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ABSTRACT 

The Carnegie-Mellon University team has completed the Initial 
Interactive Program in Advanced Composites Technology.   The program has 
had significant Impact as the CMU team, working closely with engineers 
from Industry, has made significant technical progress 1n several problem 
areas of current Importance.   Results on these problems are reported in 
this Report.   During the past year an experimental program in the fracture 
of advanced fiber composites has been completed.   The experimental program 
has given direction to additional experimental and theoretical work.   A 
synthesis program for designing low weight multlfastener joints In compos- 
ites Is proposed, based on extensive analytical background.   A number of 
failed joints have been thoroughly analyzed to evaluate the failure hy- 
pothesis used In the synthesis procedure.   Finally, the Report Includes 
new solution methods for Isotropie and anlsotroplc (mid-plane symmetric) 
laminates using the boundary-Integral method.   The solution method offers 
significant savings of computer core and time for Important problems. 
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CHAPTER 

III 

SECTION 

2 

SYMBOL DESCRIPTION 

Subscripts and Superscripts 

n Main plate 

s Splice plate 

B Bolt material 

u Ultimate allowable 

t Tension 

c Compression 
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CHAPTER     SECTION       SYMBOL DESCRIPTION 

IV 2 W(X )    Weight function of a composite 
1     plate. 

X       Variables of a composite plate. 

F.(X.)    Constraint functions on W(X.). 

X. Lagrange multipliers for the 
•* constraint functions. 

P Objective function for 
minimization. 

3 M Applied torsional moment. 

a, b Semi-major and seri-minor axes 
of the ellipse. 

T Shear stress. 

4 t Thickness of the bolt bearing 
specimen. 

S Width of the bolt bearing 
specimen. 

E Distance from the center of 
the bolt hole to the near edge 
of the bolt bearing specimen. 

D Diameter of the bolt hole in 
the bolt bearing specimen. 

XL Distance from the bolt hole 
to the far edge of the bolt 
bearing specimen. 

P Load applied to the bolt 
bearing specimen. 

F Failure stress for the tension 
mode failure of the bolt bear- 
ing specimen. 

Fsu Failure stress for the shear 
out mode failure of the bolt 
bearing specimen. 
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CHAPTER 

IV 

SECTION SYMBOL 

pbu 

L 

M 

N 

DESCRIPTION 

failure stress for the bear- 
ing mode failure of the bolt 
bearing specimen. 

Percentage of 0° plies 1n the 
bolt bearing specimen. 

Percentage of 90° plies 1n 
the bolt bearing specimen. 

Percentage of ±45° plies 1n 
the bolt bearing specimen. 
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CHAPTER SECTION SYMBC 

V 2 
V V °xy 

V V Yxy 

Vy 

Ex» Ey» 6xy 

V nxy.y' nxy,x 

°1j 

DESCRIPTION 

Stress field. 

Strain field. 

Displacement field. 

Material compliances. 

Axial, shear moduli. 

Coupling coefficients. 

Material stiffness. 

F. F,. F2 Stress functions. 

z-h Characteristic directions. 

V Roots of the characteristic equation 

1 /T. 
•l.   »2 Derivatives of M*i)» F2^z2^' 

«[   ] Real part of [ ]. 

Pk'qk Constants. 

Vly Traction components. 

Vy Outward normal . 

♦ik Stress function. 

6.. 
1J 

Kronecker delta. 

Ajk» Cjk» DJK 
Complex, real constants. 

UJ1 
Fundamental displacement tensor. 

TJ1 
Fundamental traction tensor. 

p1k' «Ik 
Complex constants. 

e1j 
Strain field. 

Sj£1* Dj£1 
Tensor kernels for e... 

xxi 
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CHAPTER SECTION SYMBOL DESCRIPTION 

V 1 *  i. Cartesian coordinates. 

; U1d Singular Influence tensor. 

P(x), Q(x) Boundary points. 

. r(P,Q) Distance between P(x), Q(x). 

\ V Polsson's ratio. 

j 
V Shear modulus. 

[ ir Pi. 
i 

| 
" 5u Kronecker delta. 

fc ui Displacement vector. 

[          | *i Traction vector. 

t                       1 "14 Stress tensor. 

r      ■ "j 
Unit outward normal vector. 

L                  ' T1j 
Singular Influences tensor. 

;       i 9R Surface of the body, R. 

■     i 
N Number of boundary segments. 

;          i 
i Pm'Qn 

Discrete boundary points. 

F      ( [I] Identity matrix. 

j 
I 

[AT],  [AU] Coefficient matrices. 

i {t} Traction vector. 

{U} Displacement vector. 

AS,.,,, 

AD k1j 
Integrals of Influence tensors. 

xxii 
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CHAPTER SECTION SYMBOL DESCRIPTION 

V 3 e x-d1rect1on strain. 

U„(l), x-d1rect1on displacement at x 
Uv(2) 

xxiii 

segment number 1; segment v: 
x   ' number 2. 

£ Distance between midpoints 
of adjacent boundary segments, 
as s own 1n Fig. 1 and Fig. 2. 

Y* y-coordlnate of last valid 
data point obtained for in- 
terior solution points, be- 
fore data diverge from the 
theoretical solution. 

SCF Stress concentration factor. 

a Semi-major axis of an ellipse. 

b Semi-minor axis of an ellipse. 

c Semi-focal distance. 

°x x-d1rect1on stress. 

°y 
y-d1rect1on stress. 

C1jkl Elastic constant tensor. 

Uk Displacement vector. 

T1d 
Stress tensor. 

e1,1 
Strain tensor. 

L1d 
Second order, linear operator. 

UU Singular Influence tensor. 

x. y Spatial points. 

3R, r Surfaces. 

TU Singular Influence tensor 

t, Traction vector. 
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CHAPTER SECTION SYMBOL DESCRIPTION 

e Radius. 

\ 
Unit outward normal vector. 

IT P1. 

Ay Laplatfdn at y. 

I Vector. 

°5 
Sphere of unit radius £ = 0. 

PM($) Inverse of Q<|((
r%' 

Qik<5> Characteristic form of L... 

R Vector, x — y. 

* Angle between R and £. 

AJk Tensor. 

e1jk 
Alternating symbol. 

Det Q Determinant of Q... 

A,  u Lame'constants. 

a,  B Material constants. 

♦l Angle between R and x.; 
polynomials in~£, n. 

C Constant. 

uru2,u3 Functions of y, z. 

Sx»V$z Surfaces with normals 1n 
x, y, z directions. 

t Length of specimens. 
A                        A 

Influence tensors, Independ- 
ent of X. 

fj Vector function. 

w Lamina width. 

t Lamina thickness. 

xxiv 
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CHAPTER I 

SUMMARY OF THE INTERACTIVE PROGRAM 

2.1 ISTRODVCTION 

The Carnegie-Mellon University team of faculty and students has 

developed a unique program of Interaction between the University team, 

the A1r Force Materials Laboratory, and certain aerospace Industries, 

notably General Dynamics, Convair Aerospace Division (Fort Worth). The 

Interactive program has focused on the application of mechanics capabili- 

ties of the CMU team to the stress and strength analysis of advanced 

fiber composite structures. The broad objectives of the program are the 

following: 

1. Creation of new and effective means of communication and 

Interaction between CMU and General Dynamics and other 

aerospace Industries. 

2. Involvement of the CMU team in the solution of fundamental 

engineering problems arising from the application of advanced 

composites In aerospace structures. 

3. Development by the CMU team of new stress analysis capabili- 

ties and results, strength criteria, design Information and 

educational material for advanced composites technology. 

To accomplish these goals, a two year effort was inltleied at 

CMU under Air Force sponsorship in November, 1969. The two year program 

has been completed and has successfully met the goals delineated above. 

The purpose of this Final Report is to summarize the achievements of the 

Interactive Program. This first Chapter discusses results for all of the 
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objectives. Following Chapters discuss 1n detail the results for 

objectives 2 and 3. 

The principal Investigators for this program originally adopted 

the position that the second objective would be promoted through extensive 

contacts with Industry, and that student members of the CMU team would be 

select senior undergraduate and first- and second-year graduate students. 

This position precluded supporting Ph.D. and faculty research by the 

program. However, two student members of the CMU team have passed the 

Ph.D. qualifying exam and are doing their research based on their project 

experience (Fracture of Composites; Design of Mechanically Fastened Joints). 

To date, five undergraduate and fifteen graduate students have partici- 

pated to some extent In the Interactive Program. Faculty other than the 

Principal Investigators have participated in the educational program to 

become familiarized with advanced composites technology and to lend 

particular expertise as needed. 

1.2        FIRST AND SECOND YEAR PROGRAMS 

1.2.1   Phase I 

During each year the Interactive program has been divided Into 

three phases: education, project research, and reporting. The education 

phase Is based on a Fall Semester course, Mechanics of Ftbev Composite 

Materials.    The purpose of the course 1s to bring the students "up-to- 

speed" In advanced composites technology such that they can contribute 

significantly to the solution of engineering problems. In the second 

year of the program, Dr. Cruse offered an advanced course, Tuo Dimensional 

Anisotropie Elasticity,  which was based on the analytical solution of 

membrane problems of composites using the complex variable approach. A 
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summary of the educational program 1s Included 1n Appendix I, Chapter I. 

This summary Includes course outlines and descriptions, references, and 

homework problem titles. 

The emphasis 1n the course work 1s on the identification of 

state-of-the-art knowledge and on solving meaningful homework problems. 

An example of this 1s*the use of the "pressure vessel" problem. Students 

are asked to find the optimal winding angle (±o) and maximum pressure for 

a cylindrical pressure vessel, using a fixed material (e.g. graphite-epoxy) 

and each of the proposed failure criteria. The problem forces the student 

to exercise lamination theory and allows a comparison of the allowable 

pressures. 

Another important problem area that was used 1s the stress con- 

centration factors in composite plates subject to in-plane loading. The 

fact that these factors are always higher than for isotropic materials is 

emphasized. The discussion leads to other measures of strength such as 

associated with sharp flaws. 

The students make considerable use of the computer and in-house 

analysis programs such as finite element and boundary-integral methods 

for boundary value problems and a pattern search program for optimization 

and synthesis. Through all of the exercises the student develops insight 

Into the fundamental mechanics questions and spends very little time on 

the nature of the analysis programs. 

1,2.2   Vhaae II 

The second phase lasts through the Spring Semester and sometimes, 

for significant problems, through the summer. The purpose of the second 

phase is to involve the students in engineering problems in advanced 
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composites technology. The students, with faculty and Industry guidance, 

select problems of Interest to the student and Industry. The process 

of problem selection for new members of the team was a major portion of 

the second half of the Fall Semester course. 

In January of each year Dr. Cruse presented the project problems 

at General Dynamics for evaluation and recommendations. At the same time 

engineers at General Dynamics were identified who would act as the Indus- 

trial contact for the student working on a particular project. 

A major portion of the budget of the Program was devoted to 

travel support. The reasoning 1s that the CMU team, to be effective, must 

have considerable visibility of the Industrial problems in composites 

technology. Thus, during the second phase the University team made 

several visits to Industrial locations, technical meetings, program reviews, 

and special Air Force programs. These trips have also served to give the 

CMU team visibility as a group doing significant work In the area of ad- 

vanced composites technology. A complete list of trip report titles 1s 

presented In Appendix II, Chapter I. This list Illustrates the breadth and 

depth of the CMU team contacts with other teams 1n the technology area. 

In the first year of the program, the CMU team made a group 

visit to General Dynamics. This trip was for presenting student progress 

reports on their projects; 1t also was a chance for the student members 

of the team to see manufacturing and test programs in progress. In the 

second year, the new member of the CMU team to pursue project work visited 

Boeing/Vertol to see their advanced composites manufacturing and test 

program. However, the rest of the members of the team doing project re- 

search were In their second year, and thus a team visit to industry 

-'-- i --- 
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Mas not made during the second phase of the second year. 

The telephone Is used heavily during the second phase. By 

Identifying engineers, perhaps at different Industrial locations, who had 

an Interest 1n the student project problem, each student could ask 

questions and receive advice, data, and evaluation without the necessity 

of a full visit with the engineer. The CMU team found that continual 

contact with engineers played a major role in the success of the 

Interactive Program. 

1.2.3   Phase III 

The third phase of the program Is the reporting phase for each 

project problem. Each student, upon reaching a major milestone, or when 

completing Ms participation in the program, 1s required to provide a 

written project report which is typed and filed. Thus, the reporting 

phase 1s Interweaved throughout the program. A 11st of the titles of all 

reports generated and on file is given in Appendix III, Chapter I. The re- 

ports contain major homework problem solutions from Phase I work, project 

proposals and progress reports, tutorial material, and final project 

reports. 

Some of the project reports are significant enough to be published 

in technical journals [1*2] and to be presented at technical meetings 

[3,4]. In addition ether reports have been submitted for presentation 

to the 13th AIAA/ASME Structures, Structural Dynamics and Materials 

Conference [5,6], while another has been accepted for the 1972 ASTM 

References are denoted by brackets [ ] and are found at the end of each 
major segment of this Report. 
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meeting on composites £7]. These papers serve to give to CMU team greater 

visibility 1n the composites community as well as to report Important 

results. 

In addition to the above major reports, the program had a 

requirement for monthly letter reports, at the request of the Principal 

Investigators. These reports required monthly student progress reports 

while the students were doing project research. The monthly report served 

to force each member of the team to be fully aware of his own and others' 

progress. In addition the reports kept the Industrial team Informed of 

project progress. 

At the end of the summer, each year, the CMU team prepared final 

project reports which were presented at the A1r Force Materials Laboratory 

and at General Dynamics. This final reporting has been the most Important 

facet of Phase III as the CMU team seeks critical review of Its p- ,grams 

by the active researchers and engineers at both locations. The final 

report meetings served as the focal point for examination of progress, 

but they also provided an opportunity to explore new areas of project 

work, team emphasis, and Industrial support. 

1.3   RESEARCH PROJECTS COMPLETED 

A sizeable number of project research problems have been solved 

to date and the titles are listed 1n Appendix II, Chapter I. Listed 

below are the major project titles, the responsible Investigator, a 

summary of the project and project reports as found in the SM file 1n 

the Mechanical Engineering Department. The following Chapters of this 

Final Report present 1n detail the major accomplishments of each project. 
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2.3.J   Fracture of Advanced Composites    (H. J. Konlsh, Jr.) 

This project includes analytical and experimental Investigations 

of the fracture of moderately thick graphite/epoxy specimens.    Information 

to date has been very encouraging In that a considerable amount of linear 

elastic fracture mechanics theory seems applicable to the material. 

(SN Reports 31, 41, 53, 64, 74, 80, 81; work 1n progress). 

1.3.2 Strength of Mechanioally-Foetened Jointe    (J. P. Waszczak) 

This project has gone from the analysis of single-fastener test 

coupons to the analysis of joints with many fasteners. Due to the weight 

penalty associated with these joints, a program has been begun to develop 

a synthesis procedure for designing multifastener joints. This program 

has a strong coupling with the engineering team at General Dynamics. 

(SM Reports 28, 34, 63, 76; work In progress). 

1.3.3 Optimisation Methods    (S. J. Marulis; Ford Motor Co.) 

The project was to Investigate the use of an 1n-house, pattern- 

search optimization method for composite design problems. The design of 

mechanically-fastened joints was considered, using the in-house program. 

An effort to couple the optimization program to the available finite 

element program was unsuccessful but may be completed in the future. 

The optimization program has been found suitable, if not optimal, for 

use by Mr. Waszczak in his project research. 

(Report SM-71; work suspended). 

1.3.4 Boundary-'Integral Equation Solution Methods    (T. A. Cruse, W. H. 
Bamford, F. J. Rlzzo) 

Three separate efforts have been completed in this area. The 

first reported is the development of an Isotropie, two dimensional 

boundary-integral equation method and a subsequent investigation of its 
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ability to model cutouts under tension.   The second reported 1s the 

development of a boundary-Integral method for tully-anlsotroplc (m1d-plane 

symmetric) laminates. (Currently, the anlsotroplc program 1s being veri- 

fied on cutout problems and some of these results are report.)   The third, 

completed by Prof. F. J. R1zzo of the University of Kentucky, concerns 

solutions to Kelvin's problem 1n anlsotroplc three dimensional bodies, 

and the Interlaminar shear problem. 

(SH Reports 45, 50, 66, 68, 70, 72; work 1n progress). 

1.4   EVALUATION AND RECOM1ENDATIONS 

It 1s clear that the goals of the Interactive Program at CMU 

have been met. The project reports contained 1n this Final Report give 

ample evidence of the extent to which the CMU team has become competent 

in research and application problems in advanced composites technology. 

There now exists considerable interaction and support between the General 

Dynamics team and the CMU team. In particular, General Dynamics has 

provided test specimens for the Fracture Program and a summer contract 

for the Joint Project. 

I However, the level of confidence in the CMU team expressed by 
I 

General Dynamics has come late 1n the program. Communication and inter- 
i 

action took place during the first year of the program but the depth of 

both was not satisfying to either team. One reason for this was that 

during the first year the CMU team was just coming up to speed in advanced 

composites technology. However, based on the results of the program re- 

view at the end of the first year, the support from the General Dynamics 

team increased rapidly. The other reason for the slow start was the lack 
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of conatont contact between the C*V team and the General Dynamics team. 

During the second year, much more contact was made, principally by Dr. 

Cruse visiting General Dynamics and liberal use of the telephone. 

Frequent personal contacts are critically important to the success of an 

interactive program such as ours. 

The impact to date on the educational program at CMU has been 

minor. The two courses cited in Appendix I plus project work (counts as 

course work) are the extent of highly visible composites activities in 

the educational program. However, seminars given by General Dynamics and 

AFML personnel, and by the Principal Investigators have served to make 

other faculty aware of the questions of materials selection, and composites 

in particular. During one semester Dr. Cruse taught a section of Senior 

Design which was concerned with the rationale for materials selection. 

At the present time Dr. Cruse is Involved in an effort to expand the CMU 

Post-College Professional Education Program. This effort includes a course 

on fiber composites. 

At a harder level to document, Instructors in the basic solid 

mechanics courses in the Mechanical Engineering Department have the speci- 

mens and knowledge to demonstrate simple anisotropic effects. It is hoped 

that more of this information can be meaningfully involved in the under- 

graduate courses. One of the biggest problems which mitigates against 

new courses in the undergraduate or graduate program is the financial 

state of the University. The process of cutting-back is underway and 

will likely last a few more years. 

Finally, the question arises as to the impact the Program has 

had in developing graduates with a competence in advanced composites, 
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who will use this competence 1n the aerospace Industry. To date this 

Impact has beer, nearly zero, as most of the students who have done 

significant project work have yet to graduate. An early graduate with 

contact with the Interactive Program went to Pratt and Whitney; another 

graduate went to Ford Motor Company. Several graduate students with 

other research areas have taken one or both of the courses offered to 

date. Those 1n the Program who are still doing project work are 

commissioned officers In the United States Army. Thus the personnel 

Impact will require more time to develop. 

Two years ago, CMU had no active research In the area of advanced 

composites. In that period the CMU team has developed an effective 

education - project program that 1s closely related to fundamental 

engineering problems In advanced composites technology. Members of the 

CMU team have present and published an Increasing number of research 

papers, and have participated In several Air Force review meetings. The 

depth and breadth of research accomplishments are reported in the re- 

maining Chapters of this Final Report. Othev measures of the Program 

require additional time to mature. 
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2.0   APPENDIX I:    SUMMARY OF EDUCATIONAL MATERIAL 

I. COURSE: Mechanics of Fiber Composite Materials (First Semester) 

A. Course description 
B. References 
C. Course outline 

II.   Project-type Homework Problems 

A. 
B. 

C. 

E. 
F. 
G. 
H. 

Develop computer program for calculating [A] matrix 
Develop computer program to reduce laminate strains 
to lamina stresses and strains 
Analyze dependence of the [A] mat 'x terms on the fiber 
orientation 
Determine the effect of transverse tension on the inter- 
laminar shear stress 
Determine the optimum winding angle (±) for a pressure vessel 
Evaluate the deformation 1n a helically-wound (+} cylinder 
Evaluate the finite element solution for a circular cutout 
Evaluate the finite element solution for a composite beam 

III.   Finite Element Summary 

A. Course notes from a short course for users 
B. Usage guide for in-house finite element computer programs 

IV.   COURSE:   Two Dimensional Anisotropie Elasticity (Second Semester) 

A. Course description 
B. Some selected prepared course notes 

V.   Project-type Homework Problems 

A. Isotropie 
1. General solutions for ring-shaped region 
2. Bolt-bearing solution 
3. Concentrated force in an Infinite plate 

B. Anisotropie 

1. Stress concentration at an ellipse 
2. Hoop stress distribution at a circle 
3. Torsion of a prismatic member 
4. Point load in an infinite plate 
5. Bolt-bearing solution 
6. Stress analysis of a cracked, infinite plate 

1? 
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MECHANICS OF FIBER COMPOSITE MATERIALS 

Text Material: 

T. A. Cruse, Mechanics of Laminated Fiber Composites 
(notes in preparation) 

J. E. Ashton et al, Primer on Composite Materials:   Analysis 
Technomlc (1969) 

Course Abstract: 

This course deals with the stress and strength analysis of 
two dimensional anlsotropic fiber composite structural mater- 
ials. These materials have applications in structural reinforce- 
ments, pressure vessels, and aeroipace structures. Typical 
materials that can be considered include reinforced concrete, 
fiberglass, and some of the new, advanced fiber composites 
such as boron-epoxy and graphite-epoxy. Major topics include 
the development of the anlsotropic stiffness matrix for in- 
plane and out-of-plane loading of plates and shells, theories 
of strength and experimental procedures, and stress and dis- 
placement analysis of simple plate and shell structures. 
Students will participate in a number of project problems de- 
signed to Involve the student in some of the real design prob- 
lems associated with composite materials. Existing solution 
techniques such as finite elements; integral equations, and 
optimization computer programs, as well as analytic solution 
capabilities will be exercised as appropriate. The student 
is assumed to have completed the normal undergraduate courses 
in strength of materials Including some introduction to the 
theory of elasticity. 
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MECHANICS OF FIBER COMPOSITE MATERIALS 

Supplementary Reference Material: 

BOOKS: 

S. A. Ambartsumyan, Theory of Anisotropie Plates,  • «•cnr.jmlc (1970) 

J. E. Ashton, J. M. Whitney, Theory of Laminated   lates, 
Technomlc (1970) 

G. S. 6. Beveridge, R. S. Schechter, Optimization:   Theory 
and Practice, McGraw-Hi11 (1970) 

S. W. Tsa1, et al  (Editors), Composite MiteriaU Workshop, 
Technomlc (1968) 

L. J. Broutman, R. H. Kroc!; (Editors), Modern Composite 
Materials, Addlson Weslsy 0967) 

__ , Metal Matrix Composites, ASTM STP 438 (1968) 

_, Interfaces in Composites, ASTM STP 452 (1969) 

REPORTS: 

_, Composite Materials:    Testing and Design, ASTM STP 
460 (1969) 

T. A. Cruse, J. L. Swedlow, Interactive Program in Advanced 
Composites Technology:    First Annual Report, Report SM-46, 
Carnegie-Mellon University, Pittsburgh, Pennsylvania (1970) 

M. S. Howeth, Design, Materials and Structures, Report SMD-028, 
General Dynamics, Fort Worth, Texas (1969). 

S. W. Tsa1, Mechanics of Composite Materials, AFML-TR-66-199 
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MECHANICS OF FIBER COMPOSITE MATERIALS 

COURSE OUTLINE: 

I. Review of Two Dimensional elasticity (6 hours) 

A. Stress tensor 
B. Equilibrium 
C. Strain Tensor 
0. Compatibility 

II. Linear, anisotropic elasticity (5 hours) 

A. Existence of the strain energy density 
B. Fourth order compliance, stiffness tensors 
C. Transformation equations 

1. Specially orthotropic 
2. Transversely isotropic 
3. Isotropie 

D^ Plane stress results 

III. Mechanics of a continuous fiber lamina (4 hours) 

A. Manufacturing of fibers, laminae 
B. Rules of mixtures 
C. Summary of micromechanics results 
D. Lamina mechanical properties 

IV. Mechanics of Laminates (12 hours) 

A. Manufacturing of laminates 
B. Stiffness, compliance matrices; [A], [B], and [D] 
C. Strength theories 

1. Static theories: Maximum stress, strain; Dlstortional 
energy 

2. Energy tensor 
3. Fatigue 
4. Fracture 

V. Structural applications and projects (12 hours) 

A. Finite element solution method 
B. Joints and cutouts 
C. Pressure vessels 
D. Stability, vibrations 
E. Limitations on lamination theory 

15 



TWO DIMENSIONAL PROBLEMS IN THE THEORY OF ANISOTROPIC ELASTICITY 

Recommended Textbooks: 

N. I. MuskhellshvlH, Some Baeio Problem of the 
Mathematical Theory of Elasticity,  Noordhoff (1963) 

S. 6. LekhnitskH, Theory of Elasticity of an 
Anisotropie Elastic Body,  Holden-Day (1963) 

Course Abstract: 

The first half of the course is devoted to the formulation 
and solution of the two dimensional. Isotropie elastic 
problem using complex variable methods. Solutions are 
obtained using the Laurtnt series expansion for multiply- 

l connected bodies. The second half of the course Is de- 
voted to the analysis of anisotropic, two dimensional 

| problems, again using the complex variable method. Example 
I problems and projects are chosen for their relevancy to 
| current engineering problems in nlsotropfc media, such 

as advanced fiber composites. Existing numerical solution 
methods such as finite elements and integral equations 
are used and compared to the analytic results when possible. 
The course assumes a knowledge of the basic theorems of 
analysis of functions of a complex variable as well as the 
basic theory of elasticity. 
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TWO DIMENSIONAL PROBLEMS IN THE THEORY OF ANISOTROPIC ELASTICITY 

COURSE OUTLINE: 

I. Review of complex variable theory (6 hours) 

A. Analytic functions 
B. Green's theorem 
C. Cauchy integral theorems 
D. Series 

II. Plane theory of Isotropie elasticity (18 hours) 

A. Equilibrium; stress function 
B. Strains; Hooke's law 
C. Goursat formula 
D. displacements 
E. Tractions 
F. Kolosov formula 
G. Forces on a contour 
H. Single-valued displacements, stresses 
I. Laurent series for the stress functions 

| f J. Infinite region with a hole 
| I K. Polar coordinate form of the equations 
l    I L. Mapping functions; curvilinear coordinates 

M. Transformed field equations 
N. Example solutions 

III. Plane thaory of anisotropic elasticity (15 hours) 

A. Hooke's law for various types of anisotropy 
B. Stress function 
C. Characteristic surfaces for the stress function 
D. Roots of the characteristic equation lAu) ' 0 
E. Stresses and displacements 
F. Forces on a contour 
G. Infinite region with a hole 
H. Single-valued stresses and displacements 
I. Mapping functions 
J. Fourier analysis of the boundary conditions 
K. General expansion form of the solution 
L. Example solutions 
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J.7   APPENDIX II:    TRIP REPORTS 

TRIP REPORT NO. 

TR-69-02 

TR-69-04 

TR-69-09 

TR-69-10 

TR-70-01 

TR-70-02 

TR-70-03 

TR-70-04 

TR-70-05 

TR-70-09 

TR-70-10 

TR-70-12a 

TITLE 

Exploration of Possible University- 
Industry Cooperation 1n the Area 
of Advanced Composite Technology 
(T. A. Cruse) 

Detailed Discussion of Proposed Uni- 
versity-Industry Joint Program 1n 
Advanced Composite Technology 
(T. A. Cruse) 

Advanced Composites Status Review 
(T. A. Cruse) 

University Team Visit to Air Force 
Materials Laboratory 

Fuselage Program Review (General 
Dynamics) and Discussion of 
Project Problems (T. A. Cruse) 

Review Meeting, First Edition of 
Structural Design Guide for 
Advanced Composite Applications, 
and Test Methods (R. D. Blevins) 

Discussion of Bolt Bearing Testing 
Procedures with North American 
Rockwell/Columbus (J. P. Waszczak) 

Discussion of Test Data, Methods with 
North American Rockwell/Los Angeles 
(R. D. Blevins) 

Team Visit to Southwest Research 
Institute 

Team Visit to General Dynamics/ 
Fort Worth 

Discussion of Consulting Program 
with Dr. Frank J. Rizzo 
(T. A. Cruse) 

Project Review Meetings at General 
Dynamics/Fort Worth and A1r Force 
Materials Laboratory 

DATE 

7/14/69 

8/11-12/69 

9/30-69 
10/2- 

11/24/69 

l/7-9/7u 

2/11/70 

3/12/70 

3/18/70 

4/2/70 

4/3/70 

8/19-21/70 

10/4-6/70 
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2KZP REPORT SO. 

TR-70-13 

TR-70-14 

TR-71-01 

TR-71-02 

TR-71-03 

TR-71-06 

TR-71-07 

TR-71-08 

TR-71-09 

TR-71-10 

TR-71-11 

TR-71-12 

TR-71  13 

TITLE DATE 

Boeing/Vertol:   Review of Boron 10/28/70 
Blade Program (S. J. Marulls; 
T. A. Cruse) 

NASA/Langley Field; Interactive 12/15/70 
Program In Composites at CMU 
(T. A. Cruse, J. L. Swedlow) 

AFML; GD/Ft. Worth:    Program Review 1/5-6/71 
and New Project Proposals 
(T. A. Cruse) 

GD/Ft. Worth:    Program Review 4/14/71 
Meeting (T. A. Cruse) 

Fifth St. Louis Symposium on Composite        4/6-7/71 
Materials 

12th AIAA/ASME Structures, Structural 4/19-21/71 
Dynamics, and Materials Conference 

(T. A. Cruse, J. P. Waszczak) 

Design Guide Review Meeting; NAR, 5/24-26/71 
Los Angeles (T. A. Cruse) 

GD/Ft. Worth; Program Review Meeting 6/9-10/71 
(T. A. Cruse, J. P. Waszczak, 
H. J. Konish, Jr.) 

Boeing/Vertol:    Review of CMU Fracture        6/18/71 
program (H. J. Konish, Jr.) 

31st National Applied Mechanics Conference 6/23-25/71 
(T. A. Cruse) 

GD/Ft. Worth:    Review of Summer Project       7/7-9/71 
(J. P. Waszczak) 

GD/Ft. Worth:    Revi>. of Summer Project,     8/5/71 
Boundary-Integral Project 
(J. P. Waszc2ak, T. A. Cruse) 

GD/Ft. Worth:    Review of Summer Project,     8/5-6/71 
(J. P. Waszczak) 

5th National Fracture Mechanics Symposium   8/31-9/2/71 
(H. J. Konish, Jr., T. A. Cruse, 
J. R. Osias) 
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J.5    APPENDIX III:    RESEARCH DOCUMENTS 

REPORT NUMBER 

SM-22 

SM-23 

SM-24 

SM-25 

SM-27 

SM-28 

l SM-29 

\ SM-31 

\ SM-32 

s 
1 SM-34 
> 
J 
i 
fr 

SM-38 

S * 

SM-41 

SM-42 

SH-45 

TITLE 

Anisotropie Stress Strain Program 
Layer Usage Guide (H. J. Konish, Jr.) 

Project Problems for Air Force Con- 
tract F33615-70-C-1146 (T. A. Cruse) 

Summary of the Direct Potential 
Method (T. A. Cruse; 

Interactive Program in Advanced 
Composites Technology (T. A. Cruse) 

Symmetric Laminate Constitutive 
Equation Program-EMAT Usage Guide 
(J. P. Waszczak) 

Bolt Bearing Specimen Co-ordinate 
Transformation Program - Usage Guide 
TRANS (J. P. Waszczak) 

Certain Aspects of Design with Ad- 

DATE 

January 1970 

January 1970 

January 1970 

February 1970 

February 1970 

April 1970 

April 1970 
vanced Fibrous Composites (R. D. Blevins) 

Stress Analysis of a Cracked Ad- April 1970 
vanced Composite Beam (H. J. Konish, Jr.) 

An Investigation of Fracture in April 1970 
Advanced Composites (W. H. Bamford) 

An Investigation of Stress Concentra-     May 1970 
tions Induced in Anisotropie Plates 
Loaded by Means of a Single Fastener 
Hole   (J. P. Waszczak) 

Integral Equation Methods in Potential    August 1970 
Theory (T. A. Cruse) 

Stress Analysis of a Cracked Aniso- 
tropie Beam (H. J. Konish, J. L. 
Swedlow) 

An Investigation of Stress Concentra- 
tions Induced in Anisotropie Plates 
Loaded by Means of a Single Fastener 
Hole (J. P. Waszczak, T. A. Cruse) 

September 1970 

September 1970 

The Use of Singular Integral Equations   October 1970 
with Application tc Problems of 
Composite Materials (F. J. Rizzo) 
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I 5 
P.        I 

SM-49 

SM-50 

SM-52 

SM-53 

SM-63 

SM-64 

SM-65 

SM-68 

SM-70 

SM-71 

SM-72 

Report on the Relation Between the Stiffness 
Matrix and the Angle of Rotation of a 
Lamina (J. Kolter) 

Numerical Solution Accuracy for the Infin- 
ite Plate with a Cutout - Progress 
Report (W. Bamford) 

Failure Mode and Strength Predictions of 
Anisotropie Bolt Bearing Specimens 
(J. P. Waszczak; T. A. Cruse) 

A Proposed Experimental Investigation of 
Fracture Phenomena in Advanced Fiber 
Composite Materials (H. J. Konish, Jr.) 

Loaded Circular Hole in an Anisotropie 
Plate (J   ?. Waszczak) 

Stress Analysis of the Crack-Tip Region 
in a Cracked Anisotropie Plate 
(H. J. Konish, Jr.) 

Numerical Calculation of the Character- 
istic Directions for a Generally 
Anisotropie Plate - MULTMU Usage 
Guide (H. J. Konish, Jr.) 

Solution to Kelvin's Problem for Planar 
Anisotropy (W. Bamford) 

USER'S DOCUMENT:    Two Dimensional 
Boundary-Integral Equation Program 
(T. A. Cruse) 

Optimization of Advanced Composite Plates 
(S. Marulis) 

Two Dimensional Anisotropie Boundary- 
Integral Equation Method  (W. H. Bamford, 
T. A. Cruse) 

November 1970 

December 1970 

September 1970 

February 1371 

May 1971 

May 1971 

June 1971 

June 1971 

June 1971 

June 1971 

August 1971 
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SM-74 

SM-76 

SM-77 

SM-80 

TITLE DATE 

SM-81 

Experimental Investigation of Fracture 
in an Advanced Fiber Composite 
(H. J. Konish, J. L. Swedlow, T. A. Cruse) September 1971 

Toward a Design Procedure for Mechanically 
Fastened Joints Made of Composite 
Materials (J. P. Waszczak) 

Review of:   Structural Design Guide for 
Advanced Composite Applications, 2nd 
Edition, Appendix A:   Theoretical 
Methods (T. A. Cruse) 

On Fracture in Advanced Fioer Composites 
(H. J. Konish, Jr., J. L. Swedlow, 
T. A. Cruse) 

A Proposed Method for Estimating Critical 
Stress Intensity Factor* for Cross-Plied, 
Mid-Plane Symmetric Composite Laminates, 
(Abstract) (H. J. Konish, Jr., J. L. 
Swedlow, T. A. Cruse) 

September 1971 

May 1971 

October 1971 

October 1971 
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CHAPTER II 

FRACTURE OF ADVANCED COMPOSITES 

2.1        STRESS ANALYSIS OF A CRACKED ANISOTROPIC BEAM 

2.1.1 Introduction 

The high specific strength and specific stiffness of advanced 

fiber composite materials have made them very attractive to the aerospace 

industry. The fact that they are both anisotropic and inhomogeneous, how- 

ever, has somewhat retarded their use, as the design and analysis pro- 

cedures developed for metals are not strictly applicable; thus, it is 

necessary to adapt old procedures, or develop new ones, which can deal 

with the more complex composite materials. 

The project discussed in this chapter deals with one such effort. 

The specific problem under consideration is the effect of a crack in a 

unidirectional advanced fiber composite material. Although this problem 

1s one of great significance in aerospace structures, it has not yet been 

extensively treated. An analytic solution has been derived for the elastic 

stresses and strains induced by a crack in a loaded anisotropic plate [1]. 

The solution does assume material homogeneity, but this is a good approxi- 

mation for advanced fiber composite materials on a macroscopic scale. 

However, relatively little has been done to follow up the analytic work. 

2.1.2 Review of Previous Work 

The most extensive investigation of fracture of compcites in 

the literature is that done by Professor E. M. Wu of Washington University, 

St. Louis.   He considers the problem of a central crack, aligned with the 

fibers of a unidirectional composite material, which are, in turn, a- 

ligned with the edges of a plate subjected to general edge loadings. 
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Wu demonstrates that linear-elastic fracture mechanics are applicable to 

this problem [2J.   His analysis yields results of the form 

a = KjF^r (1) 

Kj=   /Ä   6 (2) 

where F is a function of the external loading and G is a function of 

specimen geometry, material constants, and external loading. These re- 

sults are similar 1n form to the results obtained from the analysis 

of an isotropic problem. 

Wu verified his analysis experimentally [2,3], His experimental 

I        work, (done with fiberglass plates), does demonstrate the applicability of 
I 

a linear elastic fracture mechanics analysis to his particular problem. 

{        It further shows that the critical stress intensity factors K. (cor- 

responding to symmetric loading on the plate) and K.j (corresponding to 

skew-symmetric loading on the plate) are material constants. Under com- 

bined external loading, the following empirical relationship is observed 

to be valid at incipient unstable crack propagation: 

K,/K,c ♦ (KH/Knc)2 = 1 (3) 

This result is not, however, particularly surprising in view of [1], 

where it is analytically shown that any arbitrary two-dimensional fracture 

problem in an anisotropic material may be decomposed into two independent 

problems, one symmetric and one skew-symmetric. Thus, only the form of 

(3) may be considered as original; its existence is predicted by analysis. 

* Wu has also investigated the problem of an external loading of 

combined compression and shear [4]. This loading will lead to crack 

propagation by the second, or "sliding" mode. Three possible subcases 

24 

JMMtMM 



ngpiHppviHQpippimQiippnppH     ■'   i ' '■ ■LAU IPIIJII^-I'H".1".'! ii 

s*W!»<»^S»S«a'3»«5«e». •«^!»SP#t*J*i*f 

are considered analytically: Relative displacement of the crack surfaces, 

over a portion of the crack surfaces, and over none of the crack surfaces. 

This analysis was verified by an experimental program carried 

out on fiberglass. The results show that, for ratios of compressive load 

to shear load greater than approximately 0.4, failure does not occur by 

unstable crack propagation; the crack velocity remains quasi-stable until 

the specimen fails from propagation of the crack completely through it. 

If the ratio of compressive load to shear load 1s Increased, internal 

buckling of the fibers and separation of the fibers from the matrix is 

observed; at most, the crack will propagate some small distance at an 

angle of 45° from its Initial direction, then diffuse and die out. The 

specimen buckles thereafter with no additional crack propagation. Wu 

thus concludes that fracture mechanics is only applicable to this problem 

when the ratio of compressive stress to shear stress is less than 0.4. 

The second subcase of the analysis gives the best agreement between 

analysis and experiment when fracture mechanics are applicable. The 

quasi-stable crack propagation found to occur experimentally when the 

ratio of compressive load to shear load is approximately 0.4 seems to be 

well-described by the first subcase of the analysis. The third subcase 

of the analysis is believed to be applicable when the compressive load 

is sufficiently large to prevent crack extension; however, buckling, 

rather than crack propagation, becomes the dominant mode of failure be- 

fore this load is reached, so the presence of the crack not significant 

in the failure of the specimen. 

Wu notes that stable crack propagation occurs in an intermittent 

manner in fiberglass [2]; he postulates that this is caused by the crack 

25 

mttmtmm 



JJ4I PII,M*WPBIPWI*B^JIWL» J 

,tr-*t-ft*3 • .-.^^v>e*^*^^*-7at***^:'?r^*tt 

crossing the reinforcing fibers.   This hypothesis Is investigated both 

analytically and experimentally [5]. 

The analysis 1s based on the assumption that crack growth 1s 

primarily caused by the component of tensile stress perpendicular to the 

direction of crack growth, as the Intermittent stable crack propagation 

1s most frequently observed under skew-symmetric loading.    It indicates 

that the crack does not necessarily propagate 1n a direction collinear 

with Itself, but rather at an angle where the combination of the size of 

a sub-critical flaw and the maximum tensile stress reaches some critical 

value, causing the flaw to grow.   Under skew-symmetric loading, the maxi- 

mum tensile stress is not perpendicular to the crack direction, and, as- 

suming that flaws of any given size are uniformly distributed in the 

material, the crack will propagate at some angle to its Initial direction. 

Since the initial direction of the crack Is collinear with the fibers, the 

propagating crack must cross fibers.   The direction of crack growth is 

thus a function of the direction of the shear loading. 

It is noteworthy that Wu finds the Griffith eneryy criterion to 

be applicable to composite materials only when the crack propagates across 

fibers.   Although Wu offers no explanation for this anomaly, 1t may be 

due to the fact that, for this particular geometry, the crack propagates 

only through resin unless it crosses fibers.   Thus, the crack would "sense" 

a brittle, high-strength material, for which the Griffith criterion 1s 

applicable, only when it crosses fibers. 

Wu's specimen 1s also analyzed for symmetric loading by Bowie 

and Freese [6].   They use a modified mapping-boundary collocation technique 

to derive the stress intensity factor numerically.   Of particular interest 

26 

mugmttjjmtm 



»AW1WWIW!V*^W^'?^P^»^»W^*W"WS 

'f&jF&ßR 

is the result of Bowie and Freesc that, when the strength of the material 

In a direction transverse to the crack 1s much larger than the strength 

of the material col linear with the crack, the stress Intensity factor is 

not longer the same for both the isotropic and anlsotropic cases, as pre- 

dicted by Sih, Paris, and Irwin [1]. However, Bowie and Freese do note 

that, when the strength of the material 1n the direction collinear with 

thr crack is greater than or equal to the strength of the material in a 

direction transverse to the crack, the two stress-Intensity factors 

agree to within five per cent. 

2.1.3   Analytical Study 

The efforts described above comprise the significant work now 

available 1n open literature on macroscopic analysis of fracture in aniso- 

tropic materials. Both of them consider only cracks which are aligned 

with the fibers of the composite material, and must therefore be con- 

sidered incomplete, as no provision has been made for cracks with arbi- 

trary orientation to the material axes. The purpose of the project 

described in this section is to investigate the behavior of a crack in an 

anlsotropic material where the crack is not, in general, collinear with 

one of the material axes (though these cases are considered). Information 

Is also sought on the behavior of the stress-intensity factor as the 

orientation of the crack with respect to the material axes and the speci- 

men geometry are varied. Finally, it is desired to obtain verification 

of either Bowie and Freese [6], or Sih, Paris, and Irwin [1] concerning 

the differences, 1f any, between the isotropic and anisotropic stress 

intensity factors. 
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In pursuit of these objectives, a series of anisotroplc three- 

point bend specimens with edge cracks of different lengths (Fig. 1) has 

been studied analytically to determine the stress and deformation response 

in the vicinity of the crack-tip.   Material properties were chosen such 

that the specimen represents uni-directional boron/epoxy.   The orientation 

of the material axes relative to the crack-axis 1s completely arbitrary. 

The analysis was performed using a linear elastic, plane stress, 

finite element technique.   Two element grids were used, one representing 

the entire beam and the other representing a small region of the beam 

surrounding the crack-tip.   The latter grid is used tc provide more de- 

tailed Information in the region of the crack-tip than can be obtained 

from the relatively coarse grid of the entire beam and still remain 1n 

the core of the computer.   Details of the numerical studies are contained 

in [7]. 

Load 1s applied to the beam by specifying the transverse displace- 
f 

ment of the point on the upper edge of the beam in line with the crack- 

axis. Appropriate nodal displacements from the grid of the full beam are 
I 

then applied to the grid of the crack-tip region as boundary conditions. 

From the analysis of the grid of the crack-tip region, stresses and dis- 

! placements are determined as functions of position. 

| The stresses and deformations are represented in the form given 
\ 
\ by Sih, Paris, and Irwin [1]: 

KI      p     rV2     f 
V2 Vl ,, (4) 

°- " ~rh^ l u -u.  VcosQ +  u_sinO      /cose +  u,sinOJJ •2irr l V*-V? VcosQ +  v sinO      /cose +  p sinCr 
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I 1 yl M2 
y      /2irr l u.-p    VcosG + p_sin9 " /cos9 ♦ y.sin '•• (5) 

v = K    /——   Re  [ —-— (w q /cos9 + u_sinQ-p2q  /cosQ+p sinQ)] 

where K. is the stress Intensity factor for an Isotropie specimen of the 

same geometry as that being analyzed; r and e are the coordinates shown 

in Figure 1.   The y   are the roots of the characteristic equation 

a^p1» - 2a]6y3 + (2a16 + a6g)y2 - 2a2gy + a22 = 0 (7) 

where a.■ are the material compliances as given by 

ei = aij°j (8) 

I The q. are defined as 
I J 
I qj = a12''j + a22/lij " a26 (9) 

Using the equations (4-9), the stress intensity factor Kj can 

be obtained in various ways from both the stresses and the displacements 

found in the analyses of the crack-tip region.    It is hypothesized that 

the stress intensity factor is a separable function of the load on the 

beam and the specimen geometry, i.e., 

Kj = f(load)   g(gecmetry) (10) 

Since the analysis is linear elastic, 

f(load) = P/B (11) 

The effect of the specimen geometry is a cunction of the crack- 

length, the effects of finite specimen boundaries, and possibly the mater- 

ial anisotropy. It is further hypothesized that 

g(geometry) = Ja  G(a/W,o) (12) 
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where the function G contains the effects of the finite boundaries of 

the specimen and any effect of the material anlsotropy.   Thus, combining 

equations (10-12) 

Kj = (P^T /B) 6 (a/W,o) 

or (13) 

G (a/W,o) = KjB/P^T 

The function G(a/W,a) has been obtained analytically for three 

values of o and five values of a/W, using values of K. obtained from both 

stress and displacement data. Each G(a/W,a) was then normalized on the 

value G (0.2,a) for corresponding methods of determining Kj. The resulting 

value, denoted as G (a/W,a) is shown plotted as function of a/W in Figure 

2. On the same graph 1s shown a curve representing G~ (a/W) for an iso- 

tropfc specimen, as obtained from [8]. The data points show satisfactory 

agreement with the curve, in view of the numerical noise introduced by 

two finite element grids which are not entirely compatible. Thus, G~ 

(a/W,a) is identical with G(a/W). This, in turn, implies that the 

anisotropic stress intensity factor is the Isotropie stress intensity 

factor. 

Although the stress intensity factor in equations (4-6) is the 

Isotropie stress Intensity factor, stress and deformation are functions 

of material constants. Thus, fracture in advanced fiber composite 

materials cannot be ascribed solely to ar.y combination of the stress in- 

tensity factors. To some extent, therefore, the applicability of fracture 

mechanics to composite materials 1s questionable. Exactly what importance 

a crack has in composite materials, and what role the material properties 

play in describing it, are questions which were investigated experimentally 

and are reported in Section 2.2. 
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Figure 1: Three-point bend fracture specimen, with global (x,y and r,e) 

and material (1,2) coordinate systems shewn (insert). The 

applied load P is modelled as point load. The specimen 

thickness is denoted by B. 
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Figure 2:    A plot of G(a/W,o) vs. a/W.    The degree of correspondence 

between the discrete points (obtained numerically) and the 

continuous curve (obtained from [8]) is a measure of the 

applicab.lity of an anisotropic continuum analysis [4] to 

advanced fiber composite materials. 
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2.2        EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE 

2.2.1    Introduction 

Linear elastic fracture mechanics (LEFM) 1s now accepted as the 

rationale for characterizing crack toughness of materials that are osten- 

sibly homogeneous and Isotropie, the outstanding examples being a wide 

range of metallic alloys. The basic experience that supports this approach 

Is that presence of a macro crack dominates the response of a structure to 

remote loading. With the advent of advanced fiber composites, however, 

there arises the question of the degree of homogeneity of the structure 

surrounding the crack that Is necessary for LEFM to be applicable. In 

particular, there is concern over whether heterogeneity and anisotropy will 

preclude practical use of LEFM in composites. 

Vigorous discussion of this issue is important and widespread, 

but the interchanges so far have tended to be theoretical and even specu- 

lative. In an effort to supply some physically based information, a pilot 

series of experiments has been performed, to answer two specific questions: 

1. If a cracked, composite specimen is loaded to failure, 

is the path of crack prolongation determined by the geometry 

of the initial crack and the loading, or by material 

orientation? 

2. Can LEFM, suitably modi Fled to account for material 

anisotropy, be usefully applied to composites? 

The data now in hand, although limited, indicates that a crack in a 

composite is at least influential in determining failure patterns and, in 

many cases, the crack is dominant; furthermore that LEFM provides useful 
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procedures for evaluating crack toughness of composites. 

This section gives a brief review of the test procedures, methods 

of data reduction, and experimental results. Observations made during the 

course of the tests are reported, and failure surfaces are shown. Analyti- 

cal work stimulated by these results is underway and will be reported 

subsequently. 

2.2.2   Test Procedures; Program 

It was obvious from the objective of the test program that the 

test procedures should follow those developed within the framework of 

conventional fracture mechanics. There is, in fact, a wealth of literature 

on this subject including an ASTM Tentative Method [1] and extensive 

interpretation of it (see, e.g., [2,3]). Departures from the specifica- 

tions in [1] were minimal and were dictated either by the special nature 

of the material under test or by simple practicality. 

The three-point bend specimen prescribed in [1] was chosen largely 

to bypass problems associated with gripping the test piece. (See Figure 1.) 

In the extensive data base that now exists for metals testing, results for 

this configuration compare well to those for other geometries so that, 

among other matters» there was no reason to expect that the bearing load 

opposite the crack front should influence unduly the processes of crack 

prolongation. In fact, the data reduction scheme in [1] accounts for such 

details of specimen geometry and load arrangement. 

The specimen proportions shown in Figure 1 follow the recommenda- 

tions in [1] except that the crack front was not sharpened under fatigue 

loading. Instead, the notch was produced by a sawcut followed by a final 

lengthening and snarpening using an ultrasonic cutter. 
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As shown in Figure 2, each specimen was centered on two parallel 

rollers (1 in dia) whose centerlines were 4 in apart.   A third parallel 

roller was then located directly above the crack, and the specimen was 

loaded vertically downward.   Testing was performed in an Instron machine 

of 10,000 lb capacity, and cross-head motion was set at 10     in/min to 

minimize dynamic effects.   Load and cross-head motion were monitored during 

each test and then cross-plotted to give the basic data for later reduction. 

While the requirement of [1] is to record crack-mouth opening by means of 

a special clip gauge, both the basic linearity of material response and 

the rigidity of the test machine, relative to the specimen, seemed to make 

this degree of fidelity to [1] unnecessary for the pilot test series. 

The program involved twenty-three specimens, thus allowing for 

two reproducibility tests, and for the testing of both uni- and multi- 

directional laminates having a range of starter crack lengths.    The 

material used was a NARMC0 graphite-epoxy with Morganite II fibers in 

5206 resin. 

Reproducibility was evaluated by testing two sets of five speci- 

mens, each set of the same lay-up and geometry.    The first set was a 

uni-directional laminate (a - 0°) and had an initial crack length of 0.4 

in.   The second set was multi-directional  (a = (0°/±45°/90°) } and had 

the same starter crack length.    Single tests were run for a = 0°, 45°, 9J°; 

(±45°)s; and (07±45°/90°)s.    Starter crack lengths were 0.2, 0.4, and 0.6 

in, the shortest of which was less than the requirements in [1],    Such 

specimens were included to permit evidence of material   iaminance to 

develop. 
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2.2.3   Data Reduction; Results 

A typical load-cross-head displacement trace is reproduced in 

Figure 3.    There is an initial region of increasing slope during v/hich 

slack in the load train is taken up, and bearing surfaces under the loading 

rollers develop.   This is followed by a linear region in which the specimen 

deforms elastically.   A third region of decreasing slope then begins as a 

result both of nonlinear load-displacement behavior and of damage initiation. 

Finally the load peaks and falls off as the test piece breaks in two. 

In order to differentiate the nonlinear effects from those 

ascribable to damage, the Tentative Method prescribes the following data 

reduction scheme.^   The slope M   of the linear portion of the curve is 

identified, and a line of slope 5% less than M   is drawn as shown in 

Figure 3.    This line intersects the curve at a load termed P^.    If P^ is 

the greatest load withstood by the specimen to that point in the test, P^ 

is set equal to PQ.    If any load maximum precedes P<-, then ?Q is equated 

to that maximum value.    In either case, the experience in metals testing 

has shown PQ to correspond reasonably well to the point of failure initi- 

ation.    In the absence of a suitable data base for composites, this pro- 

cedure was used to find Pö; the data obtained is thus sorely consistent 

and probably conservative.   Together with specimen geometry, PQ is then 

used to compute K«, the critical stress intensity or candidate fracture 

It should be borne in mind that the present discussion is but an abstract 
of a most explicitly defined procedure; the interested reader is urged 
to consult [1] for complete details. 
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toughness.  See [2,3]. 

For each laminate, the Kg values were averaged to give KQ which, 

in turn, was used to find a critical strain energy release rate GQ — see 

[3,4]. The results are shown in Table I. Also of interest are the 

failure surfaces, depicted in Figures 4-8; a specimen that did not part 

fully is shown in Figure 9. 

2.2.4    Discussion 

At the outset, two questions were posed regarding the utility of 

LEFM in characterizing fracture of composites. The first concerns paths 

of crack prolongation; the answer may be inferred from inspection of the 

failure surface. The second involves use of LEFM as a data reduction 

schene; the answer to this question comes from physical measurements. 

The appearance of the failure surfaces suggests that, in the 

main, the crack and loading dominate fracture. In Figure 4 {specimens for 

which a = 0°), the path of crack growth is observed to be roughly coplanar 

with the starter crack. Note that in the case of the longest crack 

(a = 0.6 in), where a longitudinal secondary crack formed, the path is 

generally forward, Indeed, the crack seems to have made a series of 

It is not surprising, on the other hand, to see that, in the 

a = 45° specimens, the crack grew along a plane containing no fibers. 

This is clear in Figure 5 and, although fracture occurred as the result 

In metals testing, certain additional steps are taken to establish the 
validity of an individual test result. Since these steps necessitate 
use of the yield stress, they cannot be followed in this work. Thus only 
candidate  values of fracture toughness, or KQ, are reported. The data 
cannot be presumed to give K. for these materials because compliance 
with the strict requirements of [1] are definitionally impossible. 
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of crack propagation (in the matrix), the mode is a mixture of opening 

and sliding [3]. More sophisticated instrumentation would have permitted 

articulation of the relative presence of each mode, but such Instrumenta- 

tion was not used in this program. 

Forward crack growth is evident for the a = 90° specimens as 

depicted in Figure 6. Growth again was along a plane containing no fibers 

which, in this case, is coplanar with the starter crack. 

During testing the uni-directional specimens described above 

emitted popping noises prior to failure. Because the fracture process 

also involved matrix breaking of one sort or another, the two phenomena 

are believed to be related. Even in the a = 0° specimens, the crack ap- 

pears at the outset to have operated on virtually independent fiber bundles 
s 

as they pulled out from the matrix. The resulting failure surfaces are 

very rough for the early stages of growth but then become more nearly 

uniform. The noise levels for the remaining specimens were much lower, 
I 

and their failure surfaces are less suggestive of matrix cracking. 
I 
| Figure 7 is instructive in that it shows for the a = (±45°L 
I 5 

| test pieces an increasing crack dominances as the starter crack is made 

| longer. For a = 0.2 in, the crack path almost immediately turns 45° from 
i 
| its initial orientation, there being but a slight indication of forward 

I growth. A greater tendency toward coplanar growth is apparent when a = 0.4 
I 
I in, and crack dominance is manifest when a = 0.6 in. Crack growth is not 
I 

possible on a plane containing no fibers — there being none by virtue of 

the lay-up - and some zig-zagging is apparent.   This group of specimens 

thus shows a transition from some material dominance where the starter 

¥ 
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crack is shorter than required by the Tentative Method to a fracture 

pattern fully dominated by the starter crack, as the length of the starter 

crack occurs. 

Crack dominance is also clear in Figure 8, which shows failure 

surfaces for a = (0°/±45°/90°) . In these specimens, the crack moved in 

its own plane but apparently grew further in the interior of the test 

piece than on its surface. An indication of this behavior, not uncommon 

in metals testing, is shown in Figure 9. 

The use of KQ to characterize behavior of these specimens appears, 

on the whole, to be warranted. The reproducibility tests on the a = 0° 

specimens and the a = (0°/±45°/90°) specimens were satisfactory. Load- 

displacement traces are shown in Figures 10 and 11, and the average KQ 

values found are 

o = 0° : Kg = 28.8 x io3 lb/in2/in ^'£* 

a = (07±45°/90°)s : K= 21.7 x IO
3 lb/in2/in *J'§ 

The scatter is not unlike that found in metals testing. For three 

laminates, the data are fairly consistent with values obtained independ- 

ently by Halpin [5] (25-28 x io3 lb/in2/in, a = (07±45°/9<H ) and by 

Weiss [6] (31 x 103 lb/in2/in, a = 0°; 19 x 103 lb/in2/in, a = (±45c)s) 

using other specimen geometries (shape and thickness) and load arrangements. 

Inspection of Table I will show further that the KQ values for 

various starter crack sizes are within a reasonable range of the average 

KQ for each laminate. It should also be noted that the majority of largest 

deviations occur for subsize starter cracks, and none of these Is serious. 

3, One exception occurred for the a = 0° specimen set; because it was the 
first specimen of the entire series tested, it is presumably due to 
lack of experience with the test procedure, rather than material variation. 

40 

tMMm'dr^MMiaimf ■mmummiii rr *i n .. 



■■IPmpilPpQpmilVHIPpjmpg^' *m* ^-"^"'      F.J||Jppi|^ilJ!iuWjii|iJW.^»i-J'*K(M.«i»Hji^^.^««ji?« ''^"«■*wi,^fA:-.u' ',!!!■   i l.,^rHw^T^-»'J^^v-'SV^-nc^..w^^rr_^^rv 

iywiffi;cBy^?r«g^.^"t'iiM^>tf^^?wMW'T^»* * 

2.2.5 Conelust one 

This pilot test series has been successful, for it has answered 

the questions posed at the outset. The failure mechanism of the specimen 

tested is crack dominated in most cases, and the procedures of LEFM can 

be applied even where the overt failure mechanism is not so obviously 

dominated by the starter crack. 

There remains, however, a variety of questions about cracks in 

an ao'anced fiber composite material. Some concern the effects of speci- 

men geometry and load arrangement, and can be answered only by furthe 

testing. Such work is needed, first, to define and delineate more fully 

the respective influence of cracks and material. Further, the entire 

matter of fracture in composites needs for its resolution an extensive 

data base similar to that wl.ich has evolved for metals. The building of 

I        this kind of experience is important not only to determine what constitutes 

meaningful laboratory work, but also to provide guidance in treating 

service situations. Experimentally determined KQ values for given 

laminates might also be relat  to the properties of individual laminae 

within other laminates. Ultimately, the designer should be in a position 

I        to use fracture toughness as he would other material properties. 
I 
I It would now appear that efforts to address these questions are 

warranted, for the present test series indicates that, when suitably 

modified to account for anisotropy, linear elastic fracture mechanics may 

usefully be applied to advanced fiber composite materials. 
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Figure 1:   Three-point bend specimen geometry, with crack shape shown in 

inserts, both schematic (left) and actual  (right).    Fiber 

direction given by a, crack length by a.    Specimen thickness 

0.5 in (nom); all dimensions given in inches. 
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Figure 3:   Typical trace of load applied to specimen vs. cross-head 

displacement, showing method used to determine Pg. 
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Figure 8:    Failure surfaces for o = (0°/±45°/90°)s specimens of two 

starter crack lengths (a = 0.6, 0.4 in). 

Figure 9:    Failed but unbroken specimen (a = (0°/±45°/90°)s, a = 0.2 in), 
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Figure 10:   Traces of load vs. cross-head displacement for five specimens 

used in reprodudbility tests for a uni-directional laminate 

(a = 0°, a = 0.4 in). 
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Figure 11: Traces of load vs. cross-head displacement for five specimens 

used in reproducibi1ity tests for a multi-directional 

laminate (a « (0°/±45°/90°)s, a =0.4 in). 
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CHAPTER III 

STRENGTH OF MECHANICALLY FASTENED JOINTS 

3.1        AN INVESTIGATION OF STRESS CONCENTRATIONS INDUCED IN COMPOSITE 
BOLT BEARING SPECIMENS 

3.1.1   Introduction 

This study is concerned with materials which consist of parallel, 

high strength fibers supported in a relatively ductile matrix material. 
s 
I 
I 

The fibers act as load carriers while the matrix serves principally as a 

load transfer medium. In particular, it is concerned with advanced fibers, 

such as boron or graphite, in an epoxy matrix. 

Because of their superior specific strength and specific stiff- 

ness, advanced fiber composite materials have a vast potential in the aero- 

space industry. Lamina, which are single layers of parallel fibers sur- 

rounded by tho matrix material, are sia ked at various orientations relative 

to one another to form a laminate. This procedure enables the designer to 

achieve desired strength and stiffness properties and to increase the 

structural efficiency of a given amount of material. 

The strength and stiffness properties, however, are highly 

directional; panels fabricated out of layers of unidirectional composite 

tape are anisotropic. The designer therefore has the difficulty of includ- 

ing the effects of this am'sotropy in his calculations. 

One particular problem area in a structure made of composite 

materials is the bolted joint. The bolted joint in a composite material 

has a significantly lower efficiency than the same joint in metals. 

Furthermore, the composite join« may fail in unique modes not found in 

metal joints. 
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This study, therefore, investigates the stress concentrations 

induced in anisotropic plates loaded by means of a single fastener hole. 

The study is an attempt to further understand the failure characteristics 

of such boKed joints. The development of a prediction capability for 

both the failure mode and ultimate load is the major goal of the early 

part of this work. Such a capability would allow synthesis rather th&n 

analysis to be used in the future design of fastener joints. An implied 

goal in this study is an evaluation of the three proposed anisotropic 

failure criterion; maximum stress, maximum strain, and distort:onal 

energy. 

3.1.2   Analysis Method 

A constant strain, finite element computer program using tri- 

angular elements was modified to handle anisotropic composite materials 

using lamination theory as presented in [1]. The experimental work done 

on bolt bearing specimens, from which this study draws neavily, only con- 

sidered cross-plied laminates which were mid-plane symmetric. As a result, 

this numerical study is also limited to this class of laminates. It is 

important to remember that the use of lamination theory ignores inter- 

laminar shear; consequently, it is expected that the degree of error in 

the results will vary with specimen anisotropy. 

The design of a finite element grid representation to simulate 

the bolt bearing test specimen was subject to two major considerations 

First, the grid had to be sufficiently detailed around the bolt hole to 

pick up the large stress gradients which are induced in this area. 

Secondly, the number of elements and nodes was restricted by the storage 
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capacity of tne computer. Taking advantage of the two lines of specimen 

symmetry shown in Figure 1 only one-fourth of the specimen was included 

in the finite element simulation. Figure 2 shows a computer plot of the 

specimen section for e/d = 5.0, s/d = 10.0, and l/d = 20.0. The grid 

representation used contains 480 elements and 279 nodes. The conditions 

of specimen symmetry are met by forcing the x-displacement of the vertical 

line of symmetry and the y-displacement of the horizontal line of sym- 

metry to be zero in each computer run. A computer subroutine was also 

developed which transforms the co-ordinates of the grid shown in Figure 2 

to any desired spe ,.:ien geometry, i.e., e/d, s/d, £/d. 

To check whether or not the grid was sufficiently detailed around 

th° hole an isotropic test case and several anisotropic test cases were 

run. A uniform tension stress was applied to the ends of each sp imen. 

Comparison with the isotropic results presented in [2] (See Figures 3a and 

3b) and the anisotropic results of [3] indicated that further refinement 

of the finite element mesh around the hole was not necessary. The observa- 

tion that the computed finite element values of stress are higher than the 

exact values agref; well wi+h the results illustrated in [4]. 

A cosine distribution of normal stress acting over the upper half 

of the hole surface was used to simulate the resulting stress distribution 

caused by the bolt. The interaction was, therefore, assumed to be fric- 

tionless. Bickley [5] shows this to be an excellant approximation for 

isotropic bolt bearing specimens. A finite element analysis of the bolt- 

specimen interaction in certain composite laminates was performed at 

General Dynamics [6], The cosine distribution of normal stress was again 

shown to be a realistic approximation of the interaction stresses. 
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Further confidence was gained in both the cosine distribution ano 

the grid mesh by running an isotropic bolt bearing test problem and ob- 

serving the qualitative agreement of the computed stress field around the 

hole surface (See Figure 4) with work by Coker and Filon [7]. The speci- 

men used in their study had significantly larger values of e/d and s/d 

and thus a quantitative comparison was not possible. 

Finally, two other normal distributions of stress, which were 

significantly different from the cosine distribution (See Figure 5), were 

used as the bolt-specimen interface stress boundary condition for one of 

the composite material specimen runs. 

The net force in the load direction in each case was equivalent. 

It was observed that significant variance about the cosine distribution 

resulted in insignificant alterations of the calculated stress fields for 

the specimen considered. 

Z.l.'i   Strength and Failure Mode Predictions 

The selection of specimen geometries for this investigation was 

made from data which has been published by General Dynamics [8,9] and 

Grumman Aerospace [10]. Included were two net-tension failure specimens, 

two shear-out failure specimens, one bearing failure specimen and one 

specimen which exhibited failures in a transition region between a net 

tension and combination failure mode. See Figure 6 for illustrations of 

these various failure modes. 

Performing a strength analysis on a laminated composite material 

may be based on the strengths of its individual lamina. The strength of 

a single orthotropic lamina can, in theory, first be determined experiment- 

ally, producing an ultimate strength envelope *or that material. This 
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three dimensional surface (in terms of principal lamina stresses) could 

then be used to analytically predict the ultimate strength of the total 

laminate.    The state-of-the-art has yet to reach this level of sophisti- 

cation.    The present three dimensional ultimate strength envelope is con- 

structed using only five points on the stress axes due to the. as yet, 

unsolved problems encountered in off-axis testing. 

The Hill failure criterion is a widely accepted representation of 

this three dimensioral envelope; it has been found in this study to be 

the only reliable means of predicting bolt bearing specimen failure modes. 

As shown in [11] lamina failure is predicted to occur when the following 

set of principal stress ratios (normalized on their respective ultimate 

stresses) add to a number, DIST, greater than or equal to one. 

DIST (lL\\ (ü.\\ (2LV. (2uVM(Zi\   0 
\01U/ \°2u/ \T12u/ \al||/\aW\%/ 

) 

Figures 7 through IO are plot* y~ DIST for typical net tension, shear-out, 

bearing, and combination failur: modes respectively.     An initial applica- 

tion of the experimental failure load was used as the applied load for 

eech computer run.    The resulting contour plot* were sufficient to predict 

the failure modes in all but the shear-out cases.    For these specimens it 

was sometimes necessary to consider the ratios of lamina principal stresses 

to their respective ultimate stresses to differentiate between a plug type 

shear-out mode and a bending, tear-out mode. 

lr. Figures 7a through 7d represent DIST contour plots of four laminae which 
compose a net tension failure specimen. A single plot of the major load 
carrying lamina for each of the other three failure modes is included to 
illustrate the contour patterns for these various modes. 
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Prediction of failure load was also made on the basis of the 

Hill criterion. The values of DIST in the first row of circumferential 

elements around the hole were considered for each lamina. A successive 

failure analysis similar to that discussed in [12] was used to predict 

ultimate load. As soon as an element in any given lamina achieved a value 

of DIST equal to 1.0 that lamina was assumed to have failed and was locally 

removed from the laminate. The load was then redistributed among the re- 

maining laminae and all values of DIST were recalculated. If all recalcu- 

lated values of DIST were less than 1.0 more load was applied until another 

lamina reached failure. This process was repeated until total laminate 

I        failure occurred. 

The predictions of failure load based on equation (1) were always 

conservative. The degree of conservatism varied with failure mode, but 

more importantly it appeared to be a function of specimen anisotropy. To 

date only 0°/90°/±45° specimens have been considered. The predicted 

failure loads for the net tension specimens improve greatly as the percen- 

tage of ±45° lamina decreases (See Table 1). For example, for a 100% 

(±45°) laminate the predicted failure load is about one-half the experimen- 

tal failure load. For a (+45V900) laminate which contains 62,5« (+45°) 

lamina the predicted failure load is about nine-tenths the experimental 

failure load. This same type of behavior was reported by Grumman Aerospace 

[13] in a study they performed on laminate tension data. 

I The Hill criterion was the only criterion of the three which was 

conservative in predicting failure load for each specimen investigated. 

Both the maximum strain failure criterion and the maximum stress failure 
I 
r 
I 
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criterion overpredicted at least one specimen ultimate load.   That 1s, 

even when the experimentally determined failure load was applied the ratio 

of principal strains (or stresses) to their respective ultimate strains 

(or stresses) did not exceed 1.0 as is required by these two criterion 

respectively. 

Investigatior of experimentally failed specimens exhibit excellant 

agreement with predicted failure behavior.    For example, specimens which 

felled according to a slug type shear-out wode exhibited relatively smooth, 

c^ear fracture surfaces.    The high valce« of DIST for the shear-out 

failure mode pictured in Figure 8 are a result at very high principal 

shear stress ratios in these regions, which woulc lend to rather smooth 

shear fracture surfaces.   On the other hand, specimens which failed by a 

bending, tear-out failure mode (which is also considered a shear-out 

failure mode by some investigators) exhibited a very coarse, jagged frac- 

ture surface.   This behavior is again expected from the computed stress 

ratios.   Along lines at ±45° in a (0°/90°/±45°) specimen, where the 

values of DICT are high, the largest stress ratios act in the first 

principal direction.   These are the stresses which are trying to break 

fibers in tension.   As a result, as the triangular section is being torn 

away from the specimen, fibers along these failure lines at ±45° are be- 

ing broken in tension; resulting in a very coarse, jagged fracture surface. 

Another interesting feature of the experimentally failed speci- 

mens was the presence of a highly locaMzed region of laminate destruction 

at the bolt-specimen interface.    It was observed that a bearing failure of 

variable magnitude had occurred in conjunction with almost every other 
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type of experimental failure mode.    This behavior was again predictable 

as is shown in Figures 7c, 7d, 8, 9 and 10. 

3.1.4    Future Work 

Three important areas in this analysis where simplifications have 

been made will be investigated in the future. 

1) The effects of interlaminar shear on the stress field 

n<;ar the hole. 

2) The significant variation in material properties and 

ultimate allowables reported in the literature. 

3) The non-linear stress-strain response of the composite 

materials. 

The need for reliable off-axis failure data is also critical to the com- 

plete understanding of the failure of a composite structure under compli- 

cated loading.    It is felt that continued investigation of the simple 

bolt bearing problem will yield further clues as to the mechanisms of 

failure due to stress concentrations. 

It was also felt at the completion of this project that a similar 

failure analysis could be performed on more complex mechanically fastened 

joints made of composite materials.    Such an investigation has been 

performed by this investigator and is reported in the next section. 
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FIGURE 4;    POLAR PLOT OF EDGE STRESSES FOR AN ISOTROPIC TEST RUN 
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FIGURE 5:   VARIATIONS ABOUT THE COSINE DISTRIBUTION OF NORMAL STRESS 
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FIGURE Ja:    NET TENSION FAILURE     +45° LAMINA 

70 



[(±45/ö)s/5iris 

E/O-2.0, S/0-4.0 

FIGURE 7b:    NET TENSION FAILURE     -45° IAMNA 
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FIGURE 10:    COMBINATION AND NET TENSION FAILURE     +45° LAMINA 
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3.2        TOWARD A DESIGN PROCEDURE FOR MECHANICALLY FASTENED JOINTS 
MADE OF COMPOSITE MATERIALS 

3.2.1   Introduction 

Currently much emphasis is being directed toward replacing 

metal components in weight sensitive structures, such as aircraft, 

with composite materials, due to their superior specific strength 

and specific stiffness properties. The potential weight savings which 

could result from such practices, however, have not, as yet, been 

realized. 

Significant weight savings can be achieved throughout 

the bulk of a replacement component by tailoring the composite 

material to efficiently carry the loads which are known to occur in 

the existing metal component. The weight savings which result, 
2 

however, are usually eliminated due to the inefficient joint designs 

which are proposed by the designer to fasten the replacement component 

to the remainder of the existing structure. The measure of efficiency 

used here is simply load carried per pound of material. Thus, if a 

given load is to be carried by a structural member, the load carrying 

efficiency of that member increases as its weight is decreased. 

In the design of metal joints only three failure modes 

need be considered; net tension, shear-out, and bearing. For a given 

metal the values of FTU, F-.., and FBRU can be experimentally determined 

and used to specify the joint parameters S, E, and t respectively, 

given the bolt diameter. Thus, the design of metal joints is based 

on a very limited amount of experimental data. 

The term joint will imply a mechanically fastened joint throughout 
the report. 
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Consider the complications which would arise 1f a similar 

empirical design procedure.were used for joints made of composite 

materials. First of all, several additional failure modes are ex- 

hibited by composite joints which do not occur in metal joints, due 

to the anlsotropy of composite materials. Thus, for a given laminate 

the amount of data required for design purposes would be about 

doubled. The major problem, however, Is that the feasibility of 

obtaining effective stress allowables which can be related to geometric 

parameters for splitting, shear-out, or bending tear-out failure modes 

1n composite materials has yet to be determined. 

Secondly, consider the problems associated with the 

selection of joint lamination. The designer Is using a material 

which may be tailored to satisfy certain design constraints which 

are application dependent. The number of possible lay up patterns 

which could be considered during a single design are innumerable. 

Thus, the amount of data acquisition which would be necessary to 

support an empirical design procedure In composite joints Is prohibi- 

tive. 

As a result, the designer is presently forced to select 

a laminate for which some dita does exist. Since laminate effective 

stresses for the various failure modes are unknown, an overly con- 

servative design must be proposed by the designer based on his 

Interpretation of the available data. An overly conservative design, 

unfortunately, Implies that additional material has been used wherever 
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necessary to compensate for a lack of confidence in predicting various 

failure modes. Such practices, of course, lead to inefficient designs. 

There 1s one other important difference between metal joints 

and composite joints which should be mentioned. It can be deduced, 

using the results from [1], that the stress concentration factor 

which results in an a*»i so tropic joint is greater than that which 

occurs in a geometrically similar isotropic joint. This is, of course, 

a disadvantage associated with using composite materials in joints. 

It 1s, however, more than compensated for by the materials specific 

strength and specific stiffness properties. 

To recover the potential weight savings of designing with 

composite materials new design procedures must be proposed which 

will result in optimum joint designs with respect to total joint 

weight. It is the purpose of the reported study to investigate 

such improved design procedures. 

A first attempt at such design procedures is proposed and 

1s discussed 1n detail in Section 3.2.6. The procedures are sufficiently 

general that they may be used in conjunction with most available 

optimization routines. The results are being programmed by this 

Investigator using an in-hcüse pattern search optimization routine. 

Given valid input data, the program is designed to output that joint 

design in design space which has the minimum total joint weight 

while satisfying all the imposed design constraints. The results w*11, 

of course, only be as accurate as the assumptions on which the analysis 
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is based. As a result, further investigations regarding the accuracy 

of these assumptions is warranted and will be performed by this investi- 

gator. 

As mentioned above, three failure modes have been observed 

in metal joints: net tensic  shear-out, and bearing. Each of these 

modes exhibits ductile fracture behavior. In composite joints not 

only are there additional modes of failure to consider but fracture 

behavior ranges from ductile to brittle, depending on the failure mode 

being considered. 

Finite element stress analyses of bearing and shear-out 

failures in composite materials [2] have shown that large regions 

of laminate destruction, on the order of a hole diameter in size, 

occur prior to actual laminate failure. It was also found that 

highly localized regions of laminate failure, about two orders of 

magnitude smaller than those required for bearing and shear-out 

failures, were present when net tension failures occurred. It is 

apparent, therefore, that these various failure mechanisms must 

be understood before a truly optimum joint design can be achieved, 

since a single failure criterion is not applicable to all the possible 

modes of failure in composite materials. 

A recent study [3] has postulated the existence of a small 

but finite region of intense energy which supposedly governs failure 

in composite tension coupons. If stress concentrations induce such 

regions of intense energy in composite tension couponr a similar 

81 



lIPPIffllS^BWJW^JBlWPP''^^ C3Tv3?6* -jpn^Ki**!«;j ?itfp j 5vni imfc^w!-^- -tt-«yijWq»P?g*i '*M 

phenomenon should occur in composite bolt bearing specimens. The 

results reported in [2], therefore, tend to support such a theory. 

To further understand the phenomenon, a finite element 

study was performed for several composite tension coupons and is 

reported in Section 3.2.2. Again, very small, highly localized regions 

of laminate destruction were observed prior to actual failure. As 

a logical extension to the tension coupon experlmtvitai study [3] 

four geometrically similar bolt bearing specimens were designed, 

Section 3.2.2, to fail in net tension using a quasi-isotropic boron- 

epoxy material. These specimens are presently being fabricated and 

will be tested at General Dynamics, Fort Worth. If a characteristic 

crack length hypothesis is indeed valid, significant differences In 

applied failure stresses for these specimens should be observed. 

These differences should be predictable from the theory presented 

in [3]. 

The design procedures outlined and discussed in Section 

3.2.6 are only intended to represent an initial attempt at moving 

toward the desired design procedures for joints made from composite 

materials. In Section 3.2.7 those areas which require further investi- 

gation are indicated. 

3.2.2    Investigation of the Characteristic Crack Length Hypothesis 

Past experience with predicting net tension failure in 

anisotropic bolt bearing specimens using the distortional energy 
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failure criterion3 [2] has shown that a small but finite region of 

material at the hole surface Is always "past the point of failure" 

before laminate failure occurs. These regions were originally considered 

to result from an Inherent conservatism of the finite element solution 

technique. A recent sutdy performed at General Dynamics [3] has postulated 

the existence of a region of intense energy In composite tension coupons 

which seems to govern failure. The finite element results [2] in 

retrospect appear to support such a theory. 

In the study performed at GO a series of graphite/epoxy tension 

coupons were designed and tested to failure. The specimens were identical 

in overall slz« and lamination but the sizes of the circular cutouts 

varied. If a similar series of metal specimens were tested it would 

be possible to predict the failure loads of all the specimens from the 

experimental failure load of a single specimen, using scaling factors 

which are only geometry dependent. In the case of the graphite/epoxy 

coupons a simple scaling of failure loads was not possible. It was 

found, however, that the observed failure behavior could be explained 

via fracture mechanics if the existence of a region of Intense energy 

or a characteristic crack length was hypothesized. For a given laminate 

the size of the region was assumed constant. 

3It Is well known that the Hill failure criterion is not a distortional 
stress energy. However, because of the close similarity with the Iso- 
tropie failure criterion of distortional energy, the phrase "distortional 
energy failure criterion" will denote the Hill failure criterion as used 
in Section 3.1. 
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As previously mentioned highly localized regions of predicted 

laminate failure have been observed via finite elements in composite 

bolt bearing specimens. An investigation to determine whether or 

not similar regions could be observed via finite elements in composite 

tension coupons has since been completed. Two specimens were selected 

from [3] for analysis. The failure loads predicted by the theory [3] 

for these two specimens were used as applied loads for the computer 

runs. Using the most recent graphite/epoxy material constants and 

ultimate allowables it was found that for a tension coupon containing 

a 1.0 Inch diameter hole the region of localized failure measured 

50 mils. Likewise, for a specimen containing a 0.2 inch diameter 

hole the region measured 31 oils. The characteristic crack length 

proposed 'or the laminate used in the actual specimens was approxi- 

mately 40 mils and agrees quite well with the finite element results. 

Oistortional energy contour plots for the various laminae 1n the 1.0 

Inch diameter specimen are shown in Figure 1. Localized lamina 

failure 1s predicted to occur when the value of the normalized 

dlstortional energy exceeds 1.0 [2]. 

There are several reasons to suspect that the values of 

the distortional energies near the hole are not entirely accurate. 

Finite element size differences in the two specimens at the hole 

surface, the effects of interlaminar shear at the circular boundaries, 

and uncertainties regarding the cross term in the distortional energy 
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failure criterion probably account for a large percentage of any 

possible error. The fact that a small region of material appears to 

be "past the point of failure" in both specimens before laminate 

failure occurs, however, "s the significant result rather than the 

actual sizes of these regions. 

If a region of intense energy actually governs failure in 

composite tension coupons it should also govern failure in bolt bearing 

specimens made of the same material. Thus, four geometrically similar 

bolt bearing specimens were sized using a quasi-isotropic graphite/ 

epoxy laminate to see if differences In experimental failure loads 

could be observed and explained using the characteristic crack length 

hypothesis. The equations presented in [4] were used to size ehe ini- 

tial design, Table 1. The ultimate load predicted by the equations 

for a net tension failure was slightly less than that necessary for 

a bearing failure and only about two thirds that necessary for a 

shear-out failure. A computer analysis of the proposed specimen 

configuration indicated that a net tension failure would occur at 

precisely the load predicted by the equations. The resulting dis- 

tortional energy plots for the initial design are shown in Figure 2a. 

Note, however, that the results reported in [2] indicate 

that before a bearing failure may occur in a bolt bearing specimen 

a large region of material directly ahead of the bolt must exhibit 

normalized distortional energies greater than 1.0. Thus, the computer 
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analysis predicts a net tension failure to occur well ahead of any 

possible bearing failures, Figure 2a. This, however, disagrees with 

the behavior predicted by the equations. 

At the request of Mr. J. R. Eisenmann the specimen was 

resized to eliminate even the remotest possibility of premature 

bearing failures since such failures would give no information re- 

garding the possible presence of a characteristic crack length. In 

the revised design (Table 2) the specimen width has been decreased 

and the edge distance increased. The equations now predict a net 

tension failure to occur well ahead of both bearing and shear-out 

failures. A computer analysis of the revised design again indicated 

that a net tension failure would occur (See Figure 2b). The failure 

load predicted by the computer analysis, however, was 58% greater 

than the failure load predicted by the equations. Both the equations 

and the finite element analysis agree that a net tension failure 

will occur well ahead of both bearing and shear-out failures. The 

two methods disagree significantly, however, on the predicted 

failure loads. 

These differences in predicted failure loads indicate 

clearly that basing bolt bearing specimen failure predictions on 

the equations presented in [4] is very dangerous. The equations are 

empirical In origin and only apply to a limited range of specimen 

geometries. The revised design is obviously outside the region 

of applicability. 
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3.2.3   Review of Past Design Programs Involving Composite Joints 

Two programs involving the design and testing of joints 

made of composite materials were recently completed at General 

Dynamics, Fort Worth. In the original program [5] specimens were 

sized to fail in nat tension at the innermost row of bolts. The 

maximum load to be carried by a joint was first specified. An 

estimate as to bolt load partitioning was next made based on the 

designers understanding of load distributions in isotropic joints. 

The laminate to be used was selected and the joint dimensions were 

then scaled from existing single- and double-fastener coupon data. 

During testing, eight of the nine specimen designs 

failed in a splitting mode rather than the desired net tension mode. 

Thus the techniques used in sizing these joints proved to be un- 

satisfactory. 

In the second joints program [6] only one joint was designed 

and tested. The maximum load to be carried by the joint was again 

specified. The designer assumed that each bolt in the joint would 

carry an equal percentage of the total joint load at failure. The 

longitudinal strains in the splice plate and main plate were set 

equal at two locations in the joint; midway between the first two 

rows and last two rows of bolts. The specimen was sized at these two 

locations to fail in net tension at the innermost row of bolts. A 

linear taper in both geometry and lamina thicknesses was then em- 

ployed. The resulting joint design was built and tested. It failed 

In net tension at the innermost row of bolts as desired. 
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The major criticism of the latter design procedure is 

that it ignores the interaction between bolt load partitioning and 

joint geometry. The design procedures proposed by this Investigator 

Include such interaction relationships. The following section, 

Section 3.2.4 describes the proposed load partitioning analysis in 

detail. In Section 3.2,5 the analysis technique is used to predict 

bolt load distributions for six specimens selected from [5] and [6]. 

The results are used as input data for finite element analyses of 

the various specimens. A joint failure criterio.i 1s then proposed 

which, when applied to the finite element results, successfully 

predicts failure modes and conservatively predicts failure loads 

for each of the specimens. 
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3.2.4   Evaluation of Load Partitioning in Joints 

Tc design a joint one must first understand the way in 

which changes in joint geometry affect bolt load partitioning. 

Two methods for predicting bolt load distributions in a given joint 

are proposed here. The first will be referred to as the point strain 

matching technique, and the second, as the displacement matching 

technique. 

In both techniques only a single col win of bolts will be 

considered. Larger joincs may be constructed from identical columns 

of bolts connected to one another along their common sides. When 

stress analyses are performed for su J» joints curves presented in 

[7] 1.111 be used to correct for the effects induced by the adjacent 

columns. Both techniques assume that all bolts act as rigid pins 

and that the effects of plate bending are negligible. 

3.1.4.1 Point Strain Matching Technique 

In the point strain matching technique the average longi- 

tudinal strain in the main plate, e , is equated to the average 

longitudinal strain in the splice elates, e , midway between each 

set of adjacent bolts in a given column. Referring to Figure 3 we 

may write 

s(l.i^WF-ljk)/<Ejg (1) 

and 
i 
if es (i, i + 1) - j  LPk  / (EXSAS) (2) 
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The notation (i, i + 1) implies evaluation at the midpoint between 

the bolts labeled i and (i + 1). Note that equations (1) and (2) 

are written for joints loaded in double shear. The equations may 

be used, however, for joints which are loaded in single shear if one 

half the total cross sectional area of the single shear splice plate 

at the various midpoints is substituted for A . 

The assumption is now made that 

E|n(i, i + 1) = es(i, i + 1) (3) 

Substituting equations (1) and (2) into (3) and rearranging we have: 

i 
l Pk    s     /c   /„\   A  /„IV (*) 

1+2    ^Es(x) As(x))  U1 + 1 

Equation (4) may be evaluated for i = 1, N - 1, where N 

is the total number of bolts per column. Thus, equation (4) represents 

a total of (N - 1) equations in N unknowns, namely P, thru P„. One 

other equation can be written which relates the individual bolt 

loads. It is, of course, the overall joint equilibrium equation. 

N 
F= E  P. (5) 

k=l  K 

For a given specimen the modulus and cross sectional area of both 

the main plate and splice plates are known at every point along the 

specimen. Therefore, equations (4) and (5) can be used to solve 

directly for Pj thru PN- 
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3.2.4.2 Displacement Matching Technique 

In the displacement matching technique the change in length 

of a section of main plate between two adjacent bolts is equated to 

the change in length of the section of splir.* plates between the 

same two bolts. That is 

älm (i - i + l) = A£S (i + i + 1) (6) 

Equations (1) and (2) may be rewritten as follows: 

(7) «.* 

(F-kI, Pk) dx 

E„<x> A„(x) 

At             3 <? k5l V "* 
-> 

Es(x) As(x) 

(8) 

These equations require that the modulus and cross sectional area 

of both the .nain plate and splice plates be expressed as functions 

of x. Integrating (7) and (3) with respeci to x from x. to x. + , 

and substituting into (6) it follows that 

whe-e 

1 
T  P  - —. 

M 
      v F 1       P.  

k=l * 

M — 

H + S/2      ' 

Ji+1 
1       dx n - J    gx)Am(x) 

(♦-») 

- s • fw (,0) 
x

i 
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As before from equilibrium we liave 

N 
F »   E   P. 

k=l    K 
(") 

Equations (9) and (11) represent N equations In N unknowns which may 

be solved directly for Pj thru P^. 

The point strain matching technique Is used in Section 3.2.5 

to calculate load distributions for the specimens analyzed.   The 

load distribution for one of the specimens was calculated a second 

time using the displacement matching technique.   A comparison of the 

results is shown in Section 3.2.5.   The differences in load distribu- 

tions are seen to be negligible. 

The displacement matching technique i. based on a more 

realistic assumption regarding physical joint behavior than is 

the point strain matching technique.   Thus the reader may prefer to 

use the displacement matching equations in the proposed joint synthesis 

procedure discussed 1r. Section 3.2.6.    Further Investigation 

regarding possible Jifferences in t! . predicted behavior of the two 

techniques is warranted. 
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3.2.5 Computer Analysis of Experimentally Failed Composite Joints 

The purpose of the analysis phase was to establish a pro- 

posed joint failure criterion which could be automated and included 

in the final optimization program. The proposed criterion should 

be able to predict both joint failure location and failure mode. It 

should also be conservative in predicting failure loads and as simple 

operationally as possible. 

Six joints designed and tested at General Dynamics were 

selected from [5] and [6] and were analyzed via finite elements. 

Table 3 describes these various joints in detail. 

Analyzing a complete joint in a single finite element run 

with any degree of accuracy was impossible due to computer storage 

limitations. It was, in fact, only possible to analyze one hole 

at ö time to achieve suitable accuracy. 

Thus, the following analysis procedure was used. Each of 

the joints analyzed consisted of a number of identical columns of 

bolts as illustrated in Figure 4a. It was assumed that each column 

could be analyzed separately and that each carried an equal share 

of the total joint load which was present at failure. The joint 

geometries of six specimens selected for investigation were such 

that if the joints were made of an isotropic material the effects 

of adjacent columns of bolts would be negligible [7]. The equations 

from [1] indicate that the stress concentration factors which result 

93 

K3£2E^«f^^Zw^«^vflM™5 



P|PPHPgnVPPPPgHHR|BMPn«gpntr9Bv^>r^.aiiHiiwiiini        . .».i wi» j .< u   , ,, Mu .... .,., j, ..,u      —■ 

in anisotropic tension coupons are always gr\ ter than the stress con- 

centration factors which result in geometrically similar isotropic 

tension coupons. It is reasonable to assume that the same holds 

true for bolt bearing specimens. Thus the assumption was made that 

the effects of adjacent columns of bolts were negligible in the 

actual composite joints since for the same applied loads a greater 

stress concentration factor implies a more rapid stress field decay. 

To determine the effects of adjacent columns of bolts 

on the column of interest in the synthesis routine the graphical 

results from [7] will be used due to a lack of similar information 

for composite materials. Thus, conservative designs with respect to 

specimen width will result. Excessive conservatism implies a wasting 

of material and unwanted weight. Thus the degree of conservatism 

which results from using the correction factors from [7] will be 

investigated in the future. 

The point strain matching technique was used to determine 

the bolt load distribution for each of the six joints. The resulting 

distributions are shown in Figure 5. The displacement matching 

technique was only applied to one specimen, specimen 6, for reasons 

of comparison with the poirt strain matching technique. The displace- 

ment matching results are included in Figure 5 and are denoted by the 

dashed lines. The differences between the two sets of results are 

sern tr be negligible. 
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As mentioned above it was necessary to isolate single bolt 

holes for analysis to achieve suitable finite element accuracy. The 

holes which were selected for analysis were modeled as single 

fastener coupons as shown in Figure 4b. Each hole in specimen 6 

was analyzed while only the first and last holes were analyzed for 

specimens 1 thru 5. 

The stress boundary conditions for the resulting single 

fastener coupons were determined from the bolt load distribution 

results in the following manner. Consider the i  hole in the 

column of bolts illustrated in Figure 4c. The load carried by the 

i  bolt is P«.. From equilibrium considerations we require that 

a skin load, P ., of magnitude 

N 
P . = E 
51  k-1+1 

Bk (12) 

_.th be carried by the leading edge of the i  coupon. The skin load was 

applied to the leading edge of the coupon as a uniform stress in the 

computer analyses. In the actual specimens, however, the material 

surrounding a given bolt hole does not see a uniform skin stress 

in the vicinity of the preceding loaded hole unless the holes are 

separated by a sufficient amount of material. Compare the actual 

stress distribution at the leading edge of the imaginary coupon, 

Figure 6a, with the uniform stress distribution imposed at that 
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boundary in the finite element analysis, Figure 6b. The amount of 

load which must flow around the bolt hole in Figure 6b is significantly 

greater than that in Figure 6a. Thus the resulting stress concentra- 

tion factor in the computer analysis will be greater than that which 

occurs in the actual specimen. 

Corrections were made to the computed stress concentrations 

using [8] in an attempt to account for the error induced through the 

use of the uniform skin stress boundary condition. Oistortional 

energy contour plots for the six specimens analyzed are shown in 

Figures 7 thru 12. It has been found by this investigator [2] 

that such plots are extremely convenient for data presentation. 

In regions of high di-stortional energies the principal stress ratios 

which are dominant have been indicated. Table 4 summarizes the 

important information contained in these figures. 

Figures 7 thru 11 are for the five specimens selected 

from the original testing program at General Dynamics [5]. The 

first four specimens failed experimentally in splitting modes which 

appear to originate, upon examination of the specimens, at the last 

row of bolts. The fifth specimen, Figure 11, failed experimentally 

in net tension at the first row of bolts. Figure 12 represents 

the single specimen tested in the second General Dynamics program [6]. 

It also failed in net tension et the first row of bolts. The 

experimental failure behavior of these specimens, in conjunction 

with tne stress analysis results illustrated in the figures, was 

used in the development of the proposed joint failure 
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criterion. A description of how the criterion evolved is presented 

below. 

Consider for the moment Figures 7 thru 10. The stress 

patterns are identical; the values only differ slightly. The dis- 

cussion which follows fo*- Figure 7 if also valid for Figures 8 thru 10. 

A region of very high distortional energies occurs in the 0° laminae 

directly ahead of the last row of bolts in the specimen. The a2/a2  t 

stress ratios are dominant in the region, which implies local matrix 

failure (splitting). The maximum value or al/a1     in the region is Uv 

0.49. Results from [2] indicate that once the 0° laminae split 

(i.e., a2/a2 t > 1.0) a value of o\fa\     * 0.65 is necessary to cause 

a bearing failure to occur. Thus, even though the 0° laminae have 

split. Figure 7, the values of oi/oiuc are not large enough to cause 

a bearing failure to occur. 

It ha? been assumed here that matrix failure does not 

significantly .tirade the laminate since the percentage of hoop load 

carried by the 0° laminae directly ahead of the bolt was small. How- 

ever, in specimens where a large percentage of the hoop load is carried 

by the matrix prior to failure a similar assumption is not possible. 

Consider a specimen consisting of almost all 0° laminae and only a 

few ±45° laminae. Matrix failures in the 0° laminae would result in 

significant load transfer from the 0° lamina* co the ±45° laminae. 

Even if laminate failure did not occur as a result of the load transfer 

the laminate would be significantly damaged. It is apparent, therefore, 
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that a successive failure analysis must be Included in the final design 

procedure to account for such load redistribution. 

High dlstortional energies also result in the 0° laminae 

at e - 90°, Figure 7, at both the first and last row of bolts due to 

large values of o/oiy* in these regions. The maximum distortional 

energy value at the last row of bolts, 2.0, is greater than the maximum 

value at the first row, 1.5. The same is true of the maximum values 

of oi/oiu* In these two regions. If the 0° laminae were to fail, the 

±45° laminae would not be able to carry the additional load transferred 

to them from the 0° laminae; as a result, laminate failure would occur. 

Thus a net tension failure at the last row of bolts 1s the most probable 

failure mode Indicated from the results so far. 

The assumption that matrix failure does not significantly 

degrade the laminate is valid throughout specimen 1. The regions of 

high distortional energies which result from large a2/a2üt ratios are 

therefore eliminated from consideration. The only remaining region 

of interest is the one in the +45° laminae which occurs at ti.t last 

row of bolts where the fibers are tangent to the hole. Both the 

maximum distortional energy value and maximum o}/ax .  value in this 

region are greater than the corresponding values which indicated a 

net tension failure at the same hole. Once the +45° fibers break 

1n tension the remainder of the laminate cannot carry the existing 

load and laminate of failure also occurs. Thus a splitting mode 

is favored over the net tension mode previously indicated for 
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specimen 1. Since all the possible regions of failure Initiation have 

been examined a splitting mode Is predicted by the analysis. The 

actual specimen did Indeed fall In a splitting mode. The predicted 

failure load Is conservative. If Pp Is the actual experimental 

failure load for specimen 1 the dlstortlonal energy failure criterion 

predicts failure to occur at Pp/vfTs or 0.64 Pf. The maximum stress 

failure criterion predicts failure to occur at Pp/1.5 or 0.67 Pp. 

Analyses of specimens 2 thru 4 yield very similar results. 

Following the same procedure It can be deduced that a 

bearing failure does not occur In specimen 5, Figure 11. Both the 

dlstortlonal energy and maximum stress failure criteria conservatively 

predict a net tension failure to occur at the first row of bolts, 

which again agrees with the experimental failure mode. 

Predicting failure for specimen 6 Is slightly more compli- 

cated. The finite element results, Figure 12, Indicate that oi/ai 

reaches 0.65 at the last row of bolts In the 0° laminae prior to 

matrix failure, o2/a2 t = 1.0. A bearing failure is predicted to 

occur in such a case at that load where either a2/a2 .  reaches 1.0 

or a\hi     reaches 1.0, whichever occurs first. The assumption 

is made at bearing failure initiation that the bolt causing the 

bearing failure to occur is unable to carry any additional load during 

subsequent specimen loading. The additional applied load is dis- 

tributed among the remaining bolts in the column in proportion to 
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the loads which they carried at bearing failure Initiation. Figure 

12 Is the finite element representation of the state of stress 

present In specimen 6 when the experimental failure load was applied. 

Notice that a2/o2  t 
s 1.0 and <>i/oiuc 

= 0.80 In the 0° laminae 

directly ahead of the last row of bolts. The material ahead of 

the last row of bolts has failed in bearing and load redistribution, 

as described above, has taken place. A load distribution plot for 

specimen 6 1s Illustrated In Figure 12. Note that the revised load 

distribution plot Is much more uniform than that of Figure 5(f). 

Observe that regions of high distort!onal energies do not 

occur In the vicinity e a +45° at any of the bolt holes except at 

the last row of bolts in the -45° laminae. Matrix failure Is on 

the verge of occurring here. Net tension failures, however, are 

Indicated at various locations along the specimen which would occur 

prior to matrix failure in the -45° laminae. A splitting mode Is, 

therefore, definitely not indicated by the distortlonal energy plots. 

Regions of high distortional energies in the 0° laminae 

at e ■ 90° are present at the first and third through sixth rows 

of bolts. The maximum distortlonal energy value, 1.2, occurs at 

the fifth row. The largest value of ai/a\ utin these four regions 

of interest Is 1.03, which also occurs at the fifth row. Thus, 

both the distortional energy and maximum stress failure criteria 

predict a net tension failure to occur in specimen 6 at the fifth 
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row of bolts at 0.97 PF, where Pp is the actual experimental failure 

load for the specimen. The predicted failure load is again conserva- 

tive but only by about 3% as opposed to about 35X for specimens 1 

thru 5. The predicted failure mode was again correct but the location 

was not. 

The analysis of specimen 6 shows that the design was a 

good one, in that each hole was close to failure when the joint 

failed experimentally. Notice also that the various bolts were 

fairly equally loaded when joint failure occurred. Some designers 

feel that such a bolt load distribution 1s necessary 1f a joint 

1s to carry load efficiently. The validity of such a statement can 

only be determined by further analytical and experimental investi- 

gation. 

Thus a joint failure criterion has been proposed which 

has successfully satisfied the requirements Imposed on It 

at the beginning of Section 3.2.5. The criterion was able to predict 

both failure location and failure mode in all but Specimen 6 

where 1t Incorrectly predicted failure location. 

More importantly It was able to conservatively predict failure loads 

for each specimen. It was found that the maximum stress failure 

criterion agreed with the distortional energy failure criterion 

to within just a few percent in predicting failure loads. It was also 

found that failure was always initiated at locations around hole 
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surfaces where fibers were being broken in tension and were tangent 

to the hole surface. 

Therefore, to make the failure criterion as operationally 

simple as possible we need only check for fiber failures where the 

fibers run tangent to the hole surface. A successive failure 

analysis must be performed at these locations to insure against 

premature failures induced by matrix failures in other laminae. 

The successive failure analysis should also be performed in regions 

where fibers are perpendicular to the hole surface since matrix 

failures in these laminae may also induce premature laminate 

f ai 1 ures. 

102 

UÜUHtiiauMH* 



i „in.,,.,..,!,.!« wmm wmmmmmmmm MWBWWWIiWWIWWWIBIIWW 

3.2.6   Proposed Mechanically Fastened Joint Design Program 

The preceding sections explain the procedures one would 

go through if a given joint were to be analyzed. A method is now 

proposed by which a joint may be designed to meet certain design 

constraints while attempting to minimize total joint weight. 

An outline of the proposed mechanically fastened joint 

synthesis program is presented below to give a general understanding of 

the procedures involved in arriving at an optimum joint design with 

respect to total joint weight. The various procedures are then 

discussed in detail. 

3.2.6.1 Outline of Proposed Synthesis Program 

(A) Specify the known input data. 

(B) Determine the design variables and their range of allowable values. 

(C) Specify the necessary design constraint equations which will 

insure that joint failure does not occur until the design 

ultimate load is reached. The design ultimate load will be 

included as part of the input data. 

(D) Specify an initial design 

(E) Calculate the various bolt loads for the current proposed geometry 

using the bolt load partitioning results, Section 3.2.4. 

(F) Perform a stress analysis of the proposed design to determine the 

average laminate stresses at various critical points along each of 

the circular boundaries. A closed form solution to the problem 
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Illustrated In Figure 13a, based on the theory presented in [9], 

will be used to perform the required stress analyses. Corrections 

will be made to account for the effects of finite specimen size 

from [10]. 

(G) Transform these average laminate stresses to lamina stresses. 

(H) Determine whether any of the lamina stresses exceed the design 

constraints imposed in (C). 

(I) Assign penalty functions to the weight function for each design 

constraint which is not satisfied and calculate the total weight 

for the proposed joint design. 

(J) Select a new design by moving in design space along a path 

which tends to decrease the total weight function. 

(K) Repeat (E) thru (J) until a suitable optimum design is achieved. 

(L) If desired, a detailed stress analysis may be performed for the 

proposed optimum design using finite elements, Section 3.2.5. A 

final check may be necessary since the stress analyses performed 

in (F) are based on isotropic correction factors. 

3.2.6.2  Discussion of Program Details 

3.2.6.2.1 Input Data 

The following information will be read into computer program 

as input data. It may be desirable in later work to include one or 

more of these parameters as program variables. The diameters of the 
4 

bolts used in a given joint will all be the same, D . The actual size 

underlined symbols and phrases denote input information. 
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will be dictated by joint applicr'.ion as well as by standard size 

limitations.   Given an effective shear allowable for the bolt material, 
D 

F-y , and the maximum load to be carried by the joint per column of 

fasteners, £, one may determine a safe number of bolts, N., to be used 

in a given column since it appeals from the analysis of specimen 6 

that a fairly uniform load distribution is desirable. 

Selection of the splice plate material will be application 

dependent. The material will probably be either a high strength 

S  S      S steel or titanium. In either case the values of F™ , F.„, and FBR(. 

must be input so that constraint relationships may be later defined 

to insure against splice plate failures in net tension, shear-out 

and bearing respectively. In the load partitioning calculations 

the splice plate modulus, E$, is also required. 

Similarly a decision must be made as to whether boron/epoxy 

or graphite/epoxy will be used as the main plate material. The 

material properties and ultimate allowables must be input for the 

material system selected. 

The leading edge distance of the main plate must be de- 

fined since values of F~.. are not tabulated for composite laminates. 

Such information would be very valuable to the current effort since 

excessively large edge distances result in low joint efficiencies. 

A value of E/D = 4.0 will be used for the leading edge of the 

composite main plate. A value of E/D may be calculated for the 
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for the leading edge of the splice plate from the value of F$u and 

the maximum bolt load carried by the last row of bolts, which will 

be determined using the bolt load partitioning analysis. 

In summary the required input data is: 

Bolt diameters 

Effective shear strength of bolt material 

Maximum load to be carried per column of bolts 

Number of bolts per coliumn 

Effective tension strength of splice plate material 

Effective shear-out strength of splice plate material 

Effective bearing strength of splice plate material 

Splice plate modulus 

Composite material lamina properties 

D 

F B rSU 

F 

N 

F S 

F S rsu 
F  S rBRU 

ES 
En,l E22, 

G12, '12 

°iut' G2ut 

0luC °2uc 

eiut» e*ut 

eiyc» e*uc 

T12U. Y12U 

Lamitid ultimate allowables (Main plate) 
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3.2.6.2.2 Design Variables 

In this section seventeen parameters are defined which 

can be used in conjunction with the input data to completely define 

a given joint. If restrictions are not imposed on the design once 

the input data is determined, the seventeen parameters would represent 

seventeen design variables. If restrictions are imposed the number 

of design variables would be less than seventeen. 

At the beginning of the program, just after the input data 

is read in, flags will be used to indicate which of the seventeen 

parameters are to be predefined. The values of these predefined 

parameters will then be read in as additional input data. The remaining 

parameters will represent the design variables. 

In some cases the design variables have been restricted to 

a certain range of allowable values. Optimization routines require 

a well defined design sp*ce within which they may search for local 

minima. Therefore, where limits have not been specified for design 

variables it is uo to the programmer to do so. 

The program has been restricted to the (0/±a/±B/90) class 

of laminates; a and ß being design variables. The values of a and e 

are restricted to the range 15° to 75°. It may be desirable later 

to restrict the possible values of a and ß to integer values, but for 

the present work integer optimization procedures will not be used. 

It will also be required that at least one ply of each of the four 

lamina orientations be present in each proposed design. In this 
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manner we are assured that fiber failures will accompany laminate 

failure regardless of failure mode. A design where a and ß are set 

equal, (0/±<x/90), is also acceptable since fiber failures still must 

accompany all possible laminate failure modes. The total thicknesses 

of the various lamina orientations are assumed to be, at most, linear 

functions of x, the position along the joint. More complicated lay 

up patterns will not be included in the present study. 

Consider the joint design shown 1n Figure 14. The seventeen 

possible design variables are indicated on the figure. As previously 

mentioned the values of (E/D)m and (E/D) will be specified Sy the 

program. If a joint is being designed which will consist of a number 

of identical columns of bolts the widths of the main plate and splice 

plates must be equal and constant along their lengths. The designer 

must input such information as described above. 

In summary the seventeen possible design paramters are as 

follows: 

Description Parameters 

a, ß 
Ws(0), W (L) 

Jm<0>'Hm<L> 

UO), t0(L) 

to 
tß 

pu(or t* U) 
(L) 

Lamina orientations 
Width of splice plate at x=0, L 
Thickness of splice plate at x=0, L 
Width of main plate at x=0, L 
Joint length 
Thickness of 0° lam. .ae at x=0, L 
Thickness of 90° laminae at x=0, L 
Thickness of ±o° laminae at x=0, L 
Thickness of ±ß° laminae at x=0, L 

Range 

15° - 75° 
30 + 

-*■ 

3D - 
[2(N-1)+4]D 
1 ply 
1 ply - 
1 ply -► 
1 ply ->■ 
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me lower limits on the widths and length measurements are based on 

a minimum separation of free surfaces of one diameter. These values 

may be changed by the programmer if desired. The upper and lower 

limits which have not been specified must be provided by the programmer. 

3.2.6.2.3 Design Constraints 

Once a design is proposed it must be loaded to design 

ultimate. The joint failure criterion, Section 3.2.5, must then be 

applied to determine whether or not the proposed design can indeed 

carry the design ultimate load, as required. In order to automate 

the process of examining the joint for possible failure at the i 

critical location an equality constraint, F(i), must be defined. 

For the in-house pattern search optimization routine, the equation 

must be written in such a form that F(i) < 0 if failure is not indi- 

cated. If failure is predicted to occur, then F(i) > 0. As previously 

mentioned a penalty function is added to the weight function when 

F(i) > 0. To minimize the total weight of the joint the design must 

move in design spece in a direction which tends to reduce the penalty 

functions. 

Consider the possible failures which could occur at each 

hole along the joint. They are: 

(1) Bolt failure in shear. 

(2) Splice plate failures in bearing, shear-out, or net tension. 

(3) Main plate failures in bearing, shear-out, net tension, 

splitting, bending tear-out, or combination modes. 
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An Inequality constraint equation must be written for each of the 

possible failure initiation sites. 

To test for bolt failure in shear we calculate the maximum 

shear stress, TAU, acting on the bolt cross sectional area. 

TAU = PB / UR
2) 113) 

Pp represents the bolt load acting at the hole of interest. 

The magnitude of Pß is determined via the bolt load partitioning 

analysis, Section 3.2.4. 

To insure against a bolt failure in shear we require that 
D 

TAU i FSy .    Stating this in the form of a valid inequdity constraint 

we have: 

F(l) = PB / (irR2)    - FSU
B (14) 

Similarly, to insure against splice plate failures at a 

given hole in bearing, net tension or shear-out we have respectively: 

F(2) = PB / Dt - FBRU
S (15) 

F(3) = (PB + Ps) / t(S - D) - FTU
S (16) 

F(4) = PB / 2tE - Fsu
: (17) 

The skin load, P<-, is calculated from equation (12). The values of 

t, E, and S for a given bolt bearing model are determined as was shown 

in Figure 4. 

Now consider the possible composite main plate failures. 

Once a stress analysis is performed, checks for possible failure 

initiation must be made at four locations (possibly only three if 
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o equals ß) around each hole as discussed in Section 3.2.5.   Bearing 

failures may or may not be considered desirable.    If they are, the 

load redistribution procedures discussed in Section 3.2.5 can be built 

into the computer logic.   To simplify the following discussion assume 

that bearing failures are undesirable. 

Thus, if at d = 0°, a matrix failure occurs in the 0° 

laminae (o2/02ut * 1.0) a bearing failure would be predicted to 

occur when 0i/°iuc 
= 0.65.    If matrix failures do not occur during 

loading then °i/°iuc * 1.0   would be necessary for a bearing failure 

to occur.   Since the likelihood of a bearing failure is only dependent 

on the stresses at e = 0° in the 0° laminae, an inequality constraint 

equation may be written at that location of the form 

°l/oliir    " 1-° if °2/02llt « ^O 
F(5) = 

luc 
(18) 

°i/oiuc   -0.65       if O2/°2util.0 

It was postulated in Section 3.2.5 that all failure modes, 

except bearing, have one thing in common.   They all seem to occur 

at locations where fibers are tangent to a hole surface.    In a 

(0 /±o/±ß/90) laminate fibers are tangent to the hole surface at 

G = 90°, (90 - a)°, (90 - e)°, and 0° in the 0°, +a°, +ß°, and 90° 

laminae respectively.    If, at ultimate load, matrix failures have 

occurred at any of these hole locations load redistribution among the 
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various laminae must be considered. The stresses in the remaining 

laminae would be recalculated. A check would then be made in the 

lanrnae which are tangent to the hole surface to see whether or not 

Vie fibers have failed in tension. The inequality constraint used 

for this purpose Is: 

F(6) = °i/oiut- 1.0 (19) 

Equation (19) must be applied four times per hole; to the 0° fibers 

at e = 90°, the 90° fibers at 0 = 0°, the +o° fibers at 0 = (90 -a)°, 

and the +ß° fibers at 0 = (90 - ß)°. Thus, a total of nine inequality 

constraints must be satisfied at each and every hole. 

In the past, designers have designed for net tension failures 

at the Innermost row of bolts.  An equality constraint of the form 

°i/°iut -1-0 = 0 (20) 

could be imposed on the stress field in tne 0° laminae at the innermost 

row of holes to force the design to fail there in ne' tension. Such a 

restriction is not justified, however. When an optimum design is 

arrived at using the nine inequality constraint equations per hole, one 

of the nine equations will, in the process, be automatically forced 

to zero. This will specify joint failure mode and location. Net 

tension failures at the innermost row of bolts may not result when 

minimum weight designs are required. 

3.2.6.2.4 Design Procedures 

In order to begin the design process an initial design 
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must be selected.    The initial design must, of course, be in the 

design space which is defined by the upper and lower limits placed 

on the design variables. 

If the designer has a design in mind he may use it to 

activate the program.   Otherwise, the program will specify an initial 

design.   The in-house pattern search routine uses a random number 

generator for the purpose of specifying initial values for the design 

variables.    It may be desirable to use several random starting points, 

if run times are not excessively long, to check for possible local 

minimum in the design space. 

Once an Initial desman is proposed the bolt load partitioning 

results would be used to calculate the bolt load distribution for the 

geometry and lamination selected.   To perform such calculations the 

main plate and splice plate cross sectional areas as .veil as the 

main plate modulus must be defined as functions of x.   Referring 

back to Figure 14 It. can be shown that 

Am(x) = KtJU-t^O))  (x/L) + t(n(0)] [(Wm(L)-Wm(0)) (x/L) 4 WjO)] (21) 

As(x) = [(ts(L)-ts(0)) (x/L) + ts(0)] [(Ws(L)-Ws(0)>  (x/L) + W$(0)] (22) 

It has been found by this investigator that a quadratic polynomial in 

x can be used to represent the modulus of the main plate to within 

a few percent when linear variations in lamina thicknesses are employed. 
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Thus, the modulus of the main plate may be determined at several locations 

along the joint using lamination theory and a second order curve of the 

form 

E (x) ■ Ax2 + Bx + C (23) m 

may be fit to the resulting modulus values. The values of A, B, and 

C will be determined automatically by an internal curve fitting 

subroutine for the proposed design. 

The only remaining unknowns which are needed to calculate 

the bolt load distribution are the coordinate locations of the N 

bolts. Since L, the joint length, and (E/ü) , the leading edge 

distance of the composite main plate, are known, we may express 

the N bolt locations as: 

X(I) = £} L- (§)    where I = 1, N (24) 

The bolt loads could then be calculated using equations (4) and 

(5) or equations (9) and (I1.). 

The next step in the design procedure is to perform a row 

by row stress analysis of the proposed design. The column of bolts 

is broken down into individual bolt bearing specimens as shown in 

Figure 4. The value of P , would be calculated using equation (12). 

Thus, each bolt bearing model is acted on by a bolt load, Pß. and 

a skin stress, o ,  = P ./St. Since a finite element solution of 

each bolt bearing specimen is too costly the following procedures will 

be followed. 
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The problem of an infinite plate containing a circular cutout 

which is loaded as shown in Figure 13a will be solved. This investigator's 

solution [11] to the problem illustrated in Figure 13b will be added 

to the solution of the problem illustrated in Figure 13c, which is 

presented in [12]. Corrections to the stress concentration factors 

induced at e = 90° and e = 0° will be made to account for the effects 

of finite specimen size using the results presented 1n [13] and [14]. 

Corrections to the average laminate stresses along the circular boundary 

from e = 0° to e = 90° can then be estimated. 

The corrected average laminate stresses would be transformed 

to lamina stresses and checks would then be made to see if the design 

constraints discussed in Section 3.2.6.2.3 were satisfied. Penalty 

flections would be assigned to the weight function for each of the 

constraint equations which was not satisfied and the total joint 

weight would then be calculated. The optimization procedure would 

determine a preferred path and select a new design along that path 

which would have a lower total joint weight while more closely 

satisfying all the Imposed design constraints. 

The entire process, beginning with the calculation of bolt 

loads for the new design would be repeated until the ^sign constraints 

were all satisfied and a local minimum weight were achieved. 

Since the design procedure uses isotropic correction 

factors to account for finite specimen size there is, of course, some 
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doubt concerning the actual failure behavior of the proposed optimum 

design. Therefore, it may be desirable to perform a complete stress 

analysis for the proposed optimum design to see how closely the 

predicted failure behavior would agree with the desired failure 

behavior. The analysis method described 1n Section 3.2.5 would be used 

if the final check were to be made. 
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3.2.7 Areae of Future Work 

Several Important questions have been raised regarding the 

solution technique thus far which deserve mention and in most cases 

warrant further investigation. The first involves the basically 

different failure mechanisms which can occur in a given joint made 

of composite materials. Net tension failures appear to behave as 

brittle failures once a very small but finite region of localized 

laminate destruction occurs. Bearing failures and shear-out failures, 

on the other hand, do not occur unless extensive laminate damage 

has resulted during loading. Thus bearing and shear-out failures 

behave in a relatively ductile manner. Additional analytical and 

experimental work must be done to understand the various failure 

mechanisms which occur in composite joints betöre truly optimum 

designs can be achieved. The results of the proposed geometrically 

similar bolt bearing specimen testing program should bring us 

closer to such an understanding. 

In metals, effective bearing strengths, F„RU, and effective 

shear-out strengths, F-.., have been experimentally determined and 

are used in the design process to specify such parameters as leading 

edge distances. Similar information is generally not available for 

composites due to the number of possible laminates which could be 

used for design purposes. Such "material properties" would be 

Invaluable, however, in the design of composite joints and deserve 

further investigation. 
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Similarly, a lack of data concerning the effects of finite 

size on stress concentrations induced at circular cut-outs in composite 

plates has forced us to predict these effects from available isotropic 

data. Making corrections from isotropic data results in a conservative 

design and is, therefore, partially satisfactory. The need for 

correction factors could be eliminated, however, if the in-house two 

dimensional anisotropic integral equation program developed by Dr. T. A. 

Cruse could be built into the optimization program in such a way as 

to not result in excessive computer run times. One other technique 

would be to derive the necessary correction factors for various 

laminates using the integral equation program and use such data in 

place of the isotropic correction factors which are now being used. 

Both possibilities are presently being investigated. 

The following questions will also be considered: 

I (1) Are uniform bolt load distributions and nee tension failures at 
I 
i the innermost row of bolts requirements for optimum .joint designs? 
i 

(2) Is 1t advantageous to use the displacement Hatching technique 

rather than the strain matching technique to predict bolt load 
I 
! distributions? 
I 

(3) How should load redistribution in a joint be handled once a 

bearing failure occurs either in the main plate or splice plates? 

(4) Is the uncertainty regarding the cross term in the distortional 

energy failure criterion, as discussed 1n [15], a major problem 

to be considered? A preliminary investigation performed during 
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the contract period has shown that in certain cases the cross 

term may be the most Important term In the energy relationship. 

These questions wiil be pursued as part of this Investigator's doctoral 

thesis during the current academic year. 
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Table 1. Initial Bolt Bearing Specimen Design 

Spec. 
No. 

D E S 
f 

L" t No. 
Plies 

Predicted Fa lure Loads(lb) 
Equat1ons(4) Finite Elements 

1 U. ILJ u. «>l 0.53 1.875 0.08 16 647 647 

2 0.250 0.62 1.06 3.750 0.16 32 2,587 2,587 

3 0.375 0.93 1.59 5.625 0.24 48 5,820 5,820 

4 0.500 1.24 2.12 7.500 0.32 64 10.350 10,350 

Table 2. Revised Bolt Bearing Specimen Design 

Spec. 
No. 

D E S L' t No. 
Piles 

Predicted Fai lure Loadsdlj 
Equat1ons(4) Finite Elements 

1 0.125 0.50 0.375 2.25 0.08 16 400 625 

2 0.250 1.00 0.750 4.50 0.16 32 1,600 2,500 

3 0.375 1.50 1.125 6.75 0.24 48 3,600 5,620 

4 0.500 2.00 1.500 9.00 0.32 64 6,400 10,000 
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Table 3. Description of the Six Specimens Selected for Analysis 

Spec. 
No. 

Lamination Splice Plate 
Material 

Loading Rows of 
Bolts 

Bolts 
per Row 

Failure 
Node 

Ultimate 
Load(lb) 

1 B/E.04/*45 D6-AC Steel SS 6 SP 94,200 

2 B/E.04/f45 D6-AC Steel SS 5 SP 115,500 

3 B/E,04/±45 6-4 T1 SS 5 SP 110,400 

4 B/E.04/±45 D6-AC Steel SS 4 SP 125,400 

5 B/E,02/±45 D6-AC Steel DS 4 T 189,000 

6 G/E.0/+451 6-4 T1 SS 6 2 T . 74,800 

Nomenclature: Notes: 

SS Single Shear 

DS Double Shear 

B/E Boron-Epoxy 

G/E Graphite-Epoxy 

SP Splitting 

T Tension 
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(1) Lamina thicknesses vary linearly 

along the specimen length from 

0?/±45 at the first row of bolts 

to QJttS* at the last row °f 
bolts. 
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Table 4. Summary of Significant Data from Figures 7 thru 12 

Spec. 
No. 

Row 
No. 

Bearing,e=0° Tens1on,e*90° 

0° Lamina 

Spl1tt1ng,e«+45° 

0° Lamina +45° Lamina -45° Lamina 

°1 

°luc 

a2 
°2ut 

DIST 
ql 

°lut 
DIST °1 

°lut 
DIST °2 

°2ut 
DIST 

1 
First 0.07 C* 0.02 1.05 1.50 0.21 0.10 0.83 1.10 

Last 0.49 2.50 5.80 1.33 2.00 1.50 2.50 1.65 3.20 

2 
First 0.10 0.04 0.01 0.91 1.00 0.42 0.25 0.80 0.75 

Last 0.50 x 2.30 5.10 1.11 1.41 1.30 2.10 1.55 2.60 

3 
First 0.07 0.05 0.01 0.83 0.90 0.63 0.47 0.79 0.71 

Last 0.47 2.50 6.00 1.34 1.45 1.43 2.50 1.73 3.00 

4 
First 0.13 0.29 0.11 0.85 0.85 0.58 0.40 0.69 0.55 

Last 0.52 2.80 7.95 1.07 1.51 1.55 2.70 1.90 3.75 

5 
First 0.30 0.56 0.42 1.29 2.00 0.79 0.90 0.92 0.90 

Last 0.60 2.00 4.00 1.02 1.41 1.15 1.65 1.21 1.88 

First 0.17 0.04 0.03 0.90 0.95 0.57 0.44 0.75 1.12 

6 Fifth 0.37 0.26 0.21 1.03 1.20 0.63 0.60 0.83 1.15 

Sixth 0.80 1.00 1.90 0.80 1.00 0.63 0.65 0.95 0.95 

Compresslve stress 
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* 45* LAMINA 

0* LAMINA 

-45  LAMINA 

Figure 1.    Distortional Energy Contour Plots for the 1.0" Diameter, Anisotropie 
Tension Coupon at the Experimental Failure Load. 
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_J0.5 

TON. 

0   LAMINA 90   LAMINA 

4 45   LAMINA -45  LAMINA 

Figure 2a.   Dlstortlonal Energy Contour Plots for the Initial Bolt Bearing 
Speciman Design at the Predicted Failure Load. 
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Figure 2b. Dlstortlonal Energy Contour Plots for the Revised Bolt Bearing 
Specimen Design at the Predicted Failure Load. 
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COLUMNS     
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O    O    O    O    O    O 

o  o  o  o  o  o 

(a) Actual   joint  geometry 

N 

o  o  o o  o o 

O    i '    N* 
iCoupon 

(b) Bolt bearing modeling procedure 

ft=;M 
<ei 

Z— r\ I 

tt I 
Coupon 

(c) Loading on the i,h model 

Figure 4. Bolt Bearing Modeling Procedure for Joints. 
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(d) Specimen 4 
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(f)Specimen 6 

Figure 5. Bolt Load Distributions for Sperrens 1 thru 6. 
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(a) Actual stress distribution 

(b)Rnite  element stress distribution 

Figure 6. Skin Stress Boundary Conditions at the Leading Edge of a 
Bolt Bearing Model. 
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Figure 7. Specimen 1: D1stort1onal Energy Contour Plots for the Experimental 
Failure Load._ 
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Figure 8. Specimen 2: Distortional Energy Contour Plots for the Experimental 
Failure Load. J33 



M&B^ISSSIQKf****^^ 
^«■(•■i^ui^MK^iBwaiijTCjjui^iiiipirLwim.i <» J. 

T 

0*   LAMINA 

T 

L^i 

AB = \ 

LAST    ROW FIRST  ROW 

Figure 9. Specimen 3: Distortional Energy Contour Plots for the Experimental 
Failure Load. 
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Figure 10.    Specimen 4:    Distortional Energy Contour Plots for the Experimental 
Failure Load. 
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Figure 11.    Specimen 5:    D1stort1onal Energy Contour Plots for the Experimental 
Failure Load. 
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(a) Problem   of  interest 

I  ! (b)Bolt load only (c) Tension   loading only 

Figure 13. The Principle of Superposition Applied to an Infinite 
Bolt Bearing Model. 
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CHAPTER IV 

OPTIMIZATION METHODS 

4.1 INTRODUCTION 

A computer program for optimization using non-linear programming 

by pattern search (OPTIM), written by Martin Schussel [1] was used for this 

study.   Some time was spent studying this program and a sample problem was 

run (torsion of an elliptic bar).   The time spent In finding the predicted 

result of this problem yielded much Insight Into optimization techniques 

and the OPTIM program Itself. 

The bolt-bearing problem was analyzed, using OPTIM, which Included 

variation of the ply orientations.   This study Involved a problem with six 

variables and four constraints.   For a given load, the minimum weight 

dimensions and orientations were found.   The results of this stuc'y are 

discussed In some detail. 

4.2 STRUCTURAL OPTIMIZATION 

4.2.1   Background 

The structural optimization project consisted of finding the min- 

imum weight design of a structure for which certain limitations were posed. 

The limitations or constraints can be of the following form: 

a)   Geometric     -   Maximum overall dimensions of the structure 

- Maximum thickness, cross-section, length, width, 

etc. of an Internal member 

- Maximum deflection of a member 

- Maximum rates of deflection 
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b) Mechanical  - Yield criterion 

- Failure modes 

- Fatigue properties 

- Natural frequencies 

- Buckling loads 

If the structure can be analytically solved for an Internal 

stress state as a function of the external loads (given) and the dimensions 

of the piece (to be used as variables) then the problem becomes a mathe- 

matical one: Find the extreme values of a non-Hnear function of several 

variables, subject to one or several non-linear constraints. The function 

Is usually the weight of the structure and the variables are its dimensions. 

The constraints can be in the form of equalities or inequalities. The 

equality constraints would generally concern a total dimension which Is not 

fixed but is the sum of a number of Internal dimensions. Inequality con- 

|       straints are far more common, they usually Insure that yield stresses, 

buckling loads, etc. are not exceeded. 
f 

4.2.2   Variational Method 

There are several methods of mathematically solving the problem, 

but non-linear programming is the only reliable one. Graphical methods 

have a very limited use as they can only be used in two-dimensional 

problems. Transformation into a series of linear problems by use of Taylor 

series expansions is tedious and inaccurate. The use of penalty functions 

transforms the problem Into an unconstrained minimization. Lagrange 

multipliers are an example; the formulation of the problem with Lagrange 

multipliers 1s as follows: 

Assume we want to minimize a weight function W(X^) where X^ 

(1 ■ 1.....N) are the variables. The constraints to be satisfied are 
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are F,(Xj » 0 (j « 1.....M). The l.agrange multipliers (A.) are added and 

we form an unconstrained objective function (P) to be minimized. 

P ■ WfXj) + Xj Fj (Xj) 

Now setting the derivatives to zero will find the extrema: 

■jjY    =0        1 = 1.....N 

rj-     "0 j = 1,...,M 
J 

The problem now requires the solution of N + M simultaneous non- 

linear algebraic equations in N + M unknowns.    Solutions are difficult to 

find and are not unique, so this method 1s useless for large, complicated 

problems. 

4.2. it   Son-linear Progranrning Methods 

By far the most useful methods for solving non-linear optimization 

problems are searching techniques.   There are many methods of search 

mentioned in the literature (pattern search, directed search, Fibonacci 

search, steepest ascent search), but basically they all consist of search- 

ing the domain of the variables until no further improvement can be found 

in the objective function. 

Included in the Appendix of [2] are the listing and instructions 

for a pattern search optimization program (OPTIM) by Martin Schussel, 

Carnegie-Mellon University 1968.   The program works in the following way: 

An objective function is defined: 

P = COST + Z A(K) ( F(K) )2 

where COST = weight function 

A(K)    = oenalty functions 

F(K)    -  constraints 
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COST and F(K) which are functions of the variables ( X(I) ) are 

defined by the user of the program In a subroutine called CALC. 

The program increases and decreases the variables and recalculates 

COST and F(K) until the improvement in the objective function 1s smaller 

-5 
percentagewise than 10 . 

The program Is best suited to handle Inequality constraints (less 

than or equal) which it handles in the following way: If the constraint 

becomes negative during the search it 1s neglected, but If it becomes 

positive it is multiplied by a penalty (some large number A(K)). When the 

objective function Is minimized the constraints will either approach zero 

or remain negative. 

The application of optimization to design of structures using 

advanced fiber composite materials adds ? jther facet to the problem. 

The orientations of the plies become variables as well as the dimensions. 

In some cases, the problem can be handled similarly to the above procedure 

with the orientations merely being additional variables. However, analyti- 

cal equations for composite materials are difficult to derive and are 

usually not solvable in closed form. The bolt bearing problem was solved 

using empirical equations which relate the failure loads to the dimensions 

of the piece and ply orientations. 

4.3    TORSION OF AN ELLIPTIC BAR - VARIATIONAL EXAMPLE 

The problem is to find the values of the major and minor axes of 

an elliptic bar for minimum weight for a given applied torsional moment 

K. The weight is proportional to the cross sectional area 

A = irab (1) 
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We want to minimize A, subject to the constraint that the allowa- 

ble shear stress is not exceeded at any point. Tha maximum stress Is at 

y « b, x = 0 and Is given by 

2M 
max JaP" (2) 

If T   is the yield stress, the constraint equation becomes 

2H .   n 

^  _Ty   *   ° 

or 2M - irab2T   s 0 

The solution was then sought using Lagrange multipliers. The 

results were Incorrect since two more constraints must be added. The 

first one Is due to the fact that the stress formula 1s rnly correct 1f 

a Is larger than b. 

b <   a 

b -  a <   0 

(3) 

(4) 

He must also Insure that b and a are positive for the answers to 

make sense. If we Insure that b 1s positive, the first constraint allows 

a to be positive, thus the last necessary constraint is 

b >   0 (5) 

We can now change the problem into an unconstrained minimization 

problem by the use of Lagrange multipliers and slack variables.   The 

solution 1s to find an extreme value of a function F by variational 

methods where F Is given by 

F = irab + A, (irab2 -   — - Y2) 
Ty 

x2 (a-b-B2) + x3 (b - 62) 

(6) 
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where xlt x2, x3 are the Lagrange multipliers, and y,  8, 6 are the slack 

variables used 1n Inequality constraints. The derivatives of (6) with 

respect to each variable yields the following set of equations 

= 0 = irb + x^b2 + x2 
3f_ 
3a 

|r    =   0   *   ira + x^irab - x2 + x3 

|F     a   o   =   irab2 -  &   - Y2 

3F =   0   *   a-b-ß2 

3X7   "   w u     P (7) 
3f_ 
3X3 

3F 
3Y 
3F 
3ß 

3F 
36 

I?-     =    0    =    b-62 

IT    -   0   =   -2YXj 

|£    =   0   =   -2ftt2 

|£.    =   0   =   -26X3 

Since 6=0, (4) gives a=b (circular section); Eqn (3) gives wab2 * 
911 911 
— for Y=0. Since a-b, we have na3 = — and thus 
Ty Ty 

a - [2MMy] ^ (8) 

The problem was also solved using the optimization computer 

program (OPTIM), First the problem was attempted using only the first 

constraint and a minimum was found with b about twice the size of a. 

This violated the condition that a be greater than or equal to b for the 

stress equation to apply. Next all three constraints were used and the 

minimum was found to agree with the analytical result (8). Thus we 

conclude that inclusion of all constraint relations is absolutely essen- 

tial for success. 
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4.4   BOLT BEARING PROBLEM - NON-LINEAR PROGRAMMING EXAMPLE 

The problem consists of finding the minimum weight of plates 

loaded by bolted joints. The specimen appears as shown below: 

XL Is a constant 

D Is chosen as .375 In. 

The weight of the specimen 1s: 

U = P(XL * E)S t (9) 

The weight of the material which would be In the hole 1s In- 

cluded since 1t must be wasted. Empirical equations [3] for the three 

failure modes found In experiments are as follows: 

Tension 

P < .69 t(S-D)F tu (10) 

where P * applied load and P cannot exceed the expression on the right. 

The symbol Ftu 1s defined as: 

:tu   _ 

-tu 

157L /*).7N2\ 
\3M + N/ 

1+.0538 [•MIT] 
129L + 27N 

N(10N + 162L) 
3 M + N 

for-£-<   2 

for-^->   2 

(ID 
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where L = % 0° plies 

M = % 90° plies 

N = % ±45° plies 

The constraint for this failure mode 1s F(l) = P - .69 t(S-D)Ftu. 

If this quantity stays negative then P Is below failure load. If 1t 

1s near zero, failure In this mode 1s Impending. The problem was 

treated from two different viewpoints. 

First the orientation percentages L, M, and N were held constant 

and the dimensions for m1r1mum weight of the specimen were found. The 

answer 1n this case yields the optimum dimensions for the orientations 

chosen. 

The second way of treating the problem was to leave the orienta- 

tions as variable. This way, both the dimensions and the orientations 

were optimized. The results showed a 20-30% Improvement over the fixed 

orientations case. The orientations chosen were those of an experimental 

specimen which failed at P = 1020 lb. The program gave a weight reduction 

for failure at the same load and with the same orientations. 

The problem also Included equations for failure In two other 

modes-shear out and bearing. These were the second and third constraints. 

The failure mode 1n a given problem Is found by checking which of the 

three constraints 1s closest to zero. The constraints are 

Shear Out 

(12) 

where 

P $ 2tEFau 

F(2) = P - 2tEFsu 

FSU = 40N N > .23 

FSU = 9.2 N < .23 
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Bearing 

P if (1 ♦ .45 \) Fbu 

F(3) - P - f (1 + -45 2) Fbu 
(13) 

where 

FL = 600, FM = 30 
L M F   » 450, F" = 80 

Fbu = L FL + (M + N)FM 

if L * .25 

L * .25 

The results of the program for fixed orientations are shown 

In Table I. 

Choose L = 18.2« (0°     plies) 

M =   9.1« (90°   plies) 

N = 72.7* (±45° plies) 

The orientations in Table I were chosen because test data was 

available for a failed specimen.   The specimen failed at 1000 lbs. and had 

the dimensions shown below: 

p THK EDGE SIDE COST 

1000 .056 .50 1.0 .044 

The optimum dipensions for P * 1000 give COST = .039 (10% 

wieght reduction). 

Table II contains the results of the analysis for the case of 

using the orientations as variables.   Surprisingly, the optimum orienta- 

tions do not change for different loads. 

The orientations were allowed to vary between .10 and .80 in 

the above procedure. 
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The results 1n Table m were found for variable orientations 

with the possibility of eliminating certain plies. There is some doubt 

of the applicability of -he equations for less than 10% of any of the 

plies, but it is informative to see what will happen In this case. 

The results for all three cases are plotted together for 

comparison in Fig 3. 

4.5    DISCUSSION 

The OPTIM program has proven to be very effective in dealing with 

problems for which analytical equations can be derived. The elliptic bar 

and bolt bearing problems treated above are examples. 

The bolt-bearing problem is unusual for composite materials in 
r 
| 

that analytical equations are available which allow us to optimize both 
I i 

the dimensions and the lamina orientations. The equations are empirical 

and therefore introduce doubt as to their accuracy. There also may be 

ranges of dimensions or orientation percentages in which they are not 

applicable. 

Table I shows optimum dimensions for varying load with the ply 

orientations fixed. The case of P = 1000 lb. shows a 10% weight reduction 

over the experimental specimen. The values of the constraints show this 

I       to be a simultaneous failure in tension and shear out. The cases of P 

(applied load) between 3000 lbs. and 15,000 lbs. show failure in all 

three modes simultaneously. There is no apparent pattern in the variation 

of optimum dimensions with load. The weight is seen to vary non-linearly 

with load as can be inferred from Fig 1. 

If we allow the orientation percents to vary between 10% and 80% 

the optimum laminate will be found with respect to both dimensions and 
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orientations. OPTIM found values of five of the six variables which were 

optimum for all leads considered. Only the total thickness changed and It 

varied linearly with load. This situation forced the weight to vary 

linearly with load also as seen 1n F1g 2. For each load, the specimen 

exhibited failure in tension and shear out simultaneously with bearing 

failure not being a factor. The orientations chosen for each load were 

L - 73%, M = 17%, N = 10%. The fact that N was brought to the minimum 

of its range led to the results in Table 3 where N was allowed to vary 

between 0% and 80%. The results are similar to those In Table 2 except 

that N goes to zero with L and M increasing proportionately. As noted, 

the equations may not apply for N less than 10%, but the results Indicate 

that the ±45° laminae are of little benefit In the bolt bearing specimen. 

The thickness and weight vary linearly with load as in the previous case. 

All three cases are plotted in Fig 3. The variable orientation case shows 

an improvement on the fixed case of between 30% and 100%, with the case 

for N = 0 about 15% better still. 

The results show a useful and convenient relationship for design. 

The designer is given the optimum orientations and side and edge distances 

and he merely chooses his thickness to suit the load which must be carried. 

The enpirica nature of the equations suggests that experiments should be 

r».n to verify tie derived results before putting them into use as a design 

criterion. 
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FIGURE 2:   WEIGHT VS. LOAD FOR VARIABLE ORIENTATIONS 
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CHAPTER V 

BOUNDARY-INTEGRAL EQUATION SOLUTION METHODS 

5.J   2VO DIMENSIONAL ISOTROPIC BOUNDARY-INTEGRAL EQUATION METHOD 

5.1.1   Intrvduation 

The boundary-integral equation method is a new tool for the 

solution of many problems in solid mechanics.   The method has significant 

advantages over the finite element method.   Numerical approximations are 

not made over the field but over the surface, thereby increasing accuracy. 

The dimension of the problem 1s reduced by one, allowing many problems too 

large for today's computers co be solved.   Both of these features permit 

the analyst to obtain highly refined data 1n the vicinity of stress concen- 

trations such as near cracks and notches. 

Important to the user of the boundary-integral equation (BIE) 

method, is the ease of data preparation and the rapidity of solution.   The 

BIE method utilizes a numerical solution of a boundary constraint equation. 

This equation relates all of the surface displacements to all of the sur- 

face tractions.   The analyst specifies how he wishes to subdivide the sur- 

face and specifies the boundary data; all well-posed problems are accepta- 

ble including mixed-mixed problems.   The geometry is completely general and 

may be multiply-connected.   Once the surface solution is found the stresses 

may be generated at any points that the analyst desires on the interior 

of the region. 

The BIE method has been widely adapted to many problems in solid 

mechanics, as can be seen by the literature [1-8].    The purpose for 

presenting it in this report is twofold.    First, the tool is being 
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developed by the CMU team for two dimensional, anlsotroplc problems for 

use 1n several on-going research efforts.   Second, It Is desirable to 

make the method available to the widest possible group of users.   Listings 

of both the Isotropie and anlsotroplc computer programs are therefore 

contained 1n this Chapter. 

5.1.2   Review of the- Isotropie Boundary-Integral Equation Method 

Two elements are required for the development of the boundary 

constraint equation of the BIE method.   The first Is a reciprocal relation 

between two solution states (Betti's reciprocal work theorem); the second 

Is a fundamental solution or influence function (Kelvin's problem of a 

point load in an infinite body).   The development herein follows that 

used in classical potential theory (see, for example, [9-13]). 

The solution to Kelvin's problem consists of displacement vectors 

1n each of the x. directions due to concentrated loads applied 1n the x. 

directions.   These solutions are denoted by the displacement tensor \i..\ 

the appropriate forms can be found in the literature [1-10].    In two 

dimensional, Isotropie, elastostatics this tensor is 

U1;j(P,Q) = - [fcn(l/r(P,Q)) (3-4v)«1;j + ry^3/BimO-v) (1) 

In (1) the distance between the point of load application P{x) and the 

field point Q(x) is denoted r(P,Q); p and v are the shear nodulus and 

Poisson's ratio.   The derivative of r(P,Q) in the x. direction is denoted 

ar x^x 

r •    - W <2> .1        ax.|Q 

It is easily shown that (1) satisfies Navier's equation of equilibrium 

«'"-«"WMI (3) 
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A second tensor is required for the use of the reciprocal work 

theorem:   the tractions corresponding to the U.^ on the physical surface 

3R of the body.   These tractions, T.., are obtained by using Hooke's law 

and the definition of the traction vector 

| *1   =   °ijnj   =   ,i[(2v/1-2v)uk,k6ij + ui,j + uj,i:|nj <4) 

Utilizing (1) and 14) the traction tensor T.. 1s found 

T^ = Or/anCO-ZvJfi.j+Zry j]+(l-2v)(n1r j-y^ }/4*(l-v)r(P,Q)     (5) 

i 
| After some amount of manipulation of the reciprocal work theorem 

and letting P,Q be boundary points (P not at a corner)  the following 

boundary constraint equation can be found 

\ u.(P)/2+ /u.(Q)T..(P,Q)dS(Q) = /t.(Q)U..(P,Q)dS(Q)       (6) 
! 1      9R J   1J 3R J   1J 

In (6) u*»t. are the displacements and tractions on the physical surface 

j        3R for the problem to be solved. 

| The numerical solution to (6) is obtained by discretizing the 

boundary and boundary data in some suitable fashion. Presently the 
j 

displacements, u., and tractions, t., are taken as piecewise constant 

f        over each of N boundary segments. Work is well underway to use linear 
i 
i 

variations. The boundary segments are assumed to be flat in the programs 
{ 

used by this investigator. This allows for a completely general computer 
t 

program for arbitrary surface shapes. When the approximations are made 
\ 
I        (6) becomes 
1 N N 
! u.(Pm)/2+ E u.(Qn)/T..(Pm,Q)dS(Q)= z  t,(Qn)/U. .(Pm.Q)dS(Q)    (7) 

1      n=l J  3Rn1J        n=l J  3Rn1J 
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Eq. (7) can be written in matrix form as 

0/2[I] + [AT]) {u} = [AU] £t) (8) 

where [I] is the identity matrix; [AT] and £Aü] are coefficient matrices 

from the integrations in (7): These integrals are calculated analytically 

in the program by specifying the coordinates of the ends of the boundary 

segments. 

When the boundary data for a well-posed problem are specified 

then 2N quantities in (8) are known and 2N quantities are unknown. 

Standard reduction schemes are employed to solve for the unknowns. After 

the entirety of the surface data is formed the Interior stresses at an> 

selected points are found by the quadrature relation 
N a 

o^fp) *  E uR(Qn) ASkij(p,Qn) - E tk(Qn) ADk1j(p,Qn)     (9) 

The tensors AS... and AD... are calculated as indicated 1n [7]. A proced- 

ure for calculating the stress tensor at the surface is accomplished using 

surface displacements and tractions as discussed in [8], 

5.1.3    Use of the Isotropie Computer Program 

The Isotropie version of the program 1s limited to linear, iso- 

tropic, homogeneous, elastic problems with known material constants .i(or G, 

shear modulus), defined as FMU in the program, and v, defined as POISN, or 

PR, 1n the program. The user has available four operating modes for the 

program: 

Boundary Solution:   This capability is the first step always for 

each problem as it solves (8) for all unknown boundary data in terms of 

specified boundary conditions and geometry. The entire set of boundary 

data may be output on punched cards (see next section). 
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Interior Solution:    Upon completion of the boundary solution 

the analyst may request stress solutions, using (9), at as many interior 

points he desires by specifying their number and location. 

Boundary Solution:   The boundary stress solution is based on the 

same finite difference result discussed in thfc Appendix of [8]. The 

solution is obtained at a specified boundary segment from the known or 

calculated surface tractions and the calculated tangential derivative of 

displacements. The means for calculating the tangential derivative 

is discussed in greater detail in the next section. 

Restart:   By reading the entire set of boundary data the 

program may solve directly for interior or boundary stresses. 

5.1.3.1   Dimension Statements 

The current version of the program (See Section 5.1.5) admits 

up to two degrees of symmetry of geometry and boundary conditions. The 

program is limited to a total of 80 boundary segments (320 with symmetry). 

To increase the size of the program change the following cards, 

COMMON / ARRAY1 / ••• 

COMMON / ARRAY2 / ••• 

in the various routines; also the following sequence numbered cards 

should be changed 

10060       20035 

10065 

10075        50005 

15050 

15200 

The program is limited to 200 interior solution points, COMMON / ARRAY3 / 

•••, and to 50 surface points, COMMON / ARRAY4 / . 
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An 1108 assembler language routine for calculating time is 

attached for 1108 users. Other users must supply a similar subroutine 

to obtain a time-breakdown chart for each solution; if not available, 

insert a dummy subroutine, SUBROUTINE TIME (T). 

5.1.3.2   Definition of Key Parameters, Matrices 

The key parameters are described in cards 15060 - 15115, in 

SETUP. These parameters govern geometry (NSEG, NSYM, NNOD), execution 

options (IPUNCH, ISTRS, IBDY), and particular stress solutions (NPT, 

NBDYP). The first card read is a TITLE card followed by the control 

numbers, read by cards 15120 and 15125. 

The temporary array NODE (I,J) stores the two node numbers 

associated with each segment number and is read by card 15130. The 
I 
£       temporary array XYZM (I,J) reads in the x,, x~ coordinates of each of 
I * 
|       the nodes by card 15135.' The material constants FMU, P0ISN are then 
i 
I read by card 15140. 
i 
I 
I At this time the program merges the geometric info.Tation 

to form the permanent geometric array XYZ (Segment Number, Node Number, 

l Coordinate Number). If NPT f 0, the coordinates of the interior stress 
8' 
I 
| points are read in by card 15225.    If NBDYP f 0, three segment numbers 
I V 
,!       are read by card 15240. The three numbers in NBDY (I,J) have the 

i following meanings: 
ft 

I NBDY (Segment No., 1) = Segment number for which stress 

I calculations is to be done. 

Only the geometry for the basic symmetric part is read in. If NSYM f 0, 
the program assumes one degree of symmetry (ys0 axis), or two degrees 
of symmetry (y=0 axis, then x=0 axis) according to NSYM. 
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NBDY (Segment No., 2) ■ Segment nuraer for the "rear" point 

in calculating AU/AS. 

NBDY (Segment No., 3) » Segment number for the "forward" 

point in calculating AU/AS. 

NOTE:   The sequence of numbers in NODE and NBDY is the "rear" number, 

then the "forward" number.   The positive - s direction Is 

always taken such that the material Is always on the left. 

S.l.3.3   Boundary Conditions 

The current version of the program uses a NAMELIST read 

(Fortran IV) statement.   The procedure is to precede and close the 

block of boundary data with control cards In the following way 

-$   BDYCON 

DATA 

-$   END 

See standard references for formats for the data block. 

NOTE:       When NSYM - 1,0 the solutions admit a rigid body motion In 

the unconstrained direction(s) (x,y).   A displacement freedom 

is fixed by letting LDC for that freedom be set to "2". 

All boundary conditions are   initialized to zero and LDC is initialized 

to "1".   All x-d1rection data is stored, then y-directlon data is stored: 

tx \ 1, NSE6 

t    [ NSEG   +   1,2* NSEG 

TCON 

166 



gPQgg^|PP9^pH|ptPPp^M«LJMI«iUMl Mini JL i üiiuiimLiU' JUfuftJWf|B»*^^p^w«WMJ.W<ui1.l:
llhL'^ * 

jB^*m?Q»»SB<>^ W«*' JMWM»!WHW>*WF WWW1*'" «W..   »?|aw<«Mp»^«gp*3>«^3^ 

»www^wn«CTW IWI w liut,.|IU Ji iliH.1 I iu }Bgl!Py*!BlPff.jggiy^«slwwwmwqE*l—IW^*« W"!WI!WP"mB|M 

etc. LDC = 1, means traction boundary conditions for the given segment 

and direction. LDC = 2 means displacement boundary condition for given 

segment and direction. 

5.1.3.4   Input Cards: 

Information 

Title 
Control parameters 
NODE (NSEG,2) 
XYZM (NN0D.2) 
FMU, POISN 
Boundary Conditions 
PITN (NPT.2) 
NBDY (NBDYP.3) 

5.1.3.5 Example Problem 
Y 

4— 

I 
8 

I 

1 
8 

Column 1 i   A i 

NSEG 
NNOD 
NSYM 
IPUNCH 

ß   ISTRS 
10° ps1 IBDY 

NPT 
NBDYP 

No. Cards 

1 
1 

1 ♦ (NSEG/12) 
1 + (NNOD/8 

1 
? 

1 + (NPT/8) 
1 + (NBDYP/8) 

= 8 
= 8 
= 0 
- 0 
= 1 (Plane Stress) 
= 0 
= 3 
= 3 

NODE: 

XYZM: 

FMU, . 
POISN* 

PTIN: 

NBDY: 

NAMELIST: 

2      3 

—1-2— 2—3—3—4-4— 5-5—6-6—7—7—8— 8— 1 

-0000-2000-0000-1000-0000-0000-1000-0000-2000-0000-2000-1000- 
-2000-2000-1000-2000 

— .1153846E+08 . 30000 

-0500-1000-1000-1000-0750-0750 

-..7„7„8—7-6-7-6-5-6 

-1C0N(5) = 1.0E+6, TC0N(6) = 1.0E+6, 

-LDC(l) = 2, LDC(2) = 2, LDC(ll) = 2, 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

S.l.S   Listing for Isotropie Boundary-Integral Equation Computer Program 

MAIN P»OfiPAM — INITIALIZES DATA - CALLS SUBROUTINES 

COMMON / ARRAY1 / XYZU00»2»2»» UCON<20I»>» TCONC?(JO>» LOrc?oo> 
COMMON / ARRAY2 / B«AU(200) 
COMMON / MATCON / FMU» P ISN» PI» PI» P?» P3» PH» PS 
COMMON / C0NTR1 / NSEG» NSYTF» NTOTAL» NSIZE» NPT. N30YP 
COMMON / C0NTR2 / TLTL<16>» 1PUNCH» IS

T
RS» IRDY 

COMMON / TlMFRS / V (101 

THE DIMENSIONS OF THE FOLLOWING ARRAYS ARE PRObLEM DEPENDENT 

DIMENSION C(160»160) 
DOUHLF PRECISION RHs(160) 
Pi   =  3.1ltlS92b5 

OS CONTINOF 
DO  10   I   =   1.200 
UCON(I)   =  0. 
TCON(I)   =  0. 

10 BvAl.dl   r  0. 
CALI    TIME   (   T(l)   ) 
00  90   I   =   2»10 

20  Till   S  n. 
CALI.  SETUP 
IF   (IBDY.NE.n)   GO  TO  30 
CALI    RVSOLU   (C»   RHS) 

33 CALI    INSOLU   CO 
CALL  BDVSTR   (C) 

CALCULATE TIME CHART 

1000 
9000 
9100 
9200 

T(2) - 
T(«»> = 
T(6» r 
T(8) - 
T(ln) 
WRITE 
WRITE 
WRITE 
GO TO 
STOP 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

(T(2)-r«l))*10**(-3) 
<TUr-T(3))*10**<-3> 
(TC6)-T(b))*10**(-3) 
(T(8)-T(7)l*10**C-3) 

= (T(10)-TC9)>*10**(-3) 
(*»20O0>  TITL 
<f>»9l00> 
(ft»?200> M2>. TU>» T(6>» 
OS 

1(R>» T(lO) 

( 16AS) 
<1H1» 16AS) 
( 21H TIME BREAKDOWN CHART //) 
( 

l 

3 

SX 
sx 
SX 
sx 
sx 

END 

15HTIME 
15HTIME 
1SHTIME 
1SHTIME 
lhHTIME 

FOR 
FOR 
FOR 
FOR 
FOR 

StTUP 
DEHNT 
SOLVER 
INSOLU 
BDYSOL 

F12.7» 
F12.7» 
F12.7» 
F12.7» 
F12.7» 

9X 7HSEC0WQS // 
?X 7HSEC0NJ0S // 
9X 7HSEC0NDS // 
2X 7HSEC0MDS // 
2X 7HSEC0N0S) 
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2D*IOOOO 
20*10005 
20*10010 
20*10015 
20*10020 
20*10095 
20*10030 
20*10035 
20*100<*0 
20*100"0 
20*10050 
20*10055 
20*100*0 
20*10065 
20*10070 
20*10075 
2D*100«0 
20*100«5 
20*100°0 
20*10095 
20*10100 
20*10105 
20*10110 
2D*101J5 
20*10120 
2D*10I25 
20*10130 
20*10135 
20*101X0 
20*10li»5 
20*101*0 
20*10155 
20*10160 
20*10165 
20*10170 
20*10175 
20*10lf>0 
20*10105 
20*10190 
20*10195 
20*10200 
20*10205 
20*10210 
20*10215 
20*10290 
20*10295 
20*10230 
20*10235 
20*10240 
20*ln2U5 
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1 
Pit Pi* P2# P3» P*»» P5 

NTOTAL» NSIZE» NPT» 
ISTRS, 1BOY 

NBDVP 

C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 

SUBROUTINE SETUP 
COMMON / ARRAY 1 / XYZH00»2»2>» UC0M(20())# rCON(?00)» LUC(200) 
COMMON / ARRAY2 / BvAL(200) 
COMMON / ARRAY3 / PTI.M(10U»2) 
COMMON / ARKAYU / NHOY(50»3) 
COMMON / MATCON / F*U» POJSN» 
COMMON / TIMERS / TlM( 6) 
COMMON / C0.MTR1 / NSEli» NSYH» 
COMMON / C0NTR2 / T1TL<16>» IPL'NCH» 
NMMFLIST / HDYCON / UCON» TCON» LDC 
DIMFNSIOM NODEUOU»?)» XYZM<100»2) 
EQUIVALENCE (NODE» LDO. (XYZM» UCON) 

NSFG = NUMRER OF SEGMENTS ON THE BOUNDARY 
NSVM = NUMRER OF DEGREES OF SYMMETRY STARTING WITH Y» THEN X 
NNOO = NUMRER OF BOUNDARY NODES CONNECTING BOUNDARY SEGMENTS 
IP.INCH = 1 — THE BOUNDARY SOLUTION WILL BE PUNCHED OUT 
ISTRS = 0. PLSTRN — ISTRS S I» PLSTR«; 

BOUNÖMRY DATA STORED IN COMMON 
BOUNDARY DATA READ IN FROM CARDS ADDED TO END 
OF THE UATA DECK 

NPT = MUMPER OF INTERIOR SOLUTION POINTS FOP STRESS SOLUTION 
NBOYP = NUMRER OF bOUNDAKY POINTS ?0R STRESS SOLUTION 

IF IBOY.FO.O  — 
IF IBOY.NF.D  —- 

TITL 
NSEG» NSYH» NNOUf IPUNCH» IsTKS» IpDY» NPT» NBDYP 
((N0DE(I»J)»J=1»2>»1=1»NSEG) 
C(XYZM(I»j).J=1.2)»l=1»NNOn» 
FMU» POISN 
TITL 
NSEG» NSYM» NNOD» iPilNCH» ISTRS» TBDY» NPT» NRDYP 
UN0f)E(I#J»»J=l»2>»I = l»NSFG> 
((XY7M(I»J)»J=1»2)»I=1»NN0D> 
FMU» POISN 

C 
c 
c 

REAn (s.ioon) 
REAn (s.uon) 
REAn (5.120O) 
REAn (5.1300) 
REAn (S. li*0O) 
WRITE («»2000) 
WRITE (*»2ioo) 
WRITE (fc»2200) 
WRITE (fc»2300) 
WRITE <f..?«*00) 
NSI7£ = 2 * NSEG 
00 10 T = l.NSEG 
00 10 J S 1*2 
DO 10 K r It2 
N = NOr>F(I»J> 

10 XYZ(I»J.K) = XYZM(N.K) 
UO 90 I : 1»200 
UCOw(l) = 0. 

20 LDC(I) S I 
REAO (S»ROYCON) 
IF (NPT.EO.O) GO TO 3U 
REAO  (S.1500) ((PTTNd»J)»J=l»2)»I=l»NPT) 
WRITE (*»2500) ((PTlN(I.J)»J=l»2)»I=l»NPT) 

30 IF (NBDYP.EO.O) GO TO UO 
REAn  (5.1600) (<NBUY(I»J)»J=l»3)»I=t»NB0YP) 
WRITE   (A.2600)    (<NB()Y(I.J)»J=l»3)»I = l»NbOYP) 

«0  CONTINUE 
NFAC   -  ?*»Nc;YM 
IF   (NSYM.EQ.O)   NFAC  =   1 
NTOTAL  = *SEG  *  NFAC 

CALCULATE  NFEDEO  MATERIAL  CONSTANTS 170 

20*15000 
20*15005 
20*15010 
2D»15015 
20*15020 
20*15025 
2D*15030 
20*15035 
2O*150«*0 
2D*150U5 
20*15050 
2D+15055 
20*15060 
20*15065 
20*1*5070 
2D*15075 
20*15060 
2D*150B5 
20*15000 
2D*15095 
20*15100 
2D*15105 
20*15110 
20*15115 
20*15120 
20*15125 
20*15130 
20*15135 
2D*151<»0 
20*151U5 
20*15150 
20*15155 
20*15160 
20*15165 
20*15170 
20*15175 
20*15160 
20*15165 
2D*151<»0 
2D*151t>5 
2D*i5200 
2D*l'*t»P5 
20*15i. t 
20*1521 
20*15220 
20*15225 
20*15230 
20*1*235 
2D*152«»0 
2P*152*5 
20*15250 
20*15255 
20*15260 
20*15265 
20*15270 
20*15275 
20*15260 
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toon 
iiou 

IF 
PI   : 
Pi»  : 
P3 : 
P«*  : 
CALl 
PtToRN 
FORMAT   MAAS) 
FuRviAT   (lillS) 

(IST4S.E0.1)   P0I5N =  POIS^/ 
=  1./<H.*PI*FWU*(1.-P015U)> 
=  3.-u.*POI5N 
=   l./<«*.*PI*ll.-PüISn>> 
s  1.-?.*P01SN 

TIMF   (   T1M(2)   ) 

IJ.+POISN) 

C 
c 
c 

****** CAUTION***** FORMATS PKOHLEM OEPENDC^T 

1200 FORMAT oui3) 
1300 FORMAT U*F«».3) 
moo FORMAT <FIS.7. FIO.**) 
1500 FORMAT UhF5.3) 
1600 FORMAT c?«*i3i 
9000 FORMAT UHl. iOXr l*Ab) 
2100 FORMAT (// 1015) 
2200 FORMAT «// M3X 213)) 
9300 FORMAT (// i»(3X 2Fl(l.b>) 
2U0U FORMAT (// 5X E15.7» FlO.b) 
2500 FORMAT (// M3X PFlO.o)) 
2600 FORMAT (// M3X 313)) 

END 

20*152*5 
20*l*;2o0 
20*15295 
20*15300 
20*15305 
20*15310 
2D*1*315 
20*15320 
20*15325 
20*1^3^0 

***** CAUTION ****** 20*15335 
20*153«*0 
20*15345 
20*15350 
20*15355 
20*15360 
20*15365 
20*15370 
20*15375 
20*153*0 
20*153*5 
2O*153*»0 
20*15395 
20*15<t00 
20*15405 

171 
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SURWOUTTNE RVSOLU 

c 
c 
c 

<C» «MS) 
XvZ(luO»2»2).   nCOw(20n)#   rCON(?uO)r   LOCC200) 
BtfAL(20U) 
FMUt POISN» PI» PI» P2t   P3» P4» 
NSEG» NSYM» NTOT*L» NSIZE» NPT» 
TITL(16>» IPUNCH» ISTRS» iBOY 
TIM (10) 
PXYZ(2>» C(NSI7E*NSIZE) 

P5 
N80YP 

C 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

COMMON / ARRAY 1 / 
COMMON / ARRAY2 / 
COMMON / MATC0N / 
COMMON / CONTKI / 
LCMMON / C0NTR2 / 
COMJUM../ TIMERS / 
OIMPN*;T"6I^-V<200)» 
EQUTVALPNCE \A. I ICON) 
OOURLF PRECISION RHS(NSIZE) 
NMA* = 9 * NSE6 
WRITE (A»?000) TI1L 
IF (ISTRS.EO.O) WRITE <6»2L50) 
IF (ISTRS.EO.l) WRITE <6»20oO) 
WRITE (*»2loo) 

WRITE THE STARTING BOUNDARY CONDITIONS 

DO 10 I = l.NSEG 
J = I ♦ NSEG 
00 IS N = 1»? 

IS PXY7(N) = (XYZ(I»1»N) ♦ XYZ(I»2»N))/2. 
10 WRITE (*»?2oo) 1» UCON(I). UCON(J)» TCON(I)» TCON(J)» 

I LilC(D» LüC(J). PXYZ<1). PXYZ<?) 
DO 90 I = l.NMAX 
RHS(i) = n.ooo 
IF (LOC(I).FO.l) GO TO 30 
BVAI (I) = FMU * UCONU) 
GO TO ?n 

30 8V.>I (I) = TCON(l) 
20 CGNTINIIP 

CALCULATE OFLU. DELT» HHS 

CALI TlMF ( TIM(3) ) 
CALI DELT NT CC RHS) 
CALI. TIME < TIM(a) ) 
WRITE (f..3000) ((C(I»J)»J=l»NSlZP)»i:i»NSl2E) 

WRITE *IßHT HAND SIDE VECTOR 

WHITE (K.23001 TITL 
DO uO I = l.NSEG 
J = I ♦ NSEG 

00 WRITE (*»?i»00) I» RHS(I). PHS(J) 

SOLVE <;YSTFM OF EQUATIONS 

CALI TIME C T1M(S) ) 
CALI SOLVER (NMAX* RHS» A» C) 
CALI TlMF ( T1M16) ) 

FILL IM IJCON. TCON  -— PRINT RESUcTS 

00 SO I = I.UMAX 7- 
iF (LOC(I).F.ft.l) GO To hO      */£ 

TCON(l) = FMU * A(I) 

20*20000 
20*20005 
?D*200iO 
?0*20ü15 
20*20020 
20*2025 
20*20 )!M) 
2D*2f035 
20*200t»Ü 
20*20045 
20*20050 
20*200*5 
20*20060 
20*20065 
2D*20070 
20*20075 
20*200*0 
2D*200R5 
2D*2O0°0 
2D*2O0°5 
20*20100 
20*20105 
20*20110 
2D*20115 
20*20120 
2D*201?5 
20*20 no 
20*20135 
?0*201«tO 
20*201U5 
20*20150 
20*201S5 
20*201^0 
20*201*5 
20*20170 
20*20175 
20*201PO 
20*20185 
20*20190 
20*20195 
20*20200 
20*20205 
20*20210 
20*20215 
20*20220 
20*20225 
20*202*0 
2D*20235 
20*202«»0 
20*20245 
20*20250 
?0*202S5 
20*20260 
20*20265 
20*20270 
20*20275 
20*202*0 

_^^^^ Mm i railii n 



■ F"" 

iwiiii|ijMiJiji)..iiu;j,iimjiu^iwi!M)»PWitJP 

■^«.■fiPVn^n^l^vaprvvnBWVHRVWWWMPi «PPW^WjB^iWWW 

*3pi!Sf?3E|fiW 

I 
UCOM(I) = (l./FMU) * nVALd» 2D*202A5 
60 TO 50 20*20290 

60 TCON(I) S BVAL(l) 20*20295 
UCOM(I) = MI) 20*20300 

50 CONTINUE 20*20305 
WRITE (f>»?000) TITL 20*20310 
IF IISTWS.Eft.0) WRITE (6*2050) 20*20315 
IF CISTRS.Eo.D WHITE <6»2060) 20*20320 
WHITE (*.?100) 20*20395 
00 70 I : ltNSEG 20*20330 
«J = I ♦ NSEfi 20*20335 
00 HO N : li? 20*20300 

80 PXY7CN) = (XYZ(I»1»N) ♦ XYZCI»?»N)>/2. 20*20345 
70 HHITE (6»9200) i» UCON(I)» UCON(J)» TCON(I>» TCOM(J)» 20*20350 

1                 LOC(I). LDC(J)» PxYZCl), PXTZ<9) 20*20355 
IK (IPUNCH.EO.O) RETUKN 20*20360 
00 120 I = ltNSEG 20*20365 
J = I ♦ NSEG 20*20370 

120 WHITE (7»25O0) I» UCONlI)» üCON(J) 20*20375 
00 130 I = ltNSEG 20*20360 
J = I ♦ NSEft 20*203*5 

130  WRITE   <7»?500)   I   •   1C0NUJ»   TCON(J) 20*20390 
RETURN 20*20395 

ClHlt 1&A5 // 10X 19H80ÜN0ARY CONDITIONS) 20*20400 
( / 4< 1BH PLANE STRAIN **** ) ) 20*20405 
( / i*( 18H PLANE STRESS •**• ) ) 20*20410 
(// i*X 4H SE6 7X 2HU1 10X 2Hw2 lOX 2HT1 lnx 2HT2 AX 4HLDC1 20*20415 

1  6x "HL0C2 AX 2HX1 10X 2HX2 //) 20*20420 
9200 FORMAT <?X 15» 2F12.8» 2F12.0» bX H* 11X 11» 2F12.6) 20*20425 

IIHi» 16A5 // 10X 22HR1GHT HAND SIDE VECTOR //) 20*20430 
I5X» 15» 9E15.8) 20*20435 
( 110» 2E30.10) 20*20440 
(/// ( 2(RF19.6 /) //) ) 20*20445 

20*20450 

9000 FORMAT 
9050 FORMAT 
9060 FORMAT 
9100 FORMAT 

9300 FORMAT 
9400 FORMAT 
9500 FORMAT 
3000 FORMAT 

END 

173 
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c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

COMMON / ARRAYS / 
COMMON / MATCUN / 
COMMON / C0NTR1 / 
COMMON / C0NTR2 / 

SUHPOUTTNF OELINT l(i> RriS) 
COMMON / ARrtAYl / XYZ<100»2.?>. UCOu(200l# TCONC200). LDCC200) 

Bv/Ai_(?no) 
Ffc.U» POISAI» pA, Pf, p2, p,j, pi», p5 
N«.EG» NSYM* NTOTAL* N5IZE» NPT. NBDYP 
TITL(16)» IHUNCHf ISTKS» 1BDY 

DIMFNSION A(2>, El<2>» E2(2>» P(2). X12.P), Rl<2), R?<2) 
DIMENSION I«.YM(2) »il<2»?) .T<2»2> t G(N<;IZE»MSIZE> 
OOUHLF PRECISION RH5(nSIZE>» Xll. XI2, XT3» Xltt, Xl5 
DO 10 I = l.NSIZE 
DO 10 J = l.NSIZE 

10 6(1.J) s o. 
DO 90  M = 1.N10TAL 
IFLG = n 
JFLfi = n 
Ml = (M.D/NSEG 
M2 = M - «1*NSEG 
M3 s Mp ♦ N5FG 
IF fLOC(M?>.E0.1.ANü.ABS(bVAL(M2>).LT.l.n.AND. 

1    LDC(M.}).EQ.l.ANn.ABS<tiVAL(M3)i.LT.1.0> IFLG = 1 
IF (LDC(M?).E0.2.ANU.ABs(bVAL(M2)),LT.1.0£-Ofl.ANn. 

1    LOC(M3).EU«2.ANO.ABS(bVAL<M3)).LT.1.0L~0e) JFL6 S 1 

COaPuTF SYMMETRY COEFFICIENTS USING Y» THEN X 

IFLA6 = 1 
DO 16 K = 1.2 
J = 3 - K 
I = (M-l)/(NSEG*((2**J)/2>) 
ISYM(K) = t-l)**I 
IF fl.Fo.O) ISYM(K) = 1 

16 IFLAG = IFLAG * ISYM(K) 
00 *0 J = 1.2 
IF (IFLAG.GT.U) GO TO 25 
X(l.j) = XY?(M2.2«J) * ISYM(J) 

XYZ(M2,1,J) X(2.J> s 
GO TO 35 

25 X(l.j) r 
X(2.J) = 

35 CONTlUilP 

* ISYM(J) 

XY7(M2,i,J) 
XYZ(M2»2*JI 

ISYM(J) 
ISYM(J) 

C 
C 
C 

OEFINE DIRECTION OF THh LINE SEGMENT  F2 = A(J) / A««AG 

30 A(J) s x(?»j) - X(l.J) 
AHAfi = s-WT (A(jL)**2 ♦ A(2>**2) 
DO *3 I = 1.2 
E2(f) S A(I>/AMAG 
J = 3 - T 

33 El(.l) = F?(I) * «-l)**(*j*l> 

CALCULATF THE ANGLES T1 MNU T2 AND ThE OISTANCt 0 

00   30 N = 1.NSE6 
DO 15 J = 1#2 
P(J> = (XYZ(N»l.J) ♦ XYZ(N.2»J))/^* 
KICj) = X(1»J) - KJ) 174 
R2(l) = XC2.J) - P<J> 

20*25000 
20*25005 
20*25010 
20*25015 
20*25020 
20*25025 
20**50^0 
20*25035 
20*250'»0 
20*250'»5 
20*25050 
20*25055 
20*2*060 
20*25065 
20*25070 
20*25075 
20*250*0 
20*250B5 
20*250*»0 
20*250°5 
20*25100 
2D*25105 
20*25110 
20*25115 
20*25120 
20*25125 
20*25130 
20*25135 
2D*251U0 
20*251A5 
20*25150 
20*25155 
20*25160 
20*251*5 
20*25170 
20*25175 
2D*25lf*0 
20*251«5 
20*25100 
20*25195 
20*25200 
20*25205 
20*25210 
20*25215 
20*25220 
20*2*2*5 
20*25230 
20*25235 
20*25210 
20*252«»5 
20*25250 
20*25255 
20*252*0 
20*25265 
20*25270 
20*25275 
20*252*0 
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DO  15  I  =  1»? 
U(I.J)   r  n. 

is ru.j) = o. 
CALL OOTPrtD (Rl# Elf Ü) 
CALI DOTPRD <R1» £2» R12> 
CALL DOTPRD <R2» E2» K22> 
CALL DOTPRD <R1» Rl» RlMAG) 
CALI DOTPRD <R2» R2» R2MA6) 
RlMAG = SORT (RlMAG) 
R2MAG S SORT (R2MA6) 
RA s ARC; (Hi?) 
RB r A8S(R22> 
RMAß = AMAXI (RA* RR) 
IF <ABS(0 /RMAG).LT.1.0E-03> 60 TO 40 
SIGo = n / ABS(D) 
Tl = ATAN<Rl?/D) - (l.-SI6D)*PI/2. 
T2 = ATANCR22/D) - U.-SlGD>*PI/2. 
ST1 = R12 / RlMAG 
ST2 = R?2 / R2MAG 

R1MA6 
R2MAG 
/ 0 
/ D 

D / 
D / 

C 
C 
C 

CT1 = 
CT2 s 
TNI s R12 
TN2 = RS>2 

OIAGNOCTIC PRINT — OCCURS ONLY IN THF. CA«;E OF SERTOUS DATA ERROR 

C 
C 
C 

IF < (CT1/CT2) .6T. 
WRITE t*#2000> M» N. 

500 CONTINUE 
XL1 s ALOGdO/CTl) 
XL2 = ALO«(0/CT£) 

0.) 
X» 

GOTO 500 
P» Rlf R2» PI» E2» Tl» T2» CT1» CT2» D 

CALCULATE DELU INTEGRAL FOR U.NE.O 

X12 r 
XI3 S 
XI4 = 
00 SO 
DO SO 
DEL = 

C 
C 
C 

IF UFLG.EQ.O GO To 45 
XII = 0*(TN?*XL2-TN?*T2-TN1*XL1*TN1-Tl) 

D*(T2-T1> 
D*(XL?-XL1) 
D*(TN2-TN1-T2+T1> 
IX s  1»2 
JX s IX»2 
0. 

IF (IX.ro.Jx) DEL = 1. 
UXY = P1*(P?*üEL*Xll-El(IX)»El(«X)*Xl2-(EiUX)«E2(JX)+EKjX)*E2 

1       ))*XI3-E2UX>*c2(JX)*XI4) 
U(IV»JX) s UXY * ISYM(JX) 
IF (IX.FO.JX) 60 TO 50 
UtJv»IX> s UXY * ISYM(IX) 

50 CONTINUE 

CALCULATE OELT INTEGRAL FOR U.NE.O 

45 IF (JFLG.EO.t) GO To 75 
Xll s TS>-T1 
XI2 s T?*ST2*CT2-T1-ST1*CT1 
XI3 = ST?**2-ST1**2 
XA4 = T?-ST2*CT2-T1+ST1*CT1 
XI5 = AL0ft(CTl/CT2) 

175 

20*252*5 
20*2*290 
20*25205 
20*25300 
20*25305 
2D*25310 
20*25315 
20*25320 
20*253J>5 
20*2*330 
20*25335 
20*253*0 
20*25345 
20*25350 
20*25355 
20*25360 
20*253*5 
20*25370 
20*25375 
20*253*0 
20*25385 
20*25390 
2D*25395 
2O*25i*00 
20*25405 
20*25410 
20*25415 
20*25420 
20*25425 
20*25430 
2D*2*435 
20*25440 
20*25445 
20*25450 
20*25455 
20*25460 
20*25465 
20*25470 
20*25475 
20+254*0 
20*254«5 
2D*254«»0 
20*254<»5 

(1X20*25500 
20*25505 
20*25510 
20*25515 
20*25520 
2D*25525 
20*2*530 
20*25535 
20*25540 
20*2*5«»5 
20*25550 
20*25555 
20*25560 
20*25565 
20*25570 
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Do *0 IK : I »2 
00 *0 jx s IX»2 
TXY = 0. 
IF UX.FD.JX.ANU.M.FG.N) GO TO hO 
OtL = 0. 
IF (lX.ro.JX) DEL = 1« 
TXY = P:**(Pi»*0EL*Xll+£l(lX>*El(JX>*Xl2+(El(IX)*E?(JX)*E2(IX>* 

1     Pl(JX))*Xl3+E2(lX)*E2(JX)*xm> 
TUx.JX) = TXY * ISYM(JX) 
IF (IX.FO.JX) 60 TO 60 
TSTAR = -P3*P«**(E2<IXJ*El(JX)-Ei(IX)*E2(JX>>*Xl5 
T(IXrJX) = CTXY+TSTAR)*ISrM(JX) 
T(JXtlX) = CTXY-TSTAR)*ISVM(IX» 

60 CONTINUF 
60 TO 7* 

40 CONTINUF 
XII  S  R??*(AL06(RB)-1.)-R12*(AL0S(RA)-1.) 
X12  =  R?J>  - R12 
XI3  =  ALOß(RH)   -  ALOG(RA) 

C  CALCULATE OELU FOR D.EQ.U 
IF (IFLG.EQ.D 60 To 65 
00 70 IX S  1*2 
UO 70 JX = !X»2 
DEL = 0. 
IF (IX.PO.JX) OEL = 1« 
UXY = Pt*(P?*0EL*XU-E2<lX)*E2(JX)*Xl2) 
U(IX»JX> = UXY * ISYM(JX) 
IF (IX.Ffc.Jx) 60 TO 70 
UCJXtlX» s UXY * ISVM(IX) 

70 CONTINUF 
C 
C  CALCULATE OFLT INTEGRAL FOR O.EQ.O 

65 IF CJFLfi.EQ.D 60 To 75 
00 «0 IX 5  If2 
00 «0 JX S TX»2 
IF (IX.FO.JX) 60 TO AC 
TXY = -P3*Pu*(E2(IX)*£l<JX)-ElfIX)*E2<JX))*Xl3 
T(IX»JX) = TXY * ISYM(JX) 
T(Jv»IX> r-TXY * ISYM(IX) 

80 CONTINUF 
75 00 «5 IX = 1*2 

DO AS JX = I»2 
NO = N  ♦ (IX-1)*NSF6 
M4 = M? + (JX-1)*NSF6 
IF (IX.FO.JX.ANÜ.M.E0.N) T(IXrJX) = -0.50 
IF (L0C(M«*).E0.1) 60 TO 90 
TRAAIS = UUX»JX> 
UUVJX) = -CX./FMU) * T(IX»JX) 
T(IVfJX) = -FMU * TRANS 

90 RHS(NU) = RH5(NM ♦ UdX»JX) * BVAL(M<*> 
85 6(Nu#M0) z 6(N«*»M«*> + T(IX»JX) 
20 CONTINUE 

RETURN 
9000 FORMAT (// 5X 215 / (2F10.5 />> 

END 176 

20*25575 
20*255*0 
20*25585 
20*255°0 
20*25595 
20*2*600 
20*25605 
20*25610 
20*2*615 
20*25620 
20*2*625 
20*25630 
20*25635 
2D*25600 
20*256U5 
2D*25650 
20*256*5 
20*25660 
20*25665 
20*25670 
20*25675 
20*25680 
20*256«5 
20*25690 
20*25695 
2D*25700 
20*25705 
20*25710 
20*25715 
2D*25720 
20*25725 
20*25730 
20*25735 
20*25710 
20*257^5 
20*25750 
2D*2575S 
20*25760 
20*25765 
20*25770 
20*25775 
20*25780 
20*257*5 
20*25790 
20*25705 
20*25800 
20*258^5 
20*2*810 
20*25815 
20*25820 
20*25825 
20*2*830 
20*25835 
20*25800 
20*2*805 
20*25850 
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c 
c 
c 

SUBROUTINE INSOLIM C ) 20*30000 
COMMON / ARRAYI / XYZUOO»2»2)» IICON(20O>» TCON<?OO>» LOC(?OO)   2o*3nons 
COMMON / ARRAYS / PTIN(l0U»2) 20*30010 
COMMON / MATCON / FMU» POISN» PI» PI* P2» P3» P4. PS 20*30015 
COMMON / TIMERS / TIM (10) 2O*30O5>0 
COMMON / CONTR1 / NsEG» NSYM» NTOTAL» NSIZE» NPT. NBDYP 20*30025 
COMMON / CONTR2 / TITL(16)» IPUNCH» ISTRS« IBOY 20*30030 
OIMFNSION C(100»3>» AU)# PXYZ(3) 20*30035 
IF (IBOY.NE.O) 60 To 100 2D*300<»O 

110 IF (NPT.EO.O) RETURN 2O*3O0U5 
CALL TIME ( TIMC7) ) 20*30050 
WRITE (6»2000) TIIL 2D*30055 
IF (ISTRS.EO.O) WRITE (6*2050) 2D*30060 
IF (ISTRS.EO.l) WRITE (h#2060) 20*30065 

20*300^0 
CALL FOR CALCULATION OF ÜELO AND DELS 2O*300?5 

2O*3O0«0 
WRITE (ft#2l00) 20*300*5 
A(U) = 0. 2O*300Q0 
CALl OELSO (C) 2D*30095 
DO 10 NP = 1»NPT 20*30100 
DO 90     I s 1*3 20*30105 

20 Ad) = C(NPrl) 20*30110 
IF (ISTRS.Eo.l) 60 TO 30 20*30115 
A(«M = POISN * (A(l) ♦ A(3)) 20*30120 

30 CONTINUF 20*30125 
THETA = (A(1) ♦ A(3) ♦ AU>)/3. 2D*30130 
TAUOCT = SQRT(2.*(A(1)**2+A(3)**?+A(if)**?-A(1)*A(3)-A(3)*A(«*)-   20*30135 

I          A(1)*A(t»)+3.*A(2)**2))/3* 20*30140 
WRITE (6.P200) NP#(A(K)#K=1»«»)#THETA»TAU0CT»PTIN(NP#1)»PTIN(NP»2) 20*30145 

10 CONTINUF 20*30150 
CALl    1IME   (   TIM(A)    ) 20*30155 
RETURN 20*30160 

100 mRlTE (*»?.OoO) TITL 20*30165 
DO 120 I = 1»NSEG 20*30170 
J = I + NSER 20*30175 

120 R£Ar» CS.llOO) N» UCON(I). UCON(J) 2O*301«0 
DO 130 T = 1»NSEG 20*301*5 
J = I ♦ NSE6 20*301«>0 

130 REAf» (S.11G0) N» TCON(I,» TCON(J) 20*30195 
WHITE (6»2300> 20*30200 
00 140 I ~ t»NSE6 20*30205 
J = I ♦ NSEG 20*30210 
DO 150 N s 1*2 20*30215 

150 PXY7tN) = (XYZ(I»1»N) ♦ XYZ(I*2#N))/2. 20*30220 
mO WRITE (6»?400) I» UC0N(D* UCON(J)» TC0N(I>» TCO\<.')> 2D*J02?5 

1                 LnC(I)# LDC(J)» PxYZ(l>» PXYZ(?> 20*302^0 
60 TO 110 20*30235 

1100 FORMAI (110» 2E30.10) ?D*30240 
»ooo FORMAT (IHI. IOX» i6Ab) 20*30245 
9050 FORMAT ( / 4' 16H PLANE STRAIN **** ) ) 20*30250 
9060 FORMAT ( / 4( 18H PLANE STRESS **** ) ) 20*30255 
9100 FORMAT (6H0POINT. 2X ion SIGMA(XX) ?X ICH SIGMA(xY) 2X ?D*302f>0 

1 10H <;I6WA(YY) 5>X 10H SIGMA(ZZ) 4X 6H THETA 6X 7H TAlloCT     20*30265 
2 5X 9H X 6X 2M Y) 2D*30270 

9200 FORMAT (2X 13» 2X 6F12.2» 2FA.4) 20*30275 
>300 FORMAT (// 4X 4H SE6 7X 2HU1 IOX 2HII2 IOX 2HT1 lOX 2HT2 AX 4WLDC1 20*302«0 

177 

SE 
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1      6*  4HI.DC2   «X  2HX1   10X   2HX2   //) 
9U00  FORMAT   (?X   IS*   2F12.fi»   2F12.0»   bX   II»   11X  II»   2F12.6) 

END 

20*302*5 
20*30200 
20*30295 

178 

Iggggtg^ 

M^HM ^■^■^— ,    ,.— _         ,_  



.1,",. 'U| -^.tnr «Miff W^1 l<<\\*  *>,l'<lFP?!^qFlW4<(*1 ■»IFJ^H*«1 ■■.l.WP^^V .^ 

ire3Ttrtw#«!Bre}«^**-(*$»MB
lS!1 

SUBoOllTIMF OFLSÜ (6) 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

XYZ<100»2»2>» UCOu<20n)» TCON(900)t LDC(200> 
PTIM100.2) 
FMü# PR» PI» Cl» C2» C3# C» 
N<;EG» NSYM» NTOTAL» NSIZE» NPT, NROYP 
TITL(16>» IPUNCH. ISTRS» IROY 

EH?)» E2<2)> P<2)» X(2»2)» Rl<2)» H2(2) 
G(100»3) 

10 

C 
C 

C 
C 
C 

c 
c 
c 

ARRAY1 
ARRAY3 
MATCON 
C0NTR1 
C0NTR2 

OIMFNSION A«?)» 
OIMFNSION ISYM<2>» 
DO 10 I = 1.100 
00 10 J = 1*3 
G(I.J> = n. 
00 90  M = 1.NT0TAL 
Ml r (M-D/NSEG 
M2 = M - Ml*NSEti 

COMPUTF SYMMETRY COEFFICIENTS OSIN6 T» THEN X 
IFLAG = 1 
00 16 K = 1*2 
J s 3 - K 
1 = (M-1)/<NSEG*(<2**J>/2)) 
ISYM(K) r (-1)*»I 
IF U.FQ.O) ISYM(K) = 1 

If. IFLAG s IFLAG * ISYM(K) 
DO W J = 1»2 
IF (IFLAG.GT.O) GO TO 23 
X(l.J) = XYZ(M2»2»J) * ISYM(J) 
X(2.J> s XY7(M2»1»J) * ISYM(J) 
60 TO 35 

23 X(l.J) : XY?(M2»1»J) * ISYM(J) 
X(2.J> s XY?(M2»2»J> * 1SYM(J) 

35 CONTINUE 

OEFINE DIRECTION OF THF LINE SEGMENT E? = A(j)/AMAG 

32 A(J) = X(2*J> - X(1.J> 
AHAfi = 50rtT (A<1>**2 ♦ A<2)**?> 
00 *3 I = 1»2 
E2(1) = A(I)/AMAG 
J = 3 - I 

33 E1C.I) = F?Cl) * <-l)**(J+l> 

CALCULATE THE ANGLES Ti ANO T2 AND THE DISTANCt D 

00 90  N  =  l.NPT 
DO   15  J  =  1»2 
P(J)   =  PTIN(N»J) 
R2U)   r  X(2.J>   - P(J) 
Rl(.»   =  X(1»J)   - P«J) 

15 CONTUJIF 
Dl  =   0. 
02 = II. 
DO 17 J=l»2 
01 = Dl ♦ Rl(J)*Rl<o) 

17 02 = 02 ♦ RJ>(J)*P2<J) 
01 = SG«T(0l> 
02 = SORT(D?> 
CALl OOTPrtO (Rl. El. u)        179 

20*35000 
20*35005 
20*35010 
20*35015 
20*350/>0 
20*35025 
20*35030 
20*35035 
2O*350««0 
2O*350««5 
20*350*0 
20*35055 
20*350*0 
20*35065 
20*35070 
20*35075 
20*350«0 
20*350°5 
20*35090 
20*350<>5 
20*35100 
20*35105 
20*35110 
20*35115 
2D*35120 
20*351^5 
20*35130 
20*35135 
2D*351ttO 
2D*351tt5 
20*35150 
20*35155 
20*35160 
20*351*5 
20*35170 
2D*35175 
20*351*0 
20*351*5 
2D*351°0 
20*35105 
20*35200 
20*35205 
20*35210 
20*3*215 
2O*352?0 
20*35225 
20*35230 
20*35235 
20*352*0 
2D*352*»5 
2D*35250 
2D*35255 
2D*352*0 
20*35265 
20*35270 
20*35275 
20*352fl0 
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CALl    OOTPHO   CRl.   E2.   R12> 
CALl    OOTPRO   (H2t   E2i   «<22> 
CMLL   OOTPRO   (Rl»   Kl»   KlMAti) 
CALl.  OOTPHO   CH2»   R2.   H2MAto> 
R1MAG  = 5<iRT   (R1MA6) 
R2MAü  =  SORT   1R2MAG) 
RA  =  ARStrtlJ») 
RÖ  =  AR5(R2?) 
RMAß   =   AMAXl(RAfRB) 
IF   (AflSCO  /RMA6>.LT.l 
SIGn  = 0  /  ARS(ü) 
Tl   =  ATAN(Rt2/D   ) 

ATAMCR22/D ) 
Kl? / RIHAG 
R2? / R2MAG 
D / KlMAG 
n / R2MA6 
ALOß(Ol) 
AL0G<02) 

T2 
Sl 
S2 
Cl 
C2 
XL1 = 
XL2 = 

40 L = 0 
DO t>5 I = 1#2 
00 95  J = 1*2 
L = L ♦ 1 
ÜO ?5 K : lt? 
OELTK = 0. 
OELKJ = n. 
OELTJ = n. 
IF (I.FO.K) OELIK 
IF (K.FQ.J) OELKJ 
IF (l.FQ.J) OELIJ 

0E-U3) GO TO UO 

- (l.-SIGü)*Pl/2. 
- <l.-SIGü)*PI/2. 

= 1. 
= 1. 
- 1. 

IF CABS<n/RMAG).LT...OE-03) GO TO 3(1 
001 = 
0U2 = 
003 = 
ao4 = 
005 = 
D06 = 
051 S 
052 = 
053 = 
Ob«* r 
055 s 
056 = 
057 = 
OSft = 
AUK 
BUK 
CUK 
FIJK 
OUK 
EIJK 
GIJ« 

T? - Tl 
XL? - XL1 
T2-ri+S2*C2-Sl*Cl 
q?**2_51**? 
T2>-rl-S2*C2*Sl»tl 
2.*0D2-S2**2*51**2 
ons/O 
004/D 
ons/D 
oni/o 
3.*rtSl ♦ 2.*<52*C?**3-Si*Cl**3>/0 
2.*(Cl**4-C2**4)/0 
<l,*i)Sl - ÜS5 
2 . ♦ (S2**4-Sl**4 > /O 
OFI_lK*El CJ)+0ELKJ*E1 (I>-üELIj*£l (K) 
OFI.lK*E2(J)+OELKJ*£2tI>-üFHJ*E2(K) 
FKI)*E1(J)*F11K) 
F?(I)*E2U)*E2(K> 
Fl(I)*E2(J)*FllK)+E2(I)*tHJ)*El(K)+£in)*El(J)*EP(K) 
Fl (I>*E2(J)*F2CK)+fc2(I)*EHJ)*E2(K)+E2(T)*E2(J)*El (K) 
Cu*DFLIJ*El<K)*ElU)*El<J)*El<K)+PK*(0ELlK*El<J)+OELKJ* 

1     El(II) 
HIJK = C**0FLIJ*E2<K)+E1<I)*E2<J>»E1 <K>+E2U >*E1( J)*Ei(K) + 

1 PR«(0FLlK*t2(J)*üELKJ*t2(I)*?.*EKI)*FHJ>*E?(K)- 
2 F1(I)*E2(J)*F1(K)-E2(I)*E1(J)«E1(K1) 
OIJK = r.u*E?(I)*E2<J)*El(K)+PR*(<rl(T)*F2(j)*E2(K)+E2(I)»FKJ)* 

1       F?CK>> 180 

20*352*5 
2O*352°0 
20*35295 
20*35300 
20*35305 
20*35310 
20*35315 
20*35320 
2D*353?5 
2D*35330 
20*35335 
2D*353«»0 
20*35315 
20*35350 
2D*3S355 
20*353*0 
20*35355 
20*35370 
20*35375 
20*353«0 
20*353*5 
20*3e»3Q0 
20*35395 
2D*35i»nn 
20*354^5 
20*35410 
20*35415 
20*35420 
20*35425 
20*351*30 
20*354^5 
20*35410 
20*35445 
20*35450 
20*35455 
20*354*0 
20*35455 
20*35470 
20*35475 
20*354*0 
?n*354«5 
20*354<»0 
20*35495 
20*35500 
20*35505 
20*35510 
20*35515 
20*3*520 
20*355*5 
20*35530 
20*355?5 
20*35510 
20*355«*5 
20*35550 
20*35555 
20*355*0 
20*35555 
20*35570 
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PIJ*  = CU*<DELlK*EltJ>*DELKJ*Eim>-nELlJ*El(K>*(l.-i».*PR) 20*35575 
DU s C3*(C«»*<AIJK»Dl)l+BlJK*002>+CIJK*OD3+UlJK*DDi»*ElJK*on5 20*355AO 

1                 ♦FIJK*00b)»I<;YM(K) 20*355*5 
DS = ?.*FMU*C3*l6iJK*USl+HlJK*DS?+OIJK*nS3*PlJK*0S«»-CIJK*0S5 20*35590 

1                 -niJK*0S6-ElJK*0S7-FIJK*DSBUlSYM<K> 20*35595 
Go TO 2tt 20*356^0 

3n CONTINUE 2D*356"5 
BIJK   = OELlK*E2(J)+nELKJt.2(I>-DELlJ*E2<K) 20*35610 
QIJK   = Cl»*C?.*El(Kl»E2!l"   ~2< Jl+EK J)*DFLlK*El< I)*DELKJ)+ 20*35615 

1 ?.«PR*(El(I>*E2(.J>*E2(K)+E2(l)*El(J)*E2(K))-DELlJ*El<K> 20*35620 
Si = R19/RA 20*35625 
S2 = R29/KB 20*35630 

C 20*35635 
C  SOLLOWTNG I0I0T CAKOS REQUIRED FOR 110« FORTRAN 20*356«»0 
C 2D*356<*5 

ARG1 = R8 20*356*^0 
ArtG?  S RA 20*35655 
002 = 52*ALOG(AR61)   - S1*AL0GIARG2> 20*35660 
DU6 = 00? 20*356*5 
0S9 S  l./HA-l./KB 20*35670 
DO r C3*(C«**BIJK*DD?+2.*E2tl>*E«><J>*E2<K>*0U6>*ISYM(IO 20*35675 
OS = ?.*FMU*C3*GIJK*0S9*ISYrt<K) 20*356*0 

2» CONTINIIF 20*35685 
Mi* = M? ♦   tK-1)   * NSEG 20*3*»6°0 
G(N.L>   = G(NiL)   ♦  D0*TC0N(M4)   - DS*UC0N(M«*> 20*356°5 

25  CONTINIIF 20*35700 
20   CONTINIIF 20*35705 

RETURN 20*35710 
END 20*35715 
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SUBROIITTMF 

c 
c 
c 
c 
c 

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

/ 
/ 
/ 
/ 
/ 
/ 

BDYSTR 
/ 
/ 
/ 
/ 
/ 
/ 

(C) 
XY7(lf.0»2»2)» UC0M(20n)t TCON(?00)» LDC(200) 
NbOf(S0»3) 
FMU» POISN» PI» PI» 22» Pi» P4» PS 
NsEli* NSYM» NTOTAL» NSIZE» NPT, NöDYP 
TITL(16>» IPUNCH» ISTHS» IBOY 
TIM(IO) 

El(2)» E2(2). P<3»2>» R(2)» DU(2), Hi),   C<50»4) 
RETURN 

) 

ARRAY1 
ARRAY« 
MATCON 
CONTR1 
C0NTR2 
TIMERS 

DIMENSION A (2)» 
IF (NROYP.Eo.O) 
CALL TIMF ( TIM(9> 
CI : 1.-2.*P0ISN 
C2 S l.-POlSN 
WRITE (K»2000) TITL 
WRITE (ft.2l00> ((NBOY(I.J)»J=l»3)»I-l»NB0YP) 
WRITE (ft.2000) TITL 
IF (ISTRS.EO.O) WRITE (6.2050) 
IF (ISTRS.EQ.l) WRITE (6.2060) 
WRITE (ft.2200) 

10 = BASE SEGMENT NUMBER 
XI s RFAR DIFFERENCE SESwEwT NVMöER 
12 a FORWARD DIFFERENCE SE6MENT NUMBER 

20 

00 15 N = 
10 s NROY 
11 = N8DY 
12 s NBOY 
DO 90 M = 
P(l.M) 
P(2.M) 
PO.M) 
R(M) s 
A(M) S 
SMAA S 
AMAA = 
DO 95 M 
E2(M) = 
K = 3 - 
EKK) = 
13 s II 
X« = IP 
15 = 10 
DU(M) = 

XYZ(I0»2»M))/i4 
XYZ(Il»2.M))/2. 
XYZ(I2»2»M))/2. 

25 

l.NBOYP 
(N.l) 
(N»2) 
(N»3) 
1#? 

= (XYZ(IU»1»M) 
= (XYZ(I1»1»M) 
r (XYZ<I2.1»M) 
P(3»M) - P(2.M) 
XYZ(I0»2»M) - XYZ(IO.l.M) 
<;0«T(R(1)**2 ♦ R(2)**2) 
«;0RT(A(1)**2 ♦ A(2)**2) 
S 1.2 
A(M)/ AHA6 
M 
F2(M) * (-1)**(K+D 
♦ (M-1)*NSE6 
+ (M-1)*MSEG 
+ (M-1)*NSEG 
OlCONCI«*) - UC0N(I3))/SMA6 

T(M> = TC0N(I5) 
M = 0 

I = 1.2 
J S 1*2 
♦ 1 
0. 

IF (I.FO.J) OIJ = 1. 
C(N.M) = (Cl/(2.*C2))*(r(I)*EKj) ♦ T(J)*EltD) - <FMU/C?)*POISN* 

1        (E2(J>*0UU) ♦ E2(D*DU(0>) 
00 30 K r 1.2 

♦ EKD*t2(J)*E2(K) ♦ 
♦ E2(D*E»(J)*E1(K) 
- El(I)*t?(J)*EKK) - E2(I)*E1(J)*E,(K) 
♦ E2(I)*tl(J)*EKK) 

182 

00 30 
DO 30 
M «• M 
DU s 

Al = 
I 
A2 = 
A3 r 

EKI)*E1(J)*E1(K) 
E2(T)*F1(J)*E2(K) 
Et(I)*Ft(J)*E2(K) 
EMI)*E2(J)*EKK) 

20*40000 
20*40005 
20*40010 
20*40015 
20*40020 
20*40025 
2O*4O0"*0 
20*40035 
20*40040 
20*40045 
2D**»noc50 
20*40055 
20*40060 
20*40065 
20*40070 
20*40075 
20*400*0 
2D*400P5 
20*40000 
20*40095 
20*40100 
20*40105 
2D*4OH0 
20*40115 
20*40120 
20*40125 
20*40130 
20*4"135 
2D*401U0 
20*40145 
20*40150 
20*40155 
20*40160 
20*40165 
20*40170 
20*40175 
20*40100 
2D*401«5 
20*40190 
20*40195 
20*40200 
20*40205 
20*40210 
20*40215 
20*40220 
20*40225 
20*40230 
20*40235 
20*402«»0 
20*402b5 
20*40250 
20*40255 
20*402ftO 
20*40265 
20*40270 
20*40275 
20»402fl0 
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A4 s E2UI*F2(J)*E?IK) 20*402A5 
CIN.M) = C<N#M> - (Cl/(2.+C2))*0IJ*Fl(K)*T<K) ♦ <1./*2.*C2>>*<A1* 2D*402«»0 

1 T(K>) * (FMU/C2)*(C1*A2 ♦ C2*A3 ♦ .J.*A4)*D;i<IO - 2D*402<>5 
2 (FMU/C2J*Cl*ulJ*t?(K)*DU(K) 20*40300 

30 CONTINUF 20*40305 
IF   USTRS.Eo.ll   60  TO  35 20*40310 
CCN.4)   =  POISN  *   (C(N»1)   ♦  C(M»3)) 2O*<*0315 

35 THETA = (C(N»1) ♦ C(N»3> ♦ C<N»4))/*. 20*40320 
TAUOCT = S9RT(2.*<CCN#l)**2*C<N.3>**2«-CtN»4>**2-C(N#l>*C(N*3)- 20*40325 

I     C<N»3>*CCN»4)-C<N»1>*C<N*4>+3.*C(N»2)**9>>/'*. 20*40330 
15 WRITE (6»2300> I0»(C(N»M)tMSl*4)tTHPTA»TAUOCT»P(l»l)»P(lt2) 20*40335 

CALl 1U2   ( TIMUO) ) 20*40310 
RETURN 20*403U5 

1000 FORMAT (2<»I3> 20*40350 
9000 FORMAT (tHl. 10X» lf»Ai>) 20*40355 
9050 FORMAT ( / Hi   18H PLANE STRAIN **** ) ) 20*40360 
9060 FORMAT ( / U( 18H Pl_AUE STRESS **** *» ) 20*40365 
9100 FORMAT (/ 5X llriBASF NUMBER 2X UHRFAR NUMBER 3X lOHFwO NUMBER // 20*40370 

I        ( 3112 /) ) 20*403^5 
9200 FORMAT (?H0*6MENT 2X iOH SIGMA(XX) 9X 10H SIGMA UY) 2X 2D*403«0 

1 IOH SlGMA(YY) 2X IOH SIGMA(ZZ) 4X 6H THETA AX 7H TAUOCT 20*40385 
2 5X 2H X 6X 2H Y) 20*40340 

9300 FORMAT (2X 13» 2X 6F12.2» 2F8.4) 20*40395 
END 20*40400 
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SUBROUTINE  OOTPHD   (A*   Bf   C) 
DIMENSION  M*)t   9(2) 
C = A(1»*B(1)   ♦ A(2)*B(2) 
RETllRN 
ENO 

2O*«»5000 
2O*«»S005 
2O*'»?010 
2O*«**5015 

184 
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C 
c 

c 
c 

SUBROUTINE SOLVER (N» X# F# A) 
DIMENSION A(N*N>» XIN>» F(N)» XX(16N) 
OOURLE PRECISION X 
00 10 I S It N 
Ftl) = n,ll 

10 CONTINUF 
Nl = N - I 
DO K0 I : 2. N 
00 S5 J = I» H 
IF <ABStA(I~l»I-l)> .ST. 0.) 60 TO 15 
11 : I • 1 
WRITE t6#5l0» II 
RETURN 

«5 CONTINUF 
CX = A<J,I-l> / AU-1»I-1> 
K2 r I 
DO SO K s I» N 
AtJ.K2) s AIJ»K2) - CX * Atl-1»K2> 
K2 = K2 ♦ I 

50 CONTINUF 
A(J,I-1> = CX 

55 CONTINUF 
60 CONTINUE 
FORWARn PASS - OPERATE ON RI6HT HAND SIDE AS 
ON MATRIX 
62 CONTINUF 

00 70 I s 2. N 
00 65 J = I» N 
XU)   =  XCJ)   - XU-ll   •  A(J#I-1) 

65  CONTINUF 
70  CONTINUF 

BACKWARD PASS - SOLVE FOK AX = B 
XX(N) S X(N) / A(N#N» 
00 AO I = 1» Nl 
SUM = 0.0 
12 = N - I ♦ 1 
DO 75 J = IP» N 
SUM = SUM ♦ A(I2-1»J> * XX(J) 

75 CONTINUF 
XX(T2-1) = (X<I2-1>-SUM) / A(I?-1»I?-1> 

80 CONTINUF 
DO QO I = 1» N 
F(I) = FU> ♦ XX(I) 

90 CONTINUE 
RETURN 

510 FORMAT«/IX P5HERR0R RETURN FROM SEOSOV    I10» 
1 2«v:0, *60NAL TERM REDUCED TO *EKO    / > 

ENil 

2D*5oooo 
20*50005 
20*50010 
20*50015 
20*50020 
2D*bO0?5 
20*50030 
20*50015 
20*50010 
20*50015 
20*500SO 
2D*500S5 
20*50060 
20*50065 
20*50070 
20*50075 
20*50000 
20*50005 
20*50090 
20*50095 
20*50100 
20*50105 
20*50110 
20*50115 
20*50120 
20*50125 
20*50110 
20*50135 
2D*501<.3 
20*50115 
20*50150 
20*50155 
20*50160 
20*50If5 
2O»50170 
20*50175 
20*50100 
20*501AS 
20*50190 
20*50195 
20*50200 
20*50205 
20*50210 
20*50215 
20*50220 
20*50225 
20*50230 
20*50235 
20*50210 
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5.2        TWO DIMENSIONAL ANISOTROPIC BOUNDARl-INTBGML EQUATION METBOD 

5. 2.1   formulation of the Field Equations 

The present note concerns the application of the Boundary- 

Integral Method to the solution of two dimensional, plane stress problems 

for fully anisotropic, elastic materials.   The nature of the equations 

is such that engineering notation for all field variables 1s convenient. 

The notation and theoretical development of the field equations follows 

from Lekhnltskll [1]'.   The development of the boundary-Integral equations 

follows the usual method outlined by Cruse [2].   The solution of the 

problem of unit loads in the x- and y-dlrections, called the fundamental 

solution will be first be obtained.   Next, the Betti reciprocal work 

theorem will be used to obtain Somlgliana's identities for internal 

displacements and stresses.    Finally, the Boundary-Integral Equation 

will be obtained from the Somigliana displacement identity. 

In the place stress equations presented In this note, the non- 

zero stress components are {ox, o , T   } and the corresponding strain 

components are {e , c , YYU>-   The equilibrium equations for the stresses 

are 

3°x     +     3Txy 
dx ay 

dx 3y 

=     0 

(1) 

The strain components are subject to the single compatibility equation 

Brackets refer to references at the end of this note. 
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3*ex 

IF 
32ey 

ax2 
32 ][xy 
3x3y 

(2) 

which guarantees the existence of single-valued displacements, u , u 
A     y 

which are related to the strains by 

3U dU x     fc   e 2Ü 
3x * •   3y 

(3) 
3U 
_X 

ay 3X 'xy 

The constitutive law for the fu11y-an1sotrop1c elastic 

Material In plane stress can be given In Matrix for« as 

•xy 

*11 ßl2 ßl6 

ßl2 022 &26 

ß)6 ^26 ?66 

(4) 

xy 

The ßj-j's are the material compliances and are known to be the components 

of a fourth-order tensor, as the strains2 and stresses are components 

of second order tensors. The tensor character of the compliances Is 

basic for the application of the current results to composite materials, 

as discussed by Ashton et. al. 13]. 

The compliances may be given In terms of engineering 

material constants 

(5) 

ßn   *   VEX     , •"     *     -VxA 
ß22    *   VEy      . 6lf   *     nxy,x/Ex 

»26   »   n^y /Ey , Bee   "   V6xy 

^slng YXV/2 as the tensorlal shear component. 

? 
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For orthotroplc materials ß16 * «26 * 0. For later reference the 

stiffness coefficients are now Introduced but not put 1n engineering 

terms 

°11       °12 

ctj2 «22 a26 f e«    > (6) 

xy 
a16 a26 

«16* 
• 

ex 
a26 ey 
«66 Yxy 

The Airy Stress Function Is now Introduced such that Its 

existence guarantees satisfaction of equilibrium, Eq (1) 

&   . y ■ 
a2F 
3X7 xy   » - a2F (7) ay* * 3xz -* axay 

Substitution of Eq (7) Into Eq (4) and Eq (2) res.Us In the following 

governing differential equation for F(x,y) 

ßll     jJT       -        2ßIS    ^p       +        (2Pl?    +    ß66)     3x2gy2 

9t 2ÜE      4.    a ^ "     «26 ä77ä7   +    ß22    ix^T 

(8} 

3xJ3y 

Characteristic surfaces along which F(x,y) can be Integrated iwy be 

found by Introducing the notation 

z   ■  x ♦ ny   ;       P   sa + lb      ,        1 « /T (9) 

Substitution of Eq (9) intc Eq (8) reduces Eq (8) to 

gjr [ßini" - 2ß16»3 + (2ß12 ♦ ß66,V - 2ß26y + ß22] ■ 0       (10) 
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If me are to obtain non-trivial results to Eq (10) d"*F / dz1» / 0 

which requires 

PIIM1* - 2ßi6M3 + (2ßi2 + ßeeJu2 - 2ß26P * ß22   ■   0 (11) 

Eq (11) Is the characteristic equation for the material; Lekhnltskll 

shows that the four roots of Eq (11) are never real and are distinct 

so long as the material 1s not Isotropie.   We denote the roots 

p. ■ as + lb. (j-1,2) and ü. ■ a. - 1b..   Lekhn1tsk11 also shows that 

b. > 0, from thermodynamlc considerations.   Thus the characteristic 

directions become 

zk ' x + vtf,     k - 1.2 (12) 

and their conjugates. 

The general form of the stress function can be given by the 

relation 

F(x,y) - 2R { F^z,) + F2(z2) } 

Introducing the notation dF./dz.  (no summation on k) ■ *A\) 

the stresses become 

(13) 

x   =  2R lui2 *f(zi) + y2
2 ♦£(z2)} 

y  «  2R (♦f(zi) + *i{z2)} 

• -2R (ui*i(Z!) ♦ M2*2(Z2)> 

(14) 

xy 

where the prime denotes ordinary differentiation. The strains may be 

obtained from Eq (14) and Integrated to obtain the displacements 
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ux    -    2R {  px *!   (Zi)      +    p2 »2(22)  > 

Uy    =    2R {   qi  *!   (2l)       +    q2 *2(Z2)   ) 
(15) 

where 

pk   *   ßnUk + ßl2 " ßl6Mk 

Q^    s     hlV^ + $22/uk -  ß26 
(16) 

Equations (14) and (15) together with traction boundary 

conditions 

*x   =   V'x   +   xxy«y   '   h 

Txy\ +     °yny   S   92 
(17) 

or displacement boundary conditions 

ux»   h,    ;   uy   =   h2 (18) 

constitute the mathematical problem to be solved. 
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5.2.2   fundamental Solution:   Point Force Problem 

The basic relation for the development of Integral equations 

for the solution of the anisotrcplc problem is the solution for a point 

force in the infinite anisotropic plane.   Two such solutions will be 

required:   A unit force in the x-direction, and a unit force in the 

y-direction.   Utilizing the traction formulae (17) it is easily 

shown that on an arbitrary closed surface 

ytxdS     -   2R Cm«! + u2*21 

itydS     = -2R DI*! + *2J 
(19) 

where J ]) denotes the jump in the enclosed quantities for a full 

cycle of S. If the path S encloses the point of load application, 

Ze = x0 + i y0. then the results of (19) will be non-zero. 

Let *., represent the stress function for a poir.t load in 

the x. direction. The path integrals in (19) are seen to be of the 

opposite sign to the applied loads; 

«If,, + *j23  - «j2 
(20) 

We will now use indicial notation (x,y) =(x,, x») and its associated 
conventions. The index k will never be summed. 
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for the point load solutions. Functions which satisfy (20) for any 

closed path around z0 art 

*jk = Ajk l09 «zk " 2ko) (21) 

where z., = xD + v,ya.    In what follows z. will, for convenience 

only, be taken as the origin, z. = 0. It may be ihown by suitable 
Ko 

Investigation near z. = 0 that (21) satisfies the requirements of a 

point force [4].    Since It Is easily shown that 

\L log zk B    =     2*1 , 1 = ,CT (22) 

(20) leads to the result 

Ajl * *jl + Aj2 " *J2 =   6j2/2'i 

(23) 

"lAjl " MlAjl + ^2 " y2Aj2 = -6jl/2iri 

It is also required that the displacement field surrounding 

the applied be single-valued.   That is 

(t Ujl-0 j = 1.2 (24) 

Substitution of (21) into (15) and taking the jump around a closed 

path we find in addition to (23) 

hAji - ¥ji + P/jz" ¥j2= ° 
(25) 

<hAj1 " <»1*J1 + "2Aj2 " ¥j2 = ° 
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Together, (23) and (25) are sufficient to find A... Taking the notation 
JK 

i = /Ö" (26) 

yk= °k + iYk 

V Cjk + i Djk 

it is easily shown that (23) and (25) together with (16) reduce in 

real form to 

(2ßUa1Yi - ßi3Yl)   [ßll(o
2l - Y2l) + ßl2 - ßl3<»l] 

[ßl2Yl~ ßaaYi/ta2! + Y2i)]  Ul2^' + ß22 «l/(a2i * Y2i) " ß23] 

0 

Yl 

1 

al 

(2ßna2Y2  "  ßl3Y2)     Cßll(c22  - Y2
2)+ ßl2 ~  ßl3°2] 

[ßl2Y2"ß22Y2/(°22+Y22)]     [ßl2a2+ß22«2/   (<*22 + Y22)   ~  ß233 

0 

Y2 

r -^ 
0 

0 

6^/4, 

1 

a2 

(27) 

'jl 

'jl 

'02 
D. 

}2 
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Equation (27) become; singular when y, ■ v~ = it but it will be shown 

that A., may be found for very nearly Isotropie materials. 

We now define two tensor fields:   The first 1s U.. and 

corresponds to the displacements for the stress function (21) according 

to (15) 

Uj1 " 2R {P11Ajllog zl + P12Aj2l°3 z2} (28) 

where P,. ■ p.   , P2k = qk«   Taking the derivatives of (21) at z. 

according to (14) and substituting into (17), tractions on an arbi- 

trary surface are found 

Tj1 * 2R {Qn^1n1-n2) Aji/2
1
+Qi2 U2V

n
2) Aj2/Z2} *29* 

where 

[ Q<„ ]    ■    i   '        c I C30) «1k [:: ::] 
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5.2.3   Boundary-Integral Equation 

Since the governing partial differential equation (10) 

admits no real characteristic surface the problem is elliptic and 

the stresses and displacements are continuous.   Under such circum- 

stances it 1s easily verified tfwt Betti's reciprocal work theorem 

at the surface must be valid 

/VidS       ' /ujiV J(  ,dS (31) 

s+r s+r 

The surface r is a circle of vanishing radius e surrounding the point 

load; it is added to exclude the singularity from the volume.   The 

second integral in (31) 1s convergent as e ■*■ 0.   For continuous u. 

it 1s sufficient to investigate the behavior of the integral 

im      /• Lim 

z+oh.td$ (32) 
r 

At a circle centered at the applied load it 1s seen that 

Mknrn2    =    -(w^cose - sine) (33) 

and dS ■ ede, 0 < e < 2*.    Extracting from (32) the variable part 

it 1s sufficient to find 

2ir 2ir 
/ykVn2   dS     *    - f \cose-s1ne 

~ J  n.sine+cose de (34) 
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which, upon rearrangement becomes 

2* 
/Vrt   ds .      rd(tane)      . (1   2,  f cose d(cos8) 

y       zfc      
UJ     vkJ Wtan^e      l,^Vy    (HTi*)cos*e-u* 

(35) 

Equation (35) can then be integrated directly to obtain 

/ 
Wn2 dS     ■    - log [cose - ursine] 

2* 

(36) 

Taking the real part of the argument of the log 

pj[ = (cose - aksine) + (bks1ne)
2 

and the imaginary part 

-1 r  bks1ne   1 
9k*-

un        [  cose - »„sine J 

(37) 

(38) 

the result to (36) is found to be 

/ 

Vrn2 dS = 2*1 (39) 

Substitution of (39) Into (32) and using (23) leads to the usual 

Somigliana Identity for the interior displacement 
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ujd.)   -  - jVv zo) ^(ifcJdSC^) 

y W *•> *i (zk)dS(zk) 

(40) 

The Boundary-Integral Equation Is found in the usual 

way [2] by allowing z0 to approach the boundary from the Inside and 

evaluating the jumps in the singular Integrals in (40).   A simple 

means for evaluating the jump 1s to place ze at the surface, augment 

the surface as shown in the figure and integrate (AO). 

— x. 

In this case w^n.-n* = ukcose + sine since the normal (n,, n«) points 

outward from zc.   The range on 9 is - a « 9 < i - a.   Again the only 

significant integral is in the first integral in (40) 

u-o 

/ 
-a 

l,kn>"n2 ede 

v-a 

f 
u.ccse sine 
p. sine - cose de 
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which, by the same steps as above, becomes 

7*0- .-,[^(^TO)]"°(«, 
-a -a 

Substitution of the limits In (42) yields 

»-a 

/ , -a 

Ui.n-.-n« 
K '  -* ede     *   - iir (43) 

Again using the relations (23), (40) becomes 

V2 + /*VidS -/w* (44) 

Equation (44) Is the Boundary-Integral Equation which relates unknown 

boundary data to known boundary data. Once (44) has been solved 

numerically (iV), (40) can be used to obtain interior displacements 

and stresses. 
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5.2.4   Somigiiana's Identity for Interior Strains, Stresses 

The displacement gradient tensor u.,.   can be calculated from 
J *■ 

(40) by differentiation at z0.   Since a/axJlog (z.-z0)] = - a/ax. 

[log (z.-Zo)] the differentiation may be written in terms of derivatives 

at zk by a change in sign.   Then 

au. 

ax, / £f Vs -  / au 
^  V* (45) 

The tensorial strain at ?0 is given by the symmetric part of (45) 

■je ■ i(V * "w* (46) 

such that 

2e, /[* •?]*-/[* •*]*•« 
The kernels, S.-,, D... respectively are given by 

Sj£1 a "2R {Rt^1l^lnrn2> Ai«/Zl + R*2Qi2 ^2nrn2} Aj2/Z2} 

-2R (^Qn^VV V21 + RjA-2 (^ A£2/z2} 

Dj£l -   2R (R^P^ / 2l ♦ R^zPi2Aj2/z2) 

♦2R {R-pP^l / 2! + Rj2Pi2A£2/z2} 

(48) 
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where Rlk ■ 1» R2k s \>   I* 1s assumed that the boundary Is plecewise 

flat. Then (47) becomes 

*n " fsw uidS - / »jttV» (49) 

S S 

The stresses can be determined by substitution of (49), with 

Yjjy s 2ei2.    ex 
s «11 • ey 

a e22* int0 *6** 

■ 
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5.2.5 Numerical Solution 

Following the procedure used in the isotropic theory, the 

boundary displacements and boundary tractions are assumed to be 

piecewise constant. When this is assumed over the M boundary 

segments (again taken as straight line segments)» (44) becomes 

M M 
u,(n)/ 2 + 13 u.(m)  / T..(n,m)dS = £ t.(m) /u..(n,m)c!3 
J      m=l  7   J     J1       m=l 1 J     J1 

AS. m AS m 

Similarly the internal strains (49) become 

M 

26^(2»)=     2 u.(m)     j   SitiUc,m)6S 
m=l 

AS. m 
n 

_    2  Mm* y    DJ.ti(z„,m)dS 
AS. 

(50) 

(51) 

m 

By specifying the orientation of each line segment, 4S , 

with its normal (n,, n») the integrals in (50) and (51) may be solved 

for explicitly.   The notation is defined in the figure below 

zk ■ r(cos0 + yksin0) 

D = r • e1 

dS * Dd(tane) 

(52) 

■^aaan» rfiar^.. ;   -     ■ 
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The coordinate system (e,, e«) is taken such that e^ is in the direction 

of the outuard normal and e2 is tangent to aSm, going from "1" to "2" 

keeping the material on the left.   Since 0 - e + o, where a = cos' (nA 

(52) can be written 

ii.sr cose(coso-sinotane + M.  cosa tane + p. si no) (53) 

so that 

zfc = D [(cosa ♦ u^sina) + (n.cosa - si no) tane] (54) 

The closed-form integrals for (50), (51) are now easily ob- 

tained, as the only variable is tane.   Two special cases, D = 0 and 

the multivaluedness of log z. will be discussed below. Defining 

integrals of the variables in the kernels with Al*s we obtain 

AUji    =  f»^ = 2R {PilAjlAlll + Pi2Aj2aI12} 

AS 
(55) 

ATJi    " /TJidS S 2R {Qil(plYn2)AjlAl21 
AS 

+ *\lb\\*$ Aj2Al22} 

and for the strains 
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+ 2R{Rj1PilA£lAl3l + Rj2Pi2A£2Al32} 

ASj£1 = -2R<^1Qil^lnrn2)AjlAl41+R£2Qi2(»'2nrn^Aj2Al42} 

-2R{RjlQ.l(ulnrn2)A^lAl4l+R.2Q12(y2nrn2)A^Al42} 

The integrals are easily calculated for D f 0 

2. 

log 2|,dS = ; ^ 
2>. 

AI1=    7   lQ9 2kdS ■ .cosa-sin,     ^V1» 
1 * 

k "k* na (log zR) 

(56) 

AI4 = 
i 

dS 
u. cosa-sina (-k)\[ 

The case for D = 0 may be deduced as a special result of 

(57) or by integrating again, with proper substitutions for z.  and 

dS.    Using "±" to denote the cases where dS = +dr and dS = — dr 

we note e * ±it/2   and 

z.  * ±r (»^cosa-sina) (58) 
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Substitution of (58) Into the integrals in (55), (56) we obtain 

2 

f 
1 

A^ =   /log[±r(ukcosa-sina)] (±dr) = ^^j^ [zk(log zk-l)] 

2 2 

Al, » AK =   /" ^ =   —:ftC 
}
cin   (log Z. ) 2 3      J    Z. p.COSa-Sina        "    k      I 

*v / 
dS 

1 (UjCOSa-sina)* (•■nf 
1 

(59) 

The first two results in equation (57) contain the term log 

z.. The log is multivalued, and has i  jump of +2ir on the digital 

computer as e passes from u-e to w-e. To account for this on the 

computer the change in the imaginary part of log z. is tested. If 

a change of more than ir in the imaginary part is found then the 

result is corrected by adding (±2*) to the imaginary part of the 

lOg    ty. 
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5.2.5 Usage Guide for AMSOT 

The computer program Is divided into three major sections, 

along the same lines as the solution just detailed. The first 

section solves the boundary-Integral equations (44), producing 

a fully known set of boundary tractions and displacements. The 

next section utilizes Somigliana's Identity (51) to obtain 

stresses at specified Interior points. The final section deter- 

mines stresses at the surface of the body, using the tractions 

obtained 1n section one, and the tangential derivatives of the 

displacements. 

The boundary solution may be output on punched cards 

1f desired. This option allows the user to Input the boundary 

solution directly, and the program will begin execution of 

sections two and three. 

5.2.6.1   Problem Size Specifications 

The program allows up to two degrees of symmetry of 

geometry and boundary conditions. Present array dimensions limit 

the number of boundary segments to 80 (320 with symmetry), but 

capacity may be Increased by changing the common statements labeled 

ARRAY1 and ARRAY2. A number of other cards should also be modified, 

and are listed below, by card number: 

ANI10065 

ANI10070 

ANI10100 

AM15050 

ANI15235 

ANI20035 

ANI5005 

205 

tattmuummamummtxmtt •«■wrilM »ft Hail 



mmm f!^gBJI!KK!^BIJQQf0/!&l3g^ regtrgrewwi ja.inf^f^<s*sra-?«w-m^^iri-i .Kmrni.tvimiw-i * 

. ^MMIHHNWH*« y j w.W^e*MM*W- —*;
;<pygay.^'.^y^#; 

The number of Interior points which may be specified Is 

limited to 200, while the limit on surface stress points Is 50. 

These limits may be Increased by changing ARRAY3 and AR,"AY4, 

respectively. 

The time required for execution of each subroutine 1s 

calculated through an assembly language subroutine, TIME. Users 

of computers other than the Unlvac 1108 should provide their own 

routine for this purpose, or Insert a dummy routine, TIME(T). 

5.2.6.2   Specification of Material Constanta 

Material constants are specified through four matrices, 

listed below: 

STIFF, stiffness matrix (6) 

FLEX, compliance matrix (4) 

MU,  solutions to the characteristic equation (11) 

AX,  coefficients o' the net load terms 1n 

Lekhnltskll's strtss function (see §11) 

The coefficients AX are calculated 1n a program called 

AXCALC, which serves as an auxiliary program. All the matrices 

described above may be obtained as punched output from AXCALC, and 

inserted directly Into the data deck. 
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R. 2.6.3    Uee of AXCALC 

This program makes use of a capability previously detailed [j>J 

to solve the characteristic equation for a generally anisotropic 

material, symmetric about its mid-plane,   """he algorithm is specifically 

designed for a layered -taterial, since major use will be found in 

the area of advanced fiber composites.   AXCALC requires as input 

only the stacking sequence of the laminate, and the material properties 

of the individual laminae, in their principal material directions. 

Input data required by AXCALC is summarized in the table 

below.    Items which appear on the same card are bracketed, and the 

format for each card appears opposite the first item on that card. 

INPUT FOR AXCALC 

ITEM DESCRIPTION FORMAT 

NC Number of laminates to oe analyzed 13 

TITL Title card - any 80 characters 16A5 

NANG Number of Individual laminae 13 

Ell Major Young's modulus (single lamina) (3E15.10, F10.4) 

E22 Minor Young's modulus 

G12 In-plane shear modulus 

[V12 Principal Poisson's ratio 

THETA(I) Orientation angles of the individual laminae 

(angles measured from the x axis to the major 

axis of the layer) 

10F8.3 

THICK(I) Thicknesses of individual laminae 8F10.8 
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5.2. ff. 4   Identification of Paramter» in ANISOT 

All parameters necessary for use of the Integral equation 

program are defined below.   For easy reference, the more Important 

ones are defined on cards numbered ANI5065 - ANI15120 In subroutine 

SETUP.   All the descriptions below are summarized 1» Table 2, and 

parameters which may be described concisely appear only In Table 2. 

NODE (I,J) - a temporary array which stores the two node 

numbers associated with each segment number 

('rear' number, then 'forward* number) 

XYZM (I,J) - a temporary array containing the x, and Xp 

coordinates of each node, In that order. 

PTIN (I,J) - cooriu nates of the Interior stress solution 

j points (Xj,x2).   These are read only 1f NPT 

t 0. 

I NBDY (I,J) - three segment numbers necessary for the 

! surface stress solution, read only if NBDYP 

[ t 0.   For each segment on which a stress 

\ solution is desired, three segment numbers 

are read, In the following order:   segment 

number on which stress solution is desired; 

segment number for the "rear" difference v»lue 

of AU/AS; segment number for the "forward" 

difference value of AU/AS.   The 'forward' direction 
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1s taken as the positive "s" direction, always 

directed along the boundary of the body with 

the material on the left. 

5.2.6.5 Boundary Conditions 

Both traction and displacement boundary conditions are possible, 

and are Input by means of a NAMELIST read statement. The boundary 

data Is preceded and followed by control cards, as shown below: 

_$ BDYCON 
r 

| DATA 

_$ END 

All boundary conditions are Initialized to zero and the 

boundary condition key, LDC(I), Is Initialized to 1, meaning a traction 

boundary condition 1s assumed for each segment. Setting LDC = 2 

means a displacement boundary condition will be specified for the 

given segment and direction. Traction conditions are specified by 

a parameter TCON(I), while displacement conditions are specified by 

UCON(I). 

All x,-direction boundary dato 1s stored, followed by 

x2-direction data. The value of the subscript I for the boundary 

parameters (UCON, TCON, LDC) is determined in the following manner. 

For data specified in the x, direction, 

I » the segment number (N), but for the x„ direction 

I = N + NSEG, where NSEG Is the total number of boundary segments. 

For example consider a body which has been represented by 24 segments. 
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Tractions specified on segment 6: 

_TC0N(6)   »     .100E04, (x] traction) 

_TC0N(30) =      .325E04, (x2 traction) 

1 

Displacements specified on segment 9: 

_L0C(9)      = 2, LDC(33)     = 2, 

_UC0N(9) » 0.001, (x1 displacement) 

_UC0N(33) = 0.004, (x? displacement) 

Displacements set at zero on segment 1 

_LDC(1)  * 2, 

_LDC(25) * 2, 

(x,) 

(x2) 
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S.2.6.6   Input Data for ANISOT 

ITEM DESCRIPTION FORMAT 

NC Number of problems to be solved 13 

TITL Title card -any 80 characters 16A5 

NSEG Number of segments on the boundary 1015 

NSYM Degrees of symmetry (y, then x) 

NNOD Number of boundary nodes connecting segments 

IPUNCH - 0, the boundary solution will not be punched 

ISTRS » 0, plane strain ; = 1 plane stress 

IBDY f 0, boundary data read from cards 
NPT Number of interior points for stress solution 

N3DYP Number of points for boundary stresses 

NODE(I.J) Nodes associated with each segment number     2413 

XYZM(I.J) (x,,xj coordinates of each node 16F5.3 

STIFF* Stiffness matrix (6) 6E13.7 

FLEX* Compliance matrix (4) 6E13.7 

MU* Solutions of the characteristic equation (11)  4E20.10 

AX(I.J)* Coefficients of stress function (see III)     4E20.10 

{Boundary a NAMELIST read statement 

Conditions (See standard references for format) 

PTIN(I.J) Interior Stress Solution points (x^ x?)      16F5.3 

NBDY(I,J) Segment numbers associated with surface      2413 

stress solutions. 

♦Cards available as direct output of AXCALC 
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5.2.Ö Listing for AXCALC Computer Program 

C 
C 
C 
c 
c 
c 
c 
c 
c 

15 

«»5 

OETERMTNF.S COEFFICIENTS OF NET LOAD TERMS FOR AN1S0TR0PIC STRESS FTM 
COMMON / MATCON / Ell» E22» 612» Via» E(3»3)» BETA<3»3) 
COMMON / GEOMTY / THETA(10>» THICK(IQ)» NANG» PI 
COMMON / ROOTS1 / LAMUA(2U) 
ÜIMFNSION STIFCb)» KLEX(6)» DELTA(2.2) 
ÜIMFNSION TITL(16)» CU»4)» BU»*t)» RHS(U)» XU), R(U)# XlU»«*> 
COMPLEX LAMUA 

NC = NUMBER OF CASES 10 BE SOLVED SFOUENTIALLY 
N = ORDFR OF CHARACTERISTIC EMUATION. 
TMETA = ANGLE FROM THt X-AXIS TO THF 1-AXlS» IN OEGRFES. 
Ell. E?J>» Vl2» ANÜ t»12 ARE THE MATERIAL PROPERTIES OF THF 

INDIVIDUAL LAMINAE. 
K = NUMBER OF LAMINAE IN THE LAMINATE. 
THICK = THICKNESS OK EACH LAMINA IN THE LAMINATE. 

PI = 3.1<*1592b536 
00 15 I = 1»2 
Ü0 15 J = 1*2 
ULLTAd.J» S U.U 
IF CI.FO.J) DELTA(I.J) = 1.0 
KEAn(h.lOO) NC 
*RlTE<<i»lll5>   NC 
NC   =  NC   -   1 
IF   (NC.LT.O)   STOP 
RtAn<5.nn> TITL 

HEAn(5»l?0)   NANb 
REAOlh.125)   E11»E22»G12»V12 
REA0(5.I30)    (THETA(I)»   1   =   l.NANG) 
REAn{h.l3ft)    (THICK(I)»   I   =   1»NANG> 
CALl    MIILTMU 
K   =  0 
00  ?5   I   =   1.3 
00  ?5J  -   I»3 
K   =  K   ♦   1 
SUF(K)   =  E(I.J) 

25  FLEKK)   =  BFTA(I.J) 
WRITE   (7.1000)   STIF 
WRITE   (7.1000)   FLEX 
WRlTE(b.ll5)   TITL 
WRlTEtft.luO) 
WRlTE(ft»I«*5) 
WRlTE(b.lhO) 
WRlTE(ft»1hb) 
WRlTE(f»»1r>0) 
WKlTE(b»lb5) 
WRITE(6»1H0) 
WKlTE(f».175) 
WHlTE(ft.l90) 
WRlTE(f»»175) 
WRlTE(rS«1^5) 
WRlTE(»S»?O0) 
ALPM1  S REAL 

Ell» E?2» G12» V12 

(THETA(L)» L = l»NANb) 

(TMICK(L)» L = 1»NANG) 

((E(I'J)»J = 1»3)» I = l»3J 

((UETA(I»J). J = 1»3)» 7 = 1.3) 

(LMMUA(I). I = l.U) 
( LAMOM(I) ) 

GAM1 = ABS( AIMAG( LAMDA(D ) ) 
ALPH? = REAL( LMMÜA(3) ) 
GAM? = ARM AIMMG( LAMOA(^) ) ) 
WRlTE(7.?M0) ALHH1» GMMI» ALPH2. üAM? 
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AXC10000 
AXC10005 
AXC10010 
AXC10015 
AXC100P0 
AXC10025 
AXC10030 
AXC10035 
AXC10010 
AXC100U5 
AXC10050 
AXC10055 
AXC10060 
AxClOObS 
AXC10070 
AXC10075 
AXC100A0 
AXC100A5 
AXCIOO^O 
AXC100°5 
AXC10100 
Ay.cioios 
ÄXC10110 
AXC10115 
AXC101PO 
AXC10125 
AXC10130 
AXC10135 
AXC1O1U0 
AXClOlttS 
AXC101SO 
AXC101=>5 
AXC101AO 
AxClOlf.5 
AXC10170 
AXC10175 
AXC1O1A0 
AXC101A5 
AXC101O0 
AXC101Q5 
AXC10200 
AXC10205 
AXC10210 
AXC10215 
AXC10220 
AXC1P225 
AXC10230 
AXC10235 
AXC102U0 
AXC102U5 
AXC10250 
AXC102S5 
AXC10260 
AXC102A5 
AXC10270 
AxCl.':2"'5 
AXC102A0 
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Ctl.D   =   ?.*HtTA(l»l)*ALPHl*GAMl   -  HFTA (1 *3i *GMl 
CU.3)   =  ^.*HETM(l»l)»ALPH2*GAM<i   -  HFTAO .3)*öAM? 

C(l.2)   =  rtETA(l»l)*(ALPHl**2-toA«1**?)   ♦  PETHU»2>   -HFTA(1»3) 
C(1.4)   =  HETAU#l>*ULPH2**<i-«iAi.i2**?>   ♦  nET«(i»2)   -UFTA<1»3) 
C(2.1)   =  HErA(l»?)*uAwl-HETA{2»ü)*6AMl/(ALPn1**2+GAMl**i») 
C(2.2)   =  rtETA(l#2)*«LPHl   +  dFTA(2»2)*ALPHi/(ALPH1**^+GAM1**2 

1   -  *E1A(?»3> 
C12.3)   =  HETA(lt?>*hA.4?-BETA(2»2)*GAM2/(ALPH?**2+6AM2**2) 
C12.4)   =  r»ETA(l»?)*ALPH2   +  bEI A(?#2)*ALPH2/(ALPH?**?+GA«I?**2 

1   -  *ETA<?.3> 
C(3.1)   =  0.0 
C(3.3)   =  0*0 
C(3.2)   =   1.0 
C(3.4)   r   1.0 
ClU.l)   = «AMI 

cm.3)   S GAMP 
C14.2)   =  ALPH1 
C<4.4>   =  ALPH* 
DO » I  :  liü 
00   15 J:   1»* 

35 C(I.J)   =  C(I.J)   *  Ei»2 
UO  05   1 = 1»«» 
DO  «5 J=1.4 

05  H(I.J)   =  Cd.J) 
CALl    iMvq   (O   4» 
Ü0   111   I   = 

OUrtMY.   0»   üET»   4»   tt) 
1.4 
1»«* 
0.0 
1.4 
XKI.J) +   CU.K)   *   0<K»0) 

uo HI J 
XI(T.J) 
00   10   K 

10   Xi(T.J) 
WKlTt(f».?kSO) 
WKlTtHf».?lOi    (UKI.J). J=lt4)»I=1»«H 
UO uo K :  h? 
KHS(l)   =   0.0 
KnS<2)   - o.n 
rtrlS<3)   =  -DFLTAU»2)/(4.*PI) 
KHS<4>   =     0FLTA(K»1)/IU.*PI) 
WKlTfJft.PhO) 
«NlTElfc.210)    (RMSd)    »   1   =   1»«*) 
00   ?0   I   =   1.4 
X(I)   =   0.0 
00 90 J = l.U 

20   XU>   =   X<1)   +   Cil.J)   *   HHSU) 
WRlTE<*.?70)    CX<I).1=1.4) 
WHITE(7.2H0)    <X(I)»I=1»4) 
Ou   *0   I   =   1»4 
K(I>   =   0.0 
00 10 J = 1.4 

30   K(D   =   H(D   ♦   B(I.J)   *   X(0) 
WRITE <f».?<S0> 
WKITE(.',.?10)    <RU)»I=1»4) 

40   CONTINIIP 
Go   TO  US 

tOU   FORMAT(13) 
10b FORMAT<1HI»13) 
110  FORMAT(16A5) 
115  FORMAT (1 HI »lf>A5> 
120  F0RMATOT3) 
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AXCi*2«5 
Axri02e10 

*A!.PMlAxCin2Q5 
*ALPM2AXC10300 

AXC10305 
) AXC10310 

AXC10315 
AxC103?0 

) AxC103?5 
AXC10330 
AXCif»315 
AXC10340 
AxCin345 
AXC103SO 
AXC103S5 
AxC103f>0 
AxC103*5 
AXC10370 
AXC10375 
AXC1"3P0 
AXC103^5 
AxCin3°0 
AXC103O5 
AXC10400 
AXC10405 
Axrinuio 
AXC10U15 
AXCin^PO 
AxCin4?5 
AXC10430 
AXC10435 
AxCl^iiUO 
AxC10^«!5 
Axrin^so 
AXC104S5 
AXClOufO 
«XC104ft5 
Axnni|7o 
AXC10475 
AxriO4A0 
AxC104«5 
AxCintioo 
AxCint»Q5 
AxCinsno 
AXC10505 
AXC10510 
AXC10515 
AxCin5?0 
AXC10525 
AXC10530 
AXC10535 
AXC10540 
AXC105U5 
AXCIOS^O 
AXC10555 
AXC105ftO 
AxC105ft5 
AXC10570 
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12b  FORMAT 
iso FORMAT 
135 FORMAT 
IUO FORMAT 
i«»b FORMAT 
ihn FORMAT 
ibb FORMAI 
it>u FORMAT 
lh5 FORMAT 
i?u FORMAT 
17b FORMAT 
180 FORMAT 
19ü FORMAT 
i9b FORMAT 
200 FORMAT 
210 FORMAT 
?b0 FORMAT 
260 FORMAT 
270 FORMAT 

i »J». 

280 FORMAT 
1000 FORMAT 

END 

<3Fl5.tO»FlO.«*> 
(10F8.3) 
(HF10.8) 
(lHO.SftXt »Ell»»7X»»E22»»7x.»Gl2»»7Xt *»fl2» »7X* »V21») 
(IM   »SOXtbElO.U) 
<1Hn»30X» »ORIENTATION.   TOM   10 BOTTOM»   IN  DEGREES») 
(unX'FlU.b) 
<1H0».VJX»»LAMINA THICKNESS» TOP TO oOTTOM» IN INCHFS») 
U«X»F10.7) 
<1H<>..*nX»»THE A-MATf'IX FOR THIS LAMINATE IS») 
(    <30X»3(El<t.5»f>X))»/) 
(1H»».^nX»«THE E-MATHIX FOR THIS LAMlNrtTE IS») 
(1H0»3nX»»THE PLANE-STRESS »ETA MATKIX IS») 
(1HO»?OX»»THE  MU-VALIIES FOR   THIS  LArtlNATE   ARE») 
< ?(bX»F20.12)#»J») 
((/uEl<4.8)   ) 

< //////» 10X. • THE IOENDITY MATRIX IS 
( ////// » 

( ////// » 
//// ) 
UF20.10) 
(f»El3.7) 

'# // ) 
10X » »THE RHS VECTOR • » ////  ) 
liiX »  »Al = »»2E14.7» »J»»/ 10Y»»A2 = »»2E1«».7» 

AXC10575 
AXC105A0 
AxCIOSflS 
AXC1O5P0 
AXC105<»5 
AxClOfiOO 
AxCln605 
ÄXC?nhl0 
AXC10615 
AXC1O620 
AXC10625 
AXC10630 
AXC106J5 
AXC106«»0 
AXC106U5 
AXC10650 
AXC106S5 
AxC106f.O 
AxCin6ft5 
AXC10670 
AXC10675 
AXC10680 
AXC106A5 
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SUBROUTINE  rtllLTMU 
COMMON  /  rtATCON  /  EU»   E22»   G12»   Vl2»   E(3»3)»   PETA(3»3) 
COMMON / GEOMTY / THEIAUO)»   iHiCKdn)» NAN»» PI 

COMMON / HOOTSl / LAMJA(2l») 
U1MFNSTON QH(10»3»3)» Al3»3>» CuF«C(3»3)» Tk*wSl3»3) 
U1MFNM0N 0(11) 
COMPLEX LAMOA 
K = NANG 
V21   = E?2*V1?/E11 
Oil   = Ell/d.U   -  tfl2*V21> 
022  = F??/(1.U   -  Vl?*V21) 
Ol2  =  V?l*Qll 
066 =  fil? 
H  =  0.0 
UO   10   L   =   l.K 
H  =  H   ♦   THICK(L) 
CONTINUE 
00   15 L  =   l.K 
THRAO =  PI*THETA(L)/löO.O 
T  = COS(THRAO) 
S  =  SIN(THRAO) 
und 
Ob (I 
Ob (i 
Obd 

»1.1 ) 

»1»?) 
»1»3) 

Obd »2»3)  = 
i 
Oud »3.3)   = 

011*(T**H)   +   2.*(ul2   ♦   ?.*Or>fc)*((S*T)**2)   +  r>22*(S**tt 
011*(S**«»)   ♦ 2.*(ul2  + 2.*0f»6)*((5*T>**2>   + 02?*(T**a 
(Oil   +0?2  -  «u*uf.f»)*((S*1)**:>)   ♦  U12*((S**«*)   +<T**tt)} 
«Oil   -012  -2.*0o6)*S*(T**3)   ♦   <yl2  -  022   +  2,*066)*T* 
(S**3) 
(Qll  -012  -2.*0o6)*[*(S**3)   +   C.J12 - Q22 
(T**3) 

- 2.*(«12   +  uft6))*(<S*T)**2)   + («11 + «22 
*■ (1**4)) 
0b(L»l'2) 
Cb(L.2».i) 
Ob(U.l»3) 

♦  2.*066)*S* 

OftA*((S**<l) 

Obd »2.1) 
OH(l »3»?) 
Obd #3.1) 

is CONTINUE 
ÜO   5>0   I   =   1.3 
UO   ?5» J=   l»3 
A(i.j) s o.n 
Ü0   10  L  =   l.K 
ASUM   =  OR(L.I»J)*rHlCK(L) 
A(I,J)   =  A(I.J)   ♦  AstlM 

30 CONTINUE 
t(I.J)   =   A(T.J)/H 

2f>   C0NTIN1IF 
20   CONTINUF 

OtT  =   (F(l»l)*E(2»2)*t(3»*))   + 
1 (F(l»3)*E(?»D*c(3»ü))   - 
2 (F(.i»?)*E(?»3)*t( 
CoFAC(l.l) 
COFAC(1.?> 

C0FAC(l»3) 
C0FAC(2.1 ) 
CoFAC(?.?) 
CoFAC(2.3) 
CoFAC(3.1) 
C0FAC(3.2) 
CoFAC(3»3) 
uu  A5  [  : 

(E(2 
-1.0*((El? 

(E(2 
-l.n*((Ed 

(F.(l 
-l.0*((Ell 

(Ell 
-1.0*((E(1 

(Ell 
1.3 

(F(l,2)*F(2»3)*E(^.l)) 
(E(3.1)*E(2»2>*E(1»3)) 

1)) - (E(3,3)*E(2»D*E(1»2)) 
2)*E(3»^)) - (E(3.?)*t<2»3)> 
1)*£(3»J)) - (E(3.1)*t.(2»3))) 
1)*E(3»2)) - (E(3»l)*t(2»2)) 
2)*c(i»^)) -(E(3»2)*F(1»-S))) 
l)*E(3»3)i - (E(3»1)*E(1»3>* 
1)*£(3»2)) - (F(3»l)*t(1.2))) 
2)*E(2»3)) - (E(?»2)*c(1.3)) 
l)*t(2»3)) - (E(?.l)*t(l»3))) 
l)«t<2»2>> - (F(?.l)*h(l»2)) 
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AxCl*000 
AxriS0O5 
AXCI^OIO 
AXC1S015 
«XCISOPO 
AXC1S025 
AXC1^030 
AXC1S035 
AXCISOUO 
AXC1S0Ü5 
AXCISO^O 
AXCISO^S 
AxClSOf.0 
AxC150*5 
AXC1SO70 
Axcisor; 
AXC1S0«0 
AXC1S0«5 
AXC1S0°0 
AxClS0<»b 
AXC1MO0 
)AXC1S105 
)AXC1SH0 
AXC1S115 
AXC15120 
AXC1S1?5 
AXC15130 
AXClSl^b 
AXClSlttO 
AXC1S1Ü5 
AxCl^lSO 
AXC1^1S5 
AxClSlftO 
AXCl^lft5 
AXC1*170 
AXC1S175 
AXClSino 
AXC1S1A5 
AXC1S1O0 
AXC1^1«5 
AXC1«^200 
AXC1S215 
AxC1^2tO 
AXC1S215 
AXC1S220 
AXC1S225 
AXC1*230 
AXC1S2^5 
AXC1S2U0 
AxC152'«5 
AXC1S250 
AXC1S2S5 
AXClS2ftO 
ÄXClS2r%5 
AXC1S270 
AXC15275 
AxC1^2nO 
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DO »0 J : 1.3 AXC1S2B5 
TKANS(ItJ) s COFAC(J.l) AXC1S290 
HETA(ItJ) = (TRANS'I »JH/UFf AXCl52<?5 

HI) CUNTINIIF AXC1S300 
3b CONTINUF AXC15305 

U(l) = HETA(ltl) AXC1S310 
0(2) s -2.0*HfcTA(l».1> AXC1S315 
U(3> = ?.0*HFTA(1»2) + HE1A(3»3) ÄXC1S320 
0(«») = -?.0*HfcTA(2».^> AXC1S325 
ÖC5) = HFTA(?»2) AXC15330 
CALl HOOTS (D.«*»LAMDM>* AXC15335 
KfcTilRN AXC1S3U0 
END AXC1S3U5 

♦Standard root solving routine called here. User must supply sue* a routine. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBWOUTINF   INVR (A»   N»   tt»   M»   L»»   IS»   JS) 

A  = MATRIX.   DIMENSIONS  SMOWN»   IN  WHICH   A  SllRMATPiX   TN  UPPER  LFFT- 
HANO  CORNFR   IS  TO  Be   INVERTED 

N  s  OPHKH  OF  SllBMATRIX 
0 - UETEKMINANT 
M  =  U»   THEN 

B = B(1»l) IN CALLING ROUTINE» ANi) INVERSE STOPED IN A 
M = 1» THEN 

B = B(N.l) IN CALLING ROUTINE» AND A-INVEi<SL * H KETURMFO IN B 
M = M i.ttT. 1)* THEN 

B = HIN.M) IN CALLING ROUTINE» AND A-INVEKS£ * b RETURNED IN B 
A-INVERSF- IS NOT DESTROYED IN LAST TwO CASES 

INlluO.?)» TH(inu)» P(100> OIMFNSTON A(IS»JS)» B( 1.1)» 
Ü = 1.0 
00 03  J = l'N 

03 IP(.I) = n 
DO AO  T = 1»N 
AMAV = n.ii 
UU 18  J = 1 »N 
IF UP(J) - 1) U6» IB» U6 

06 00 15  K = 1»N 
IF <IP(K) - 1) 09» 15» 72 

09 IF (AHS(AMAX) - ABS<A(J.K))> 
12 IR = J 

IC = K 
AMAX s A(J»K) 

15 CONTINIIF 
16 CONTINIIF 

IP(TC) = IP(IC) ♦ 1 
IF (IR - IC) 21» 33* 21 

21 Ü = -0 
00 ?«♦  L = 1 »M 
SWAP = A(IR»L> 
AllQ»L) = A(IC.L) 

2«» A(IC»L) = SWAP 
IF (H) 33» 33» 27 

27 00 30  L S l»M 
SWAP = R(IR.D 
BlIu.L) = BCIC.L) 

30 B(ir.»D = SWAP 
33 IN(T»1) = IR 

lN(T»2> = IC 
PID = AUCIC) 
0 = 0* Pd) 
A(ir»io = i.o 
DO 36  L = l»N 

36 A(]C»L) = A(IC»L) / P(I) 
IF <M> U5» US» .19 

39 DO U2  L = 1»M 
i»2 B(IC»L) = 8(IC»L) / P(I) 
i»5 00 AO  LI = l»N 

IF <Ll - IC) HB» foO • <t8 

i»8 T = A(L1»IC) 
A(L1rIC) = II.0 
DO SI  L = 1»N 

12» IS» 15 

Axc2nono 
AXC20005 
AXC20010 
3XC20015 
AXC200?0 
AXC2f>0?5 
AXC20030 
AXC20Q35 
AXC200UO 
AxC2nott5 
AXC20050 
AxC2rt055 
AXC20060 
AXC20065 
AXC20070 
AXC20075 
AXC2O0A0 
AXC200«5 
AXC200P0 
AXC2t>095 
AXC20100 
AXC20105 
AXC20110 
AXC2M15 
AXC20120 
AXC20125 
AXC20130 
ÄXC20135 
AXC20110 
AxC2niH5 
AXC201S0 
AXC201S5 
AXC20160 
AXC20165 
AXC20170 
AXC20175 
AXC2O1A0 
AXC201R5 
AXC2rioo 
AXC201Q5 
AXC2n2f)0 
AXC20205 
AXC20210 
AXC20215 
AXC20220 
AXC2P2?5 
AXC20230 
AXC20235 
AXC20210 
AxC202it5 
AXC20250 
AXC20255 
AXC20260 
AXC20265 
AXC20270 
AXC20275 
AxC2f)2«0 
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-  A(IC»L*   *  T 

-  B(IC.L)   *  T 

51   AIL1.L»   =  A(L1»L> 
IF IM) M)» 60» ',«♦ 

5«* ÜO S7  L = 1#M 
57 3(L1tL) = B(L1»L) 
60 CuNTINUF 

ÜO A9  T - 1rN 
L = N + 1 - I 
IF CIN(L.l) - lN(Lt?)) hZt   f*9»   63 

63 JR = INU.»1) 
JC = lNtL#2) 
1)0*6 K   Z   t»N 
II- (N.FQ.il)  JH=K 
SWAP = A(KrJR) 
A(K.JR) = A(K.J';i 

66 A(K.JC) = SWAP 
69 CONTINIIF 
72 RETURN 

100 FORMAT C//10FI3.5) 
300 FORMAT (IHD 

fcNn 

AXC202«5 
AXC20290 
AXC20295 
AXC2"300 
AXC20305 
AXC20310 
AXC20315 
AXC203?0 
AXC20395 
AXC20330 
AXC20335 
AXC203«»0 
AXC203«5 
AXC203S0 
AxC2f»3S5 
AXC20360 
AxC203*5 
AXC20370 
AXC20375 
AXC203R0 
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c 
c 
c 

c 
c 
c 

5.2.5    Listing for ANISOT Computer PtKyram 

MAIN  P»OGRAM   —   INITIALISES  UÄTA  -  CALLS  SUBROUTINES 

COMMON / ARRAYI / XYZ(1OO»2'2)» UCON(20O># TCON(?OO>. Lor(?oo) 
COMMON / ARRAY2 / B\/AL(200) 
COMMON / MATCON / Pl»HMu»P0(2»2)»MU(2),FLEX(6) »STlF(f>),Av(2.?) 
COMMON / CONTRI / NSEü» NSYM. NTOTAL» NSTZE» NPT. NBDYP 
COMMON / CONTR2 / T1TL(16>» IPUNCH» ISTRS» 1«0Y 
COMMON / TIMERS / T (10) 
COMPLEX PO» MU» AX 

THE OIMENSIONS OF THE FOLLOWING ARRAYS ARE PROBLEM NEPENOENT 

DIMENSION C(lh0»160) 
UOUHLE PRECISION RHs(lftO) 
REAn (5.100) NC 

h WRITE (fc»20n> NC 
|; NC = NC - 1 
\- IF (NC .LT. 0) STOP 

PI = .1-1«*159265 
t Ü0 10 I = 1»?U0 
V UCOM(I) = G. 
;' TCOw(I) = 0. 
« 10 HVAl (I) = 0. 

\ CALl TIME ( T(l) ) 
00 90   I = 2.10 

'ir. 20 T(I) = n. 
CALl SETUP 
IF (IHDY.iME.O) (iO To 30 
CALt HVSOLU (C» RHS) 

30 CALl IN«;0LU (i.) 
CALl HOYSTR (C! 

C 
C  CALCULATE TIME CHANT 
C 

T(2) = (T(2)-T(l))*lO**(-3) 

} 

t 
T(<*> = (T(4)-T(3))*l0**(-3) 
T if»l = (T(»>)-l(s))*l0**(-3) 
T(a> = (T(8)-r(7))*io**(-3) 
T(in) s (Tdo)-i (y))*m**(-A> 

! 
WRUE (K»?0nn) TITL 
WRITE (<H»2lOO) 

i WRITE (*.22n0) T(2>» TU)» r(h)» TU>» T( 
I 60 TO 5 
;" 100 FORMAT ( 13 ) 
i 200 FORMAT ( tm» SX 13) 

1000 FORMAT ( 16AS) 
9000 FORMAT (IHI. 16AS) 
?IOO FORMAT ( ?1H TIME BREAKDOWN CHART //) 
9200 FORMAT ( bX 15HTIME PoR StTUP   F12.7. 5>X 

1         SX IbHIIME FOR OtLINT  Fl2.7# 2X 
?         bX JbHllME FOR SOLVER  F12.7, 2X 
.1         bX IbHIIME FuR INSOLU  F12.7» ?X 
<*         SX IbHIIME FuR BUYSOL  F12.7» ?X 

7nStC0MüS // 
7MSLC0M0S // 
7nStC0MuS // 
7MSEC0N0S // 
7ilSEC0N"0S) 

EIMÜ 

ANIIOOOO 
ANI10005 
ANIlOOtO 
ANT1001S 
AMI10020 
AWT 10025 
ANI10010 
ANT10Q35 
ANI10010 
ANI1O0U5 
ANTIOO^C 
ANTl^OSS 
ANI10060 
ANT 10065 
ANT10070 
ANI10075 
Ai>|T 10000 
ANT100A5 
ANTlnO^O 
ANT100*>5 
ANI10100 
ANT10105 
ANlinno 
ANT10115 
ANT1O190 
ANTini?5 

ANI10110 
ANT10175 
ANT1O1Ü0 
ANT101U5 
"NT101S0 
ANI101S5 
ANTlOlf.0 
AMT101ft5 
ANT10170 
ANT 10175 
ANTinino 
ANT101A5 
«NTlOl^O 
AMI1*1^5 
ANI10200 
ANT10205 
ANJ10210 
ANT10215 
ANT10220 
ANI1H225 
ANI1O230 
ANT102-H5 
ANIln2'»0 
ANTinau5 
ANT 102^0 
ANTl^Sb 
ANTl"2ft0 
ANT102ftb 
ANT10270 
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1        SUBROUTINE SETUP 
COMMON / AHHAYI / 
COMMON / ARHAY2 / 
COMMON / ARRAYS / 
COMMON / AKRAY4 / 
COMMON / MATCON / 
COMMON / ClMFRS / 
COMMON / CONTR1 / 
COMMON / C0NTR2 / 

|     NAMFLIST / HDYCl )K 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

XYZ(lU0f2»2># UCO,g(20n)t iCON(?oO)r LDC(?00) 
BVAL(200) 
P1IU(100»2> 
NnDY(t>0.3) 
Pl#hM»j#KQ«2»2)#M«M2).KLeX(ft)»STlF(6),Ay(?»?) 
TlMllü) 
NSEö» NSYM» NTOTAL» NSIZF» NPT, NMOYP 
T1TL<16>» IPUNCM» 7STRS. 1«UY 
/ UCON» TCON» LUC 

UlMrNSION Nontano»?)» XYZM(lU0#2) 
COMPLEX PO# MU. AX 
EQUTVALFNCE <NOüE» LOOI (XYZM» UCON) 

NSEG - NUMBER OF SCGMENT:» ON THE BOUNDARY 
NSYM = NUMHEN OF DEGKEES OF SYMMETrtY STARTING WITH Y» THEN Y 
NNoU = NUMHER OF BOUNDARY NOUES CONNECTING BOUNDARY SEGMENT«; 
IPilNCH = 1 — THE UOUNUArtY SOLUTION WIl.L BE PUNCHED OUT 
ISIWS = Or PLS'.RN iSfRS = 1» PLSTRS 
IF iBCy.EQ.n     BOUNDARY DATA STOKED IN COMMON 
IF IoDv.NF.0     BOUNDARY UAfA READ IN FROM CARDS ADDED TO END 

OF THE UATA DECrv 
NPT = NUMBFR OF INTERIOR SOLUTION POINTS FOR STRESS SOLUTION 
NBOYP s NUMBER OF BOUNDARY POINTS FOR STRESS SOLUTION 

READ 
KEAn 
REAn 
READ 
REAn 
RtAO 
RtAn 
REAn 
WRITE 
WRITE 
WHITE 
WRITE 
WRITE 
WRITE 
WRITE 
WHITE 
NSI/E 
DO 10 
UO 10 
DO 10 

10 

20 

30 

(s.inon) 
is.non) 
(S»1200) 
(S.MOO) 
(S. WOO) 
(S.luOO) 
(s»i70n) 
(S* 170(1) 
(fi»20nn) 
(*.?lon) 
(r\»22nn) 
(r>f?300) 
(rStPtnO) 
(*.?400) 
(rst?7nn) 
(rS.?7no) 
= ? * NSEb 
I = l.NSEG 
J = If? 
K = 1»? 

TITL 
NSEGf NSYM» NNOU. IPIMCH. TSTRS* 
<(N0DK(i»J>»J=l*2)»1=1»NSFG) 
((XYZM(i.j)fJ=1.2).I=1.NN0D) 
sriF 
FLEX 
MU 
<UX<I»J)»J=l»2>»1=1»?) 
IITL 
NSEG* NSYM. NNOD. IPuNCH. ISTRS» 
(<NOi)E (I f J) f J=l »2) » 1 = 1 .NSFG) 
((XY/MlliJ)#J=l»2)»I=lfNN0u) 
STIF 
FLEX 
MU 
((AX(I.J).J=l»2).1=1.?) 

IoOYf NPT, NBDYP 

TBDY» NPTf NBDYP 

N = NODE(I'J) 
XYZ(IfJfK) = XYZM(MfK) 
UO ?0 I = 1.200 
UCOw(I) = 0. 
LUC(I) = I 
REAn (SfBOYCON) 
IF (NPT.EO.O) Go TO 30 
RtAn (Sfisnn) UPTiNti. J). J=I»2)»I=I*NPT) 
WRITE (f»f25on) {CPTlNtI.J)»J-l»2)»I = l»NPT) 
IF (NBDYP.E«»U> GO TO 40 
HEAn  (Sfl600) ((NBf)Y(I»J)»J=l»3)»I = l»NH0YP) 
WRITE <*»?60n) ((NBüY(IfJ)»J=l«3)#I = l.NBDYP) 
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ANTlSnOO 
ANT1^005 
ANT1S010 
ANT1S015 
ANT1S0?0 
ANT1S0?S 
ANTISO^O 
ANI1*035 
ANTl^O'iO 
ANT1«*0U5 
ANI1S0S0 
ANT 15055 
ANllSOftO 
ANT 15065 
ANI1^070 
ANT1S075 
ANI1S0«0 
ANT150«5 
ANT1S0°0 
ANT1S095 
ANllSino 
ANTlSins 
ANT15110 
ANT1S115 
ANI15120 
ANT1S125 
ANI15130 
ANI1*135 
ANT151U0 
ANI151'45 
ANT1S1S0 
ANI1S1S5 
ANllSlfiO 
ANI1S165 
ANT1S170 
ANI1S175 
ANT151«0 
ANT1S1A5 
ANT151«0 
ANTISI05 
ANT1S2O0 
ANTl?>2n5 
ANT1S210 
ANT1S215 
ANT1S2P0 
ANI152?5 
ANI152S0 
ANI1S235 
ANI1S240 
ANT1S2U5 
ANI15250 
ANI1*255 
ANT 15260 
ANT 15265 
ANI1S270 
ANT15275 
ANI1S2B0 
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C 
C 
c 

40 CUNT INI IE 
NFAC = ?**N«;YM 
IF INSYM.FQ.O) NFAC = 1 
NTOTAL = NSFG * NFAC 

CALCULATF NEEDFO MATERIAL CONSTANTS 

SO 

1000 
1100 

00 SO K = 1»? 
PQ(l.K) = FLEX(l)*MuU)**i» ♦ FLtX(2) - FLEX(3)*M<KK) 
PU«?»K) = FLFX(2)*Mi»U) ♦ FLEX(4)/M»ltK) - FuFX(S) 
FMU = STIF(l) 
CALl TIMF < TIMi2) ) 
RETURN 
FORMAT 
FORMAT 

(1*>A5> 
(1015) 

c 
c 
c 

****** CAUTION*****  FONMATS PROdLEM OEPENOENT  ***** CAUTlnN ****** 

1200 FORMAT <?4l3) 
1300 FORMAT (lr»Fs.3) 
mOO FORMAT ( ME13.7 ) 
1500 FORMAT (1hFH.3) 
1600 FORMAT (2<*l3) 
1700 FORMAT(UF20.10) 
9000 FORMAT urn» IOX» i6At>) 
P100 FORMAT {// 1015) 
9200 FORMAT (// H<3X 213)) 
9300 FORMAT :// J*(3X pFlu.b)) 
J>400 FORMAT ( IOX 3E12.7 /» 22X 
?500 FORMAT (// uC3X 2Fl0.b)> 
?600 FORMAT (// 6(3X 313)) 
2*700 FORMAT ( ?( 2rlH.h'HX ) ) 
?AG0 FORMAT ( SX. 8E12.6 ) 

£NO 

2E12.7 /p 34X E12.7 ) 

»NI152B5 
ANI152P0 
ANI152Q5 
AMI15300 
AMI15305 
ANT 15310 
ANI15315 
»NT 15320 
ANI15325 
ANT 15330 
ANT15335 
ANT153U0 
ANI153U5 
ANI15350 
ANI15355 
ANT15360 
ANI15365 
ANT 15370 
ANT15375 
ANT153A0 
ANI153P5 
»Nl15390 
ANI15395 
ANI15400 
»NT15405 
ANI 15«*10 
.*Ji;54l5 
ANT15H?0 
ANT 15425 
ANI1*430 
ANI15435 
ANT154U0 
ANT15i»U5 
»NT15450 

f  ! 
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SUBROUTINE HVSOLU 
iicON(20n),  TCONipnO)» LDr(?nn) 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

(Cf   RnS) 
XYZ(100»?»2)» 
RVAL(200) 
PI #l-Mll»POt?r?) »Mll(?> »FLtXlf>> #STlF(6) rAV(?r?) 
NsEb»   NSY.4»   NIOTAl.»   NST^E»   NPT.   NiiDfP 
TlTL(16)t   lPUi\CH»   TSTKS.   I"UY 

TIM   (10) 
P*YZ(2>»   C(US17C»NSIZC) 

COMMON / «RUAYI. / 
COMMON / ARHAY2 / 
COMMON / .vtATCON / 
COMMON / C0NTW1 / 
COMMON / C0NTR2 / 
COMMON ' UMFKS / 
01MPNSION A(?uO). 
tuUTVALFNCE («» UC0*> 
»OUKLF PRECISION RHS(NSiZt) 
COMPLEX P«I» MU# AX 
NMAV   =   ?   *   NSEG 
WHITE   (*»?0oo>   TTTL 
IF   (ISTRS.EO.U)   WKll'E   (b»20t>0> 
IF   (ISTRS.EM.1)   WRITE   (b»20o0> 
WHITE  (fc,?inn> 

WRITE   THF   STARTING   BOUNOHRY   CONDITIONS 

DO   10 I =   1»NSEG 
J   =   I + NSEtt 
DO   15 N =   1»? 

15  PXY7(N) =   <XYZU»1"<I>   +  XYZU#2»N>)/J>. 
10   WRITE (f,.?200)   1#   UCON(l)»   UCON(J)»   TCON(l).    ICOM(J)* 

1 Li>C(D»   LOC(J).   PxYZ(l).   HXYZ(?) 
UO   90 T =   l.NMAx 
RhS(i) = o.nnu 
IF   ILOC(I).FO.l)   GO   TO  30 
HVAl.(I)   =   FMll   *   llCO.g(i) 
GO   TO   20 

30  tiWAl (I)   r  TCON(l) 
21»  CONTINHF 

CALCULATE OELU. OELT» HHS 

CALl TIMF ( TIM13) ) 
CMLI UFLIMT (C» RHS) 
CALl TIME « TIM(U) ) 

WRITE PIGHT HAwn SIDE VECTOR 

»KITE   (f».?3nfl)   TITL 
UO  an   I   =   l.NSEG 
J   =   I   ♦   NSEft 

UO   WRITE   (*»2'I00)   i»   RiiSlDr   RrtS(J) 

SOLVt QYSTFM OF EQUATIONS 

CALl    TIMF   <   T1M(5)    ) 
CALl    SOLVER    (NMAX»    rtUbt   A*   C) 
CALl    TIMF   (   TIMlf.)    ) 

FILL IN UCON» TCON   KRU.T RESULTS 

DO SO I = 1.NMAX 
IF (LI)C(IJ.FO.l) GO TO oO 
TCOM(I) = FMII * A(I) 

223 

AMT200OU 
ANT20005 
AIJT20010 
ANI2O015 
ANT20020 
ANT20Q?S 
AfjT2no^O 
ANT20015 
ANT200'»n 
ANT200Ü5 
ANT200S0 
ANI200S5 
ANT2no^O 
AtgT2no*5 
ANT20070 
ANI20075 
ANI2°0«0 
ANI200«5 
ANT200O0 
ANT200°5 
A.MT20ino 
ANT20105 
ANT2H110 
ANI20115 
ANI20120 
ANT2IU25 
ANT20130 
ANT20US 
ANT201/iO 
ANI211U5 
AuT2ni*o 
ANI201S5 
ANT2ftlf.0 
ANT2ni^,5 
ANT20170 
ANT20175 
ANT201«0 
ANI201P5 
ANT201O0 
ANT201Q5 
ANT202n0 
AMI21205 
ANT20210 
ANT2021S 
ANT2O220 
ANT20^?5 
AMT20230 
ANT20?^5 
ANT202'i0 
ANT202"5 
ANT202S0 
ANT202S5 
flNT202^0 
ANT202fi5 
ANT20270 
ANT20275 
ANI202«0 
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WMRH 

60 

50 

BVALU) 
A(I) 

<t»»20:>o) 
<b»20b0> 

BO 
70 

120 

130 

UCOU(I)   =   (l./FMU)   *   üVftL(I) 
60 TO SO 
TCON(I) = 
UCOM(I) = 
CONTINUF 
WHITE <*.?0n0) IITL 
IK USTRS.Eo.O) WRITE 
IF (ISTRS.Eo.l) WHITE 
WKlTL U»2l00) 
00 70 I = ltNSEb 
J = I ♦ MSEft 
UO HO N = i»? 
PXY/tN) = (XYZ(i»l»iM) ♦ XYZ(Tf?»M))/>, 
WKlTE (*»?200) 1» UtON(l)» uCON(J)» TCON(D» rCOM(J)» 

I Ll)C(I)» LJC(J)# PxYZ<l)f H)fYZ(?) 
IF (IPIINCH.RO.O) RETURN 
L»0 120 I = l»NStG 
J = I + NKEG 
WKITE <7»?500) 1» UCOu(i)» UCON(J) 
00 130 I = l.NSEG 
J = I + MSEG 
WKlTE (7»J»500) 1 » TCuN(I). TCOU(J) 
NtTiiKN 

C1H1. 16»S // iOX IQUBOUHDARY CONDITIONS) 
( / u{ lttH PLAUE STRATA »*** ) ) 
( / u( loH PLANE STRESS **♦* ) 
(// UX Hn   SEii 7X 2-iUl IOX ^Hu? 

2HX1 1UX 2HX2 //) 
2F12.8» 2F12.0» bX Il# 

MHl» 16AS // IOX 22HRAGMT KANO 
(SX» 15» 2tl*.b) 
( Ilo. 2c.3u.10) 
(/// ( 2tftFl?.t> /) //) ) 

?ooo FORMAT 
?ot»o FORMAT 
?060 FORMAT 
9100 FURHAT 

l  6* UHL0C2 rtX 
3200 FORMAT (?X IS» 
3300 FORMAT 
?«»oo FORMAT 
?soo FORMAT 
AOOü FORMAT 

END 

) 
IOX 2riTl   lnx   2HT2  AX  «tHLDCl 

11V   11»   2F12.6) 
ST0E  VECTOR   //) 

ANT202R5 
ANI202qo 
ANT20295 
ANI20300 
Af4l203n5 
ANI20310 
ANT20315 
ANT2032Ü 
ANT^03?5 

ANT20330 
AMY2n.n5 
ANT203'iO 
ANT2n.Ti5 
AUTXO3S0 
ANT203«^b 
ANI20360 
ANT203ft5 
AIJT20370 
ANT20375 
AMT2n3A0 
ANT203A5 
ANT2n3«0 
ANT20395 
ANl2ft4n0 
*Ml20«*n5 
ANI20«10 
ANl20«tt5 
ANT20420 
ANT20«*i>5 
ANT2fm^0 
A.Nl20«t35 
ANl20tfU0 
A.MI20415 
ANI204S0 
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C 
c 
c 

SUBHOUTINF. flELlNT <G» RHS) 
COMMON / ARRAY1 / XY2 (ll)0»2« 2>» UCON(20n). |CON(200>» LOr<?00> 
COMMON / ARRAY2 / BvA„<20u> 
COMMON / MATCON / Pl»r-Mil»P0(2»2>»MUC»)»FLfcX(6)»STlF<6>»Av(?.2) 
COMMON / CONTR1 / NsEG» NSYM» NIOTAL» NfiTZE. NPT» N^OYP 
COMMON / C0NTK2 / TiTL(16)» IPUNCH» ISTHS» i«üY 
DIMENSION AC?)» Fl<?>» E?(?)» P(?>» X(2.2>» RKi?>     2) 
DIMENSION I«.YM(2)» U(NSIZt»NSl?t> 
Ü1MFNSION Xxll50>» XXüCtiO)» XX3150). xXu(&0) 
ÜOUHLF PRECISION RHs(wSIZE) 
COMPLEX PO» Mil» AX 
COMPLEX AK<?>» aK(2>» Z*l(?). ZK212). DIH2)» 012(2) 
COMPLEX 11(2.?)» T(2.2)» TuANS» L0bl(?)» L0G2(2) 
COMPLEX MUKPO* 
INTFGER SGNI 
SPHT   =   t. 
ÜO f>3 I = 1.SÜ 
XXUI) = 0. 
XX2CD = 0. 
XX3(D = i). 
XX<f<I> = 0. 

63  CONTINIIF 
00   10   I   =   l.NSIZF 
00 If   J  =   l.NSIZE 

10  GU.u*   =  0. 
UO   90   M   =   l.NTOTAL 
Ml   s   (M-D/NSLG 
M2  =  M  -  Ml*NSEG 
MA  =  M?  +  NSFG 

COMPUTE  SYMMETHY  COEFFICIENTS  USING  Y»   THEN  X 

IKLAG = 1 
DO 16 K = 1»? 
J = 3 - K 
1 = (M-1)/(N«;EG*((2»*0)/2)) 
ISYM(K) = C-l)**I 
IF (I.FQ.O) ISYM(K) = 1 

16 IFLAG = IF-AG * ISYM(K) 
DO ^0 J = 1.2 
IF (IFLAG.GT.O) GO TO 2b 
X(l.J) = XY7(M2.2»J) * ISTMIJ) 
X(2.J) = XY7(M2.l»J) * lSYM(J) 
GO TO 35 

25 X(l.J) = XY7(M2»1»J) * lSYM(J) 
X12.J) = XY/CM2.2.J) * ISYM(J) 

c 
c 
c 

35 CONTINIIF 

OEPlNE ÜIRFCTION OF THF LINE SEGM = A(J) / AvAG 

30 A(J) = X(?»J) - Xll»J) 
AMA.; = SOrtT (AU)**? ♦ A<2>**2) 
00 A3 T = 1»? 
E2(T) = A(I)/AMAG 
J = 3 - I 

33 EK.I) = E?U) * (-il**(j+l) 

ANT25000 
ANI2S005 
ANI2S010 
ANI2S0T5 
ANI2S0?0 
ANI2S025 
ANT2B0A0 
ANT250A5 
ANT250UO 
ANI250U5 
ANI25050 
ÄNT25055 
ANI2^060 
ANI2S065 
ANT2S070 
AMI25075 
ÄNT250BO 
ANI250*5 
ANI2S0O0 
ANI2S0Q5 
ANT2S100 
ANT25ins 
ANT2S110 
ANT2S115 
ANT251?0 

ANT25125 
ANT251710 
ANI25135 
ANT251U0 
ANI251U5 
ANT25150 
ANT25155 
ANT2M60 
ANI25165 
ANT25170 
ANT25175 
ANT251A0 
ANT251Ä5 
AN!2^1<>0 
ANT251<»5 
ANT25200 
ANT252n5 
ANI2«?210 
ANT25215 
ANT252?0 
ANI25225 
ANT25230 
ANI25235 
ANT252«i0 
ANT252U5 
ANI25250 
ANT25255 
ANI25260 
ANI25265 
ANI25270 
ANI25275 
ANT252A0 
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c 
c 

CAlCllLATK THE ANoLtS Tl ANO T? AND THE OISTANCE ü 

+ xY<:(N»2»J))/2. 

ih 

C 
C 
C 

DO ?l) N   -   l»NSfc'to 
DO 15 J s i»P 
P(J> = (XVZ(Nrl»J> 
Rl(.l) = X(1»J) - r>(J) 
R2(.l) = X(2.J) - P(J) 
CONTINUF 
CALl OOTPRD (HI» El* U> 
CALl OOTPHU (Kl. t2t HlP) 
CALl DOTPKO (H2. £?» R22) 
CrtLl OOTPRO (Hi» HI. HlMAb) 
CALl DOTPwD (H2» H2» K2MA6) 
R1MAG = SORT (R1MAG) 
H2MA6 = SORT (R2MAG) 
KA = AfK(Hl?) 
Rtt = AH<;(R2?) 
RMAK = AMAXI (RA» Rrt) 
IF (AH<;(0 /RMAG).LT.1.0E-U3) 

CALCULATE nil» 012 FOR H.NE.O 

TNI = RIP / 0 
TN2 = HP? / O 
0Ü SO I =1.2 
AK(T) S Fl(?>*MU(I> 
HK(T) = Fl(l )*MU(I> 

GO TO UO 

ZKl(I) = I) * (AK(1> 
ZK2(I) = I) * (AK(I) 
LOGl(I) = CLOG( 
LUG9(I) = CLOG( 

♦ El(l) 
- EK2) 
+ BK(I) 
+  RK(I) 

ZKKI)   ) 
7K2U)    ) 

TN1) 
T.M2) 

C 
C 
C 

OPHT   =   AldAfi   <L0G2<I>   -  LOfiKD» 
bPHT   =  SIiiN   (SPHI»   ilPlU) 
IF   «AHS(OPHI).GT.PI)   i_0v»2U) 
OIKI)   =  ZKp(l)   *   <L0i>2(I>   - 

1 -  /KKI)   *   (LOtol(I)   - 
012(1)   =   (LoG2(I)   -  LOGl(I)) 

50 CONTINUE 
GO TO 60 

4U CONTINUF 

CALCULATE Oft» 012 FOR O.tO.O 

00  H5   I   =   l.P 
HK(T)   =  Fld)*MU(D   -  Fl(2) 
011(1)   -  rt2?   *   lCL0<i(oKU)*RP2)   - 

1 -  RlP   *   (CL0i,(uK(I)   *  HIP) 
012(1)   = (ALOG(RH)   -   ALOG(HA)) 

55  CONTINUF 
60   CONTINIir 

= LOG2(I) - SPMI * rMPLX(n.n, 
1.) / HK(I) 
1.) / HK(I) 
/ OK(I) 

2.*PI) 

1.) 
- I.) 
/ BK(I) 

c 
c CALCULATE  OPLO»   OELT   INTEGR 
c 

00  M»   I   =   1»P 
Ü0  M*  J  =   1»P 
T(J.I)   =   CM   .X(O.O'H.J) 
U(J.I)   =   CMPI.X(u.O'O.U) 

hu   CONTINIIF 
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ANT252R5 
ANT252P0 
ANI25205 
ANI25300 
MNT25305 
ANT2^310 
ANT2S315 
ANT253P0 
ANI2S325 
ANI2S330 
ANI253*5 
ANl2^3'«n 
Ar^I2^3««5 
ANT2S3S0 
ÄNI2S3S5 
ÄNT25360 
ANl253ft5 
ANI25370 
ANT2S375 
ANI253A0 
ANI253«5 
ANT2*3°0 
ANT25305 
ANT2St*no 
ANT2^n5 
ANT25410 
ANI25415 
ANT254P0 
ANT2^P5 
AMT2

C
;«*30 

AN1254^5 
ANT2S4U0 
ANT25U15 
ANI2S450 
ANI2S«»S5 
ANI2S460 
ÄNT25465 
ArgT2S«*70 
ANT2SI+75 
ANT2«54«0 
ANT254A5 
ANT254°0 
ANT25405 
AMI2^500 
ANTr.S505 
ANT2S510 
ANI25515 
ANT2S5P0 
ANT2S5P5 
AMT2S530 
ANT2S535 
ANT2SSÜ0 
ANTP^S^S 
AMT2^5S0 
AMT2S5^5 
ANT2

E
15K0 

ANT255ft5 
ANT2«^570 
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00 *5 T = 1»? 
00 *b J = I»? 
00 ftb K = 1»? 
sum -  <-i)**(3-i) 
MUKPOw = rtU(K)**(2-*ii 
U(J.I) = tl(J.I) + PQ<l»K)»AX(J*K)*nu(K) 
T(J.l) = r(J#I) + (Mli(K)*tl(l)-tt(2)>*MUKHOw*iGr4T 

I *AX(J»K)+Ol2<K) 
bs CONTINUE 

XXKN) = 
XX2<N) = 
XX3(N) = 
XX«MN> = 
00 «b IX 

«b JX 
= N  ♦ 

7b 
ÜÜ 

m 
IF 
IF 

XXI(N) ♦ 
XX?<N) ♦ 
XX3<N) ♦ 
XXU(N) ♦ 
= 1#2 
= 1»2 
(IX-1)*NSF6 

2.*KEAI_<T(1»1)> 
2.*rtEAL(T(l»?)) 
2.«KEMLIT(?»D) 
?.*KEML<T(?»2)) 

= M? ♦ (JX-l)*NSrG 
(IX.FO.JX.MNU.M.FO.N) l(iXrJX) = CMPLX(0.?D»0.0) 
(U)C(Mi»).PQ.l) GO TO 90 

TKAub = ll(IX»JX) 
IHlVfJX) = -(l./FMU) * r(iX.JX) 
T(l¥»JX> = -FMU * TKANS 

90 HHS(NU) = RHSCN«*) ♦ 2.*HFAL(U(IX»JX>) * Rv/AL<MU) * 
b(Nu,M«4) = G(N<*.M«+) ♦ 2.*KEAL(T(IX»JX)) * IsYrt(jy) 

6b CONTINUE 
2Ü CONTINUF 

WRlTE<*»?*On>   TITL 
?f»00   FORMAKIHI »lftA5//inx»A7HC0LUMW   SUM  CHECKS//) 

UO  «b   T   =   l.NbEli 
9b  WHITE   <fc.?5nn)   I,   Xxl(I).   XX2(D.   Xx3(I),   Xx«MT) 

KETuRN 
?000  F0RMAI(1X.3IU»3Ffl.5#luF9.b     > 
?ioo FORMAT ( sx i«*# 2F2n.in. iu) 
?200 FORMAT(1X»3I«t»12E9.u ) 
9300 FORMAT (1HX» «»£15.7) 
?«»ou FORMAT CIOX* r»i*»» 6Eib.7) 
?500 FORMAT OX» I«.» uF2n.i5) 

END 

ISYM(JX) 

ANI2S575 
ANT2«>5«0 
ANT2S5A5 
ANT2b5c>0 
AtJT2Sb«5 
ANT25600 
ANT2S605 
ANT2Sf>10 
ANT2*615 
Af|T2Sft?0 
ANT2*625 
ANT2«&30 
ANT 2*635 
ANI2S6U0 
»KT256«;5 
AN12*6*0 
ANT2*6*5 
ANT2S6*0 
ANT2*665 
ANT2Sfj70 
ANT2*675 
ANT2*6«0 
ANT2*6*5 
ANT2*6°0 
ANT2*6«>5 
ANI2S700 
ANT2S705 
ANT2S710 
ANT2*715 
AMI2S720 
ANT2*725 
ANT25730 
ANT2*735 
ANT2R7U0 
ANT257«»5 
ANT2S7S0 
ANI2S7S5 
ANT2*7M) 
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SUBwoUTINK TNSOHM C * 
COMMON / AHWAYI / XYZdoo»?»?)» i ICON (200)» TCON(?üO>» LüC<2OO> 
COMMON / AHWAT3 / PiiN(inu»2> 
COMMON / rfATCON / Pl»FMw.PQ(2»2>»MU(?>#FLEX(*)»STlF(f>),AV(2»2> 
COMMON / TIMERS / TIM (in) 
COMMON / CONTHL / NSEB» NSYM» NTOTAL» NSTZE» NPT» NMOYP 

COMMON / CONTH2 / TITL(I6)» IPUNCH» ISTH«;» IROY 

DIMENSION C(100»A)» AU), PXYZ(-I) 
COMPLEX PM» MU» AX 
If (IriOY.WE.O) oO To 

110 IF «NPT.HM.O» RtTURN 
CMLI. TIMF < TIM(7) ) 
WHITE (KtPOnO) IITL 
IF (ISTRS.EM.Ü,' WHITE 
IF (ISTHS.EO.i) WKUE 

100 

(b»20J>n) 
(b»2060) 

c 
c 
c 

CALL FOR CALCULATION OF üELO AND DELS 

WHITE (fc.pinn) 
A(4) S II. 
CALl OFLSO (C) 
00 10 NP = 1 #NPI 
C(NP»h) = C(MP»5? * 2. 
A(l> = STIFU)*CCNP.«*> + 
A(2) = STlF(3)*C*.NP»'t) ♦ 
A(3) = STIF(2)*C(NP.<») + 

STIF(3)*C(N»»5) 
STlF(*i)*L(NP»5) 
STlF(5)*C(tjP»5) 

♦ STIF(?)*C(NP»*\) 
♦ STlF(s)*C(NP»M 
♦ STIF(u)*C(NP#*>) 

WHITE (*\»?200) mP. (A(K)»K=l»4)t HTIM(NP.I)» HTlN(NP»2) 
10 CONTINIIF 

CALl TIME ( TIMU) ) 
RETURN 

tuo WHITE (A,?onn) HIL 
Ou 120 T = l»NStG 
J = I + NSEfi 

120 HEAD (S.I ion) Nr UCoNd). UCON(J) 
00   1311   I   =   1»NSLG 
J  =   I   +  MSEh 

130   HtAi)    (S.llOn)    M»   TCoN(I)»   TCO.J(J) 
WHITE   (*»?3nO) 
00   1*11   I   =   l»NStG 
J   =   I   +   NStR 
DO   15«   *  -   1»2 

IbO  HXY7(N)   =   (XYZU.I.N)   ♦   XYZ(I»2»N))/2. 
1*0   WHITE    U»?«M10)    1»   UC.O.MÜ).   UCON(J).   TCON(I).    TCOM(J). 

1 Li»C(D»   LüC(J).   PxYZ(Df   PXYZ(?> 
GO TO 110 

110b FURMAT (110. 2E.in.lu) 
?OOII FORMAT <im. lox» inAo) 
POSII FORMAT  (  / u(  \HH PLANE STRAIN **♦* )   ) 
?0*>0   FOHMAT    (   /   i*(    1KH  PLAi^E   SIRESS   ****   >    > 
?1UU   FOHMAT    (fcHOPOINl.    2<    10M   SIGM«(AX)    ?X   1 nM 

1 inM  SlftMA(VY)   ?X   10H  SlfiMA(ZZ)   SX   ?M 
p?oo FORMAT (?< is» 2X m-\d,z*  2F*.u> 
2300 FORMAT (// uX «111 bEu 7X 2HUI 10X «'HiIP 10X ?nTl lnx 2HT2 «V <*HLnci 

I  f>V •♦HLDC2 «X 2HX1 10X 2HX2 //) 
?i»00 FORMAT (?X IS» 2F12.8. 2F12.0. <>V n. ny 

tND 

SIGMA(VY) ?X 
X »SX 2»' Y) 

II» 2M2.6) 

ANT30000 
Ain3nnn5 
ANI30010 
ANT30015 
ANT3no?0 
*NT3nn?5 
ANI300^0 
AMI3no^5 
ANI300«0 
»NT3nn'i5 
ANT300«iO 
ANT300S5 
ANT3noftO 
ANT300*5 
ANT3n0T0 
ANT3no75 
AMT300«0 
ANT30n«5 
ANT3nn«?0 
ANT300

Q
5 

AMT3nino 
Arii3nio5 
AMl3nil0 
ANT30115 
ANl3ni?0 
ANT30125 
ANT30130 
ANT30135 
ANI301«C 
«Nl3niH5 
*N!3niS0 
ANT3niS5 
AMT3ni»%0 
ANl30lft5 
ÄNT3ni70 
AMT30175 
AMT3nifl0 
ANI301«5 
ANT3niQ0 
ANTJOI«5 
ANT3O2n0 
ANlJn^ns 
ANT3O210 
ANT3n2)5 
ANT30220 
AN*3n;>?5 
ANT3n2^0 
ANT30235 
ANT302UO 
ANT3npu5 
fcNT3O2S0 
AfjT3n?SS 
ANT3'>?P.O 
ANT3n2S5 
AnT3n?70 
ANT3C.275 
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SUBROUTINE IIFLSI* (6) 

c 
c 

c 
c 
c 

c 
c 
c 

XYZ<IOO»2»?>» UCOM(20!(). ICON(->UO). Loc<?on> 
Piiw<iou*2) 
Pl»hMi|»»>0(?.?).MlJ(?>.FLtXlft)»l>TlF(6)»AY(?»?) 
NStb» NSY.1» NIOTAi.» NST/F» NPT. NrtDYP 
TITL(lft)» IPUmCri» TSTKS. 1*UY 

?IV?12)» On(2)> Oiü(2)# Ho, OS 

CUMMON / ARRAYl / 
COMMON / ARRAYS / 
COMMON / MAICON / 
COMMON / CONTH1 / 
COMMON / CONTKR / 
UIMFNSION A(J>), EK^)» E2(2>» P(?)» X(?,?)# PL<2>» R2(2> 
OIMFNSION I*;YM(2), G(lOll'b) 
COMPLEX Pa» Mil, AX 
COMPLEX AK(?), aK(?)» ZK1(?>» 
COMPLEX LOGM2)» LO<*2(2) 
SHHT = 1. 
uo in i = :»ioo 
00 '0 J = 1»G 

in fiir..j) = n. 
00 5>0 M = 1,1« I 01 AL 
Mi = <M-l>/NStG 
M2 = M - Ml*NSEb 

CO-IPOTF SYMMETRY COEFFICIENTS USIN«, Y» THFN X 
iFLftü = t 
UO 16 K = 1»? 
J = 3 - K 
1 = CM-1)/<NS£G*<(2**0)/2)> 
1SYM(K) = (-l)«*l 
IF (I.FQ.fl) ISYM(K) = 1 

18 1FLA0 = IFLAG * ISYM(K) 
00 ^2 J = 1»? 
IF (IKLAG.GT.U) GO TO 26 
X(1.J> = XY7(M2»?»J> * lSYM(J) 
X(2.J) = XY7(M?»1»J) * 1SYM(J) 
GO TO 35 

23 X(l.J) = XY/(M2,1,J) * ISYM(J) 
X(2.J> = XY7(M2»?#J> * ISYM(J) 

35 CONTINUE 

OEHNE UIPFCTION Of- THE LINE SEGMFNT E? = A(j)/AMAb 

62  AtJ» = X(?,J) - XU.J) 
AMAfi = <;OHf (Ail)**? ♦ ri<£)**2) 
UO A3 T = 1,2 
E2(T) = ACD/AMAG 
J = 3 - I 

33 El(.l) = F.MI) * (-1)*»(J+1) 

CALCULATE TMF ANGLtS Tl ANO T?   AND THE OlSTAuCt U 

Ü0 ?0 N = 1#NPT 
UO IS J = 1»? 
P(J) = PTIN(N»J) 
H2(.D = X(2,J) - P(.J) 
RK.i) = X(1,J) - P<J) 

15 CONTINIIP 
Ul = 0. 
U2 r n. 
UO 17 .1=1 ,2 
Ul = 01 ♦ Rl(J)«R1(J) 

22* 

ANT3^(jnO 
A»jT3snn«s 
AMI3SC10 
ANI3S015 
ÄNT35090 
ANT3S0P5 
ANTi^O^O 
ANT ^.035 
AfjT350U0 
ANI350«5 
ANT35Q5Q 
ANT35055 
ANT350P.O 
ANT3^0ft5 
ANT35070 
ANT3*075 
ANTS^O^O 

ANI350P5 
ANT350«>0 

ANT350°5 
ANT35100 
ANI3M"5 
ANT3SH0 
ANT3«?115 
ANT3S120 
ANT3S125 
ANT35130 
*NT351*5 
ANT351U0 
ANT3*»lü5 
ANI3S1S0 
ANT351«?5 

ANI35160 
ANT351ft5 
ANT35170 
ANT3S175 
ANT3^1«0 
ANI351A5 
ANT3^1Q0 
ANT3=;iQ5 
ANT3S?nO 
ANT3S205 
ANT3S2T0 
ANT3S215 
ANT35220 
«NT35225 
«NT3S230 
ANT3'»2^5 
AN'352«« 0 
ANi3S2U5 
AMT3S250 
ANT3S2S5 
ANT3^280 
ANT352^5 
AMT3S270 
»NT3S275 
ANI352*0 
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17 

C 
C 
C 

C 
C 
c 

0,»   = 

1)1 = 
0* = 
CAl.l 
LALI 

CALI 

CALl 
CrtLl 
KiMAO   = 
K^MAti   = 

OP   +   H;>(J)*R2<0> 

SORT(01 ) 
SORT(D?> 
DOTPRÜ   (Kl# tit 

(HI» L?» 
(H2, t?» 
(Hir K1• 
d<?» K?» 

UOTPrtU 
OOTPRO 

001 »>K0 
!>01PI<U 

SoHT 
<;<oRr 

0) 
Kl,>) 
i<?x) 
KlMAb) 
K?MAG) 

(H1MAG) 
(R/'MrtG) 

KM   =   AHS(Hl?) 

MHAa  =   AMAXI (HA.Rtl) 
IK    (AHS(0   /WMAG).LT.1.0F-ü3) 
TNI   =  R1?   /  0 
TN2  =  R?2   /  n 

CALCULATF   01 A*   01U   FOR   O.Nt.O 

uO  TO  an 

c 
c 
c 

00 US I = 1,7 
AK(T) = Fl(?)*Mtj(I) 

HK(T) = EK1 )*MU(1) 
^Kl(l) = O * (AK(I) 
ZK2(I> = i) ♦ (A*(i) 
L0G1(I) = CLOtoi 
LüGP(l)   =   CLOti( 

+ Eld) 
- Fl(<!) 
+ HK(i) 
♦   RrUl) 

7K1(I>    ) 
7K21D   ) 

T*1> 
Tn?> 

«*S 

OHM I   =   Al«(Ar,   (LuG2d>   -   LuGL(ll) 
SHUT = SIGN (SPMj» DPMI) 
IF   (AKStnPHD.Gr.Pl)   L0u?(I)   =  LOi,?(T)   - 
013(I>   r   (LoR2(l>   -  LoGKl))   /   t>K (I) 
i)IU(l)   =  -(t./ZK?(I)   -   1./7K1U)   )   /     «K(l> 
CUNT IN. IF 

Go TO sn 

CALCULATP nn» nit FOW O.FO.U 

uo 

5S 
5U 

CüNTlNItF 

DO  ^S   I   =   1•? 
M*(T}   =  FJ<1)*WU(I>   -  Fi(^) 
013(11   = (ALOG(RM)   -   ÄLOo(-<»))   /   HK(I) 
01UU>   =   -(I./Rx?   -   I./HIJ?)    /   H*,(|).*2 

CONTINIIF 
CONTINIIt- 

CALCULATH   OH.   OS»   sTNApli   ;*MO   ^TKFSSrlS 

LI 
00 
00 
LI 
DO 
00 
Db 
>0 

oo 
I 
OS 

= .■» 

?S I 
?S L 
= LI 
3S   J 

=   1.? 
=   I.? 
+   1 
=   I.? 

I 

s CMPLX(n.iifU.ü) 
=   L ■•'»>!. x(ll.HM).u) 
Ml   K    =    It? 
= ( (l'rt(J'K) »AA(1»*> MH3(iO»(V,i(i\) *«(L-1 ) ) 

♦•Hti(J»K)«AA<l-»,t>»ni3(K)*(Vo(K>«*(I-1 )) ) )/?.♦   On 
:(-l",li<)>tHI)-':tP))»''«lU)»» I ?-J)*<»*{ I»K)+^II(K)**(L-1 

*((-!)♦• l.S-J) ) 
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A||T;4r»?O0 
ANT3^2'>S 

AMTASSns 
AilT3^310 

ANI3S31S 
A?|T3r>3?n 
ANT3*3?b 
A|JT3S3^0 
ANT3«>3^b 

AMJJ^'K) 

AMT3^3«*5 

AHT3*3^0 
ANT3S3^5 
AlJI3^3ft(l 
Ai4T3=.3f.5 
ANT3^370 

ANT3S375 
ANT3C3P0 
ANT3S3A5 
AN13^3^0 
ANT3«S,3«>S 

AiMT3Suno 
ANl3«;unb 
ANT3ciain 
A.NT3SU1S 
Al|T3S«|?n 

SPOT   *   TMPLy(0.0,   2.*Pl)   ANI35UP5 
ANT->SU*0 
ANTjqu^s 
ArjT3Suuo 
A,MT3^'.US 
ArgT3Susn 
ANT3SUR5 

ANTo^a^5 

ArjT3Su70 
ANT3Sta75 
ANTS^aof) 
A:4l3Si.ft5 

ANI3^1°0 
A.NT3^u'35 

ANT3SSH0 
ANT3SS^5 
AMI5^5io 
AflT3S515 
flhjTj«;s?o 

Af|T3^39S 
AfjTJe;s30 
ArgT3'.S^5 
ANT3SSU0 
AMTJSSUJS 

A»jT3SSS0 
AMT-JSSSS 

)*0IU(^)ANT3«-,Sf>h 
*.NToSs7il 
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? -<Mtl(K)*Elil>-FH2))*MUCK)**(2-Jl*Ay(LiK)*Mii(K)*«(I-l)*ni«»(K)ANT35575 
i             *(<-l)**(3-J) ))/<>.     ♦  US ANI355A0 

30 CONTINUF AN73S5P5 
m  = MJ> ♦ <J-1)*NSE<* AM 355^0 
GIN.LIU tt(N.Ll)- 2.*KEAL<01»*TI;ON<M<»)*I«;YMIJ) Ar«i:3S5^5 

1                ♦ 2.*KEAL<0S>*UC0N*MU)*I«;YM<J) tUT^^U 
2S CONTINUF ANI55605 
20 CONTINUF ANI3S610 

RETURN ANI35615 
END ANT3S6?0 
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c 
c 
C 
C 
C 

C 
C 
C 

C 
C 
C 

SUBROUTINE HDYSIR 
/ 
/ 
/ 
/ 
/ 
/ 

COMMON 
COMMON 
COMMON 

COMMON 
COMMON 
COMMON 

OlMrNSTON 
DIMENSION 

/ 
/ 
/ 
/ 
/ 
/ 

ARRAY I 
ARRAY!» 
MATCON 
CONTH1 
C0NTR2 
TIMERS 
A(?). 
QM»3> 

U1MPNSION RHS<3) 
COMPLEX PO» MU» 
IF (NHOYP.EQ.U) 
CALI. TIMF C T1M< 
WHITE (ft.POnn) T 
WRITE (f,»?lno> ( 
WRITE f*»20on> T 
IF USTRS.EQ.O) 
IF fISTRS.Ew.1) 
WRITE (8»?2nn) 

Co) 
XYZ(1U0#2»2>» IICON(20n). TCON(?00)f LDC(20n) 
NriöY<bO»3) 
PI.FMU.P0(?»2)»MU(?)»FLEX(6)»STIF(6)»AX(?»2) 
NsEfc.» NSYM» NIOTAL» NSIZE» NPT, NBOVP 
TlTL(lft). IPUNCH» ISTHS» 1RUY 
TlMliu) 

El<2)»   E2<2>»   P<3»2>»   Rf?)»  OU<2)#   G(50»A) 
i   Ef3»3>»   COFAC(3»3)»   T(3#3)#   Tl(3»3> 
*   TrtAC<V>#   TCN(2)»    TEMP(3»3)»   AN<U3) 
AX 
RETURN 
9)   ) 
ITL 
(NBOYCI.J).J=l#3>rI=1»NÖDYP) 
ITL 
WRITE (h»20b0) 
WRITE (hr20t>0) 

XY7(lU»2»M))/2. 
XYZ(Il»^.M))/2. 
XY?(I2»2#M))/2. 

10 = BASE SFtiMFNT NUMRFR 
11 = RPAR niFFFRENCE SEGMENT NUMBER 
12 = FORWARD DIFFERENCE SEGMtNT N'.MPfcR 

00 15 M s l.NbDfP 
lU = NHOY <N»1) 
11 = NROY <N»i?) 
12 = NRDY (N#J) 
DO 90 M = 1.2 
Pll.M) = (XY7(IU#X»M) ♦ 
P(2.M) = (XY2(U»£tU) f 
P(3.M) -   (XY7(I2»1»M) + 
R(M> r.  p(.-ttM) - P(2#M) 

20 AIM) = XYZ<I0f2tM) - XYZ«10»1»M) 
SMAa = SQRT(R(1)**2 + R(2)**?> 
AMAß = S0RT(A(1)**2 + A(2)**2) 

CALCULATE DU/D«;» THAC FOR öLOBrtL CORROTMATF SYSTEM 

UO 9b  M = 1.2 
Eü(M) S A(M)/ AMAG 
K = 3 - M 
E1(K) = F2(M) * C-l)**fK+l) 
13 = II + (M-l)*NSEfa 
lH = 12 + (M-1)*NSEG 
lb s 10 ♦ <M-1)*NSE« 
DUCM) = (ilCON(Iu) - UC0N(13))/SMAG 

25 TRAf(M) = TCON(IS) 

TRANSFORM OII/DS INTO EPS —- TRAC INTO TCN, IN LOCAL COORDINATED 

CALl UOTPRÜ (UU» E2» t.PS> 
DO uil I = 1»2 

aa  rcNti) = •»• 
no us T = 1»2 
TtN(l) = lCN(l) ♦ Elfi)*TRACf1) 

U5 TCN<;>) = fCNf2) ♦ EMi)*TnACfi) 

ANTtnono 
ANTUO005 
ANT40010 
ANI40015 
ANI"0020 
ANT«»0025 
ANTU0030 
ANI

U
00^5 

ANiunouo 
ANTU00«5 
ANtunoSO 
Ar;r«»no^5 
ANTUOOftO 
ANT«*nOf»5 
ANT«»0070 
ANTU0075 
ANTUnOAO 
ANIU00«5 
ANT^OO^O 
ANiunons 
ANmoioo 
ANTunins 
ANT«*OIIO 
ANT«*0115 
ANl«*ni20 
ANT40125 
ANIU0130 
ANT40135 
ANT«*01U0 
ANTinm5 
ANI«*0150 
ANT«*0155 
ANTuniftO 
ANlunifi5 
ANIU0170 
ANT«*0175 
ANT401«0 
ANTfOlRS 
ANmOlPO 
ANTU01O5 
ANT«*0200 
ANTU0205 
ANl"O210 
ANIU0215 
ANTU0220 
AMTU0225 
ANI40230 
ANIU0235 
ANTHO2U0 
ANT«»02'*5 

ANTU02^0 
AMTUP2S5 
ANTu02ftO 
*NT«»n2f.S 
ANTU0270 
ÄNTU0275 
ANT«»n2«0 
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C 
c 
c 

CALCULATE TRANSFORMATION MATRIX TtI#J) AND ITS INVERSE TKItJ) 

C = EIC11 
S X EK») 
TCI.11 = C*C 
TCI.21 
TCI.31 
TC2.11 
TC2.21 
TC2.31 
TC3.ll 
TC3.21 
TC3.31 

= S*S 
= S*C*2. 
= s*s 
=  C*C 
=-S*C*2. 
=-S*C 
=  S*C 
=  C*C  - S*S 

C 
C 
C 

************ 

T1C1.1J   : 
TIC1.21   : 
TIC1.31 
UO.ll 
TIC9.21 
T1CP.31 
TlU.ll 
TlUfPl 
TlU»3l 

*«:****.****** 

: TCt»ll 
: TCI.21 
:-TCl.3l 
: TC2.11 
: TC2.21 
=-T(J>»31 
:-T(3»ll 
:-TC3»2l 
:  TC3»31 

C 
C 
C 

CALCULATE MATERTAL STIFFNESSES IN LOCAL COORDINATE SYSTEM 

K   =  0 
ÜO  SO   I   =   1»3 
UO  SO   J  =   1*3 
K  =  K   ♦   1 
ttCI.Jl   =  STIFCKI   *   C2.**CJ/3ll 
\f   (I.EO.Jl   GO   TO  50 
OCJ.Il   =  STIFCKI 
CuNTINIIF 

1.3 
1.3 
=  0« 
1.3 
=  TEM*MI»Jl   ♦  0CI.K1*T1CK.J1 
1»3 

50 

5ft 

hü 

1)0 S5   I   = 
UO  Si>  J  = 
TEMPCI.J1 
00  S5  K   = 
TtMP(I.J) 
DO  M)   I   = 
Ü0  M)   J  =   1»3 
üCI.Jl   =   0* 
1)0   *0   K   =   1»^ 
0(1.J)    =   0(1.J) ♦ TCI.K1«TEMPCK»J> 

C 
C 
C 

CALCULATE COEFFICIENTS OF KEARHANGtO EQUATIONS 

G(l#21*0Cl.21/0(2.21 

QC1»21*Q(2'31/GC2.21 

Q(l,3) =Q(1.3) /2 
Q(2,3) = Q(2,3) /2 
Q(3,3) = Q(3,3) II 

ECl.ll 
EC1.21 
EC1.31 
EC2.11 
EC2.21 
EC2.31 
EC3.11 
EC3.21 

= (3(1.1) 
= OCl.21 
= 0(1.3) 
=-0Cl.2) 
= «JC?»21 
=-u(?»3) 
= 0(1.3) 
=  0C?.3l 

- 0(l#21*Q(2»3l/0(2.21 
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ANI«*02A5 
ANmO2«10 
ANl«*n2<»5 
ANT«»0300 
ANI40305 
ANI«*0310 
Ahll«*0315 
ANIH03P0 
ANl**n3?5 
ANT**0330 
ANTH0335 
ANl«*n3U0 
ANI403U5 
ANI403S0 
ANI«*03*>5 
ANT«*03ftO 
ANT«tn3« 
ANI«*0370 
ANI«*0375 
ANT'»O3R0 
ANT«»03«5 
ANTtn3«»0 
Ar4l<< )3°5 
ANit*nt»no 
ANiununs 
ANI**0410 
ANT«tOi*t5 
ANT**n«*?0 
ANT«Hli»?5 
ANT«»ni»30 
ANT«*ni*35 
ANT«+04UO 
ANl**0t»U5 
ANT40i»*)0 
ANI«*0<»S5 

ANI^OU^O 
ANT«*04*5 
ANTH0i»70 
ANT40£»75 

ANltOivRO 
ANT'*04P5 
ANI^H^O 
ANl«*n«*°5 
Armnsno 
ANI**0505 
ANT<*0510 
ANT40515 
ANIW520 
ANI«*«5?5 
ANIWSSO 
ANI«*0535 
ANT«*n5«»0 
ANT»»n5«»5 
ANl«*05^0 
ANl«*n555 
ANT«*05ftO 
ANI<*0565 
ANT40570 
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F(3.3>   =  (j(3»3>   -   0(2»3)*Q<2»3)/012»?> 
ÜET  =   (F(l»l>*E{?»2)*E(3*3>>   ♦   (E(1.?)*F(2»3>*E'.3»1)> 

1 (F(l»3)*El2»l>*E(3»2>)   -   (F(3.1)*EC^»2)*E(1.3)) 
2 (F(3»?)*E12»3)*E(1»1>>   -   IF(3,3I <-F(2»l>*E<l »2») 

hS 

COFAC(I.I)   = (E(2»2>*t<3»3>> 
C0Fac(l.2)   =  -l.n*UE(2»l>*E<3»3)) 
CuFAC(1.3>   = (E<2»1)*E<3»2)) 
CoFACO.l)   =  -1.0*<(Ell#2)*E<3»3>> 
C0FAC<?.2)   = (E(1.1>*E(3»3)) 
C0FAC(2.3)   =  -1.0*(tE(l»D*E(3»2)) 
C0FACt3.1>   = (E<1.2)*£<2»3>) 
C0FAC(3.2)   =  -l.0*((E(lrl)*E(2»3)> 
C0FACt.3t3)   = <EQ.1)*E<2»2)> 
DO « 1 s Ii3 
00 *>5 J = 1*3 
TEMD(I.J)   =  roF»*C(J   D/üEf 

- lE(3»2)*E(2»3>) 
- (E(3#1>*E<2,3>>> 
- (E(3»l)*t<2»2>> 
-<E<3.2)*E<1»3>>) 
- (E(3tl)*k(lf3M 
- (E(3»l)*t(l»2>>) 
- (F(?#2)*t<l,3>> 
- (E(?.1)*LU.3>)> 
- (E(?#l)*t.(l»2)) 

RHSd) 
HHS(2) 
HH5I3) 

= rCN(l) 
= FPS*0(2»2) 
= rCN(2) 

C 
C 
C 

CALCULATE UNKNOWN HOOP STRESS 

DO 70 T = 1.3 
ANS(I) 5 0. 
00 70 J = 1»3 

7(1 ANS(I) 
G»N.li 
GCN.2) 
6(N.3) 
G(N.U) 
G(N.5) 
G(N.fi) 
WHITE 
FORMAT inn 

lb 

= ANS(I) ♦ TFM>»<I»J)*RHS(J) 
= rCN(l) 
= TCN(2) 
= ANS(2) * 0(2*2) 
= EPS 
= ANS(I) 
r ANS<3> 
<fc»10n) STIF » u» T» Tit MH&. ANS 

( // (3<öE12.7 /)//)) 

. 

WRITE (ft.23nn) 10» (GlN»M)cM=l»«»>»P(t»l>»H<l»k!> 
CALI TlMF ( TIM(IO) ) 
RETURN 

moo FORMAT (?ui3> 
9000 FORMAT ClMl» 10X» l*Ab) 
?o!>o FORMAT < / u( IHH PLANE STRAIN **** > ) 
5>nt»i) FORMAT ( / M IHH PLANE STRESS **** > ) 
?10U  FORMAT   (/  5*   11HBASF   NUMBER   2X   UHRFAR  NIIMRI-.R   3X 

1 (   3112   /)    ) 
P20Ü   FORMAT   <7HnsGMENT  2«   10H  NOrfMAL  ST   ?X   lrtH  SMFMR   qTR   2X 

I inn  HOOP   STRS   2X   1IIH   HOOP  STRN   SX   ?H   X   f.X   2M   Y) 
?300  FORMAT   (?X   13»   <JX   3F^.2»   F12.9»   2FH.4) 

ENO 

lOHFwO  MiiMUFR   // 

ANI«*0575 
ANl*»n5B0 
ANi'tnsPS 
ANl«*n5°0 
ANI«»n'-i<»5 
ANT*»n6no 
ANT<*n605 
ANT«»n6lO 
ANl**n&»5 
ANT«*n6?n 
ANI«*n6?5 
ANl«»n630 
ANT«tn635 
ANT^ne"? 
ANl«*n6«5 
AHT406SO 
ANJ«*06S5 
ANlHOftfiO 
ANT«*n6*>5 
ANT«*0670 
ANTU0675 
ANT*»f»6flO 
ANT'4n6B5 
ANl«»n6<*0 
AMmn6«5 
ANTUO7O0 
ANl«tn705 
ANl«»n710 
ANTW715 
ANT**n720 
ANT«*n7?5 
ANlt»0730 
ANT«*0735 
ANT«»n7U0 
ANT«+n7tt5 
ANT«tn7«>o 
ANT*»17S5 
ANl<t0760 
ANT«»n7f.5 
ANl«*n770 
ANl«»077S 
AMT407PO 
*Nlun7B5 
ANTU070C 

ANT«*OBno 
ANT4na05 
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SUHPOIITINF DOTPKO <A» 8# C) 
UlHPNSTON A(>). H<?> 
C   =   AU)*H(l)   ♦   A(2)*tl<;>) 
HtTiiHN 
KND 

ANTUSOOO 
»Ni«»«>on5 
ANTUS010 
ANI«*^015 
ANT«**»0?0 
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I * 

C 
C 

I i 

I i 
c 
c 

SUBROUTINE SOLVER <N# X» F. A> 
DIMENSION AlN.N). XlN)* FlN)» XxllfcO) 
ÜOÜHLF PRECISION X 
UO 10 I = 1. N 
FlI» = n.il 

10 CONTINIIF 
Nl s N - I 
ÜO «.0 I = 2. N 
DO Sb J : I, N 
IF (AHS(A(I-1fI-l)) .öT. Ü.) bO TO uS 
U = I - I 
WRITE (fv.SlO) 11 
RbTURN 

Ub CONTINUE 
Cx = A(J,I-I) / A(I-l.I-l) 
K2 = I 
ÜO SO K r I, N 
AtJ.K?) = A(J»K2) - CA * A(I-1«K?> 
K2 = K? ♦ 1 

50 CONTINU- 
AL).1-1 ) z  CX 

55 CONTINIIF 
ho CONTINUE 
FOMWARO PASS - OPERATE ON KlbHT HAND SIDE MS 
ON MATRIX 
62 CONTINIIF 

1)0 70 I s 2. N 
DO «.5 J = I. N 
XUI   =   x(J)   -  XU-1)   *   A(J.l-l) 

65 CONTINIIF 
70  CONTINIIF 

BACKWARD PASS - SOLVE KOR AX = R 
XX(N) s X(N) / A(N*N) 
DO AO I = 1# Nl 
SUM =n.n 
12 = N • I + 1 
DO 75 J = I?» N 
SUM = SUM ♦ AtI2-l»J) * XX(J> 

75 CONTINUE 
XXCI2-1)   =   (X(12-1)-SUM)   /  M<I?-1,I?-I) 

80  CONTINIIF 
DO QO I = 1. N 
FlI) = Fill ♦ XXII) 

90 CONTINUE 
RElHRN 

510 FORMATi/ix .-»SHEKROR RETURN FROM stosov 
1 35HÜI ATONAL TERM REDUCED TO ZERO    / ) 
END 

II*» 

ANI50000 
ANI50005 
ANI50010 
ANT50015 
ANTbno?0 
ANI50025 
ANT50l)^0 
ANlbOO^S 
ANlb0O*»0 
A|JT500'»5 
AN7b0050 
ANTbno55 
ANT50060 
ANT50065 
«NT50070 
ANlbO075 
AMTbOOAO 
ANT500R5 
ANI50090 
ANT50095 
ANT50100 
ANI50105 
ANT50110 
ANT50115 
ANl5ni?0 
ANI50125 
AtjTbOl^O 
ANI50135 
ANI5O1U0 
ANl501tt5 
ANT501S0 
ANI50155 
ÄNT50160 
ANT50165 
ANT50170 
ANlb0175 
ÄNT5O1A0 
ANT5"1A5 
ANT5O1P0 
ANT50105 
ANlbnaOO 
ANT5n205 
ANT50210 
*Nlb0215 
A-MI5«2?0 
ANT50225 
«NT50230 
ANI50235 
ANI502UO 
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5.3   EXAMPLE SOLUTIONS FOR ISOTROPIC AND ANISOTROPIC BOUNDARY- 
INTEGRAL EQUATION METHOD 

S.3.1   Tension of an Isotropie Plate 

The group of problems discussed herein are provided for two 

major purposes, the first to determine solution accuracy, and the second 

to provide guidelines In the use of the program, called DIPOME. 

Since both tractions and displacements are assumed constant along 

each segment, It 1s logical to theorize that the solution will be more 

accurate for shorter segment lengths. If   then two questions remain: 

What accuracy 1s obtainable, and how 1s this accuracy related to the 

segment length used In the model. 

5.3.1.1   Circular Cutout 

A circular cutout, of unit radius, was modeled by segments of 

equal length. Ten problems were solved, with the only variable being the 

number of segments employed. In each problem the stress distribution a- 

long the x and y axes Interior to the plate was obtained. Stresses were 

computed at points ranging from 0.001 Inches to over 5.0 Inches from the 

surface of the cutout. Table 1 shows a comparison of the solutions ob- 

tained in three of these problems to the theoretical results of Timoshenko. 

These solutions follow the theoretical curve closely in all cases, except 

in the immediate vicinity of the cutout. 

This behavior is due largely to the presence of a sharp corner at 

the intersection of each axis with the cutout, as shown in Figure 1. This 

is a consequence of the approximation of the surface by straight line 

segments. Use of shorter segment lengths reduces the sharpness of this 

corner and produces less distortion, as seen in the table. Further devi- 

ation from the theoretical solution is a result of the surface approxima- 

tions inherent in averaging tractions and displacements over each segment. 
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Stresses at the surface of the cutout are computed by a finite 

difference technique, using the displacements of the two segments adjacent 

to each of the Intersections, as shown 1n Figure 1. Once the strain 1s 

computed by the equation below, Hooke's law Is used to obtain the stress. 

Surface stresses are computed at nodes around the entire cutout, with an 

average error of about two per cent. For brevity only the stress at the 

Intersection of the cutout and y-axls Is shown here (Table 1). 

ex = 

Ux(2)"Ux(l) 

The Influence of segment length on solution accuracy Is summarized 

in Figure 3. The graph results from comparisons of Interior stresses, 

where Y* represents the last data point obtained before the data diverges 

from theoretical curve of Tlmoshenko. 

S.Z.1.2   Elliptical Cutout 

The problem of an elliptical cutout In an Infinite plate under 

tension was solved by Inglis in 1913. He found that the maximum stresses 

in the plate occur at the surface of the cutout, at the point where the 

radius of curvature 1s smallest. T^e stress concentration here 1s given by: 

SCF = 1 + 2 a/b 

where a/b 1s the aspect ratio of the ellipse. 

Prediction capability for a range of stress concentrations was 

investigated, and results are reported here for concentrations of 5, 10, 

and 40. By the equation above, aspect ratios of the resulting ellipses 

were 2.0, 4.5, and 19.5. 
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For each aspect ratio a number of problems was solved, using 

varying numbers of segments to model the elliptical surface. Elliptic 

coordinates were used to divide the surface, so that a constant value of 

segment length/radius of curvature was obtained. It may be shown that 

this will be accomplished by using equal Increments of the coordinate n- 

It was hoped that accuracy of the internal solution might be related to 

this ratio. 

The stress distribution along the x and y axes Interior to the 

plate was obtained, at points ranging from 0.001 inch to 5.0 inches from 

the cutout surface. Tables 2 through 7 show a comparison of the results 

with the theoretical results of Inglis. Again it must be .toted that the 

computed results are inaccurate for points very near the cutout surface, 

due to the sharp corner produced by the model (See Figure 2). 

Stresses at the surface of the cutout are computed by a finite 

difference technique, as previously described. Results of this calcula- 

tion are shown only at the intersection of the x and y axes with the cut- 

out, and appear in Tables 2 through 7. 

The relationship between interior solution accuracy and the 

value of segment length/radius of curvature employed in a siven problem 

is shown in Figure 4. Results were obtained for four aspect ratios, and 

the plots are nearly straight lines for each aspect ratio, for values of 

length parameter down to 0.052. It may be seen that solution accuracy 

is functionally related to the ratio of segment length to radius of 

curvature, but this parameter alone does not characterize accuracy. 
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We see that the Boundary-Integral Equation method 1s a reliable 

numerical technique for the prediction of stress concentrations 1n two 

dimensional Isotropie problems.   Results Indicate that the method Is con- 

sistent as well as accurate In calculating stress concentrations as high 

as 40.   Solution accuracy Is dependent both on the stress concentration 

gradients present and on the length of segment used to model the surface. 

In employing this program, It should be noted that solution time 

required for interior points is approximately ten times that required 

for boundary solution points. 

5.3.2   Tension of an Anisotropie Plats aith a Circular Cutout 

The program used for the solution of the following problems is 

called ANISOT, and provides a solution capability for two dimensional 

ge./eralo anisotropic materials.   The use of the program is restricted 

only by the requirement that the material employed be mid-plane symmetric. 

It is expected that the program will be especially useful in analysis of 

advanced fiber composites, %r the problems solved here considered plates 

of boron-epoxy. 

S.Z.2.1   Orthotropic Material 

A series of problems was solved, with the cutout surface repre- 

sented by varying numbers of segments.    In each case segments of equal 

length were used, and the number of segment., ranged from 20 to 180. 

Identical series of problems were solved for plates of unidirectional 

boron-epoxy, of zero degree and ninety degree orientations. 

Again the stress distribution along the x and y axes interior to 

the body was obtained, as well as surface stresses around the entire cutout. 
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The hoop stresses around the cutout at the surface were compared to the 

theoretical results of Lekhnitskii, and results appear in Tables 8 and 9. 

These stresses are computed directly from displacements and tractions, and 

thus provide a means of evaluating the boundary solution capability of 

the program. Results compared extremely well with the theoretical calcu- 

lations, even for the higher stress concentrations. 

The accuracy of the solutions obtained are dependent on both the 

stress concentration gradients present and length of segment used in the 

model. This behavior is expected, since the basic algorithms employed are 

similar to thoss of the isotropic program, DIPOME. Time required for 

interior solution points was again about ten times that for boundary 

points. 

S.S.3.2   Anisotropie Material 

The problem of a circular cutout in an infinite plate was next 

solved for a completely anisotropic material, unidirectional boron-epoxy 

at an orientation of 45 degrees. There was no symmetry about either the 

x or y axis, as had been present before, so the entire cutout surface 

was modeled. 

As before, the hoop stresses at the surface of the cutout were 

obtained and are compared with the results of Lekhnitskii in Tables 10 

and 11. Two problems were solved, one employing 20 segments, and the 

other 90 segments, to represent the surface. Here again agreement with 

theoretical results was excellent along the entire surface. 
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Figure 1:   Dipome Model —Circle 

Figure 2: - Dipome Model - Ellipse 
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TABLE 1 - 1 INTERIOR STRESS SOLUTIONS - DIP0ME 

Y - R Timoshenko 40 Segments 120 Segments 200 Segments 

0.00 3.00 3.02 3.02 3.09 
.001 2.99         ! 27.12 10.36 7.05 
.005 2.96 7.03 3.78 3.21 
.010 2.93 4.53 3.05 2.88 
.020 2.87 3.31 2.80 2.83              j 
.030 2.80 2.92 2.76 2.79 
.040 2.74 2.74 2.72 2.74 
.050 2.69 2.64 2.68 2.69 
.070 2.58 2.52 2.58 2.58 
.100 2.44 2.40 2.44 2.44 
.200 2.07 2.07 2.07 2.07 
.400 1.65 1.65 1.65 1.65 
.600 1.42 1.42 1.42 1.42 
.900 1.25 1.25 1.25 1.25 

1.50 1.12 1.12 1.12 1.12 
2.00 1.07 1.08 1.07 1.07 
3.00 1.04 1.04 1.04 1.04 
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Figure 3: Accuracy of OIPOME - Circular Cutout 
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ASPECT RATIO =2.0 

TABLE 2 - INTERIOR STRESS SOLUTIONS - OIPOME 

c 
»wjjlis 40 Segments 120 Segments 200 Segments 

0.00 5.00 5.116 5.01 5.002 

.001 4.96 101.9 35.2 22.3 

.005 4.82 9.81 5.52 4 89 

.010 4.65 6.13 4.59 4.56 

.020 4.34 4.54 4.29 4.35 

.030 4.03 4.04 4.08 4.09 

.040 3.85 3.78 3,86 3.86 

.050 3.65 3.59 3.66 3.66 

.070 3.31 3.29 3.32 3.32 

.100 2.92 2.92 2.93 2.93 

.200 2.18 2.19 2.19 2.19 

.400 1.61 1.62 1.62 1.62 

.600 1.40 1.40 1.4C 1.40 

.900 1.24 1.24 1.24 1,24 
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ASPECT RATiO = 2.0 

»y      - 

TABLE 3 - INTERIOR STRESS SOLUTIONS - 0IP0ME 

x-b 
c Inglis 40 Segments 120 Segments 200 Segments 

0.00 -1.00 -0.983 -0.994 -0.996 

.001 -0.997 -13.0 -4.90 -3.24 

.005 -0.985 -2.42 -1.32 -1.11 

.010 -0.970 -1.52 -1.03 -0.965 

.020 -0.941 -1.09 -0.925 -0.926 

.030 -0.912 -0.959 -0.895 -0.906 

.040 -0.884 -0.888 -0.873 -0.882 

.050 -0.857 -0.843 -0.850 -0.856 

.070 -0.805 -0.782 -0.802 -0.804 

.100 -0.805 -0.713 -0.729 -0.731 

.200 -0.525 -0.518 -0.523 -0.524 

.400 -0.251 -0.247 -0.25Ü -0.250 

.600 -0.099 -0.097 -0.099 -0.099 

.900 +0.006 +0.008 +0.007 +0.007 
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ASPECT RATIO =4.5 

TABLE 4 - - INTERIOR STRESS SOLUTIONS - DIPOME                       j 

Inglis 40 Segments 120 Segments 200 Segments 

0.00 10.0 11.33 10.14 10.04 

.001 9.60 87.5 29.8 20.2 

.005 8.31 11.37 8.30 8.32 

.010 7.15 7.69 7.21 7.27 

.020 5.67 5.75 5.75 5.75 

.030 4.77 4.85 4.82 4,82 

.040 4.16 4.24 4.20 4.20 

.050 3.73 3.80 3.75 3.75 

.070 3.14 3.19 3.16 3.16 

.100 2.63 2.66 2.63 2.63 

.200 1.90 1.91 1.90 1.90 

.400 1.46 1.46 1.46 1.46 

.600 1.30 1.30 1.30 1.30 

.900 1.19 1.18 1.19 1,19 
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ASPECT RATIO =4.5 

l°y       ~ 

T 

TABLE 5 - - INTERIOR STRESS SOLUTIONS - DIPOME 

x-b 
c Inglis 40 Segments 120 Segments 200 Segments 

0.00 -1.00 -0.984 -0.994 -0.997 

.001 -0.997 -90.7 -21.4 -19.2 

.005 -0.SS7 -2.43 -1.32 -1.11 

.010 -0.974 -1.48 -1.03 -0.966 

.020 -0.949 -1.08 -0.931 -0.937          | 

.030 -0.923 -0.952 -0.908 -0.920 

.040 -0.898 -0.S93 -0.890 -0.893 

.050 -0.874 -0.855 -0.870 -0.874 

.070 -0.82t -0.804 -0.825 -0.826 

.100 -0.758 -0.743 -0.756 -0.758 

.200 -0.553 -0.549 -0.552 -0.553 

.400 -0.258 -0.258 -0.258 -0.25S 

.630 -0.087 -0.088 j       -0.087 -0.087 

.900 +0.029 +0.028 +0.029 +0.029 

1 
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ASPECT RATIO =19.5 

c 

0.00 

.001 

.005 

.010 

.Ö2C 

.030 

.040 

.050 

.070 

.100 

.200 

.400 

.600 

.900 

TABLE 6 - INTERIOR STRESS SOLUTIONS - DIPOME 

Inglis 

40.0 

23.5 

10.9 

7.50 

5.22 

4.26 

3.70 

3.32 

2.83 

2.41 

1.81 

1.43 

1.28 

1.18 

40 Segments 

88.7 

88.2 

16.9 

10.0 

6.28 

4.88 

4.12 

3.63 

3.03 

2.53 

1.85 

1.44 

1.28 

1.18 

120 Segments 

50.9 

31.0 

11.7 

7.80 

5.32 

4.30 

3.72 

3.33 

2.34 

2.41 

1.81 

1.43 

1.28 

1.18 

200 Segmsnts 

44.5 

27.0 

11.4 

7.67 

5.27 

4.28 

3.71 

3.32 

2.83 

2.41 

1.81 

1.42 

1.28 

1.18 
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I 
ASPECT RATIO =19.5 

Ufe 

TABLE 7 - - INTERIOR STRESS SOLUTIONS - DIPOME 

x-b 
c Inglis 40 Segments 

i 
120 Segments 200 Segments 

0.00 -1.00 -.966 -.985 -.994 

.001 -0.997 -10.9 -4.26 -2.89 

.005 -0.989 -2.11 -1.22 -1.06 

.010 -0.979 -1.37 -Ü.996 -0.959 

.020 -0.957 -1.035 -0.921 -0.939 

.030 -0.936 -0.928 -0.904 -0.926 

.040 -0.915 -0.876 -0.890 -0.907 

.050 -0.894 -0.845 -0.873 -0.887 

.070 -0.852 -0.803 -0.834 -0.845 

.100 -0.790 -0.752 -0.775 -0.784 

.200 -0.598 -0.581 -0.587 -0.594 

.400 -0.293 -0.294 -0.289 -0.291 

.600 -0.099 -0.107 -0.099 -0.099 

.900 +0.037 +0.030 +0.035 +0.037 
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FIBER DIRECTION1 

TABLE 8 - SURFACE HOOP STRESS COMPARISONS, o * 0° 

e(OEG) 20 Segments 180 Segments EXACT* 

1.0 -0.296 -0.299 

5.0 -0.284 -0.287 

9.0 -0.215 -0.258 -0.261 

13.0 -0.222 -0.225 

17.0 -0.180 -0.182 

21.0 -0.133 -0.136 

27.0 -0.054 -0.063 -0.065 

29.0 -0.040 -0.041 

33.0 0.008 0.006 

37.0 0.058 0.056 

41.0 o.m 0.110 

45.0 0.164 0.170 0.170 

49.0 0.240 0.240 

53.0 0.326 0.326 

57.0 0.435 0.436 

63.0 0.642 0.681 0.682 

65.0 0.799 0.798            j 

69.0 1.111 1.114 

73.0 1.609 1.614 

77.0 2.441 2.447 

81.0 3.53? 3.889 3.880 

85.0 6.130 6.127 

89.0 8.160 8.127 

♦Due to Lekhn1tsk11 
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FIBER DIRECTION 

a * 90° 

TABLE 9 - SURFACE HOOP STRESS C0W>ARIS0NS, a = 90° 

e(OEG) 20 Segments 180 Segments EXACT* 

1.0 -3.19 -3,28 

5.0 -2.22 -2.29 

9.0 -0.367 -1.12 -1.165 

13.0 -0.419 -0.442 

17.0 +0.012 -0.008 

21.0 0.281 +0.267 

27.0 +0.625 0.546 0.538 

29.0 0.616 0.608 

33.0 0.741 0.736 

37.0 0.859 0.656 

41.0 0.979 0.976 

45.0 +1.126 1.105 1.103 

49.0 1.243 1.242 

53.0 1.398 1.398 

57.0 1.573 1.573 

63.0 +1.892 1.877 1.878 

65.0 1.990 1.991 

69.0 |          2.229 2.230 

73.0 |          2.478 2.481 

77.0 2.723 2.725 

81.0 +2.883 2.937 2.940 

85.0 3.093 3.096 

89.0 3.165 3.169 
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FIBER DIRECTION 

TABLE 10 • - SURFACE HOOP STRESS COMPARISONS, a = 45° 

THETA EXACT 90 Segments THETA EXACT 90 Segments 

0 -0.812 -0.808 96 2.168 2.169 

4 -0.706 -0.703 104 2.396 2.400 

8 -0.596 -0.593 112 2.840 2.848 

16 -0.337 -0.335 120 3.559 3.681 

24 40.015 +0.016 128 4.701 4.791 

32 .499 .500 136 1.703 1.823 

40 1.082 1.084 144 -1.799 -1.773 

48 1.620 1.623 152 -1.804 -1.787 

56 1.955 1.957 |      160 -1.444 -1.434 

68 2.081 2.082 1      168 -1.151 -1.144 

72 2.073 2.073 !      176 -0.918 -0.913 

80 2.051 2.052 1      184 -0.706 -0.703 

88 2.069 2.070 
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FIBER DIRECTION 

» 45° 

TABLE 11 -SURFACE HOOP STRESS COMPARISONS 

THETA EXACT 20 Segments 

9 -0.567 -0.565 

27 0.180 0.186 

45 1.436 1.477 

63 2.067 2.107 

81 2.050 2.065 

99 2.235 2.246 

117 3.296 3.473 

135 2.453 3.189 

153 -1.759 -1.747 

171 -1.058 -1.043 

169 -0.567 -0.565 
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5.4        ADVANCED TOPICS IN ANISOTROPIC INTEGRAL EQUATION SOLUTION METHODS 

5.4.1   Introduction 

| The "integral equation method" referred to in this Section is 

I basically a technique for obtaining accurate approximate solutions for a 
! 

wide variety of physical problems governed by linear partial differential 

1 equations.   As is clear from a number of papers e.g. [1,2,3,4,5] the method 

has reached a considerable stage of development and 1s emerging as an im- 

portant tool comparable to and potentially, we think, better than finite 

element and finite difference techniques for certain problems.   This ap- 

pears to be particularly true for a variety of problems involving material 

composites. 

A glance at the work cited above reveals that the method depends 

crucially on the existence and explicit definition of a fundamental singu- 

lar solution to the appropriate governing partial differential equations. 

Therefore, in an attempt to open up the field of linear three-dimensional 

anieotropic elasticity to attack, via the integral equation method, con- 

siderable effort was directed toward Investigating what Is known of the 

nectary singular solution.   As noted earlier, this solution is 

the field due to a concentrated force 1n an infinite anlsotropic media. 

Two major works [6] and [7] were found on this topic, and examined with 

respect to the stated objective.   Details primarily concerned with making 

representations of the singular solution available for practical purposes 

are given later in this Section. 

The problem of interlaminar shear was investigated with 

a view toward attacking this problem (as defined by R. B. Pipes [8]) via 

the Integral equation method.   Under the appropriate assumptions, the 
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relevant surface integrals reduce to path Integrals around eacn of the 

layers.   While the problem is not completely two-dimensional in nature, 

significant advantages still seem to be present with the integral equation 

method for both isotropic and anisotropic layers to warrant further 

investigation with test problems.   Details of the formulation for isotropic 

layer assumptions and a discussion of the possibilities for anisotropic 

layers are included in this Section. 

5.4.2       Fundamental Three-Dimerwional Anisotropie Singularity 

5.4.2.1    Via John [?] 

The work by John [7] which is in essence "a somewhat heterogeneous 

collection of results on partial differential equations" contains, in 

Ch. Ill, a method for constructing the so-called fundamental singular 

solution for an elliptic system of linear partial differential equations 

with analytic coefficients.    Since our main concern here is with homogene- 

ous anisotropic elasticity theory, we will specialize John's development 

at the outset and explicitly deal with the system of equations 

cijkiuk,ij = ° 0) 

Equations (1) are the e^ations of equilibrium in the absence of body 

forces for a linear elastic solid obeying the constitutive relation 

Tij = Cijklekl (« 

1n which C...j are constants, and T. .  , e.. , u. the stress, strain, 

and displacement components assuming the linearized theory.   As usual 

we take 

Cijkl = Cklij <3) 

together with necessary symmetries in the first and second pair of indices 

Such that Cj.., Implies at most twenty  :>ne independent constants. 
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We recognize that Eqs. (1) Imply the existence of a set of differ- 

ential operators L.. such that Eqs. (1) may be written, for convenience In 

the symbolic form 

L1ktuk] = 0 (4) 

where, specifically, 

L1k  L1jkl 3x1 x^j 

A fundarsntal system of singular solutions U-k of Eqs. (4) according 

to John [7] has property that the symbolic equations 

Lik[Ujk (x , y)] = 0    for x f y 

are satisfied where x and y are two arbitrary points in space. 

Further, the functions U^k have the additional property that 

/:t.(y) Uik(x,S - u,(y)T (x,y)]da(y) = 0 
3R+T J  ~      3     ~  ~ -   -    JK ~ ~ 

(5) 

(6) 

(7) 

where aR is the boundary of a regular region of space R, and r 1s the 

surface of a small sphere of radius c surrounding the point x, nk are 

the components of the "outer" normal at y(y on 3R + r) to the region 

"enclosed by" 3R + r, and T-k represents a set of functions derivable 

from \i...   The function u. 1s an arbitrary solution to Eq. (4) and t^, 

derivable from u., represents the surface traction on the anisotroplc 

body which is assumed to occupy the region R.    If we now take the limit 

in Eq. (7) as e goes to zero, I.e., shrink r Indefinitely about x, the 

orders of the singularities in U,k and T-k are such that Eq. (7) reduces to 

\M a   /[^(yDT^Cx.y)  - t.(y)\}jk{x,y)}da{y) (8) 
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A glance at the cited works [1,3,4,5] reveals that the above 

properties (6), (7), and (8) of the functions U- are precisely those 

needed to formulate the Integral equation method for three-dimensional 

anisotropic elastic boundary value problems. Physically, U-. represents 

a set of displacement or influence functions; i.e., U-k(x,y) is the 

displacement in the j coordinate direction at y due to a concentrated 

force in the k coordinate direction at x. Further, T.. represents traction 

components at y across an arbitrary surface with orientation n. These are 

obtained from U.. according to the familiar relation 

Tjk*iWUlk,r,tU,nk,l}"p M 

just as the arbitrary traction t. is related to u. according to 
J J 

j       z   jplm u l,m      m,i     p 

Thus since the relation (8) is the desired relation to accomplish the 

anisotropic formulation everything depends on the availability of an 

explicit relation for U.k.   To construct U..  for Eqs. (4), with the 

properties (6) through (8) John [7], pg. 76, gives the formula 

U.k(x,y) ~A     /Pk;,m[(x-y)- 5]sgn[(x-y)-C]dn #n) 

In Eq. (11), A   is the Laplacian with respect to the coordinates at y of 

the integral over n   which is a sphere of unit radius with origin at £ = 0. 

P   U) is the inverse of the matrix Qlk(g) which in turn is the character- 

istic form of the operator I...   This characteristic form is explicitly 

Qik<!> = Cijkl¥j <12> 

in which £. are components of the vector ?. 
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Space does not permit nor would it be appropriate to discuss 

here the rather detailed, abstract, and frequently obscure arguments 

leading up to formula (11). Moreover, formula (11) as written above Is 

an abridgement of the relations which appear in John [7] appropriate to 

anisotropic elasticity with the additional assumption of material homo- 

geneity (Cj.kl constants). Tne actual treatment 1n John [7] deals w-.th 

operators of more general order than two and in spaces of n dimension as 

veil as allowing for the possibility of non-constant (but analytic) 

coefficients. This last feature could be of interest for problems in- 

volving inhomogeneous media. However, the remainder of the present dis- 

cussion will be confined to U.., as given by formula (11). Indeed, as will 

be explained, algebraic expressions for U-. from Eq. (11) even under the 

present assumptions of full  (21 constant) anisotropy will be difficult to 

obtain. 

To best appreciate the last remark consider now formula (11) in 

more detail. Let x - y = R such that 

R • C sgn R • £ - R | cos +| (13) 

where R is the magnitude, i.e., R = | R |, of R, £ - |s| = 1, and 

4 -is the angle between R and £. Thus since R does not vary with c 

Eq. (11) may be written 

uik(x*y) = "^7 Av <R/pkJ(«   lcos *M M (14) Jk 16* 2   y 

Further, let 

Ajk = a/Pkj (S)  I cos* | dn. (15) 
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such that 

ujk l*A] - it? \ {RV (16) 

Clearly A.. is a tensor whose components depend only on C..., and, of 

course, the choice of cartesian basis inasmuch as the components of U-. 

Itself depend on such a basis. Thus the ability to obtain explicit 

algebraic expressions for U.. is dependent solely upon the ability to 

perform the integrations (15) for A . 
jk 

As mentioned earlier, P J(0 is the inverse of the quadratic 

form Q1k(£) (Eq. 12).    Explicitly, 

1 
p*j(0  -  2 -klmg3pqVP (0 

Det Q 
(17) 

in which e., -k is the alternating sy.ifcol and Det Q is the determinant of 

the matrix Q...    Now since Det Q is of sixth degree in c and the numera- 

tor is (17) is of fourth degree, the ability to evaluate the e.ements A., 

analytically in closed form is largely dependent on the ability to factor 

the expressions implied by (17).   Guided by the related investigations of 

Kroner [10] and Lie and Koehler [11] this is expected to be possible under 

the assumptions of special anisotropy, e.g., cubic or hexagonal symmetry. 

However, recognition of the tensor character of A.,  allows the following 

plan to be adopted in order to obtain explicit practical expressions for 

U..  under more general conditions of anisotropy.   Choose a convenient 

orthonormal basis and evaluate, numerically if need be, the integrals in 

(15) for a given set of C...,.   Having thus obtained a set of values for 

A.,  for that basis, A.,  for any other basis is obtainable by simple car- 

tesian tensor transformation.   Recognizing further that the direction 
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cosines of R referred to a given basis are of the form [x.(x) - x.(y)]/R, 

allows the gradient and Lapladan with respect to y to be evaluated as 

required In Eq. (16). 

As an example of the above consider the special case of complete 

Isotropy for which 

C1jkl *   x «ij6kl + w(61j6jl + 6116jk> <18> 

where A and y are the Lame' elastic constants.   Here It is easily shown 

through Eq. (17) that P^U) has the form 

Pjk(0 ■ a(«i;j * e^Cj) 

where a and 0 are constants obtainable from A and v alone.   Thus the 

expressions for A., via Eq. (15) become 

Ajk = a6jk    lcos *'doe * a6/5jck 1°°* ♦' ^e       09) 

A little reflection on the Integrals in Eq. (19) reveals that the first 

Integral 1s twice the first moment of a unit hemispherical shell about 

the basal plane perpendicular to R. Similarly, the second Integral 

represents the Inertia components of a spherical shell referred to a 

given basis where the "mass density" (|cos tj) of the shell varies 

linearly with respect to height above the same basal plane. Clearly, 

the calcu'ations here would most conveniently be made taking one coordinate 

direction in the direction of R and the other two in the mentioned basal 

plane. Subsequently, the desired A., for a more general orientation of 

basis with respect to R could be easily obtained by cartoslan tensor 

transformation. We note finally in passing that tne result of the above 

calculations for material Isotropy results in 
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üJk<?*>  =  IWl-vlR  "^V + COS *j  COS *kl (Z0) 

In which v=A/2 (x+p) and *. is the angle between the vector R and the 

x, axis. Expression (20) is the fundamental Isotropie singular solution 

(see e.g. Cruse [3]). 

The key feature of the above proposed method is the ability to 

perform, If need be, part of the calculation numerically and still obtain 

all dependence of U-k on x,y and basis orientation with respect to x-y 

analytically. This Is Important since gradients of U,. at y are required 

for the Integral equation method and such gradients may therefore be taken 

analytically. Thus, in light of the goal of this portion of the research, 

i.e., obtaining an explicit, usable, algebraic form for U.. for complete 

anlsotropy, it appears, despite numerical evaluation of certain integrals 

In general, that the job can be done via the outlined method. 
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5.4.2.2   Via Fredholm \fi\ 

The fundamental paper by Fredholm [6] displays an alternative 

method for constructing, In principle» the fundamental solution U-. dis- 

cussed above.   Like John's £73* Fredholm's work leads to a formal Implicit 

representation for the solution.   However, unlike with John's procedure 

It is not clear to the writer that one would be able to effect as useful 

a reduction of the method except for special anlsotropy, by any means 

numerical or otherwise 

Fredholm motivates his work by attempting to extend the idea of 

the particular solution 1/r of Lap!aces equation Au = 0 to the equations 

of anisotropic elasticity (1).   He first eliminates two components of u. 

In Eqs. (4) and "hows that the remaining component (and hence each com- 

ponent u.) must satisfy a sixth-order differential equation of the form 

f(uk) =0 (21) 

where f Is a sixth-order linear homogeneous differential operator which 

Is explicitly the determinant of l^ (Eq. (5)). He then chooses as his 

fundamental solution 

i    Jc f2te,*\)  (tXj ♦ nx2 ♦ x3) 

where *, are polynomials in C and n of the fifth order of lower and 

{2U'n) ~ hm'n' 1}* <23^ 

with f(r.,n» 1) being the definite algebraic form obtained by replacing 

the operations a/ax*. (1 = 1,2,3) by t,n> and 1, respectively.   The 
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Integration Is around a closed contour c 1n £ space containing only 

those singular points which are rorts of f U.n,.) * 0 where n is given by 

*x, + n0x2 + x (24) 

The polynomials ** above are complicated algebraic expressions (see [fi] 

pg. 14) obtained from L... Fredholm then goes on to show that each 

component of the required tensor field U,. Is of the form (22) and 

rigorously establishes all of the properties of the solution. 

It seems clear from the work of Kroner [10] and Lie and Koehler 

[11] that any attempt to reduce Fredholm's method to something useful for 

other than hexagonal or cubic crystal symmetry assumptions would be most 

difficult indeed. Detailed information on the particulars of this can 

best be obtained by careful study of the references [10,11] plus Fredholn/s 

original paper [6]. It should be clear; however, that if the previous 

discussion and reduction of John's [7] approach Is valid as outlined, It 

must be possible to accomplish the same task via Fredholm also since the 

desired U- is unique. Nevertheless, the transformation of contour 

Integral In space to one over the unit sphere, of functions which are 

necessarily related but not explicitly so, is bouhj to be an extreme1> 

difficult task. Further, for practical  purposes and in light of the 

previous section the effort seems hardly worthwhile in the near future. 

It is my judgement that to formulate the integral equation 

method for general an1sotropic elasticity, the method of John as pre- 

viously outlined is by far the most promising at this point. Indeed, the 

outlined reduction with the ability to obtain the necessary functional 

varlatlonal analytically 1s better than was hoped for at the start of the 
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Investigation.    If a similar advantage plus others are present also in 

Fredholm's technique they are lost to me, although, to be fair, much more 

time was spent with [7j than [6] because of the positive Indications of 

[7]. 

5.4.3 Investigation of the Interlaminar Shear Problem 

Consider a laminated plate as shown in Fig. 1 loaded on Its "x" 

faces In such a way (cf. Pipes [8]) that it may be assumed that the stress 

and strain fields are functions of y and z alone. Further 1t Is assumed 

that displacement components are of the form 

iij - ex + U1 (y,z) 

u2 = U2 (y,z) (25) 

u3 = U3 (y.z) 

where U., are arbitrary functions and c is a constant.   Finally, under the 

assumption that each lamina is homogeneous and isotropic it is now desired 

to examine the possible simplifications which may arise with the Integral 

equation method by the process of "integrating out" dependence on x. 

Specifically, consider the boundary formula of Cruse ([3] Eq. 

(14)) written for a typical lamina 

iu (P)  ♦ Ju (Q)T    (P,Q)dS(Q) =  Jt.(Q)U..(P.Q)dS(Q) (26) 
*    J S J S ■* 

where explldty S is the union of surfaces S , S , 5   of the lamina per- x  y  z 

pendicular to the x, y, z directions, respectively, see Fig. 2. Clearly, 

each Integral over S Is an Integral of functions of {±1, y, z) such that 

there Is no explicit x dependence to be "removed" 1n those integrals. 

Further, since there 1s assumed to be no traction on the S surfaces we 

have 
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/t.(Q)U..(P.Q)dS (Q) = 0 (27) 
sy 

Thus, It remains to consider the Integrals 

f       u  (Q)T    (P,Q)dS(Q),/*t.{Q)U..(P,Q)dS(Q) (28) 
'S +S    * J~ -'S 

X    z z 

insofar as Integrating away the x dependence.   More explicitly, integrals 

(28) my be written 

j^Cy.tt) /<Oji(x,y,±t;C,q,c)dx dy (2S) 

jV(y,±t) JpTj-Cx.y.tt^.n.Odx dy (i / 1) (30) 

jCVy'n) j^TJi(xvy(it:e,q,c)dx dy ^fTexTj.(x,y,n;C.n»0 dx dy 

J* u.(±w,i) jV.(x,±w, z;£,n,c) dx dz (i i 1) 

(31) 

(32) 

JSJJCIK.Z) /V.(x,±w,z;5,n,Odx d2*c£f£xT..(x,±w,z;£,n,Odx dz   (33) 

In which x, y, z are the coordinates of the point Q and £,n,c are the 

coordinates of the point P.   Our task therefore 1s to examine the expres- 

sions for each component of the kernel functions U^j and T.. as given by 

Eqs. (5) and (7) In Cruse [3], and then perform the definite Integrals 
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with respect to x alone from -£ to I as Indicated In expressions (29) 

through (33) above. Note that performing the first Integration with 

respect to x 1r. expressions (31) and (33) Mill suffice since the second 

such Integration 1s obtainable directly from the first by parts. 

Careful consideration of the mentioned Eqs. (5) and (7) In [3] 

for the components of U.. and T.. and designating all parts of the inte- 

grands which are independent of x with the common symbol B leads, after 

some "bookkeeping", to the need to evaluate only integrals of the 

following type 

ft (x -p" dx 

where n takes on integer values from zero through 3 and m takes on Integer 

values 1, 3 and 5. Such integrals for values of m and n indicated are 

standard entries in any short table of integrals and result in polynomial 

and/or logarithmic forms in the variable (x - e). 

Maintaining care with the mentioned bookkeeping problem, and 

recognizing that each of the -I to I Integrations In expressions (29) 

through (33) result in new tensor functions U... f.. independent of x, 

we may write the boundary formula (26) in the form 

j^U.n.O^UiCiw.OT^Ci^.iw.z.C.n.Odz 

-w 
r \(Y,±t)  T (±£,y,±t;?,n.Ody 

-Jr  t.(y,±t) Uj.(±£,y,±t;e,n.c) dy = 

(35) 
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I 

7[t.(y,=)U..(U,y,z;C,n,i;) U.(y,z)T..(±*,y,z,C,n,0] dy dz 
S 
X (35) 

♦ c fj(i£,±w,lt;C(ii(C) 

where f, (c,n,t) is that function obtained by integrating all   terms 

T..J with c as a constant multiplier. 

The question now arises, to what extent may explicit dependence 

on the length t of the lamina be eliminated and still retain sufficient 

information to obtain what is required in a given problem. Examination 

of the terms in equation (35) reveals that as I goes to infinity, f. is 
«I 

bounded, and all components of U.. and T.,, with the exception of U,,, are 

zero or finite. The U,, component, which alone contains logarithmic terms 

blows up with increasing I.   However, since it may be argued that the 

component of traction t, on the surfaces S must be zero for isotropic media 

under the present assumptions, no difficulty is, In fact, encountered with 

that term. Finally, it is clear that the integrals over S on the right 

side of Eq. (35) vanish with increasing I, such that all "input" informa- 

tion on the faces S indefinitely far apart is contained in the limit 

of the term c f.. 

It is now evident that it suffices to consider the "mid-x" plane 

of a typical lamina and to allow point P to occupy positions only on the 

rectangular boundary of this plane (i.e., consider only 5=0). Thus, Eq. 

(35) in reduced, x-independent, form may be written 

'Mote that one term is contributed to f, from each pair of surfaces of 
the lamina. 
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(36) 

V    UiCy.*t)T!.(jr.±t,n.O*r - C f•  (±w,±t,n,0 

where the primes indicate limiting forms of the functions as I -*■ « and 

€ =0. 

Application of Eq. (36) in the solution of the interlaminar shear 

problem is as follows.   Specify the constant c and perform the necessary 

integrations to obtain the function f'. (J.w, ±t, n, s) for each lamina 

mid-plane.   Then, write Eq. (36) for each such plane using an appropriate 

approximation scheme as, perhaps, outlined by [1,4].   Recognize further 

that the two integrals in Eq. (36) from -w to w for a given lamina mid- 

plane are coupled with simlar integrals for the remaining lamina.   The 

boundary conditions between lamina are that U. and t. be continuous 

across the adjacent boundaries and that the trp and bottom boundaries 

are free of traction t{.   Unknowns to be obtained therefore by numerical 

solution of the Integral equations are discrete values of U.(y.z) and 

t.(y,z) at selected discrete points on the boundaries of the lamina 

mid-planes. 

Note in the above that while the integrations in Eq.  (36) are 

over the lamina mid-plane boundaries all indices have the range 1, 2, 3 

such that as mentioned in the introduction the problem is not truly two- 

dimensional In nature.   However, it appears that the method outlined above 

is most feasible with much promise for success in light of numerical 
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work already accomplished for both two and three dimensional problems 

(e.g. [2,3,9,12]). Most Important, coupling the above Ideas with those 

set forth 1n the previous section, It Is possible to attack the difficult 

Interlanrfnar shear problem under the assumption of fully anisotropic or 

specially anisotropic lamina. 
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FIGURE 1:    GEOMETRY FOR INTERLAMINAR SHEAR PROBLEM 

FIGURE 2:    INDIVIDUAL LAMINA NOTATION 
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