ then return(result); Sepoty
fir+l;

surprcc+fnarg;

cnviny 1y (second(fnars) arrs , third(fnary; )€hird(fnary))

(cemnernt  only done first tine))

15
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We call a funarg used in this way a process funarg. The

state of the "process" 1s updated by destructively modifying
the list to change the continuation function, and similarly
directly modifying the ervironment descriptor in the list. A

pseudo-multiprocessing capability can be added to the system
using these process funargs if each process takes responsibility

for requesting additional time for processing from a supervisor
by explicitly nassing control. A more automatiz multi-processing
control rerine using interrupts is discussed in section 4.4.

Backtracking 1s a technigque by which certain environments are
saved before a function return, and later restored if needed.
As an exemple of its use, consider a function wiiich returns one
(selected) value from a set of computed values but can effect-
ively return an alternative selection if the first selection was
inadequate. That is, the current process can fail back to a
previously specified failset point and then redo the computation
with a new selection. A sequerce of different selections can lead
to a stack of failset points, and successive fails can restart
at eacn in turn. Backtraciins thus provides a way of doin~ a
cepth first-search of a tree with return to nrevious branch
points.

vic define faii anu failset velow. Ve use pusi(L,a) which
adds g to tne front of L, and pop(L) wunich removes one clement
and returns tne first eleent of L. Failist is the staclk of
fallset points. As deflred velow, fail can reverse certain chaaces
when returning to tlie previous failset point by explicit uirection
at the point of failure. (To automatically undo certain side effcets
and birdin~ ctanres we could defline "undoable" functicns wiieh
adi to fallist forms whose evaluation will rcset appropriate
cells. Fail coulu tuen eval all forms through the next ed and

then call enveval.)

16
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failset()=push(failist,environ(l))
(comment 1 means environment of failset)

fail(message)=enveval(message,list(pop(failist)))

select(set,undolist ;=
if null(set) then fail(undolist) (conment reset values)
else prog((flp)
failset();
if flg then veturn(select (s«*%,undolist))};

(corment flg is set if we have failed to this point, and
thien set has been vnopped.) T

flp«T;

return(pop(set))

Floyd%oﬂewitt{uGolomb, and Baumert12have discussed uses for
backtracking in problem solving. An example of its use is the
following program for placing 8 queens on a chess board such
that no two can take each other. 'The functicn conflict(s,cans)
(not shown) checks whether squarc S chosen by select for column
N will fit with the previously renerated answer for the first
[i~1 columns.

17
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queens ()=
prog((n,ans,m)

1p

pi:

n+0;

! nen+l;

if n>8 then return(ans);
m+se1ect((1,2,3,H,5,6,7,8),

(PROG () i¥+N-13POP(ANS)));
(comment Both arguments are quoted forms.

The prog form in the select is evaluated
only in case of a failure 1in select.)

if conflict(m,ans) then fail();

(ggmment continue selection until select produces a
good value, or fails and resets n and ans.)

push(ans,n);
#o(lp) )

Figure 5 shows the control structure saved for queens after
it has successfully moved to the third column.

18
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3. Implementation

3.1 Retention on the Stack

The model cf section 2.1 assumes that a frame is retained
so long as it is actively referenced. With a bit of bookkeeping,
it is possiblé to determine when each frame ceases to be
referenced, so that each frame can be freed by the evaluator as
soon as this occurs. Further, frames can all be allocated on
a single stack. This section presents the technique for
so doing.

The first issue, bookkeeping of frame references, is handled
by two new fields added for this purpose to each frame. A
basic frame sepgment can be referenced only from 1lts corresponding
frame extensions. The CXT field in the basic frame counts the
number of frame extensions for that basic frame. A frame

extension segment can be referenced in any of three ways: 1) by
the basic frame of an immediate control descendent (i.e. "callee"),
2) by the basic frame of an immediate access descendent (e.g.

lower lexical range), 3) by an environmert descriptor. The USE
field in the frame extension counts the number of references to
that frame extension.

In the case of sirmple LIFO control, CXT and USE are always
equal to 1. LEnviron creates an envirormment descrinter and
tnerefore, as part of its actions, incremeats by 1 the USE count
of the appropriate frame extensior. when the USE of & frame
extension exceeus 1, the frame extension canncot be uced for
runnines in (i.e. execution) since the several uscrs of that frame
extension requirc the state to remain the same, but further

computation in that frame extension would chanfe the state (e.r.
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destroy some temporarices and/or move the continuation point).

Hence, whenever control returns to an access module where the
USE count exceeds 1, a copy of thc frame extension is made,

USE is decremented by 1 (since there is one less user of that
frame extension) and Ci7 is incremented by 1 (since there is

one additional frame extension which references the basic frame).
Figure 6 shows the structure resulting from a program in which
Pl calls P2 which calls ENVIROH(1l), thereby creatirns an environ-
ment descriptor refering to P2. When exiting any access module,
the frame extension is always deleted, If the CAT in the basic
frame 1is 1, ther: the basic frame is also deleted; otherwise,

the basic frame remains. This, then, is tue bLasic retention

technique., Ve return to the details below.

The second issue, storape nanasenment witn a stack, is
handled as follows. On entrince to an access mcuule, a basic
frame ani frame extension are pushea in contirmuous locations
on the ena of the stack. On exit from the nmodule, if both basic
frame and frame extensicn arc deletea, then tre ena of stack
pointer is restorcd to its position on entrance. If, however,
the basic frame is not aeleted (Cii>1), then it remains where
it is on the stack. 1In general, therefore, waen eontrol returns

to an access module with frame cxtension L#¥, it ray be that
— 3

tnere is a vasic froare immediately below E¥,  Suppese, for examnle,

taat nrocedure PO calls Pl owuiicn enlls environ(l) creatine
Bl Pl omext calls enveval(P(.),2,2); P2 then cails environ(i)

to ereate Lb,. Fipfure 7a shows Lie stack structure and

o
reference counts wien control coner Luer Lo 2. unrose O
causes zontirel to reture to Fioge.lrewioc b, (el L ocanee
eutin~ enveval (VU 1ol (e )) TLoIn ol moositae

to run Pl¥ whore iU lies, s'nce the warcie froame of P Lloecis tise
stack. hLence, Lne evgluator ranes a co:» of 1% callew P1'E

3 3 3
at tie seieh cnd ane coerenents the Uln count of LI, If the

evve

e vaiue of Ll

7oA o g 0.0 ~ e TT® 2 i .
n Pl¥ is z2ero, Lhen toe sement P1¥ Lo doeletew,

4

In citiier case, PL'% 15 ugeu for further counutation.  Firure 7o

llustrates tie situation. (Tne dashed line is tie LLINDR Tron

P1'¥ to P1). Reproduced from E
21 be<t avaiiable copy.
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Whenever control returns to a frane extension E¥ which cannot
be run where it lies (due to another segment beneath and
blocking it), a copy of E¥ is used in its place, perhaps
deleting the original frame extension, Such deleted.
" segments provide hrles for the growth of the frame exten-
sions directly above them when (if) the basic frame
immediately above the hole 1s deleted. lence, they serve as
mini-stacks. It 1s the responsibility of the Delete Segment
routine to appropriately record the space made available by a
serment deletion so that it may be reused. Ve return to this

issue and the issue of stack overflow in section 2.5.

With the above description of intention as an extended
comment, we cin now state the algorithms for using and maintaining
the reference counts. Two action points during evaluation are
crucial:

(1) enterins an access module
(2) exiting an access module and returning .o its caller

Also, the retention primlcives each manipulate the reference
counts

(3) environ

(4) setenv

(5) enveval

Note that these five routines cannot properly be wvritten
in the prograrning lancuare. “The actions used (e.~. deleting a
sepgment) ard data types enployed (e.f. pointers to fram s) are
incompatible witii the security ol the evaluaticn mechanism,
since they could be used to cause system errors. Partially to
emphasize this point and partially for convenience, we switch
notation. Lknglish descriptions are used where this simplest and

24
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an Algol-like syntax is used elsewhere. Liberal use is made
of pointer-valued variables and the convention that if P is a
pointer to a frame then P.USE, P.CXT, P,ALINK, etc. denote the
fields of the basic frame and frame extension. 1In €he case of
environment descriptors, we employ a fleld, FPTR, which points
to the frame extension for the appropriate environment.

Enter Access Module (F) =

begin

{13 push F and F* on stack;

[2] F.ALINK«F.CLINK+address of caller;
[3] P.CXT«F.USE«l

end

Exit Access ilodule (F) =

begin

[1] Delete Sepment (F¥); corment no one else cian be in 1it, since

we are running in 1it;
[2] if F.CXT=1
then begin Delete Sepment (F);

if F.CLINKAF.ALINK then = °

Release Accecs Chain (F.ALINK)

end

else bermin F.CXT«F.CXT-1;

comment next, propogate back (by incrementing
USE of caller) the fact that a callee still

exists;
F.CLINK,.USE«F.CLINK USE+1

end;

]
§
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AT e

[3] let E be F.CLINK; i

comment now return to E, the caller;
-

[4] if E.USE=1

then if Sufficient Room beneath E*¥ to run

then Run In E¥

else begin Copy E*; Delete Segment (E¥); Run In copy end 3
;
i else begin E.USE+E.USE-1; Li
E E.CXT+E.CXT+1;
% Copy LE¥;
% Run In copy ‘

end

Environ (POS) =

begin

(1] Create a null environment descriptor, ED;

(2] Environ2 (ED, POS);:

[3] Return (&D)

end

26
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Environ2(£D,POS)

begin
[1] 1let F be the frame specified by POS;

[2] 4if F is the null frame then Return;

CATTHNRI

[3] E=D.FPTR+address of F¥;
F4] F.USE+F.,USE+1l;

[5] if POS is a list of an environment descriptor, e.g. of
format "(ED')", then Setenv (ED',NIL)

end

Setenv (ED,POS)=

T e

.
c
1Y

gin

*
~
ot
 M—-—

tenp+LD,.FPTR

(2] FEnviron2(ED,POS)

= a=

{3] if temp#KIL then Felease Yrane (tern);

Ih] teturn (BL)

Enveval(F,APOS,CP0OS) =

begin
[1] 1let A be the frame specified by APOS, and C be the frame

specified by CPOS; (if CPOS is missing, let C be A);
"[2] C.USE+C.USE+1;

if C#A then A.USE«A,.USE+1;

27
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[3] 1let E be the frame for this call on Enveval;
Release Frame(E);

(4] if segment E¥* is not deleted in step [3] then set the
continuation point for E¥* such that if control returns
to E*¥ with value V, then Enveval will return to its
caller with value V;

[5] 4if APOS is a list of an environment descriptor, i.e.
"(ED)" then Setenv(ED,NIL); if CPOS is a 1list of an
environment descriptor, "(ED')", then Setenv(ED',NIL);

[6] Push a frame on the stack, with ALINK and CLINK pointing to

A and C respectively, and evaluate form F

end

Release Fréme (p) =
comment P is always pointinm tfo a frame extcnsion
(1] 4if P.USE>1 then begin P.U3E«P.USE-1; Return end:
[21 if P.CX1>1
then begin P.CAT+P.CXT-1;
Delete Segment (P¥);
KHeturn
end ;

comment if neither [1] nor [2] aprlies then the

entire frame is to be released s

28
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o Al

[3] if P.CLINK#P.ALINK then Release Access Chain(P.ALINK);

(4] temp+P.CLINK;

[5] Delete Segments (P,P¥); i
(6] P«temp;

(7] go to [1]

end

Release Access Chain (A) =

comment almost identical to Release Frame (P) except this
follows access pointers;

begin
(1] if A.USE>1 then begin A.USE+A.USE-1; Return end

[2] 1if A.CXT>1 then bepgin A,CXT+A.CXT-1;

Delete Segment {(A¥);

Re<urn
end;
[3] temp«A.ALINK;
[4] Delete Segments (P,P¥);
[5] A<temp;
[6] go to [1]
end
20
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As an example of the operation of these algorithms, consider
the 8-queens problem. Figure 8a shows the stack immediately
after environ(l) is executed in the first failset encountered.
Figure 8b shows the stack when the third column of the board is
being considered (situation is identical to that of Figure 5).
Figure 8¢ is the stack configuration that would result were a
conflict to occur, causing failure back to the second column.
(Note that 1in the case of backtracking, ztack storage is used
and freed in strict LIFO urde:).

3.2 Storape ilanarement, Compactification, and Garbage Tollection

The above algorithms suffer from three omissions, First,
they leave undefined the auxilliary roeoutines which perforn segment
deletion ard the tcct to see wnether there is sutficient room
beneatn a module for runnins. Secoiu, since a copy is made at
tne staci end whencver a frame extension cannot be run where it
lies, the staclk tends to mrow ever downward. As this ccmmonly
oecurs in conjunction with deleted scirrients occuring in the
used portion of tie stack, the stack may overflow although its
total size uoes not exceed tihie storare actually reauirec.
Possible solutions are stack compactification to saqueeze out all
the holes, or keeping cne holes available for runnine in. Third,
while environrient descriptors are explicitly created (by calls on
EEXZZQQ) tuerr nay not be explicitly freed (since several pointers
might reference the same environment descriptor). hence
reclaining environment uescrintors (and tracilir the appropriate

fraries) must be carried out automatically, by =arvare collection.

(R3]

ithe basic technlaue for sconent deletion ana testine for

roon to run is rclatively sinmplce. * Two adaltional fields are

NEAS RSN BTN
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used in each segment. Each segment holds both a slze field which
specifies its current extent (this is fixed for basic frames

but varies in time for frame extenslons) and a max fleld

which 1s the amount of free stack storage immediately below that
segment. (A segment having another segment immediately below

it has _H_lili(_:O) .

The general situation i1s as followc. Computation proceeds
at some point in the stack described by a local stack descriptor.
(.n general, this 1s not the real end of the stack but rather

some hole created previously). Computation stays within the
local stack rericn until (1) the local stack overflows, (2) a
return is made from an access module G in the reglon to a caller F
winich is not in the rerion. In case (1), the serment wi:ich over-
flowed 15 copied elsewhere and the nmax field of the last

sermenl remaining in the old local stack rerion is zet to

reflect tlie amount of storage left in the resion. In case (2),
tihe remion is welns abandoned, so the region size 1s added to

the max component of the last segment above the region,

Yhen returning to I, F's max 1s used to determine the local
stack descriptor for thc new stacr vegion. There is room to

run if max exceeds zero, Whenever a se_ment 1is deleted, its

max field plus its size fleld is added to the max field

of "ne serment Immediately atove it.

The effect of thir tectininue is to break the stack up into
a number <f substacks (wh never nultiprocessing occurs). When
control returns to a nodule, the nodule is run where it lies if
possible. 1If stack overflow occurs due to a segment &, that
sepment 15 copieu vo sone free storare and the local stack repgion
is temnorarily abandoned. Storage for the new segment copy may
be at the rcal end of the stack or elsewnere. We return to this

point below.

32
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As an example, consider the stack structure corresponding
to the corontine pair of Figure 3. Specifically, suppose that
processes P1 and P2 are created by the following sequence:
Module A calls B which calls C which creates a process point
P1 and returns to B which returns to A which calls Q which
creates a process point P2. The stack structure 1s shown in
Figure 9a. Suppose P2 resumes Pl' Since C* cannot be run where
it lies, a copy 1s made at the stack end creating a hole above.
If module C calls module D, Figure 9b results. When D returns
to C the stack is simply flushed; however, when C returns to B,
segments C* and C are deleted. The deletion of C provides

stack space for B¥ to run where 1t lies, as shown in Figure 9c.

Two different strategles are avallable for handling the
overflow of local stack regions, The first, the non-linearizing

strategy, 1s the simplest and glves preferential treatment to

the real end ¢f stack. VWhenever a local stack overflows, the
copy 1s made at the real end of stack, and the remainder of the
stack becomes the "current local stack". The hole at the ena of
the old local stack wlill be used only 1f control comes back to
the corresponding frame extension. Essentially, mini-stack
reglons are used only by thci. creators, so that fragmentation

is relatively common whenever co-processes occur. When ai1 over-
flow occurs at the real end of stack, a stack compactification
can be used to move all segments up by squeezin,; out all the holes,
(lax flelds are, of ccurse, set to zero). Thils creates a

sinrle block of free storage at the real end of stack whose size
is the sum of the o0ld hole reglons. Svch a compactification can
be carried out in a single linear sweeip of the stack and requlres
no addicvional storage.

33
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The second, the lirearizing strategy, gives no preferential

treatment to the real end of stack. A pool is maintained of

all the free regions on the stack. This includes the block
composing the real end of stack as well as holes created by
segment deletion. When control returns to a frame extension E¥,
it is run where it lies if the storage reglion beneath it is free.
If not, or if the frame extension overflows its region during
running, some block in the free stack region pool is chosen as
tile place to copy E¥ and continue computation. Since use of a
storage block is not restricted to the process which created it,
the frequency of required compactifications 1is substantially
less than with the non-linearizing strategy. Compactification
is st. .1 required, however, since fragmentation may still occur,

resulting in many small useless free blocks. Further, since
reuce of storarge blocks is not tied to processes, there will be
inore interlcaving of storage of different processes and more
frequent overflow of local stack regions. Ilence, this strateny
ircludes linearization as part of compactification. That ios,
stack sermants are reordered so that for each rnodule A, sonme
mnodule © called bv A is placea immediately below A. Tecnniaues
0 Bobrows].

They suffer only in requiring additional storare - either in the

for such a linearization are well-knowr [ Minsky,

address space or in the file systen.

Pith eitner stratesy tihere ic tie rossibility tint compact-
ification willi find feiur or o Loles to colleet. 7Uhat iz, stack
overflow due to a larrc conrrutat o remaings possible., With our
technianue tnic presents no rrou'en, Computaticn can proceed in
a new staek sernment whlelh need not be contisuous to the existing
staciz. Since thne techniaue of tils paver does net assume con-
ti~uity of caller anu callece, nonh-convicuity of stack serments

doesn't nurt and reaquircez no awditional mechanism.
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Garbage collection of environment descriptors is a separate
issue not necessarily coupled with stack compactification. A1l
environment descriptors are allocated in the free storage region,
i.e. heap. To make reclaimation simple, a region (or regions)
of the heap 1s reserved to hold only environment descriptors.
The trace and mark phase of garbame collection 1s standard,
except that all elements of the environment descriptor block free
list are marked. Hence, during the sweep phase, the only environ-
ment descriptor blocks wnich are picked up are those which are
reclaimed by this collection. Each such environment descriptor
is treated as if the program bad executed setenv(ed,liIL) on this
ed. That 1s, the assoclated frame is frced using the Release
Frame algorithm of section 3.1. Once frame release has been
carried out, the environment descriptor block is added to tiue
existing free list of environment descriptors.

Since rarbage collection of environment descrintors may
free sorie number of stack segments, it mey be useful to include
such a marbage collection whenever stack compactilfication occurs.
Alternatively, a stack compactification mirht te included as
part of each rarbare collection. Whici (if either) of tnese is
nerformned depends on the relative expense of <arbare collection

anu stacl: compactificatien.
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4, LExtensions

4,1 Shallow Binding

The model used in section 2.1 suggests that non-local
variables are accessed by searching the ALINK chain of frames.
In the case of simple lexical identification for free variables
(e.g. as in Algol 60) there is a well-known implementation
alternative - the display of Dijkstra. If, however,
dynamic identification is used for free variables (or if enveval
is used to set up arbitrary environments not known at compile-
time) then thc display technique cannot be used. But there 1is
a different technique for immediate access to free variables which
is compatible with the general model and our implementation.
Wit appropriate enhancements, shallow binding works correctly

2
and efriciently.” > 7» 31

The basic technique of shallow binding has been used in
LISP implementations for some time. The method is to associate
with each atom (i.e. symbol table entry for an identifier) a
special cell, the value cell, wnich points to the current para-
meter binding for that identifier. Lacnh non-local variable in
a procedure is represented by a pointer to the atom (or directly
to its value cell); hence, a non-local variable can be accessed
by indirecting through the value cell for that atom. Whenever
a parameter binding 1is made or a local variable is declared, say
for the variable X, the value cell is urdated. The new binding
for X includes a field old-adr which is set (during binding) to
point to the previous parameter binding for X. When a module 1is
exited either explicitly or implicitly (e.g. by a non-local goto)
the value cell for the olad value is reinstated.
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With the introduction of enveval, the simple shallow binding
strategy no longer works since application of erveval can change
the entire set of "current" bindings. It would, of course, be
possible to handle enveval by updating all variables, searching
the new ALINK chain to find the new bindings. However, this
is needlessly expensive.

A more sophisticated technique is to update value cells
only when values are actually required. Each value cell contalns
an indicator (described belcw) which specifies whether or not
the value is current. A variable is then accessed as follows:
if the indicator specifies that the value cell 1s current,then
it is used directly; otherwise, th2 access environment is .
searched, the proper binding founa, the value cell is set to
point to the current binding,, and the indicator is set to reflect
this,

The indicator is an access chain descriptor (ACD). At any

point in tire there is a global ACD which specifies the current
access environment., An indicator in a value cell is current

if and onlv if 1t is eaual to the global ACD. When enveval is
called, if the new (i.e. specified) access environment is not
identical to the current environment then a new, unlique, ACD

is generated and becomes the global ACD, Further, if the access
and control links are different, and the control environment is
the environment of enveval, then the old ACD is saved (e.g. as
a hidden parameter to the new frame being formed). On frame
exit, there arc then three possibilities: (1) if ALINK=CLINK
then the normal (i.e. local) updating of parameters occurs; (2)
if ALINK#CLIHNK and there 1s an ACD which was previously saved
by enveval, then it is restored as the global ACD; (3) other-
wise, a new unique ACD 1is renerated and becomes the new rlobal
ACD,
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As to implementation, ACD's can be «ny unique descriptors
of environments, e.g. integers or pointers to blocks allocated
in the heap for this purpose. The latter has the advantage of
allowing garbage collection of ACD's wnen they become unused.

4,2 Other References to Frames: Pointers and Label-Valued
Variables

Viewed functionally, the technique of section 3.1 is merely
an efficient means for insuring that frames will be retained so
long;, as they are needed. The control primitives of section 2.2
use such frames to preserve environments for variable access
and control return. There are, however, a number of other uses
of frame retention for which the proposed implementation tech-
nique provides an efficient realization. Dlost notable are
labei-valued variables and explicit pointers to data objects in
frames. ( Reynolds uses label variag}es as a basis for his control
structure operations in Gedanken.)“”

Label-valued variables present a classic problem to the
language implementor (e.r. Fenichel? ). Such a variable V may
be assigned a label value belongings to a local ranse, for

exanple

berin ...

3 Lt o0 3 V€L ... end

If the scope of V is larser than the range, then the phrase goto
V nmay be encountcrea after the block has exited. It is then
necessary to reenter the exited block. With the rroposed reten-
tion techniaue, tnis presents ro problem since the frame for the
block can be retained so loni as any label variable rcfercnces

a label value in the block.
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Specifically, the technique is as follows. Two sorts of
label values are distinguished by the implementatien* - private
label values and public label values. Label constants are
private label values; the values of label-valued variables are
public label values. A private label value may be used only in
ranges lexographically contained within the module where It 1o
defined, for example in

begin

-

begin ... goto L ... end ;
end

Since they can only be used under safe circumstances, private
label values can be implencnted using standard technigues, e.sg.
as a pair <program address, static olock number> or as a pair
<prosram address, frame pointer>. A public label value, on

the other hond, ~an be carried anywhere. It 1s implemented as

a pair <,rogram address, environment descriptor for the (least)
frare containing that prosrarm address> . Yo insure thc intesrity
of tlie nublic value, it is treated as a primitive data type not
deconposatle into 1ts two parts. Lowever, since the ed of such
an object may want to be used In other contexts, we can extend
pos to iriclude such a possible object with the obvious interprect-

atZon.

¥Phe distinction is an imnlementation i.e. compilation concent
and is nade only for c¢fficiency. The programmer sces no
difference and simply transacts with label values.

Lo
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When an ass. nmment of a constant label value to a
label-valued variable occurs, the private lavel value is
converted, by the evaluator,to a public one by a call on
environ to create the appropriate environment descriptor.
Subsecuent assignments or parameter bindings usins the public
label value need not (i.e. do not) cause the creation of new
environment descriptors. All label-valued variables which
possess that public label value share the same environment
descriptor. With this implementation, it is guaranteed that
a frame is retained so long as any active label-valued variable
referernces it, The normal garbage collection of environment
descriptors frees such frames when all the relevant label-valued

(bl

variables are given new values or destrored.

(% had

Similar considerations apply to variables wuich can point
to data objects stored in frames; i1.e, problems arise if a frame is
deleted whiie pointers to it persist. The situation does not occur
in LISP since all actual data objects reside in tne heap. However,
in lanruares such as Alrol 68 ana PL/I, this is both possible*
and grevious. (In both lanpuares, the result is an undefined
prosram). Araln, there is a straichtforward solution based on
the pronosed retention techniaue. Vhncnever a variabiie V whose
scope exceeds a nodule R is assisnea the address >f a variable
local to H, tne (private) address is converted to a global value
by pairing it (indivisibly) with an environment cescriptor wirich

references Y. So lonw as the pointer value cxists, the environ-

ment descriptor will not be marbare collectedu, ang the frame for

i and its supporting frames will be retained.

Reproduced from
best available copy. ¥
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¥ Tn PL/I suca a pointer value can be obtained by tne bullt-in
function AUDR,
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4,3 Interrupts and Monitoring

4.,3.1 Interrupts

In a practical system, provision nust be made for handling
the occurence of conditions which demand the interruption of an
ongoing process and transfer of control by a processor to
another specified process. LExamples arc hardware interrupts
for floating point underflow/overflow, end-of-file indicator
read, suspension of activity demanded by another processor, and
e istence of a specified rmonitored condition (see 4,3.2). Such
interrupts are handled in our model as follows. 'then the
intercunt occurs, the current frame is closed off. That 1s, the
machine recisters and other state information are saved in tae

frame extension, ard the continuation pcint field is set to

tne address of a routine wiich will cause state restoraticn.
Then a process funarg assoclated with the interrupt condition
1s resumed as though it were explicitly called from the

closed frame, with an arpument ed specifying this closed frame

tc Le restarted.

At tho point of interrupt tne state of tiie process may be

clean or unclean. An unclean state is onc in which basice communi-

ca.ion assumptions about states of ncinters, oueues, buffers,etc.
are nct true. For example, certain machirne reristers may contain
pointers which siould be traced in a rarbare collection., Obvicusly,
nrocesses which opcerate when environments fall to meet approoriate
assumntions nust guarantee not to interact inappropriately, e.p.
cause a rarbare collection in tihe cited example. Ctandard tech-
niques exilst to ensure clean states uhen required. Software
Interrupts can Le prosrammed to occur at only such points., Asyn-
caronous nardware or real-time interrupts can perform the minimal
necessary operations and induce a software interrupt for contin-
uation at the next available time, For timely interaction, such
software interrupts shiould be allowable at all clean points,
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Each Interrupt condition is identified by name. After the
current frame is closed off, the interrupt dispatch table is

searched for an entry labeled with the interrupt name. The entry

has two fields: a level number and an action funarg. Tae le -1
specilies the relative priority of t.e interrupt. liigher
priority interrupt conditions take precedence over (anua hernce
interrupt) lower priority levels; 1lower priority interrupts

are queued while higher priority interrupts continue processing.
When an interrupt is to be processed (i.e. its priority exceeds
that of any waiting interrupt) the funarg action is applied

(c.f section 2.3 Thomas28 discusses a variation of this model.)

4.3.2 tlonitoriig

A useful control regima which can be built from our
primitives using interrupts is that provided by a pgeneralization
of the ON CONDITION of PL/I. In essence, this allows the moni-
toring; of a process P for attainment of a condition C. ilhenever,
C holds, the execution-of P iIs Interrupted and a process Pc
associated with the condition is executcd. Since Pc is programmer-
defined, the effect of monitoring can be any of the following:
nalting execution of the job, journalizing an error vut continuing,
recovering from the error and continuing, normal proecram flow
(e.r. tne condition monitoring is used for cisnatch loric in the

main proeram loop).

Yonitorins arbitrary conditicns on contemporary machines re-
quires a mixture of hardware and software. That is, nardwarz is
usually used for floatine point overflou, software for testing
the condltion X+Y22#*7 and sonetimes nardware, scmetimes softwarc

for subseript cut of ranse. A general technicue for software
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monitofing entalls changing ordirary variables to "sensitive"
ones; e.g. to monitor for the condition X+Y22*¥Z, the variables

X,Y, and Z are made "sensitive" by the evaluator. (This can be o

il BT

implemented for exaiuple by hardvare flag bits, speclal data

types in interpreters, and speclal code generators in compilers). : ~—
All accesses to X,Y, or Z then pass control to a general moni-
toring process which tests whether the variable has been changed
by the access, and, if so, whether the condition being monitored

now holds,

L.4 Coordinated Sequential Processes and Parallel Processing

gl
L
k3

It should be noted that in the model of section 2, control
must be explicitly transfered from one active cnvironment to
another (by means of enveval or resume). We use the term

coordinated sequential process to describe such a control regime.

There are situations in wiiich a problem stetement is simplified
by taking a auite different point of view - assuming parallel
processes which synchronize only when required (e.g. by means
of Dijkstra's6 P and V operations). Using our coordinated

sequential processes with interrupts, we can define such a control

rerime.

In our model of environnent structures, there is a tree
formed by the control links, a "dendrarchy" of frames. One
terminal node is nmarked for activity by the current control
bubble (the point where the lanruape evaluator 1is operating). 1l
othier terminal nodes are referencced by environmenc descriptors
or by an aceess link nointer of a frame in Lhe tree. To extend
the mouel to nultiple parallel processes, k branches of the tree

nust e simultaneously narked active. 7“hen the control bubble
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of the processor must be switched from one active node to

another according to some scheduling algorithm, To meet Dijkstra's
assumption of non-zero progress for each cooperating sequential
process, the algorithm must guarantee each actlve node a minimum
service,

1o lmplement cooperating sequential processes in our model,
it is simplest to think of adjolning to the set of processes a
distinguished process, PS, which acts as a supervisor or monitor.
This monitor schedules processes for service and maintainrs
several privileged data structures (e.g. queues for semaphores
and active processes) which are used by the parallel process
manipulations functions defined below. (A somewhat similar tech-

!
nique 1is used by Prennerz').

The basic functions necessary to manipulate parallel active
processes allow process activation, stopping, continuing,
synchronization and status auerying. In our single processor
coordinated sequential process model these can all be Qefingd

by calls (through enveval) to the monitor PS. 3Specifications
for these functions are:

process(form,apos,cpos) this 1s similar to enveval except
that iﬁ creates a2 new active process
P' for the evaluation of form, and
returns to the crecating process P, a
process descriptor (pd) which acts as

a handle on P'.

In this model, the pd could be a pointer to a list wuich has been
placed on a "runnable" aucue in PS, and which 1s interpreted by

PG when the scheduler in PS gives this process a tirne quantum.

One element of the process descriptor gives the status of the
process e.f. RUHNING or STCPPED. Process is defined us:r.: ¢nviron
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(to obtain an environment descriptor used as part of the pd) and

enveval (to call PS).

stop(pd)

continue(pd)
status(pd)

obtain(senaphore)

release(nemaniiore)

interrunt svrten,

e enphasize thatl these six

halts the execution of the process
specified by pd - PS removes the process
from the runnable queue. Thie value
returned is an ed of the current environ-

nent of pd.
returns pd to tie runnable aueues.
value is an indicaticn of ustatus of pd.

tihis Difkstra P operator transfers
control to P& (by enveval) whicn deter=-
nines if a resource is available (i.e.
senanhore count positive). T3 eitner

(1) nands control baek to P1 (with
envcval) havine decrerented tne semanhore
count, or (2) enterz Pl on that sema-
phore'c aueue in PG's environment,
trie N1iugtrg rnerator lnereroents e
semapiiore count, and if it roes positive,
it noves one prrcess from the s:maphore
aucue (if any exist) onto the runnsuvle
aucue, It tlien hands control bLack to the
callit- rrocess,

funections car. e cefined in terme

of the control vrimitive of section 2.2 courled with use of the

¢
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Scheduling of runnable processes could be done by having
each process (by agreement) ask for a tirie resource at appropriate
intervals. In this scheduling model, control never leaves a
process without its knowledpe, and the monitor simply acts as
a bookkeeping mechanism., Alternatively, ordinary time-sharing
amonr, processes on a time quantum basis could be implemented
throurh the interrupt mechonism of U4,3. Timer interrupts could
be handled by PS after the frame of the interrupted process hau
been closed off. The ed of the Interrupted process 1s sufficient
to restart it, and can be saved on the runnable queue
within a process descriptor. Because timer interrupts
are asynchronous with other processinr, 1n such a simulated
rmultiprocessor systen, evaluation of ‘forms in the dynamic cnviron-
ment of another runnins process cannot be done consistently; the
eu obtained from stopping a process provides a consistent envirorn-
nment. bLecause of this interrupt asynciirony, in order to chusure
svsten interrity, aqueue and semaphore management in PO musu Le
uninterruptitle c.r. at tue hirhest priority level.

liaving, augmented our simple coordin~ted sequential
process system with a multi-process sunervisor, a variety
of additional control structurcs may be readily created. As
an examnle, e conslde., multiple narallel returns - the ability
to return from a single call on a module G several different
times with several (different) values. A slight reneralization
is to allow G to mive riultiple returns, nerhans to different
modules hisher on 1its control chain. For G to return from
the current position to a frame Zr with value given by val
and still continue to run, P simply calls DPOCQSS(Val,fP,fp).
Then the current G and the new process proceed in qguasi parallel.

Reproduced
best availablerocfgpy}
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4,5 Extension of Stack Mechanism For Multiple Processors

Section 4.4 describes a set of functions for handling
multi-processing tased on the environment primitives of section
2.3, and the interrupt facility of section 4.3. However, only
one active processor was assumed. Somewhat surprisingly, the
implementation technique described in section 3 still works for
more than one active processor with only a few modific:.ions
in the basic technique, i.e. it implements a dendrarchy in =
multiprocessor configuration.

We believe the functions for manipulation of multiple
processes described in section 4.4 are a good basis set. To
assure system integrity, process descriptors must be made primi-
tive, 1.e. not modifiable except through the routines described,
and therefore those six functions must be built in. That 1is,
the functions of section 4.4 anu the data type process descriptor
become primitives., However, for the purpose of this section, the
details of process maninulation arz of secondary concern; other
seriantic bases for multiprocessing would do as well (e.r. Prcnner?
Thomas28.) In this section we derend only on scre general under-
lvin~ structures, that 1s of cencern here is that the stack
retention mechanism is stiZl arnlicable unuer a nultiproeesscor

recine,

Regardless of details, the general situation presents some
m nhysical processors and k processes to be run. The process
descriptors provide a handle on (il.e. "names" for) the processes.
Assuming k>m, tne m processors nultiplex themselves over the k
processes accordirng to some scheduling algorithm (primitives to
program the scheduler are not discussed here). The processes
waitine for processors are kept on a queue; a processor taxes
a process from the queue, runs it, returns it to the aueue, and
repeats the cycle. Ve assume tnal processes Interloek thnemselves
(e.r;. by a test-and-set busy wait loop) so that no process is

ever run sinultanreously by more than one nrocessor.
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Given this situation, the implementation technique of
section 3 requires two sorts of augnents: (1) use of critical
resoi.rces must be properly synchronized, (2) appropriate processor-
tc-processer interrupts must be included in the system. At any point
ir time, each proces ‘or is ‘unning some process, using a
local stack segment. These local stack segments are disjoint.

Since &t mcst one processor is runnire a process at one tine,

each frame extension that is actively running has a unique
processor owning it. Illowever, a basic frame or a non-running

frame extension may be used y many processors; e.g. two

processors can sinultaneously exit the same basic frame. Hence,

the CXT, USE, and max fields are always locked (test and

set) by each processor before access and unlocked afterward.¥

With tnis processor-processor exclusion, it is guaranteed that

(1) no semmner* will be imoroperly deleted, and (2) a frame
extension will never be simultaneously run by more than one process,

Since the local stack segments are disjoint, there 1is no
problem on module entrance, so long as frames can be accomodated
' the segment. When a local stack segment overflows, the
processor must obtain a new stack sesment for its exclusive use.
If there is a free sesment pool (as in the linearizing technique
of section 3.2), the pool is locked, a se;ment is obtained, and
the pool is unlocked. If the pool is empty or not used (as
in the non-linearizing technique of section 3.2), then the pro-
cessor Pl in need of stack space calls a storage allocator which
micht provlide a new blc :k from the heap. Alternatively, if space is

%7 process which attempts to 1~ck a resource aad finds the
resource already locked roes into a busy wait loop repeatedly
tryine to lock it (cr perhaps reschedules itself for another
activity).

b9
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available 1n a stack segment of another processor, say P2, the
allocator can obtain a portion of that space. It interrupts P2,
and the interrupt routine ‘or P2 transfers part of P2's local
stacl: storare to Pl and chnanges its local stack descriptor to
reflect tihe transfer. Thus the nultiprocessor implementation
still requires only one glcbal pool of stack storage which can
be dvnamizcally allocated and reallocated anong the several
nrocessors.
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5. Conclusion

In providing linguistic facilities more complex than
hierarchical control, the key problems are (1) finding a
model that clearly exhibits the relation between processes,
access modules, and their environment and (2) developing tech-
niques for implementing this model with acceptable efficiency.

This paper has presented a solution to both problems. The

mnodel of section 2.1 is applicable to languages as diverse as
LISP, APL and PL/I and can be used for the essential aspects

of control and access in each. The control primitives intro-
duced section 2.2 provide a small basis on which one can define
almost all known regimes of control. The implementation
presented in section 3 is perfectly general, yet for several
sub-cases (e.g. simple recursion, simple backtracking) is as
efficient as each of the best known special techniques. Further,
the model and technique are robust, in that they can. be extended
to a number of other applications and situations.
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