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ABSTRACT

The Carnegie-Mellon University team has completed the initial
Interactive Program in Advanced Composites Technology. The program has
had significant impact as the CMJ team, working closely with engineers
from industry, has made significant technical progress in several problem
areas of current importance. Results on these problems are reported in
this Report. During the past year an experimental program in the fracture
of advanced fiber composites has been completed. The experimental program
has given direction to additional experimental and theoretical work. A
synthesis program for designing low weight multifastener joints in compos-
ites 1s proposed, based on extensive analytical background. A number of
failed joints have been thoroughly analyzed to evaluate the failure hy-
pothesis used in the synthesis procedure. Finally, the Report includes
new solution methods for isotropic and anisotropic (mid-plane symmetric)
laminates using the boundary-integral method. The solution method offers
significant savings of computer core and time for important problems.
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LIST OF SYMBOLS AND NOTATION

SYMBOL

r, ©

X, Y

X,y

Xv

DESCRIPTION

Polar coordinztes, with the
origin at the crack-tip.
(See Fig. 1).

Cartesian coorainates, with
the origin at the crack-tip;
these are the global coordi-
nates. (See Fig. 1).

Cartesian coordinates based
on the material principal
directions (See Fig. 1).

Thickness of the three-point
bend specimen.

Span of the three-point bend
specimen.

Depth of the three-point bend
specimen.

Crack-length.

Angle of rotation betﬁeen the
global and lamina coordinate
systems (See Fig. 1).

Tensile stresses in the global
coordinate system.

Displacement normal to the
crack-axis.

Applied i0ad on the three-
point bend specimen.

Roots of the characteristic
equation.

Components of the global
compliance matrix.
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CHAPTER SECTION SYMBOL DESCRIPTION

11 1 KI I Stress intensity factors cor-

’ responding to symmetric and
anti-symmetric loading re-
spectively. A subscript c
indicates a critical value
of K, i.e., a value at which
the crack propagates catas-
trophically.

A candidate value of the critical
stress-intensity factor.

The average value of for a
given laminate, obtaingd by
averaging the values obtained
for several speCimens of the
laminate.

St ain-energy release rate.

Initial slope of the experimental
plot of load vs. specimen
deflection (See Fig. 12).

Load corresponding to the inter-
section of the secant of slope

M_ with the curve of load vs.
sPecimen deflection (See Fig. 12).

Applied load at which crack
propagation occurred.

Crack-length (See Fig. 1).
Angle of rotation between the

global and lamina coordinate
systems (See Fig. 1).
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DESCRIPTION
Specimen edge distance.
Bolt bearing dfameter.
Total specimen width.
Total specimen length.
Specimen thickness
1£§~pr1nc1pal lamina stress.

12 orincipal ultimate lamina

stress.

Normalized distortional energy.

Effective tension strength.
Effective shear-out strength.
Effective bearing strength.

Bolt bearing specimen width.

Bolt bearing specimen edge distance.

Bolt bearing specimen thickness.

Bolt bearing specimen diameter.
Bolt bearing specimen length.
Total joint length.

Number of bolts per column.

Maximum load to be carried per
column of bolts
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SYMBOL DESCRIPTION
Subscripts and Superscripts

m Main plate

3 Splice plate

8 Bolt material

u Ultimate allowable
t Tension

c Compression
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SECTION
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XL

xix
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DESCRIPTION

Weight function of a composite
piate.

Variables of a composite plate.
Constraint functions on N(Xi).

Lagrange multipliers for the
constraint functions.

Objective function for
minimization.

Applied torsional moment.

Semi-major and seri-minor axes
of the ellipse.

Shear stress.

Thickness of the bolt bearing
specimen.

Width of the bolt bearing
specimen.

Distance from the center of
the bolt hole to the near edge
of the bolt bearing specimen.

Diameter of the bolt hole in
the bolt bearing specimen.

Distance from the bolt hole
to the far edge of the bolt
bearing specimen.

Load applied to the bolt
bearing specimen.

Failure stress for the tension
mode failure of the boit bear-
ing specimen.

Failure stress for the shear
out mode failure of the bolt
bearing specimen.
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CHAPTER SECTION SYMBOL DESCRIPTION

v 4 Fbu Pailure stress for the bear-
E ing mode failure of the bolt
] bearing specimen.

L Percentage of 0° plies in the
bolt bearing specimen.

M Percentage of 90° plies in
the bolt bearing specimen.

: N Percentage of +45° plies in
the bolt bearing specimen.
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CHAPTER SECTION SYMBOL . DESCRIPTION
v 2
Tyr Oys Oy Stress field.
€x* €y Yxy Strain field.
Uys Qy Displacement field.
Bij Material compliances.
Eys Ey» ny Axial, shear moduli.

Vyy® ey,y* ey, Coupling coefficients,

%33 Material stiffness.

Fo Fis Fy Stress functions.

Z, ) Characteristic directions.

o Roots of the characteristic equation,
i .

4, & Derivatives of F,(z,), Fn(z,).
R[] Real part of [ ].

Pps G Constants .

tx' ty Traction components.

Nx» Ny Outward normal .

ik Stress function,

Gij Kronecker delta.

Ajk’ cjk’ Djx Complex, real constants,

Uji Fundamental displacement tensor,
Tji Fundamental traction tensor.
Pik’ Qik Compliex constants,

€1 Strain field.

Sjli’ Djti Tensor kernels for €45
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SYMBOL DESCRIPTION
3. Cartesian coordinates.
Uij Singular influence tensor.

P(x), Q(x) Boundary points.

r(P,Q) Distance between P(x), Q(x).
v Poisson's ratio.

" Shear modulus.

" Pi.

51j Kronecker delta.

Uy Displacement vector.

t, Traction vector.

%3 Stress tensor.

nj Unit outward normal vector.
T1j Singular influences tensor.
R Surface of the body, R.

N Number of boundary segments.
Pm' Qn Discrete boundary points.
[1] Identity matrix.

[aT], [aU] Coefficient matrices.
Traction vector.

Displacement vector.

Integrals of influence tensors.
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SYMBOL DESCRIPTION

€y x-direction strain.

v, (1), x-direction displacement at

u_(2) segment number 1; segment

X number 2.

L Distance between midpoints
of adjacent boundary segments,
as s own in Fig. 1 and Fig. 2.

y* y-coordinate of last valid
data point obtained for in-
terior solution points, be-
fore data diverge from the
theoretical solution.

SCF Stress concentration factor.

a Semi-major axis of an ellipse.

b Semi-minor axis of an ellipse.

c Semi-focal distance.

Oy x-direction stress.

oy y-direction stress.

ciJk] Elastic constant tensor.

Uk Displacement vector.

TiJ Stress tensor.

eiJ Strain tensor.

LiJ Second order, linear operator.

UiJ Singular influence tensor.

X, ¥ Spatial points.

R, T Surfaces.

T1J Singular influence tensor

t1 Traction vector.
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CHAPTER SECTION SYMBOL DESCRIPTION
v 4 e Radius.
Ny Unit outward normal vector.
n Pi.
sy Laplacian at y
£ Vector.
ng Sphere of unit radius ¢ = 0.
pkj(g) Inverse of Qik(f‘.
Qik(s) Characteristic form of L.
8 Vector, X—y.
¥ Angle between g and E.
Ajk Tensor.
€4 ik Alternating symbol.
Det Q Determinant of Qij‘
A, u Lame“constants.
a, B Material constants.
¥y Angle betweeq~g and X5 3
polynomials in~g, n.
c Constant.
U].UZ.U3 Functions of y, z.
Sx.Sy.Sz Surfaces with normals in
Xs ¥, Z directions.
) 4 Length of specimens.
ﬁij’ fij Influence tensors, independ-
ent of x.
fj Vector function.
w Lamina width.
t Lamina thickness.
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CHAPTER I
SUMMARY OF THE INTERACTIVE PROGRAM

1.1 INTRODUCTION

The Carnegie-Mellon University team of faculty and students has
developed a unique program of interaction between the University team,
the Air Force Materials Laboratory, and certain aercspace industries,
notably General Dynamics, Convair Aerospace Division (Fort Worth). The
interactive program has focused on the application of mechanics capabili-
ties of the CMU team to the stress and strength analysis of advanced
fiber composite structures. The broad objectives of the program are the
following:

1. Creation of new and effective means of communication and
jnteraction between CMU and General Dynamics and other
aerospace industries.

2. Involvement of the CMi team in the solution of fundamental

| engineering problems arising from the application of advanced
composites in aerospace structures.

3. Development by the CMU team of new stress analysis capabili-
ties and resulis, strength criteria, design informatioa and
educational material for advanced composites technology.

To accomplish these goals, a two year effort was initieied at

CMU under Air Force sponsorship in November, 1969. The two year program
has been completed and has successfully met the goals delineated above.
The purpose of this Final Report is to summarize the achievements of the

Interactive Program. This first Chapter discusses results for all of the
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objectives. Following Chapters discuss in detail the results for

B b

objectives 2 and 3.

The principal investigators for this program originally adopted
the position that the second objective would be promoted through extensive
contacts with industry, and that student members of the CMU team would be
select senior undergraduate and first- and second-year graduate students.

i This position precluded supporting Ph.D. and faculty research by the
i I program, However, two student members of the CMU team have passed the
g Ph.D. qualifying exam and are doing their research based on their project

G 2R L

experience (Fracture of Composites; Design of Mechanically Fastened Joints).
To date, five undergraduate and fifteen graduate students have partici-
pated to some extent in thz Interactive Program. Faculty other than the
Principal Investigators have participated in the educational program to
become familiarized with advanced composites technology and to lend
particular expertise as needed.

1.2 FIRST AND SECOND YEAR PROGRAMS

1.2.1 Phase I

During each year the Interactive program has been divided into

three phases: education, project research, and reporting. The education

phase is based on a Fall Semester course, Mechanics of Fiber Composite

Materials. The purpose of the course is to bring the students "up-to-

speed"” in advanced composites technology such that they can contribute

significantly to the solution of engincering problems. In the second
year of the program, Dr. Cruse offered an advanced course, Two Dimensional
Antsotropic Elasticity, which was based on the analytical solution of

membrane problems of composites using the complex variable approach. A
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summary of the educational program is included in Appendix I, Chapter I.
This summary includes course outlines and descriptions, references, and
homework problem titles.

The emphasis in the course work is on the identification of
state-of-the-art knowledge and on solving meaningful homework problems.
An example of this is’ the use of the "pressure vessel" problem. Students
are asked to find the optimal winding angle (ta) and maximum pressure for
a cylindrical pressure vessel, using a fixed material (e.g. graphite-epoxy)
and each of the proposed failure criteria. The problem forces the student
to exercise lamination theory and allows a comparison of the allowable

pressures.

Another important problem area that was used is the stress con-
centration factors in composite plates subject to in-plane loading. The
fact that these factors are always higher than for isotropic materials is
emphasized. The discussion leads to other measures of strength such as ‘
associated with sharp flaws. .

The students make considerable use of the computer and in-house {
analysis programs such as finite element and boundary-integral methods
for boundary value problems and a pattern search program for optimization
and synthesis. Through all of the exercises the student develops insight
into the fundamental mechanics questions and spends very little time on
the nature of the analysis programs.

1.2,2 Phage II

The second phase lasts through the Spring Semester and sometimes,

for significant problems, through the summer. The purpose of the second

phase is to iavolve the students in engineering problems in advanced

A AT bl




ad ta ol ' gk b alecaaaii k. B g gl bbbl
» o AR o e i ‘v’

fprg. e A T e

composites technology. The students, with faculty and industry guidance,
select problems of interest to the student and industry. The process

of problem selection for new members of the team was a major portion of
the second half of the Fall Semester course.

In January of each year Dr. Cruse presented the project problems
at General Dynamics for evaluation and recommendations. At the same time
engineers at General Dynamics were identified who would act as the indus-
trial contact for the student working on a particular project.

A major portion of the budget of the Program was devoted to
travel support. The reasoning is that the CMU team, to be effective, must

have considerable visibility of the industrial problems in composites
technology. Thus, during the second phase the University team made
several visits to industrial locations, technical meetings, program reviews,
and special Air Force programs. These trips have also served to give the
CMU team visibility as a group doing significant work in the area of ad-
vanced composites technology. A complete 1ist of trip report titles is
presented in Appendix II, Chapter I. This 1ist illustrates the breadth and
depth of the CMU team contacts with other teams in the technology area.

In the first year of the program, the CMU team made a group
visit to General Dynamics. This trip was for presenting student progress
reports on their projects; it also was a chance for the student members
of the team to see manufacturing and test programs in progress. In the
second year, the new member of the CMU team to pursue project work visited
Boeing/Vertol to see their advanced composites manufacturing and test

program. However, the rest of the members of the team doing project re-

search were in their second year, and thus a team visit to industry




P RN

was not made during the second phase of the second year.

The telephone is used heavily during the second phase. By
identifying engineers, perhaps at different industrial locations, who had
an interest in the student project problem, each student could ask
questions and receive advice, data, and evaluation without the necessity
of a full visit with the engineer. The CMU team found that continual
contact with engineers played a major role in the success of the
Interactive Program.

1.2.3 Phase III

The third phase of the program is the reporting phase for each
project problem. Each student, upon reaching a major milestone, or when
completing his participation in the program, is required to provide a
written project report which is typed and filed. Thus, the reporting
phase is interweaved throughout the program. A list of the titles of all
reports generated and on file is given in Appendix III, Chapter I. The re-
ports contain major homework problem solutions from Phase I work, project
proposals and progress reports, tutorial material, and final project
reports.

Some of the project reports are significant enough to be published
in technical journals [1,2]] and to be presented at technical meetings
[3,4]. In addition cther reports have been submitted for presentation
to the 13th AIAA/ASME Structures, Structural Dynamics and Materials
Conference [5,6], while another has been accepted for the 1972 ASTM

]References are denoted by brackets [ ] and are found at the end of each

major segment of this Report.
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meeting on composites [7]. These papers serve to give to (M) team greater
visibility in the composites community as well as to report important
results.

In addition to the above major reports, the program had a
requirenent for monthly letter reports, at the request of the Principal
Investigators. These reports required monthly student progress reports
while the students were doing project research. The monthly report served
to force each member of the team to be fully aware of his own and others'
progress. In addition the reports kept the fndustrial team informed of
project progress.

At the end of the summer, each year, the CMU team prepared final
project reports which were presented at the Air Force Materials Laboratory
and at General Dynamics. This final reporting has been the most important
facet of Phase III as the CMU team seeks critical review of its p: .grams
by the active researchers and engineers at both locations. The final
report meetings served as the focal point for examination of progress,
but they also provided an opportunity to explore new areas of project
work, team emphasis, and industrial support.

1.3 RESEARCH PROJECTS COMPLETED

A sizeable number of project research problems have been solved
to date and the titles are listed in Appendix II, Chapter I. Listed
below are the major project titles, the responsible investijator, a
summary of the project and project reports as found in the SM file in
the Mechanical Engineering Department. The following Chapters of this
Final Report present in detail the major accomplishments of each project.

TR T T
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1.3.1 Fracture of Advanced Composites (H. J. Konish, Jr.)

This project includes analytical and experimental investigations
of the fracture of moderately thick graphite/epoxy specimens. Information
to date has been very encouraging in that a considerable amount of linear
elastic fracture mechanics theory seems applicable to the material.

{SM Reports 31, 41, 53, 64, 74, 80, 81; work in progress).
1.5.2 Strength of Mechanically-Fastened Joints (J. P. Waszczak)

This project has gone from .the analysis of single-fastener test
coupons to the analysis of joints with many fasteners. Due to the weight
penalty associated with these joints, a program has been begun to develop
a synthesis procedure for designing multifastener joints. This program
has a strong coupling with the engineering team at General Dynamics.

(SM Reports 28, 34, 63, 76; work in pregress).
1.3.3 Optimization Methcds (S. J. Marulis; Ford Motor Co.)

The project was to investigate the use 2f an in-house, pattern-
search optimization method for composite design problems. The design of
mechanically-fastened joints was considered, using the in-house program.
An effort to couple the optimization program to the available finite
element program was unsuccessful but may be completed in the future.

The optimization program has been found suitable, if not optimal, for
use by Mr. Waszczak in his project research.
(Report SM-71; work suspended).

1.3.4 Boundary-Integral Equation Solution Methods (T. A. Cruse, W. H.
Bamford, F. J. Rizzo)

Three separate efforts have been completed in this area. The
first reported is the development of an isotropic, two dimensional

boundary-integral equation method and a subsequent investigation of its

7
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ability to model cutouts under tension. The second reported is the
development of a boundary-integral method for tully-anisotropic (mid-plane
symetric) laminates. (Currently, the anisotropic program is being v.ii-
fied on cutout problems and some of these results are report.) The third,
completed by Prof. F. J. Rizzo of the University of Kentucky, concerns
solutions to Kelvin's problem in anisotropic three dimensional bodies,

and the interlaminar shear problem.

(SM Reports 45, 50, 66, 68, 70, 72; work in progress).

1.4 EVALUATION AND RECOMMENDATIONS

It is clear that the goals of the Interactive Program at CMU
have been met. The project reports contained in this Final Report give
ample evidence of the extent to which the CMU team has become competent
in research and application problems in advanced composites technology.
There now exists considerable interaction and support between the General
Dynamics team and the CMU team. In particular, General Dynamics has
provided test specimens for the Fracture Program and a summer contract
for the Joint Project.

However, the level of confidence in the CMJ team expressed by
General Dynamics has come late in the program. Communication and inter-
action took place during the first year of the program but the depth of
both was not satisfying to either team. One reason for this was that
during the first year the CMU team was just coming up to speed in advanced
composites technology. However, based on the results of the program re-
view at the end of the first year, the support from the General Dynamics

team increased rapidly. The other reason for the slow start was the lack

T e gy
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of constant contact between the C*U team and the General Dynamics team.
During the second year, much more contact was made, principally by Dr.
Cruse visiting General Dynamics and liberal use of the telephone.
Frequent personal contacts are critically important to the success of an_
interactive program such as ours.

The impact to date on the educational program at CMU has been

minor. The two courses cited in Appendix I plus project work (counts as

course work) are the extent of highly visible composites activities in

the educational program. However, seminars given by General Dynamics and
AFML personnel, and by the Principal Investigators have served to make
other faculty aware of the questions of materials selection, and composites
in particular. During one semester Dr. Cruse taught a section of Senior
Design which was concerned with the rationale for materials selection.

At the present time Dr. Cruse is involved in an effort %o expand the CMU
Post-College Professional Education Program. This effort includes a course

on fiber composites.

At a harder level to document, instructors in the basic solid
mechanics courses in the Mechanical Engineering Department have the speci-
mens and knowledge to aemonstrate simple anisotropic effects. It is hoped
that more of this information can be meaningfully involved in the under-
graduate courses. One of the biggest problems which mitigates against
new courses in the undergraduate or graduate program is the financial
state of the University. The process of cutting-back is underway and
will likely last a few more years.

Finally, the question arises as to the impact the Program has

had in developing graduates with a competenze in advanced composites,
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who will use this competence in the aerospace industry. To date this
impact has beer nearly zero, as most of the students who have done
significant project work have yet to graduate. An early graduate with
contact with the Interactive Program went to Pratt and Whitney; another
graduate went to Ford Motor Company. Several graduate students with
other research areas have taken one or both of the courses offered to
date. Those in the Program who are still doing project work are
commissioned officers in the United States Army. Thus the personnel
impact will require more time to develop.

Two years ago, CMU had no active research in the area of advanced
composites. In that period the CMU team has developed an effective
education — project program that is closely related to fundamental
engineering problems in advanced composites technology. Members of the
CMU team have presen’<d and published an increasing number of research
papers, and have participated in several Air Force review meetings. The
depth and breadth of research accomplishments are reported in the re-
maining Ciicpters of this Final Report. Othe' measures of the Program

require additional time to mature.
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1.6 APPENDIX I: SUMMARY OF EDUCATIONAL MATERIAL

I. COURSE: Mechanics of Fiber Composite Materials (Pirst Semester)

A. Course description
B. References
C. Course outline

II. Project-type Homework Problems

Develop computer program for calculating [A] matrix
Develop computer program to reduce laminate strains

to lamina stresses and strains

. Analyze dependence of the [A] mat 'x terms on the fiber
orientation

Determine the effect of transverse tension on the inter-
laminar shear stress

. Determine the optimum winding angle (t) for a pressure vessel
. Evaluate the deformation in a helically-wound (+) cylinder
. Evaluate the finite element solution for a circular cutout
. Evaluate the finite element solution for a composite beam

II’. Finite Element Summary

A. Course notes from a short course for users
B. Usage guide for in-house finite element computer programs

IV. COURSE: Two Dimensional Anisotropic Elasticity (Second Semester)

A. Course description
B. Some selected prepared course notes

V. Project-type Homework Problems

A. Isotropic
1. General solutions for ring-shaped region
2. Bolt-bearing solution
3. Concentrated force in an infinite plate

B. Anisotropic

Stress ~oncentration at an ellipse

Hoop stress distribution at a circle
Torsion of a prismatic member

Point load in an infinite plate

Bolt-bearing solution

Stress analysis of a cracked, infinite plate

oo~
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MECHANICS OF FIBER COMPOSITE MATERIALS
Text Material:

T. A. Cruse, Mechanice of Laminated Fiber Composites
(notes in preparation)

J. E. Ashton et al, Primer on Composite Materials: Analysis
Technomic (1969)

s o Sl B T

Course Abstract:

This course deals with the stress and strength analysis of

two dimensional anisotropic fiber composite structural mater-
ials. These materials have applications in structural reinforce-
ments, pressure vessels, and aero:)ace structures. Typical
materials that can be considered include reinforced concrete,
fiberglass, and some of the new, advanced fiber composites

b such as boron-epoxy and graphite-epoxy. Major topics include

. the development of the anisotropic stiffness matrix for in-

- ' plane and out-of-plane loading of plates and shells, theories
of strength and experimental procedures, and stress and dis-
placement analysis of simple plate and shell structures.

Lk Students will participate in a number of project problems de-
2 ; signed to involve the student in some of the real design prob-
lems associated with composite materials. Existing solution
techniques such as finite elements. integral equations, and
optimization computer programs, as well as analytic solution
capabilities will be exercised as appropriate. The student

is assumed to have completed the normal undergraduate courses
in strength of materials including some introduction to the
theory of elasticity.

13




MECHANICS OF FIBER COMPOSITE MATERIALS

Supplementary Reference Material:

BOOKS :
S. A. Ambartsumyan, Theory of Anisotropic Plates, i«chramic (1970)

v. E. Ashton, J. M. Whitney, Theory of Laminated .lates,
Technomic (1970)

G. S. G. Beveridge, R. S. Schechter, Optimiaation: Theory
and Practice, McGraw-Hill (1970)

S. W. Tsai, et al (Editors), Composite *:teriale Workehop,
Technomic (1968)

L. J. Broutman, R. H. Kroc: (Editors), Modern Composite
Muteriale, Addison Weslzy (1967)

- - P "

, Metal Matrix Composites, ASTM STP 438 (1968)

, Interfaces in Compoeites, ASTM STP 452 (1969)
Compoaite Materials: Testing and Design, ASTM STP
460 (1969)

REPORTS :

Rkt

T. A. Cruse, J. L. Swedlow, Interactive Program in Advanced
b Compoeites Technology: First Annual Report, Report SM-46,
i 4 Carnegie-Mc1lon University, Pittsburgh, Pennsylvania (1970)

; M. S. Howeth, Design, Materials and Structures, Report SMD-028,
General Dyramics, Fort Worth, Texas (1969).

E S. W. Tsai, Mechanice of Compoeite Materials, AFML-TR-66-199

14
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MECHANICS OF FIBER COMPOSITE MATERIALS

COURSE OUTLINE:

I. Review of Two Dimensional elasticity (6 hours)

A. Stress tensor
8. Equilibrium

C. Strain Tensor
D. Compatibility

II. Llinear, anisotropic elasticity (5 hours)

A. Existence of the strain energy dunsity
8. Fourth order compliance, stiffness tensors
C. Transformation equations
1. Specially orthotropic
2. Transversely isotropic
3. Isotropic
D.. Plane stress results

III. Mechanics of a continuous fiber iamina (4 hours)

A. Manufacturing of fibers, laminae
B. Rules of mixtures

C. Summary of micromechanics results
. Lamina mechanical properties

IV. Mechanics of Laminates (12 hours)

A. Manufacturing of laminates
B. Stiffness, compliance matrices; [A], [B], and [D]
C. Strength theories
1. Static theories: Maximum stress, strain; Distortional
energy
Energy tensor
Fatigue
Fracture

aw!\w

V. Structural applications and projects (12 hours)

Finite element solution method
Joints and cutouts

Pressure vessels

Stability, vibrations
Limitations on laminatior theory

mocCo>
. e e e
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TWO DIMENSIONAL PROBLEMS IN THE THEORY OF ANISOTROPIC ELASTICITY

Recommended Textbooks :

N. 1. Muskhelishvili, Some Basic Problems of the
Mathematical Theory of Elasticity, Noordhoff (1963)

S. 6. Lekhnitskii, Theory of Elasticity of an
Anisotropic Elastic Body, Holden-Day (1963)

Course Abstract:

The first half of the course is devoted to the formulation

and solution of the two dimensional, isotropic elastic

i problem using complex varizole methods. Solutions are
obtained using the Laurent series expansion for multiply-
connected bodies. The secund half of the course is de-
voted to the analysis of anisotropic, two dimensional
problems, again using the complex variable method. Example

- problems and projects are chosen for their relevancy to
current engineering problems in .nisotropic media, such

] as advanced fiber composites. Existing numerical colution

3 methods such as finite elements and integral equations

are used and compared to the analytic resiiits when possible.

The course assumes a knowledge of the basic theorems of

analysis-of functions of a complex variable as well as the
3 basic theory of elasticity.

A el St
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TWO DIMENSIONAL PROBLEMS IN THE THEORY OF ANISOTROPIC ELASTICITY

I1.

It

COURSE OUTLINE:

Review of complex variable theory (6 hours)

A. Analytic functions

B. Green's *heorem

C. Cauchy integral theorems
D. Series

Plane theory of isotropic elasticity (18 hours)

Equilibrium; stress function

Strains; Hooke's law

Goursat formula

sisplacements

Tractions

Kolosov formula

Forces on a contour

Single-valued displacements, stresses
Laurent series for the stress functions
Infinite region with a hole

Polar coordinate form of the equations
. Mapping functions; curvilinear coordinates
Transformed field equations

Example solutions

ZXrXRO=ITOTMOO®>
] L L4 L L4 [ ] L4 L] . [ ] L4 ] L

Plane th2ory of anisotropic elasticity (15 hours)

Hooke's law for various types of anisotropy
Stress function

Characteristic surfaces for the stress function
Roots of the characteristic equation L4(u) =0
Stresses and aisplacements

Forces on a contour

Infinite region with a hole

Single-valued stresses and displacements
Mapping functions

Fouri2r analysis of the boundary conditions
General expansion form of the solution

Example solutions

FRXGQG=NIOTMMOO P
L] L[] L4 . A . [ ] L . [ ] ] L]
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1.7 APPENDIX II: TRIP REPORTS

PRy

Al ot o)

TR-69-02

TR-69-04

TR-69-09

TR-69-10

TR-70-01

TR-70-02

TR-70-03

TR-70-04

TR-70-05

TR-70-09

TR-70-10

TR-70-12a

Exploration of Possible University-
Industry Cooperation in the Area
of Advanced Composite Technclogy
(T. A. Cruse)

Detailed Discussion of Proposed Uni-
versity-Industry Joint Program in
Advanced Composite Technology
(T. A. Cruse

Advanced Composites Status Review
(T. A. Cruse)

University Team Visit to Air Force
Materials Laboratory

Fuselage Program Review (General
Dynamics) and Discussion of
Project Problems (T. A. Cruse)

Review Meeting, First Edition of
Structural Design Guide for
Advanced Composite Applications,
and Test Methods (R. D. Blevins)

Discussion of Bolt Bearing Testing
Procedures with North American
Rockwell/Columbus (J. P. Waszczak)

Discussion of Test Data, Methods with
North American Rockwell/Los Angeles
(R. D. Blevins)

Team Visit to Southwest Research
Institute

Team Visit to General Dynamics/
Fort Worth

Discussion of Consulting Program
with Dr. Frank J. Rizzo
(T. A. Cruse)

Project Review Meetings at General
Dynamics/Fort Worth and Air Force
Materials Laboratory

18

TRIP REPORT NO. TITLE DATE

7/14/69

8/11-12/69

9/30-
16/2-89

11/24/69

1/7-9/7v

2/11/70

3/12/710

3/18/70

4/2/70
4/3/70

8/19-21/70

10/4-6/70
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TRIP REPORT NO.

TR-70-13

TR-70-14

TR-71-61

TR-71-02

TR-71-03

TR-71-06

TR-71-07

TR-71-08

TR-71-09

TR-71-10

TR-71-11

TR-71-12

TR-71 13

e e

TITLE

Boeing/Vertol: Review of Boron
Blade Program (S. J. Marulis;
T. A. Cruse)

NASA/Langley Field; Interactive
Program in Composites at CMU
(T. A. Cruse, J. L. Swedlow)

AFML; GD/Ft. Worth: Program Review
and New Project Proposals
(T. A. Cruse)

GD/Ft. Worth: Program Review
Meeting (T. A. Cruse)

Fifth St. Louis Symposium on Composite
Materials

12th AIAA/ASME Structures, Structural
Dynamics, and Materials Conference

(T. A. Cruse, J. P. Waszczak)

Design Guide Review Meeting; NAR,
Los Angeles (T. A. Cruse)

GD/Ft. Worth; Program Review Meeting
(T. A. Cruse, J. P. Waszczak,
H. J. Konish, Jr.)

Boeing/Vertol: Review of CMU Fracture
program (H. J. Konish, Jr.)

31st National Applied Mechanics Conference

(T. A. Cruse)

GD/Ft. Worth: Review of Summer Project
(J. P. Waszczak)

GD/Ft. Worth: Revi~. of Summer Project,

Boundary-Integral Project
(J. P. Waszczak, T. A. Cruse)

GD/Ft. Worth: Review of Summer Project,

(J. P. Waszczak)

5th National Fracture Mechanics Symposium

(H. J. Konish, Jr., T. A. Cruse,
J. R. Gsias)

19

DATE

10/28/70

12/15/70

1/5-6/7

4714/ N

4/6-7/N

4/19-21/N
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REPORT NUMBER
SM-22

S | SM-23

; SM-24
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SM-25

; SM-27
SM-28

SM-29

SM-31
: SM-32

SM-34
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SM-38

SM-41

SM-42

SM-45

RESEARCH DOCUMENTS

TITLE DATE

Anisotropic Stress Strain Program January 1970
Layer Usage Guide (H. J. Konish, Jr.)

Project Problems for Air Force Con- January 1970
tract F33615-70-C-1146 (T. A. Cruse)

Summary of the Direct Potential January 1970
Method (T. A. Cruse;

Interactive Program in Advanced February 1970
Composites Technology (T. A. Cruse)

Symmetric Laminate Constitutive February 1970
Equation Program-EMAT Usage Guide
(J. P. Waszczak)

Bolt Bearing Specimen Co-ordinate April 1970
Transformation Program - Usage Guide
TRANS (J. P. Waszczak)

Certain Aspects of Design with Ad- April 1970
vanced Fibrous Ccmposites (R. D. Blevins}

Stress Analysis of a Cracked Ad- April 1970
vanced Composite Beam (H. J. Konish, Jr.)

An Investigation of Fracture in April 1970
Advanced Composites (W. H. Bamford)

An Investigation of Stress Concentra- May 1970
tions Induced in Anisotropic Plates
Loaded by Means of 2 Single Fastener
Hole (J. P. Waszczak)

Integral Equation Metnods in Potential August 1970
Theory (T. A. Cruse)

Stress Analysis of a Cracked Aniso- September 1970
tropic Beam (H. J. Konish, J. L.
Swedlow)

An Investigation of Stress Concentra- September 1970
tions Induced in Anisotropic Plates
Loaded by Means of a Single Fastener
Hole (J. P. Waszczak, T. A. Cruse)

The Use of Singular Integral Equations Octoter 1970
with Application tc Preblems of
Composite Materials (F. J. Rizzo)
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REPORT NUMBER TITLE DATL

SM-49 Report on the Relation Between the Stiffness
Matrix and the Angle of Rotation of a
Lamina (J. Kolter) November 1970

SM-50 Numerical Solution Accuracy for the [nfin-
ite Plate with a Cutout — Progress
Report {W. Bamford) December 1970

SM-52 Failure Mode and Strength Predictions of
Anisotropic Bolt Bearing Specimens
(J. P. Waszczak; T. A. Cruse) September 1970

it

SM-53 A Proposed Experimental Investigation of
Fracture Phenomena in Advanced Fiber
] Composite Materials (H. J. Konish, Jr.) February 1371

SM-63 Loaded Circular Hole in an Anisotropic
Plate (J ?. Waszczak) May 1971

AT S PTV

SM-64 Stress Analysis of the Crack-Tip Region
in a Cracked Anisotropic Plate
(H. J. Konish, Jr.) May 1971

SM-65 Numerical Calculation of the Character-
istic Directions for a Generally
Anisotropiz Plate - MULTMU Usage
Guide (H. J. Konish, Jr.) June 1971

SM-68 Solution t2 Kelvin's Problem for Planar
Anisotropy (W. Bamford) June 1971

T T WY .

SM-70 USER'S DOCUMENT: Two Dimensional
Boundary-Integral Equation Program
(7. A. Cruse) June 1971

SM-71 Optimization of Advanced Composite Plates
(S. Marulis) June 1971

-fi;
|

Two Dimensional Anisotropic Boundary-
Integral Equation Method (W. H. Bamford, August 1971
T. A. Cruse)
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SM-74

SM-76

SM-77

SM-80

SM-81
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TITLE DATE

Experimental Investigation of Fracture
in an Advanced Fiber Composite
(H. J. Konish, J. L. Swedlow, T. A. Cruse) September 1971

Toward a Design Procedure for Mechanically
Fastened Joints Made of Composite
Materials (J. P. Waszczak) September 1971

Review of: Structural Design Guide for
Advanced Composite Applications, 2nd
Edition, Appendix A: Theoretical
Methods (T. A. Cruse) May 1971

On Fracture in Advanced Fioer Composites
(H. J. Konish, Jr., J. L. Swedlow,
T. A. Cruse) October 1971

A Proposed Methoc for Estimating Crilical
Stress Intensiuy Factors for Cross-Plied,
Mid-Plane Symmetric Composite Laminates,
(Abstract) (H. J. Konish, Jr., J. L.
Swedlow, T. A. Cruse) October 1971
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CHAPTER II
FRACTURE OF ADVANCED COMPOSITLS

2.1 STRESS ANALYSIS OF A CRACKED ANISOTROPIC BEAM
2.1.1 Introduction

The high specific strength and specific stiffness of advanced
fiber composite materials have made them very attractive to the aerospace
industry. The fact that they are both anisotropic and inhomogeneous, how-
ever, has somewhat retarded their use, as the design and analysis pro-
cedures developed for metals are not strictly applicable; thus, it is
necessary to adapt old procedures, or develcp new ones, which can deal
with the more complex composite materials.

The project discussed in this chapter deais with one such effort.
The specific problem under consideration is the effect of a crack in a
unidirectional advanced fiber composite material. Although this problem
is one of great significance in aerospace structures, it has not yet been
extensively treated. Ar analytic solution has been derived for the elastic
stresses and strains induced by a crack in a 1oaded anisotropic plate [1].
The solution does assume material homogeneity, but this is a good approxi-
mation for advanced fiber composite matarials on a macroscopic scale.
However, relatively little has been done to follow up the analytic work.
2.1.2 Review of Previous Work

The most extensive investigation of {racture of compc-ites in
the literature is that done by Professor E. M. Wu of Washington University,
St. Louis. He considers the problem of a central crack, aligned with the
fibers of a unidirectional composite material, which are, in turn, a-

ligned with the edges of a plate subjected to general edge loadings.
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Wu demonstrates that linear-elastic fracture mechanics are applicable to ;

this problem [2]. His analysis yields results of the form

ool Al kR

o= KIFJZM‘ (1)
K;= /a 6 (2)
1
E where F is a function of the external loading and G is a function of

specimen geometry, material constants. and external loading. These re-
sults are simflar in form to the results obtained from the analysis
of an isotropic problem.

Wu verified his analysis experimentally [2,3]. His experimental
work, (done with fiberglass plates), does demonstrate the applicability of
a linear elastic fracture mechanics analysis to his particular problem.

It further shows that the critical stress intensity factors Ke (cor-

responding to symmetric loading on the plate) and Ki1e (corresponding to

; skew-symmetric loading on the plate) are material constants. Under com-
bined external loading, the following empirical relationship is observed
to be valid at incipient unstable crack propagation:

K /Ky + (Rpp/Kppe)? =1 (3)
This vesult is not, however, particularly surpricing in view of [1],

where it is analytically shown that any arbitrary two-dimensional fracture
problem in an anisotropic material may be decomposed into two independent
problems, one symmetric and one skew-symmetric. Thus, only the form of

(3) may be considered as original; its existence is predicted by analysis.

A TR T AP e 4 MR (1 e

Wu has also investigated the problem of an external loading of
combined compression and shear [4]. Tiais loading will lead to crack

propagation by the second, or "sliding” mode. Three possible subcases
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are considered analytically: Relative displacement of the crack surfaces,
over a portion of the crack surfaces, and over none of the crack surfaces.

This analysis was verified by an experimental program carried
out on fiberglass. The results show that, for ratios of compressive load
to shear load greater than approximately 0.4, failure does not occur by
unstable crack propagation; the crack velocity remains quasi-stable until
the specimen fails from propagation of the crack completely through it.
If the ratio of compressive load to shear load is increased, internal
buckling of the fibers and separation of the fibers from the matrix is
observed; at most, the crack will propagate some small distance at an
angle of 45° from its initial direction, then diffuse and die out. The
specimen buckles thereafter with no additional crack propagation. Wu
thus concludes that fracture mechanics is only applicable to this problem
when the ratio of compressive stress to shear stress is less than 0.4.
The second subcase of the analysis gives the best agreement betweep
analysis and experiment when fracture mechanics are applicable. The
quasi-stable crack propagation found to occur experimentally when the
ratio of compressive 1oad to shear load is approximately 0.4 seems to be
well-described by the first subcase of the analysis. The third subcase
of the analysis is believed to be applicable when the compressive load
is sufficientiy large to prevent crack extension; however, buckling,
rather than crack propagation, becomes the dominant mode of failure be-
fore this load is reached, so the presence of the crack not significant
in the failure of the specimen.

Wu notes that stable crack propagation occurs in an intermittent

manner in fiberglass [2]; he postulates that this is caused by the crack
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crossing the reinforcing fibers. This hypothesis is investigated both

Odalidi Lafas

] analytically and experimentally [5].

The analysis is based on the assumption that crack growth is
primarily caused by the component of tensile stress perpendicular to the
direction of crack growth, as the intermittent stable crack propagation
is most frequently observed under skew-symmetric loading. It indicates

that the crack does not necessarily propagate in a direction collinear

with itself, but rather at an angle where the combination of the size of

Tt

a sub-critical flaw and the maximum tensile stress reaches some critical

value, causing the flaw to grow. Under sxew-symmetric loading, the maxi-

[ SR

mum tensile stress is not perpendicular to the crack direction, and, as-
i suming that flaws of any given size are uniformly distributed in the
: material, the crack will propagate at some angle to its initial direction.
Since the initial direction of the crack is collinear with the fibers, the
propagating crack must cross fibers. The direction of crack growth is
thus a function of the direction of the shear loading.

It is noteworthy that Wu finds the Griffith eneryy criterion to
be applicable to composite materials only when the crack propagates across

fibers. Although Wu offers no explanation for this anomaly, it may be

due to the fact that, for this particular geometry, the crack pro,agates
only through resin unless it crosses fibers. Thus, the crack would "sense"
i a brittle, high-strength material, for which the Griffith criterion is
applicable, only when it crosses fibers.

Wu's specimen is also analyzed for symmetric loading by Bowie
and Freese [6]. They use a modified mapping-boundary collocation technique

to derive the stress intensity factor numerically. Of particular interest
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is the result of Bowie and Freesc that, when the strength of the material
in a direction transverse to the crack is much larger than the strength
of the material collinear with the crack, the stress intensity factor is
not longer the same for both the isotropic and anisotropic cases, as pre-
dicted by Sih, Paris, and Irwin [1]. However, Bowie and Freese dc note
that, when the strength of the material in the direction collinear with
the crack is greater than or equal to the strength of the material in a
direction transverse to the crack, the two stress-intensity factors
agree to within five per cent.
2,1.3 Analytical Study

The efforts described above comprise the significant work now
available in open literature on macroscopic analysis of fracture in aniso-
tropic materials. Both of them consider only cracks which are aligned
with the fibers of the composite material, and must therefore be con-
sidered incomplete, as no provision has been made for cracks with arbi-
trary orientation to the material axes. The purpose of the project
described in this section is to investigate the behavior of a crack in an
anisotropic material where the crack is not, in general, collinear with
one of the materiai axes (though these cases are considered). Information
is also sought on the behavior of the stress-intensity factor as the
orientation of the crack with respect to the material axes and the speci-
men geometry are varied. Finally, it is desired to obtain verification
of either Bowie and Freese [6], or Sih, Paris, and Irwin [1] concerning

the differences, if any, between the isotropic and anisotropic stress

intensity factors.
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In pursuit of these objectives, a series of aunisotropic three-
point bend specimens with edge cracks of different lengths (Fig. 1) has
been studied analytically to determine the stress and deformation response
in the vicinity of the crack-tip. Material properties were chosen such
that the specimen represents uni-directional boron/epoxy. The orientation
of the material axes relative to the crack-axis is completely arbitrary.

The analysis was performed using a linear elastic, plane stress,
finite element technique. Two element grids were used, one representing
the entire beam and the other representing a small region of the beam
surrounding the crack-tip. The latter grid is used t¢c provide more de-
tailed information in the region of the crack-tip than can be obtained
from the relatively coarse grid of the entire beam and still remain in
the core of the computer. Details of the numerical studies are contained
in [7].

Load is applied to the beam by specifying the transverse displace-
ment of the point on the upper edge of the beam in line with the crack-
axis. Appropriate nodal displacements from the grid of the full beam are
then applied to the grid of the crack-tip region as boundary conditions.
From the analysis of the grid of the crack-tip region, stresses and dis-
placements are determined as functions of positicn.

The stresses and deformations are represented in the form given

by Sih, Paris, and Irwin [1]:

L L) ¥y ¥

ox = m—; Re [ " -""')] (4)

( T——— .
17¥2 /cosO + u251n0 YcosG + u151n0
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v=K /== Re [ =T (ulquioss + u,5in@ uquvbose u251n0)]

where KI is the stress intensity factor for an isotropic specimen of the
same geometry as that being analyzed; r and © are the coordinates shown
in Figure 1. The u, are the roots of the characteristic equation
L . 3 2 = =
ayut - 2a50u% + (2806 + agedu® - 2a50u + 2y, =0 (7)
where a1j are the material compliances as given by

€ = 34495 (8)
The qj are defined as

Q5 = Ay + aylus - 2y (9)
Using the equations (4-9), the stress intensity factor K; can
be obtained in various ways from both the stresses and the displacements
found in the analys’s of the crack-tip region. It is hypothesized that
the stress intensity factor is a separable function of the load on the
beam and the specimen geometry, i.e.,
Kj = f{load) g(gecmetry) (10)
Since the analysis is linear elastic,

f(10ad) = P/B (1)

The effect of the specimen geometry is a “unction of the crack-
length, the effects of finite specimen boundaries, and possibiy the mater-
ial anisotropy. It is further hypothesized that

g(geometry) = /a G(a/W,a) (12)
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where the function G contains the effects of the finite boundaries of
the specimen and any effect of the material anisotropy. Thus, combining
equations (10-12)

Ky = (P/a /B) G (a/W,a)
or (13)

G (a/W,a) = K;B/PVa

The function G(a/W,a) has been obtained analytically for three
values of a and five values of a/W, using values of KI obtained from both
stress and displacement data. Each G(a/W,a) was then normalized on the
value G (0.2,a) for corresponding methods of determining KI' The resulting
value, denoted as G (a/W,a) is shown plotted as function of a/W in Figure
2. On the same graph is shown a curve representing G (a/W) for an iso-
tropic specimen, as obtained from [8]. The data points show satisfactory
agreement with the curve, in view of the numerical noise introduced by
two finite element grids which are not entirely compatible. Thus, G
(a/W,a) is identical with G(a/W). This, in turn, implies that the
anisotropic stress intensity factor is the isotropic stress intensity
factor.

Although the stress intensity factor in equations (4-6) is the
isotropic stress intensity factor, stress and deformation are functions
of material constants. Thus, fracture in advanced fiber composite
materials cannot be ascribed solely to ary combination of the stress in-
tensity factors. To some extent, therefore, the applicability of fracture
mechanics to composite materials is questionable. Exactly what importance
a crack has in composite materials, and what role the material properties
play in describing it, are questions which were investigated experimentally
and are reported in Section 2.2.
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Figure 1: Three-point bend fracture specimen, with global (x,y and r,0)
and material (1,2) coordinate systems shcwn (insert). The
applied ioad P is modelled as point load. The specimen

thickness is deroted by B.
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applicab.lity of an anisotropic continuum analysis [4] to

advanced fiber composite materials.
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2.2 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE
2.2.1 Introduction
Linear elastic fracture mechanics (LEFM) is now accepted as the
rationale for characterizing crack toughness of matcrials that are osten-
sibly homogenenus and isotropic, the outstanding examples being a wide
range of metallic alloys. The basic experience that supports this approach
is that presence of a macro crack dominates the response of a structure to
remote loading. With the advent of advanced fiber composites, however,
there arises the question of the degree of homogeneity of the structure
surrounding the crack that is necessary for LEFM to be applicable. In
particular, there is concern over whether heterogeneity and anisotropy will
preclude practical use of LEFM in composites.
Vigorous discussion of this issue is important and widespread,
but the interchanges so far have tended to be theoretical and even specu-
lative. In an effort to supply some physically based information, a pilot
series of experiments has been performed, to answer two specific questions:
1. JIf a cracked, composite specimen is loaded to failure,
is the path of crack prolongation determined by the geometry
of the initial crack and the loading, or by material
orientation?
2. Can LEFM, suitably mdified to account for material
anisotropy, be usefully applied to composites?
The data now in hand, although limited, indicates that a crack in a
composite is at least influential! in determining failure patterns and, in

many cases, the crack is dominant; furthermore that LEFM provides useful
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procedures for evaluating crack'toughness of composites.

This section gives a brief review of the test procedures, methods
of data reduction, and experimental results. Observations made during the
course of the tests are reported, and failure surfaces are shown. Analyti-
cal work stimulated by these results is underway and will be reported
subsequently.

2.2.2 Test Procedures; Program

It was obvious from the objective of the test program that the
test procedures should follow those developed within the framework of
conventional fracture mechanics. There is, in fact, a wealth of literature
on this subject including an ASTM Tentative Method [1] and extensive
interpretation of it (see, e.g., [2,3]). Departures from the specifica-
tions in [1] were minimal and were dictated either by the snecial nature
of the material under test or by simple practicality.

The three-point bend specimén prescribed in [1] was chosen largely
to bypass problems associated with gripping the test piece. (See Figure 1.)
In the extensive data base that now exists for metals testing, results for
this configuration compare well to those for other geometries so that,
among other matters, there was no reason to expect that the bearing load
opposite the crack front should influence unduly the processes of crack
prolongation. In fact, the data reduction scheme in [1] accounts for such
details of specimen geometry and load arrangement.

The specimen proportions shown in Figure 1 follow the recommenda-
tions in [1] except that the crack front was not sharpened under fatigue
loading. Instead, the notch was produced by a sawcut followed by a final

lengthening and sharpening using an ultrasonic cutter.
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As shown in Figure 2, each specimen was centered on two parallel
rollers (1 in dia) whose centerlines were 4 in apart. A third parallel
roller was then located directly above the crack, and the specimen was
loaded vertically downward. Testing was performed in an Instron machine
of 10,000 1b capacity, and cross-head motion was set at 10°2 in/min to
minimize dynamic effects. Load and cross-head motion were monitored during
each test and then cross-plotted to give the basic data for later reduction.
While the requirement of [1] is to record crack-mouth opening by means of
a special clip gauge, bcth the basic linearity of materiai response and
the rigidity of the test machine, relative to the specimen, seemed to make
this degree of fidelity to [1] unnecessary for the pilot test series.

The program involved twenty-three specimens, thus allowing for
two reproducibility tests, and for the testing of both uni- and multi-
directional laminates having a range of starter crack lengths. The
material used was a NARMCO graphite-epoxy with Morganite II fibers in
5206 resin.

Reproducibility was evaluated by testing two sets of five speci-
mens, each set of the same lay-up and geometry. The first set was a
uni-directicnal laminate {a - 0°) and had an initial crack length of 0.4
in. The second set was multi-directional (a = (0°/t45°/90°)s) and had
the same starter crack length. Single tests were run for a = 0°, 45°, $3°;
(t45°)s; and (0°/t45°/90°)s. Starter crack lengths were 0.2, 0.4, and 0.6
in, the shortest of which was 12ss than the requirements in [1]. Such
specimens were included to permit evidence of material :ominance to

develop.
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2.2.3 Data Reduction; Results

A typical load-cross-head displacement trace is ieproduced in
Figure 3. There is an initial region of incrcasing slcpe during which
slack in the load train is taken up, and bearing surfaces under the loading
rollers develop. This is followed by a linear region in which the specimen
deforms elastically. A third region of decreasing slope then begins as a
result both of nonlinear load-displacement behavior and of damage initiation.
Finally the 17ad peaks and falls off as the test piece breaks in two.

In ¢rder to differentiate the nonlinear effects from those
ascribable to damage, the Tentative Method prescribes the following data
reduction scheme.l The slope M0 of the linear portion of the curve is
identified, and a line of slope 5% less than Mo is drawn as shown in
Figure 3. This line intersects the curve at a load termed PS. If PS is
the greatest load withstood by the specimen to that point in the test, PS
is set equal to Pq. If any load maximum precedes PS, then PQ is equated
to that maximum value. In either case, the experience in metals testing
has shown PQ to correspond reasonably well to the noint of failure initi-
ation. In the absence of a suitable data base for composites, this pro-
cedure was used to find PQ; the data obtained is thus surely consistent
and probably conservative. Together with specimen georetry, PQ is tnen

used to compute KQ, the critical stress intensity or candidate fracture

1t should be borne in mind that the present discussinn is but an abstract
of a most explicitly defined procedure; the interested reader is urged
to consult [1] for complete details.
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toughness.2 See [2,3].

For each laminate, the KQ values were averaged to give Kb which,
in turn, was used to find a critical strain energy release rate GQ — see
[3,4]. The results are shown in Table I. Also of interest are the
failure surfaces, depicted in Figures 4-8; a specimen that did not part
fully is shown in Figure 9.

2.2.4 Discussion

At the outset, two questions were posed regarding the utility of
LEFM in characterizing fracture of composites. The first concerns paths
of crack prolongation; the answer may be inferred from inspection of the
failure surface. The second involves use of LEFM as a data reduction
scheme; the answer to this question comes from physical measurements.

The appeararnce of the failure surfaces suggests that, in the
main, the crack and loading dominate fracture. In Figure 4 {specimens for
which a = 0°), the path of crack growth is observed to be roughly coplanar
with the starter crack. Note that in the case of the longest crack
(a = 0.6 in), where a longitudinal secondary crack formed, the path is
generally forward, Irdeed, the crack seems to have made a series of

sharp turns tc regain its coplanar path,

It is not surprising, on the other hand, to see that, in the
a = 45° specimens, the crack grew along a plane containing no fibers.

This is clear in Figure 5 and, although fracture occurred as the result

21n metals testing, certain additional steps are taken to establish the

validity of an individual test result. Since these steps neccssitate

use of the yield stress, they cannot be foilowed in this work. Thus only
candidate values of fracture toughness, or K., are reported. The data
cannot be presumed to give K for these mat8r1als because compliance
with the strict requirements Igs [1] are definitionally impossible.

38

R

A



o

Ry

of crack propagation (in the matrix), the mode is a mixture of opening
and sliding [3]. More sophisticated instrumentation would have permitted
articulation of the relative presence of each mode, but such jnstrumenta-
tion was not used in this program.

Forward crack growth is evident for the a = 90° specimens as
depicted in Figure 6. Growth again was along a plane containing no fibers
which, in this case, is coplanar with the starter crack.

During testing the uni-directional specimens described above
emitted popping noises prior to failure. Because the fracture process
also involved matrix breaking of one sort cr another, the two phenomena
are believed to be related. Even in the a = 0° specimens, the crack ap-
pears at the outset to have operated on virtuall: independent fiber bundles
as they pulled out from the matrix. The resulting failure surfaces are
very rough for the early stages of growth but then become more nearly
uniform. The noise levels for the remaining specimens were much lower,
and their failure surfaces are less suggestive of matrix cracking.

Figure 7 is instructive in that it shows for the o = (z45°)S
test pieces an increasing crack dominances as the starter crack is made
longer. For a = 0.2 in, the crack path almost immediately turns 45° from
its initial orientation, there being but a slight indication of forward
growth. A greater tendency toward coplanar growth is apparent when a = 0.4
in, and crack dominance is manifest when a = 0.6 in. Crack growth is not
possible on a plane containing no fibers — there being none by virtue of
the lay-up — and some zig-zagging is apparent. This group of specimens

thus shows a transition from some material dominance where the starter
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crack is shorter than required by the Tentative Method to a fracture
pattern fully dominated by the starter crack, as the length of the starter
crack occurs.

Crack dominance is also clear in Figure 8, which shows failure
surfaces for a = (0°/t45°/90°)s. In these specimens, the crack moved in
jts own plane but apparently grew further in the interior of the test
piece than on its surface. An indication of this behavior, not uncommon
in metals testing, is shown in Figure 9.

The use of KQ to characterize behavior ov these specimens appears,
on the whole, to be warranted. The reproducibility tests on the a = 0°

specimens3

and the a = (0°/t45°/90°)S specimens were satisfactory. Load-
displacement traces are shown in Figures 10 and 11, and the average KQ

values found are

a=0° P Ky = 28.8 x 10° b/int/in 08
a = (09/+45°/90°) + Ko = 21.7 x 10° /invin 1172

The scatter is not unlike that found in metals testing. For three
laminates, the data are fairly consistent with values obtained independ-
ently by Halpin [5] (25-28 x 10° 1b/in?/in, a = (0°/£45°/90°) ) and by
Wefss [6] (31 x 10% 1b/in®/in, a =0° 19 x 10° Ib/in%/in, « = (245°),)

using other specimen geometries (shape and thickness) and load arrangements.

Inspection of Table I will show further that the KQ values for
various starter crack sizes are within a reasonable range of the average
Eb for each laminate. It should also be noted that the majority of largest

deviations occur for subsize starter cracks, and none of these is serious.

3One exception occurred for the a = 0° specimen set; because it was the
first specimen of the entire series tested, it is presumably due to

lack of experience with the test procedure, rather than material variation.
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2.2.5 Conclusions

This pilot test series has been successful, for it has answered
the questions posed at the outset. The failure mechanism of the specimen
tested is crack dominated in most cases, and the procedures of LEFM can
be applied even where the overt failure mechanism is not so obviously
dominated by the starter crack.

There remains, however, a variety of gquestions about cracks in
an aavanced fiber composite material. Some concern the effects of speci-
men geometry and load arrangement., and can be answered only by furthe
testing. Such work is needed, first, to define and delineate more fully
the respective influence of cracks and material. Further, the entire
matter of fracture in composites needs for its resolution an extensive
data base similar to that which has evoived for metals. The building of
this kind of experience is important not only to determine what constitutes
meaningful laboratory work, but also to provide guidance in treating
sgrvice situations. Experimentally determined KQ values for given
laminates might also be relat to the properties of individual laminae
within other laminates. Ultimately, the designer should be in a position
to use fracture toughness as he would other material properties.

It would now appear that efforts to address these questions are
warranted, for the present test series indicates that, when suitably
modified to account for anisotropy, linear elastic fracture mechanics may

usefully be applied to advanced fiber composite materials.

4]
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Figure 1:

Three-point bend specimen geometry, with crack shape snown in
inserts, both schematic {left) and actual (right). Fiber
direction given by a, crack length by a. Specimen thickness

0.5 in {nom); all dimensions given in inches.
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Figure 8: Failure surfaces for a = (0°/t45°/90°)S specimens of two

starter crack lengths (a = 0.6, 0.4 in).

Y

Figure 3: Failed but unbroken specimen (a = (0°/t45°/90°)s, a =0.2 in).
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Figure 10: Traces of load vs. cross-head displacement for five specimens

used in reproducibility tests for a uni-directional laminate

(a = 0°, a = 0.4 in).
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Figure 11: Traces of load vs. cross-head displacement for five specimens
used in reproducibility tests for a muiti-directional

laminate (a = (0°/i45°/90°)s, a=0.4in).
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CHAPTER III
STRENGTH OF MECHANICALLY FASTENED JOINTS
3.1 AN INVESTIGATION OF STRESS CONCENTKRATIONS INDUCED IN COMPOSITE
BOLT BEARING SPECIMENS
3.1.1 Introduction

This study is concerned with materials which consist of parallel,
high strength fibers supported in a relatively ductile matrix material.

The fibers act as load carriers while the matrix serves principally as a
load transfer medium. In particular, it is concerned with advanced fibers,
such as boron or graphite, in an epoxy matrix.

Because of their superior specific strength and specific stiff-
ness, advanced fiber composite materials have a vast potential in the aero-
space industry. Lamina, which are single layers of parallel fibers sur-
rounded by th. matrix material, are swa ked at various orientations relative
to one another to form a laminate. This procedure enables the designer to
achieve desired strength and stiffness properties and to increase the
structural efficiency of a given amount of material.

The strength and stiffness properties, however, are highly
directional; panels fabricated ont of layers of unidirectional composite
tape are anisotropic. The designer thereiore has the difficulty of includ-
ing the effects of this anisotropy in his calculations.

One particular problem area in a structure made of composite
materials is the bolted joint. The bolted joint in a composite materiafi
has a significantly lower efficiency than the same joint in metals.

Furthermore, the composite join' may fail in unique modes not found in

metal joints.
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This study, therefore, investigates the stress concentrations
induced in anisotropic plates loaded by ueans of a single fastener hole.
The study is an attempt to further understand the failure characteristics
of such bolced joints. The development of a prediction capability for
both the failure mode and ultimate load is the major goal of the early
part of this work. Such a capability would allow synthesis rather then
analysis to be used in the future design of fastener joints. An implied
goal in this study is an evaluation of the three proposed anisotropic
failure criterion; maximum stress, maximum strain, and distortional
energy.

3.1.2 Analysis Method

A constant strain, finite element computer program using tri-
angular elements was medified to handle anisotropic composite materials
using lamination theory as presented in [11. The experimental work done
on bolt bearing specimens, from which this study draws neavily, only con-
sidered cross-plied laminates which were mid-plane symmetric. As a result,
this numerical study is also limited to this class of laminates. It is
important to remember that the use of lamination theory ignores inter-
laminar shear; consequentlv, it is expected that the degree of error in
the results will vary with specimen anisotropy.

The design of a finite element grid representation to simulate
the bolt bearing test specimen was subject to two major considerations
First, the grid had to be sufficiently detailed around the bolt hole to
pick up the large stress gradients which are induced in *this area.

Secondly, the number of elements and nodes was restricted by the storage
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capacity of ine computer. Taking advantage of the two lines of specimen

symmetry shown in Figure 1 only one-fourth of the specimen was included
iz in the finite element simulation. Figure 2 shows a computer plot of the
specimen section for e/d = 5.0, s/d = 10.0, and £/d = 20.0. The grid

representation used contains 480 elements and 279 nodes. The conditions

1 ; of specimen symmetry are met by forcing the x-displacement of the vertical
lire of symmetry and the y-displacement of the horizontal line of sym-
metry to be zero in each computer run. A computer subroutine was also
developed which transforms the co-ordinates of the grid shown in Figure 2
to any desired spe :aen geometry, i.e., e/d, s/d, £/d.

To check whether or not the grid was sufficiently detailed around
the hole an isotropic test case and several anisotropic test cases were

rur. A uniform tension stress was applied to the ends of each sp. imen.

Comparison with the isotropic results presented in [2] (See Figures 3a and
3b) and the anisotropic results of [3] indicated that further refinement

of the finite element mesh around the hole was not necessary. The observa-

] ; tion that the computed finite element values of stress are higha: than the

w

exact values agrer; well wi*h the vesults illustrated in [4].

A cosine distribution of normal stress acting over the upper half
of the hole surface was usea *n simulate the resulting stress distribution
caused by the bolt. The interaction was, therefore, assumed to be fric-
tionless. Bickley 5] shows this to be an excellant approximation for
isotropic bolt bearing specimnens. A finite element analysis of the bolt-
specimen interaction in certain composite laminates was performed at
General Dynamics [6]. T7he cosine distribution of normal stress was again

shown to be a realistic approrimation of the interaction stresses.
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Further confidence was gained in both the cosine distribution anu

the grid mesk by running an isotropic bolt bearing test problem and ob-
serving the qualitative agreement of the computed stress field around the
hole surface (See Figure 4) with work by Coker and Filon [7]. The speci-
men used in their study had significantly larger values of e/d and s/d
anc¢ thus a quantitative comparison was not possible.

Finally, two other normal distributions of stress, which were
significantly different from the cosine distribution (See Figure 5), were
used as the bolt-specimen interface stress boundary condition for one of
the composite material specimen runs.

The net force in the load direction in each case was equivalent.
It was observed that significant variance about the cosine distribution
resulted in insignificant alterations of the calculated stress fields for
the specimen considered.

3.1.3 Strength and Failure Mode Predictions

The selection of specimen geometries for this investigation was
made from data which nas been published by General Dynamics [8,9] and
Grumman Aerospace [10]. Included were two net-tension failure specimens,
two shear-out failure specimens, one bearing failure specimen and one
specimen which exhibited failures in a transition region between a net
tension and combination failure mode. See Figure 6 for illustraticns of
these various failure modes.

Performing a strength analysis on a laminated composite material
may be based on the strengths of its individual 1amina. The strength of
a single orthotropic lamina can, in thecry, first be determined experiment-

ally, producing an ultimate strength envelope €or that material. This
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three dimensional surface (in terms of principal lamina stresses) could
then be used to analytically predict the ultimate strength of the total
laminate. The state-of-the-art has yet to reach this level of sophisti-
caticn. The present three dimensional ultimate strength envelope is con-
structed using only five points on the stress axes due to the, as yet,
unsolved problems encountered in off-axis testing.

The Hi1l failure criterion is a widely accepted representation of
this three dimensioral envelope; it has been found in this study to be
the only reliable means of predicting bolt bearing specimen failure modes.
As shown in [11] lamina failure is predicted to occur when the foliowing
set of principal stress ratios (normalized on their respective ultimate

stresses) add to a number, DIST, greater than or equal to one.

DIST (01 ; e ] e )2 A Y fe m
01y 02y T12y | %1y %1y 02y,

Figures 7 through 10 are piote 7" DIST for typical net tension, shear-out,
1

vearing, and combhinaticn failur: modes respectively.  An initial applica-
tion of the experimenta: failure lcad was used as the applied load for
ezch computer run. The resultiny certour plots were sufficient to predict
the failure modes in all but the shear-out cases. Fer these specimens it
was someiimes necessary to consider the ratios of lamina principal stresses

to their respective ultimate stresses to differentiate beuween a plug type

shear-out mode and a benaing, tear-out mode.

]Figures 7a through 7d represent DIST contour plots of four laminae which
compose a net tension failure specimen. A single plot of the major load
carrying lamina for each of the other three failure modes is included to
iTlustrate the contuur patterns for these various modes.
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Prediction of failure load was also made on the basis of the
Hill criterion. The values of DIST in the first row of circumferential
elements around the hole were considered for each lamina. A successive
failure analysis similar to that discussed in {12] was used to predict
ultimate load. As soon as an element in any given lamina achieved a value
of DIST aqual to 1.C that lamina was assumed to have failed and was locally
removed from the laminate. The load was then redistributed among the re-
maining laminae and all values of DIST were recalculated. If all recalcu-
lated values of DIST were less than 1.0 more load was applied until another
lamina reached faiiure. This process was repeated until total laminate
failure occurred.

The predictions of failure load based on equation (1) were always
conservative. The degree of conservatism varied with failure mode, but
more importantly it appeared to be a function of specimen anisotropy. To
date only 0°/93°/445° specimens have been considered. The pred.:cted
failure loads for the net tension specimens improve greatly as the percen-
tage of +45° lamina decreases (See Table 1). For example, for a 100%
(+45°) laminate the predicted failure load is about one-half the experimen-
tal failure load. For a (+45%740°) laminate which contains 62 5% (+45°)
lamina the predicted failure load is about nire-tenths the experimental
failure load. This same type of behavior was reported by Grumman Aerospace
[13] in a study they performed on laminate tension data.

The Hill criterion was the only criterion of the three which was
conservative in predicting failure load for each specimen investigated.

Both the maximum strain failure criteriun and the maximum stress failure
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criterion overpredicted at least one specimen ultimate load. That is,
even when the experimentally determined failure load was applied the ratio
of principal strains (or stresses) to their respective ultimate strains
(or stresses) did not exceed 1.0 as is required by these two criterion
respectively.

Investigatio~ of expeiimentally {ailed specimens exhibit excellant
agreemeat with predicted failure behavior. For example, specimens which
foiled according to a slug type shear-+:ut wode exhibited relatively smooth,
clear fracture surfaces. The high valves of DIST for the shear-cut
failure mode pictured in Figure 8 are a rasult 2f very high principal
shear stress ratios in these reygions, which wuulc iend to rather smocth
shear fracture surfaces. Cn the other hand, specimens which fail-d by a
berding, tear-out failure mode (which is also considered a shear-out
failure mode by some investigators) exhibited a very coarse, jagged frac-
ture surface. This behavior is again expected from the computed stress
ratios. Along lines at +45° in a (0°/90°/+45°) specimen, where the
values of DIST are high, the largest stress ratios act in the first
principal direction. These are the stresses which are trying to break
fibers in tension. As a result, as the triangular section is being torn
away ‘rom the specimes, fibers along these failure lines at :45° are be-
ing broken in tensior; resulting in a very coarse, jagged fracture surface.

Another interesting feature of the experimentally failed speci-
mens was the presence of a highly localized region of laminate destruction
at the bolt-specimen interface. It was observed that a bearing failure of

variable magnitud2 had occurred in conjunction with almost every other
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type of experimental failure mode. This behavior was again predictable
as is shown in Figures 7¢c, 7d, 8, 9 and 10.
3.1.4 Future Work
Three important areas in this analysis where simplifications have
been made will be investigated in the future.
1) The effects of interlaminar shear on the stress field
near the hole.
2) The significant variation in material properties and
ultimate allowables reported in the literature.
3) The non-linear stress-strain response of the composite
materials.
The need for reliable off-axis failure data is also critical to the com-
plete understanding of the failure of a composite structure under compli-
cated loading. It is felt that continued investigation of the simple
bolt bearing problem will yield further clues as to the mechanisms of
failure due to stress concentrations.
It was also felt at the completion of this project that a similar
failure analysis could be performed on more complex mechanically fastened
joints made of composite materials. Such an investigation has been

performed by this investigator and is reported in the next section.
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3.2 TOWARD A DESIGN PROCEDURE FOR MECHANICALLY FASTENED JOINTS
MADE OF COMPOSITE MATERIALS

3.2.1 Introduction

Currently much emphasis is being directed toward replacing
metal components in weight sensitive structures, such as aircraft,
with composite materials, due to their superior specific strength
and specific stiffness properties. The potential weight savings which
could result from such practices, however, have not, as yet, been
realized.

Significant weight savings can be achieved throughout
the bulk of a replacement component by tailoring the composite
material to efficiently carry the loads which are known to occur in
the existing metal component. The weight savings which result,
however, are usually eliminated due to the inefficient joint2 designs
which are proposed by the designer to fasten the replacement component
to the remainder of the existing structure. The measure of efficiency
used here is simply load carried per pound of material. Thus, if a
given load is to be carried by a structural member, the load carrying
efficiency of that member increases as its weight is decreased.

In the design of metal joints only three failure modes
need be considered; net tension, shear-out, and bearing. For a given
metal the values of FTU' FSU' and FBRU can be experimentally determined
and used to specify the joint parameters S, E, and t respectively,
given the bolt diameter. Thus, the design of metal joints is based

on a very limited amount of experimental data.

%he term joint will imply a mechanically fastened joint throughout
the report.




Consider the complications which would arise if a similar

empirical design procedure, were used for joints made of composite
materials. First of all, several additional failure modes are ex-
hibited by composite joints which do not occur in metal joints, due

to the anisotropy of composite materiels. Thus, for a given laminate
the amount of data required for design purpdses would be abcut

doubled. The major problem, however, is that the feasibility of
obtaining effective stréss allowables which can be related to geometric
parameters for splitting, shear-out, or bending tear-out failure modes
in composite materials has yet to be determined.

Secondly, consider the problems associated with the
selection of joint lamination. The designer is using a material
which may be tailored to satisfy certain design constraints which
are application dependent. The number of possible lay up patterns
which could be considered during a single design are innumerable.
Thus, the amount of data acquisition which would be necessary to
support an empirical design procedure in composite joints is prohibi-
tive.

As a result, the designer is presently forced to select
a laminate for which some data does exist. Since laminate effective
stresses for the various failure modes are unknown, an overly con-
servative design must be proposed by the .'esigner based on his
interpretation of the available data. An overly conservative design,

unfortunately, implies that additional material has been used wherever

79




Laconmaiio

W——Y 7

necessary to compensate for a lack of confidence in predicting various
failure modes. Such practices, of course, lead to inefficient designs.
There is one other important difference between metal joints
and composite joints which should be mentioned. It can be deduced,
using the results from [1], that the stress concentration factor
which results in an anisotropic joint is greater than that which
occurs in a geometrically similar isotropic joint. This is, of course,
a disadvantage associated with using composite materials in joints.
It is, however, more than compensated for by the materials specific
strength and specific stiffness properties.
To recover the potential weight savings of designing with
composite materials new design procedures must be proposed which
will result in optimum joint designs with respect to total joint
weight. It is the purpose ot the weported study to investigate
such improved design procedures.
A first attempt at such design procedures is proposed and
is discussed in detail in Section 3.2.6. The procedures are sufficiently
general that they may be used in conjunction with most availeble
optimization routines. The results are being programmed by this
investigator using an in-hcuse pattern search optimization routine.
Given valid input data, the program is designed to output that joint
design in design space which has the minimum total joint weight
while satisfying all the imposed design constraints. The results w'll,

of course, only be as accurate as the assumptions on which the an<lysis
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js based. As a result, further investigations regarding the accuracy
of these assumptions is warranted and will be performed by this investi-
gator.

As mentioned above, three failure modes have been observed
in metal joints: net tensic shear-out, and bearing. Each of these
modes exhibits ductile fracture behavier. In composite joints not
only are there additional modes of failure to consider but fracture
behavior ranges from ductile to brittle, depending on the failure mode
being considered.

Finite element stress analyses of bearing and shear-out
failures in composite materials [2] have shown that large regions
of laminate destruction, on the order of a hole diameter in size,
occur prior to actual laminate failure. It was also found that
highly localized regions of laminate failure, about two orders of
magnitude smaller than those required for bearing and shear-out
failures, were present when net tension failures occurred. It is
apparent, therefore, that these various failure mechanisms must
be understood before a truly optimum joint design can be achieved,
since a single failure criterion is not applicable to all the possible
modes of failure in composite materials.

A recent study [3] has postulated the existence of a small
but finite region of intense energy which supposedly governs failure
in composite tension coupons. If stress concentrations induce such

regions of intense energy in composite tension coupons a similar
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phenomenon should occur in composite bolt bearing specimens. The
results reported in [2], therefore. tend to support such a theory.
To further understand the phenomenon, a finite element
study was performed for several composite tension coupons and is
reported in Section 3.2.2. Again, very small, highly localized regions
of laminate destruction were observed prior to actual faiiure. As
a logical extension to the tension coupon experimeatai study [3]
four gzometrically similar bolt bearing specimens were designed,
Section 3.2.2, to fail in net tension using a quasi-isotropic boron-
epoxy material. These specimens are presently being fabricated and
will be tested at General Dynamics. Fort Worth. If a characteristic
crack length hypothesis is indeed valid, significant differences in
applied failure stresses for these specimens should be observed.
These differences should be predictable from the theory presented
in [3].
The design procedures outlined and discussed in Section
3.2.6 are only intended to represent an initial attempt at moving
toward the desired design procedures for joints made from composite
materials. In Section 3.2.7 those areas which require further investi-
gation are indicated.
3.2.2 Investigatior of the Characteristic Crack Length Hypothesis
Past experience with predicting net tension failure in

anisotropic bolt bearing specimens using the distortional energy
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failure cr'it:er'ion3 [2] has shown that a smail but finite region of
material at the hole surface is always “"past the point of failure"

before laminate failure occurs. These regions were originally considered
to result from an inherert conservatism of the finite element solution
technique. A recent sutdy performed at General Dynamics [3] has postulated
the existence of a region of intense energy in composite teasion coupons
which seems to govern failure. The finite element results [2] in
retrospect appear to support such a -theory.

In the study performed at GD a series of graphite/epoxy tension
coupons were designed and tested to failure. The specimens were identical
in overall size and lamination but the sizes of the circular cutouts
varied. If a similar series of metal specimens were tested it would
be possible to predict the failure loads of all the specimens from the
experimental failure load of a single specimen, using scaling factors
which are only geometry dependent. In the case of the graphite/epoxy
coupons a simple scaling of failure loads was not possible. It was
found, however, that the observed failure behavior could be explained
via fracture mechanics if the existence of a region of intense energy
or a characteristic crack length was hypothesized. For a given laminate

the size of the region was assumed constant.

31t is well known that the Hill failure criterion is not a distortional
stress energy. However, because of the close similarity with the iso-
tropic failure criterion of distortional energy, the phrase “"distortional
ene;gy failgrg'e criterion" will denote the Hill failwve criterion as used
in Section 3.1.
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As previously mentioned highly 1acalized regions of predicted

laminate failure have been observed via finite elements in composite
bolt bearing specimens. An investigation to determine whether or
not similar regions could be observed via finite elements in compusite
tension coupons has since been completed. Two specimens were selected
from [3] for analysis. The failure loads predicted by the theory [3]
for these two specimens were used as applied loads for the computer
runs. Using the most recent graphite/epoxy material constants and
ultimate allowables it was found that for a tension coupon containing
a 1.0 inch diameter hole the reginn of localized failure measured
50 mils. Likewise, for a soecimen containing a 0.2 inch diameter
hole the region measured 31 riils. The characteristic crack length
proposed “or the laminate used in the actual specimens was approxi-
mately 40 mils and agrees quite well with the finite element results.
Distortional energy contour plots for the various laminae in the 1.0
inch diameter specimen are shown in Figure 1. Localized lamina
failure is predicted to occur when the value of the normalized
distortional energy exceeds 1.0 {2].

There are several reasons to suspect that the values of
the distortional energies near the hole are not entirely accurate. -
Finite element size differences in the two specimens at the hole
surface, the effects of interlaminar shear at the circular boundaries,

and uncertainties regarding the cross term in the distortional energy



f3ilure criterion probably account for a iarge percentage of any
possible error. The fact that a small region of material appears to
be “past the point of failure” in both specimens before laminate
failure occurs, however, 's the significant result rather than the
actual sizes of these regions.

If a region of intense energy actually governs failure in
composite tension coupons it should also govern failure in bolt bearing
specimens made of the same materiai. Thus, four geometrically similar
bolt bearing specimens were sized using a quasi-isotropic graphite/
epoxy laminate to see if differences in experimental failure loads
could be observed and explained using the characteristic¢ crack lengih
hypothesis. The equations presented in [4] were used to size che ini-
tial design, Table 1. The ultimate load predicted by the equations
for a net tension failure was slightly less than that necessary for
a bearing faiiure and only about two thirds that necessary for a
shear-out failure. A computer analysis of the proposed specimen
configuration indicated that a net tension failure would occur at
preciseiy the load predicted by the equations. The resulting dis-
tortional energy plots for the initial design are shown in Figure 2a.

Note, however, that the results repuirted in [2] indicate
that before a bearing failure may occur in a bolt bearing specimen
a large region of material directly ahead of the bolt must exhibit

normalized distortional energies greater than 1.0. Thus, the computer
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analysis predicts a net tension failure to occur well ahead of any
possiole bearing failures, Figure 2a. This, however, disagrees with
the behavior predicted by the equations.

At the request of Mr. J. R. Fisenmann the specimen was
recized tn eliminate even the remotest possibiiity of premature
bearing failures since such failures would give no information re-
garding the possible presence of a characteristic crack length. In
the revised design (Table 2) the specimen width has been decreased
and the edge distance increased. The equations now predict a net
tension failure to occur well ahead of both bearing and shear-cut
failures. A computer analysis of the revised design again indicated
that a net tension failure would occur (See Figure 2b). The failure
load predicted by the computer analysis, however, was 58% greater
than the failure load predicted by the equations. Both the equations
and the finite element analysis agree that a net tension failure
will occur well ahead of both bearing and shear-out failures. The
two methods disagree significantly, however, on the predicted
failure loads.

These differences in predicted failure loads indicate
clearly that basing bolt bearing specimen failure predictions on
the equations presented in [4] is very dangerous. The equations are
empirical in origin and only apply w2 a limited range of specimen

geometries. The revised design is obviously outside the region

of applicability.
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3.2.3 Review of Past Design Prugrams Involving Composite Joints

Two programs involving the design and testing of joints
made of composite materials were recently completed at General
Dynamics, Fort Worth. In the original program [5] specimens were
sized to fail in n2t tension at the innermost row of bolts. The
maximum load to be carried by a joint was first specified. An
estimate as to bolt load partitioning was next made based on the
designers understanding of load distributions in isotropic joints.
The laminate to be used was selected and the joint dimensions were
then scaled from existing single- and double-fastener coupon data.

During testing, eight of the nine specimen designs
failed in a splitting mode rather than the desired net tension mode.
Thus the techniques used in sizing these joints proved to be un-
satisfactory.

In the second joints program [6] only one joint was designed
and tested. The maximum load to be carried by the joint was again
specified. The designer assumed that each bolt in the joint would
carry an equal percentage of the total joint load at failure. The
longitudinal strains in the spiice piate and main plate were set
equal at two locations in the joint; midway between the first two
rows and last two rows of bolts. The specimen was sized at these *wo
locations to fail in net tension at the innermost row of bolts. A
linear taper in both geometry and lamina thicknesses was then em-
ployed. The resulting joint design was built and tested. It failed

in nct tension at the innermost row of bolts as desired.
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The major criticism of the latter design procedure is

that it ignores the interaction between bolt load partitioning and
joint geometry. The design procedures proposed by this investigctor
include such interaction relationships. The following section,
Section 3.2.4 describes the proposed load partitioning analysis in
detail. In Section 3.2.5 the analysis technique is used to predict
bolt load distributions for six specimens selected from [5] and [6].
The results are used as input data for finite element analyses of
the various specimens. A joint failure criterio. is then proposed
which, when applied to the finite element results, successfully
predicts failure modes and conservatively predicts failure loads

for each of the specimens.
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3.2.4 Evaluation of Load Partitioning in Joints

Tc design a joint one must tirst understand the way in
which changes in joint geometry affect bolt load partitioning.

Two methods for predicting bolt load distributions in a given joint
are proposed here. The first will be referred to as the point strain
matching technique, and the secord, as the displacement matching
technique.

In both techniques only a single column of bolts will be
considered. Larger joints may be constructed from identical colun:
of bolts connected to one another along their common sides. When
stress anelyses are performed for su.h joints curves presented in
[7] vi11 be used to correct for the effects induced by the adjacent
columns. Both techniques assume that all bolts act as rigid pins

and that the effects of plate bending are negligible.

3.2.4.1 Point Strain Matchirg Technique

In the point strain matching technique the average longi-
tudinal strain in the main plate, €m? is equated to the average
longitudinal strain in the splice olates, €gs midway between each
set of adjacent bolts in a given column. Referring to Figure 3 we
may write

i
p (121 41) = (F - 2R) / (Exphy) (1)

and .
1
g (o i+1) =g 0/ (EA) (2)
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The notation (i, i + 1) implies evaluation at the midpoint between
the bolts labeled i and (i + 1). Note that equations (1) and (2)
are written for joints loaded in double shear. The equations may
be used, however, for joints which are loaded in single shear if one
half the total cross sectional area of the single shear splice plate
at the various midpoints is substituted for As‘

The assunptionvis now made that

em(i,i+l)=es(i,i+l) (3)

Substituting equations (1) and (2) into (3) and rearranging we have:

i F
LP = Ex) A (x (4)
k=1 1+ 1 m m
2 \EDITADT ] 5 541

Equation (4) may be evaluated for i = 1, N - 1, where N
is the total number of bolts per column. Thus, equation (4) represents
a total of (N - 1) equations in N unknowns, namely P] thru PN. Oﬁe
other equation can be written which relates the individual bolt
loads. It is, of course, the overall joint equilibrium equation.

F=1 P (5)
k=1 K

For a given specimen the modulus and cross sectional area of both
the main plate and splice plates are known at every point along the
specimen. Therefore, equations (4) and (5) can be used to solve

directly for P] thru PN.
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3.2.4.2 Displacement Matching Technique

In the displacement matching technique the change in length
of a section of main plate between two adjacent bolts is equated to
the change in length of the section of splir: plates between the
same two bolts. That is

Alm (i+i+1)-= AL, (i+1+1) (6)

Equations (1) and (2) may be rewritten as follows:

i
(F-kgl Fk) dx

at, = (7)
Em(x) Am(x)
1 ]
. - 2 P) dx 8)
2 Es(x) As(x)

These equations iequire tha® the modulus and cross sectional area
of both the .nain plate and splice plates be expressed as functions
of x. Integrating {7) and (3) with respec: to x from X; 0 Xo 4 g
and substituting into {(6) it follows that

i M
¢
L h=wesr— *F )
k=1
whe-e
Ki+1 At
M = dx ard S= c xdx = (10)
E (x)A {x s S
X m m X.

i i
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As before from equilibrium we liave

N
F= ¢ Pk (M)
k=1
% Equations (9) and (11) represent N equations in N unknowns which may

be solved directly for P] thru PN'
The point strain matching technique is used in Section 3.2.5

to calcuiate load distributions for the specimens analyzed. The

1 load distribution for one of the specimens was calculated a second

time using the displacement matching technique. A comparison of the

results is shown in Section 3.2.5. The differences in load distribu-

tions are seen to be negligible.

The displacement matching technique i. hased on a more

realistic assumption regarding physical joint behivior than is

pala e adia AE Sre

the point strain matching technique. Thus the reader may prefer to
use the displacement matching equations in the proposed joint synthesis
procedure discussed in Section 3.2.6. Further investigation

regarding possible Jifferences in t! : predicted behavior of the two

techniques is warranted.
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3.2.5 Computer Analysis of Experimentally Failed Composite Joints

The purpose of the analysis phase was to establish a pro-
nosed joint failure criterion which could be automated and included
in the final optimization program. The proposed criterion should
be able to predict both joint failure location and failure mode. It
should also be conservative in predicting failure loads and as simple
operationally as possible.

Six joints designed and tested at General Dynamics were
selected from [5] and [6] and were analyzed via finite elements.
Table 3 describes these various joints in detail.

Analyzing a complete joint in a single finite element run
with any degree of accuracy was impossible due to computer storage
limitations. It was, in fact, only possible to analyze one hole
at a time to achieve suitable accuracy.

Thus, the following analysis procedure was used. Each of
the joints analyzed consisted of a number of identical columns of
bolts as illustrated in Figure 4a. It was ascumed that each column
could be analyzed separately and that each carried an equal share
of the tctal joint load which was present at failure. The joint
geometries of six specimens selected for investigation were such
that if the joints were made of an isotropic material the effects
of adjacent columns of bolts would be negligibie [7]. The equations

from [1] indicate that the stress concentration factors which result
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in anisotropic tension coupons are always gr.-ter than the stress con-
centration factors which result in geometrically similar isotropic
tension coupons. It is reasonable to assume that the same holds

true for bolt bearing specimens. Thus the assumption was made that
the effects of adjacent columns of bolts were negligible in the

actual composite joints since for the same applied loads a greater
stress concentration factor implies a more rapid stress field decay.

To determine the effects of adjacent columns of bolts
on the column of interest in the synthesis routine the graphical
results from [7] will be used due to a lack of similar information
for composite materials. Thus, conservative designs with respect to
specimen width will result. Excessive conservatism implies a wasting
of material and unwanted weight. Thus the degree of conservatism
which results from using the correction factors from [7] will be
investigated in the future.

The point strain matching technique was used to determine
the bolt load distribution for each of the six joints. The restlting
distributions are shown in Figure 5. The displacement matching
technique was only applied to one specimen, specimen 6, for reasons
of comparison with the poirt strain matching technique. The displace-
ment matching results are included in Figure 5 and are denoted by the

dashed lines. The differences between the two sets of results are

seen te be negligible.
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As mentioned above it was necessary to isolate single bolt
holes for analysis to achieve suitable finite element accuracy. The
holes which were selected for analysis were modeled as single
fastener coupons as shown in Figure 4b. Each hole in sp~cimen 6
was analyzed while only the first and last holes were analyzed for
specimens 1 thru 5.

The stress boundary conditions for the resulting single
fastener coupons were determined from the bolt load distribution
results in the following manner. Consider the ith hole in the
column of kolts illustrated in Figure 4c. The load carried by the
ith bolt is PBi' From equilibrium considerations we require that
a skin load. Psi’ of magnitude

N
P.=1 P

(12)
ST o4l Bk

be carried by the leading edge of the ith coupon. The skin load was
applied to the leading edge of the coupon as a uniform stress in the
computer analyses. In the actual specimens, hovtever, the material
surrounding a given bolt hole does not see a uniform skin stress

in the vicinity of the preceding loaded hole unless the holes are
separated by a sufficient amount of material. Compare the actual
stress distribution at the leading edge of the imaginary coupon,

Figure 6a, with the uniform stress distribution imposed at that
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boundary in the finite element analysis, Figure 6b. The amount of

load which must flow around the bolt hole in Figure 6b is significantly
greater than that in Figure 6a. Thus the resulting stress concentra-
tion factor in the cymputer analysis will be greater than that which
occurs in the actual specimen.

Corrections were made to the computed stress concentrations
using [8] in an attempt to accsunt for the error induced through the
use of the uniform skin stress boundary condition. Distortional
energy cuatour plots for the six specimens analyzed are shown in
Figures 7 thru 12. It has been found by this investigator [2]
that such plots are extremely convenient for data presentation.

In regions of high distortional energies the principal stress ratios
which are dominant have been indicated. Table 4 summarizes the
important information contained in these figures.

Figures 7 thru 11 are for the five specimens selected
from the original testing program at General Dynamics [5]. The
first four specimens failed experimentally in splitting modes which
appear to originate, upon examination of the specimens, at the last
row of bolts. The fifth specimen, Figure 11, failed experimentally
in net tension at the first row of bolts. Figure 12 represents
the single specimen tested in the second General Dynamics program [6].
It also failed in net tension 2t the first row of bolts. The
experimental failure behavior of these specimens, in conjuactinn

with tne stress analysis results illusirated in the figures, was

used in the development of the proposed joint failure
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criterion. A description of how the criterion evolved is presented
helow.

Consider for the moment Figures 7 thru 10. The stress
patterns are identical; the values only differ slightly. The dis-
cussion which follows for Figure 7 is also valid for Figures 8 thru 10.
A region of very high distortional energies occurs in the 0° laminae
directly ahead of the last row of bolts in the specimen. The °2/°2ut
stress ratios are dominant in the region, which implies local matrix
failure (splitting). The maximum value of °1/°1uc in the region is
0.49. Results from [2] indicate that once the 0° laminae split

(i.e., 02/02,4 > 1.0) a value of 01/0 . 2 0.65 is necessary to cause

¢
a bearing failure to occur. Thus, even though the 0° laminae have
split, Figure 7, the values of °1/°1uc are not large enough to cause

a bearing failure tc occur.

It has been assumed here that matrix failuie does not
significantly .uyrade the laminate since the percentage of hoop load
carried by the 0° laminae directly ahead of the bolt was small. How-
ever, in specimens where a large percentage of the hoop load is carried
by the matrix prior to failure a similar assumption is not possible.
Conrsider a specimen consisting of almost all 0° laminae and only a
few +45° laminae. Matrix failures in the 0° laminae would result in
significant load transfer from the 0° laminaz t¢o the +45° laminae.

Even if laminate failure did not occur as a result of the load transfer

the lam:nate would be signi{icantly damaged. it is apparent, therefore,

97




ol =

|
!
|
|
{
|

VR

that a successive failure analysis must be included in the final design
procedure to account for such load redistribution.

High distortional energies also result in the 0° laminae
at e = 90°, Figure 7, at both the first and last row of bolts due to
large values of °l/°1ut in these regions. The maximum distortional
energy value at the last row of bolts, 2.0, is greater than the maximum
value at the first row, 1.5. The same is true of the maximum values
of °l/°1ut in these two regions. If the 0° laminae were to fail, the
$+45° laminae would not be able to carry the additional load transferred
to them from the 0° laminae; as a result, laminate failure would occur.
Thus a net tension failure at the last row of bolts is the most probable
failure mode indicated from the results so far.

The assumption that matrix failure does not significantly
degrade the laminate is valid throughout specimen 1. The regions of
high distortional energies which result from large °2/°2ut ratios are
therefore eliminated from consideration. The only remaining region
of interest is the one in the +45° laminae which occurs at t.c last
row of bolts where the fibers are tangent to the hole. Both the
maximum distortional energy value and maximum °1/°1ut value in this
region are greater than the corresponding values which indicatea a
net tension failure at the same hole. Once the +45° fibers break
in tension the remainder of the laminate cannot carry the existing
load and laminate of failure also occurs. Thus a splitting mode

is favored over the net tension mode previously indicated for
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specimen 1. Since all the possible regions of failure initiation have
been examined a splitting mode is predicted by the analysis. The
actual specimen did indeed fail in a splitting mode. The predicted
failure load is conservative. If PF is the actual experimental
failure load for specimen 1 the distortional energy failure criterion
predicts failure to occur at PF//§7§ or 0.64 P.. The maximum stress
failure criterion predicts failure to occur at P./1.5 or 0.67 Pp.
Analyses of specimens 2 thru 4 yield very similar results.

Following the same procedure it can be deduced that a
bearing failure does not occur in specimen 5, Figure 11. Both the
distortional energy and maximum stress failure criteria conservatively
predict a net tension failure to occur at the first row of bolts,
which again agrees with the experimental failure mode.

Predicting failure for specimen 6 is slightly more compli-
cated. The finite element results, Figure 12, indicate that o,/0; .
reaches 0.65 at the last row of bolts in the 0° laminae prior to
matrix failure, 02/02, = 1.0. A bearing failure is predicted to
occur in such a case at that load where either °2/°2ut reachtes 1.0
or °‘/°1uc reaches 1.0, whichever occurs first. The assumption
is made at bearing failure initiation that the bolt causing the
bearing failure to occur is unable to carry any additional load during
subsequent specimen loading. The additional applied load is dis-

tributed among the remaining bolts in the column in proportion to
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the loads which they carried at bearing failure initiation. Figure
12 is the finite element representation of the state of stress
present in specimen 6 when the experimental failure load was applied.
Notice that °2/°2ut = 1.0 and °1/°1uc = 0.80 in the 0° laminae
directly ahead of the last row of bolts. The material ahead of
the last row of bolts has failed in bearing and load redistribution,
as described above, has taken place. A load distribution plot for
specimen 6 is illustrated in Figure 12. Note that the revised load
distribution plot is much more uniform than that of Figure 5(f).
Observe that regions of high distortional energies do not
occur in the vicinity e = +45° at any of the bolt holes except at
the last row of bolts in the -45° laminae. Matrix failure is on
the verge of occurring here. Net tension failures, however, are
indicated at various locations along the specimen which would occur
prior to matrix failure in the -45° laminae. A splitting mode is,
therefore, definitely not indicated by the distortional energy plots.
Regions of high distortional energies in the 0° laminae
at © = 90° are present at the first and third through sixth rows
of bolts. The maximum distortional energy value, 1.2, occurs at
the fifth row. The largest value of o0,/0) ut'in these four regions
of interest is 1.03, which also occurs at the fifth row. Thus,
both the distortional energy and maximum stress failure criteria

predict a net tension failure to occur in specimen 6 at the fifth
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row of bolts at 0.97 PF’ where PF is the actual experimental faiiure

load for the specimen. The predicted failure load is again conserva-
tive but only by about 3% as opposed to about 35% for specimens 1
thru 5. The predicted failure mode was again correct but the location
was not.

The analysis of specimen 6 shows that the design was a
good one, in that each hole was close to failure when the joint
failed experimentally. Notice also that the various bolts were
fairly equally loaded when joint failure occurred. Some designers
feel that such a bolt load distribution is necessary if a joint
is to carry load efficiently. The validity of such a statement can
only be determined by further analytical and experimental investi-
gation.

Thus a joint failure criterion has been proposed which
has successfully satisfied the requirements imposed on it
at the beginning of Section 3.2.5. The criterion wds able to predict
both failure location and failure mode in all but Specimen 6
where it incorrectly predicted failure location.
More importantly it wes able to conservatively predict failure loads
for each specimen. It was found that the maximum stress failure
criterion agreed wifh the distortional energy failure criterion
to within just a few percent in predicting failure loads. It was also

found that failure was always initiated at locations around hole




surfaces where fibers were being broken in tension and were tangent
to the hole surface.

Therefore, to make the failure criterion as operationally
simple as possible we need only check for fiber failures where the
fibers run tangent to the hole surface. A successive failure
analysis must be performed at these locations to insure against
premature failures induced by matrix failures in other laminae.

The successive failure analysis should also be performed in regions
where fibers are perpendicular to the hole surface since matrix

failures in these laminae may also induce premature laminate

failures.
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3.2.6 Proposed Mechanically Fastened Joint Design Program

The preceding sections explain the procedures one would
go through if a given joint were to be analyzed. A method is now
proposed by which a joint may be designed to meet certain design
constraints while attempting to minimize total joint weight.

An outline of the proposed mechanicaily fastened joint
synthesis program is presented below to give a general understanding of
the procedures involved in arriving at an optimum joint design with
respect to total joint weight. The various procedures are then

discussed in detail.

3.2.6.1 Outline of Proposed Synthesis Program

(A) Specify the known input data.

(8) Determine the design variables and their range of allowable values.

(C) Specify the necessary design constraint equations which wiil
insure that joint failure does not occur until the design
ultimate Toad is reached. The design ultimate load will be
included as part of the input data.

(D) Specify an initial design.

(E) Calculate the various bolt loads for the current proposed geometry
using the bolt load partitioning results, Section 3.2.4.

(F) Perform a stress analysis of the proposed design to determine the
average laminate stresses at various critical points along each of

the circular boundaries. A zlosed form solution to the problem
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illustrated in Figure 13a, based on the theory presented in [9],
will be used to perform the required stress analyses. Corrections
will be made to account for the effects of finite specimen size
from [10].

(G) Transform these average laminate stresses to lamina stresses.

(H) Determine whether any of the lamina stresses exceed the design
constraints imposed in (C).

3 (I) Assign penalty funcfions to the weight function for each design
constraint which is not satisfied and calculate the total weight
for the proposed joint design.

(J) Select a new design by moving in design space along a path
which tends to decrease the total weight function.

(K} Repeat (E) thru (J) until a suitable optimum design is achieved.

{L) If desired, a detailed stress analysis may be performed for the
proposed optimum design using finite elements, Section 3.2.5. A
final check may be necessary since the stress analyses performed

in (F) are based on isotropic correction factors.

! 3.2.6.2 Discussion of Program Details
% 3.2.6.2.1 Input Data

The following information will be read intc computer program

as input data. It may be desirable in later work to include one or

more of these parameters as program variables. The diameters of the

bolts used in a given joint will all be the same, Q&. The actual size

4Underlined symbols and phrases denote input information.
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will be dictated by joint applici”ion as well as by standard size

limitations. Given an effective: shear allowable for the bolt material,
FSUB’ and the maximum load to be carried by the joint per column of
;;;;eners, F, one may determine a safe number of bolts, N, to be used
in a given column since it appeai's from the analysis of specimen 6
that a fairly uniform load distribution is desirable.

Selection of the splice plate material will be application
dependent. The material.will probably be either a high strength
steel or titanium. In either case the values of fI!ff f§;f and f!B!i
must be input so that constraint relationships may be later defined
to insure against splice plate failures in net tension, shear-out
and bearing respectively. In the load partitioning calculations
the splice plate modulus, ES’ is also required.

Similarly a deci;;;n must be made as to whether boron/epoxy

or graphite/epoxy will be used as the main plate material. The

material properties and ultimate allowables must be input for the

material system selected.

The leading edge distance of the main plate must be de-
fined since values of FSU are not tabulated for composite laminates.
Such information would be very valuable to the current effort since
excessively large edge distances result in low joint efficiencies.
A value of E/D = 4.0 will be used for the leading edge of the

composite main plate. A value of E/D may be calculated for the




g' for the leading edge of the splice plate from the value of FSUS and
4

the maximum bolt load carried by the last row of bolts, which will
be determined using the bolt load partitioning analysis.

In summary the required input data is:

(=

4 Bolt diameters
] FSUB Effective shear strength of bolt material
t F Maximum Toad to be carried per column of bolts
N Number of bolts per coiumn
FTUS Effective tension strength of splice plate material
Fsus Effective shear-out strength of splice plate material
FBRUS Effective bearing strength of splice plate material
Es Splice plate modulus
Eyre B2 : . : .
Composite material lamina propertiss
612> V12
Tyt %2yt
®1yc* %2yc
€1yt0 €24t Lamivia ultimate allowables (Main plate)
Elm. Ezuc
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3.2.6.2.2 Design Variables

In this section seventeen parameters are defined which
can be used in conjunction with the input data to completely define
a given joint. If restrictions are not imposed on ihe design once
the input data is determined, the seventeen parameters would represent
seventeen design variables. If restrictions are imposed the number
of design variables would be less than seventeen.

At the beginning of the program, just after the input data
is read in, flags will be used to indicate which of the seventeen
parameters are to be predefined. The values of these predefined
parameters will then be read in as additional input data. The remaining
parameters will represent the design variables.

In some cases the design variables have been restricted to
a certain range of allowable values. Optimization routines require
a well defined design space within which they may search for local
minima. Therefore, where 1imits have not been specified for design
variables it is uo to the programmer to do so.

The program has been restricted to the (0/:a/%8/90) class
of laminates; a and 8 being design variables. The values of a and 8
are restricted to the range 15° to 75°. It may be desirable later
to restrict the possible values of a and 8 to integer values, but for
the present work integer optimization procedures will not be used.

It will also be required that at least one ply of each of the four

lamina orientations be present in each proposed design. In this
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manner we are assured that fiber failures will accompany laminate
failure regardless of failure mode. A design where a and 8 are set

g equal, (0/ta/90), is also acceptable since fiber failures still must
accompany all possible laminate failure modes. The total thicknesses
; of the various lamina orientations are assumed to be, at most, linear
functions of x, the position along the joint. More complicated lay
up patterns will not be included in the present study.

] Consider the joint design shown in Figure 14. The seventeen
possible decign variables are indicated on the figure. As previously
mentioned the values of (E/D)m and (E/D)S will be specifie( “y the
program. If a joint is being designed which will consist of a number
of identical columns of bolts the widths of the main plate and splice
plates must be equal and constant along their lengths. The designer
must input such information as described above.

In summary the seventeen possible design paramters are as

‘ follows

Pargmeters Deseription Range

a, B Lamina orientations 15° » 75°
HS(O), HS(L) Width of splice plate at x=0, L 3D »
tS(O), t2(L) Thickness of splice plate at x=0, L +
W>(0), u;(L) Width of main plate at x=0, L D -+

L Joint length [2(N-1)+4]D +
to(O), ta(L) Thickness of 0° lam. .ae at x=0, L 1 ply
t90§0), %o(L)  Thickness of 90° laminae at x=0, L 1ply
t 0;, t+a(L) Thickness of :a° laminge at x=0, L 1 ply -+
t;B(O " t;B(L) Thickness of :8° laminae at x=0, L 1ply »




ine Tower limits on the widths and length measurements are based on
a minimum separation of free surfaces of one diameter. These values
may be changed by the programmer if desired. The upper and lower

l1imits which have not been specified must be provided by the programmer.

3.2.6.2.3 Design Constraints

Once a design is proposed it must be loaded to design
ultimate. The joint failure criterion, Section 3.2.5, must then be
applied to determine whether or not the proposed design can indeed
carry the design ultimate load, as required. In order tc automate
the process of examining the joint for possible failure at the ith
critical location an equality constiraint, F(i), must be defined.
For the in-house pattern search optimization routine, the equation
must be written in such a form that F(i) < 0 if failure is not indi-
cated. If failure is predicted to occur, then F(i) > 0. As previously
mentioned a penalty function is added to the weight function when
F(i) > 0. To minimize the total weight of the joint the design must
move in design spéce in a direction which tends to reduce the penalty
functions.

Consider the possible failures which could occur at each
hole along the joint. They are:

(1) Bolt failure in shear.

(2) Splice plate failures in bearing, shear-out, or net tension.

(3) Main plate failures in bearing, shear-out, net tension,

splitting, bending tear-out, or combination modes.
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An inequality constraint equation must be written for each of the
possible failure initiation sites.

To test for bolt failure in shear we calculate the maximum
shear stress, TAU, acting on the bolt cross sectional area.

TAU = Pg / (=R2) u3)

PP represents the bolt load acting at the hole of interc:t.
The magnitude of PB is determined via the bolt load partitioning
analysis, Section 3.2.4.

To insure against a bolt failure in shear we require that
TAU s FSUB' Stating this in the form of a valid inequ.lity constraint

we have:

F(1) = P / (aR2) - g (14)

Similarly, to insure against splice plate failures at a

given hole in bearing, net tersicn or shear-out we have respectively:

F(2) =P / Dt - Fgp’ (15)
F(3) = (Pg + P) , t(S - D) - Fr® (16)
F(4) = Py / 2tE - Fg” (17)

The skin load, PS’ is calculated from ecuation (12). The values of
t, E, and S for a given bolt bearing model are determined as was shown
in Figure 4.

Now consider the possible composite main plate failures.
Once a stress analysis is performed, checks for possible failure

initiation musi be made at four locations (possibly only three if
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a equals g) around each hole as discussed in Section 3.2.5. Bearing
failures may or may not be considered desirable. If they are, the
load redistribution procedures discussed in Section 3.2.5 can be built
into the cemputer logic. To simplify the following discussion assume
that bearing failures are undesirable.

Thus, if at v = 0°, a matrix failure occurs in the 0°
1aminae (°Z/°2ut 2 1.0) a bearing failure would be predicted to
occur when °1/°1uc = 0.65. If matrix failures do not occur during
loading then °1/°1uc 2 1.0 would be necessary for a bearing failure
to occur. Since the likelihood of a bearing failure is only dependent
on the stresses at © = 0° in the 0° laminae, an inequality constraint

equation may be written at that location of the form

oor,, 1.0 i aplog, < 1.0
F(s) = (18)
al,/aluc - 0.65 if Oz/Ozut 2 1.0

It was postulated in Section 3.2.5 that all failure modes,
except bearing, have one thing in common. They all seem to occur
at locations where fibers are tangent to a hole surface. Ina
(0 /+a/$8/90) laminate fibers are tangent to the hole surface at
e = 90°, (90 - a)°, (90 - 8)°, and 0° in the 0°, +a®, +8°, and 90°
laminae respectively. If, at ultimate load, matrix failures have

occurred at any of these hole locations load redistribution among the
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various laminae must be considered. The stresses in the remaiaing
laminae would be recalculated. A check would then be made in the
laminae which are tangent to the hole surface to see whether or not
the fibers have failed in tension. The inequality constraint used

for this purpose is:

F(6) = 01/, - 1.0 (19)

Equation (19) must be applied four times per hole; to the 0° fibers
at o = 90°, the 90° fibers at 6 = 0°, the +a° fibers at o = (90 -a)°,
and the +8° fibers at © = (90 - 8)°. Thus, a total of nire inequality
constraints must be satisfied at each and every hole.

In the past, designers have designed for net tension failures
at the innermost row of bolts. An equality constraint of the form

01/oyyy - 1.0 = 0 {20)

could be imposed on the stress field in tne 0° laminae at the innermost
row of holes to force the design to fail there in ne’ tension. Such a
restriction is not justified, however. When an optimum design is
arrived at using the nine inequality constraint equations per hole, one
of the nine equations will, in the process, be automatically forcad

to zero. This will specify joint failure mode and location. Net
tension failures at the innermost row of bolts may not result when
minimm weight designs are required.

3.2.6.2.4 Design Procedures

In order to begin the design process an initial design
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must be selected. The initial design must, of course, be in the

design space which is defined by the upper and lower limits placed

on the design variables.

If the designer has a design in mind he may use it to
activate the program. Otherwise, the program will specify an initial
design. The in-house patcern search routine uses a random number
generator for the purpose of specifying initial values for the design
variables. It may be desirable to use several random starting points,
if run times are not excessively long, to check for possible local
minimum in the design space.

Once an initial desian is proposed the bolt load partitioning
results would be used to caiculate the bolt load distribution for the
geometry and lamination selected. To perform such calculations the
main plate and spiice plate cross sectional areas as well as the

main plate modulus must be defined as functions of x. Referring

back to Figure 14 it can be shown that

AL(x) = [(t (L)-t (0)) (x/L) + t (0)] [(H_(L)-W _(0)) (x/L) + W (0)] (21)
A (x) = [(t (L)-t (0)) (x/L) + t (0)] [(W _(L)-W_(0)} (x/L) + W (0)] (22)
It has been found by this investigator that a quadratic polynomial in

X can be used to represent the modulus of the main plate to within

a few percent when linear variations in lamina thicknesses are employed.
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Thus, the modulus of the main plate may be determined at several locations
along the joint using lamination theory and a second order curve of the
form

£ (x) = AxZ + Bx + C (23)

may be fit to the resul ting moduius values. The values of A, B, and
C will be determined automatically by an internal curve fitting
subroutine for the proposed design.

The only remaining unknowns which are needed to ralculate

the bolt load distribution are the coordinate 1>cations of the N

E bolts. Since L, the joint length, and (E/D)m, the leading edge
, distance of the composite main plate, are known, we may express
E the N bolt locations as:
=11 1. (E =
X(I)-N_][ <D)m] where I = 1, N -(24)

The bolt loads could then be calculated using equations (4) and
(5) or equations (9) and (11).

The next step in the design procedure is to perform a row
by row stress analysis of the proposed design. The column of bolts
is broken down into individual bolt bearing specimens as shown in

Figure 4. The value of PSi would be calculated using equation (12).

Thus, each bolt bearing model is acted on by a bolt load, PBi and
a skin stress, Ogi = Psi/St‘ Since a finite element solction of

each bolt bearing specimen is too costly the following procedures will

be followed.
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The problem of an infinite plate containing a circular cutout
which is loaded as shown in Figure 13a will be solved. This investigator's
solution [11] to the problem illustrated in Figure 13b will be added
to the solution of the problem illustrated in Figure 13c, which is
presented in [12]. Corrections to the stress concentration factors
induced at @ = 90° and © = 0° will be made to account for the effects
of finite specimen size using the results presented in [13] and [14].
Corrections to the average laminate stresses along the circular boundary
from © = 0° to © = 90° can then be estimated.

The corrected average laminate stresses would be transformed
to lamina stresses and checks would then be made tc see if the design
constraints discussed in Section 3.2.6.2.3 were satisfied. Penalty
fonctions would be assigned to the weight function for each of the

constraint equations which was not satisfied and the total joint

weight would then be calculated. The optimization procedure wouid
determine a preferred path and select a new design along that path
which would have a lower total joint weight while more closely
satisfying all the imposed design constraints.

[ The entire process, beginning with the calculation of bolt
loads for the new design would be repeated until the “:sign constraints
were all satisfied and a local minimum weight were achieved.

[ Since the design procedure uses isotropic correction

factors to account for finite specimen size there is, of course, some
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doubt concerning the actual failure behavior of the proposed optimum
design. Therefore, it may be desirable to perform a complete stress
analysis for the proposed optimum design to see how closely the
predicted failure behavior would agree with the desired failure
behavior. The analysis method described in Section 3.2.5 would be used

if the final check were to be made.
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3.2.7 Areas of Future Work

Several important questions have been raised regarding the
solution technique thus far which deserve mention and in most cases
warrant further investigation. The first involves the basically
different failure mechanisms which can occur in a given joint made
of composite materials. Net tension failures appear to behave as
brittle failures once a very small but finite region of localized
laminate destruction occurs. Bearing failures and shear-out failures,
on the other hand, do not occur unless extensive laminate damage
has resulted during loading. Thus bearing and shear-out failures
behave in a relatively ductile manner. Additional analytical and
experimental work must be done to understand the various failure
mechanisms which occur in composite joints betore truly optimum
designs can be achieved. The results of the proposed geometrically
similar bolt bearing specimen testing program should bring us
closer to such an understanding.

In metals, effective bearing strengths, FBRU’ and effective
shear-out strengths, FSU’ have been experimentally determined and
are used in the design process to specify such parameters as leading
edge distances. Similar information is generally not available for
composites due to the number of possible laminatas which could be
used for design purposes. Such "material properties” would be

invaluable, however, in the design of composite joints and deserve

further investigation.
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Similarly, a lack of data ccncerning the effects of finite
size on stress concentrations induced at circular cut-outs in composite
plates has forced us to predict these effects from available isotropic
data. Making corrections from isotropic data results in a conservative
design and is, therefore, partially satisfactory. The need for

correction factors could be eliminated, however, if the in-house two

dimensional anisotropic integral equation program developed by Dr. T. A.

Cruse could be built into the optimization program in such a way as
to not result in excessive computer run times. One other technique
would be to derive the necessary correction factors for various
laminates using the integral equation prograr and use such data in
place of the isotropic correction factors which are now being used.
Both possibilities are presently being investigated.
The following questions will also be considered:
(1) Are uniform bolt load distributions and nec tension failures at
the innermost row of bolts requirements for optimum joint designs?
(2) Is it advantageous to use the displacement matching technique
rather than the strain matching technique to predict bolt load
distributions?
(3) How should 10ad redistribution in a joint be handled once a
bearing failure occurs either in the main plate or splice plates?
(4) Is the uncertainty regarding the cross term in the distortional
energy failure criterion, as discussed in [15], a major problem

to be considered? A preliminary investigation performed during
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the contract period has shown that in certain cases the cross
term may be the most important term in the energy relationship.
These questions wiil be pursued as part of this investigator's doctoral

thesis during the current academic year.
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Table 1. Initial Bolt Bearing Specimen Design
Spec.] D E S B t | No. |Predicted Failure Loads(1b}
No. Plies|Equations{4)[Finite Flements
1 125 7§ C.31 1 0.5311.875 ] 0.08 16 647 647
2 0.250 1 0.62 | 1.06 | 3.750 | 0.16 32 2,587 2,587
3 0.375 1 0.93 ] 1.59 | 5.625 ] 0.24 48 5,820 5,820
4 0.500 | 1.24 | 2.12 ] 7.500 } 0.32 64 10,350 10,350

Table 2. Revised Bolt Bearing Specimen Design

; =
Sggf. ’ : > . - P??és Ezugligngi:?.}gzitt gg:mlgts
1 [ o025 | 0.50 | 0.375f 2.25 [ 0.08 | 16 400 625
2 |0.250 | 1.00] 0.750 a.50 [ 036 32| 1,600 2,500
3 |o0.355| 1.50] 1.12d 6.75 [ 0.24 | 48| 3,600 5,620
4 [o0.500 2.00] 1.50d 9.00 [ 0.32] 64| 6,500 10,000
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Table 3. Description of the Six Specimens Selected for Analysis

Spec.| Lamiration |Splice Plate]loading|Rows of] Bolts |FailurejUltimate
No. Material Bolts |per Row| Mode iLoad(1b)
1 B/E.0,/+45 D6-AC Steel] SS 6 4 SP 94,200
2 | B/E,0,/145 | D6-AC Steel] ss | 5 4 sp | 115,500
3 8/5.04/t45 6-4 T4 SS 5 4 sP | 110,400
4 | B/E,0,/t45 | D6-AC Steel| SS 4 4 SP 125,400
5 8/5,02/t45 D6-AC Steel DS 4 4 T 189,000
6 {6/EL0/a5 | 6-4T1 | ss | 6 2 T | 74,80
Nomenclature: Notes:
SS  Single Shear (1) Lamina thicknesses vary 1inearly
DS Double Shear along the specimen length from
Boron-Epoxy 02/145 at the first row of bolts
Graphite-Epoxy to 02/t453 at the last row of

Splitting

Tension

123
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Table 4. Summary of Significant Data from Figures 7 thru 12

Bearing,0=0° Tension.e=90° Splitting,0=+45° l
Sggf. ﬁg? Of Lamina 0° Lamina +45° Lamina § -45° Lamina
°:lc °:it DIST °:lt DIST °:lt DIST OZit DIST
Firstf 0.07 | ¢+ | 0.02 ) 1.05} 1.5 }o0.21]0.10]0.83]1.10
] Last | 0.49 | 2.50 | 5.80 ] 1.33 1 2.00 ] 1.50 | 2.50 | 1.65 | 3.20
First| 0.10 | 0.04 | 0.01 J 0.91 | 1.00 Jo0.42 ] 0.25] 0.80 | 0.75
: Ltast ] 0.50 J 2.30 | 5.10 | 1.11 [ 1.1 ] 1.30 | 2.10 | 1.55 | 2.60
First} 0.07 | 0.05 | 0.01 | 0.83 | 0.90 ] 0.63 | 0.47 | 0.79 | 0.7
’ Last | 0.47 | 2.50 | 6.00 | 1.34 | 1.45 | 1.43 | 2.50 | 1.73 | 3.00
First] 0.13 | 0.29 | 0.11 Jo0.85 | 0.85 [0.58 , 0.40 | 0.69 | 0.55
: : Last f 0.52 | 2.80 | 7.95 | 1.07 | 1.51 ]1.55 | 2.70 | 1.90 | 3.75
First] 0.30 | 0.56 | 0.42 | 1.29 | 2.00 ] 0.79 | 0.90 | 0.92 | 0.90
é ° Last § 0.60 | 2.00 | 4.00 J1.02 | 1.1 |15 | 1.65]1.21 | 1.88
First] 0.17 | 0.04 | 0.03 Jo0.90 | 0.95 |0.57 | 0.44 ] 0.75 | 1.12
k i 6 [Fiftn] 0.37  0.26 { 0.21 ]1.03 |1.20 }0.63 | 0.60 } 0.83 | 1.15
E sixth] 9.80 | 1.00 | 1.90 ]0.80 | 1.00 ]0.63 | 0.65 | 0.95 } 0.95

C Compressive stress
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0° LAMINA

|

+ 45° LAMINA -45° LAMINA

Ficure 1. Distortional Energy Contour Plots for the 1.0" Diameter, Anisoiropic
Tension Coupon at the Experimental Failure Load.
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Figure 2a. Distorticnal Energy Contour Plots for the Initial Bolt Bearing
Speciman Design at the Predicted Failure Load.
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Figure 2b. Distortional Energy Contour Plots for the Revised Bolt Bearing
Specimen Design at the Predicted Failure Load.




Double Shear Joint Configuration.

Figure 3.
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Figure 4. Bolt Bearing Modeling Procedure for Joints.
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% LOAD
! % LOAD 50—
: 40— 40—
30— 30—
10— 10—
; 0— BOLT o- | | | _J soLt
: ; 1 2 3 4 35 6 NUMBER 1 2 3 4 35 NUMBER
(a) Specimen | (b) Specimen 2
% LOAD % LOAD
; 50— 350~
40— 40—
30— 30—
20— 20—
10— 10—
o | BoLT 0— | BOLT
1 2 3 4 35 NUMBER 1 2 3 4 NUMBER
(c)Specimen 3 (d) Specimen 4
% LOAD % L OAD
1‘ 50— 50—
! 40— 40—
30~ 30—
20— 20—
10— 10—-|i
o I BOLT = BOLT
1 2 3 4NUMBER 1 2 3 4 5 ¢NUMBER
(e) Specimen 5 (f)Specimen 6

Figure 5. Bolt Load Distributions for Specimens 1 thru 6.
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(a) Actual stress distribution

i
H
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(b) Finite element stress distribution

e

Figure 6. Skin Stress Boundary Conditions at the Leading Edge of a
Bolt Bearing Model.
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LB A

+45° LAMINA // +45 LAMINA
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5

-45° LAMINA \\ -45° LAMINA \\\\

LAST ROW FIRST ROW

Figure 7. Specimen 1: Distortional Energy Contour Plots for the Experimental
Failure l.oad‘|32
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-45° LAMINA

FIRST ROW

Figure 8. Specimen 2: Distortional Energy Contour Plots for the Experimental
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Figure 9. Specimen 3: Distortional Energy Contour Plots for the Experimental
Failure Load.
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0" LAMINA

C" LAMINA
q
|+45' LAMINA / | +45° LAMINA //
.7
1.0 1.0 - 0.5
4.0 ,\\‘ \\\
-45° LAMINA \\ |-45' LAMINA \\
LAST ROW FIRST ROW

Figure 10. Specimen 4: Distortional Erergy Contour Plots for the Experimental

Failure Load.
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Figure 11. Specimen 5: Distortional Energy Contour Plots for the Experimental
Faflure Load.
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(a) Problem of interest
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(b)Bolt load only (c) Tension ioading only
Figure 13. The Principle of Superposition Applied to an Infinite

Bolt Bearing Model.
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CHAPTER IV
OPTIMIZATION METHODS

4.1 INTRODUCTION

A computer program for optimization using non-linear programming
by pattern search {OPTIM), written by Martin Schussel [1] was used for this
study. Some time was spent studying this program and a sample problem was
run (torsion of an elliptic bar). The time spent in finding the predicted
result of this problem yielded much insight into optimization techniques
and the OPTIM program itself. |

The bolt-bearing problem was analrzed, using OPTIM, which included
variation of the ply orientations. This study involved a problem with six
variables and four constraints. For a given load, the minimum weight
dimensions and o;-ientations were found. The results of this stucy are
discussed in some detail. |

: 4,2 STRUCTURAL OPTIMIZATION
4.2.1 Background

The structural optimization project consisted of finding the min-

imum weight design of o structure for which certain limitations were posed.
The limitations or constraints can be of the following form:

a) Geometric

Maximum overall dimensions of the structure

- Maximum thickness, cross-section, length, width,
etc, of an internal member

- Maximum deflection of a member

- Maximm rates of deflection
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b) Mechanical Yield criterion

- Failure modes
- Fatique properties

- Natural frequencies

TREVICH R T T T

- Buckling loads
If the structure can be analytically solved for an internal

EIVETTR AP

stress state as a function of the external lcads (given) and the dimensions
of the piece (to be used as variables) then the problem becomes a mathe-

E - matical one: Find the extreme values of a non-linear function of several
variables, subject to one or several non-linear constraints. The function
is usually the weight of the structure and the variables are its dimensions.
The constraints can be in the form of equalities or inequalities. The

equality constraints would generally concern a total dimension which is not

fixed but is the sum of a number of internal dimensions. Inequality con-

straints are far more common, they usuaily insure that yield stresses, J

VT

buckling loads, etc. are not exceeded.

4.2.2 Variational Method

There are several methods of mathematically solving the problem,
but non-linear programming is the only reliable one. Graphical methods
. have a2 very limited use as they can only be used in two-dimensional
problems. Transformation into a series of linear problems by use of Taylor
series expansions is tedious and inaccurate. The use of penalty functions
transforms the problem into an unconstrained minimization. Lagrange

multipliers are an example; the formulation of the problem with Lagrange

k multipliers 1s as follows:
Assume we want to minimize a weight function H(Xi) where X,

(i =1,...,N) are the variables. The constraints to be satisfied are
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3
3

are Fj(xi) =0(j=1,...,M). The Lagrange multipliers (Aj) are added and
we form an unconstrained objective function (P) to be minimized.
P= u(xi) + AJ F‘1 (Xi)

Now setting the derivatives to zero will find vhe extrema:

P
A
Ay

The problem now requires the sclution of N + M simultaneous non-
Jinear algebraic equations in N + M unknowns. Solutions are difficult to
find and are not unique, so this method 15 useless for large, complicated
problems.

4.2.5 Non-linear Programming Methods

By far the most useful methods for solving n0n-11neqr optimization
problems are searching techniques. There are many methods of search
mentioned in the 1iterature (pattern search, directed search, Fibonacci
search, steepest ascent search), but basically they all consist of search-
ing the domain of the variables until no further improvement can be found
in the objective function.

Included in the Appendix of [2] are the listing and instructions
for a pattern search optimization program (OPTIM) by Martin Schussel,
Carnegie-Mellon University 1968. The program works in the following way:
An objective function is defined:

P = €OST + £ A(K) ( F(K) )2

where COST = weight function
A(K) = penalty functions
F(K) = constraints
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COST and F(K) which are functions of the variables ( X(I) ) are
defined by the user of the program in a subroutine called CALC.

The program increases and decreases the variables and recalculates
COST and F(K) until the improvement in the objective function is smaller
percentagewise than 1075,

The program is best suited to handle inequality constraints (less
than or equal) which it handles in the following way: If the constraint
becomes negative during the search it is neglected, but if it becomes
positive it is multiplied by a penalty (some large number A(K)). When the
objective function is minimized the constraints will either approach zero
or remain negative.

The application of optimization to design of structures usirg
advanced fiber composite materials adds @ Jther facet to the problem.

The orientations of the plies become variables as well as the dimensions.
In some cases, the problem can be handled similarly to the above procedure
with the orientations merely being additional variables. However, analyti-
cal equations for composite materials are difficult to derive and are
usually not solvable in closed form. The bolt bearing problem was solved
using empirical equations which relate the failure loads to the dimensions
of the pisce and ply orientations.

4.3 TORSION OF AN ELLIPTIC BAR — VARIATIONAL EXAMPLE

The problem is to find the values of the major and minor axes of
an elliptic bar for minimum weight for a given applied torsional moment
M. The weight {s proportional to the cross sectional area

A = nab (1)

e
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We want to minimize A, subject to the constraint that the allowa-
ble shear stress is not exceeded at any point. Th2 maximum stress is at

y =b, x = 0 and is given by

M
R (2)

If Ty is the yield stress, the constraint equation becomes

M
W—'Tyso

— 2
or 2M nab'rySO

(3)

The solution was then sought using Lagrange multipliers. The
results were incorrect since two more constraints must be added. The
first one is due to the fact that the stress formula is r=ly correct if
a is larger than b.

J5 & (a)

b— ag 0

We must also insure that b and a are positive for the answers to
make sense. If we insure that b is positive, the first constraint allows
a to be positive, thus the last necessary constraint is

b2 0 (5)

We can now change the problem into an unconstrained minimization
problem by the use of Lagrange multipliers and slack variables. The
solution is to find an extreme value of a function F by variational

methods where F is given by

F=nab+2, (rab2- 2. .2)

T (6)
A, (a-b-82) + a5 (b - §2)




where Ay, A,, A3 are the Lagrange multipliers, and y, 8, & are the slack
variables used in inequality constraints. The derivatives of (6) with
respect to each variable yields the following set of equations

_g_:_ = 0 = wb+ amb2 + 2,

_g_E_ = 0 = gma+ A2nab - Ay + 2y

%i_l = 0 = mab2 — % S iré

% = 0 = a—b—g2 (7)
:Y_F = 0 = -2yq

.g—:. = 0 = -28),

% = 0 = -26\4

Since 8=0, (4) gives a=b (circular section); Eqn (3) gives wab2 =

o) for y=0. Since a=b, we have wa3 = Fel and thus
Ty Ty

a =[x V3 &b

The problem was also solved using the optimization computer
program (OPTIM). First the problem was attempted using only the first
constraint and a minimum was found with b about twice .the size of a.
This violated the condition that a be greater than or equal to b for the
stress equation to apply. Next all three constraints were used and the
minimum was found to agree with the analytical result (8). Thus we
conclude that inclusion of aqll constraint relations is absolutely essen-

tial for success.

147

PR iy ™




—

s e

4.4 BOLT BEARING PROBLEM — NON-LINEAR PROGRAMMING EXAMPLE
The problem consists of finding the minimum weight of plates
loaded by bolted joints. The specimen appears as shown below:

: 7§§

}

XL is a constant

D 1is chosen as .375 in.
The weight of the specimen is:
=p(XL +E)S t (9)

The weight of the material which would be in the hole is in-
cluded since it must be wasted. Empirica! equations [3] for the three
faijure modes found in experiments are as follows:
Tension

P s .69 t(s-D)F! (10)
where P = applied load and P cannot exceed the expression on the right.

The sumbol Ft" is defined as:

2
2.7
B +(3M+ u) for 1< 2
1+.0538 [4 M (%) ] ()
M
F - 290 + 27w - BOON 2 162) Fore e

i attntadn .o




where L = % 0° plies
M=%90° plies
N = % +45° plies

The constraint for this failure mode is F(1) = P - .69 t(S-D)FtY.
If this quantity stays negative then P is below failure load. If it
is near zero, failure in this mode is impending. The problem was
treated from two different viewpoints.

First the orientation percentages L, M, and N were held constant
and the dimensions for mirimum weight of the specimen were found. The
answer in this case yields the optimum dimensions for the orientations
chosen.

The second way of treating the problem was to leave the orienta-
tions as variable. This way, both the dimensions and the orientations
were opti..ized. The results showed a 20-30% 1mprovemeht over the fixed
orientations case. The orientations chosen were those of an exper}nnntai
specimen which failed at P = 1020 'b. The program gave a weight reduction
for failure at the same load and with the same orientations.

The problem also included equatiuns for failure in two other
modes-shear out and bearing. These were the second and third constraints.
The failure mode in a given problem is found by checking which of the
three constraints is closest to zero. The consiraints are
Shear Out

P < 2teFY

(12)
F(2) = P - 2¢EFSY

where
F5Y = 40N N> .23
FPU=9.2 N<.25
149
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Dt Dy cbu
Ps7 (1+ .45 t) F

(13)
F(3) =P -0t (14 45D gbu
4 t
where
UL e+ NP
if Lz .25 fb = 600, F" = 30
L M
Ls .25 F =450, F = 80
The results of the program for fixed orientations are shown
in Table 1.
Choose L = 18.2% (0° plies)
M= 9.1% (90° plies)
N =72.7% (£45° plies)

The orientations in Table I were chosen because test data was
available for a failed specimen. The specimen failed at 1000 1bs. and had
the dimensions shown beiow:

P THK EDGE SIDE cost
1000 .056 .50 1.0 .044

The optimum dimensions for P = 1000 give COST = .039 (10%
wieght reduction).

Table II contains the results of the analysis for the case of
using the orientations as variables. Surprisingly, the optimum orienta-
tions do not change for different loads.

The orientations were allowed to vary between .10 and .80 in

the above procedure.
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The results in Table I1I were found for variable orientations

with the possibility of eliminating certain plies. There is some doubt
of the applicability of *he equations for less than 10% of any of the
plies, but it is informative to see what will happen in this case.

The results for all three cases are plotted together for

comparison in Fig 3.

4.5 DISCUSSION .

The OPTIM program has proven to be very effective in dealing with
problems for which analytical equations can be derived. The elliptic bar
and bolt bearing problems treated above are examples.

The bolt-bearing problem is unusual for composite materials in
that analytical equations are available which allow us to optimize both
the dimensions and the lamina orientations. The equaticns are empirical
and therefore introduce doubt as to their accuracy. There also may be
ranges of dimensions or orientation percentages in which they are not
applicable.

Table I shows optimum dimensions for varying load with the ply
orientations fixed. The case of P = 1000 1b. shows a 10% weight reduction
over the experimental specimen. The values of the constraints show this
to be a simultaneous failure in tension and shear out. The cases of P
(applied 1nad) between 3000 1bs. and 15,000 1bs. show failure in all
three modes simultaneo:sly. There is no apparent pattern in the variation
of optimum dimensions with load. The weight is seen to vary non-linearly
with load as can be inferred from Fig 1.

If we allow the orientation percents to vary between 10¥ and 80%

the optimum laminate will be found with respect to both dimensions and

151




—_——

-

e it oy 898 A

e o b e . S B WL A AL Y E DY T WV B I S

R 8 (e scnoalbaalid tad o = TR s wren I " Ml i o < b s b i s e

orientations. OPTIM found values of five of the six variables which were
optimum for all lcads considered. Only the total thickness changed and it
varied linearly with load. This situation forced the weight to vary
1inearly with Toad also as seen in Fig 2. For each load, the specimen
exhibited faiiure in tension and shear out simultaneously with bearing
failure not being a factor. The orientations chosen for each load were
L=73% M=17%, N = 10%. The fact that N was brought to the minimum
of its range ied to the results in Table 3 where N was allowed to vary
between 0% and 80%. The results are similar to those in Table 2 except
that N goes to zero with L and M increasing proportionately. As noted,
the equations may not apply for N less than 10%, but the results indicate
that the +45° laminae are of little benefit in the bolt bearing specimen.
The thickness and weight vary linearly with load as in the previous case.
Ail three cases are plotted in Fig 3. The variable orientation case shows
an improvement on the fixed case of between 30% and 100%, with the case
for N = 0 about 15% better still.

The results show a useful and convenient relationship for design.
The designer is given the optimum orientations and side and edge distances
and he merely chooses his thickress to suit the load which riust be carried.
The empirica’ nature of the equations suggests that experiments should be
r.n to verify tte derived results before putting them ‘ito use as a design

criterion.
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WEIGHT vs. LOAD

L- 18.2%
M= 9.1%| fixed
N= 72.7%

Y T T iy

LOAD (Ibs. x103)

FIGURE 1: WEIGHT VS. LOAD FOR FIXED ORIENTATIONS
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WEIGHT vs. LOAD

0.10 < L,M,N=<0.80

A/

e bk d s R

0 —

| 0 5 10
LOAD (kips)

FIGURE 2: WEIGHT VS. LOAD FOR VARIABLE ORIZNTATIONS
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—
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w
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CHAPTER V
BOUNDARY-INTEGRAL EQUATION SOLUTION METHODS

S5.1 TWO DIMENSIONAL ISOTROPIC BOUNDARY-INTEGRAL EQUATION METHOD
5.1.1 Introduction

The boundary-integral equation method is a new tool for the
solution of many problems in solid mechanics. The method has significant
advantages over ihe finite element method. Nume}ical approximations are
not made over the field but over the surface, thereby increasing accuracy.
The dimension of the problem is reduced by one, allowing many problems too
large for today's computers co be solved. Both of these features permit
the analyst to obtain highly refined data in the vicinity of stress concen-
trations such as near cracks and notrhes.

Important to the user of the boundary-integral equation (BIE)
method, is the ease of data preparation and the rapidity of solution. The
BIE method utilizes a numerical solution of a boundary constraint equation.
This equation relates all of the surface displacements to all of the sur-
face tractions. The analyst specifies how he wishes to subdivide the sur-
face and specifies the boundary data; all well-posed problems are accepta-
ble including mixeu-mixed problems. The geometry is completely general and
may be multiply-connected. Once the surface solution is found the stresses
may be gencrated at any points that the analyst desires on the interior
of the region.

The BIE method has been widely adapted to many problems in solid
mecnanics, as can be seen by the literature [1-8]. The purpose for

presenting it in this report is twofold. First, the tool is being
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developed by the CMU team for two dimensional, anisotropic problems for
use in several on-going research efforts. Second, it is desirable to
make the method available to the widest possible group of users. Listings
of both the isotropic and anisotropic computer programs are therefore
contained in this Chapter.
5.1.2 Review of the Isotropic Boundary-Integral Equation Method

Two elements are required for the develcpment of the boundary
constraint equation of the BIE method. The first is a reciprocal relation
between two solution states (Betti's reciprocal work theorem); the second
is a fundamental solution or influence function (Kelvin's problem of a
point load in an infinite body). The development herein fellows that
used in classical potential theory (see, for example, [9-13]).

The solutiun to Kelvin's problem consists of displacement vectors
in each of the xj directions due to concentrated loads applied in the X,
directions. These solutions are denoted by the displacement tensor Uij;
the appropriate forms can be found in the literature [1-10]. In two
dimensional, isotropic, elastostatics this tensor is

U'IJ(P’Q) = - [Ln(]/r(PoQ)) (3-4\’)61\] + T’i"’j]/&m(]‘\)) (])

In (1) the distance between the point of load application P{x) and the
field point Q(x) is denoted r(P,Q); u and v are the shear modulus and

Poisson's ratio. The derivative of r(¥,Q) in the X, direction is denoted

X.1a~X
. _or j IQ 1IP
r . = = (2)

It is easily shown that (1) satisfies Navier's equation of equilibrium

(]/]'Zv)"i,ij + uj,ii (3)
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A second tensor is required for the use of the reciprocal work
thecrem: the tractions corresponding to the Uij on the physical surface

3R of the body. These tractions, T.., are obtained by using Hooke's law

ij
and the definftion of the traction vector

t, = °1j"j = u[(2v,’]-2v)uk kS ij *u, j + "j,i] "j (4)

Utilizing (1) and (4) the traction tensor T.. is found

ij
Tij = {ar/an[(l-2v)5ij+2r’ir’j]+(j-2v)(nir’j-njr’i)}/4n(1-v)r(P,Q) (5)

After some amount of manipuiation of the reciprocal work theorem
and letting P,Q be boundary points (P not at a corner) the following
boundary constraint equation can be found

P12+ 1us(QT;(PAQS(Q) = 7t5(Q)U; (PSS (6)

In (6) ui.t are the displacements and tractions on the physical surface

i
3R for the problem to be solved.

The numerical solution to (6) is obtained by discretizing the
boundary and boundary data in some suitable fashion. Presently the
displacemer.ts, Uss and tractions, ti’ are taken as piecewise constant
over each of N boundary segments. Work is well underway to use linear
variations. The boundary segments are assumed to be flat in the programs
used by this investigator. This allows for a completely general computer

program for arbitrary surface shapes. When the approximations are made

(6) becomes

N

N
u;(Pm)/2 + I u; (Qn)JT, (Pm.O)dS(O) Lt (Qn)/su, (Pm.Q)dS(O) (7)
n=1 aRn'Y n=19 R
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Eq. (7) can be written in matrix form as

(1/72[1] + [aT]) {u} = [au] {t} (8)
where [I] is the identity matrix; [AT] and [AU] are coefficient matrices
from the integrations in (7): These integrals are calculated analytically
in the program by specifying the coordinates of the ends of the bourdary
segments.

When the boundary data for a well-posed problem are specified
then 2N quantities in (8) are known.and 2N quantities are unknown.
Standard reduction schemes are employed to solve for the unknowns. After
the entirety of the surface data is formed the interior stresses a* any

selected points are found by the quadraturc relation

¥

i
5 t, (Qn) a0, . j(p.Qn) (9)

N
oij(p) =n£] uk(Qn) Askij(P-Q") = el

The tensors ASkij and ADkij are calculated as indicated in [7]. A proced-
ure for calculating the stress tensor at the surface is accomplished using
surface displacements and tractions as discussed in [8].
5.1.3 Use of the Isotropic Computer Program

The isotropic version of the program is limited to linear, iso-
tropic, homogeneous, elastic problems with known material constants .ifor G,
shear modulus), defined as FMU in the program, and v, defined as POISN, or
PR, in the program. The user has available four operating modes for the
program:

Boundary Solution: This capability is the first step always for
each problem as it solves (8) for all unknown boundary data in terms of
specified boundary conditions and geometry. The entire set of boundary

data may be output on punched cards (see next section).
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Interior Solution: Upon completion of the boundary solution
the analyst may request stress solutions, using (9), at as many interior
points he desires by specifying their number and location.

Boundary Solution: The boundary stress solution is based on the
same finite difference result discussed in the Appendix of [8]. The
solution is obtained at a specified boundary segment from the known or
calculated surface tractions and the calcuiated tangential derivative of
displacements. The means for calculating the tangential derivative
is discussed in greater detail in the next section.

Restart: By reading the entire set of boundary data the
program may solve directly for interior or boundary stresses.
5.1.3.1 Dimension Statements

The current version of the program (See Secticn 5.1.5) admits
up to two degrees of symmetry of geometry and boundary conditions. The
program is limited to a total of 80 boundary segments (320 with symmetry).
To increase the size of the program change the following cards,

COMMON / ARRAY] / ---

COMMON / ARRAY2 / ---
in the various routines; also the following sequence numbered cards

should be changed

10060 20035
10065
10075 50005
15050
15200

The program is limited to 200 interior solution points, COMMON / ARRAY3 /
-+, and to 50 surface points, COMMON / ARRAY4 / .
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An 1108 assembler language routine for calculating time is
attached for 1108 users. Other users must supply a similar subroutine
to obtain a time-breakdown chart for each solution; if not available,
insert a2 dummy subroutine, SUBROUTINE TIME (T).
5.1.3.2 Definition of Key Parameters, Matricee

The key parameters are described in cards 15060 - 15115, in
SETUP. These parameters govern geometry (NSEG, NSYM, NNOD), execution
1 options (IPUNCH, ISTRS, IBDY), and particular stress solutions (NPT,
NBDYP). The first card read is a TITLE card followed by the control
numbers, read by cards 15120 and 15125.

e ti e cllded i gtar f oo

The temporary array NODE (I,J) stores the two node numbers
4 associated with each segment number and is read by card 15130. The

temporary array XYZM (1,J) reads in the Xps Xy coordinates of each of

AT AN

the nodes by card 15135.1 The meterial constants FMU, POISN are then
vead by card 15140. '

At this time the program merges the geometric info.mation

e WLE

to form the permanent geometric array XYZ (Segment Number, Node Number,

Coordinate Number). If NPT # 0, the coordinates of the interior stress

S TR I Y A BRI et T Y NV AV

points are read in by card 15225. If NBDYP # 0, three segment numbers
f are read by card 15240. The three numbers in NBDY (I,J) have the
following meanings:

NBDY (Segment No., 1) = Segment number for which stress

calculations is to be done.

: ]0u1y the geometry for the basic symmetric part is read in. If NSYM # O,
1 the program assumes one degree of symmetry (y=0 axis), or two degrees
of symmetry (y=0 axis, then x=0 axis) according to NSYM.
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NBDY (Segment No., 2) = Segment nuroer for the “rear" point
in calculating aU/aAS.

NBDY (Segment No., 3) = Segment number for the “forward"
point in calculating aU/aS.

NOTE: The sequence of numbers in NODE and NBDY is the "rear" number,
then the “forward” number. The positive - s direction is
always taken such that the material is always on the left.

§.1.3.3 Boundary Conditions

T Y O T v Y U —— . 0

The current version of the program uses a NAMELIST read
(Fortran IV) statement. The procedure is to precede and close the
block of boundary data with control cards in the following way

-4 BDYCON

DATA

-$ END

See standard references for formats for the data block.
NOTE: When NSYM = 1,0 the solutions admit a rigid body motion in
: the unconstrained direction(s) (x,y). A displacement freedom

is fixed by letting LDC for that freedom be set to "2".
A1l boundary conditions are initialized to zero and LDC is initialized
to "1". A1l x-direction data is stored, then y-direction data is stored:

o

t, 2 T, NSEG

t % NSEG + 1, 2 * NSEG
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etc. LOC = 1, means traction boundary conditions for the given segment

and direction. LDC = 2 means displacement boundary condition for yiven

segment and direction.

5.1.3.4

5.1.3.5

Column 1
NODE :
XYZM:
FWU, |
POISN®
PTIN:
NBDY :
NAMELIST:

Input Cards:
Information No. Cards
Title 1
Control parameters 1
NODE (NSEG,2) 1 + (NSEG/12)
XYZM (NN0D,2) 1 + (NNOD/8
FMU, POISN 1
Boundary Conditions ?
PITN (NPT,2) 1 + (NPT/8)
NBDY (NBDYP,3) 1 + (NBDYP/8)
Example Problem
; il 6 5 NSEG = 8
e o NNOD = 8
8 7 NSYM = 0
P! 6 IPUNCH = 0
6 ISTRS = | (Plane Stress) :
g1 -*‘4—-— 107 psi 1BDY = 0 {
NPT = 3 ;
@ 2 5 NBOYP = 3 :
3 4
r— $ ol —p
1 M 2 3 X

=1--2--2--3--3--4--4--5--5--6--6--7--7--8--8--1

-0000-2020-0000-1000-0000-0000-1000-0000-2000-0000- 2000- 1000-
-2000-2000-1000-2000

---.1153846E+08---~, 30000
-0500-1000-1000-1000-0750-0750

-«7--7--8--7--6--T--6--5--6

-TCON(5) = 1.0E+6, TCON(6) = 1.0E+6,
-LDc(1) = 2, LDC(2) = 2, LOC(M) = 2,
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E 5.1.5 Listing for Isctropie Boundary-Integral Equation Computer Program
| ¢
g E g MAIN PROGRAM == INITIALIZES DATA = CALLS SURROUTINES
k.
: § COMMON / ARRAY1 / XYZ(100,2¢2)s UCON(200), TEON(200)s LDC(200)
: ; COMMON 7 ARRAY2 7/ BvAL(200)
: g COMMON 7 MATCON /7 FMUs» P ISNe Ple P1y P2y P3» P4, PS5
4 COMMON /7 CONTR1 / NSEGe NSYMe NTNTAL» NSIZE» NPT, NBDYP
3 E COMMON 7/ CONTR2 / TiTiL(16)e IPUNCH» ISTRSs JRDY
E 8 COMMON /7 TIMERS /7 Y (101}
: [
3 C Trne DIMENSTIONS OF THE FOLLOWING ARRAYS ARE PROBLEM NEPENDENT
: C
3 DIMENSION C(160+160)
3 DOURLE PRECISION RHS(160)
Pl = 3.14159205
l 05 CONTINIF
DO 10T = 1,200
3 UCON(]I) = 0.
5k TCON(I) = O.
1 § 10 Bvai (1) = 0.
1 CaLi, TIME ¢ T(1) )
; DO 261 = 2,10
$ 20 T(1) = n.
CALI. SETUP
- IF (1BDY.NE.N) 60 TO 30
i CaLi BvsOLU (Cs RHS)
3 3) CALt INSOLU (C)
i CaLL BDYSTR (C)
1 C
1 g CALCULATE TIME CHART
3 T(2) = (T(2)=T(1))*%10%%(=3)
4 T(4) = (TtabteT(3))s10%s(=3)
3 T(6) = (T(6)=T(H))*}0%*x(~3)
4 T(8) = (T(8)=T(7))*10%2(=-3)
i T(1n) = (T(10)=T(9))*10ex(=-3)
3 WRITE (Ae2000) TITL
3 WRITE (me2100)
4 WRITE (re2200) T(2)s T(u)e» T(6)s» V1(R)s T(10)
1 60 YO0 05
ST0p
1000 FORMAT ( 16ASK)
2000 FORMAT (1H1l., 16AS)
2100 FURMAT ( 21hn TIME BREAKDOWN CHARY //)
2200 FORMAT ( 5X 1SHTIME FOR StTuP F12.7» 2X THSECONDS 7/
SX ISHTIME FOR DELINT F12.7» 2X THSECONDS 77/
SX 1SHTIME FOR SOLVER F12.7. 2X THSECONDS //

THSECONDS 7/

THSECONMDS)

20+10000
2D0+10005
2D+10010
2D=10515
2D+*10020
2D=1002%
20=100320
2D=10035
2D*10040
2D*10005
20*100%0
2D*10055
20*100A0
2D+1006%
20*10070
20#*10075
2D*100R0
20*100AS5
2D0+10090
2N=100°S
2n=101n0
2D=10105
2D=19110
2D*10115
20+10120
2D0*10125
20*10130
2D+10135
20+101L0
2N*1014S
eD=101%0
20=*1n15%5
2D+10160
2D*10165
2D=10170
2D*10175
2D=10180
20410185
2D=*10190
20+1n195
2D*1n200
2D=102nS
20+10210
20710215
2D=10220
20+10n225
2D+ 10230
2D0*10235
2D+10240
2D=10n2u%
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C
c
c

SUBRONTTINE SETUP

COMMON / ARRAY1 7/ XYZ(100¢2¢2)s LICON(200)s TCON(200)s LDC(200)
COMmON 7/ ARRAY2 / BvAL(200)

COMMON / ARRAY3 / PTIN(10002)

COMMON 7/ ARKAYHL / NRDY(50¢3)

COMMON 7 MATCON 7/ FmUr POLSHNe PTe PlLe P2» P3» Ph,y PS

COMMON 7 TIMERS 7/ TiMl »)

COMMON / CONTR1 / NSEue NSYMe NTOTAL» NSIZE. NPT, NBOY?
COMMON 7/ CONTR2 7/ TI1TL{16)¢ IPUNCHe 1STRS, 1BDY

NAMFLIST /7 HDYCON /7 UCONe TCONe LDC
DIMENSIOM NODE(100Ue2) e XYZM(100+2)
EQUTVALFNCE (NQDEes LDC)» (XYZM» UCON)

NSFG = NIMRER OF SEGMENTS ON THE GUUNDARY

NSYM = NUMHFR OF DEGREES OF SYMMETRY STARTING WITH Y, THEN ¥

NNOD = NUMRER OF BOUNDARY NODES CONNECTING ROUNDARY SEGMENTS

IPIUNCH = | == THE BOUNDARY SOLUTION wILL BE PUNCHED OUT

ISTRS = 0¢ PLSTRN == [ISTRS = 1+ PLSTRS

IF IBDY.FR.0 BOUNDARY DATA STORED IN COMMON

IF 1I80Y.NF.0 BOUNDARY DATA READ IN FROM CARDS ADDED TOo END
OF THE UATA DECK

NPT = NUMRER OF INTERIOR SOLUTION POINTS FOR STRESS SCLUTION

NBOUYF = NUMBER OF BOUNDARY POINTS ~0OR STRESS SOLUTION

REAND (S.1000)
REAN (5,1100)
REAN (5,1200)
READ (5,1300)
REAN (%.1400)
WRIYE
WRITE

TITL

NSEGe NSYMe NNOUe IPUNCHe ISTRSe
(INODE(LeJ) ¢ J=102)¢1=1¢NSEG)
CIXYZM(TeJ) e J=102) 0123 eNNOD)
FMlle POISHN

(Ae2000) TITL

(Re2100) NSEGs, NSYMe NNOD, IPUNCH, ISTRSe 18DYe NPT, NRDYP
WRITE (/e2200) (I(NODE(IeJ)oJ=102) e I=1sNS5FG)

WRITE (£e2300) ((XYZM(I0J)eJ=1¢2)21=1sNNOD)

WRITE (he2400) FMUe POISN

NSIZE = 2 * NSEG

IRDY, NPT: NBDYP

00 t0 T = 1.NSEG
DO t0 U = 1.2
00 t0 K = 1.2

N = NODF(IeJ)
10 XYZ2(TIeJeX) = XYZMIN,K)

VO 20 I = 10200

uconi(l) = 0.
20 LDC(I) = 1

REAN (S,RANYCON)

IF (NPT.EQ.N) GO TO 30

REAND (501500) ((PTIN(IeJ)eJd=1¢2)eI=1sNPT)

WRITE (602500) ((PTIN(IsJ)eJ=102)e1=1sNPT)
30 IF (NBDYP.ER.0) 60 TO 40

REAN (5:1600) ((NBDY(Ied)eUu=1e3)eI=1eNRNYP)

WRITE (6:2600) ((NBDY(IoJ)eJ=1¢3)eI=1eNGOVYP)
40 CONTINUE

NFAC = 2%sNCYM

IF (NSYM.FQ.0) NFAC = 1

NTOTAL = WSEG * NFAC

CALCULATE NFFEDED MATERTAL CONSTANTS 170

20*15000
20*1500nS
20*15010
20=15015
20*15020
20%15025
20*150310
20*15035
2D*150u0
2D0*15045
20215050
20%150%5
20=15060
2D*150AS
20*15070
20=15075
20=1S0R0
2D0=1508%
20*15090
20*1509%
20*15100
2D0*15105
2nx15110
20*15115
20=15120
20%15125
20=15130
2N*1513%
2D0x15140
20x15]1u5
20%15150
20=1515%
20+*15160
20+15165
20=15170
20%1517s
20*15180
20*1518%
20*15190
2D%15105%
20 *15200
2081V 205
2D*18;,
2nN=1521 .
20%x15220
20%1522%
2D=15230
20*15235
2D0=152u¢0
20=1524u8
20=152%0
20%1525%5
20215260
20%152A5
20%152790
20=1527%
2D0=152A0
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Pl o 3
IF (ISTRS.E@.1) POIGN = POISN/ () .4POISN) 2D*152R5
Pl = 1o/(ne%PIervUs(1.-P01SiH)) 20#*15290
P2 = 3.=u4.%P0ISN 20*15295
P3 = 1e/(ue*Plel).=PUISN)) 2N=15300
Py = 1.=2.%P01SN 2D+1530S
CALI. TIMF ( TIM(2) ) 2D+15310
RETIIRN 2D%15315
1000 FORMAT (16AS) 2D*15320
1100 FURYAT (tuls) 2D#*15325
C 2D*153%0
] C =ssxsx CAUTION®ss22 FORMATS PrROSLEM DEPENDZNT #*%¢ss CAUTION s*eses 20215335
F C 20+15340
1200 FORWAT (2u413) 2D*15345
1300 FORVAT (31AFS.3) 2D*15350
1400 FORMAT (F1S5.7» F10e%) .2D*153585
1500 FORVAT (1AF5,3) 20%15360
1600 FORMAT (2413) 2D=*1853AS
2000 FORMAT (1H1ls 10Xe 1RAD) 2D*15370
2100 FORwAT (/7 1015) 2D0%15375
2200 FORMAT (/7 a(3X 213)) 20*153R0
2300 FORMAT (// 4(3X 2F10.b)) 20515385
24800 FORMAT (/7 S5X E15.7s F10.5) 2D*15390
2500 FORMAT (/7 4(3X 2Fl0.0)) 20*15335
2600 FORWAY (/7 &«(3X 313)) 20*15400
END 20+15405

m




SURRQUTT
COMMON 7/

NE BYSOLU (Ce RKS)
ARRAYY 7/ XYZ(10002¢2)e 1COR(200)s (CON(200)¢ LDC(200)

AL N S M- T O gl T P

OO0

(2N glg] OoO0On (2 XaNg]

OO0

COMMON 7/ ARRAY2 / AvaL(200)

COMMON /7 MATCON /7 FmUs POISNe PIe P1e P2s P3» P4, PS
COMMON 7/ CONTH1 /7 NSEGs NSYMe NTOTALs NSTZE. NPT, NBOYP
CCMMON /7 CONTK2 /7 TITL(16)e IPUNCHe ISTRSe (80DY

COoMaTL. /7 TIMEKS /7 TIM (10)

DIMENSTGi~ (200) » PXYZ(2)e CINSIZEONSIZE)
EQUTVALFNCE “A» UCON)

DOURLE PRECISIO RHS(NS]ZE)

NMAY = > % NSEG

WRITE (f02000) TITL

IF (ISTRS.ER.0) WRITE (6020SN)

IF (ISTRS.ER.1) WRITE (60206N)

wRITE (ks2100)

WR1TE THE STARTING BOUNDARY CONDITIONS

DO 10 1 = 1+NSEG
J = 1 + NSEG
00 1% N = 1,2
15 PXYZ(N) = (XYZ(IedoN) + XYZ(1¢2eN))/2.

10 WRITE (6+2200) 1¢ UCON(I)» UCON(J)» TCON(I)» TCON(J)»

1 LOC(TI) e LDC(J)» PXYZ(1)» PXYZ2(5)

00 20 1 = 1.NMAX

RHS(1) = n.0DO

IF (LDC(I)e«FR.1) GO TO 30

BVAI (1) = Fmi) = UCON(])

GO TO 2n
30 BVM (1) = Tcon(l)
20 CONTINIIF

CALCULATE NELUe DELTe RHS

CALI TIwF ( TIM(3) )
CaLi DELINY (C» RHS)
CALI. TIMg ( TIM(u) )
WRITE (Re3000) ((C(ToJ)eJ=1sNSIZF) 2 I=1¢NSIZE)

WRITE 2IGHT HAND SIDE vECTOR

WKITE (~e2300) TITL
00 un 1 = 1,NSEG
J = 1 + NSEG
40 WRITE (re2400) o RAS(I)e RHS(J)

SOLVE SYSTFM OF EQUATICONS
CALI TIMmg ( TIM(5) )
CALI SOLVFR (NMAXe HRHSe Ae C)
CALY TIMF ( TIM(K) )

FILL IM UCONe TCON === PRINT RESULTS
D0 &0 T = LelMAX

IF (LUC(I)«FNel) GO TUu &0
TCON(I) = FMm) = A(I)

172

20+20000
2020005
2D%20010
2025915
2020020
2D0*201275
2N*20)30
20#%2€ 035
2D=20040
20%20045
20*%200%50
20%20055
20*20060
20%20065
20*20070
2D0*20075
20*200R0
20*2Nn0£5
2n*2n00Q
20%2NQ05
20+20100
20*2N105
20*20110
20*20115
2N*20120
20+%20125
2nN*2013%0
20*20135
20*20140
20+*201u5
20%20150
20*2Nn155
2D*201A0
20*20165
2020170
2N*2017S
20*201720
20%201R5
20*20190
20320195
20*20200
20+%20205
2020210
20*20215
20*20220
2nN*20225
2n*2N230
20%20235
2N*202480
20*2N0245
2n*20250
20¢20265
2N*2N260
2D*2N24AS
2n+20270
2N*20275
20*202R0




60
S0

120

130

2000
2050
2060
2100

2200
2300
2400
2500
3000

UCON(I) = (1./FMU) + BVALLT)
60 TO 50

TCON(TI) = BvAL(I)
UCON(I) = A(T)
CONTINUF

ARITE (Ae2000) TITL

IF (ISTRS.EQ.0) WRITE (602050)
IF (ISTRS.EQ.1) WRITE (502060)
WRITE (6e21n0)

00 70 1 = 1,NSEG

J =1 ¢+ MSEG

DO RO N = 1.2

PXYZIN) = (XYZ(1edoeN) + XYZ(1e2eN)})/2,
70 WRITE (A»2200) Lo UCON(I)e UCON(JU)e TCON(I)e TCON(J)»
1 LRC(I)e LDCLJ) PXYZ(1), PXYZ(2)

IF (IPUNCHeEQ.0) RETURN
DO 120 ¥ = 1+NSE6
J 2 I + NSE6

WRITE (7,2500) I UCON(I)e UCON(J)

DO 130 T = 1+NSEG
J = 1 + NSEG

WRITE (7+2500) I o TCON(I)e TCON(J)

RETIIRN

FORMAT (1H1., 15A5 // 10X 19HBOUNDARY CONDITIONS)

FORMAT ( 7 ul 18H PLANE STRAIN #2233 ) )

FORMAT ( 7 u( 18H PLANE STRESS ®*#*x ) )

FORMAT (/7 uX 4H SEG 7X 2HUL 10X 2HU2 10X 2HT1 1aX 2HT2 Ax 4HLDC1
1 6X VHLDC2 8X 2HX1 10X 2HX2 //)

FORMAT (2X T1S» 2F12.8¢ 2F12.0¢ 6X Ite 11X I1» 2F12.6)

FORMAT (1H1» 16AS // 10X 22HRIGHT HAND SIDE VECTOR //)

FORMAT (5Xe 1I5¢ 2E15.8)
FORMAT ( J1lue 2E30.10)

FORMAT (/// ( 2(8F1246 /) //) )

END

173

2D%202RS
2N*20290
20%20295
2Nx20300
20+*20305
2n=20310
2D*2N31S
2n*20320
2020325
2D0=20330
2D*20335
2D*20340
2022034%
20%20359
20%2035%%
20*20360
2D+*203K5
20%20370
2D0»2037S
20%203A0
2D*203RS
20+20390
2D0%20395
2D0*20400
20+2040%
20*20410
20*20415
20*20420
2020425
20%20430
20220435
20+20440
20*20445
20%20450

e
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SUBROUTINE NELINT (6o RHS)
COMMON 7/ ARRAY1

COMMON / ARRAY2
COMMON /7 MATCUN
COMMGN / CONTR1Y
COMAON /7 CONTR2 7/ TITL(16)e IPUNCHe ISTRS, 180Y

/
/7 BvAL(200)
/
/

DIMENSTION A(2)e EL1(2)e E2(2)e P(2)r X(2+2)¢ R1(2)s R2(2)

DIMANSION ISYM(2)oi)(202) o T(202) ¢GINQIZEMNSIZE)
OQURLF PRFECISION RHS(NSIZE)e XIle X120 xT3e¢ XIUo
00 10 1 = 1,NSIZE
DO 10 J = 1+NSIZE

10 G(I«J) = Ne
JO 20 M = 1,NTOTAL

IFLR = n
JFLG = 0
Ml = (M-1)/NSEG

M2 = M « M1sNSEG
M3 = M2 + NSFG
IF (LDC(M?) ,EQe1ANUABSIBVAL(M2) ) el TeloNANDS

XYZ(1000202) e UCD1(200)s TCON(200)s LDC(200)

FMUe POLSNe Pre PYe P2e P3e P4, PS
NGSEGe NSYMe NTOTALes NSIZE» NPT. NRBDYP

| LDC(MI) EQ+1ANDABS(UBVALI(MS) 1 oL Tel.0) IFLG = }

IF
1

(LOC(M?) sEQ ez ANDABS (BVAL(M2) ) o LToe1.NE=0R.AND.
LDC(V3) sE0+2. ANOABS(BVAL(M3) ) oLT.1.0_-0R) JFLG = )

COMPUTF SYWMETRY COEFFICIENTS USING Ye THEN X

= (M=1)/7(NSEG*((2xxJ)/2))
ISYM(K) = (=1)%x]
IF (I.FR.0) ISYMIK) = 1
16 IFLAG = IFLAG #* ISYMIK)
DO 30 U = 1,2
IF (IFLAG.GT.U) GO TO 25
X(1ed) = XYZ(M292¢J) % [SYV(J)
X(2:J) = xYZ(M2e1¢d) * ISYM(J)
60 v0 35
25 X{(1,J) = XYZ(M2ei0d) * [SYM(J)
X(2,J) = AYZ(M2+2¢J) & 1SYVM(V)
35 CONTINWF

OEFINE DIRECTION OF THr LINE SEGMENT F2 = A(J) / AuWAG

30 A(D
AmAG
00 213
E2(1)

=3

33 £1(.)

1

X(2ed) = X(1,J)
ST (AlL)*%x) + A(2)*2D)
= 1.2

A(I)/7ANMAG

4

F2(r) = (=1)%2(y+])

CALCULATF THE ANGLES T1 ANUD T2 AND THE DISTANCE D

1 /NSEG

00 15 U = 1.2

P(JY = (XYZ(NeloeJ) + XYZ(Ne2eJ)) /2o
K1(g) = X(1ed) = FIU) 174
R2(.1) = X(2+4) -~ PlY)

20*x25000
20*25n005
20*25010
2N*25015
20%25020
2D%x25025
2D0+250330
2Dx25035
20+25010
20325045
20225050
20%25085
20*250A0
20%25065
2D*25070
20+*25075
2025080
2D*250R5
20%25090
20¥25005
20%25100
2p#%251n5
20%25110
2D+25115
2N*25120
20*25125
20*25130
20+25135
2D»251u0
20*251u5
2D*25150
20%251%8%
20225160
20#251K5%
20#25170
2D*25175
20*251R0
20%251R5
20+25190
20%25195
20%25200
20*25205
20%25210
2Nx25215
2D%25220
2Nx25225
2N*2R210
20%25235
20%2%2u0
2D*2524u5
20%25250
20%25255
2D*252A0
2D*2526%
20%25270
20+%25275
202252R0
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DO 15 1 = 1,2
U(l.J) = 0.

18 T(I.J) = 0.
CALL DOTPRD (R1e Err V)
CALL. DOTPRD (R1e E20 R12)
CALL DOTPRD (R2¢ E2» R22)
CALL DOTPRD (R1s R1» RIMAG)
CALt DOTPRD (R2¢ R2¢ R2MAG)
RIMAG = SORT (R1IMAG)
R2MAG = SART (R2MAG)
RA = ABS(R12)
RB = ABS{(R22)
RMAR = AMAX1 (RAs RR)

IF (ABS(D /RMAG) .LT+.1.,0E-03) 60 TO u0

SI6Nn = N / ABS(D)

T1 = ATAN(R12/D) - (lo-SIGD)tPIIZo
T2 = ATAN(R22/D) = (1.=SIGD)*PI/2.

P MG

C OIAGNOGTIC PRINT === OCCURS ONLY IN THE CASE OF SERTOUS DATA ERROR

WRITE (/¢2000) Mo No» Xo¢ Po Rle R2¢ Fi1o E2» T1e T2 CT2e Cv2, O

ST1 = R12 /7 R1MAG
ST2 = R2? / R2MAG
CTt = D /7 RIMAG
CT2 = D 7 R2MAG
INL =S R12 /70
TN2 = RP2 /D
C
C
IF (¢ (CT1/CT2) 6T« 0.) GOTO 500
500 CONTINUFE
XL1 = ALNGE{N/CTL)
XL2 = ALOG(N/CTZ)
c

C CALCULATE NELU INTEGRAL FOR D.NE.O
c
IF (IFLG.EG.1) GO To 45

XI1 = De(TN22XL2=TN2+T2=TN1*XL1+TN1=T1)
X12 = D=(T72~T1)

XI3 = D*(xXL2=XL1)

XI4 = D*(TN2=TN1~-T2+T1)

DO =0 I¥x = 102

DO RO JX = IXe2

DEL = 0.

IF (IX.FA.Jx) DEL = 1.

AR S FE S

20*25285
2N*25290
2D*25295
2nN*25300
2n*253nS
2D*25310
2n*25315
20*25350
2D0*253%%
20*25330
2D*25335
20%253u0
2N=25345
2D0*25350
20%253%5
2N*25360
2N*253R5
20725370
20%*25375
20*2S3R0
20%25385
20%25390
2D*25395
2025400
2nx254n%
2D*25410
2D*25415
2D*25420
20%25425
20#25430
2D0%25435
20%25440
2D*25445
20*2%450
2D*25455
2N*25460
20*25465
2D*25470
20229475
20*254R0
20%254R5
2D*25490
2D*25495

UAY = P1#(P2sDEL*XI1=-E1(IX)*EL(SX)*XI2=(E1 (IX) *E2 (UXD+EL {JUX)2E2( TX20#25500
1 ) ) =X13-E2(1X)*E2(JX) *X14)

UCI¥eJX) = UXY *= ISYM(JX)

IF (IX.FR.JX) 60 TO SO

ULJX e IX) = uXY » ISYM(IX)
S0 CONTVINUE

Cc
C CALCULATE DFELT INTEGRAL FOR D.NE.O
Cc
485 IF (JFLG.EQ.1) GO To 75
XI1 = To=T1
X12 = To+5T22CT2=T1-ST1»CTY
XI3 = ST24%22=ST1#%2
X1t = To-GT22CT2-T14ST1%CT1
XIS = ALOG(CT1/CT2)

175

2n*25505
2D*25510
20%25515
2N*25520
2D%25525
2D*25530
2D%*25535
2D%25540
2D*255u5%
2N=x25550
20%2555%
2D#25560
20%25565
2D#25570

uffasens - -




DO A0 IX = 1e2

00 A0 JX 1Xe2

TXY = 0.

IF (IXFNJIXsANDMeFQN) GO TO w0
DEL = 0.

IF (IX.FQeJX) DEL = 1. .
TXY = PRa(PusDE_eXIM+EL(IX)*EL (UX) X I2¢(EL(IX) *E2(JIK)+E2(IX) *
1 E1(JIX) I xXTI4E2(IX)eE2(UN) *XTY)
T(INeJX) = TXY = ISYM(JX)
IF (IX.EQe.JX) GO TO 60
TSTAR = «-P3sPux(E2(IX)*E1{IX)-EL(IX)*E2(JX))%xX15
TIXeUX) = (TXY4+TSTAR) 2I1SYM(JX)
TIXsIX) = (TXY=TSTAR)*=ISYM(IX)
60 CONTINUF
60 T0 75
80 CONTINUF
XI1 = R22*#(ALOG(RB)=1.)=R12*x(ALOG(RA)=1,)
X112 = R?2 - R12
X113 ALOG(RB) = ALOG(RA)

C

C CALCULATE NELU FOR DJ.ER.U
IF (IFLG.EQ.1) G0 TO 65
00 70 IX = 1.2
Uo 70 JX = Xe2
DEL = 0.
IF (IX.FA.JX) DEL = 1.
UXY = P1=(PoDELEXI1-E2(IX)»E2(UX)*x12)
UCIxedXd = UXY *= ISYMIJX)
IF (IX.FheJdX) 60 TO 70
UluxelX) = uxy = ISYmMiIx)

70 CONTINUF

C CALCULATE NELT INTEGRAL FOR D.,EQR.O

65 IF (JFLG.EG,1) 60 To 75
00O RO IX = 102
DO RO JX = (Xe2
IF (IX.FR.JX) 60 TO 80
TXY = «=P3xPux(E2(IX)*EL(UX)=EL!IX)*E2(JUX) )EXID
TUIXedxX) = TXY % ISYM(UX)
T(IXoIX) ==TXY = ISYM(IX)

80 CONTINtIF

75 DO RS IX = 1.2
00 AS JX = te2
N = N + (IX=1)%NSFG
My = M2 + (UX=1)=NSFG
IF (IXeFReJXeANDeMeEQsN) T(IXoJX) = =0.50
IF (LDC(M4),EQ.1) GO TO 90
TRANS = U(IXouX)
U(INedX) = =(le/FMU) = T(IXeJX)
T(Iv¥euX) = «FMU *= TRANS

90 RHS(NU) = RHS(NG) + U(IXoJX) * HBVAL(M4)

85 G(NusMiy) = GI(NGIMY) + T(IXeJX)

20 CONTINIE
RETURN

2000 FORMAT (/7 sX 218 / (2F10.5 /7))

END 176

20%25575
2N*25530
20%25585
2D%2559¢0
20%2559%
2N*256N0
20*25605
2D*25610
2N*25615
20225620
20%25625
20%25630
20%25635
20%256U0
20x25645
20*25650
20325655
20%25660
20%25665
20*25670
2025675
20*256R0
20*256R5
20%25690
20%25695
2D*25700
20=25705
20*25710
20*25715
20%25729
20+25725
2n*25730
2N*25735
20%257u0
20%25745
20*25750
20%25755
2D*25750
20*25765
20*25770
20%25775
20%25780
2n%257A5
20%25790
20%25795
20*25800
20)+25805
2N*25810
20%2%815
20%25820
20%25825
20%25830
2Dx25835
20%25840
20%25R45
20%25850
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SUBROUTINE INSOLU( C )

COMMON / ARRAY1 / XYZ2{(100¢2e2)s LICON(200)s TCON(200)¢ LDC(200)

COMMON 7 ARRAY3 7/ PTIN(100.2)

COMMON 7 MATCON /7 FMUe» POISHNe Ple P1e P2s P3e P4, PS5
COMMON /7 TIMERS / TIM (10)

COMMON /7 CONTRY /7 NSEGe NSYMe NTOTALe NSIZEe. NPT, NBDYP

COMuON 7 CONTR2 / TITL(16)e IPUNCHe ISTRS» 1BOY
DIMENSION C(100e3)e A(4)» PXYZ(3)
IF (18DY.NE.0) GO Yo 100
110 IF (NPT.EQ«ND) RETURN
CALL TIME ( TIM(7) )
WRITE (Ae2000) TIIL
IF (ISTRS.EQR.D) WRITE (602050)
IF (ISTRS.EQ.1) WRITE (ne2060)

CALL FnR CALCULATION OF DELD AND DELS

WRITE (re2100)
A(4) = n.
CALY DELSD (C)
00 10 NP = 1+NPT
DO 20 1 = 13
20 A(1) = CI(NP: )
IF (ISTRS.ER.1) GO TO 30
A(4) = POISN * (A(1) + A(3))
30 CONTINUF
THETA = (A1) + A(3) + A(4))/3,

TAUNCT = RGRT(Z.*(A(1)“2+A(3)#t9+h(“)#¢2-A(l)*A(S’-Ak3)tA(Q)-

1 A(1)*A(4) +3e%A(2)%%2) ) /5,

20=30000
20*30005
20*30010
2030015
20+30020
2030025
2Nx30030
2n=30035
2D*30080
2n=3npus
2D*30050
20%30055
2D*x30060
20%x3006A5
20*30070
20%30075
20%3N0R0
2Dx3NQRE
20%30090
20%30095
2030100
20x3010n5%
2D»30110
20*30115
2nNx30120
2D%x 30125
20*30130
20*3n135
2030140

WRITE (Re2200) NPo (A(K) oK=104) o THETA» TAUOCToPTIN(NP1) +PTIN(NP2) 20230105

10 CONTINUF
CALY 1Imz ( TIM(R) )
RETI1IRN
100 YRITE (ke2000) TITL
00 120 1 = 1+NSEG
J = 1 + NSEG
120 READ (%5,1100) Ne UCON(I)» UCON(J)
00 130 T = 1+NSEG
J = I + NSEG
130 REAN (S.1160) Ne TCON(I.» TCON(J)
WRITE (Ae2300)
00 140 T = 1+NSEG
J = 1 + NSEG
00 150 N = 102
150 PXY7iN) = (XYZ(Ielen) + XYZ(I102:N))/2.
140 WRITE (Re2400) Ie UCON(I)» UCON(J)e TCON(I)e TCON!.)»
1 LDC(I)e LOC(J)e PXYZ(1)e PXYZ2(2}
GO TO 110
1100 FORMAY (110, 2E30.10)
2000 FORMAT (1H1. 10X 1AAS)
2050 FORMAT ( 7/ 4/ 18H PLANE STRAIN »xax ) )
2060 FORMAT ( 7 u( 18H PLANE STRESS *xax ) )
2100 FORMAT (AHOPOINT» 2Xx 10H SIGMA(XX) 2X 10H SIGMA(XY) 2X

1 10H SIGMA(YY) 2X 10H SIGMA(2Z) 4X 6H THETA X 7H TAUNCT

2 SX 2i4 X 6X 2H Y)
2200 FORMAT (2x 13¢ 2X 6F12.2¢ 2FR.4)

2D=3N150
2N*30155
20*3016A0
2N=3016S
20*3N170
2N%x30175
20%3N1R(
2N*301RS
20%30190
2Dx3Nn19%
2Dx30200
2D*302n5
2D*3Nn210
2D*30215
20%30220
2Dx5N22%
20*3023%0
20%30235
20%3024(0
2D0x302u5
20%x3n250
2N=*302%55
2D%x30260
20*x30265
20«3N270
2N*x3n27%

2300 FORMAT (/7 uX 4H SEG 7X 21Ul 10X 2H1I2 10X 2rT1 1nX 2HT2 RX 4HLDCY 2D*»302R(
177




udliha e

1 6Y 4HILDC2 BX 2HX1 10X 2HX2 //)

2400 FORMAT (2X IS5+ 2F12.8¢ 2F12.0¢ 6X Ite 11Y I1» 2F12.6)

END

178

20x30285
20*30290
2D*3N295
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SUBROUTINF DFELSD (6)

COMMON 7/ ARRAY1 /7 XvZ(10002¢2)» UYCON(200), TCON(200)» LDC(200)
COMMON / ARRAY3 /7 PTIN(100.2)

COMMON 7 MATCON /7 Fme PRe PTe C1l» C2» C3» C4

COMMON /7 CONTR1 / NSEGs NSYMe NTOTALs» NSIZEs NPT, NARDYP
COMMON 7/ CONTR2 /7 TITL(16)» IPUNCHe ISTRS, I[RDY
OIMFNSION Ai2)e E1(2)s E2(2)e P(2)e X(202)0 R1(2), R2(2)
OIMFNSION IcYM(2)» G(10003)

00 101 = 1,100

00 10 J = 1.3

G(I.d) = 0o

DU 20 M = 1 +NTOTAL

M1 = (M=1)/NSEG

M2 = M « M1*NSEG

COMPUTF SYMMETRY COEFFICIENTS USING Yo THEN X

16

23
35

IFLaG = 1

DO 16 X = 1.2

J=3 =K

I = (M=1)/7(NSEG=((2%24)/2))
ISYM(K) = (=1)%*]

IF (I1.FQ.N) ISYM(K) = 1

IFLAG = IFLAG * ISYM(K)

DO 32 JU = 1,2

IF (IFLAG.GT.0) 60 TO 23
X(1sJ) = XYZ(M2e2,J) = ISYM(J)
X(2:eJ) = XYZUIM2010J) = ISYM(J)
60 YO 35S

X(1ed) = XYZ(M2010J) = ISYM(J)
X(2ed) = XYZ2(M2020J) * 1SYM(V)
CONTINUE

OEFINE DIRECTION OF THF LINE SEGMENT E> = A(J)/AMAG

32

33

A(J) = X(20d) - X(1oD)

AMAG = SQrRT (A(1)*%2 + A(2)*%2)
00 a3 1 = 1,2

E2(71) = A(I)Y/AMAG

J=3-1

E10)) = F2(1) * (=1)ex(J+1)

CALCULATE THE ANGLES T1 AND T2 AND THE DISTANCE D

15

17

00 20 N = 1NPT

DO 15 J = 1,2

P(J) = PTINI(N»J)
R24) = X(20J) = PLU)
R1(1) = x(1eJ) =~ PLY)

CONTIi UF

D1 = 0.

02 = 0,

00 17 J=1.2

01 = N1 + RULVI*RLIY)
D2 = 02 + R2(JI*R2(J)
01 = SART(D1)

02 = SART(D?2)

CAL1 DOTPRD (R1» El» L) 179

20235000
2D*35005
20*3%010
20*3%015
20*350.20
20*3502%
2D*35020
20*3503%
2N*35040
2N*350u5
2D0*350%0
20*35055
20*350A0
20*35%065
20*35070
20*35075
20*350R0
207350925
20* 35090
20*35095
20*3%100
2N*3510nS
2D0*35110
20*3%115
20*35120
20*3%12%
20%35120
20*35135
2D*35140
2D*35145
20*351%0
20*35155
20*3%160
20*35165
20*35179
20#*35175
20*351R0
2N=*3S1AR5
20*35190
2n»35105
20*35200
20*35205
20*35%210
20=35215
2D%3%220
20%3%22%
20*3%230
2D0*35235
20*352u0
20*35245
2D* 35250
20235255
2D0*352A0
2N*3526%
eD*3%270
2D*35275
?N+352R0




Caly
CAL

R1Ma

norerD
00TPRD
CaLL nNatePrD
CALL. boTerD

()

ko ki e g

(R1»
(R2¢
(R1, R
(R2¢ R2»
SWRT (RIMAG)

E2.
E20

R12)
it22)
Ri1MAG)
R2MAG)

R2MAG = SQRT (R2MAG)

RA = ARS(R1D)

R8 = ARK(R22)

RMAG = AMAX1(RAJRB)

IF (ABS(D /RMAG) LT.1.0E=03) 60 TU un
SIGn

T1
T2
S1
S2
C1

&0

OELY

IF (1.E0.K) DELIK
IF (K.FQR.J) DELKJ
IF (1.€£Q.J) NELIV

= D /7 aRsS(v)

ATAN(R12/D0 ) = (1.=-S1GU)I*PL/2.
ATAN(R?2/D ) = (1.=-SIGU)*P[/2.
R12 /7 R1IMAG

R22 / R2MAG

D /7 RIMAG

N / R2MAG

J

ALOG (DY)
ALOGID2)

1,2
1.2
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"X ™

1.
) |
1.

e

IF (ARS(N/RMAG) LT« .0E-03) GO TO 30
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2.¢(Cilaxu=C2%24) /()
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2. %(Sonsk=C1%x4) /0

NDFLIK=EY (V) +0ELKJ*EL(]) =0ELTIJU*EL (K)
OFLIK2E2(J)#NELKJ=E2( I ) =DFLTU*E2 (K)

FICT)*ELLJ)*FL1(K)

F2(11%E2(J)*E2(K)
FIC(I)=E2(0)»FLIK)+E2 () %1 (V) SEL(K)+EL1(T)EL1(J) 2ED (K)
FIC(II=E2(V)*F2(K)+£2(T )31 (J)=E2(K)HE2 (1) 2E2(J) 2E) (K)

= CusDFLIJ#EL(R)+EL(1)#E1 (J)sF1 (K)+PR*(DELIK=E] (J) +NFLKY

EveL))

= CyusDFLIVUSE2(K)+EL1 (1) «F2(J)=EV1(K)+FE2(1)=EL(JU)*EL(K) +
PReE(NFLIKSE2(J) +UELKJU*E2 (1) 42 . 2E1 (1 )#FEL(J)#ED (K) -
FI(I)I=E2(U)*FLIK)I=E2(])*E1(J)=EL(K))

= CusEP(I)PE2(UISEL(K) +PR2(FLITIRED(J) sE2(K)+E2(1)=F1(JU) =
F2(K)) 180
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2N*352R5
2N= 35290
20#35295
20%353Nn0
2D=*353n5
2N*35310
2N*35315
2N+ 35320
2D* 35325
20+*35330
20* 35335
20*35340
20*3534u5
20+353%50
20=35355
20%353A0
20+ 35365
2N=38370
20%35375
2N*353A0
2D=353RS
20+ 35300
2D* 35395
2D0*35400
20%354n5
20%35u10
20+35415
2D=3542¢0
2D* 35425
2D=38430
20235415
20*35440
2N=35445
2D*354%)
20%35455
20* 35460
20* 35445
20%35470
20=35475
2N%*354R0
2N=x3syAs
20=35490
20%35495
20=35%00
?20* 35505
2n*35510
2N*35515
2N*35520
2D= 365525
20+*35530
2D% 355215
2D*35540
20+3S5u5
2N*36580
20+355%5
20= 35560
2N*3854§
2N= 35570




o000

PIJx =
DL = C3=(CUs(AIJK*DD1+Bl1UK*002)+CIJIK*DD3+DIJIK2DOU+EIJIK=DNS
+F1JKs0D6) *ISYMIK)

«*FMUC32 (61 JK2US]1 +HIJKSDS24+0TIK2NSI+PIUKENSU=CIUKEDSS
“NTJIK*DSH6=EIUKADST=F [JK&DSB) 2 ISYM(K)

2u

30 CONTINUE

1

Dg = 2
1

Gu 1O

Cox(DELIKSEL (U)+DELKJI*EL (1)) =DELTJ*EL(K) ® (1 e=U,2PR)

BIJK = NELIK=E2(J)+NELKU-<2(T1)=DELTJ*E2(K)
QIUK = Cus(2.2E1(K)=E2(I " ~2(J)+E1{U)*DELIX+EL (1) =DELKJ)+
1 24PRE(EL(I)=E2(U)*E2(K)+E2(T1)*EL (U *E2(K) )=DELIV=EL (K)
S1 = R12/RA
S2 = R22/RB
COLLOWYTNG IDIOT CANDS REQUIRED FOR 119A FORTRAN
ARGY = @B
ARG? = RA
002 = S2+ALOG(ARGL) = S1=ALOG(ARG2)
Dve = nNn?
DS9 = 1./RA=1./R8B
DD = C3=(CUsRIJUK2DDI2+2.5E2 L) 2E2(J)%E2(K) =006} xI5YM(K)
0S = 2.%FMUSCI®QIJK*DSISISYM(K)
24 CONTINUF
My = M2 ¢+ (K=1) = NSEG
G(NeL) = 6I(NsL) + DD=TCON(My) = DS*IICON(Mu)
25 CONTINUF
20 CONTINUF
RET1IRN
ENnD

2D*35575
20%355A80
20%35505
20*358590
20235595
2N=35600
2N*3560n5S
20%35610
20%35615
20+*35620
20%3%625
20*35630
20*35635
20*35640
20235645
20+35650
20%356%5%
20%35660
20%356A5
2n«35670
2N%3567S
2N*356R0N
20235685
20%35690
20%35695
20%35700
20%357ns
20«35710
2D*385715
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1 SUBROUTTMF. ANYSTR (C) 20=400N0
COMMON 7/ ARRAY1 /7 XYZ(1G0e202)» UCON(200)s TCON(200)s LDC(200) 20%400n0S
) COMMON /7 ARRAYWL / NEDY(50,3) 2n*40010
COMMON 7 MATCON /7 FMmU»s POISNe PIe Ple P20 P3e P4, P5 20*4N015
COMMON 7 CONTR1 7 NSEGe NSYMe NTOTALe NSIZEe NPT, NBOYP cD*u0020 3
COMMON 7 CONTR2 /7 TITL(16)s IPUNCHe ISTRS, 1BDY 2N=4Nn025 3
COMMON /7 TIMERS 7/ TIM(10) 2n*4n030
OIMENSION A(2)e E1(2)0 E2(2)0 P(3e2)e R(2)e NDU(2)e T(Z)» C(S5Nel) 2D%40DN3S
IF (NRDYP.EQR.0) RETURN 2040040
CALL TIwfF ( TIM(9) ) 2040045
Cl = 1.=-2.%PO]SN 20=47050 p
L €2 = 1.-POISN 2ns40055 ’
; WRITE (Ae2000) TITL 20*40060
WRITE (Ae2100) (INBDOY(IoJd)eJ=1¢3)rsI=1sNBOYP) 20=40065
WRITE (Ae2000) TITL 20*40070
IF (ISTRS.EQ.0) WRITE (402050) 20*40075 ;
IF (ISTRS.EQ.1) WRITE (602060) 20%40080
WRITE (Ae2200) 20%400FS
C 20*40090
C 10 = BASE SEGMENT NUMBER 2040095
€C I1 = RFAR DIFFERENCE SEGMENT NUMHBER 20=40100
5 €C 1I2 = FoRwARD DIFFERENCF SEGMENT NUMPER 20=4010NS F
; C 2D*4N110
‘ 00 'S N = 1,NBOYP 20*40115 {
10 = NARDY (Nel) 20*40120 i
I1 = NBDY (Ne2) 20*40125 §
12 = NBNY (N0 3) 20*40130 ;
DO 20 M = 1.2 2D0x4n135 3
P(leM) = (XYZ(IUedoM) + XYZ2(I0e2eM))/ 2z, 20=40140 }
P(2:.M) = (XYZ(I1leleMm) + XYZ(I1r2eM))/2. 2040145 i
P(3.M) = (XYZ(I2o1em) + XYZ(I2020M))/2, 20%40150 !
2 R(M) = P(3eM) = P(2:M) 20*40155 ]
] 20 A(M) = xYZ(I0e2eM) = XYZ(INe1eM) 2N*40160
SMAR = QART(R(1)x%2 + R(2)%x2) 20=4 0165
AMAG = QART(A(1)%s2 + A(2)%x2) 2040170
DO 25 M = 1,2 20%40175
E2(Mm) = A(M)/ AMAG 20%401R0
K=3==mMm 20=4N1RS
Ell(x) = F2(M) = (=1)sx(K+]1l) 20+ 406190
I3 = 11 + (M=1)=NSEGR 2N*40195
I = 12 + (M=]1)sNSEG 20%40200
IS = 10 + (M=1)=NSEG 20*40205
DU(m) = (UCON(I4) = UCON(I3))/SMAG 2nsunN210
25 T(M) = TCON(IS) 20*40215
M=0 20=40220
00 30 1 = 12 20%40225
00 30 J = 1,2 2N*40230
M=M+1 2N*4n215
D1J = 0. 2nx4n2uQ
IF (1.Fa.J} DIV = 1. 2ns4nous
C(NeM) = (C17(2.,2C2))=(T(I1)2ELC(Y) + T(II2EL(I)) = (FMU/CO)=*POISNs 2D*4N250
1 (E2(JU)*DUCI) + E2(I)=DU(J)) 2Nx4n28S
00 30 X = 1,2 20*4N2A0
Al = E1(I)*F1 (M EL1(K) + E1(T)*E2(J)%E2(K) + 2N*4N265
1 E2(T)*F1{J)SE2(K) ¢ E2(T)*E2(J)sEL(K) 20*40270
A2 = E1(1)*F1(JISE2(K) = EL(I)*E2(J)*EL(K) = E2(T)*EL(J)=EL(K) 20=40275
Ad = E1(D)*F2(J)sEL(K) ¢+ E2(I)*E1(J)*EL(K) 20*40280
182
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Ay = E2(T)*F2(J)%E2 LK) 2D*4N2ARS

CINeM) = C(NeM) = (C1/7(2.4C2))*D1J2F1L(K)I2T(K) + (1./{2.%C2))%x(Al* 20%4N290

1 T(K)) + (Fau/C2)s(C1%A2 ¢+ C2%A3 + S.*A4)=Dii(K) - 2D*40295

1 4 (FMi)Z7C2:2C120Tuxe 2 (K) =DU(K) 20*4030N0
2 30 CONTINUF 2D+40305
IF (ISTRS.ER.1} 60 YO 35 20=40310

C(N.y) = POISN = (C(Ns1) + C(N3)) 2n*40315

35 THETA = (C(Nel) + C(Ne3) + C(Nou)) /2. 20x4N0320

TAUNCT = SORT(2.%x(C(Ns1)#224C(Ns3) 2224C(NyU) 2 %2=C (Ny1)%C(Ns3) = 20+*4 0325

1 C(Ne3)eCINs4)=CINr2)2C(Nr4)+3.2C(Ns2)2%2)) /%, 2D=40330

15 WRITE (£e2300) 10s(CI(NeM) o M=1e U)o THFTAs TAUOCTsP(1+1)2P(1+2) 2N=4 0335

1 CALL TIn ( TIM(10) ) 26*40340
3 RETIIRN 20240345
1000 FORMAT (24]13) 20=403%50

2000 FORMAT (t1H1. 10Xs 16AD) 20240355

2050 FORMAY ( 7 4( 18H PLANE STRAIN =x%x ) ) 2D=4 0360

3 2060 FORMAT ( 7/ 4( 18H PLAKE STRESS #*=x*x ; ) 20*4N365
1 2100 FORMAT (/7 SX 11HBASFE NUMBER 2X 11HRFAR NUMBER 3X 10HFWD NUMBER // 20%40370
1 ({ 3112 7)) 20%4Nn375

2200 FORMAT (7HOSGMENT 2X 10H SIGMA(XX) 2X 10H SIGMA(XY) 2X 20*403R0

) | 10H SIGMA(YY) 2X 10H SIGMA(ZZ) 84X 6H THETA gX 7H TAUOCT 2D0=4 038

2 5X 2H X 6X 2H Y) 20=40390

2300 FORMAT (2X 13s 2X 6F12.2¢ 2FB8.4) 2D=4N 395

p END 205404090
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SUBROUTINE OOTPRD (Ae Be C)
DIMFNSION A(2) 8(2)

C = Al(1)=B(1) + A(2)28(2)
RETIIRN

END
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20*45000
20%45003
2D*4%310
20=45015
20*4%5020
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45

] 50
55
60

C ON
62

65
70

75
80

90

SUBROUTINE SOLVER (Ne Xe Fo A)
DIMFNSION A(NeN)e XI(N)e FI(N)» XX(160)
DOURLE PRECISION X

DO 10 T =1+ N

F(I) = ne)
CONTINUF

Nl =N =1
DO RO I = 2¢ N

N0 &5 J=1Is N

IF (ABS(A(I~1v1~-1))
I1 =1 « 1

wRITE (Re510) 11
RETIRN

CONTINUF

CX = AlJoel=1) 7 A(I=1¢1=1)

K2 = 1

DU S0 K = I, N

AlJoK2) = A(JeK2) = CX = A(I=1,K2)
K2 =2 + 1

CONTINIIF

AlJeI=-1) = CX

CONTINUF

CONT INUF

«6Te 0o) 60 TO u5

MATRIX

CONTINUF

00O 701 = 2¢ N

00 AS J=1I¢ N

X(J) = X(J) = X(I=1) = AlJeI=1)
CONTINUF

CONTINUF

C BACKwARD PASS = SOLVE FOK AX = B

XX(N) = XIN) 7/ A(NoN}

DO A0 I = 1» N1

SUM = 0.0

I2 =N +1

DO 75 JU = 12 N

SUM = Qim + AlI2=1rd) = XX(J)
CONTINIIF
Ax(v2~1) =
CONTINUF
DO9g I =1 N
F(I) = FCI) + XX(I)
CONT1INUE

RETIIRN

(X(I2=1)=SUM) / A(I2-10¢1D~

1 250, AGONAL TERM REDUCED TO ZERO
END
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C FORWARN PASS = OPERATE ON RIGHT HAND SIDE AS

1)

6§10 FORUAT(/1X 2SHERROR RETURN FROM SEQSOV

/)

I10.

20=50000
20+*5n005
20*51010
2D0+50015
2n=5N020
2D=5N025
21)+50030
2N*5n035
2n+50040
0*5n045
20250050
20+50055
20510060
2D0*500A~5
20250070
20+50075
20+50080
2D*5N0RS
20¢5009n
20+50095
20+50100
2050105
2D*50110
20+50115
20+50120
20+50125
20=*5n130
2D+50135
2D=50149
2D+50145
2D0+50150
20*5n155
20«50160
2N=5N1€5
20=50170
2n=*50175
20*50140
2D*5N1AR5
2D=*5n190
2050195
20+50200
2D+50205
2D0+50210
2050215
2050220
2D+5n22%
2D*50230
20+50235
2050240
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5.2 TWO DIMENSIONAL ANISOTROPIC BOUNDARY-INTEGKAL EQUATION METHOD

5.2.1 Formulation of the FPield Equations

The present note concerns the application of the Boundary-
Integral Method to the solution of two dimensional, plane stress problems
for fully anisotropic, elastic materials. The nature of the equations
is such that engineering notation for all field variables is convenient.
The notation and theoretical development of the field equations follows
from Lekhnitskii [1]1. The development of the boundary-integral equations
follows the usual method outlined by Cruse [2]. The solution of the
problem of unit loads in the x- and y-directions, called the fundamental
solution will be first be obtained. Next, the Betti reciprocal work
theorem will be used to obtain Somigliana‘'s identities for internal
displacements and stresses. Finally, the Boundary-Integral Equation
will be obtained from the Somigliana displacement identity.

In tne plan« stress equations presented in this note, tne non-

zero stress components are {°x' Oy Txy} and the corresponding strain

components are {ex. €y ny}‘ The equilibrium equations for the stresses
are
ig-x- + _xa‘lx = 0
x 3y
(1)
a—tx.l + 32!. = 0
X oy

The strain components are subject to the single compatibility equation

1

Brackets refer to references at the end of this note,
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chdie o

b i

a2ey a%e a2y
_.{ 2 XY (2)
ay? M axay
which guarantees the existence of single-valued displacerments, Uy s u.y
which are related to the strains by
3u 3u
X € X L €
X X 3y y
(3)
au au
.S =X a
y o Txy

The constitutive law for the fully-anisotropic elastic

material in plane stress can be given in matrix form as

€y Bin Bz Be %
€y - B12 B2z Bz oy (4)
Ty Bie B2  Fes Txy

The 8, j's are the material compliances and are known to be the components
of a fourth-order tensor, as the stra'lnsz and stresses are componants
of second order tensors. The tensor character of the compliances is
basic for the application of the current results to composite materials,
as discussed by Ashton et. al. [3].

The compliances may be given in terms of engineering

material constants

Bjy = ]/Ex ’ Bz = 'vxy/Ex
Bz = ]/E.y R Bre = “xy.x"Ex (5)

/E. . Bgg = 1/6

Bas = nyy,y /'ty Xy

2l.lsing \ y/2 as the tensorial shear component.
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For orthotropic materials B¢ = %3¢ = 0. For later reference the

stiffness coefficients are now introduced but not put in engineering

Sy o a2 @36 €x

g _ a a o € 6
y = 12 22 26 ¥ (6)

Txy a6 a26 G66 Ty

The Airy Stress Function is now introduced such that its

terms

existence guarantees satisfaction of equilibrium, Eq (1)

o, _ 3% , o . 3F , 1, . __9%
X = 7 y IxZ Xy T T axay (N

Substitution of Eq (7) into Eq {4) and Eq (2) res:its in the following
governing differential equation for F(x,y)

- N a“F F
Byl 537 - 215 ooy + (2R t Bgg) ToTaor
2y axay ax2ay
(8)
_ %F “F
- 6 5Ty t B2z jw = 0

Characteristic surfaces along which F(x,y) can be integrated my be
found by introducing the notaticn

zZ = Xty ; u =a+ib , i=J/T (9)

Substitution of Eq (9) intc Eq (8) reduces Eq (8) to

4
L [B11u* - 28,6u% + (281, + Bgeu? - 286 + 6221 = 0 (10)
&




If we are to obtain non-trivial results to Eq (10) d*F / dz* # 0

vhich requires

Brin" - 2B)6u3 + (281, + Bgg)uZ - 2861 + By = O (Nn)

Eq (11) is the characteristic equation for the material; Lekhnitskii

shows that the four roots of Eq (11) are never real and are distinct

so long as the material is not isotropic. We denote the roots

uy = ay + ib, (§=1,2) and 33 = a; - ib;. Lekhnitskii also shows that

bj > 0, from thermodynamic considerations. Thus the characteristic

directions become

zk=x+uky, k=]:2 (]2)

and their conjugates.

The general form of the stress function can be given by the

relation
F(x,y) = 2R { F](z]) + Fz(zz) } (13)

Introducing the notation dFk/dzk (no summation on k) = ok(zk)
the stressas become

o, = 2R {n? ¢{(z;) +uz? 03(22)}
e 2R {#{(z;) + ¢5(2,)) (14)
Yy T -2R {n1#1(z;) + uy43(22))

where the prime denotes ordinary differentiation. The strains may be
obtained from Eq (14) and integrated to obtain the displacements
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u = R{p & (21) + ppoy(25))

Equations (14) and (15) together with traction boundary

uy = 2R { a 9 (Zl) + Qqp @2(22) }
where
2
Py = B * B12 - Bk
Q = Brauy ¥ Baa/uy - B2
conditions
B S % Y Tyl 9
ty = txynx + oyny = 92

constitute the mathematical problem to be solved.

(15)

(16)

(17)

(18)



5.2.2 PFundamental Solution: Point Force Problem

The basic. relation for the development of integral equations
for the solution of ihe anisotropic problem is the solutio~ for a point
force in the infinite anisotropic plane. Two such solutions will be
required: A unit force in the x-direction, and a unit force in the
y-direction. Utilizing the traction formulae {17) it is easily

shown that on an arbitrary closed surface

ftxds = 2R Eul‘bl + HZQZB

S (19}

f tds = -2R[o + 4]

S
where [[ ] denotes the jump ir the enclosed quantities for a full

cycle of S. If the path S encloses the point of load application,
Zo = Xo + 1 Yo, then the results of (19) will be non-zero.

Let °jk represent the stress function for a point load in
the xj3 direction. The path integrals in (19) are seen to be of the
opposite sign to the applied loads;

2R[I¢j] + °j2]l 852
(20)

2R [[“1",1*. + "2°jz]] = =841

3we will now use indicial notation (x,y) =(xq, xz) and its associated
conventions. The index k will never be sum]led.
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for the point load solutions. Functions which satisfy (20) for any

closed path around z, are

°jk = Ajk log (zk - zko) (21)
where Z = Xo + WYe- In what follows Z, will, for convenience
o o
only, be taken as the origin, z, = 0. It may be shown by suitable

investigation near z, = 0 that (21) satisfies the requirements of a

point force [4]. Since it is easily shown that

B 1ogz J = o 3 i=/T (22)

(20) leads to the result

Aj'l - Ij] + AjZ - sz = 6j2/2ﬂi
(23)

whgy - Ay ke - uhyp = -85y/2mi

It is alsc required that the displacement field surrounding

the applied be single-valued. That is

[[uj]]=0 j=1,2 (24)

Substitution of (21) into (15) and taking the jump around a closed
path we find in addition to (23)

PiAji = PyAjq + PRy - PR, = 0 (25)
2

QA5 =GRy * QR - QA = 0
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Together, (23) and {25) are sufficient to find Ajk' Taking the notation

W= oot
i=/ (26)
Ajk= cjk + 1 Djk
it is easily shown that (23) and (2%) together with (16) reduce in
real form to
(zéﬁllulYl - B13v1)  [B11(a?) - ¥2)) + B12 - B130q]
[B12v1- 82271/ (a2) + ¥2,)] [By12°+ + Byz ay/(0?) + ¥2;) - B823]
0 1 (27)
Y1 a)
- — -
. (28110272 - B137v2) [B11(c2, - ¥22)+ 812 - B1305] Cj]
1 4
[B1272-B2272/ (a22+v2;)]  [B1202+82205/ (a2; + ¥23) - B33]) 1 DJ1>
1 ch
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Equation (27) become:: singular when Hy =My T i, but it will be shown
that Ajk may be found for very nearly isotropic materials.
We now define two tensor fields: The tirst is Ujk and

corresponds to the displacements for the stress function (21) accordingﬂ
to (15)

Ugy = 2R (PyyAsyT0g 2; + PoAs)log z,) (28)

where Plk ol P2k = q,. Takirg the derivatives of (21) at z,
according to (14) and substituting into (17), tractions on an arbi-

trary surface are found

Tig = R Qg (uyny-n)) Ayy/2i 4055 (upny=ny) Aof251 (29)
where
u H
ol = | f (30)
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§.2.3 Boundary-Integral Equation

Since the governing partial differential equation (10)
admits no real characteristic surface the problem is elliptic and
the stresses and displacements are continuous. Under such circum-
stances it is easily verified that Betti's reciprocal work theorem

at the surface must be valid

frﬁuids - fujitids (31)

S+T S+T

The surface T is a circle of vanishing radius e surrounding the point
load; it is added to exc'ude the singularity from the volume. The
second integral in (31) is convergent as ¢ =~ 0. For continuous uy

it is sufficient to investigate the behavior of the integral

Lim /-
e+ 0 Tjids (32)
r

At a circle centered at the applied load it is seen that
wh-n, = -(ukcose- sine) (33)
and dS = edo, 0 < 6 < 2n. Extracting from (32) the variable part
it is sufficient to find

2n 2n
> uksine+cose
0 k 0

T
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% which, upon rearrangement becomes

2%

¥ NN

k12 > d(tane 2 cose_d(cose (35)
f ds fTLT-lz—u oy - (14 )/ ‘(\_'T)"Lﬁ_)_“ CosTo-y7
0

sia i

1 Equation (35) can then be integrated directly to obtain

2% 2%
/ 0

: —5—= d = —log [cose - u sine] (36)
0 k 0

Taking the real part of the argument of the log
pﬁ = (cose — aksine)2 + (bksine)2 (37)

and the imaginary part
9, = —tan -1 [

bksine ]

€oso — aksine (38)
] the result to (36) is found to be
2w
U Ny =N
[ FaRu el ()
z
k
0

Suhstitution of (39) into (32) and using (23) leads to the usual
Somigliana identity for the interior displacement
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llj(zo) S /Tji(zk’ zo) ui(zk)ds(zk)

S

| + /uﬁ(zky Zo) ti(zk)ds(zk)
1 S

(40)

The Boundary-Integral Equation is found in the usual
way [2] by allowing z, to approach the boundary from the inside and
] evaluating the jumps in the singular integrals in (40). A simple
means for evaluatiny the jump is to place z, at the surface, augment

the surface as shown in the figure and integrate (40).

A
4
z €
X
29 -a ]
[ In this case u =Ny = b cCose + sine since the normal (n], "2) points
outward from 2,. The range on ¢ is —a £ @ < = - a. Again the only i‘

significant integral is in the first integral in (40)

=Q =0
"k"!'“z ukccse - sind
f 7, edo = W, STne - coso de (41)

-G -
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which, by the same steps as above, becomes

m=Qa T=Q
H NN b, sine
KM"2 o -1 K
f 7 edo = =i [ tan ( C0SO - a,sino (42)
k k
-a -Q

Substitution of the limits in (42) yields

-a
w, nNy,-Nn
/ _k_l__Z_ edo = - ix (43)
k
-a

Again using the relations (23), (40) becomes
u/2 + /Tjiuids =/Uj1.t1ds (44)
S S

Equation (44) is the E.undary-Integral Equation which relates unknown
boundary data to known boundary data. Once (44) has been solved

numerically (sV), (40) can be used to obtain interior displacements

and stresses.
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5.2.4 Somigliana's Identity for Interior Strains, Stresses

The displacement gradient tensor "j’L can be calculated from
(40) by differertiation at z,. Since a/ax,[l0g (z,-20)] = — 3/3x,
o
[log (zk-zo)] the differentiation may be written in terms of derivatives

] at z, by a change in sign. Then

oT..
/5-1’— u ds — /——l— t.ds (45)
= .‘
The tensorial strain at 7, is given by the symmetric part of (45)
=1
50 =7 (U5, *up 5) (46)
such that
j‘[a‘r.i T, ] [ ,'auji Uy i7)
2., = =L+ =Ly ds — + t.dS (47
jt axL axJ j L 3%, axj ] i
S S

The kernels, sjli’ chi respectively are given by

= - - 2 - 2
Sjgi = “2R RyyQyyuyny-ny) Ag/zd + RpQuy {uyny-n,) Ay,/25)
= - 2 =
i R {R3Q5y (nymy=ny) Apy/23 + Ry Q55 (upmy-ny) Ay,/23)
; (48)
Dypy = 2R {RyyPyyiyy /2y + Ry Py R0/ 2))

+2R {Rj] i !.1 / z, + R PizALZ/ZZ}

A 4




where le =1, R2k = Mo It is assumed that the boundary is piecewise

flat. Then (47) becomes

2€j£ = /Sjli uidS-— /Djlitids

S S

The stresses can be determined by substitution of (49), with

ey = 26120 € T €118 €y = €295 into (6).

X

Xy
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5.2.5 Numerical Solution

Following the procedure used in the isotropic theory, the
bouncary displacements and boundary tractions are assumed to be
piecewise constant. When this is assumed over the M boundary

1 segments (again taken as straight line segments), (44) becomes

M M
uj(n)/ 2+ % ui(m) /Tji(n,m)ds = é:] ti(m)/uji(n,m)ds (50)
: ASm ASm

E Similarly the internal strains (49) become

j M
E : Zejl(z°) = Z Ui(m) / szi ‘zo:m)ds

M Asm
- t. (m) / D;p(zo-m)dS
=] Asm

; By specifying the orientation of each line segment, ASm.
with its normal (n]. "2) the integrals in (50) and (51) may be solved

for explicitly. The notation is defined in the figure below

z, = r(cosp + uksinﬁ)
D=r. e, (52)

dS = Dd(tane)
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The coordinate system (e]. ez) is taken sucr that e, is in the direction

of the outward normal and e, is tangent to ASm, going from “1" to "2"
1

keeping the material on the left. Since § = @ + a, where a = cos~ (n]L
(52) can be written

z =r cose(cosa-sinatane + u Cosa tand + uksina) (53)
so that

7, = D [(cosa + uksina) + (ukc05a - sina) tane] (54)

The closed-form integrals for (50), (51) are now easily ob-
tained, as the only variable is tane. Two special cases, D = 0 and
the multivaluedness of log z, will be discussed below. Defining

integrals of the variables in the kernels with Al's we obtain

/Ujids = 2R {PﬂAj]AI” + PizAjzAllz}
AS

(55)

[~
et
\

AS

* Qpoynyny) AAlLs)

and for the strains
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80505 = ZRRy PoyRG18I5) + RyoPiAsoalp)
; * RRyP1 Ry alg + RygPigheatlsy)
' (56)
‘ 88505 = ~ZRIRy Qyq (uyny=ny)As 815 4Rp 0,5 (uphy=n, )Ry 81450
~ZRR;3 Q5 (uynynpdR 8141 4R 5505 (uphy =0 )Ag 8l 4}
The integrals are easily calculated for D # 0
2 2
- - -—-—-——1 =
% = f 109 2,88 = Sgsasina ({108 271 I
1
2 2
_ . s . 1
i dlgre oly [ 7,  Woosa-sina (Tog z,) l
; ]
i
2 2
-; o ¢ . 1 (_1
4 EE W, Cosa-sina z,
; ]
i 1
The case for D = 0 may be deduced as a special result of
1 (57) or by integrating again, with proper substitutions for Z, and
]
dS. Using "t" to denote the cases where dS = +dr and dS = — dr
we note 6 = +1/2 and
3 z, =tr (ukCOSu-S'inu) (58)
i
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Substitution of (58) into the integrals in (55), (56) we obtzin

2 2
AI.I = J/.]Og[ir(ukCOSa-Sina)] (4dr) = E;EEEE:E?E; [zk(log zk-l)]
1 1
2 2
al=al,= [ 8- —— 1 __ (1052,) (59)
2 3 z, ukCOSa-Sina k
1 1
2
- as _ _ 1 1
al, f z7k' (u, cOSa-sTna)? (t r)
1

1

The first two results in ejuation (57) contain the term log
z, . The 1og is multivalued, and has ¢ jump of +2x on the digital
computer as © passes from n-¢ to n-e. To account for this on the
computer the change in the imaginary part of log z, is tested. If
a change of more than n in the imaginary part is found then the
result is corrected by adding (t2n) to the imaginary part of the

log z,-
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5.2.6 Usage Guide for ANISOT

The computer program is divided into three major sections,
along the same 1ines zs the solution just detailed. The first
section solves the boundary-integral equations (44), producing
a fully knowr set of boundary tractions and displacements. The
next section utilizes Somigliana's identity (51) to obtain
stresses at specified interior points. The final section deter-
mines stresses at the surface of the body, using the tractions
vbtained in section one, and the tangential derivatives of the
displacements.

The boundary solution may be output on punched cards
if desired. This option allows the user to input the boundary
solution directly, and the program will begin execution of

sections two and three.

5.2.6.1 Problem Size Specifications

The program allows up to two degrees of symmetry of
geometry and boundary conditions. Present array dimensions limit
the number of boundary segments to 80 (320 with symmecry), but
capacity may be increased by changing the common statements labeled
ARRAY1 and ARRAY2. A number of other cards should also be modified,
and are listed below, by card number:

ANI10065 ANI15235
ANI10070 ANI20035
ANI10100 ANIS5005
ANT15050

e
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The number of interior points which may be specified is
limited to 200, while the 1imit on surface stress points is 50.

TR T

These 1imits may be increased by changing ARRAY3 and ARMAY4,
respectively.

i The time required for execution of each subroutine is
calcuiated thrrugh an assembly language subroutine, TIME. Users
of computers other than the Univac 1108 should provide their own

routine for this purpose, or insert a dummy routine, TIME(T).

5.2.6.2 Specification of Material Comstants

Ko iar .

Material constants are specified through four matrices,
listed below:
| STIFF, stiffness matrix (6)

i FLEX, compliance matrix (4)
MU, solutions to the characteristic equation (11)

¢ AX, coefficients o/ the net load terms in

Lekhnitskii's stress function (see §II)

The coefficients AX are calculated in a program called
AXCALC, which serves as an auxiliary program. A1l the matrices

described avbove may be obtained as punched output from AXCALC, and

1aserted directly into the data deck.
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5.2.6.3 Use of AXCALC
This program makes use of a capability previously detailed {5}

to solve the characteristic equation for a generally anisotropic

material, symmetric about its mid-plane. The algorithm is specifi.ally
designed for a layered material, since major use will be found in
; the area of advanced fiber composites. AKCALC requires as input
only the stacking sequence of the laminate, and the material properties

of the individual laminae, in their principal material directions.

Input data required by AXCALC is summarized in the table
below. Items which appear on the same card are bracketed, and the

formai for each card appears opposite the first item on that card.

E % INPUT FOR AXCALC
ITEM DESCRIPTICN FORMAT
NC Number of laminates to ve analyzed I3
' TITL- | Title card - any 80 characters 16A5
NANG Number of individual laminae 13
i .Ell Major Young's modulus (single lamina) (3€15.10, F10.4)
% E22 Minor Youny's modulus
3 G12 In-plane shear modulus
; LV]Z Principal Poisson's ratio
é THETA(I) | Orientation angles of the individual laminae 10F8.3
% (angles measured from the x axis to the major
i axis of the layer)
THICK(I) | Thicknesses of individual laminae 8F10.8
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§5.2.6.4 Identification of Parameters in ANISOT

A1l parameters necessary for use of the integral equation

program are defined below. For easy reference, the more important

ones are defined on cards numbered ANIS065 - ANI15120 in subroutine

SETUP, A1l the descriptions below are summarized i» Table 2, and

parameters which may be described concisely appear only in Table 2.

NODE (I,J) -

XYZM (1,3) -

PTIN (I,J) -

NBDY (1,J) -

a temporary array which stores the two node
numbers associated with each segment number
('rear' number, then 'forward' number)

a temporary array containing the X and Xy
coordinates of each node, in that order,
cooruvinates of the interior stress solution
points (x].xz). These are read only if NPT
# 0.

three segment numbers necessary for the
surface stress solution, read only if NBDYP
# 0. For each segment on which a stress
solution is desired, three segment numbers
are read, in the following order: segment
numbeir on which stress solution is desired;
segment number for the "rear" difference value
of Au/As; segment number for the "forward”

difference value of Au/as. The 'forward' direction

208
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is taken as the positive "s" direction, always
directed along the boundary of the body with
the material on the left.

5.2.6.5 Boundary Conditions

Both traction and displacement boundary conditions are possible,
and are input by means of a NAMELIST read statement. The boundary
data is preceded and followed by control cards, as shown below:

_$ BDYCON

{DATA

_$ END

A11 boundary conditions are initialized to zero and the
boundary condition key, LDC(I), is initialized to 1, meaning a traction
boundary condition is assumed for each segment. Setting LDC = 2
means a displacement boundary condition will be specified for the
given segment and direction. Traction conditions are specified by
a parameter TCON(I), while dis;lacement conditions are specified by
UCON(T).

A11 x,-direction boundary dat> is stored, followed by

1
xz-direction data. The vaiue of the subscript I for the boundary
parametcrs (UCON, TCON, LDC) is determined in the following manner.
For data specified in the Xy direction,

1 = the segment number (N), but for the X, direction

I = N + NSEG, whore NSEG is the total number of boundary segments.

For example consider a body which has been represented hv 24 segments.

209 :
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! Tractions specified on segment 6:
_TCON(6) = .100E04, (x1 traction)
_TCON(30) = .325E04, (x2 traction)

Displacements specified on segment 9:

LDC(9) =2, LDC(33) =2,
_UCON(9) = 0.001, (x] displacement)
_UCON(33) = 0.004, (x, displacement)

Displacements set at zero on segment 1:
_oc(n) = 2, (x)
2,

_Loc(2s) = (x,)
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§.2.6.6 Input Data for ANISOT

ITEM DESCRIPTION FORMAT
NC Number of problems to be solved 13
TITL Title card -any 80 characters 16A5
-ﬁSEG Number of segments on the boundary 1015
NSYM Degrees of symmetry (y, then Xx)
NNOD Number of boundary nodes connecting segments
IPUNCH = 0, the boundary solution will not be punched
ISTRS = 0, plane strain ; = 1 plane stress
18DY # 0, boundary data read from cards
NPT Number of interior points for stress solution
LN".}DYP Number of points for boundary stresses
NODE(I,J) Nodes associated with each segment number 2413
XYZM(1,d) (x],xz) coordinates of each node 16F5.3
STIFF* Stiffness matrix (6) 6E13.7
FLEX* Compliance matrix (4) 6€13.7
MuU* Solutions of the characteristic equation (11) 4E20.10
AX(I,d)* Coefficients of stress function (see §II) 4E£20.10
{Boundary a NAMELIST read statement
Conditions (See standard references for format)
PTIN(I,3) Interior Stress Solution points (x], xz) 16F5.3
NBDY(I,J) Segrient numbers associated with surface 2413

stress colutions.

*Cards available as direct output of AXCALC

21
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5.2.8 Listing for AXCALC Computer Program

C OETERMINFS COEFFICIENTS OF NET LOAD TERMS FOrR ANISOTROPIC STRFSS FTN AxC1nano

LOXE s by i mg E : : v i sy emet

213

P e . L e

COMMON /7 MATCON 7/ Elle E22¢ G12¢ V12s E(3+3)e BETA(303) AXCl00NS
COMMON /7 GEOMTY / THETA(10)s THICK(1N)es NANGe PI AXC10010

3 COMMON /7 ROOTS1 7/ LAMLA(20) AXC1Nn015
4 DIMFNSTON STIF(6)e FLEX(6)e DELTA{2,2) AXC10920
DIMFNSTON TITL(16)e C(uot)s Blustde RHS(U)e X(4), R(U)y XI(4oy) AXC10025

COMPLEX LAMDA . AXC10030

c AXC1N03S

c NC = NIMRER OF CASES 10 BE SOLVED SFAUENTIALLY AXC10040

( N = ORDFR OF CHARACTERISTIC EQUATION. AXClNOUS

c THETA = ANGLE FROM THE X-AXIS TO THE 1-aXISe. IN NEGRFES. AXC10050

c El11. F22¢ V12+ AND 312 ARE THE MATERIAL PROPERTIES OF THF AXC10055

c INDIVIDUAL LAMINAE. AXC10060

c K = NUMBER OF LAMINAE IN THE LAMINAYE. AXC1N06S

r c THICK = THICKNESS OF EACH LAMINA IN THE LAMINATE, AXC10070
c AXC10075

Pl = 3.1415926536 AXC10020

00 15 1 = 1,2 AXClagrs

DO 15 J = 1.2 AXC10090

VELTA(IsJ) = 0.0 AxClngos

15 IF (1.EQ.J) DELTA(IJ) = 1.0 AXC1Nn1no
REAN(5,100) NC AY.C1N1NS

45 WRITE(ARsI105) NC AXC1Nn110

3 NC = NC - 1 AXC10115
IF (NC.LT.0) STUP AXC10120

, REAN(Se110) TITL AXC10125
E REAN(5+120) NANG AXC10130
REAN(H,12%) F11+,£22.612,V12 AXC1013S

E REAN(S0s 130) (THETA(I)s 1 = 1enNANG) AXC1n1u0
E REAN(H0135) (THICK(I)s I = 1¢NANG) AXC1014S
; CALI MULTMU AXC1niso0
K =0 AXC1NLRS

DO 26 1 = 1.3 AXC1N1A0

DO 25 J = 1.3 AXC1n1AS

K=K+ 1 AXC10170

STIF(K) = E(I¢J) AXC1N17S

25 FLEX(K) = BFTA(L.J) AXC1N1R0

WRITE (7.,1000) STIF AXCIN1ARS

WRITE (7.1000) FLEX AXC10190

WKRITE(Ae115) TITL AxClnios

WRITE(A:140) AXC10200

WRITE(As145) Elle EP2¢ 612¢ V12 AXC1020S

WRITE (60150) AXC10210

WRITE(Re155) (THETA(L) e L = 1+/NANG) AXC10215

WRITE(ARr160) AXC1n220
wWRITE(Ae1A5) (THICK(L)s L = 1¢NANG) AXC10225

WRITE (6e1R0) AXC10230

WRITE(Ae175) ((E(TIosd)ed = 1e3)0 T = 1¢3; AxC10235

WRITE (A0190) AXC102u40

WRITE(Ae175) ((BETA(IeJd)e J = 103)e 1 AXC10245

ARITE(ARe199) AxCl02%0

WRITE(/9200) (LAMDA(I)e I = 1004) AXC1N285

ALPHL = RFAL ( LAMDA(1) ) AXC10260

GAM1 = ARS( AIMAG( LAMDA(1) ) ) AXC1N26S

ALPH? = RFAL( LAMDA(3) ) AXC10270

GAM> = ARS( AIMAG( LAMDA(S) ) ) AXCiN278

WRITE(7¢2K0) ALPH1l+ GAM1e ALPH2¢ OAM? AXC102R0



Cllel) = 2e4HETA(Le1 ) 2ALPHISGAML = HFETA(103:#6AM AxCin2RS

_ C(1s3) = 2.%RETA(1e L) #ALPH2#GAMZ = HETA(1,3)%6GAMD LXCin2ag

| C(1s2) = HRETA(Lr1) % (ALPHL *%2=0AMTI%%2) + RETA(Le2) «=HFETA(1,3) Al PHIAXC1N295

! C(lets) = HETA(Le1) B (ALPH2%*2=Am24%2) + RETA(Le2) =BFTA(1,3)*ALPH2AXC10300

: C(2s1) = HETA(102)26AM1=BETA(202)2GAML/ (ALPH] $%24GAM] £%2) AXCln3ns

| C(2.2) = HETA(1e2)%ulLPHL + SETA(202)%ALPHL1/(ALPHI%%24GAM x%2) AxXC10310

4 ! 1 = RE1A(2,3) AXC1iN315
5 : C(2+3) = RETA(102) %GAM2=BETA(202) 2GAM2/ (ALPH2*%24+GAM2%%D ) Ax10320
) C(2.4) = HETA(1e2)%ALPH2 + BEIA(2+2)%ALPH2/ (ALPHO2%24GAMD £*2) AXC1Nn325

: 1 = RETA(2,3) AXC1N330
C(3:1) = 00 AXC1n335

C(306) = 1leD ‘\XC].ns“O

C(3,2) = 10 AXClin3us

: C(3.4) = 1.0 AXC1n350

! Cluesl) = GAMI AXC1n3%5

i C(u.3) = GAM? AXC103A0

g Clu.2) = ALPHIL AXC1Nn3AS

! Clu.y) = ALPHZ AXC1Nn370

i DO 35 I = 1.2 AXCIN3TS

; LU 35 U = leb AXC1n3R0

i 35 C(I.J) = C(1I,J) * E22 AXC1N38S

] DO NS5 I=t.4 AxClnaoq

1 DU N5 Jz=1.4 AXC1n3as

i 0S B(I,J) = Cl1sv) AXClaung

] ‘ Calt INVR (Ce U» DUMMYe 00 OETe u4s u) AXC1l040%
] ] VO 101 = 1. AXCINny10
; VO 10 J = 1s4 AXC1ln415

] XL{Ted) = Q.0 AXC10420
H 0 10 K = 1leg AXC1lnyos

; 10 XI(Ted) = XI(Led) + C(IsK) * B(Keu) AXC1Nn430

: WRITE(As2%0) AXC 10435

i WRITE(Re210) ((XICIod)eu=led)eI=1el) axc1nyu0

: DO 40 K = 12 AXClogus

! RHS(1) = N0 AXCLlN4S0

! RHS(2) = 0.0 AXC1nyRS5
RiIS(3) = =~DFLTA(Ke2)}/7(u,.*P1) AXC1lNnye0

RHS(4) = DFLTA(Ke1) /7 4 xPT) AXC1lny4Rs
WRITE(A+260) AXClay70
ARITE(As210) (RHS(I) o 1 = 1ls4) AXC1047Y

DO 201 = 1ol AXCL1NYARD

X(I) = n.0 AXCLl04RS

00 20 J = 1.4 AXC1lnyag

3 i 20 X(I) = (1) + C(Ied) * RHS(J) AXClnyos
E E ARITE(R,2?2T70) (X(I)el=1lr4) AXC1lnsng
WRITE(7:2R0) (X(I)ei=1loy) AxClo5ns

Du 3D I = 1lea AXC10510

R(I) = 0.0 AXC1NS515

00 30 J = 1ley AXC10520

30 R(I) = R(I) + B(Ied) = x(J) AXxC1ns2s
WRITE(A»?260) AxC1l0530
WRITE(H9210) (R(I)eIS1on) AXC1ns3s

40 CUNTINUF AXC1insug

Gu TO us AXC1lNnsyy

100 FURMAT(I3) AXC105%50

105 FORMAT(1H1»13) AXC1055%

110 FORMAT (1RAS5) AXC1ns60

115 FURMAT(1H1 ¢ 1RA5) AXC1nNn5A5

120 FORMAT(213) AXC1l0S570
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125
130
135
140
145
150
15%
160
165
170
17%
180
190
195
200
219
250
260
270
1
280
1000
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TR R r— e R e —— L e ]
FORMAT(3F1S.100F10eu) AXC1057S
FORMAT(10FB.3) AXC10580
FORMAT(AF10,.R) AxC1lnsAs
FORMAT (1HOD e 3ARX e 'ELL1 007X o 'E22% 07X 0 'G120 0T y12%: 7Y U210) AXC10590
FORMAT(1H ¢30Xe5E10.4) AXC10n59s
FORMAT(IHO e 30Xe *ORIFNIATIONe TOP 10 AOTTOMe IN DFGREES?) AXC10N60N0
FURMAT (UAX'F1U.D) AxCl0nenS
FORMAT (1HD ¢ 30X e *LAMINA THICKNESSe TOP TO oOTTOMe IN INCHFS®) AXC3INA10
FORMAT (UAXeF1U.7) AXC1061S
FORMAT (1HO ¢ 30Xe *THE A=MAT{’IX FOR THIS LAMINATE Is?) AXC10620
FORMAT ( (3UXe3(E145¢5X)) 0 /) AXC1ng2S
FORMAT (1HO 0 30X e *THE E=MATRIX FOR THIS LAMINATE Ige) AXC1Nn630
FORMAT(1HN ¢ 30X s *THE PLANE~-STRESS BETA MATKIx 1S°*) AXC1ne3S
FORMAT(1HU 20X e ' THE MU=VALUES FOR THIS LAMINATE AKE®) AXC1lngu0
FORMAT ( 2(5XF20.12)9°4°) AxCl06uS
FURMAT((/4E14.8) ) AxC10650
FORMAT ( /777770 10Xe * THE TUENDITY MATRIX IS ‘e /7 ) AXC1ngss
FORMAT( /77777 » 10X o *THE RHS VECTNR v o ////7 ) AXC10660
FORMAT ( /77777 o 1uX o A1 = 9¢2E14.70%J% 07 1UYe'A2 = 9,2E14.7¢ AXC1NgAS

*Jee 1777 ) AxC10670
FORMAT (4F20n.10) AXC1067S
FORMAT (6E13.7) AXC10680
END AXC1l06RS
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SUBROUTINF sMIILTML)

COMMON / MATCON 7/ E11e E22¢
COMMON / GEOMTY / THETA(10)
COMMON /7 ROOTS1 7/ LAMUA(201)

Y IF = X B . A T TN R
- - g o g o
3
| i
i
kS

G12s V12e E(3¢3)r RETA(Se3)

IHIEK(10) e NANGe PIL

DIMENSTON GR(10De3e3)0e AL3e3)e CUFAC(3e3) e TRANS(3,3)

DIMFNSTON D(11)
COMPLEX LAMNA

K = NANG

V21 = E22%#V12/E11

Q11 = F11/7(1.0 = vip2ay21)
622 = F22/(1.0 = V12%y2])
012 = v21%Q11

Obb = 612

H = 0.0

DU 1) L = 1K

H = K + THICK(L)

CONTINIIF

VO 1S L = 1,K

THRAD = PI*THETA(L)/180.0
T = COS(THRAD)

S = SIN(THRAD)

ws ) e101)

Gil) v202) =
Quli ele2) =
Gtsl1 e1¢3) =

(S*+3)
Ol v203) =

(T%+3)
Oul) ¢303) =

+ (i1x%x4))
ull +2¢1) = AlLe1e?)
QB0 v502) = aB(L20s)
Cbl) e3de1) = QAuliLele3)
CONTINUE

DO 20 1T = 13

UG 25 J= 103

ACTI»J) = 0N

U0 30 L = 1.K

ASUM = OR(LeTeJ)=sTHICK(L)
AlTIed) = AlTed]l + ASUM
CONTINIF

E(Ied) = A(TeJI/H
CONTINUF

CONTINUF

(Q11 =Q12 =2.%Qoh)*[*{Sx*3) + (412 = Q22 + 2,%066)*S*

(Q1) + R22 = 2.2(012 + wARB))I*x((sxT)*x%x2) + A6Ax((S*=xy4)

VDET = (F(Le1)2E(2e2) % (303)) + (F(1e2)%F(203)%E(%,1)) +
(F(LeZ)SE(201)%c(B02)) = (E(I01)2F(2e2)%F(1+3))

(FLS5e2)%E(2e3)2(101))

CuFaC(1.1)
COFaC(1,2)
COFAC(1.3)
COFaC(2,1)
CUFAC(2:2)
CoFacC(2+3)
CoFaC(3,1)
CUFAC(3,2)
CuFaC(3,3)
VO 35 I = 1.3

= (F{3,3)%FE(2r1)*F(1.2))

(E(2¢2)2E(303)) = (E(392)*(2,3))
=1+ NX(L(E(201)%E(S03)) = (E(3e1)*(2,3)))
(E(201)%E(302)) = (F(3e1)*(2.2))
=1eNR{(E(L1e2)2c(503)) =(E(3:2)xF(1e73)))
(F(lel)2E(303)) = (FE(301)*E(103),
“1eN*s{(ELL1o1)2E(302)) = (F(3e1)%E(1,2)))
(EL1e2)2E(203)) = (E(2¢2)2(1,3))
=1 N*%((E(101)2E(2¢3)) = (F(Pr1)sk(1,3)))
(ECle1)xE(202)) - (F(2o1)¥bll,2))
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AXClsnng
AxC1S9ns5
AXC15010
AXC15015
AXC15020
AXCL180D2S
AXC1S02n
AXC1503S
AXC150u0
AxClsous
AXC150%50
AXC150%S
AXC15060
AXC150+S
AXC1s070
AXC1507;
AXC150R)
AXC1SQRS
AXC150°0
AXC1599y
AXC1S51nQ

QLLIx(T*%4) + 2,5(012 + 2.%Q6R)*((SET)%%2) + N22%(Sxxu)AXCLS10S
QLLI*(S*24) 4+ 2,%(Q12 + 2.%066)%((S*TIxx2) + N22%(T**u)AXC15110
(Qll +Q22 = Y.*db6H)((S*T)%22) + QI2¢((S*xy) +(T*=x4))
(W1l =012 =2.,%00b) 255 (Txx3) + (yl2 = 022 + 2,*R66)=Tx

AXC15115
AXC15120
AXC15128
AX(C15130
AXC15135
AxC1l5140
AxC15145%
AXCls1590
AXC15185
AXC151A0
AXC1516S
AxXC1=170
AXC15175
AXCls1np
AXCls105
AXC15109Q
AxCls5}105
AXC1s20n0
AXC1l&2nS
AxC1s210
AXC15215
AXC15220
AXCL1SZ25
AXC1s2390
AXC182135
AXC15240
AXC15245
AXC15250
AXC1828%
AXC1%2A0
AXC152A5
AXC15270
AXC1527%
AXC1ls280




Gk cdh tant A

VO w0 J = 1.3
TRANS(TI:J) = COFAC(UrL)
HETA(I«J) = (TRANS(I¢J))/0FT

CONTINUFE

CONTINUF

(1) = RETA(1.1)

0(2) = =2.048BETA(193)

D(3) = 2.0%HETA(1¢2) + HETA(3.3)
D(4) = =2,04RETA(203)

0(S) = HETA(2:2)

CALI ROOTS(Nsu e LAMDA N

RETHRN

END

*Standard root solving routine called here.
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User must supply suct a routine. .

AXC152R5
AXC15290
AXC15295
AXC15300
AXC153nS
AXC15310
AXC15315
AXC18320
AXC15325
AXC15330
AXC15335
AXC153u0
AXC15345
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SUBROUTTINF INVR (Aer No e Me Lo ISe JS)

>
n

HAND CORNFR IS TO Bc INVERTED
OPNER OF SUBMATRIX

DETERMINANT

Uer THEN

z2CZ2

B = B(1+1) IN CALLING ROUTINE, AN INVERSE STOPED IN A

k 4
]

Le THEN

B = AR(Ns1) IN CALLING ROUTINEs AN A=INVERSE * B RETURMFD IN B

B = H(N+sM) IN CALLING ROUTINE. AND A=INVEKRSE * t5 RETURMED IN B

A-INVERSFE IS NOT DESTROYED IN LAST TwO CASES

DIMFNSTON A(ISeuS)e B 1e1)e INC(100,2)e TIP(1NO)e P(100)

U=1.0

DO N3 J = 1N
03 IP() = 0

DO A0 T = 19N

AMAY = n.p

Uo 18 J = 1N

IF (IP(J) - 1) u6be 318¢ UG
06 VO 15 K = 1oN

IF (IP(K) = 1) 09 150 72
09 IF (ARS(AMAX) = ABS(A(J,K))) 12, 15, 15
12 IR = J

IC = K

AjAAX = AlJeK)
15 CONTINIIF
18 CONTINUF

IP(TC) = IP(IC) + 1

IF (IR = IC) 21, 33 21
21 0 = -0

VO 24 L = 1ol

SWAP = A(IRsL)

AtInel) = A(ICeL)
24 A(IC.L) = SwAP

IF (M) 33, 33, 27
27 D0 30 L = 1M

SWAP = R(IR.L)

H{In,L) = B(IC.L)

30 B(IC.L) = SwaAP
33 IN(Y,1) = IR
In(1¢2) = IC

P(I) = A(IC,IC)
D=p = P(I)
A(IC,IC) = 1.0
DO 36 L = 1N
36 A(ICeL) = ALTICeL) /7 PLI)
IF (M) uS»,» 45, 39
39 LO u2 L = 1M
42 B(ICeL) = BLIC,L) 7 P(D)
4% DO AN L1 = 1N
IF (L1 = IC) 4Be 60s 4R
4B T = A(L1IC)
A(LV+IC) = 0.0
D0 S1 L = 1N

218

MATRIX» OIMENSIONS SrHOwNe IN WHICH A SURMATRLIX TN UPPER LEFT-

AxC20000
AxCc2ngns
AXC20010
AxC20015
AxC20020
AxC20025
Axc2noio
AXC2n935
AXC20040
AXC2n045
AXC2n050
AXC27055
AXC2006hy
AXC2n065S
AXC2n070
AXC2n075
AXC20n0R0
AXC200RS
AXC20090
AxC20095
AxC20100
AXC20105
AxC20110
AXCzN115
AXC20120
AXC2n12S
AXC20130
AxC201325
AXC20140
AXC2010S
AXC20150
AXC2015S
AXC20160
AXC20165
AxC2n170
AXC2017S
AXC2N1R0
AXC201RS
AxCario0
AxC2n19s
AxXC20200
AxC20205
AXC20210
AxC2n215
AXC2Nn220
AxC2n225
AXC29230
AXC20235
AxC202u0
AXC20245
AXC20250
AXC20255
AXC20260
AXC202A5
AXC20270
AxC20275
AxC2n2R0

g

Mebtai
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END

]
.
X,
3 51 A(L1oL) = A(LLeL) = ACICoL) = T AXC202R5
IF (M) AOe G600 %4 AXC2029(0
54 DO K7 L = 1M AXC20295
i 57 3(L1eL) = BLL1eL) = BUICOL) = T AXC203600
[ 60 CUNTINUF AXC2030S
¢ U0 A9 T = 3N AXC20310
] L=N+1 =1 AYC20315
3 IF (IN(Le1) = IN(Le2)) 630 690 63 AxC20320
3 63 JR = IN(L.e1) AXC2Nn325
JC = INiLs2)} AXC20330
3 VU A6 X = 1N AXC20335S
E | It (N.FR.D) JR=K AxC20340
1 i SWAP = A(KeJR) AXC203u5
: A(KoJR) = A(KeJ? AXC20350
; 66 A(K.JC) = SwaAP AXC20355
; ; 69 CONTINUF AXC20n369
i 72 ReTuRN AXC203KR5
' 100 FORMAT (//10F13.%) AxC20370
I 300 FORMAT (1H1) AXC20375

AXC203R0



5.2.9 Listing for ANISOT Computler Prugram
ANT 10000
MAIN PROGRAM == INITIALICZES UATA = CALLS SURROUTINES ANT10005
ANT1NO010
COMMON 7/ ARRAY1 7/ XYZ2(100+,202)¢ UCON(200)e TCON(200)e LDA(200) ANT1N01S
CUMMON / ARRAY2 / BvAL(200) ANT 10020
COMMON 7/ MATCON 7 PLoFMUIPQR(202) 2 MU(2) oFLEX(6) +STIF(6) »AX(2¢2) ART10025
COMMON /7 CONTR1 7/ NSEGe+ NSYMe NTOTALe NSTZE. NPT, NGDYP AN110030
CUMMON /7 CONTR2 7 T1TL(16)e IPUNCHe ISTRS. [RUY ANTL1N03S
: COMMON 7/ TIMERS /7 T (10) ANI1NO4O
] COMPLEX PQe MU» AX ANT1NQUS
i C AT100SC
. C  THFE UIMENSIONS OF THE FOLLOWING ARRAYS ARE PROBLEM NEPENDENY ANI1N0SS
3 C ANIL10060
& DIMFNSION C(1600160) ANT1N0AS
§ DUUHLE PRECISION RHS(160) ANT1N070
i 4 REAN (5.700) NC ANT1NQTS
) 5 5 WRITE (Ae200) NC ANT1NO0AO
£ NC = NC - 1 ANT100RS
4 IF (NC .LTe N) STOP ANY1N090
¢ Pl = 3.14159265 ANT10095
k 00 101 = 1,200 ANT10100
¢ Ucon(I) = ¢. ANT1010S
i TCON(I) = 0. ANT1N110
3 10 HBVAI () = 0. ANT10115
] 5 CALI TIME ( T(1) ) ANT10120
{ VO 20 T = 2,10 ANT10125
x 20 T(I) = n, ANT10130
B CALI SETUP AMNT1013S
; : IF (I8DY.NE.O) 60 TO 30 ANT101u40
_ ] CALI HVSOLU (Cs» RHS) ANT 10145
: 30 CALE INSOLU (L) ANTIN1SD
CAL1I BNYSTR () ANT10159
1 5 (o ANT1N1A0
: C CALCULATE TIME CHART ANT1N1AS
J c ANT10170
; T(2) = (T(2)=T(1))%10**(=3) ANT1N17S
: T(8) = (T(4)=T(3))*10*%(=3) ANT1N1RQ
! T(6) = (T(B)=1(5))x10*%(=3) ANT101RS
: T(8) = (T(A)=T(7))*104%(=3) ANT10190
3 : T(1n) = (TO10)=1(9) )x10x%(=3) ANTIN19S
{ WKITE (Ae2000) TITL ANT1N200
3 § WRITE (Ae2100) ANT 10205
i WRITE (Ae2200) T(2)e T(u)s Tlb)e T(R)» T(10) ANT10210
! { 60 TO & ANTLN21S
i 100 FORMAT ( 13 ) ANT 10220
é ; 200 FORMAT ( 1H1s 5x I3) ANT 10225
{ 1000 FORMAT ( 16AS) ANTLIN230
i 2000 FORMAT (1H1l, 16AS) ANTL02%5
; 2100 FORMAT ( 21H TIME BREAKUDOWN CHART //) ANY 10200
5 2200 FORMAT ( %X 1SHTIME FUR SETUP  F12.7+ 2X ThSeCOMNDS // ANTLIOZUS
1 HX 1SHIIME FUR NDELINT F1l2.7, 2% 71SECOMDS // ANT1n25g0
X 3SHIIME FUOR SOLVFR F12,7¢ 2Y 7uSECOMUS // ANT1N25S
SX 15HIIMFE FUR INSULU F12.7¢ 2% THSECUNDS // ANT10260
SX 15HIIME FOR RBUYSOL F12.7» 2X TWiSECONDS) ANT10N2/5
ANT1N270
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F RPN e - et
: SUBROUTINE SE(ur ANT 15000
CUMMON 7 ARRAYL 7/ XYZ(1U0e202)00 11L04(200) s 1CON(200), LD (200) ANTIL1S0NS
COMMON /7 ARRAY2 7/ BvAL(200) ANT1S8010
COMMON 7/ ARRAY3 7/ PTIN(10002) ANT18015
COMMUON 7/ ARRAYY4 / NusDY(%H0+3) ANT15020
: COMMON 7/ MATCON 7/ PLeFMUsPQI202) oMU ) o FLEX(6) e STIF(6) sAY(2¢2) ANT 15025
‘ COMMON 7/ TIMFRS 7/ TiM(10) ANT15030
COMMON / CONTR1 7/ NSEwe NSYMe NTOTALLe NSIZE, NPT, NuDYP ANT 15035
COMMON 7/ CONTRZ / TITL(16)s TPUNCHe TS5TRS, 1RDY AMTLSONQ
NAMFLLIST 7 BDYCuUN /7 UCONe TCON» LUC ANTI1S0u4S
DIMENSION NODE(1n0e2) e XYZM(10002) ANT18050
COMPLEX PQ» MUe AX ANT 15085
EQUIVALFNCE (NOUE» LDC)e (XYZMo tICON) ANT150A0
C ANT1S06S
C NSEG = NUMRER OF ScGMEnNTS ON THE ROUNDARY ANTL1S070
C NSYM = NUMRER OF DEGREES OF SYMMETRY STARTING wITH Y, THEN ¥ ANT15075
C NNOU = NUMRER OF BOUNDARY NODES CONNECTING ROUNDARY SEGMENTS ANTL1SQR)
C IPUMCH = 1 == THE UOUNDARY SOLUTION wiILL RE PUNCHED OUT ANT1S0RE
C ISIRS = 0e PLS'RN ==: [SIRS = )¢ PLSTRS ANT 15090
C IF IBCY.EQ.N === BOUNDARY DATA STORED IN COMMON AnNT 15095
C 1IF JuDY.NF.N =~= BOUNDARY DAfA READ IN FROM CARDS ADOFD TH END ANT1S1Nn0
C OF THE ULATA DECn ANT 15105
C NPT = NUMBFR OF INTERIOR SOLUTION POINTS FOR STRESS SOLUTION ANI1S110
C NBOYP = NUMBER OF bBOUNDARY POINTS FOR STRESS SOLUTINN ANT1S11S
C ANT15120
REAN (S5,1000) TITL ANT 18125
READ (S,1100) NSEGe NSYMe NNOUe TPUNCHe TSTRSe IRDY. NPT, NBNDYP ANT15130
3 1 REAN (S,120n) ((NODF(Led) e Jd=102) e I=1+NSFG) ANTI1S5135
§ REAN (S5,1300) ((XYZM(Led)ed=1¢2) e I=1eNNOD) ANT1S140
1 REAN (S,1400) STIF ANTI1S11S
g READ (S.1400) FLEX ANT 15180
, ReAN (S5,1700) MU ANT 15185
REAN (S.1700) (CaX(led)eJ=1e2)e1=102) ANT1S1A0
WR1TE (6e2000) NITL ANI15165
WRITE (Re2100n) NSEGs NSYMe NNODe [PUNCHs [STRSe TBDYs NPT, NRDYF ANT18170
WRITE (/£02200) ((NOOE(IosJ)eJ=1¢2)1=1+¢NSFG) ANTI1S17S
WRITE (/e2300) ((XY7/M(Tod)ed=1¢2) e 1I=1+NNOD) ANT151A0
WRITE (6.2400) STIF ANT151A5
: WRITE (Ae2400) FLEX ANT1S5190
; WRITE (Ae2700) MU ANT 15105
' § WHITE (/e2700) ((AX(Tod)eu=ie2)sIZ102) BNT1G200
] ; NSIZE = 2 * N3EG ANT1S205
' i DO 10 T = 1,NSEG ANT18210
1 DO 10 U = 1,2 ANT1S21%
] DO 10 K = 1,2 ANT15220
r N = NODE(LeJ) ANI1S22S
10 XYZ(1eJdeK) = XYZMIM,K) ANT15230
DO 20 1T = 1,200 ANI15235
Ucon(I) = 0. ANTILS240
2n LuClI) = 1 ANT152u4%
REAN (S,RDYCON) ANTI1S8280
IF (NPT.EQ.n) GU TO 3v ANTI15255
READ  (S,1500) C((PTIN(IoJ)ed=10s2)eI=1sNPT) ANI152A0
WRITE (Ae2500) ((PTIN(ToJd)ed=102)eI=1»NPT) ANT15265
30 IF (NBDYP.ER.U) GO TO 40 ANI1S270
REAO  (591600) ((NBNDY(IeJ) ed=103) e I=1eNRNYP) ANT 15275
ARITE (Re2600) ((NBUY(TIoJd)eJd=1+3)e1I=1+NyNYP) ANI1S52A0

22
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40 CONTINUE ANT152RS5

NFAC = 2%«NQYM ANT 15290

; IF (NSYM.FQ.0D) wFAC = 1 ANT 15205
: NYOTAL = NSFG * NFAC AMI153Nn0
: o AMTI 1S53NS
g C CALCULATF NEEDFD MATERIAL CONSTANTS ANT1S310
C ANT15315

e DO |0 K = 1,2 ANT15320
] PO{1eK) = FLEX{1)=MU(R) o322 + FLEX(2) = FLEX(3)x=MI{K) ANT15325
- S0 P{2¢K) = FLEX(2)eM)(n) + FLEX(4)/MU(K) = FLEX(S) ANT 15330
1 FMU = STIF(1) ANT15335
1 CALL. TImMF ( TIM(2) ) ANT18340
RETVIRN ANT153uS

1000 FORMAT (16AS) AMNT 15350

1100 FORMAT (101S8) ANI 15355

C ANT 15360

C s=ssxxxxx CAUTION#*xxx  FORMATS PROJDLEM DEPENDENT =*%sx CAUTION s*sxxx ANT153A5

C ANT15370

1200 FORMAT (2413) ANT 15375

1300 FORMAT (1hF%.3) ANT183R0

1400 FORMATY ( nE13.7 ) ANT153RS

1500 FORMAT (16nFS.3) ANI15390

1600 FORMAT (2413) ANT153095

1700 FORMAT(uE20.10) ANT1S400

2000 FURMAT (1H1ls 10Xe 1RAYD) ANT1S4nNnS

2100 FORMAT (/77 1015) ANT15410

2200 FORMAT (/7 R(3X 21I3)) - ATZH415

2300 FORMAT /7 4(3X 2F1u.b6)) ANT1S420

2400 FORMAT ( 10X 3E12.7 /¢ 22X 2E12.7 /» 34X €127 ) ANT 15425

2500 FORMAT (// u(3X 2F10.06)) ANT 15430

2600 FORMAT (/7 A(3X 313)) ANTI1543S

2700 FORMAT ( 2{ 2y 10v.6e8X ) ) ANTY1S4ug0

2800 FORMAT ( 5X» HEL2.6 ) ANT15445

eND ANT1S450
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SUBRONITIMNE AvsoLy (Ce RHS)

COMAON 7 ARRAYY /7 XYZ€(100e202) 0 11LON(200), TCON(200)e LDCr(200)
COMMON 7/ aRRAY2 / BvAL(200)

COMMON /7 WMATCON 7 PLebMUePR(202) oiall(2) o FLEX(R) o STIF(R) oAV (202)
COMMON 7/ CONTR1 7 NSEue NSYMe NIOTAL e NSIZFEe NPT, NuDYP
COMMON 7 CTONTR2 /7 TITL(16)e IPURCHe TSTKS, 1B0Y

COMMON “/ TIMFRS /7 T (10)

DAIMENSIOM A(PuB) e PaYZ(2)e C(NSEiZEenSEZ2c)
EQUTVALFNCE (Ae LICON)

DOURLF PRECIS1IO0iN RHS(NSLIZE)

COMPLEX PQe MU» AX

NMAX = 2 % NSEG

WRITE (Ae2000) TITL

IF (ISTRS.EQ.U) WRIJE (nhe2050)

IF (ISTRS.EQ.1) WRITE (he2000)

WRITE (Ae2100)

WRITE THF STARTING BOUNDARY CONDLITIONS

DO 10 T = 1eNSEL
J = I + NSEG
DO 15 N = 1e2
15 PXYZ7(N) = (XYZ(Lelew) + XYZ(T1e2e1))/2,
10 WRITE (Ae2200) 1o UCONCLI) e UCON(JS) e TCON(I)s TCON(JI) .
1 LOC(Ide LUGCII)e PxYZ(1)e PXYZ(D)
DO 20 T = 1.8MAN
RHS(1I) = 0.0DV
IF (LDC(1).FQ.1) GO TU 40
BVAL (1) = FMi) = UCOw(L)
GO TO 20
30 BvA (1) = TcoN(1l)
200 CONTINUWF

CALCULATE NFLU» VELTe nHS

CALI TIMF ( TIM(3) )
CALt DFLINT (Ce RHS)
CALI TIME ( TIM{u) )

WRITE RIGHT HAND SIDE VELTOR

wWRITE (Ae2300) TITL
DO un T = 1+NSEG
J = 1 + NSEG
40 WRITE (Ae2000) 1o RUS(IYe RHS(J)

SOLVe SYSTFM OF EQUATIONS

CALI TIMF ( TIMI(S) )
CALI SOLVER (NMAXe RHSe Ae C)
CALI TIMF ( TIV(R) )

FILL In NCONs TCON === PRILT RESULTS

VO s I = 1.NMAX
TCON(I) = Fmi * A(I)

223
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ANT20000
AMT2000%
Atj120010
AMIT20N01S
AN1I20020
AlTZ2002%
Atjr20nn03g
ANT20035
AT 20000
ANTZ00LS
ANT20050
ANTZ2N0SS
ANT200A0
ANT2NNAS
ANT2007D
ANTZ2N07S
ANI2NnAD
ANT2ONRS
ANT 20090
ANTZ2N(005
ANT201ND
ANTZO1D0Y
ANT2M110
ANT2P11S
ANTZN120
ANT20125
ANT20130
ANT2N]1 3%
ANT2N 100
ANTIZ2N105S
ANTZ2N1S0
AMNTI201SS
ANT20160
ANT2N1ARS
ANT20170
ANTI20N17S
ANT201R0
ANI201RS
ANTY20100
ANT2Nn1QS5
ANT2020D
AnI2N20S
ANT20210
ANT2021Y%
AgT20220
ANT2ND25
ANMNT20230
ANTZ2023S
ANT20240
ANT2N2uS
ANT20250
ANT2028Y
ANT202AN
ANT2N2AS
ANTIZ2Nn270
ANTZ2N27S
ANT2Nn2A0
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1

60

50

UCON(I) = (1./7Fml) = BVAL(T)

GO 1O Sn

TCON(I) = Bval(}l)
UCON(I) = A(I)
CONTINUF

WRITE (Ae2000) TITL

IF (ISTRS.EQ.U) WwRITE (oe2050)
IF (ISTRS.EQ.1) WRITE (be2060)
WRITE (ARe2100)

DO 70 T = 1+,NSEL

J = I 4+ NSE6

DO RU N = 1,2

80 PXY7Z({N) = (XYZ(ledlon) + XYZ(To2oM))/s2.
70 WRITE (6e2200) 1o UCONCL)e UCON(J)r TCON(L), TCUNM(J)»

120

130

2000
2050
2060
2100

2200
2300
2400
2500
4000

1

1

LC(I)e LUC(J) e PxYL(1)s PXYZ(D)
IF (IPUNCH.FR.0) RETURN
DO 120 T = 1¢NSEG
J = 1 + NSEG
WRITE (7.2500) Lle UCON(I),» uCOMN(J)
DO 130 T = 1+NSEG
J = I 4+ MSEG
WRITE (7.2500) 1 ¢ TCUN(I)» TCOLI(Y)
ReTIHIRN
FORMAT (1Hl, 16AS 7/ 10X 19HBOUNDARY CONDITIONS)
FORMAT ( 7/ u( 18H PLANFE STRATN w%xx%x ) )
FORMAT ( 7/ u!l 1oH PLANE STRESS =%s%x ) )

FORMAT (/7 uX 4n SEc 7X 2:UL 10X 2HN2 10X 24T1 1nX 2HT2 Ay 4HLNCH

6Y 4HLNDC2 B8X 2HXY 1uX 2nX2 /7)
FORMAT (2X ISe 2F12.8¢ 2F12.0¢ X I1e 11¥ I1¢ 2F12.R)
FORMAT (1Hls 16AS // 10X 22HRIGHT HAND STDE VECTnk //)
FORMAT (S5Xr Ib:, 2€15.8)
FORMAT ( Ilne 2c30.10)
FORMAT (/77 ( 2(RF12.0 /) /7))
END

224

G w3 - e Y

e S B e LT BN

ANI202RS
ANTI20290
ANT20295
ANT20300
ANI203NS
ANTIZ20310
ANT20315
ANT20320
ANTZN32S
ANT2033()
ANT2N33S
ANT20300
ANTZ2N31S
ANTZ2N38D
ANT2N38Y
ANI203A0
ANT203A5
ANT2N370
AyI2n3T7S
ANT2N3R0
ANT 20385
ANT 20390
ANIZ2N395
ANT20400
Ey12040%
ANT2NE10
ANTIZ20415
ANT2N420
ANT20428
ANT2043)
ANI2N43S
ANT2Nn4080
ANT20408
ANTIZ2N4S0

h




SUBROQUTINE NELINT (Ge RHS)

COMMON /7 ARRAY1 7/ XYZ{10002¢2)¢ UCON(200), 1COM(200)e LDF(200)
COMMON /7 ARRAY2 / BvAwL(200)
/
/

COMMON /7 MATCON PlerMUePQ(202) e MU(2) o FLEX(R) ¢ STIF(6) vAV(202)
§ CUMMON 7/ CONTR1 / NSEGe NSYMe NFTOTALe NSIZF. NPT, N4DYP
* COMMON /7 CONTR2 / TiTL(16)s TPUNCHe TISTRS, LRUY

: DIMENSTION A(2)e E1(2)e E2(2)0 P(2)e X{(202)e RL(Z2Y  :-2)
BIMFNSTON ISYM(2) e GINSIZEInNSLEZE)

DIMENSTON XXx1(S50)s xX2(53)¢ XX3(50), XXu(50)

DQURLFE PRFECISTON RHS(WSIZE)

COMPLEX Pue MUe AX

COMPLEX AK(2)e vK(2)e 2K1(2)¢ ZK2(2)s DI1(2)e NID(2)
COMPLEX U(2e2)e T(2:2)¢ THANSe» LOL1(2)s LOG2(2)

COMPLEX MUKPOW

INTFGER SuNI

SPHY = 1,
00 A3 T = 1050
XX1(I) = 0.
Xx2(1) = v.
3 XX3(TI) = D
3 XxG(I) = 0.
63 CONTINUF
Du 10 1 1oNSIZFE

00 1€ J = 1eNSIZE
10 6(I.0" = 0.
LU 20 M = 1.NTOTAL

Ml = (M=1)/NSEG
M2 = M = M1#NSEu
M3 = M2 + NSFo

SYMMETRY CUOEFFICLENTS USING Yo THEN X

(g N xXg]
O
=
X
v
c
-
n

J=3
I = (M=1)/7(NSEGx((25%J)/2))
ISYM(K) = (=1)s=s]
IF (T.FR.N) ISYMIK) =1
16 IFLAG = TIF.AG » 1ISYmIK)
DO 30 J = 102
IF (IFLAG.GT.0) GO 10 25
Y led) = XYZ{M202.J) * ISYMIJI)
1 X(2:J) = XYZUIM2e010d) = [SYMLJ)
GV TO 3%
2% X(1edJ) = XYZ(M2e1ed) = [SYMLJ)
X(2:sJ) = XY7UM202+J) = [SYM(J)
35 CONTINUF

c
] C OEFINE DIRFCTION OF THF LINE SEGMFNT F2 = A(J) / AvAG
c

. 30 AGJY = X(2ed) = X(1,J:
i AMAG = SART (AlLl)e%) + A(2)%2x2)
DU 33 1T = 1.2
g€2(1) = ALI)/ZAMAG
J=3-1
5 33 E1(.1) = E2(1) » (=1)es(y+]l)
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N

ANT25000
ANT 25005
ANI2%010
ANIZ2501S
ANT2%070
ANI2507S
ANT250%0
ANTIZS035
ANT2S5040
ANTI25045
ANI2S0S0
ANT2505%
ANI2506A0
ANI25065
ANT2%070
ANY25075
ANI250R0
ANT 25085
AMT 25090
ANIZ2S00S
ANT2S100
ANT 25105
ANT2%110
ANT25115
ANT25120
ANT25125
ANT2S130
ANTI2513S
ANTZS5140
ANIZS14S
ANT25150
ANT25185
ANT25160
ANTIZ251AS
ANT25170
ANI25175
ANT251°0
ANI2518%
ANT25190
ANT 28195
ANT 25200
ANT2R2N0S
ANTI25210
ANT25215
ANT25220
ANI2%5225
ANTI25230
ANTIZ25235
ANTI252L0
ANI252u4S
ANTI25250
ANTI2525S
ANI25260
ANI25265
ANI2%270
ANI25275
ANT2S2RQ0



e e

C CALCULATF THE ANLLeS T1 AND T2 AND THE NISTANCE U ANTI2S2R5

C ANT25290

DU 20 N = 1,NSEL ANI25295

DO 15 J = 1,2 ANTIZ2S3N0

PUJ) = (XYZ(Nedled) + XYZINI20Jd)) /2 ANT253Nn5

R1() = X(1,J) = PY) ANTIZ25310

R2(.)) = X(2:J) = plLy) ANT2S318%

195 CONTINUF ANT25320

CALL DOTPRD (R1s E1¢ U) ANTZ25325

CALI DOTPRU (KR1e 2. R12) ANI25330

CALl DOTPRD (R2e E?20 K22) AMIZ25%3%5

CALL. DOTPRD (R1s R1le KIMAD) ANTZS3u0

CALIL DOTPRD (R2r R2r K2MAG) ANI283uS

R1IMAG = SQRT (R1MAG) ANT 25350

R2MAG = SWURY (RZMAG) ANI25355

3 KA = ARS(R1?) ANT253A0
RY = ARG (R22) ANI253AS

! RMAG = AMAX1 (RAs Rd) ANT25370
i IF (ABS(D /RMAG).LT.1.0E=u3) GO TO u0 ANT 25375
i C ANT25380
C CALCULATE DI1s DI2 FOR 11eNE.O ANTI253AS

C ANT25390

; TNl = R12 /D ANT 28395
TN2 = R22 /D ANT25un(

DOSDOI = 1,2 AI2540S

: AK(T) = F1(2)=Mui{lI) + E1(1) ANT 25410
BK(T) = F11)=MU(]I) = E1(2) ANTI25415

ZK1(1) = 1 *x (AK(I) + BK{(I) = TN1) ANT25420

ZK2(I) = 1) * (AK(I) + 8K(I) = Ti2) ANT25425

LOGY (1) = CLOG( ZK1(I) ) ANT25430

LOG2(1) = CLOG( 72x2(I) ) ANTIZ25471S

OPHY = ATMAG (LOGR2(I) - LOGL(I)) ANTI25440

SPHT = QIuN (SPHI, OPHI) ANT2S4Uu5

IF (ARS(DPHI) «GT«PI) LOL2(I) = LOG2(T) = SPHI = CMPLX(0.N, 2.%P]) ANI25450

DI1¢1) = 7ZK2(1) = (LOL2(I) - 1.) / AK(I) AT 254595

1 - Z2K1(I) * (LOL1(I) = 1.) /7 HK(I) ANT25460

0I12(1I) = (LOG2(1) = LUGL1(I)) / ux(Il) ANT2S465

. 50 CONTINIF ANT25470
: 60 TO AN ANT25475
40 CONTINIF ANT 25400

C ANT254AR5

! C CALCULATE Df1es DI2 FOR )ebQeN ANT2S400
C ANT 25405

DO s I = 1,2 AMNIZ25500

BK(T) = F1(1)=My(l) = E1(2) ANTZSSNS

VDIL(I) = R22 = (CLOG(uK(I)®R22) = 1.) ANT 25510

1 - R12 * (CLOL(uUK(I) %« R12) - 1,) ANT25515

vI2(1) = (ALUG(RR) = ALOG(RA)) / BK(1) ANT 25520

9% CONTINIIF ANT 258525

60 CONTINUF ANT25530

C ANT 25535

C CALCULATE DFLUe DELT INTEGRALS ANT255uQ

C ANTIZ255%uS5

DQ A4 T = 102 ANT25550

DO A4 J = T2 ANT255%%

T(JeI) = CY _X{Ue0rlloV) ANT2R5A0

UJsI) = CMPILX(UUeNV) ANT 25565

6u CONTINIIF ANT2S570

226




A i b i

Baiaibd s id oA

90

35
20

2600
95

2000
2100
2200
2300
2400
2500

VD AS T = 1.2
UQ &S J = 12
U0 RY K = 1.2
SUNT = (=1)*%(3=])

MUKPOW = MU(K) %% (2~}
UGJeI) = 1lUel) + PQULoK)I*AX{UeR) DT (K)
T(Jel) = TlUrI) + (MUIK) %1 (1) = 1(2) ) =MUKPOWESGIIT

) sAX(JeK)*DI2(K)
6% CONTINUF

XX1IN) = XX1(N) + 2. #EAL(T(1¢1))

XX2(N) = XX2(nN) + 2.#nEAL(T(1¢2))

XA3(N) = XX3(N) + 2.%REAL(T(2+1))

XXU(N) = XXu(N) + 2.*KEAL(T(2:2))
75 00 A5 IX = 1e2

DO RS JX = 1.2

NG = N + (IX~=1)=NSFG

My = M2 + (UX~=1)%NSrG

IF (IXIFQ.JXIANU.M.FO.N) l(erJX) =
1F (LDC(MY) .FR.1) GO O S0

TRANS = (J(IXeUX)

UCIXeIX) = =(1/FMU) %= T{IXeJX)
T(IveuX) = =FMU * THANS

CMPLX (0.25¢0,0)

RHS(NG) = RHS(N4) + 2.#REAL(II(IXedX)) = RVALIMU) x ISYM(JX)
GINueMu) = GINGIMY) + 2. 2REALIT(IXeJX)) = ISYMUY)

CONTINIF

CONTINIF

WRITE(Ae2000) TITL

FORMAT (1H1 ¢ 1AAS//10Xe L7THCOLUMN SUIM CHECKS//)
DO 95 T = 1+NSEG
WRITE (Ae2500) 1.,
RETHRN
FORMAT(1X»3TUe3FRS+1UFY.S )
FORMAT ( %X Iue 2F20.10, I4)
FORMAT(1Xe3T4e12F59.4 )

FORMAT (10Xe GELS.7)

FORMAT (1uXe nlte 6F1H.7)
FORMAT (3X+ Tue 4F21.15)

END

Xx1(Ide XX2(I)s Xx3(I)e Xxu(T)
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ANT2557S
ANT25580
ANT255A5%
ANT25590
A 125505
ANT25600
ANT25605
ANT 25610
ANT25615
AtT125620
ANT2562%
ANTZ25530
ANT 23635
ANI2S6u40
AN T25615
AMNT25650
AN125659
ANT2S6A0
ANT256AS
ANT25870
ANT2567S
ANT256R0
ANT2S6RS
ANT 25620
ANT25695
ANT25700
ANT287NS
ANT2ST710
ANT25715
ANI28720
ANT 25725
ANT25730
ANT2S735
ANT257u0
ANT25748%
ANT 25750
ANT25755
ANT257A0
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SUBROUTINE TNSOLUL C ) ANT 30000
COMMON 7/ ARRAY1 /7 XYZ{1U0s2¢2)e LHCONC(200), TCONC(200) s LDC(200) ALlT3N00S
COMMON 7/ ARRAY3 7/ PIINC(1002) ABI 30010
COMUON 7 MATCON 7/ PLoFMUePA(202) 0 dI(2) o FLEXLR) o STIF(R) o AY(202) ANI3NOIS
i COMMON 7 TIMFKRS /7 TIM (10) ANT 30020
i COMMON /7 CONTR1 / NSEGe NSYMe NTOTALe NSTZE,» NPT, NUDYP AMNTINN2S
: COMWON /7 CONTR2 / TITL(16)s TPUNCHe ISTKRS, IROY ANT 30030
DIMENSTON C(100eR) e A(4)y PXYL(S) At13103%5
COMLLEX Pe MUe AX ANTANO0UO
IF (IBDY.NE.N) w0 To 10y ANT3NQLS
110 IF (NPT.EQe0N) RETURN ANT3N0NSO
CalLl, TIMF ( TIM(7) ) ANT 3N0RS
WKITE (Re20000) LITL ANT 300A0
IF (ISTRS.EQ.U/ WRITE (6e20%0) ANT300AS
IF (ISTRS.EQ.1) WRITE (6ne2060) ANT 30070
c _ ANT3007S
C CALL FnR CALCULATIUN OF DELD AND DELS AMNTANQRD
C ANI3ONRS
WRITE (Re2100) ANTINOOQ
A(4) = n. ANT3NQQS
CAL) UFLSD (C) ApITAN10N0
DO 10 NP = 1.WP] A13010S 3
CINPsS) = C(NPeH: = 2, ANTAN110 ‘
A1) = STIF(1)=C(NPeg) + STIF(3)2C(NPS) ¢ STIF(2)%C(NPeR) AMT 30115
A(2) = STIF(3)*sCinNPo4) + STIF(AR)I*LINPS) ¢+ STIF(R)XC(NPIA) ANT3Nn120
A(3) = STIF(2)*LiNP.4) + STIF(S)*C(NPeS) + STIF(u)=C(NP,K) ANIAN12S
ARITE (Re2200) WPe (ALK)oK=1lew) e PTIM(NPe1) e PTIN(NPe2) AMI30130
1 10 CONTINUF ANTIN13S
CALtL TIMF ( TIM(R) ) ANT3N14¢ Y
4 RETHIRN ANTIN1LS _
100 WRITE (Re2000) 1ITL ENI3N1SQ ;
Du 120 T = LeNSEG ANT3IN1SS i
J = 1 + NSEG ANTI301A0 ]
120 REAND (S,1100) Nr UCOWIL(I)» UCON(Y) ANT3N16S
D0 130 1 = 1NSEG ANT3N1T70
J =1 + NSEG ANT3N17S
130 READ (5,1100) Me TCON(TI)» TCON(Y) ANT3N1RD
WRITE (Ae2300) ANTSN1RS
UO 16800 T = 1eNSEG ANT3N190
: J = I ¢+ NSEG ANTIN1QS
; DO 150 N = 102 ANT3N2Nn0
190 PXYZ(N) = (XYZ(lelew) + XY2(I1e2eM))/2. ANTIN2NSG
140 ARITLE (Ae2800) Lo UCOWTI)e UCON(J)e TCONCI)e TCOMIJ)» ANT3N210
1 1 LOC(T)e LUC(J) e PxY2(1)e PXYZ (D) Ari130215
Gu 0 110 ANT3N220
1100 FURMAT (T10. 2ES50.10) ANT3N22S
2000 FORMAT (1Hl. 10Xe 1nAD) ANIZN230
2050 FURMAT ( 7 u{ 18H PLAIE STRAIN s«s%* ) ) AMTAN2RS :
] 2060 FURMAT ( 7 a{ 1#H PLANE SIREGS #%x% ) ) ANT 30200 !
2100 FURMAT (AHOPOINIe 2 L0OH SIoMa(aX) 22X 10H SIGMALYY) D ANT3NDuUS
\ 10H SIGMALYY) 2X 1DH SIGMA(ZZ2) SX 2 X ARX 210 Y) AYT3N2S0
3 2200 FORMAT (2X 13¢ 2X UFrlc2e2e 2FRU) AMTSNDRS
{ 2300 FORMAT (/7 uX 411 SEe 7X 2rUL 10X 2HII2 10Y 2Tl 1nX 2HT2 ay 44LNCY ANT3NDAN
1 AY GHILNC2 AX 2HX1 1uX 2HX2 //) ANT3N245
2800 FORYUAT (24 ISe 2F12.Re 2F12Ne oY Tle 11Y Ile 2F12.6) AMT30270
EnD ANT3N2TS
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COAPUTF SYMMETRY CUEFFICLIENTS US1ING Yo

16

23

35

SUBRQUTIME NFLSu (6)

COMMON /7 ARRAYL 7/ XYZ(100e2e2)e UCONM(Z2D0)Y,
COMMON /7 ARRAY3 7 PllIn(10ue2)

COMMON /7 MATCON 7 PLoFMUsPA(2e2) eMU(2) o FLEXLA) ¢ STIF(R) e AY(202)
COMMON /7 CONTK1 7/ NGEGe NSYMe NIOTALe NSTZFe NPT, NnDYP
COMMON 7/ CONTR?2 7/ TITL(16)e IPUNCHe ISTKSe 1RUY

DIMENSTON A(2)e EL1(2) e E2(2)0 P(2)e X(2+2)0 RL(2Y, 12(2)
DIMENSTON ISYM(2) e G(10Ne6)
COMPLEX PRe M{)e AX

COUMBPLEX AK(2)e uK(2)e ZK1(2)»
COMPLEX LOG1(2)¢ LOK2(2)

1COH(210) ¢ LU (200)

Zn2(2)e DIN(2)e DIu(2)e Ny NS

SPHYT = 1.

DO 10 ¥ = Z.100
BO i0 J = 1¢6
6G(%ed) = 0.

U 20 M = 1.101AL
Ml = (M=1)/NSEG
M2 = M = MIxNSEO

THEN £
IFLAG = 1t

DO 16 K = 1.2

J=3-K

I = (M=1)/7(NSEGx((22%xy)/2))

ISYMIK) = (=1)=%xY

IF (I.FQR.n) TSYM(K) = 1

IFLAG = TFLAG * TSYs(K)

VO 32 J = 1.2

IF (IFLAG.GT.D) GO O 25

X(led) = XYZ(M2+20J) « 1SYM(J)
X(2.J) = XYZ(M2s1eJd) * [SYM(J)
GO V0 35

X{1sJ) = XYZ7(M2e10J) * ISYMJ)

X(2,3) = XYZ(M2e2eJ) =%
CONTINIIF

I1SYM(J)

OEFINE DIRFCTION OF THr LINE SEGMFNT FE2 = A(J)/AMAG

32

33

CALCULATF THF ANOLLES T

15

A(J) = X(2ed) = X(1,J)

AMAG = QQRT (A(1)2%> + A(2)«%2)
00 33 1 = 1,2

E2(1) = A(I)/7AMAG

J=3-17

E1(1) = FP(I) #» (=1)&x(J+]l)

ANu T2 AND THE DISTANCE U

DO 20 N = 1.,NPT

VO 195 J = 1.2

P(J) = PTIN(N.J)
R2(.1) = X(2:Jd) = P())
R1() = X(1ed) = PLY)
CONTINUF

Ul = e

V2 = 0,

DO 17 JU=1¢2

V1 = i + RI(JIeR1 (D)

22y
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ANT SSON0
AT IRNNNS
AMTASC10
ArNT 35015
ANTSS020
ANT 38025
ANTSS0R0
ANTS03S
ANT SR0QU0
AnT3S0uS
ANTIR0RN
ANT 35055
ANT3S0A0
ANTIR0RS
ANT 35070
ANTOR0T7S
ANT3S0PD
ANT3S0RS
ANT3IS000
ANT 35095
ANTISINO
ANT3S1NS
ANTOSR110
ANT 35115
ANT 35120
ANT 35125
ANT3S120
ANT 35135
ANT 35140
AT IRILS
ANT 35150
ANT3R1S5S
ANT 351A0
ANT3S1AS
ANTIS170
ANT35175
ANT3R1R(
ANT 35185
Ap135190
ANTAR1QS
ANTIS2Nn0
ANT3R205
ANT3S210
AMT 35215
ANT3S220
ANT 35225
AMNTSR230
ANT 34235
ANT 38240
AN; 35248
ANT3R2%0
ANT 3R2RS
ANT3S2AD
ANT352A5
AMNT3S270
ANTIS27S
ANI3S2R0




c

17

U2 = 2 + R2(J)=2R2(0))
Ul = SQRTDY)
U2 = SARrTD2)

CAatl DOTPRD (R1e Ele
Cabt DorerD (R1e L2
Call DorerD (R2e E2
CALL DOTPRD (R1e K1
CaALl D01PRD (K2e R?e
KIMAG = SURT (R1VAG)
R2MAG = SART (R/2VAG)
Rh = ARS(R12)

R = aliN(K22)

HMAR = AMAXT(RA,RY)

TP A ot s vy Srain s e o

J)
K1/2)
R2,)
H1MAL)
K2MAG)

IF (AHS(D 7RMAG) LT e10E=0U3) LO TY un

INL = RI2 /D
TNZ = R22 / D

C CALCULATF 0I5 NDIG FOR

c

OO0

c
c
c

4%

CALCULATF DT 4

44

Do uH T = 1.2

AK{T) = FL(2)sMy(l)
Hr(T) = E1(1)=MU(L)
ZK1(1) = 1 &« (AK(])
ZR2(I) = 0 & (AK(])

)]

+

+
+

oNE .0

E1p1(1)
FL(2)
HK{1) * Tn1)
BK(1) * Ti?)

LOGI(T) = CLou( 7K1(I) )

LUG2(1)
UPHT = AT#4AG (LuG2(t

)

= CLouvl 72K2(]1) )

- LUGL(1))

SPHT = SIGN (SPitTe nPnl)

IF (ARS(DPHT) «GTPI) LOG2(I) = LNG2(T) = qPHT * rMPLY(0.n,

DI3(I) = (Lor2(]) = LuGL{]l)) / ux(I)

DIG(1) = =(1./7ZK2(T1)
CONT INIF
By TO Sn

CUNTINIIF
o sH I = 1.2

e 1) = Frl1)=2u(l)
ul3al) =

Dlyel) =

Sh CUNTIwF

5u

CUNT NI

(ALOG(Rn)
=(1./R22 = 1./112) /7 Ral()asp

- 1/741(T) ) /

NI FON N.FR.U

F1(2)
- ALNo(rA))Y / AK(1)

CALCULATE NNe HSe STRATNS ablu STHFSSES

Ll = &

DO 245 1 = 1.2
N0 2% 1. = 1.2
L1 = L1 + 1
HY 2% J = 162

LB = CupL x(n.netta0)
Dy = (oot x{natiennet)
DU AN K = 1.2

MY =P (Jex) edx{len ) «DN[I(K) e (Vi(R) v e(l=1))
| PO eR)AAAL e ) 1D B3I« (NVNG(R) e 5 (T=1)))) /2.4 Dy

2K (1)

2.*P])

ANT AS2RS
AT 55290
ANT3R20Y
AT IS300
ArjTHSH50Y
ANTASS10
ANT 38315
W135320
ANTIS3IDY
AITAS33N
AMT IS5
AMTOS3N0
AT 35348
A1 35350
ANT 35355
AT 3S3A0
AT IS 3AS
ANYJQ}?O
ANT IR3T7S
ANT 3300
AMT IS 3RS
ANT 35370
ANTIS 304
ANT3S4NQ
ANT ISyny
ANT3Su10
ANTISHTY
AT 35420
ANISSuO5
ANTISLRD)
ANTY IS4 S
ANTSS4uy
ANTSSuUS
ANTISHSN
ANT 5455
AMTISUA0
AMTORYAS
AtlT35470
ANT I5475
ANT 354920
ATASLAY
ANT 35400
ANT 35405
ANT 35500
ANTISHNS
ANIZSS10
AT IS5515
ANTISS20
ANY 383525
AT AS%30
ANT SRS
ANTISSU0
ANTISS5u45
AT 36550
AT.IRS6RS
PNYISHAD0

UG ==k ) s 1 (1) =r LU2)) e p(n) s (2= ) #aX (T oK) ¥RI(K)# & (L=]) *N[U (¥ ) ANTIEEAY

) al((=1)er(3=))

230
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oy

2 = (MI(K)SEL(1)=F1(2))2MUIK)*+(2=J) 2AX (LoK) MK ) *2 (I=1) D14 (K ) ANT 35575
3 2({(=1)22{3=4))) /2. + US ANTI3SSA0
30 CONTINUF ANT 3S5R5
My = M2 + (U=1)2NSEG AN 135540
GINoL1)= GINoL1)= 2.¢REAL(DD)*TCON(MY) 2ISYM(J) Ariy 35585

1 + 2.¢REAL(DS)*UCONIMU) 21SYM(J) ART 5600
2% CONTINUE ANT 35605
20 CONTINUF AN13S610
RETHRN ANT 35615
END ANT 35620
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SUBROUTINF HBDYSIR ()

CUMMON 7/ ARRAY1 7/ XYZ(100020¢2)e 1ICON(200), TCUN(200) s LODC(20N)
COMMON / ARRAY4 / NHDY(H0.3)

COMMON 7 MATCUN 7/ PILeFMUePQ(202) o MUL2) o FLEX(6) e STIF(6) o AX(202)
COMMON 7/ CONTR1 /7 NSEwe NSYMe NTOTALe NSIZEs NPT, NBDYP
COMMON 7 CONTR? 7/ TITL(16)se IPUNCHe ISTRS, 1RDY

CUMMON /7 TIMFRS /7 TIM(1u)

DIMFNSTION A(2) e E1(2)e E2(2) e P(3¢2)e R(2)e NUL2)y G(SNeR)
3 DIMENSTON Q(3e3)e E(3e3)e COFAC(3e3)e T(393)e TL1(303)
3 UIMFNSTION RHS(3)e TRAC(?) e TCH(Z2)e (EMP(343)e ANG{3)
3 CUOMPLEX PnRe MUe AX

IF (NBDYP.EQ.U) RETURmN

‘ caLt TIMF ( TIM(9) )

WRITE (Ae2000n) TITL

WRITE (Ae2100) ((NBOY(IeJ)ed=1e3)e1=1,MBDYP)

WRITE (Re2000) TITL

IF (ISTRS.EQ.U) WRITE (6e20650)

IF (ISTRS.ER.1) WRITE (he2n60)

WRITE (&e¢2200)

I0 = BASE SEGMFNT wWUMAFR
I1 = RFAR DIFFFRENCE SFGMENT NUMBER
12 = FORWARD DIFFERENCE SEGMENT NWUMRER

OO0

D0 1S N = 1.NUDYP
= (Nel)
11 = NRDY (Ne2)
= (Ne D)
: DO 20 M = 1,2
P(1eM) = (XYZ(T0eloem) + XYZ(TIU20M)) /2,
= (XYZ2(ILleloid) & XYZ(I1e2014))/2,.
P(3:.M) = (XYZ(12e10M) + XYZ2(T12e2eM)) /2,
i R(M) = P(AeM) = P(2,M)
: 20 A(M) = XYZ(INe2eM) « XYZ(10e1eM)
i SMAG = SORT(R(1)%x%x2 ¢+ R(2)*%2)
= GORTIA(L)=x%2 + A(2)%x%x2)

C
C CALCULATE NDiZzDSe TRAC FOR GLOBAL CURRDINATF SYSTEM
C
DO 29 M = 1,2
E2(m) = A(M)/ AMAG

T

=3 M
E1(x) F2(M) % (=1)*=(K¢l)
13 + (M=1)*NSF6
i Iy 12 + (M=1)=*NSEG
1 Is 10 + (m=1)sNSEG
Du(M) = (UCON(IW) = UCON(I3))/SMAG
25 TRAC(M) = TCONL(IS)

[}
—
—

TRANSFNARM NDI)/DS INTO EPS === TRAC IMTO TCN, IM LOCAL COORDIMATES

CAL!S
NY ap I
L0 TCNLT)
o uh ¥
TUN(])
45 TCN(2)

-
-
-
-

DOTPRD (LU

= 1.2
the

= 12
ICnll)
{CN(2)

E2s PS)

+ FELli)=TRAC(L)
+ E2(L)xTRAC(I)
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ANT4NONO
ANT4NQ0S
ANT40010
ANT4NO1S
ANTU4N020
ANT40025
ANT4N030
ANT4NO3S
ANTU4OQUL0
ANTUOOUS
ANTUNOSD
ANTUNQASS
ANTH400A0D
ANT4GDES
ANTLOQTO
ANT4NOT7S
ANT4NORD
ANT4NORS
ANT40090
ANTUNQOS
ANT4N100
ANTUN] NS
ANTH4N110
ANT4N11S
ANTUN120
ANTL0125
AMTI4N130
AMTI4NL1RS
ANTLOLULO
ANTUNILS
ANT4L0150
ANT4N1SS
ANT40160
ANTHN1RS
ANT401T70
ANTUN1 TS
ANTH4N1RD
ANT4N1RS
ANT4N019)0
ANT4N1 Q5
ANTHO200
ANT4N205
ANT4N210
ANTLN215
ANTUN220
ANTU0225
ANT4N230
ANT4N2315
ANT4N2U
ANT4O2US
ANT4N2R0
ANTUN28S
ANTUN2A0
ANTUN2AS
ANTUN279Q
ARNT4N2T7S
ANTU4N2RD




c ANI4N2RS
C CALCULATE TRANSFORMATION MATRIX T(I,J) AND ITS INVERSE TI(I,J) AnNTLN290
c ANTU4N295
C eI (1) ANT4L0300

S S EL1(2) ANIL4N3NS
T(l.1) = C*C ANI40310
T(1.2) = s%S ANTLO315
T(1.3) = S*C=x2, ANT40320
T(2.1) = §%§ ANTUN32S
T(2.2) = C*C ANT4N330
T(2¢3) ==S*Cx2, ANTL4N32S
T(3e1) ==G%C ANTHO3U0
T(3.2) = S%C ANTUN3US
T(3.3) = C*C = 5*S ANT40350

C ANT40355
C *xxtekakaxk TR RA R KR AKE ANT4N3A0
c ANT4N3ARS
TI(1e1) = T(101) ANT40370
TI(102) = T(10e2) ANT4N37S
TI(193) ==T(1:3) ANTHN3R0
TI(2e1) = T(21) ANT4N3AS
TI(2e2) = T(2:2) ANT4N390
Ti1(2¢3) ==T{2:3) ANTU 1305
TiI(xs1) ==T(301) ANT4UNY4NO
TI(%02) ==T(3:2) ANTLOY4NS
Ti(%e3) = T(3:3) ANTIGOY10

C ANTL041S
C CALCULATE MATERTAL STIFFNESSES IN LOCAL COORDINATE SYSTEM AMTUNY20
C ANTH4042S
K =0 ANTLN430

DU S0 7T = 1.3 ANTUNY3RS

DO S0 J =103 ANTUNYUO

K=K +1 ANTH4OHUS
WlIled) = STIF(K) = (2,%%(JU/3)) ANTU4NGS0

YF (I.ER.J) GO TO Sn ANT4O4KS
A(Jel) = STIFIK) ANT4NQKA0

50 CUNTINUF ANTLN4AS

N0 »5 7T = 1.3 ANTLONLTO

0 &% J = 1.3 ANTLUNYTS
TEMP(LeJ) = 0N« ANT4N4R0

DO 85 K = 1,3 ANTHO4RS

S5 TeMR(IeJd) = TEMP(IeJ) + Q(IK)%TI(K,J) ANT4OYQQ

00 A0 T = 1.3 ANTUOyOS

DO A0 JU = 1,3 ANT4NS5N0
W(Ied) = no ANTU4NS5NS

DO A0 K = 1.3 ANT40510

60 A(Ted) = A(Ted) + T(TIKI®TEMP(KoJ) Q(1,3) = Q(1,3) /2. ant40515

c Q(2,3) = Q(2,3) /2. anT4nS20
C CALCULATF COFFFTCIENTS OF REARRANGELD EQUATIONS Q(3,3) = Q(3,3) /2. aAnT4NS?S
Cc ANTH0S530
E(le1) = R(1e1) = G(102)%3(102)/R(2,2) ANT4N53S
€E(1.2) = Al(1.,2) ANT4NS540
E(1.3) = a(1+¢3) = Q(102)%3(2+3)/Q0(2:2) ANT4NSUS
E(2¢1) ==03(1,2) ANILNSKP
€(2¢2) = W(2s2) ANT 40555
€E(2¢3) ==0(2:3) ANT4NSA0
E(3e1) = a(1¢3) = Q(102)%Q(2¢3)/0(2,2) ANTUNS56S
€E(3:.2) = a(2:3) ANTIW0570

233




AT v

B Lt TR P P R

1

2

65

C

Ft3.3)
DET = (F(101)2E(202)%E(303)) + (E(1e2}2F(203)%E 3,1)) +
(FOLoA)*E(201)%E(302)) = (E(301)%E(2:2)%E(1,3)) =
(F(302)2E(2e3)%E(101)) = (E(3,3)cF(201)2E(1:2))

CoFaC(tr1)
COFAC(1,2)
CUFAC(1,3)
COFAC(2,1)
CoFac(2,2)
COFaC(2,3)
COFAC(3.1)
COFAC(3,2)
3)
= 13
= 1,3
S COFAC(J - T)/7VET

CoFac(3
DO a8 1
00 RS J

TEMR (Lo J)

RHS(1)
RHS (2)
RHS(3)

C CALCULATE

c

70

100
15

1000
2000
2054
2001}
2100
1
220G
1

Do 70 1
ANSL(])
00 70 v
ANS(1)
GuNo1}
G(N.2)
G(N»3)
G(Ns4)
G(N.S)
G(N.R)
WRITE (

FORMAT ( 7/ (3(3F12.7 /)/7))
WRITE (A02300) 10

CALY
RETHIRN
FORVAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT

UNKNOw HOOP STRESS

A

fCN{(1)

= QA(393) =~ Q(2e3)%0(20:3)/0(2,2)

(E(202)%E(303)) < (E(3,2)%E(2,3))

(E(201)%E(502))

~1.0%((E(1+2)%E(303))

(E(101)%£(3503))

=1nN*((E(1o1)2E(302))

(E(1,2)%2(203))

~leNx((E(101)2E(2+3))

(E(101)%E(292))

FPS*0(2¢2)

TCN(2)

= 1.3

e

= 1.3

ANS(I) + TrMP(1sJ) %xRHS(J)

TCNn(1)
TCN(2)
ANS(2)
E£PS

ANS (1)
ANS(3)

x 0(202)

10n0) STIF » we

(2ul3)

(141,

10Xe 16A%)

RHS»

104 1

«leNE((E(201)%E(503)) -~ (E(3,1)%E(2,3)))

(E13,1)%£(2,2))
(E(3+s2)%E(1:3)))
(E(3,1)*£(1,3))
(E(301)%t(1,2)))
(E(2:2)%£(1,3))
(E(2,1)*£(1,3)))
(E(2o1)%(1,2))

ANS

(GINeM) ¢eM=104)9sP(101)epP(1e2)
TImF ( TIM(10) )

( 7 u( 18H PLANE STRAIN =x¥x ) )

(

/7 ul

14H PLANE STRESS **%% ) )

ANT4NSTS
ANT4N5R0
ANIU4NSRS
ANTHN590
ANTY4N505
ANT4NENO
ANTHORNS
ANT40610
ANTUNGIS
ANTUNE2G
ANT4NE2S
ANTU4NE3D
ANT4NE3S
ANT4ng" ]
ANT4NELS
AMT4NES0
ANTLNRSS
ANT4NRAO0
ANT4NAKS
ANT4NRT0
ANTUNETS
ANT4NRERD
AMT&HN6AS
ANT40N690
AMTUNEOS
ANTHQTZ00
ANT4NT70S
ANT4NT710
ANT4NT71S
ANTH4NT20
ANT4NT72S
ANTL0T730
ANTUNT73S5
ANTUNTUD
ANT4NTUS
ANTHNT7S0
ANT&DT7RS
ANTI&N760
ANTUNTAS
ANT4N?70
ANTIL0T77S

{/ SX 11HBASE NUMBER 2X 11HRFAR NIMRrR 3X 10HFWD MOMBFR // AMTUNTRO
( 3112 7))

{THOSGMENT 2X 10H NORMAL ST 2X 10H S:FAR QTR 2X

104 HOOP STRS 2X 10H HOOP STRM §X 2H X X 24 Y)

2300 FORMAT (2X I3
END

2X 3F1¢'20 Fl?-9o
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ANTUNTARS
ANT4OT79C
ANT4N79S
ANT4NBNO
ANTHNBNS




SURROUTINF DOTPRD (ar Ay C)
DAMENSTON AlZ)» H(2)

C = At an(1) + A(2)%xyl2)
RETHRN

END

ANTLUSONO
AMNTUSONS
ANTUS010
ANTU&S0IS
ANTU4S020

el




T < TeNT

10

50

5%
60

o n.

SUBROUTINFE SOLVER (Ne X» Fe A)
DIMFENSION A(NeN)Y» XI(N)e FIN)e Xx(16n0n)
DOURLE PRECISION X

VO 10 T = 1s N

F(IY = neo)

CONTINUF

Nl = N =1

VDO ADO T = 20 N

DO « J=1I, N

IF (AHQ(A(I—IoI-l)) e0Te Ue) 6O TO 48
I1 =1 -t

WRITE (Arevln) 11

RETHIRN

CONTINIE

Cx = AlJeI=i) 7 A(I=1s1-1)

K2 = 1
00 80 K
Al(JrK?)
K2 = K2
CONTINIIF
A(JsI~-1) = CX
CONTINIIF
CONTINIIF

Ie N
A(JrK2) = CX * A(]=1vK?)
1

+ 10"

FORWARND PASS = OPERATE ON RIGHT HAND SIDE aS

ON
62

65
70

MATRIX

CONTINUIF

DO 70 T = 2+ N

00 AS J = 1I¢e N

X(J) = x(J) = X(I=1) * A(JeI-1)
CONTINUF

CONTINUF

BACKWARD PASS - SOLVE FOR AX = 8

7%

80

90

K10

XXx{n) = X(N) /7 A(NeN)

DO R0 T = 1» NI

SUM = n,n

I2=N-1T+1

DO 75 J = I2» N

SUM = M + A(I2=10) = XX(J)
CONTINIIF

XX(12=1) = (X(12=1)=SUM} 7/ all12=1s12=1)
CONTINUIF

DU Q0 I = 1¢ N

F(IY = F(I) + XA(1)

CONTINUF

RETIIRN

FURMAT (/71X 2SHEHROR RETURN FROM SeQSOvV ) @ LT
1 3SHDIAAONAL TERM RFOUCED TQ ZERO /7 )

END

ANISNONO
ANISN00S
ANISNO10
ANTS50015
ANTILN020
ANTSN02S
ANTSNN3P
ANISNOTS
ANTSNQoug
AHITSNONUS
ANTH0050
ANTYHNERS
ANTHN0OAR0
ANTSNNARS
ANTHNQT70
ANTSNOT7S
ANTSNOAD
ANTSHS00RS
ANTISNQ90
ANTSNQOS
ANTSN100
ANTSNINS
ANTSH110
ANTS5N115
ANISN120
ANISN12S
ANTSN1 30
ANTSN13S
ANISNI4Q
ANISN1GS
ANTS5N150
ATH0185
AMNTSN1AD
ANTSN1AS
AMTISN1T70
ANIDN1ITS
ANTS5N1R0
ANTSN1RS
ANTSN19Q
ANTHNLIOS
ANTHN200
ANTSN20S
ANTHN210
ANT5N215
ANTISNZ220
ANTS0225
ANTSN230
ANISN21S5
ANIDN240
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5.3 EXAMPLE SOLUTIONS FOR ISOTROPIC AND ANISOTROPIC BOUNDARY-
INTEGRAL EQUATION METHOD

5.3.1 Tension of an Isotropic Plate

The group of problems discussed herein are provided for two
major purposes, the first to determine solution accuracy, and the second
to provide guidelines in the use of the program, called DIPOME.

Since both tractions and displacements are assumed constant along
each segment, it is logical to theorize that the solution will be more
accurate for shorter segment lengths. If then two questions remain:
What accuracy is obtainable, and how is this accuracy related to the
1 } segment length used in the model.

ﬁ 5.3.1.1 Cireular Cutout

% A circular cutout, of unit radius, was modeled by segments of
: : equal length. Ten problems were solved, with the only variable being the
t . number of segments employed. In each problem the stress distrioution a-
é ? long the x and y axes interior to the plate was obtained. Stresses were

computed at points ranging from 0.001 inches to over 5.0 inches from the

; : surface of the cutout. Table 1 shows a comparison of the solutions ob-

tained in three of these problems to the theoretical results of Timoshenko.

These solutions follow the theoretical curve closely in all cases, except
; in the immediate vicinity of the cutout.

This behavior is due largely to the presence of a sharp corner at

% the intersection of each axis with the cutout, as shown in Figure 1. This
is 31 consequence of the approximation of the surface by straight line
segments. Use of shorter segment lengths reduces the sharpness of this
corner and produces less distortion, as seen in the table. Further devi-
ation from the theoretical solution is a result of the surface approxima-

tions inherent in averaging tractions and displacements over each segment.

237




Stresses at the surface of the cutout are computed by a finite
difference technique, using the displacements of the two segments adjacent

to each of the intersections, as shown in Figure 1. Once the strain is
computed by the equation below, Hooke's law is used to obtain the stress.
Surface stresses are computed at nodes around the entire cutout, with an
average error of about two per cent. For brevity only the stress at the
intersection of the cutout and y-axis is shown here (Table 1).

z Ux 2
i € ©
! L

U

The influence of segment length on solution accuracy is summarized
in Figure 3. The graph results from comparisons of interior stresses,
where 7* represents the last data point obtzined before the data diverges
from theoretical curve of Timoshenko.
5.3.1.2 Elliptical Cutout

The problem of an elliptical cutout in an infinite plate under

tension was solved by Inglis in 1913. He found that the maximum stresses

in the plate occur at the surface of the cutout, at the point where the

; radius of curvature is smallest. Thre stress concentration here is given by:

SCF=1+2a/b
where a/b is the aspect ratio of the ellipse.
% Prediction capability for a range of stress concentrctions was
investigatad, and results are reported here for concentrations of 5, 10,

and 40. By the equation above, aspect ratios of the resulting ellipses
i were 2.0, 4.5, and 19.5.
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For each aspect ratio a number of problems was solved, using
varying numbers of segments to model the elliptical surface. Elliptic
coordinates were used to divide the surface, so that a constant value of
segment length/radius of curvature was obtained. It may be shown that
this will be accomplished by using equal inc-2ments of the coordinate n.
It was hoped that accuracy of the internal solution might be related to
this ratio.

The stress distribution along the x and y axes interior to the
plate was obtained, at points ranging from 0.001 inch to 5.0 inches from
the cutout surface. Tables 2 through 7 show a comparison of the results
with the theoretical results of Inglis. Again it must be aoted that the
computed results are inaccurate for points very near the cutout surface,
due to the sharp corner produced by the model (See Figure 2).

Stresses at the surface of the cutcut are computed by a finite
difference technique, as previously described. Results of this calcula-
tion are shown only at the intersection of the x and y axes with the cut-
out, and appear in Tables 2 through 7.

The relationship between interior solution accuracv and the
value of segment length/radius of curvature employed in a given problem
is shown in Figure 4. Results were obtained for four aspect ratios, and
the plots are nearly straight lines for each aspect ratio, for values of
length parameter down to 0.052. It may be seen that solution accuracy
is functionally related to the ratio of segment length to radius of

curvature, but this parameter alone does not characterize accuracy.
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We see that the Boundary-Integral Equation method is a reliable
numerical technigue for the prediction of stiess concentrations in two
dimensional isotropic problems. Results jndicate that the methcd is con-
sistent as well as accurate in calculating stress concentrations as high
as 40. Solution accuracy is dependent both on the stress concentration
gradients present and on the length of segment used to model the surface.

In employing this program, it should be noted that solution time
required for interior points is approximately ten times that required
for boundary solution points.
$.3.2 Tension of an Anisotropic Platz with a Circular Cutout

The orogram used for the solution of the following problems is
called ANISOT, and provides a solution capability for two dimensional
ge.erally anisotropic materials. The use of the program is restricted
only by the requirement that the material employrd be mid-plane symmetric.
It is expected that the program will be especially useful in analysis of
advanced fiber composites, sr the problems solved here considered plates
of boron-epoxy.
5.3.2.1 Orthotropic Material

A series of problems was solved, with the cutout surface repre-
sented by varying numbers of segments. In each case segments of egual
Tength were used, and the number of segment. ranged from 20 to 180.
Identical series of problems were solved for plates of unidirectional
boron-epoxy, of zero degree and ninety degree orientations.

Again the stress distribution along the x and y axes interior to

the body was obtained, as well as surface stresses around the entire cutout.

S o o™ S e Y
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The hoop stresses around the cutout at the surface were compared to the
theoretical results of Lekhnitskii, and results appear in Tables 8 and 9.
These stresses are computed directly from displacements and tractions, and
thus provide a means of evaluating the boundary solution capability of
the program. Results compared extremely well with the theoretical calcu-
lations, even for the higher stress concentrations.

The accuracy of the solutions obtained are dependent on both the
stress concentration gradients present. and length of segment used in the
model. This behavior is expected, since the basic algorithms employed are
similar to those of the isotropic program, DIPOME. Time required for
interior solution points was agair. about ten times that for boundary
points.
5.3.3.2 Anisotropic Material

The problem of a circular cutout in an infinite plate was next
solved for a completely anisotropic material, unidirectional boron-epoxy
at an orientation of 45 degrees. There was no symmetry about either the
x or y axis, as had been present before, so the entire cutout surface
was modeled.

As before, the hoop stresses at the surface of the cutout were
obtained and are compared with the results of Lekhnitskii in Tables 10
and 11. Two problems were solved, one employing 20 segments, and the
other 90 segments, to represent the surface. Here again agreement with

theoretical results was excellent along the entire surface.
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Figure 1: Dipome Model — Circle

Figure 2: - Dipome Model — Ellipse
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TABLE 1 — IMTERIOR STRESS

SOLUTIONS — DIPOME

Y-R Timoshenko 40 Segments 120 Segments 200 Segments
0.00 3.00 3.02 3.02 3.09
.001 2.99 27.12 10.36 7.05
.005 2.96 7.03 3.78 3.21
.010 2.93 4.53 3.05 2.88
.020 2.87 3.3 2.80 2.83
.030 2.80 2.92 2.76 2.79
.040 2.74 2.74 2.72 2.74
.050 2.69 2.64 2.68 2.69
070 i 2.58 2.52 2.58 2.58
100 ) 2.44 2.40 2.44 2.44
. 200 2.07 2.07 2.07 2.07
.400 1.65 1.65 1.65 1.65
.600 1.42 1.42 1.42 1.42
.900 1.25 1.25 1.25 1.25
1.50 1.12 1.12 1.12 1.12
2.00 1.07 1.08 1.07 1.07
3.00 1.04 1.04 1.04 1.04
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Figure 3: Accuracy of DIPOME — Circular Cutout
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TABLE 2 — INTERIOR STRESS SOLUTIONS — DIPOME

-V-;—a- haglis 40 Segments | 120 Segments | 200 Segments
0.00 5.00 5.116 5.01 5.002
.001 4.96 101.9 35.2 22.3
.005 4.82 9.81 5.52 4.39
.01C 4.65 6.13 4.59 4.56
020 4.4 4.54 4.29 4.35
.030 4.03 4.04 4.08 4,09
040 3.85 3.78 3.86 3.86
.050 3.65 3.59 3.66 3.66
.070 3.31 3.29 3.32 3.32
. 100 2.92 2.92 2.93 2.93
.200 2.18 2.19 2.19 2.19
.400 1.61 1.62 1.62 1.62
.600 1.40 1.40 1.46 1.40
.900 1.24 1.24 1.24 1.24
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ASPECT RATIO = 2.0

RERE RN

TABLE 3 — INTERIOR STRESS SOLUTIONS — DIPOME

5%9' Inglis 40 Segments 120 Segments 200 Segments
0.00 -1.00 -0.983 -0.994 -0.996
.001 - -0.997 -13.0 -4,90 -3.24
.005 -0.985 -2.42 -1.32 -1.1
.010 -0.970 -1.52 -1.03 -0.965
.020 -0.941 -1.09 -0.925 -0.926
.030 -0.912 -0.959 -0.895 -0.906
.040 -0.884 -0.888 -0.873 ~-0.882
.050 -0.857 -0.843 -0.850 -0.856
.070 -0.805 -0.782 -0.802 -0.804
.100 -0.805 -0.713 -0.729 -0.731
.200 -0.525 -0.518 -(,.523 -0.524
.400 -0.251 -0.247 . =0.250 -0.250
.600 -0.099 -0.097 -0.099 -0.099
.900 +0.006 +0.008 +0.007 +0.007

.
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ASPECT RATIO = 4.5
i TABLE 4 — INTERIOR STRESS SOLUTIONS — DIPOME
y-a Inglis 40 Segments 120 Segments 200 Segments :
c T
E:
0.00 10.0 11.33 10.14 10.04
1 .001 9.60 87.5 29.8 20.2
i .005 8.31 1.37 8.30 8.32 ]
.010 7.15 7.69 7.21 7.27
.020 5.67 5.75 5.75 5.75
.030 4.77 4.85 4.82 4.82 :
.040 4.16 4.24 4.20 4.20
.050 3.73 3.80 3.75 3.75
; .070 3.14 3.19 3.16 3.16 ;
: .100 2.63 2.66 2.63 2.63 1
: .200 1.90 1.91 1.90 1.90
: .400 1.46 1.46 1.46 1.46
i .6060 1.30 1.30 1.30 1.30
.900 1.18 1.18 1.19 1.19




R ¥ Rt e SR e 0 el e TS T A T )

AP T gts et aemm— T 2 e et e bk e .

i s i

{

E — 3 —

: - —

5 -— -

: - r}_‘o'y —
- —
— T —
L o a et
—ay— .
-— i\ .
e t ——

ASPECT RATIO = 4.5

TABLE 5 — INTERIOR STRESS SOLUTIONS — DIPOME

559- Inglis 40 Seg.ents 120 Sagments 200 Segments

0.00 -1.00 -0.984 -0.994 -0.997
.001 -G.997 ~90.7 -21.4 -19.2
.005 -0.597 -2.43 -1.32 -1.1
.010 -0.974 -1.48 -1.03 -0.966
020 ; -0.949 -1.08 -0.931 -0.937
N30 -0.923 -0.952 -0.908 -0.920
040 -0.898 -0.593 -0.890 -0.893
.050 -0.874 -0.855 -0.870 -0.674
.070 -0.82¢ -0.804 -0.825 -0.826
.100 -0.758 -0.743 -0.756 -0.758
.200 -0.553 -0.549 -0.552 -0.553
.400 -0.258 -0.258 -0.258 -0.255
.630 -0.087 -0.088 -0.087 -0.087
.900 +0.029 +0.028 +0.029 +0.029
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ASPECT RATIO = 19.5

TABLE 6 — INTERIOR STRESS SOLUTIONS — DIPOME

-Y%i Inglis 40 Segments | 120 Segments |200 Segmants

0.00 40.0 88.7 50.9 44.5
.001 23.5 88.2 31.0 27.0
.005 10.9 16.9 11.7 11.4
.010 7.50 10.0 7.80 7.67
(TY:H 5.22 6.28 5.32 5.27
.030 4,26 4.88 4.30 4.28
.040 3.70 4.12 3.72 3.1
.050 3.32 3.63 3.33 3.32
.070 2.83 3.03 2.84 2.83
.100 2.41 2.53 2.41 2.41
200 1.81 1.85 1.81 1.81
.400 1.43 1.44 1.43 1.42
.600 1.28 1.28 1.28 1.28
900 1.18 1.18 1.18 1.18
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I ASPECT RATIO = 19.5
TABLE 7 — INTERIOR STRESS SOLUTIONS — DIPOME
E T
f -’-‘-:-:-b- Inglis 40 Segments | 120 Segments 200 Segments
E 0.00 -1.00 -.966 -.985 -.994
i : .001 -0.997 -10.9 -4.26 -2.89
.005 -0.989 -2.11 -1.22 -1.06
.010 -0.979 -1.37 -0.996 -0.959
.020 -6.957 -1.035 -0.921 -0.939
.030 -0.936 -0.928 -0.904 -0.926
.040 -0.915 -0.876 -0.890 -0.907
.050 -0.894 -0.845 ~0.873 -0.887
.070 -0.852 -0.803 -0.834 -0.845
.100 -0.730 -0.752 -0.775 -0.784
.200 -0.598 -0.581 -0.587 -0.594
.400 -0.293 -0.294 -0.289 -0.291
§ .600 -0.099 -0.107 ~0.099 -0.099
f .900 +0.037 +0.030 +0.035 +0.037
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TABLE 8 ~— SURFACE HOOP STRESS COMPARISONS, a = 0°
o(DEG) 20 Segments 180 Segments EXACT*
1.0 -0.296 -0.299
5.0 -0.284 -0.287
9.0 -0.215 -0.258 -0.261
13.0 -0.222 -0.225
17.0 -0.180 -0.182
21.0 -0.133 -0.136
27.0 -0.054 -0.063 -0.065
2.0 -0.040 -0.041
33.0 0.008 0.006
37.0 0.058 0.056
41.0 0.111 0.110
45.0 0.164 0.170 0.170
49.0 0.240 0.240
53.0 0.326 0.326
57.0 0.435 0.436
63.0 0.642 0.681 0.682
65.0 0.799 0.798
69.0 1.111 1.114
73.0 1.609 1.614
77.0 2.441 2.447
1.0 3.532 3.889 3.880
65.0 6.130 6.127
89.0 1 8.160 8.127
*Due to Lekhnitskit
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FIBER DIRECTION

[

a = 90°
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TABLE 9 — SURFACE HOOP STRESS COMPARISONS, a = 90°

o(DEG) 20 Segments 180 Segments EXACT*
1.0 -3.19 -3.28
5.0 -2.22 -2.29
9.0 -0.367 -1.12 -1.165
13.0 -0.419 -0.442
17.0 +0.012 -0.008
21.0 0.281 +0.267
27.0 +0.625 0.546 0.538
29.0 0.616 0.608
33.0 0.781 0.736
37.0 0.859 0.056
41.0 0.979 0.976
45.0 +1.126 1.105 1.103
49.0 1.243 1.242
53.0 1.398 1.398
57.0 1.573 1.573
63.0 +1.892 1.877 1.878
65.0 1.990 1.991
69.0 2.229 2.230
73.0 2.478 2.481
77.0 2.725 2.725
81.0 +2.883 2.937 2.940
85.0 3.093 3.096
89.0 3.165 3.169
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TABLE 10 — SURFACE HOOP STRESS COMPARISONS, a = 45°

90 Segments1

THETA EXACT THETA EXACT 90 Segments
0 -0.812 -0.808 96 2.168 2.169
4 -0.706 -0.703 104 2.396 2.400
8 -0.596 -0.593 12 2.840 2.848
16 -0.337 -0.335 120 3.959 3.681
24 +0.015 +0.016 128 4.707 4.791
32 .499 .500 136 1.703 1.823
40 1.082 1.084 144 -1.799 -1.773
48 1.620 1.623 152 -1.804 -1.787
56 1.955 1.957 160 -1.444 -1.434
68 2.081 2.082 168 -1.151 -1.144
72 2.073 2.073 176 -0.918 -0.913
80 2.051 2.052 184 -0.706 -0.7n3
88 2.069 2.070
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TABLE 11 — SURFACE HOOP STRESS COMPARISONS

THETA EXACT 20 Segments
9 -0.567 -0.565
27 0.180 0.186
45 1.436 1.477
63 2.067 2.107
81 2.050 2.065
99 2.235 2.246
nz7 3.296 3.473
135 2.453 3.189
153 -1.7%9 -1.747
17N -1.058 -1.043
169 -0.567 -0.565
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5.4 ADVANCED TOPICS IN ANISOTROPIC INTEGRAL EQUATION SOLUTION METHODS
E 5.4.1 Introduction
The "integral equation method" referred to in this Section is

g basically a technique for obtaining accurate approximate solutions for a

wide variety of physical problems governed by linear partial differential
equations. As is clear from a number of papers e.g. [1,2,3,4,5] the method
; has reached a considerable stage of development and is emerging as an im-

E E portant tool comparable to anc potentially, we think, better than finite

} element and finite difference techniques for certain problems. This ap-
pears to be particularly true for a variety of problems involving material
: ? composites.

A glance at the work cited above reveals that the method depends

crucially on the existence and explicit definition of a fundamental singu-

W

1ar solution to the appropriate governing partial differential equations.
Therefore, in an attempt to open up the field of linear three-dimensional

anisotropic elasticity to attack, via the integral equation method, con-

siderable effort was directed toward investigating what is known of the
necessary singular solution., As noted earlier. this solution is
the field due to a concentrated force in an infinite anisotropic media.
Two major works [6] and [7] were found on this topic, and examined with
respect to the stated objective. Details primarily concerned with making
representations of the singular solution available for practical purposes
are given later in this Section.

The problem of interlaminar shear was investigated with
a view toward attacking this problem (as defined by R. B. Pipes [8]) via

the integral equation method. Under the appropriate assumptions, the
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relevant surface integrals reduce to path integrals around eacn of the
layers. While the problem is not completely two-dimensional in nature,
significant advantages still seem to be present with the integral equation
method for both isotropic and anisotropic layers to warrant further
investigation with test problems. Details of the formulation for isotropic
layer assumptions and a discussion of the possibilities for anisotropic

layers are included in this Section.

5.4.2 Fundamental Three-Dimensional Anisotropic Singularity
5.4.2.1 Via John [7]

The work by John [7] which is in essence "a somewhat Leterogeneous
collection of results on partial differential equations" contains, in
Ch. III, a method for constructing the so-called fundamental singular
solution for an elliptic system of linear partial differential equations
with analytic coefficients. Since our main concern here is with homogene-
ous anisotropic elasticity theory, we will specialize John's development
at the outset and explicitly deal with the system of equations

Ciik1%,15 = 0 (1)

Equations (1) are the enuations of equilibrium in the absence of body

forces for a linear elastic solid obeying the constitutive relation

i = Gyt (2)
in whici cijkl are constants, and rij > eij c ui the stress, strain,
and displacement components assuming the linearized theory. A:s usual
we take

c c

ijk1 = Gk (3)
together with necessary symmetries in the first and second pair of indices

such that Cijk] implies at most twenty >ne independent constants.
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We recognize that Eqs. (1) imply the existence of a set of differ-
ential operators Lij such that Eqs. (1) may be written, for convenience in
the symbolic form

Lik[uk] =0 (4)
where, specifically,

i a2
Lik = Ci501 % % (5)

A fundamental system of singular solutions Ujk of Eqs. (4) according
to John [7] has property that the symbolic equations
L'ik[ujk (’.( s .!)] =0 for ’f # .Z (6)

are satisfied where x and y are two arbitrary points in space.
Further, the functions Ujk have the additional property that

aR‘[Jj o) Ujk()f’-!; - Uy (Z')Tjk(ic,):)]da().t) =0 (N
where 3R is the boundary of a regular region of space R, and T is the
surface of a small sphere of radius ¢ surrounding the point x, n, are
the components of the "outer" normal at y(y on 3R + I') to the region
"enclosed by" 3R + r, and Tjk represents a set of functions derivable
from Ujk' The function u; is an arbitrary solution to Eq. (4) and tes
derjvable from Ugs represents the surface traction on the anisotropic
body which is assumed to occupy the region R. If we now take the limit

in Eq. (7) as ¢ goes to zero, i.e., shrink r indefinitely about x, the
orders of the singularities in Ujk and Tjk are such that Eq. (7) reduces to

Yy () = a{[uj Ty 0y) - 100U, (x,y)1da(y) (8)




A glance at the cited works [1,3,4,5] reveals that the above
properties (6), (7), and (8) of the func-ions Ujk are precisely those
needed to formulate the integral equation method for three-dimensional
anisotropic elastic boundary value problems. Physically, Ujk represents
a set of displacement or influence functions; i.e., Ujk(f’!) is the
displacement in the j coordinzie direction at y due to a concentrated
force in the k coordinate direction at X. Further, Tjk represents traction
componerts at y across an arbitrary surface with orientation n. These are

obtained from Ujk according to the familiar relation

=
Tjk "2 ijlm[ulk,m * Umk,l] "o (9)
Just as the arbitrary traction tj is related to uj according to

t. = %~c

5 [u]’m + um’]] np (10)

Jpim
Thus since the relation (8) is the desired relation to accomplish the
anisotropic formulation everything depends on the availability of an
explicit relation for Ujk' To construct Ujk for Eqs. (4), with the

properties (6) through (8) John [7], pg. 76, gives the formula

..ol kj . .
Uikl = 15ty n{P (O (Gy): Gsgnl(y)-€ldn, an

~

In Eq. (71), Ay is the Lapiacian with respect to the coordinates at y of

the integral over @_ which is a sphere of unit radius with origin at £ = 0.

3
ij(g) is the inverse of the matrix Qik(g) which in turn is the character-

istic form of the operator Lik‘ This characteristic form is explicitly
Q&) = C51508; (12)

in which g; are components of the vector &.
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Space does not permit nor would it be appropriate to discuss
here the rather detailed, abstract, and frequently obscure arguments
leading up to formula (11). Moreover, formula (11) as written above is
an abridgement of the relations which aopear in John [7] appropriate to
anisotropic elasticity with the additional assumption of material homo-
geneity (cijkl constants). Tne actual treatment in John [7] deals with
operators of more general order than two and in spaces of n dimeasion as
well as allowing for the possibility of non-constant (but analytic)
coefficients. This last feature could be of interest for problems in-
volving inhomogeneous media. However, the remainder of the present dis-
cussion will be confined to Ujk as given by formula (11). Indeed, as will
be explained, algebraic expressions for Ujk from Eq. (11) even under the
present assumptions of full (21 constant) anisotropy will be difficult to
obtain.

To best appreciate the last remark consider now formula (11) in

more detail. Llet x - y = R such that

R-&sgnR-¢g=R]| cos ¢ (13)
waere R is the magnitude, i.e., R= | R |, of R, £ =|&| = 1, and
¢ is the angle between R and £. Thus since R does not vary with ¢

Eq. (11) may be written

U (oY) = =L s wfP¥I(e) |cos 4]d a.) (14)
2 qem2 Y gt ¢
¢
Further, let
-
Ajk = n.{"p J (g) |cosé| dng (15)
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such that

Usp (5,!) = - ?%;2 Ay'{RAjk} (16)
Cleariy Ajk is a tensor whose components depend only on cijk] and, of
course, the choice of cartesian basis inasmuch as the components of Ujk
jtself depend on such a basis. Thus the ability to obtain explicit
algebraic expressions for Ujk is dependent solely upon the ability to
perform the integrations (15) for Ajk.

As mentioned earlier, PkJ(g) is the inverse of the quadratic

form Qik(;) (Eq. 12). Explicitly,

1
ij (£) = V] E-’klm‘:_'iqulJ)(g)qu (g)
- Det Q

(7)

in which €55k is the alternating symbol and Det Q is the detarminant of
the matrix Qik' Now since Det Q is of sixth degree in €5 and the numera-
tor is (17) is of fourth degree, the ability to evaluate the e.ements Ajk
analyticalily in closed form is largely dependent on the ability to factor
the expressions implied by (17). Guided by the related investigations of
Kroner [10] and Lie and Koehler [11] this is expected to be possible under
the assumptions of special anisotropy, e.g., cubic or hexagonal symmetry.
However, recognition of the tensor character of Ajk allows the following
plan to be adopted in order tc obtain explicit practical expressions for
Ujk under more General conditions of aniso*ropy. Choose a convenient
orthonormal basis and evaluate, numerically if need be, the integrals in
(15) for a given set of cijkl‘ Having thus obtained a set of values for
Ajk for that basis, Ajk for any other basis is obtainable by simple car-

tesian tensor transformation. Recognizing further that the direction

ik

e e m ™ mias
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cosines of 8 referred to a given basis are of the form [xj(g) - xj(y)]/R,
allows the gradient and Laplacian with respect to y to be evaluated as
required in Eq. (16).

As an example of the above consider the special case of complete
isotropy for which

Cigrr = X Sy305q + wl8y585) + 85985) (18)
where A and u are the Lame' elastic constants. Here it is easily shown
through Eq. (17) that PJ(c) has the form

‘e )

PI(E) = sy + 8eiy)

where a and g are constants obtainable from A and u alone. Thus the

expressions for Aﬂk via Eq. (15) become

Ajk = ank ] |cos ”dQE + aBQf Ejzk |cos ¢] dnz (19)
¢ T *

A little reflection on the integrals in Eq. {19) reveals that the first
integral is twice the first moment of a unit hemispherical shell about
the basal plane perpendicular to R. Similarly, the second integral
represents the inertia components~of a spherical shell referred to a
given basis where the "mass density" (|cos ¢|) of the shell varies
linearly with respect to height above the same basal plane. Clearly,
the calcu'ations here would most conveniently be made taking one coordinate
direction in the direction of R and the other two in the mentioned basal
plane. Subsequently, the desi;ed Ajk for a more genecral orientation of
basis with respect to R could be easily obtained by cartusian tensor
transformation. We no;e finally in passing that tne result of the above

calculations for material isotropy results in
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1
Ujk(f,):) = m [(3-4V)6jk + COS ‘lj cos wk] (20)

in which v=A/2 (A+p) and *j is the angle between the vector B and the
X axis. Expression (20) is the fundamental isotropic singular solution
(see e.g. Cruse [3]).

The key feature of the above proposed method is the ability to
perform, if need be, part of the calculation numerically and still obtain
all dependence of Ujk on X,y and basis orientation with respect to x-y
analytically. This is important since gradients of Ujk at y are required
for the integral equation method and such gradients may therefore be taken
analytically. Thus, in light of the goal of this purtion of the research,
i.e., obtaining an explicit, usable, algebraic form for Ujk for complete
anisotropy, it appears, despite numerical evaluation of certain irntegrals

in general, that the job can be done via the outlin:d method.
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5.4.2.2 Via Fredholm [6]

The fundamental paper by Fredholm [6] displays an alternative
method for constructing, in principle, the fundamental solution Ujk dis-
cussed above. Like John's [7], Fredho'm's work leads to a formal implicit
representation for the solution. However, unlike with John's procedure
it is not clear to the writer that one would be able to effect as useful
a reduction of the method except for special anisotropy, by any means
numerical or otherwise

Fredholm motivates his work by attempting to extend the idea of
the particular soluticn 1/r of Laplaces equation Au = 0 to the equations
of anisotropic elasticity (1). He first eliminates two components of Uy
in Eqs. (4) and ~hows that the remaining component (and hence each com-
ponent "k) must satisfy s sixth-order differential equation of the form

f(uk) =0 (21)
where f is a sixth-order linear homogeneous differential operator which
is explicitly the determinant of Lik (Eq. (5)). He then chooses as his
fundamental solution

.(g,n) d
. ¥; (€,n) de (22)
i J fz(z,n) (Ex, + nx, + x,)
where ¥, are polynomials in £ and n of the fifth order of lower and
£,(6,m) = 3= £(E,n, 1), (23)

with f(£,n, 1) being the definite algebraic form obtained by replacing
the operations a/axi. (i = 1,2,3) by £,n, and 1, respectively. The
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integration is around a closed contour ¢ in £ space containing only

those singular points which are rocts cof f(e,nc) = () where Ny is given by

EXy + nXy * Xy © 3 (28)

AT R O B PP T 3 0oy o P T S T
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The polynomials wi above are complicated algebraic expressions (see [A]
pg. 14) obtained from Lik: Fredholm then goes on to show that each
component of the required tensor field Ujk is of the form (22) and

b) b bl 6 &

rigorously establishes all of the properties of the solution.

i It seems clear from the work of Kroner [10] and Lie and Koehler
L11] that any attempt to reduce Fredholm's method to something useful for

T T PR T T R,

% other than hexagonal or cubic crystal symmetry assumptions would be most

g difficult indeed. Detailed information on the particulars of this can

? best be obtained by careful study of the references [10,11] plus Fredholii's
g original paper [6]. It should be clear; however, that if the previous

; discussion and reduction of John's [7] approach is valid as outlined, it
must be possible to accomplish the same task via Fredholm also since the

1 g desired U k is unique. Nevertheless, the transformation of contour

J
integral in space to one over the unit sphere, of functions which are

necessarily related but not explicitly so, is bound to be an extremely
difficult task. Further, for pmotical purposes and in light of the
previous section the effort seems hardiy worthwhile in the near future.
It is my judgement that to formulate the integral equation
method for general anisotropic elasticity, the method of John as pre-
viously outlined is by far the most promising at this point. Indeed, the
outlined reduction with the ability to obtain the necessary functional
variational analytically is better than was hoped for at the start of the
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investigation. If a similar advantage plus others are present also in
Fredholm's technique they are lost to me, although, to be fair, much more
time was spent with [7] than [6] because of the positive indications of
[71.
5.4.3 Investigation of the Interlaminar Shear Problem

Consider a laminated plate as shown in Fig. 1 loaded on its "x"
faces in such a way (cf. Pipes [8]) that it may be assumed that the stress
and strain fields are functions of y and z alone. Further it is assumed

that displacement components are of the form

u; = cx + U] (y,2z)
uz = UZ (y,z) (25)
uy = Uz (y,2)

where Ui’ are arbitrary functions and ¢ is a constant. Finally, under the
assumption that each lamina is homogeneous and isotropic it is now desired
to examine the possible simplifications which may arise with the integral
ecuation method by the process of "integrating out” dependence on x.

Snecifically, consider the boundary formula of Cruse ([3] Eq.
(14)) written for a tupical lamina

1@+ fyor;cose - v @u; 0@ (26)

where explicity S is the union of surfaces Sx’ Sy, Sz of the lamina per-

pendicular to the x, y, z directions, respectively, see Fig. 2. Clearly,
each integral over Sx is an integral of functions of (:f, y, z) such that
there is no explicit x dependence to be "removed" in ihose integrals.

Further, since there is assumed to be no tractfon on the Sy surfaces w2

have
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!ti(o)uji(v.cz)ds @ =0 (27)
y

Thus, it remains to consider the integrals

.4 & 0T P.08Q, [ @U; .08 (28)
z

X 2z
insofar as integrating away the x dependence. More explicitly, integrals
{28) may be written

.[::i(y.:t) I:Uji(x.y.tt;s.n.c)dx dy (%)
Lo000 [ covetenni dy 64 (30)

.[:Ul(y.tt) [ﬁTji(X.y.tt:E.n.odx dy+ {"ﬁﬂji(x,y.?t;&.n.c) dx dy
(3n)
t
J w0 fT500m, 2560,0 dxdz G £ D) (22)

t
.‘:tul(""z) I?ji(X.tW.z;E.n.z)dx dz+<ﬂ§xTﬁ(x.:w.z;E.n.L)dx dz (33)

in which x, y, 2 are the coordinates of the point Q and £,n,z are the
coordinates of the point P. Our task therefore {s to examine the expres-

sions for each component of the kernel functions U1 J and T1 j as given by

Eqs. (5) and (7) 1n Cruse [3], ard then perform the definite integrals
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with respect to x alone from ~L to £ as indicated in expressions (29)
through (33) above. Note that performing the first integration with
respect to x in expressions (31) and (33) will suffice since the second
such integration is obtainable directly from the first by parts.
Careful consideration of the mentioned Eqs. (5) and (7) in [3]

for the components of U,. and Tij and designating all parts of the inte-

ij
grands which are independent of x with the common symbol B leads, after
some “bookkeeping”, to the need to evaluate only integrals of the

following type

y 4 (x —E)n dx
J[; [(x -6)2 + B2] ™2 (34)

where n takes on integer values from zero throujh 3 and m takes on integer
values 1, 3 and 5. Such integrals for values of m and n indicated are
standard entries in any short table of integrals and result in polynomial
and/or logarithmic forms in the variable (x - €).

Maintaining care with the mentioned bookkeeping problem, and
recognizing that each of the -£ to L integratiors in expressions (29)
through (33) result in new tensor functions ﬁji’ fji independent of x,
we may write the ooundary formula (26) in the form

% uj (E,n,;)tliui(iﬂ,z):l"ji(il,i'ﬂ,l,C ’"’C)dz

(35)

. R
’4(; ui(y.tt) Tji(tt,y,tt;c.n,c)dy

'..fw ti(Ynit) Uji(il,)',!t;ﬁm,c) d)' =
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_S/[ti(y,:)Uji(:tL,y,z;E,n.C) Ui(Y,Z)Tji(ﬂ.Y,Z.E.ﬂ.C)] dy dz
X (35)

+cC fj (£8,%w,2t;€E,n,L)

where fj (g,n,z) is that function obtained by integrating alll

terms
Tji with ¢ as a constant multiplier.

The question now arises, to what extent may explicit dependence
on the length £ of the lamina be eliminated and still retain sufficient
information to obtain what is required in a given problem. Examination
of the terms in equation (35) reveals that as £ goes to infinity, fj is
bounded, and all components of Uj j and Tj i with the exception of U“. are
Zero or finite. The U“ component, which alone contains logarithmic terms

blows up with increasing £. However, since it may be argued that the

component of traction t] on the surfaces Sz must be zero for isotropic media

under the present assumptions, no difficulty is, in fact, encountered with
that term. Finally, it is clear that the integrals over Sx on the right
tide of Eq. (35) vanish with increasing £, such that all “input" informa-
tion on the faces Sx indefinitely far apart is contained in the limit
of the termc f §°

It is now evident that it suffices to consider the "mid-x" plane
of a typical lamina and to allow point P to occupy positions only on the

rectangular boundary of this plane (i.e., consider only £ = 0). Thus, Eq.

(35) in reduced, x-independent, form may be written

]Note that one term is contributed to fj from each pair of surfaces of
the lamina.
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(36)

S0 00T st = C 8 w0
-w ! n J

where the primes indicate limiting forms of the functions as £ + = and
£ =0.

Application of Eq. (36) in the solution of the interlaminar shear
problem is as follows. Specify the constart c and perform the necessary
integrations to obtain the function fj (:w, tt, n, s) for each lamina
wmid-plane. Then, write Eq. (36) for each such plane using an appropriate
approximation scheme as, perhaps, outlined by [1,4]. Recognize further
that the two integrals in Eq. (36) from -w to w for a given lamina mid-
plane are coupled with sinilar integrals for the remaining lamina. The
boundary conditions between lamina are that Ui and 1:i be continuous
across the adjacent boundaries and that the tcip and bottom boundaries
are free of traction t;. Unknowns to be obtained therefore by numerical
solution of the integral equations are discrete values of Ui(y,z) and
ti(y,z) at selected discrete points on the boundaries of the lamina
mid-planes.

Note in the above that while the integrations in Eq. (36) are
over the lamina mid-plane boundaries all indices have the range 1, 2, 3
such that as mentioned in the introduction the problem is not truly two-
dimensional in nature. However, it appears that the method outlined above

is most feasible with much promise for success in light of numerical
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work already accomplished for both two and three dimensional problems
(e.g. [2,3,9,12]). Most important, coupling the above ideas with those
set forth in the previous section, it is possible to attack the difficult

interlaminar shear problem under the assumption of fully anisotropic or

specially anisotropic lamina.
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