
I
7?~

\

1
1
J
I
I

\

I
I
i
I
I
I
!

8
I
I
I
I

EOLT BERANEK AND NEWMAi: I N C

CONSUITING

BBN Report No. 233i*

DEVElOPMfNT RESEARCH

1 March 1972

o

CO

o

A MODEL AND STACK IMPLEMENTATION

OF MULTIPLE ENVIRONMENTS

by

Daniel G. Bobrow

Computer Sclenrp Division
Bolt Beranek and Newman Inc,

Cambridge, Massachusetts

Ben Wegbreit

Harvard university
Center for Research in Computing Technology

Can.bridge, Massachusetts

D D C ^
APR 11 1972 I

rannsuli
B

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, eitner
expressed or implied, of the Advanced Research Projects
Agency or the "U.S. Government. up
This research was supported
by the Advanced Research
Projects Agency under ARPA
Ordf-'jvNo. 1967; Contract No.
DAHCJm-C-0088

A Roproducsd by

NATIONAL TECHNICAL
INFORMATION SERVICE

Distribution of this
document is unlimited. It
may be released to the
Clearinghouse, Department
of Commerce for sc le to the
general public.

CAMirtlDCc

Sptinqdeld, Va 2215]

NEW YORK

t.
CHICAGO IOS ANGEIES

BEST
AVAILABLE COPY

Unclassified
Security Classification

DOCUMENT CONTROL DATA R&D
/Security classification of title, boiy of abfitrac* end indexing annotation must bv entered when the ovefatl report is classified)

i ORIGINATING AC 7 tvi TV (Corporate author)
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts

it. REPORT SECURITY Cl '.SSI FIC A TlOf.

Unclassified
2*. GROUP

3 REPORT TITLE

A MODEL AND STACK IMPLEMENTATION OF MULTIPLE ENVIRONMENTS

4. PESCRiPTiVE NOTES (Type of report and,inc/usivc datest

Scientific
5 AuTHOHlS) (First name, middle initial, last name)

Daniel G. Bobrow

«1 REPORT DA TE

1 March 1972
7a. TOTAL NO- OF PAGES

59
7(>. NO. OF REFS

33
»»- CONTRACTOR GRANT NO

DAHCi|71-C-Q088
6. PROJEC T NO

ARPA ON 1967

:»£. ORIGINATOR'S REPORT NUMB£R{S)

BBN Report No. 2331t

^^. OTHER REPORT NO(S> (Any other number that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
public.

II SUPPLEMENTARY NOTES

This research was sponsored by the
Advanced Research Projects Agency
• .der ARPA Order No. 1967.

12 SPONSORING MILI TAR Y ACTIVITv

13 AUSTRAGT

Many control and access environment structures require that storage
for a procedure activation exist at times when control is not nested
within the procedure activated. This is straightforward to imple-
ment by dynamic storage allocation with linked blocks for each
activation, but rather expensive in both time and space. This paper
presents an implementation technique using a single stack to hold
procedure activation storage which allows retention of that storage
for durations not necessarily tied to control flow. The technique
has the property that in the simple case, it runs identically to the
usual automatic stack allocation and deallocation procedure.
Applications of this technique to multi-tasking, coroutines, back-
tracking, label-valued variables, and functional arguments are
discussed. . In the initial model, a single real processor is assumed,
and the Implementation assumes multiple-processes coordinate by
passing control explicitly to ine another. A multi-processor imple-
mentation requires only a few changes to the basic technique, as
described. s

DD FORM
1 HOV ft*» 1473 (PAGE I

S/N 0101 -«07-081 1
Unclassified

Scturitv Clansifiralinn

Unclassified
Security Clatsiftcatioi

KCV WORDS

ROLE WT

control structures

environments

stack allocation

dendrarchy

retention

dynamic storage allocation

access environments

PUNARG problem

multi-tasking

coroutines

backtracking

label-valued variables

functional arguments

multiprocessor systems

extensible control structures

DD.Fr..l47?
5/N OIOI-r|GT-«i;|

Unclassified
Security Classification

I
I
i
I
I
I
I
1
1
J

i

I
I

A MODEL AND STACK IMPLEMENTATION

OF MULTIPLE ENVIRONMENTS

by

Daniel G. ßobrow

Computer Science Division
Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

Ben Wegbrelt

Harvard University
Center for Research in Computing Technology

Cambridge, Massachusetts

I
I
I
I
I
I
I
1
I
I
1
I
I
t

I

1
I
I
I
\

Report No. 2334 Bolt Beranek and Newman Inc.

ABSTRACT

Many control and access environment structures require

that storage for a procedure activation exist at times when

control is not nested within the procedure activated. This is

straightforward to implement by dynamic storage allocation with

linked blocks for each activation, but rather expensive in both

tine and space. This paper presents an implementation technique

using a single stack to hold procedure activation storage which

allows retention of that storage for durations not necessarily

tied to control flow. The technique has the property that in

the simple case, it runs identically to the u^'al automatic

stack allocation and deallocation procedure. Applications of

this technique to multi-tasking, coroutines, backtracking,

label-valued variables, and functional a.^uments are discussed.

In the initial model, a single real processor is assumed, and

the implementation assumes multiple-processes coordinate by

passing control explicitl:. to one another. A multi-processor

implementation requires only a few changes to the basic technique,

as described.

11

I
I
i
I
!

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Report No. 2331* Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

page

1. Introduction , 1

2. A Formal Model of Environment Structures and

Control ^

2.1 The Basic Environment Structure 4

2.2 Primitive Functions for Retention 10

2.3 Non-Primitive Control Functions 12

3. Implementatior 20

3.1 Retention on the Stack 20

3.2 Storage Management, Compactification, and

Garbage Collection 30

4. Extensions 37

i».l Shallow Binding 37

k.2 Other References to Frames: Pointers
and Label-Valued Variables 39

h. 3 Interrupts and Monitoring 42

4.3.1 Interrupts il2

4.3.2 Monitoring i,0
4.4 Coordinated Sequential Processes and

Parallel Processing i\i\
4.5 Extension of Stack Mechanism for

Multiple Processors ... ii8

5. Conclusion , ^

6. Acknowledgements 5^

7. References 52

ill

——^jPH

I
I
I
I
I
I
1

i

I

i

I
I

Report No. 2331* Bolt Beranek and Newman Inc.

1. Introduction

Most of the older programming languages have a function

call/return structure that operates in a strictly last-in-first-

out discipline. This, particularly when coupled with recursion,

invites the use of a LIFO stack to hold the storage required by

function activations'. Such a stack provides an elegant mech-

anism for control, local storage, temporary storage and argu-

ment passage. A function call entails pushing the arguments

onto the stack, leaving a program continuation point for the

caller on the stack, and transferring to the called function.

; The called function uses the next k stack locations for its
f
* locals, and the remainder of the stack for temporary storage

, used in calculating the arguments to functions which it calls.

Since stacks can be implemented directly in Hardware, the mech-

anism is not only elegant, but efficient as well.

In several programming languages currently under design

or construction, this happy marriage of implementation technique

and language form breaks down. If, for example, a language

permits co-routines, then during execution, control will jump

between several co-processes, each with its own call structure.

If ea^.h environment is given its own stack then it becomes

difficult or impossible to allow sharing of environments among

co-processes, or a dynamically varying number of co-processes.

Similarly, if a language permits a function F to return a func-

tional result G, and if G's environment includes part of F then

the storage associated with F's activation may not be deleted

+For example, FORTRAN, ALGOL 60?2 MAD* LISPi9 APL*5 and SNOBOL*3

Report No. 233^ Bolt Beranek and Nevman Inc.

on P's exit, since part of the necessary environment of G

would be prematurely destroyed. A related problem arises in

multiprocessing where a language allows a function P of task

T to spawn a new task T" , If the environment of F is shared

with T1, and if the environment of P is deleted, T1 must be

forcibly terminated or T' will proceed with part of its

necessary environment destroyed. Similar problems arise with

label-valued variables, explicit pointers into the stack, and

"non-deterministic" or "backtrack" programming. All these cases

arise from a common circumstance: the storage associated with

function activation does not obey a LIFO discipline. It is

necessary to retain storage blocks for durations not related to

the order of their creation.

It is fairly straightforward to allow retention if the stack

is abanaoued entirely. Storage blocks are obtained by dynamic

storage allocation and are returned to the free storage pool

when no longer accessible, either through garbage collection or

deletion with a reference count. A number of languages, including

Gedanken1;5 PAL? Simula-5, OPL11, Lisp 1.5, PPL20, nrefceno2, anu
1 7

PL/I employ one or more facets of this technique, though not

all use the full power of dynamic block storage allocation.

However, this is an unsatisfactory solution to the problem

of retention. Compared to a stack, dynamic storage allocation

for function activation storage suffers a number- of defects.

First, it requires substantially more tine to allocate ana

reclaim blocks. Second, it results in a substantial amount of

wasted space since the storage block for each function activation

must be allocated large enough to hold trie maximum number of

temporaries that will ever be required while control resides in

tnat activation, yet the maximum will almost never be simultan-

eously reacheu by all activations. Third, there is wasted time

in a function call, since arguments must first be held in temporaries

^--..--«aa IWWT^,,^-^.-1
^^

i
I

Report No. 233^1 Bolt Beranek and Newman Inc.

I
I
I
i
1
i

1

of the calling block and then moved at the time of call to

the parameter positions of the called block. Fourth, in a

paging environment, dynamically stored allocation blocks tends

to result in more page faults, since there is no contiguity

of stack end to aid in localizing references.

This paper presents a technique for retention of function acti-

vation blocks on the stack. The technique has the property that if

no retention is actually required by any portion of a program

then activation storage behaves as a conventional LIFO stack;

if particularly simple sorts of retention are used, the stack

is as effective as the 2-stack technique which has been oroposed
23

for backtracking . If more complex forms of retention are

used, the technique still works correctly. In general, arbitrary

retention can be achieved and unneeded activation blocks can

be freed either implicitly or explicitly. Further, illegal use

of an explicitly freed activation block is always detected.

Section 2 of the paper presents a data structure model of control

which is the basis of the implementation. Section 3 discusses

implementation details, and Secion k discusses extensions to

handle shallow binding, label-valued variables, interrupts,

monitoring, cooperating sequential processes, and use of multi-

processors.

i
I
I

. -IM!';?!" :-' ■■ ™ ^m^mmm

Report No. 2331* Bolt Beranek and Newman Inc.

2 A Formal Model of Environment Structures and Control

V/e present an information structure model (similar in

spirit to Wegner "^) v/hich deals with control and access

contexts in a programminp, language; it is based on consideration

of the form of run-time data structures which represent program

control and variable bindings. The model is designed to help

clarify some relationships of hierarchical function calls,

backtracking, co-routines, and multiprocess structure. Although

multiprocess structures are considered, in this section only

one real processor is assumed to exist and only one process is

considered active at any given time. This implies that processes

must explicitly hand control from one to another. This greatly

simplifies interprocess conmunication; Dykstra's P and V operators

can be written in terms of the three control primitives defined.

We cal1 0 set of processes which communicate in this way

^coordinated sequential processes". In Section 4.5 we extend

the implementation to true multiprocessor systems.

2.1 The Basic Environment Structure

In a language which has blocks and procedures, new nomen-

clature (named variables) can be introduced either by declarations

in block heaas or through named parameters to procedures. Since

both define access environments, we call the body of a procedure

or block a uniform access module. Upon entry iu an access module,

certain storage is allocated for those new named items which are

defined at entry. V/e call this named allocated storage the

basic frame of the module. In addition, certain additional storage

for the module may be required for temporary intermediate results

of computation; this additional allocated storage we call the

frame extension. The total storage is called the total frame of

the module, or usually just the module frame. We refer to the

two frame pieces generically as segments.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i

Report No. 233^ Bolt Beranek and Newman Inc.

A frame contains other information, in addition to named

variable and temporaries. When a module is entered, the callee's

frame is initialized with two pointers (perhaps implicitly);

one, called AL1NK, is a linked access pointer to the frame(s) which

contains the highe. level free variable and parameter bindings

accessible within this module. The other, called CLINK, is

associated with control and is a generalized return which points

to the calling frame. In Algol these are called the static and

dynamic links respectively. In LISP, the two pointers usually

reference the same frame since Dlndings for variables free in a

module are found by tracing up the call structure chain. (An

exception is the use of functional arguments, and we illustrate

that below.)

At the time of a call (entry to a lower module), the caller

stores in his frame extension a continuation point for the

computation. For proper value checking, an expected return value

type may also be stored. Since the continuation point is stored

in the caller, the generalized return is simply a pointer to

the last active fram^.

The si.se of a basic frame is fixed on module entry. It

is just large enough to store the parameters and the link

informar.ion. However, during one fun :tion activation, the

required size of the frame extension can vary widely (with of

course a computable maximum) since the amount of temporary

storage used by this module before callinp; different lower

modules is quite variable. Therefore, the allocation of these

two fnme segments may sometimes (advanta^eously) be done

separately and noncontigu^usly. This requires a link back

from the frame extension to the basic frame (denoted as BLINK

below). Figure 1 summarizes the contents of a frame.

LJ

MODULE NAME Access Link

Max

Control Link

CXT

MODULE NAME

Parameter 1

Parameter 2

BASIC
FRAME

I-FRAME

Back Link Cent. Pt.

1 Size Max USE |

I Return Type

Temp 1 I
1 • • • i

FRAME
EXTENSION

Fir. 1 iJeneral Frame Structure

I
I
I
I
I
I
I
1
I
1
i
1
1

L F*p,ure 3 shows two examples in •.Jhich more than one Inuependont

environment structure is maintained. In Figure 3a, two coroutines

are shown which snare connon access and control environment A.

However, note that the frame extension of A has been conieu so

j that returns from D and 0 may no to different continuation points.

Since frame A is used py two processes, if either coroutine were
i deleted, the basir frame for A should not be deleted. Note

however, that one frame extens- A* could be deleted In that case,
_ since frame extensions are never ref renccd directly by more than

4 'Jiif process. In figure 3b, coroutx.. Q is shown calllnr a function

:• with external access cnain tiirou^h r, but w'th coritrol to return

to 3.

1
I

Report No. ?334 Bolt b^-ranek and Newman Inc,

Picure 2a shows a sketch of an algorithm programmed In

a block structure l&nguage such as Algol 60 with contours

(c.f. 18) drawn around access nodules. Bl has locals N

and P, P has parameter N, and B3 locals Q and L. Figure 2b

is a snapshot of the environment structure after the following

sequence: Bl Is entered; P is called (just above P., the

program continuation point after this outer call); B3 is

entered; and P is called from within B3. For each access

module there are two separate segments - one for the basic

frame (denoted by the module name) and one for the frame exten-

sion (denoted by the module name*). Note that tte sequence

of access links (shown with dotted lines) p;oes directly from

P to Bl* and is different than the control chain of calls.

However, each points higher (earlier) on the stack.

A point to note about an access module is that it has no

knowledge of any module belov- it; if an appropriate value (as

specified by the return value wype) is provided, continuation in thet
access module cm be achieved with only a pointer to the con-

tinued frame. No information stored outside this frame is

necessary.

I
I

ZCL

m

CD CD

- c
I, r

*
CD

*

CD

QJ
h
3 t.
-u 0)
o -p
3 c
UU1
-P
CO

Q |

o c O
a 4->
t.
fc rH

M
QH cd
o o

-p •s

O rH •
s:a e-,
CQ
a-u o
aJ d P
c
w f -H

c rH
•H cd

XI -p o
rM

a ä

• p m
tcco ta

CD

a.
ro
CD

Q««

a.

1 J
0.

Ü
or

O J

1 1
,

|,L

o
.3 m
t3 Zl

C «H t—*

tn •3 *| CO ** ^-
^ > c s
o > a M

o rH Ci rH X
p ^^ C3
« O o q
c o si O ^l
J^ r-i ~> r-i r:
c «f-j P

•-3 c s x: -H
»J P ?:

C •H a. •H
o 3 5 fr.
r

c„ r-H >-i oa o
—' " 3 -. P

rt ' J O .i- o
rj Ü o O rH

0 o O rH • —1 L rH C
t »^-f ^-, X U

I
I
I
I
I
i
i
1
♦

J

I

<—

^^•■••'

s
»-

Ir
^

w
r— • • \

J < *< o
♦ J Q o

<

i
i
i
■

i

•>•

•
•

<_, c«. ♦♦•

3
'< (D

^
CO

i

(U Q <M
C O

■H U
4J tn +>
3 O «
o t, o
t. ^>
o i: c
o c o

•H O
-p

Ä o
• > u

tCZä «si

:

■»

i
J

i

i

1
i
I
I

+.1

NM«««!

... <

*<
*

m
t
GQ

>

c -';

rj —i

ma

0) <

•H ,'.
-P rH

U O
o ■ ;
■J

u
c

ci a
rn i)

Report No. 233^ Dolt Beranek and Newman Inc.

2.2 Primitive Functions for Retention

In this model for access module activation, each frame is

generally relea&fd upon exit of that module. Only if a frame

is still referenced is it retained. All non-chained references

to a frame (and to the environment structure it heads) are

made through a special data type called an environment descriptor.

Note tnat heads of a11 environment chains but that for the

currently active process are referenced from this space of

environment descriptors. The three primitive functions: I)

create an environment descriptor (ed) for a specified frame;

2) change contents of an ed; 3) create a new frame with access

and control chains specified by ed's and execute a computation

in that context. Note that none of the primitives manipulate

existing frames or pointers; therefore only well formed frame

chains exist (e.g. no ring structures).

environ(pos,n) creates an environment descriptor for

the frame specified by pos. If n is

given and non-zero it copies the n

precedinr frames. This allows creation

of identical contexts which do not share

bindings, n is usually omitted.

setenv(olded,pos) changes the contents of an existing

environment descriptor olded to point

to the frame specified by pos. Heleases

storage referenced only through previous

contents rf olded.

10

-—T—^m-^TST?

I
I
I
I
I
I
I
1
I

I
i
I

Report Mo. 233^

enveval(form,apos,epos)

Bolt Beranek and Newman Inc,

initiates a computation within an

environment structure; it creates a

new frame, with ALINK pointing; to the

frame speclfloci by apos; CLINK pointing

to the frame specified by epos; and

form the code or expression to be

executed or evaluated in this new

environment. If the epos argument

Is omitted, it is taken to be identical

to apos.

A frame specification (e.g. pos; apos; and epos) is one of

the followinp:

1. An integer N:

a. fl=0 specifies the frame allocated on activation of

trie function environ, setenv, or enveval. In each

case, the continuation point is set up so that a

value returned to thia frame (uoinn enveval) is

returned as a value of the original call to environ,

setenv or enveval.

b. i'i>0 specifies tne frame N links down the control

link chain from trie 11=0 frame.

c. N<0 srecifif s tne frame |i'i| links dov/n the access

link chain from t;.e M"0 frame.

2. The distinguished constant NIL. This value specifies global-

access only to be shared, and/or control-return to the system

(process halt). Doin^ a setenv(ed,NIL) releases frame storage

formerly referenced only through ed, without tyin- up any -'•w

storage.

3. An ed (environment descriptor). When rriven an ed ai^ument

created by a prior call on environ, environ creates a new

descriptor with the same contents as ed; setenv copies the

contents of ed into olded.

11

Report No. 2331* Bolt Beranek and Newman Inc.

4. A list "(ed)" consisting of exactly one ed. The contents

of the listed ed arc used identically to that of an

unlisted ed. However, after this value is used in any

of the three functions, setenv(ed,NIL) is done, thus

releasing the frame storage formerly referenced only

through ed. This has been combined into an argument form

rather than allowing the user to do a setenv explicitly

because in the call to enveval the contents are needed,

so it can not De done before the call; it can not be done

explicitly after the enveval since control might never

return to that ooint.

2.3 Non-Primitive Control Functions

To illustrate the use of these control functions, we will

define some non-prinitive functions which are more familiar.

(We use here the syntax and semantics of a LISP-like system;

although we use the LISP idion, the conversion to other lang-

uages is straightforward.) We will define function which creates

a functional oojecc which carries its own context, and snow how

the language evaluator uses this object. We will then define in

terms of our basic environment manipulators some non-hierarchical

nontrol functions for backtracking and coroutine calls.

We begin with an obvious extension of enveval; we can define

envapply which takes as arguments a function name and list of

(already evaluated) arr,uinonts for that function. hnveval requires

a form and envapply slr.ply creates the appropriate form for

enveval. (Uppercase items are literal objects in LISP).

envapply (fn,arr;s ,arrame ,cfrane) =

enveval(list(APPLY,list(QUOTE,fn),list(QUOTH,args)),

aframe,cframe)

12

I
I
I
I
I

1
1
I
I

Report No. 233^ L^it Beranek and Newman Inc.

A central notion for control structures is a pairing of

a function with an environment for its evaluation. Following

LISP, we call such an object a funarg. Funargs are created

by the procedure function, defined

function(fn)=list(FUNARG,fn,environ(l))

I That is. In our implementation, a funarg is a list of three

elements: the indicator FUNARG, a function, and an environment

I descriptor. (The argument to environ makes it reference the

frame which called function. To get an environment other than

.. the current one, function can be evaluated within an enveval.)

J, A funarg list, being a globally valid data structure, can be

passed as an argument, returned as a result, or assigned as the

value of approoriately typeu variables. When the language

•valuator gets a form (fen argl arg2 ... argn) whose functional

object fen is a funarg, i.e. a list (FUNARG <fn-narne> <ed>),

it creates a list, args,of (the values of) argl, arg2, ..., argn-

and does

envapply(second(fen),args,third(fen),1)

The environment in this case is used exactly like the original

LISP A-list.Moses^1 has disc ,;3ed the use of function in LISP

for preserving binding ccntr ^s. Figure 'I illustrates the

environment structure where a functional IKLS been passed down;

the function foo with variables X and L liar, been called; foo

called mapcar(x,furction(flc)) and fie has been entered. Mote

that along tne access chain the first free L seen in fie is

bound in foo, although there is a bound variable L in mapcar

which occurs first in the control chain. Since frames are

retained, a funarg can be returned to higher eontexts and still

13

FOO a
.«

TT
FOO*

i
i

A i • • •

MAPCAR i
L

FN

MAPCAR*

CONTROL

Fi". b Application of a Functional
Arrunont

11

I
I
I
i
I
I
I

1

Report No. 233^* Bolt Beranek and Newman Inc.

work. Further, as described below, funargs serve as the basis

for a number of control regimes, in addition to acting as a

device to save a binding environment.

Coroutines, i.e. coordinated processes which each maintain

their own separate hierarchical control and access environment,

are easily implemented using these primitives. A coroutine is

simply a funarg used in a particular way. It is created by

function and manipulated by the routines start and resume. To

initiate a process represented by the funarg fp, use start:

start (fp,args) = curproc-fp;

(comment curproc is a g]oc?1 variable set to
the current process lunarg);

envapply(second(fp),args,third(fp), third(fp))

Once the variable curproc is initialized, and any coroutine

started, resume will transfer control betxveen n coroutines.

resume(fnarg,args,backfn)=

prog((result,flg)

(comment prog introduces an access modulo with local
variables result and fig.

backfn is the function to be called when
this process is resumeu)

second (curproc)-«-backf n

(cor.mcnt replace old backfn for resur.o back nere)

rcsult-«-setenv(thira (curproc),0);

(comenl result Is set when a resume cones back here.

fir will have been set when a resume comes back through
.«^,^ / -14.1 setenv.) if fir- tnen returrurcr.ult);

flr^-T;
curprcc^fnarg;

enva; p ly (second(fnarg),arm ,third(f narg Jthird (f narg))

(comment only done first time))

15

Report No. 233^1 Bolt Beranek and Newman Inc.

We call a funarg used in this way a process funarg. The

state of the "process" Is updated by destructively modifying

the list to change the continuation function, and similarly

directly modifying the environment descriptor in the list. A

pseudo-multiprocessing capability can be added to the system

using these process funargs if each process takes responsibility

for requesting additional time for processing from a supervisor

by explicitly passing control. A more automatic multi-processing

control regime using interrupts is discussed in section ^.H,

Backtracking is a technique by which certain environments are

saved before a function return, and later restored if needed.

As an exEmple of its use, consider a function which returns one

(selected) value from a set of computed values but can effect-

ively return an alternative selection if the first selection was

inadequate. That is, the current process can fail back to a

previously specified failset point and then redo the computation

with a new selection. A sequerce of different selections can lead

to a stack of failset points, and successive fails can restart

at eacn in turn. Backtracking thus proviues a way of aoinr; a

aepth first-search of a tree with return to previous branch

points.

V/c define fail anu failset below. We use pusn(L,a) which

adds a to tnc front of L, and pop(L) which removes one clement

and returns the first element of L. Fallist is the stack of

failset points. As defined below, fail can reverse certain changes

when returning to the previous failset point by explicit oirection

at the point of failure. (To automatically undo certain side effects

and i)i:,di;;~ changes we could define "undoable" functions which

add to failist forms whose evaluation will reset appropriate

cells. Fail coulu tuen eval ail forms tnrough the next ec and

then call enveval.)

16

r •■•■. ••—' '—'"u 'i —.^^^.^^^^^^^^^^^^^^^^^^^^^^^^

I
I
[

I
I

i

Report No. 233^1 Bolt Beranek and Newman Inc.

failset()=push(failist,environ(l))

(comment 1 means environment of failset)

fallfmessage)=enveval(message,list(pop(faillst)))

select(set,undolist) =

if null(set) then falKundollst) (comment reset values)

else prog((flrJ

fallsetO;

if flp; then ••eturn(select (s'-,:,undolist));

(comment fig is set if we have failed to this point, and
then set has been popped.)

flg^-T;

return(pop(set))

Floyd, Hewitt, Golomb, and Baumert have discussed uses for

backtracking in problem solving. An example of its use is the

following program for placing 8 nueens on a chess board such

that no two can take each other. The function conflict(s,cans)

(not shown) checks whether square s chosen by select for column

N will fit with the previously /renerateu answer for the first

Ii-1 columns.

17

Report No. 2334 Bolt Beranek and Newman Inc.

queens()=

progCCn.anSj.m)

n*-0;

Ip: n-^n+l;

If n>8 then return(ans);

pi: m*3electi(lt2t3tH,5>St7tB)t

(PROG ()i^N-1; POP (ANS)));

(comment Both arguments are quoted forms.

The prog form in the select Is evaluated
only in case of a failure in select.)

if conflict(m,an&) then fail();

(comment continue selection until select produces a
good value, or fails and resets n and ans.)

push(ans,rn);

go (lp))

Figure 5 shows the control structure saved for queens after

it has successfully moved to the third column.

18

1 -- ■ : ' "■ ■ ■ "- -:" "' ■■ " ' ■■■"------■■ r ■■ -..-.- . .

I
I
I
I
i

QUEENS

QUEENS*

SELECT

SELECT

FAILSET

FAILSET*

CONFLICT

CONFLICT1

:;'i". b Control Structure For Queens
at Third Cclunn on Chess Loaru

A 19

Report No. 233^ Bolt Beranek and Newman Inc.

3. Implementation

3.1 Retention on the Stack

The model cf section 2.1 assumes that a frame Is retained

so long as it is actively referenced. With a bit of bookkeeping,

it is possible to determine when each frame ceases to be

referenced, so that each frame can be freed by the evaluator as

soon as this occurs. Further, frames can all be allocated on

a single stack. This section presents the technique for

so doing.

The first issue, bookkeeping of frame references, is handled

by two new fields added for this purpose to each frame. A

basic frame segment can be referenced only from its corresponding

frame extensions. The CXT field in the basic frame counts the

number of frame extensions for that basic frame. A frame

extension segment can be referenced in any of three ways: 1) by

tne basic frame of an immediate control descendent (i.e. "callee"),

2) by the basic frame of an Immediate access descendent (e.g.

lower lexical range), 3) by an environment descriptor. Tho USE

field in the frame extension counts tne number of references to

that frame extension.

In the case of sinple LIFO control, CXT ana USE are always

equal to 1. Environ creates an environment üescriptcr and

therefore, as part of its actions, increments by 1 the USE count

of the appropriate frame extension, when the USE of a frame

extension exceeos 1, the frame extension cannot bo used for

running in (i.e. execution) since the several users of that frame

extension renuire the state to remain the sane, but further

computation in that frame extension would change the state (e.g.

.*

20

I
I
I
I
I
I
I
I
i
1
1
1
1
1
1
i
I
I
I

Report No. 2334 Bolt Beranek and Newman Inc.

destroy some temporaries and/or move the continuation point).

Hence, whenever control returns to an access module where the

USE count exceeds 1, a cony of the frame extension Is made,

USE Is decremented by 1 (since there Is one loss user of that

frame extension) and CXT Is Incremented by 1 (since there Is

one additional frame extension which references the basic ^rame).

Figure 6 shows the structure resulting from a program in which

PI calls P2 which calls ENVIRON(l), thereby creating an environ-

ment descriptor refering to P2. When exiting any access module,

the frame extension is always deletea. If the CXT in the basic

frame is 1, then fie basic frame is also deleted; otherwise,

the basic frame remains. This, then, is the basic retention

technique. Ue return to the details below.

The second issue, storage management with a stack, is

handled as follows. On entrance to an access module, a basic

frame ani frame extension are pushed in contiguous locations

on the end of the stack. On exit from the module, if both basic

frame and frame extension are deleted, then ti.c eno of stack

pointer is restored to its position on entrance. If, however,

the basic frame is not deleted (CXT>1), then it remains where

it is on the stack. In general, therefore, wuen control returns

to an access module with frame extension K*, it may be that

tnere is a uasic frame immediately below E*. Suppose, for example,

tnat procedure I'D call:; PI v/nich call:; environ(l) creating

PI next calls enveval(IVU) ,2,2) ; P2 then calls environ(l)

to create hh,,. F:

reference counts ■.
causes control to

cut';.~ enveval (V!

to run PI*

gure Ta shows t;.e stack structur*

c o n ty ro i

ana

■•' oso

;:,i:si(;,u)).) . t- . s nc-L p(.:Si.Li.c

lies, s'nee the ua^ic frame of Pi.' LIOC-CS tut.

stack, hence, the evaluator makes a cory of PI*, calleu PI1*,

at tiie soack OKU ana aecrencnts the imiÄi i K.

ne value of zt-m. ser-.meri :1^ is oelet

In either case, us'a for further co: mutation.

ue

•ure i

illustrates tne situation. (The

Pi1*- to PI).

ashed 11n G the hLII.K fro:

21

I Reproduced from ^^S
I beM available copy. ^1^

PI

PI

CXT=1

P2

USE = 1

CXT = 1

PZ

USE = 2

ENVIRON

CXT = 1

ENVIRON*

USE = 1

PI

CXT« O

PI*

1
USE «1

P2

CXT = 2

P2*

USE = = 1

P2*

USE = «1

ED.

■'i*-. Ca Control In ENVIRON
After i-.iJ Crcateu

Fir. 6b Control lias Heturned
to P2

Pin. C Reference Counts for the Case
PI Calls P2 HNVIRONCl)

22

ED

{ED2

PO

CXT«1

PO1

USE «2

PI

CXT = l

PI1

USE = 1

P2

CXT = 1

P21

USE = 2

PO

CXT «1

PO*

USE' ■2

PI

CXT«!

Q-4

CXT = 1

P2*

JSE= 1

pr*

USE = 1

Fir, 7a Control i:aG Loft
P2 But PI Has Not Yet
Been Keon::f;r:-d

'if;. 7B Control hac
i-'.eturned to Access
Module PI Csinn a
Copy of Pli;

i

I
I

7 Control i eturn.-; Fror. V? to PI

23

Report No. tS'-^ Bolt Beranek and Nev/man Inc.

Whenever control returns to a fraiiie extension E* which cannot

be run where it lies (due to another segment beneath and

blocking it), a copy of E* is used in its place, perhaps

deleting the original frame extension. Such deleted

segments provide h'-les for the growth of the frame exten-

sions directly above them when (if) the basic frame

immediately above the hole is deleted. Hence, they serve as

mini-stacks. It is the responsibility of the Delete Segment

routine to appropriately record the space made available by a

segment deletion so that it nay be reused. V/e return to this

issue and the issue of stack overflow in section 2.5.

With the above description of intention as an extended

comment, v/e an now state the algorlthns for using and maintaining

the reference counts. Tv/o action points during evaluation are

crucial:

(1) entering an access module

(2) exiting an access module and returning ^o its caller

Also, the retention primicives each manipulate the reference

counts

(3) environ

(4) setenv

(5) enveval

Note that these five routines cannot properly be written

in the prograr.ninr language. The actions uncd (e.g. deleting a

segment) anu data types employed (e.g. pointers to fram s) arc

incompatible with the security of the evaluation mechanism,

since they could be used to cause system errors. Partially to

emphasize this point and partially for convenience, we switch

notation. English descriptions are used where this simplest and

2^

——^

I
I
I
I
I
J

f

I

i

Report No. 2331* Bolt Beranek and Newman Inc.

an Algol-like syntax is used elsewhere. Liberal use is made

of pointer-valued variables and the convention that if P is a

pointer to a frame then P.USE, P.CXT, P.ALINK, etc. denote the

field? of the basic frame and frame extension. In the case of

environment descriptors, we employ a field, FPTR, which points

to the frame extension for the appropriate environment.

Enter Access Module (F) =

begin

[1] push F and F* on stack;

[2] F.ALINK*-F.CLINK*-address of caller;

[31 P.CXT+P.USh>l

end

Exit Access Module (F) =

begin

[1] Delete Serrnent (P*); coninent no one else can be in It, since

we are running in it;

[2] if F.CXT«!

then begin Delete Sefrment (F);

if F.CLINK^P.ALINK then ~ '
Release Access Chain (F.ALINK)

end

else begin P.CXT*-F.CXT-1;

comment next, propogate back (by incrementing

USE of caller) the fact that a callee still

exists;

F.CLINK. USI'>F. CLINK . USE+1

end >

25

Report No. 233^1 Bolt Beranek and Newman Inc.

[3] let E be F.CLINK;

comment. now return to E, the caller;

[4] if E.USE=1

then if Sufficient Room beneath E* to run

then Run In E*

else begin Copy E*; Delete Segment (E*); Run In copy end

else begin E.USE^E.USE-1;

E.CX'iVE.CXT+l;

Copy E*;

Run In copy

end

end

Environ (POS) =

begin

[1] Create a null environment descriptor, ED;

[2] £nviron2 (ED, POS);

[3] Return UD)

end

26

I

I
I
I
I
I

J

I
Report No. 233^ Bolt Beranek and Newman Inc.

Environ2UD,P0S)

begin

[1] 1et F be the frame specified by POS;

[2] If F Is the null frame then Return;

[3] ED.FPTR^address of F*;

[4] F.USE^P.USE+1;

[5] if POS is a list of an environment descriptor, e.g. of

format "(ED1)", then Setenv (ED',NIL)

end

I
I
1
1 Setenv (ED,POS)=

begin

[1] tenp^ED.PPTR ;

[2] Environ2(ED,P0S)J

[3] if temp^NIL then F^clease Franc (tent);

['lj leturn (ED)

end

. Enveval(F,APOS,CPOS) =

begin

[1] let A be_ the frame specified by APOS, and C be the frame

specified by CPUS; (if CPOS is missing, let C be A);

I [2] C.ÜSE-HC.USH+1;

if C^A then A.USE+A.USE+l;

27 I

Report No. 233^ Bolt Beranek and Newman Inc.

[3] let E be the frame for this call on I'iivevalj

Release Frame(E);

[4] If segment E* is not deleted in step [3] then set the

continuation point for E* such that if control returns

to E* with value V, then Enveval will return to its

caller with value V;

[5] if APOS is a list of an environment descriptor, i.e.

"(ED)" then Setenv(ED,NIL); if CPOS is a list of an

environment descriptor, "(ED')", then Setenv(EDt,NIL);

[6] Push a frame on the stack, with ALINK and CLINK pointing to

A and C respectively, and evaluate form P

end

Release Frame (P) =

comment P is always pointing to a frame extension

begin 1 -

[1] if P.USE>1 then begin P.U3E^P.USE-1; He turn end:

[2] if P.CXT>1

then begin P.CXT^P.CXT-l;

Delete .Segment (P*);

Return

end ;

cor.ment if neither [1 I nor [2] applies then the

entire frame is to be released ;

28

I
I
I

«■■■■p™

Report No. 2332* Bolt Beranek and Newman Inc.

[3] i£ P.CLINK^P.ALINK then Release Access Chaln(P.ALINK);

[4] temp*?.CLINK;

[5] Delete Segments (?,?»);

[6] P-^temp;

[7] £0 to [1]

end

Release Access Chain (A)»

comment almost identical to Release Frame (P) except this

follows access pointers;
m

begin

[1] if A.USE>1 then begin A.USE*-A.üSE-l; Return end

[2] if A.CXT>1 then begin A.CXT-A.CXT-1;

Delete Segment (A*);

Return

end;

[31 temp^A.ALINK;

[4] Delete Segments(P,?*);

L5] A^temp;

[6] go to [1]

end

29

Report No. 2331* Bolt Beranek and Newman Inc.

As an example of the operation of these algorithms, consider

the 8-queens problem. Figure 8a shows the stack immediately

after environ(l) is executed in the first failset encountered.

Figure 8b shows the stack when the third column of the board is

being considered (situation is identical to that of Figure 5).

Figure 8c is the stack configuration that would result were a

conflict to occur, causing failure back to the second column.

(Note that in the case of backtracking, "tack storage is used

arid freed in strict LIFO order).

3-2 Storage Management, Compactlficatlon, and Garbage Collection

The above algorithms auffer from three omission?. First,

they leave undefined the auxiliary routines which perform segment

deletion and the test to joe whether there is sufficient room

beneath a module for running. Second, since a copy is made at

the stack end whenever a frame extension cannot be run where it

lies, the stac;: tends to grow ever downward. As this commonly

occurs in conjunction with deleted sogments occuring in the

used portion of the stack, the stack nay overflow although its

total size aoes not exceea the storage actually renuireci.

Possible solutions are stack cor.pactification to saueeze out all
the holes, or keening the holes available for running in. Thira,

while environment descriptors are explicitly created (by calls on

environ) tney nay not be explicitly freed (since several pointers

might reference the same environment descriptor), hence

reclaiming environment descriptors (ana tracing the appropriate

rrames) must be carried out automatically, by garbage collection.

The basic technique for segment deletion ant. testing for

room to run is relatively Simple. ' Two additional fields are

30

I
I
I
I
I
I
I
I
I
I
I
1
i
I
I
I
I
I
I

Fig. 8a

Creating an
Environment
Descriptor

@h*

QUEENS

QUEENS'

SELECT

SELECT

FAILSET

FAILSET*

USE=2

ENVIRON

ENVIRON

Fig. 8b
Testing For
Conflict In
Column 3

Fig. 8c

Failure Back
to Column 2

QUEENS

CXT=3

QUEENS*

SELECT

SELECT*

FAILSET

0-* FAILSET*

USE=1

QUEENS* -

SELECT

SELECT*

FAILSET

@-*
FAILSET*

QUEENS* -

CONFLICT

CONFLICT*

@r+

QUEENS

CXT=2

QUEENS'

SELECT

SELECT*

FAILSET

FAILSET*

USE«1

QUEENS*

SELECT

SELECT1

FAILSET

FAILSET*

Fig. o "tack Confirurations Uurinr
backtrackitir

31

Report No. 2331* Dolt Beranek and Newman Inc.

used In each segment." Each segment holds both a gize field which

specifies its current extent (this is fixed for basic frames

but varies in time for frame extensions) and a max field

which is the amount of free stack storage immediately below that

segment. (A segment having another segment Immediately below

it has max=o).

The general, situation is as followc. Computation proceeds

at some point in the stack described by a local stack descriptor,

(^n general, thin is not the real end of the stack but rather

some hole created previously). Computation stays within the

local stack region until (1) the local stack overflows, (2) a

return is made from an access module G in the region to a caller F

wnich is not in the region. In case (1), the segment which over-

flowed is copied elsewhere and the nax field of the last

segment remaining it* the old local stack region is sot to

reflect tie amount of storage left in the region. In case 1.2),

tne region is being abandoned, so the region size is added to

tne max component of the last segment above the region.

V/hen returning to F, P's max is used to determine the local

stack descriptor for the new stacK region. There is room to

run if max exceeds zero. Whenever a sejment is deleted, its

max field plus its size field is added to the max field

of no segment immediately above it.

The effect of this techninue is to break the stack up into

a number of n'ihstaeks (wh never multiprocessing occurs). When

control returns to a nodule, the nodule is run where it lies if

possible. If stack overflov/ occurs due to a segment g, that

segment is copieu to sone free storage and the local stack region

is temporarily abandoned. Storage for the new segment copy may

be at the real end of the stack or elsewnere. We return to this

point below.

32

«

i
I
I
I
I
I
1

Report No. 2334 Bolt Beranek and Newman Inc.

As an example, consider the stack structure corresponding

to the coroutine pair of Figure 3. Specifically, suppose that

processes P, and Pp are created by the following sequence:

Module A calls B which calls C which creates a process point

FT and returns to B which returns to A which calls Q which

creates a process point Pp. The 3tack structure is shown in

Figure 9a. Suppose ?2 resumes P,. Since C* cannot be run where

it lies, a copy is made at the stack end creating a hole above.

If module C calls module D, Figure 9b results. When D returns

to C the stack is simply flushed; however, when C returns to B,

segments C* and C are deleted. The deletion of C provides

stack space for B* to run where it lies» as shown in Figure 9c.

Two different strategies are available for handling the

overflow of local stack regions. The first, the non-linearizing

strategy, is the simplest and gives preferential treatment to

the real end cf stack. VJhenever a local stack overflows, the

copy is made at the real end of stack, and the remainder of the

stack becomes the "current local stack". The hole at the enu of

the old local stack will be used only if control comes back to

the corresponding frame extension. Essentially, mini-stack

regions are used only by th<-l- creators, so that fragmentation

is relatively common whenever co-processes occur. When au over-

flow occurs at the real end of stack, a stack compactification

can be used to move all segments up by squeezin,, out all the holes.

(Max fields are, of course, set to zero). This creates a

single block of free storage at the real end of stack whose size

is the sum of the old hole regions. Suoh a conpactlflcation can

be carried out in a single linear swet^. of the stack and requires

no additional storage.

33

i

If

^

p
2

B

B1

0

BLINK

i 1
BLINK

B

B^

BLINK

0> Space for
kN Growth of

B

B^

-a
-INK

P-, is active !\ is relive P^ iy active

irurc 9

34

I
I
I
I
I

Report Mo. 233^ Bolt Beranek and Newman Inc.

I
I
I
I
I
I
I
I
I
I
I
I
I

The second, the linearizing strategy, gives no preferential

treatment to the real end of stack. A pool is maintained of

all the free regions on the stack. This includes the block

composing the real end of stack as well as holes created by

segment deletion. When control returns to a frame extension E*,

it is run where it lies If the storage region beneath it is free.

If not, ov if the frame extension overflows its region during

running, some block in the free stack region pool Is chosen as

tiie place to copy E* and continue computation. Since use of a

storage block is not restricted to the process which created it,

the frequency of required compuctifications is substantially

less than with the non-linearizing strategy. Compactification

is st .1 required, however, since fragmentation may still occur,

resulting; in many small useless free blocks. Further, since

reuce of storage blocks is not tied to processes, there will be

inore interleaving of storage of different processes and more

frequent overflow of local stack regions. Hence, this strategy

includes linearization as part of compactification. That ij,

stack segments are reordered so that for each module A, some

modulo D cal-ed by A is placeu immediately below A. Tecnnioues

for such a linearization "re well-knowr [Minsky,*" Bobro^."3].

They suffer only In requiring additional storage - either in the

address space or in the file system.

With either strategy there is the possibility that compact-

ification will find fev; or no hoics to collect. That ic, stack

overflow due to a lar~c computation re-mains possible. V.'ith our

technique this presents no problem. Computation can proceed in

a ne.; stack scgnent which need not be contiguous to the existing

stack. Since the technique of this paper does not assume con-

ti-uity of caller anu calloe, non-contiguity of stack segments

doesn't hurl and renuiri.s no auditional mechanism.

35

Report No. 233^ Bolt Deranek and Newman Inc.

Garbage collection of environment descriptors is a separate

issue not necessarily coupled with stack compactiflcation. All

environment descriptors are allocated in the free storage region,

i.e. heap. To make reclaimatlon simple, a region (or regions)

of the heap is reserved to hold only environment doscriptors.

The trace and mark phase of garbage collection is standard,

except that all elements of the environment descriptor block free

list are marked. Hence, during the sweep phase, the only environ-

ment descriptor blocks which are picked up are those which are

reclaimed by this collection. Each such environment descriptor

is treated as if the program had executed setenv(ed,lJIL) on this

ed. That is, the associated frame is freed using the Release

Frame algorithm of section 3.1» Once frame release has been

carried out, the environment descriptor block is added to the

existing free list of environment descriptors.

Since garbage collection of environment descriptors may

free some number of stack segments, it may be useful to include

such a garbage collection whenever stack compactiflcation occurs.

Alternatively, a stack comnactification might be included as

part of each garbage collection. Which (if either) of these is

performed depends on the relative expense of rarbage collection

and stack comnactificaticn.

36

■.-;■■= ^~—:-^

I
1

Report No. 233^1 Bolt Beranek and Newman Inc.

^1. Extensions

4.1 Shallow Binding

The mode] used in section 2.1 suggests that non-local

variables are accessed by searching the ALINK chain of frames.

In the case of simple lexical identification for free variables

(e.g. as in Algol 60) there is a well-known implementation

alternative - the display of Dljkstra. If, however,

dynamic identification is used for free variables (or if enveval

is used to sec up arbitrary environments not known at compile-

time) then the display technique cannot be used. But there is

a different technique for immediate access to free variables which

is compatible with the general model and our implementation.

With appropriate enhancements, shallow binding works correctly

and efficiently." * 27, *l

The basic technique of shallow binding has been used in

LI3P implementations for some time. The method is to associate

with each atom (i.e. symbol table entry for an identifier) a

special cell, the value cell, wnich points to the current para-

meter binding for that identifier. Each non-local variable in

a procedure is represented by a pointer to the atom (or directly

to its value cell); hence, a non-local variable can be accessed

by indirecting ohrough the value cell for that atom. Whenever

a parameter binding is made or a local variable is declared, say
for the variable X, the value cell is updated. The new binding

for X includes a field old-adr which is set (during binding) to

point to the previous parameter binding for X. When a module is

exited either explicitly or implicitly (e.g. by a non-local goto)

the value cell for the olu value is reinstated.

37

Report No. 233i« Bolt Beranek and Newman Inc.

With the introduction of enveval, the simple shallow binding

strategy no longer works since application of er veval can cnange

the entire set of "current" bindings. It would, of course, be

possible to handle enveval by updating all variables, searching

the new ALINK chain to find the new bindings. However, this

is needlessly expensive.

A more sophisticated technique is to update value cells

only when values are actually required. Each value cell contains

an indicator (described belcw) which specifies whether or not

the value is current. A variable is then accessed as follows:

if the indicator specifies that the value ceül is current, then

it is used directly; otherwise, tha access environment is

searched, the proper binding founa, the value cell is set to

point to the current binding, and the indicator is set to reflect

this.

The indicator is an access chain descriptor (ACD). At any

point in tire there is a global ACD which specifies the current

access environment. An indicator in a value cell is current

if and onlv if it is eaual to the global ACD. When enveval is

called, if ihc new (i.e. specified) access environment is not

identical to the current environment then a new, unique, ACD

is generated and becomes the global ACD. Further, if the access

and control links are different, and the control environment is

the environment of enveval, then the old ACD is saved (e.g. as

a hidden parameter to the new frame being formed). On frame

exit, there are then three possibilities: (1) if ALINK=CLINK

then the normal (i.e. local) updating of parameters occurs; (2)

if ALINKVCLINK and there is an ACD which was previously saved

by enveval, then it is restored as the global ACD; (3) other-

wise, a new unique ACD is generated and becomes the new global

ACD.

38

i
i
i
i

i
i

4

1

I
I
I

Report No. 233^ Bolt Beranek and Nevman Inc.

As to implementation, ACD's can be ^ny unique descriptors

of environments, e.g. integers or pointers to blocks allocated

in the heap for this purpose. The latter has the advantage of

allowing garbage collection of ACD's wnen they become unused.

^.2 Other References to Frames: Pointers and Label-Valued

Variables

Viewed functionally, the technique of section 3.1 is merely

an efficient means for insuring that frames will be retained so

long as they are needed. The control primitives of section 2.2

use such frames to preserve environments for variable access

and control return. There are, hov/ever, a number of other uses

of frame retention for which the proposed implementation tech-

nique provides an efficient realization. Most notable are

label-valued variables and explicit pointers to data objects in

frames. (Reynolds uses label variables as a basis for his control

structure operations in Gedanken.)

Label-valued variables present a classic problem to the
9

language implementor (e.g. Fenichel). Such a variable V may

be assigned a label value belonging to a local ran^e, for

example

begin ... ; L: ... ; V-*-L; ... end

If the scope of V is larger than the range, then the phrase .n;oto

V nay be encountcrea after the block has exited. It is then

necessary to reenter the exited block. With the proposed reten-

tion techninue, this presents no probier, since the frame for the

block can he retained so long as any label variable references

a label value in the block.

39

Report No. 233it Bolt Beranek and Newman Inc.

Specifically, the technique is as follows. Two sorts of

label values are distinguished by the implementaticn* - private

label values and public label values. Label constants are

private label values; the values of label-valued variables are

public label values. A private label value may be used only in

ranges lexographlcally contained within the module where it io

defined, for example in

begin

• « •

F • AJ • • • • y

begin ... goto L ... end ;

• • •

end

Since they can only be used under safe circumstances, private

label values can be inplemonted usinj- standard techniques, e.g.

as a pair <program address, static olock nuiTiber> or as a pair

<progran address, frame pointer>. A public label value, on

the otiier hand, oan be carried anywhere. It is implemented as

a pair program address, environment descriptor for the (least)

frame containing that program address> . To insure the integrity

of the public value, it is treated as a primitive data type not

deconposable into its two parts. However, since the ed of such

an object may want to be used in other contexts, we can extend

pos to include such a possible object with the obvious interpret-

ation.

*The distinction Is an implementation i.e. compilation concent
and is made only for efficiency. The programmer sees no
difference and simply transacts with label values.

i<0

Report No. 2334 Bolt Beranek and Nev/man Inc.

When an ass;* -nment of a constant label value to a

label-valued variable occurs, the private label value is

converted,by the evaluator,to a public one by a call on

environ to create the appropriate environment descriptor.

Subsequent assignments or parameter bindings using the public

label value need not (i.e. do not) cause the creation of new

environment descriptors. All label-valued variables which

possess that public label value share the same environment

descriptor. With this implementation, it is guaranteed that

a frame is retained so long as any active label-valued variable

references it. The normal garbage collection of environment

descriptors frees such frames when all the relevant label-valued

variables are given new values or destro/ed.

Similar considerations apply to variables which can point

to data objects stored in frames; i.e. problems arise if a frame is

deleted while pointers to it persist. The situation does not occur

in LISP since all actual data objects reside in the heap. However,

in languages such as Algol 68 arm PL/I, this is both possible*

anci grevious. (In both languages, the result is an undefined

program). Again, there is a straightforward solution based on

the proposed retention techninue. Whenever a variable V whose

scope exceeds a nodule H is assignee the address jf a variable

local to K, the (private) address is converted to a global value

by pairing it (indivisibly) with an environment descriptor weich

references P.. So lon^; as the pointer value exists, the environ-

ment descriptor will not be garbage collecteu, and the frame for

R and its supporting frames will be retained.

Reproduced from
best available copy.

* In PL/I sucij a pointer value can be obtained by the built-in
function AUÜR,

n

Report No. 233^ Bolt Beranek and Newman Inc.

4.3 Interrupts and Monitoring

4.3.1 Interrupts

In a practical system, provision must be made for handling

the occurehce of conditions which demand the interruption of an

ongoing process and transfer of control by a processor to

another specified process. Examples arc hardware interrupts

for floating point underflow/overflow, end-of-file indicator

r^ad, suspension of activity demanded by another processor, and

e. istertce of a specified monitored condition (see 4.3.2). Such

interrupts are handled in our model as follows. When the

interrupt occurs, the current frame is closed off. That is, the

machine registers and other state information are saved in tne

frame extension, and the continuation point field is set to

the address of a routine which will cause state restonticn.

Then a process funarg associated with the interrupt condition

is resumed as though it were explicitly called from the

cloned frame, with an argument ed specifying this closed frame

tc be restarted.

At the poir.t of interrupt the state of the process may be

clean or unclean. An unclean state is one in which basic communi-

cation assumptions about states of pointers, aueues, buffers,etc.

are not true. For example, certain machine registers may contain

pointers which snould be traced in a narbare collection. Obviously,

processes which operate when environments fail to meet appropriate

assumptions must nuarantee not to interact inappropriately, e.g.

cause a narbap^e collection in the cited example. Standard tech-

niques exist to ensure clean states when required. Software

interrupts can be programmed to occur at only such points. Asyn-

chronous hardware or real-timo interrupts can perforn the minimal

necessary operations and induce a software interrupt for contin-

uation at the next available time. For timely interaction, such

software interrupts should be allowable at all clean points.

42

I
I Report No. 233^ Bolt Beranek and Newman Inc.

I
i
I
i
I
I
I
I
I
J
1
i
i
1
I
I
I

Each interrupt condition is identified by name. After the

current frame is closed off, the Interrupt dispatch table is

searched for an entry labeled with the interrupt name. The entry

has two fields: a level number and an action funarg. Tne 1*" ^l

snecli'ies the relative priority of t.ie Interrupt. Higher

priority interrupt conditions take precedence over (ana hence

interrupt) lower priority levels; lov/er priority interrupts

are queued while higher priority interrupts continue processing.

When an interrupt is to be processed (i.e. its priority exceeds

that of any waiting interrupt) the funarg action is applied

(c.f section 2.3 Thomas u discusses a variation of this model.)

^.3.2 Monitoring

A useful control regime which can be built from our

primitives using interrupts is lhat provided by a generalization

of the ON CONDITION of PL/I. In essence, this allows the moni-

toring of a process P for attainment of a condition C. Whenever,

C holds, the execution of P is interrupted and a process P

associated with the condition is executcu. Since P is programmer-

defined, the effect of monitoring can be any of the following:

halting execution of the Job, journalizim- an error but continuing,

recovering from the error and continuing, normal program flow

(e.r. tne condition monitoring is used for f isnatcn logic in the

main program loop).

Monitoring arbitrary conditions on contemporary machines re-

quires a mixture of hardware and software. That it, hardwars is

usually used for floating point overflow, software for testing

the condition X+Yi2*Z and sometimes hardware, sometimes software

for subscript out of range, A general techniaue for software

^3

Report No. 2334 Bolt Beranek and Newman Inc.

monitoring entails changing ordinary variables to "sensitive"

ones; e.g. to monitor for the condition X+Yj2*ZJ the variables

XjY, and Z are made "sensitive" by the evaluator. (This can be

implemented for example bv hardvare flag bits, special data

types in interpreters, and special code generators in compilers).

All accesses to X,Y, or Z then pass control to a general moni-

toring process which tests whether the variable has been changed

by the access, and, if so, whether the condition being monitored

now holds.

h.l\ Coordinated Sequential Processes and Parallel Processing

It should be noted that in the model of section 2, control

must be explicitly transfereu from one active environment to

another (by means of enveval or resume). We use the term

coordinated sequential process to describe such a control regime.

There are situations in which a problem stetement is simplified

by taking a nulte different point of view - assuming parallel

processes which synchronize only when required (e.g. by means

of Dijkstra's P and V operatioms). Using our coordinated

sequential processes with interrupts, we can define such a control

regime.

In our model of environment structures, there is a tree

formed by the control links, a "dendrarchy" of frames. One

terminal node is marked for activity by the current control

bubble (the point where the language evaluator is operating). All

other terminal nodes are referenced by environment descriptors

or by an access link pointer of a frame In the tree. To extenu

the mouel to multiple parallel processes, k brandies of trie tree

must be simultaneously narked active. Then the control bubble

HH

I
I
I

Report No. 233^ Bolt Beraaek and Newman Inc.

of the proosssor must be switched from one active node to

another accoi'dlng to some scheduling algorithm. To meet Dljkstra's

assumption of non-zero progress for each cooperating sequential

process, the algorithm must guarantee each active node a minimum

service.

TO Implement cooperating sequential processes in our model,

it is simplest to think of adjoining to the set of processes a

distinguished process, PS, which acts as a supervisor or monitor.

This monitor schedules processes for service and maintains

several privileged data structures (e.g. queues for semaphores

and active processes) which are used by the parallel process

manipulations functions defined below. (A somewhat similar tech-
2'K nique is used by Prenner).

The basic functions necessary to manipulate parallel active

processes allow process activation, stopping, continuing,

synchronization and status querying. In our single processor

coordinated sequential process model these can all be defined

by calls (through enveval) to the monitor PS. Specifications

for these functions are:

process(form,apos,epos) this is similar to enveval except

that it creates a now active process

P' for the evaluation of form, and

returns to the creating process P, a

process descriptor (ml) which acts as

a iianüle on P'.

In this model, the jrd could be a pointer to a list wnich has been

placed on a "runnable" auouc in PS, and which is interpreted by

PS when the scheduler in PS gives this process a tine quantum.

One element of the process descriptor gives the status of the

process e.g. RUNNING or STOPPED. Process is defined usin-- environ

45

■ ■•'•>*imm

Report No. 233^ Bolt Beranek and Newman Inc.

(to obtain an environment descriptor used as part of the £d) and

enveval (to call PS).

;top(pd) halts the execution of the process

specified by pd - PS removes the process

from the runnable queue. The value

returned is an ed of the current environ-

ment of pd.

continue(nd) returns pd to the runnable nueuea

status(nd) value is an inalcatlon of status of pd.

obtain(semaphore) this Dijkstra P operator transfers

control to PS (by enveval) which deter-

mines if a rcoource is available (i.e.

semaphore count positive). PS eitner

(1) nands control back to PI (with

enveval) havinr decremented the senaohor

count, or (2) entern PI on that sema-

phore's queue in PC's environment.

release (r.onanhore) i.Mn DMu-Ktr« '. envrntur 1 ncrer.ents inc

semaphore count, and if it roes positive,

it moves one process from the semaphore

nueue (if any exist) onto to*- runnable

nucue. It then hands control Lac!: to the

en 111:.- process.

l/e emphasize that these six functions can bo cefined in terms

of the control primitive of section 2.2 coupled '..'ith use of the

interrupt syrter;.

^6

Renort No. 233^ Bolt Beranek and Newman Inc.

Scheduling of runnable processes could be done by having

each process (by agreement) ask for a tine resource at appropriate

intervals. In this scheduling model, control never leaves a

process without its knov/ledge, and the monitor simply acts as

a bookkeeping mechanism. Alternatively, ordinary tirne-sharing

among processes on a tine quantum basis could be implemented

through the interrupt mecho.nism of ^.3. Timer interrupts could

be handled by PS after the frame of the interrupted process hac

been closed off. The ed of the interrupted process is sufficient

to restart it, and can be saved on the runnable queue

within a process descriptor. Because timer interrupts

are asynchronous with other processing in such a simulated

multiprocessor system, evaluation of-forms in the dynamic environ-

ment of another running process cannot be done consistently; the

e(i obtained from stopping a process nrovlues a consistent environ-

ncnt. because of this interrupt asynchrony, in oruer to ensure

system integrity, queue and semaphore management in PS must be

unlntorruntible e.g. at the highest priority level.

Having augmented our simple coordinated sequential

process system with a multi-proces:> supervisor, a variety

of additional control structures may bo readily created. As

an examnle, we consldej.- multiple parallel returns - the ability

to return from a single call on a module G several different

times with several (different) values. A slight generalization

is to allow G to give multiple returns, nerhans to different

modules higher on its control chain. For G to return from

the current position to a frame fr^ with value given by val

and still continue to run, P simply calls process(val,fr fr).

Then the current G and the new process nroceed in nuasl parallel.

I
I
I
I
1
I
I
I
I
I
1} Reproduced from S^

I best availabü ~rv ^gß

I
I

-

Report No. 2331* Bolt Beranek and Newman Inc.

4.5 Extension of Stack Mechanism For Multiple Processors

Section h.H describes a set of functions for handling

multi-processinp; based on the environment primitives of section

2.3, and the interrupt facility of section 4.3. However, only

one active processor was assumed. Somewhat surprisingly, the

implementation technique described in section 3 still works for

more than one active processor with only a few modi fie "'„ions

in the basic technique, i.e. it Implements a dendrarchy in c

multiprocessor configuration.

We believe the functions for manipulation of multiple

processes described in section 4.4 are a good basis set. To

assure system integrity, process descriptors must be made primi-

tive, i.e. not modifiable except through the routines described,

and therefore those six functions must be built in. That is,

the functions of section 4.4 anu the data type process descriptor

become primitives. However, for the purpose of this section, the

details of process maninulatlon are of secondary concern; other
? 4

semantic bases for multiorocessing would cio as well (e.g. Prenner;
28 Thomas .) In this section we depend only on some general under-

lying structures. V.'hnt in of concern here is that the stack

retention mechanism is ntill applicable unuer a multiprocessor

regime.

Regardless of details, the general situation presents some

m physical processors and k processes to be run. The process

descriptors provide a handle on (i.e. "names" for) the processes.

Assuming k>m, the m processors multiplex themselves over the k

processes according to some scheduling algorithm (primitives to

program the scheduler are not discussed here). The processes

waiting for processors are kept on a queue; a processor takes

a process from the queue, runs it, returns it to the nueue, and

repeats the cycle. Wo assume tnat processes Interlock themselves

(e.g. by a test-and-set busy wait loop) so that no process is

ever run simultaneously by more than one processor.

48

I
I

Report No. 2334 Bolt Ber^nek and Newman Inc.

I Given this situation, the implementation technique of

section 3 requires two sorts of augn.ents: (1) use of critical

I resources must be properly synchronized, (2) appropriate processor-

tc-processor interrupts must be included in the system. At any point

I in time, each proces or is unning some process, using a

* local stack segment. These local stack segments are disjoint.

* Since at most one processor is running a process at one time,

* each frame extension that is actively running has a unique

proce&sor owning it. However, a basic frame or a non-running

„ frame extension may be used y many processors; e.g. two

processors can simultaneously exit the same basic frame. Hence,

the CXT, USE, and max fields are always locked (test and

set) by each processor before access and unlocked afterward.*

With this processor-processor exclusion, it is guaranteed that

(1) no segmert will be imoroperly deleted, and (2) a frame

extension will never be simultaneously run by more than one process.

Since the local stack segments are disjoint, there is no

problem on module entrance, so long as frames can be accomodated

j ' the segment. When a local stack segment overflows, the

processor must obtain a new stack segment for its exclusive use.

If there is a free segment pool (as in the linearizing technique

of section 3.2), the pool is locked, a segment is obtained, and

the pool is unlocked. If the pool is empty or not used (as

in the non-linearizing technique of section 3.2), then the pro-

cessor PI in need of stack space calls a storage allocator which

might provide a new bli :k from the heap. Alternatively, if space is

*A process which attempts to i^ck a resource and finds the
resource already locked goes into a busy wait loop repeatedly
trying to lock it (or perhaps reschedules itself for another
activity).

M9

Report Mo. 233^ Bolt Beranek and Newman Inc.

available in a stack segment of another processor, say P2, the

allocator can obtain a portion of that space. It interrupts P2,

and the interrupt routine "or P2 transfers part of P2,s local

stacJ: storage to PI and changes its local stack descriptor to

reflect tiie transfer. Thus the multiprocessor implementation

still requires only one £;lc^al pool of stack storage which can

be dynamically allocated and reallocated among the several

nroccssors.

50

I
I
i
I
I
I
i
I

Report No. 2334 Bolt Beranek and Newman Inc.

5. Conclusion

In providing linguistic facilities more complex than

hierarchical control, the key problems are (1) finding a

model that clearly exhibits the relation between processes,

access modules, and their environment and (2) developing tech-

niques for implementing this model with acceptable efficiency.

This paper has presented a solution to both problems. The

model of section 2.1 is applicable to languages as diverse as

LISP, APL and PL/I and can be used for the essential aspects

of control and access in each. The control primitives intro-

duced section 2.2 provide a small basis on which one can define

almost all known regimes of control. The implementation

presented in section 3 is perfectly general, yet for several

sub-cases (e.g. simple recursion, simple backtracking) is as

efficient as each of the best known special technioues. Further,

the model and technique are robust, in that they can^ be extended

to a number of other applications and situations.

6. A cknowledgement s

This woiS. was supported in i.art by the Advanced Hesearch

Projects Agency under Contracts DAIIC l^-Tl-CCOGE and

F19C2C-C.C-C-0379 ana by the U.S. Air Force Klectronics fyster-s

Division under Contract P19623-71-C-0173. Daniel Bobrow is now

at Xerox Palo Alto Research Center.

The authors would like to thank Madeline Horin for her

oatience and fortitude through endless revlsionR, laro-e and s^all,

1
51

Report No. 233^ Bolt Beranek and Nev/man Inc.

REFERENCES

1. Arden, B., Caller, B., and Craharr, R. The Michigan
Algorithm Decoder, University of Michigan Press,
December 196^.

?. Berry, D. "Introduction to Oregano", in
Wegner,db pp. 171-190.

Tou and

3. Bobrow, D.G. "Storage Management in Lisp'1, in Bobrow
(Ed.), Symbol Manipulation Languages and Techniques,
North-Holland, Amsterdam, 19&Ö.

*». Bobrow, D.O., "Requirements for Advanced Programming Systems
for List Processing." CACM, Vol. 15, Lo. 6 June '1972.

5. Dahl, Ü. and Nygaard, K. "SIMULA - An Algol-based
Simulation Language, CACM, Vol. 9, No. 9 (Sept. 1966),
pp. 671-678.

6. Dijkstra, E.W."Co-operating Sequential Processes," in
Genuys (Ed.), Programming Languages, Academic Press,
1967. ■ '

7. Dijkstra, E.W. "Recursive Programming", Numerische
Mathematik 2, (I960), 312.313. Also in Programming
Systems and Languages. S. Rosen (Ed.), McGraw-Hill,
New York, IS^TT

8. Evans, A. "PAL - A Language for Teaching Programming
Linguistics", Proc 23rü Nat, Conf., I960, Brandon
Systems Press, Princeton, N.J., pp. 3':.'!3-i(03.

;}. Fcnic-iel, K. "On Implementation of Label Variables",
CACM, Vol. mt No. t), (May 1971), pp. 349-350.

10. Floyd H.W. "Non-deterministic Algorithms", .T. ACM
Vi, (October 1967), 636-0^.

11. Garwlck, J. "GPL, a Truly General Purpose Language", CACM,
Vol. ll. No. 9, September 1968. ' " _

Lonb, o.v;. and Baumert, L.ü. "LacktracK Prorraiamln"",
'j. ACM 12, (October 1965), 516-524.

Reproduced from ^%
[best available copy. ^wP

52

12. Gol«

I
I
I
I
1

Report No. 233zl Bolt Beranek and Newman Inc.

13. Griswold, H.C., et alls. The SNOBOLj< Programming
Language, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1968).

Ik. Hewitt, C. "PLANNER: A Language For Manipulating Models
and Proving Theorems in a Robot", Proc. International
Joint Conference on Artificial Intelligence, Washington,
D.C., May 1969.

15. IBM, APL/360 User's Manual, ÜH20-0683.

16. IBM Systen/360, FORTRAN IV Language, Form C28-6515-^,
IBM (1966).

17. IBM System/360, PL/I Language Reference Manual, Form
C28-8201-2, IBM (1969).

18. Johnston, J.B. "The Contour Model of Block Structured
Processes", in Tou and Wegner,^ pp. 55-82.

19. McCarthy, J., ot al. Lisp 1.5 Programmer's Manual,
The M.I.T. Press, Cambridre, Massachusetts (1962).

20. Minsky, M. "/\ Lisp Garbage Collector Usln." Serial
Secondary Storage", M.I.T. Project WAC, Memorandum
MAC-M-129, December 196 3.

21. Moses, J. "The Function of FUNCTION in LISP", SIGSAM
Bulletin (July, 1970), 13-27.

22. Naur, ' (Bd.), "Revised Report on the Algorithmic
Loi. ,uage ALGOL 6ü", Comm. ACM, Vol. 6, I.o. 1 (January,
1903), 1-17.

23. Prenner, C, Spitzen, J. anc1 V.'erbrcit, B. "An Imple-
mentation of Backtracking for Programming Languages",
submitted for puLl5cation, ACM-72.

2'l, Prenner, C. i iult_l-path CoMtrol Structures for Programminr
Lanruanen, Ph.D~ 'ThczLs, liarvara university" ;:ay-T972"
(fortiicoml;.g).

23. Heynolds, J. "GLUANKI.i. - A Simple Tyneless Language
[Jaseu on the Princinle of Completeness and the
Reference Concept",' CACM, Vol. 13, Nc. [>, ('lav 1970)
Pp. 308-319.

26. Standish, T., "PPL Implementation," Harvard University,
(Personal Communication) 1971. -M^

I Reproduced from mtiSk
I best available copy- ^jy

53

Report No. 233^ Bolt Beranek and Newman Inc.

27. Sussman, G.J. "Muddle Language Implementation", M.I.T,
A.I. Laboratory, (Personal Communication) 1971.

28. Thomas, R.H. A Model For Process Representation and
Synthesis, Ph.D. Thesis, Project MAC Report TR^F7,
M.I.T. 1971.

29. Tou, J. and Wegner, P. (Eds.). Sigplan Notices - Proc.
Symposium on Data Structures in Programming Languages,
Vol. b. No. 27TFrebruary 197177

3^. van Wijngaarden, A. (Ed.). Report on the Algorithmic
Language ALGOL 68, MR 101, flathematisch Centrum,
Amsterdam (February 1969).

31. V/egbreit, B. Studies in Extensible Programming Languages,
Ph.D. Thesis, Harvard University, Hay 1970.

3ä. V/egbreit, B. "The ECL Programming System", Proc. AFIPS
1971 FJCC, Vol. 39, AFIPS Press, Montvale, N.J.,
pn ."'253-262.

33« V/egner, P. "Data Structure Models for Programming Languages",
in Tou and Wegner^9 pp. 55-82.

i

4.

54

