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ABSTRACT 

Processor-sharing models of cine-shared computer systems are defined 

and some new results are presented. The major emphasis of this research is 

on the modeling and analysis of new inodels of time-shared computer systems 

and on the finding of some fundamental properties which apply to the average 

number of customers in the system and the average response time functions for 

a large class of tine-shared computer systems. 

The family of selfish scheduling algorithms is defined and the Laplace 

transform of the response time fmet ions are obtained. The selfish round 

robin (SRR) and the selfish foreground backgrctmd (SFB) systems are given 

as two Illustrative examples. 

A family of scheduling algorithms whose performance ranges between that 

of the RR system and the FB system Is constructed. A weighting function g(t) 

is given to define the scheduling algorithm such Chat a customer's rate of 

attaining service '.epends on how much service time t he has already got. 

The average response time function for this family of systems is obtained. 

A simple relationship between the time-dependent average number of 

customers in the system and the average response time functions for a large 

class of M/M/l systems is formulated. The result shows that the behavior of 

one custon«r can strongly influence the total number of customers in the 

system. 

Finally, some fundamental properties are established which apply to the 

average response time functions for all time-shared computer systems. Among 

them, tight upper and lower bounds on the average response time are obtained. 
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CHAPTER 1 

INTHDDUCnON 

1.1   Tijne-Sharing Corpufer SystefTis 

The value of tiitB-shared processing systens as a means of pro- 

viding a processor to many users concurrently is well-established. Ttte 

rationale for nost time-sharing systens is to provide fast service for 

custoners with short, highly interactive programs in order to facilitate 

debugging, to encourage experimentation with inprovisation of corputinq 

methods, and to support general interactive canputations. In the typi- 

cal operation of such a system, the users ccpmunicate with the computer 

by means of teletype or similar 1/0 devices. As each user makes a re- 

quest for corputer processing, he in effect enters a queue whose mem- 

bers are served in a way determined by the specific scheduling algorithm 

being used. Here we define a scheduling algorithm as a set of decision 

rules determining which user will next be serviced and hcv long he will 

be given use ot processing facilities. Thus each program in turn is 

transferred into memory, operated upon and transferred out. It is obvi- 

ous, unless this swapping of programs can be done at no cost in time or 

the memory is largo onouc^i so that no swapping of programs is needed, 

that this mode of operation is less efficient than the batch system 

where each request is run to oomplction. The technique of time-sharinq, 

however, results in faster averayo response time for the user with fhort 

request. This fast response wakes  it appnar, to such a user, that he is 

the only one using the computer. 



The effectiveness of the time-sharuig systans depends in large 

part on the efficiency with which the resources are allocated to the 

individual users. Thus, considerable attention has been focjscd on the 

time and space scheduling problans of tüne-sharinq systons and many ana- 

lytical results have been ct)tained [1) since the appearance of the first 

applied paper publ.'ahed in 1964 [2J. In most of the results, crly one 

resource (the CPU]  is to be shared, where It is MMMd that the size of 

the main nwory is infinite. There are two reasons for this assvitption: 

in thr; past, most of the tools used to analyze time-sharing systans have 

been drawn fron queueing theory, and it is very difficult to analyze a 

systan with two resources (thus two queueing structures) which are not 

independent of each other. The second reason is that modeling of pro- 

gram behavior and peripheral devices is very difficult. Of course, the 

assurption of infinite memory somewhat weakens our model;;. Hcwever, the 

CPU is one of 'he most irnportant resources in the ocrfxiter systan, as 

long as the size of the main memory is adequate (so that the system is 

not memory bound). The analysis of single resource systans gives us a 

good feeling of haw time-sharing systans behave. In this dissertation, 

we concentrate on the single resource case. We analyze a class of such 

systans and also give some general behavior constraints. 

1.2   An Existing Time-Sharing Oomputer Systan 

In this section we describe an existing time-sharing conputer 

systan. We choose the Model 67 of the IBM Systan/360 as our exarple. 

The following description is quoted from Gibson [31. 

The basic architecture of the IBM SystaV360 makes it well 

suited to processing in a nultiprograrming and nultiorocessing environ- 

ment. The Model 67 extends this basic architecture to provide the 



additional capabilities ot an advanced tüne-sharing systan. 

■ftxi Model 67 incorporates niütiprxxjranming, multiprocessing, and 

rrultiaocess capabilities. Multiaccess allows several users at renote 

consoles to camunicate directly with the system and to present a tumber 

of applications ranging frcm conversational ccnpiiing to desk calculator 

functions. Multiprogramdng is defined as the ability to have several 

active prograns reside in core simultaneously. As soon as one job is 

finished, or is held up by an I/O request, or has depleted its time 

allowance, the next task can begin iitmediately. 

The dynamic relocation feature built into the hardware facili- 

tates nultiprogramning; peripheral operations will now be just like any 

ether tasks in the memory. Even without the ntiltiaccess capability, 

inltiprogranming provides nuch more efficient utilization of the com- 

puter's resources than in a stacked job operation. For the first time, 

a central processing unit is a resource that can be allocated. With 

multiaccessing, where seme of the jobs in core belong to remote termi- 

nals, the multiprogranming capability is further enhanced as this en- 

ables the rapid switching between jobs, or "time-slicing." 

The Model 67 enables each processor of a multiprocessor system 

to operate as a single processor with its own I/O subsystem, or jointly 

with other processors in a synmetric multiprocassing configuration. 

1.3   The: Mathematical Model 

Figure 1.1 shews a general feedback queueing model where the CPU 

is being shared. Incoming jobs are queued and scheduled for service in 

seme way. At its scheduled service time, each job is processed for a 

time period calL3d a quantun. If during this quantun the job is com- 

pleted, that job departs and service begins on the next; otherwise, the 



unccnpleted job rejoins the system of queues to await further service. 

In soroe systems, priorities are assigned to custcners. These priorities 

can be assigned externally 14] • they can be assigned to the custoners as 

functions of their attained service time (the amount of service time so 

far obtained by a customer) (5]; or they can be assigned as functions of 

their waiting time [6J, etc. Such priority queueing systems are called 

preenptive if the customer in the service facility is preaipted whenever 

there exists another customer in the syptan who has higher priority. 

ARRIVALS 

I 
SYSTEM 

OF 
QUEUES 

DEPARTURES 

CENERAL FEXZBKX QUEUEING MDCEL 

FIGUFE 1-1 

It is necessary to specify the arrival and the service processes 

before any analysis can be carried out. Let A(t) denote the distribu- 

tion function of the interarrival times with average time 1/X seconds. 

If the interarrival times are exponentially distributed as 

A(t) « Plinterarrival time < tl « 1 - e 
-Xt t > 0 (1.1) 

thai the arrival process is called fterkovian (Poisson). Otherwise, it 

is called gaieral. Also let us use B(x) to denote the distribution 

function of the service times with neun request equal to i/y seconds. 

If the service times are exponentially distributed as 



B(x) = P [service time <xl=l-e      x>0      (1.2) 

then the service process is referred to as Markovian (exDonential) to 

differentiate .'.t fron the general case. 

Usually, two letters and a mirber are used to specify the ar- 

rival and service processes as well as the nvirber of servers in the sys- 

tan. The first letter is used to specify the arrival process, the sec- 

ond letter for tl)e service process, anJ the r.'nter is used to designate 

the nxmber of servers in the system. T^e letter M is used for the 

Markovian process, and the letter G is used to represent a general 

process. All of the models to be analyzed in this dissertation are of 

either M/H/l or M/C/l  type, namely, there is one server fCTU) in the 

system; the arrival process is Markovian (Poisson); and tl^e service 

process is either exponential or general. 

The utilization factor o, representing the peroentagr of time 

that the system is busy, is defined as the ratio of the average arrival 

rate and the average service rate. 

o Z- (1.3) 

p has to be smaller than 1 so that the average work load offered to the 

processor is less than its capacity to handle such a load. 

Another interesting quantity in the system is the size of the 

quantum which is defined as the time interval allocated to a custcmer 

when he enters the service facility. In a real system, the quantum size 

has to be finite in order to get any work done, but the analysis tends 

to be difficult and the results tend to be in oorplex form under this 

assunption [1]. In 1967, the notion of allowing the quantun to shrink 



to zero was first studied  [4] and is referred to as "processor-sharüvg." 

As the na.»» inplies,  this zero-quantim limit provides a share or portion 

of the processing unit to many custaners simultaneously.    Under the 

assunption of processor-sharing,  the difficulty in analyris disappears 

in large part and the results tend to be in sinpier form.    Of course, 

this assunption of infinitessimal quantum can  never be reached in prac- 

tice due to the consideration of overhead time; nevertheless, it usually 

can serve as a good apprcDcinHtion of the actual systans. 



CHAPTCR 2 

QUEUEING THEORy TOOLS AND SUMWRY CF ANALYTIC RESULTS 
FOR TIME-SHARED SYSTEMS 

2.1 Queueing Tlteory Ttools 

Queues were first studied systcnatically by Erlang  [7].    Others 

who have made key contributions to the nathanatical theory of queues ar i 

Pollaczeck [8,9], Kolcmogorov [10], Kendall  [11,12], Lindley [13], and 

Takacs  [14-17], to mention a few.    Mathanatical models of time-sharing 

systems cure stochastic in nature and their analysis thus draws heavily 

cxi queueing theory results.    In this section, we present sane of the 

queueing theory results that will be used later in this dissertation for 

the analysis of our luithematical models. 

2.1.1     Little's Result [18] 

Let   n   denote the expected nunber of custoners in a queueing 

system and   T   the expected time that they spend in the system.    Assume 

that the average rate of arrival is    A.    Refer to Figure 2-1. 

n.T 

A GENERAL QUEUEING SYSTOI 

FIGURE 2-1 

We assune that the box is "conservative" in the sense that custoners are 

neither created nor destroyed nor on the average accvmulated within that 



system, and so clearly, the average departure rate must be A. Under 

the constraint that the stochastic process involved is erogodic [19], 

Little [13] proved that the following relationship is always true. 

H = XT (2.1) 

2.1.2 Manoryless Property of the ^brkovian Process [191 

As the nane indicates, the past history of a random variable 

which is distributed exponentially in no affects its future. The fol- 

lowing equation expresses this property for a randan variable T. 

PIT < t + t0|T > tj •■ 1 - •  = P[T < tl    t > 0     (2.2) 

The distribution of time until the next event (say, an arrival) oocurs 

given that t0 seconds have jlapsed since the occurrence of the last 

event is identically equal to the distribution of time until the next 

event occurs measured from the time when the last event occurred. Thus 

the time a future event occurs is independent of hew long it has been 

since the last event occurred. In other words, the Markovian process is 

manoryless. 

2.1.3 Markovian Process {M/tyi)   [19] 

For an H/HA systan with infinitA» queueing roan, since both the 

arrival and the service process are Markovian, the all-important manory- 

less prot^rty holds, and the results of birth-death processes can be 

applied directly. For such systems, the equilibritm probability of hav- 

ing n customers in the systan is given as 

p » (1 - p)pn    n = 0,1,2,... (2.3) 
n 

where p is tne utilization factor definjd by Eq. (1.3), and p < 1. 



The expected mutier of custaners in the systan n can be calculated as 

3n -T-i " = E npn =T-rP-- (2.5) 
npO 

We may now apply Little's result in order to obtain the average time 

spent in the systan as follows: 

I - 5 - JdL (2.6) 
A  i - P 

2.1.4      The Iirbodcled Markov Chain   (M/G/l)   [12] 

For general service time distributions the nice property of 

manorylessness no longer exists, and the results of birth-death piu- 

cef ses can no longer be applied directly to the systan.    However, when 

the system is studied at discrete time points, the collection of state 

probabilities may constitute a Markov diain.    Kendall  [12)  introduced 

the concept of an ijrbedded Markov chain so that a non-Markovian process 

can be studied by extracting a set of points (called regeneration points) 

at which the Markov property holds.    Fbr a H/G/l systan, the set of 

departure instants from service is an extronely convenient set of regen- 

eration points.    It is clear that if we specify the mirber of custaners 

left behind by a departing custoner, we can calculate the same quantity 

at sane point in the future given only additional inputs to the systan. 

Fran the analysis of the imbedded Markov chain, we get the following two 

inportant results: 

A.    Pollaczek-Khinchin Formula  [19] 

The average ntrber of queueing custaners (those custaners 

waiting in the queue)  left behind by a departing custoner is given as 

^ = p + p2 2(1 - p) (2-6) 



where C  is the coefficient of variation defined as the ratio of the 

standard deviation o.  of the service time distribution to its mean 
o 

value. 

%-vs-^, ,2-7) 

If we aoply Little's result to Bq.   (2.6), we get the average time spent 

in the s 's ten as 

T, |, i ♦ £. !L! § (2.8) 
X  u V     2{l - p) 

Equation (2.8) is easily interpreted. The average total time spent in 

the system is clearly the average time spent in the service plus the 

average time spent in the queue. 

B. Distribution of Waiting Time [19] 

where Q(z) is the z transform of the distribution function of the mm- 

ber of custaiers in the queue. Let pn denote the stationary probabil- 

ity that there are n customers in the queme, then Q(z) is defined as 

Q(z) = EP *" (2-10) 
0 n 

B*(s) is the Laplace transform of the service time density function 

^- defined by B*(s) - fe'^clMx; . 
dx Q 

Fran Bq.  (2.9)  the Laplace transform   S*(s)    of the distribution 

of total time spent in the M/G/l systan can be obtained as 

SM.) - BMS) — H i^a «.m 

10 



Since the waiting time in the queue for a custaner is independent of his 

own service time, we easily get the Laplace transfbrm of the waiting 

time as 

w*fs) -   s{1 ' ^ . WMs) - s _ x + XB^S) (2.12) 

Differentiating Eqs.  (2.11) and (2.12). various nonents of the waiting 

time and the system time can be derived. 

2.1.5     The Busy Period [19] 

The queueing systan can be viewed as passing through alternating 

cycles of busy periods and idle periods as depicted by Figure 2-2. 

U{t)  i 

Jh rK 
TATB   Tc ToTc 

t^ TIME 

THE UNFINISHED WRK AND THE BUSY PERIOD 

FIGUFE 2-2 

In this figure we plot 

U(t) = the unfinished work in the system at time t 

= the tine required to errpty the system of all customers 

present at time t. 

Wfe assune that customers arrive at time epochs   TA,TB,TC,...  .   Each 

arrival to the system will add seme unfinished work to the system 

11 



(namely, his service tine)  as shown by Figure 2-2.    U(t)  is sonetimes 

zeferred to as the virtual watting time at time t.   Behavior of this 

function is extremely inportant in understanding queueing systems when 

one views than fron the point of view of the busy perioo.    In Figure 

2-2,    Y]»Y2'   *•*    repr68611*2 busy periods, and   Ii»!?'   *••    represents 

idle periods. 

For W/G/l systems in general, since the arrival time distribu- 

tion is memory less, the mcments of the idle period are the same as the 

mcments of the interarrival time, namely, 

F{r) ■ P[idle period time < r] = 1 - e~Ar r > 0 (2.11) 

The analysis for the busy period distribution is much more com- 

plicated.    The result is given by the following recursive equation  [19]. 

P*(s)  = B*[s + X - >P*(s)] (2.12) 

where P*(s) is defined as the Laplace transform of the distribution 

f ncticn of the busy period. From Bq. (2.12) the first two mcments of 

the length of the busy period can be obtained as 

(2.13) 

g, - —-—K (2.14) a    (i - or 

where t  is the second moment of the service time distribution. Com- 

paring Eqs. (2.13) and (2.6) we find that the average length of a busy 

period for the system ItfG/l  is equal to the average time a custcmer 

spends in an tyWl systan. 

12 



2.2 Review of SCTOP Analytic Results for Time-Shared Systans 

In this section we wish to present sane of the analytic results 

that were obtained in the past.    They served as a point of departure for 

the research of this dissertation.    The emphasis of this collection of 

results is on those for the processor-sharing models, although seme of 

the relevant results for the finite-quantun systans are also presented. 

TVpically, the quantity that is solved for in a time-sharing system is 

the distribution of the response time which is defined as the total time 

a customer spends in the systan conditioned on that he requests and gets 

t seconds of service.    MDSt of the time, however, we can only solve for 

the average response time defined as 

T(t) = E(response time for a custoner conditioned on that he 

requests t seconds of service] (2.15) 

Another quantity, W(t), defined as the average amount of wasted (wait- 

ing) time spent in the systan, is also often used as a performance mea- 

sure for time-sharing systems, clearly 

W(t)  = T(t)  - t (2.16) 

Swap time is assoned to be negligible for the following results; 

its effect on the response time can often be taken into consideration by 

reducing the average service rate of the service facility [20]. 

2.2.1     First-Oame-First-Served  (FCFS)  System 

This system is also known as batch processing.   New corners 

always join the tail of the queue (there is only one queue in this sys- 

tem)  and once a customer enters the service, he will be served until 

conpletion.   Vfe can regard this as a special case of time-sharing sys- 

tans with infinite quantjn size.    The average response time for this 

13 



case with general service time distribution is  119] 

m - P) 
X? 

T(t)  - Ail  . ,1  ^ t (2.17) 

and 

X? 
w(t) " ITT-^PT (2•18, 

v*Jere   t      is the second nonent of thp service tiitre distribution.    A 

very ijnportant characteristic of   W(t)    is that it is independent of   t. 

Fbr the system of exponentially distributed service, Eq.  (2.18) becomes 

W(t)  - 1^H_ (2.19) 

2.2.2 Last-Oane-First-Served (LCFS) System 

In this system a newly arrived custcmer captures the use of the 

server until he leaves ocmpletely served or until he is preenpted by a 

newly arriving customer.   At all times, the custoner who has been in the 

system for the least amount of time will occupy the service.   No moto 

them ens customer can be in the service at any time.   The average re- 

sponse time for the LCFS system is given by [19] 

T(t) « Y^-j (2.20) 

2.2.3 Shortest Job First Served (SJF) System 

In this system the server selects the custcmer in the q^ieue with 

the shortest required service time and serves it until ocmpletion. 

Ihis algorithm requires the kno»l3dge of the service time request in 

advance which is usually assvmttf to be '^available in other algorithms. 

The average response time with general service distribution is given as 

14 



[21] 

T(t) = 
I Xt <t 

(1 - xt<t)2 
(2.21) 

with t <t and t<t defined by Bq. (2.51). 

2.2.4  Round Rabin (RR) System 

A. Finite-Quantun 

This discrete time model was first studied by Kleinrock [221. 

The systan works in the following way: arriving custaners are queued in 

order of arrival. The server selects the customer at the head of the 

queue and services him for at most Q seconds, where Q is the quantvm 

size. If after Q seconds of service the customer needs more, he is 

returrvxi to the end of the same queue. The service time of a newly 

arriving custoner is chosen independently fron a geometric distribution 

such that for o < 1, 

S = (1 - ojo0"1    n = 1,2,3,... (2.22) 
n 

where S  is the probability that a custcmer's service request is 

exactly nQ seconds. See Figure 2-3. 

f>* 

ARRIVALS   U- 

XQ 

QUEUE 
DEPARTURES 

TOE DISCFEIE TIKE HOUND ROBIN MDCEL 

FIGUFE 2-3 
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At the md of each tine interval, a new custaner arrives to the system 

with prdMfcility     Q; thus, the average arrival rate is    X.    There are 

two types of systais dependent vpxi the order in thich a new arrival and 

the ejection of the custoner in service can take place at the end of 

each quantun.    The average response time for a custoner needing   nQ 

seoends In the early-arrival system is given by [221 

««»■rJV-«-&tt*Bä!'!&C>1      ,2•23, 

where 

a « o + XQ (2.24) 

p - ,-&- (2.25) M     l-o 

Similarly, the average response tine for a custoner requesting   nQ 

seconds of service in the late-arrival system is given ty  (22] 

T(nQ).  *L . ^si tl + d-**"*-^       (2-26) 
1
 - p     1     p (1 - a)2(l - p) 

B.   Processor-Sharing 

As the quantun size shrinks, customers get served at a 

faster rate but with less service each tine.    FOr the limit case of zero 

quantun, a customer is required to make an infinite nuiber of cycles, 

each infinitely quickly and each time receiving infinitessimal service, 

mtil he finally accumulates enou^i service tine (to be equal to his 

request), at which tine he leaves.    The average tine for such a proces- 

sor-sharing PR system is given as 

T(t)  - pi- (2-27) 
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and 

w(t) - ^ (2.28) 

Kleinrock  (4) obtained this for the case of exponential service distri- 

bution.    Sakata  (23,24) proved that it is also true for general service 

distribution.    Cbffinan, Muntz, and Trotter  [25J solved for the Laplace 

transform of the wed.ting time distribution for the system Vl/Wl- 

W(t) A 

WMTING TIfE FTJNCTIGN FDR THE PCFS AND RR SYSTEME 

FIGURE 2-4 

In Figure 2-4 we plot   W(t)    against   t    for the PCFS and the RR 

systans.    Both of than cure straight lines.    Let us assume that these two 

lines intersect each other at the point   t = t..    This point    t.    is of 

great interest to us because for a custcmer requesting less than   t. 

seconds of service,  then he has to wait more than the average as repre- 

sented by PCFS when he is in a RR system,    t.    can easily be calculated 
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pti    .       ^t2 (2.29) 

k   « It (2.30) 
i       2^ 

-j       2 
Ft>r expc»«ntial servioe distribution,    t   = "J ' thus' 

M 

t   = i (2.31) 

For M^l systanB, any customer who needs more than the average service 

request (1/u seconds) will be better off as measured by his average re- 

sponse time when he is in the PCFS system than in the RR system. 

2.2.5     Round Rabin with Priorities System 

In this rrodel we assume that an external priority assigrment is 

made to the arriving custoners.    We assune that there are   P   priority 

groups with Foisson arrivals, each at an average rate   Xp   per second 

and an exponentially distributed service requirement with mean request 

of   Vup   seconds for the p^ group.   A ptocessor-sharing model is as- 

sured.   A positive mitber   gp   which denotes the relative fraction of 

the processing time       that is reserved for the customers fron the p 

priority group is associated with the p^ priority group, with larger 

values of   g     being given to those higher priority groups.    The average 

response time   Tp(t)    for a customer fron the p^ priority group is 

given by [4] 

Tp(t) 
,     t» + ^ (!i _ i)p ] p-l,2,...,P (2.32) 

r^p      fei gp     i 
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where 

Oi  = A./u. (2.33) 

E 
P - Epi (2.34) 

i=l 

2.2.6  Selfish Round Rabin (SRP^ Systen 

This system was introduced by Kleinrock [26] for the processor- 

sharing model only. He solved for the mean response time for the case 

of exponential service time distribution. 'Ihe algorithm works in the 

following way: For each custcrner in the system, a tjme-varying value of 

priority is assigned. TTiis priority value begins at zoro upon his entry 

to the system. It increases at a positive rate a as long as he is not 

served; whenever he is in the service facility, his priority value in- 

creases at a positive rate 8 where a > ß > 0. All the customers in 

the service facility share it equally among them as in a processor- 

sharing RR system. Note that a queueing custoner gains priority at a 

rate greater than those in the service. Eventually he will catch up 

with those in service and then join and remain with that group. Since 

the customers in service are att-empting to run away with the processor 

and prevent waiting customers from joining than (there attempt is futile, 

though), this system is called selfish round robin. 

The average response time for the SRR system is [26] 

T(t) " r^T + 1 - p(l - ß/a) (2-35) 

and also the average waiting time is given by 
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wm - P/^ a. (t - 1/U)P(1 - g/a) n  ,,. w(t) - rtr^+ —i - pd - m (2*36) 

The ratio ß/a provides one degree of f reedan which can be ad- 

justed over a oontinuum of system behaviors ranginq from the POPS 

(6/a =1) to the RR system (ß/a = 0). Another ijiportant property of 

the SRR systems is that a job with average service requirement will re- 

ceive the same response in all of these SRR systans. Please refer to 

Chapter 3 for more details. 

2.2.7  Fbreground-Background (re) Systan 

A. Finite Quantun 

FEEDBACKS 

DEPARTURES 

DISCRETE TDC POREGRDUND-BACKGROM) MDDEL 

FIGURE 2-5 
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We assume that there are N levels of queues in a ^TJ system as 

depicted by Figure 2-5. Arriving custoners enter the level 1 queu^ to 

await allocation of their first quantun, Q. seconds. If more process- 

ing time is needed, they enter the end of the level 2 queue to await the 

seoond allocation, this time of Q_ seconds. This process continues 

until either the custaner leaves the systen ccrpletely served or he 

enters the N  queue. Manbers of the N  queue are served as in a 

RR systen. The server services a customer from the I   queue only if 

all lower level queues (I - 1,1 - 2,...fl) are empty. If a neu custo- 

mer enters level 1 during execution of a custcmer fron a higher queue, 

the current custaner is not preempted until the allocated quantun is ex- 

pired. The average response time with Q, = Q- = ... - 0^   has been 

derived by Coffman and Kleinrock [5] as 

T(t) * a - .a - T-e-^'o, 

+    "  , /M vn (K - 1)0 + t   K > N     (2.37) 
1 - p[l -e^jW"T)0] 

(X^MEj^T2) + Yj^T2)] 
T(t) = ti-od-e-^ni-na-e-^0) 

..   -ViCK-DQ, 
♦  PU " e  -TB , L (K - 1)Q ->• t   1<K<N    (2.38) 

1 - p[l - e"^-1'0] 

where 

(K - 1)Q < t < KQ (2.39) 
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-VKO 

1 - e 

Vx2) -/ T2dFK(T) (2.41) 

FK(T) 
1 - e'UT   0 < T < HQ 

T > KQ 
(2.42) 

Schräge [27] has provided analysis of this model with general 

service distribution and N « ». In particular, he solved for the 

Laplace trai»fonn of thp response time distribution under the assunption 

of arbitrary quantun size for each level. Schener [281 also contributed 

to the infinite-level FB model by obtaining the average response time as 

T(t) « t + Ex. (2.43) 
i=l 1 

where K is defined by tne following inequality 

K-l       K 

i«l 1     i=l 
(2.44) 

and T. is given as 

Ti = Ql(Ti-l + Qi-l)X + Q2(Ti-2 * ^-a^*  * •" 

♦ 0.(1   4 Q-.^Xe-^J-l ♦ ... ♦ Q^e-^1"1^    (2 Tli-:r-i-j 

with 

.4b) 

Q. = ^ [1 - e"^] (2.46) 
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QA = ij[l+  Ei/^V^dt]"1 (2.47) 
i=l J 

h 

-IQ •        -Mt., at. 
Qn = 0,(1-6     ^ + EQ4(e     ^-e     ^ (2.48) 

B       1 i=2 1 

^ ■ & 
(2.49) 

B.    Pnjcessor-Sharing 

Coffman and Kleinrock [5] and Schräge [27] independently derived 

the average response time for this case. With general service tune dis- 

tribution,    T(t),    is given by 

W     -ft 
T(t)  = r—r- (2.50) 

where 

4-/^(x) ♦ *»/"•« (2.51) 

P<t«At<t (2.52) 

w<t - in^r «•»' 

Schräge [27] also obtained the Laplace transform of the response 

time function for M/G/l  systans. Refer to Chapter 3 for more details. 
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2.2.8     Multilevel Proceeaor-Sharing Syotere 

Multilevel (VL) queueing nodels were first analyzed by Kleinrodc 

and Mintz [29] .*   Ttey can be considered as a generalization and consol- 

idation of the PCFS, the RR, and the FB systems.    In particular, a set 

of attained service times    {a^    is defined such that 

0«a0<a1<a2< ... <aN<aN+1 = - (2.54) 

The discipline for a job when it has attained service, t, in the 

interval 

*•_! < T < ai    i - 1,2,3, ..., N + 1        (2.55) 

will be denoted as D^. Where Di   is considered for any given level to 

be either PCTS, FB, or RR. Mareover, between intervals the jobs ate 

treated as a set of FB disciplinee. The behavior of the average condi- 

tional response tiro in any particular level is independent of the 

discipline in all other levels. See Figure 2-6. 

An expression for T(t), the mvn response tiro for jobs with 

service tire t such that ai_1 < t < a^ i.e., jobs which reach the 

i^ level queue and there leave the system, has been obtained by 

Kleinrock and Muntz as [29] 

a. i**1  level discipline is FB 

^<t 
T(t).   t_ +  <L_^ (2.56) 

I-p<t   2(i-p<tr 

*1\*} other not yet published papers by these authors are "Processor- 
Sharing Queueing Madels of Mixed Scheduling Disciplines" and "The Pro-   ^ 
cessor-Sharing Queueing Model for Time-Shared Systems with Bulk Arrivals 
(with E. Itodanich). 
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where 

FB 
BETWEEN 
LEVELS 

ATTAINED SERVICE, 1 

DM* 
1 
11 

-   0: 

L 
i-t 

■- 0, 

■■ a. 

INTERVALS OF ATTAINED SERVICE WITH DISCIPLINES,  D. 

FIGUW: 2-6 

b. i  level discipline is PCFS 

T(t) = 

W  + t 
<ai 

r^p 
<ai-i 

(2.57) 

\t. <a. 
w 
<ai ' 2(1 " ^a.) 

c. i  level discipline is RR 

In this case, the results are limited in the i  interval 

to service tijne distribution in which 

B(x) = 1 - p(x)e 
-ßx 

a. , < x < a. i-l -    i 

p(x) = P0 + Pj^x + ... + pn: 
n 

(2.58) 

(2.59) 
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The service time distribution F(x) for this i  level is then 

F(x) =' 

B(ai_1 + x) - BU^) 

 1 - B(ai.1) 
1 - q(x)e 

-0x 
0 < x < a. - a.. 

(2.60) 

x > a. - a. . 
- i   i-l 

where 

- a 

q(x) 

:,"1p(ai_1 + x) 

1 - 6^)  qQ + q^ + . + q_x 
n 

(2.61) 

Except for the first level the average response time is given as 

T(ai_1 + T) = r^r (w. 
^i-l  <ai-l + ai-l + 0l2(T)}     (2-62) 

where 

a2(T) 
k - Xa - 

Mt 

b(u2 - Y1
2)[(Y1 + V Xä) (1 - e ■L ) Xa e   i x(e i - 1)] 

-(irt-YJx, 
2XaY1'[Y1 + U - Xa(l - e   

i x)] 

(2.63) 

W _ X(l - e 
-pa i-l -pa 

<a " ^i-l6 
i-lv 

i"1    u2Il-^(l-e-lJai-l)] 
(2.64 

with 

a = 
1 - B(ai_1) 

1 - Xt 
^i-1 

(2.65) 
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U. =  ^— (2.66) 

(1 - e     *) 

/T"      _      _2 -2lJXi 
Yl    J M    " 2uXa +  (Aa)   (1 " e ' (2-67) 

and xl = ai ~ ai-l 

For the first level,   T(t)    is given as 

T(t) = x—^         0 < t < a, (2.68) 

In Figure 2-7 we show the behavior of each of the three disci- 

plines for the system N = 1 with exponential service distribution. We 

also assume that y = 1, A = 0.75, and a. = 2. 

2.2.9  Attained Service [30] 

A. Finite-Quantun 

The attained service for an inccrpletely serviced cus toner 

is defined as the nutiber of seconds that he has so far spent in the ser- 

vice facility. Assume that there are p priority groips in the systan 

and let 

N (t) = density of the nurtber of customers in the system from 
P 

priority group p who have so far received exactly t 

seconds of service 

X =  average arrival rate of the p  priority group 

B (t) = service distribution of the customers from the p 
P 

priority group 

T (t )= average response time for customer fron p  group 
p n 

conditioned on that he has attained t  seconds of n 
service 
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FIGURE 2-7 

28 



Kleinrock then proved that the following equation is true 

Njt) = X [1 - B (t ))[T (t .,) - T (t ))    p = 1,2,3, ... P (2.69) 
p n   p    P n  P n+-'-   P n 

B.    Proces sor-Shari ng 

If we define 

n (t) = average density of customers fron the   p       priority 

qroup still in the system who have so far received   t 

seconds of service 

then Eq.  (2.55) can be modified for the procoss-sharing models as  (30) 

dlMt) 
np(t)  " ^"V**1      dt P=l»2,3,   ...,  P (2.70) 

2.2.10   Itound Robin with Finite Input Population 

In 'Jie real world,  there is no such thing as an infinite popula- 

tion on which most of the mathematical models of time-sharing systans 

are based.    Nevertheless, if the dependence of the arrival process upon 

the nirfcer of custcmers in the system is negligible,  the assumption of 

infinite population usually serves as a good approximation to the real 

system.    In sane of the systans, however, the arrival process does de- 

pend on the nmber of customers in the system in a perceptible way.    The 

analysis of such models with finite input population then beoomes a 

necessity. 

Typically, a time-varying model with finite number of inputs is 

ncdelled as by Frgure 2-8.    Here we have   M   users which make demands on 

the time-shared system.    The dashed lines in Figure 2-8 surround a feed- 

back queueing model similar to the one used for infinite population 

models.   When a user (a console) makes a request for service to the crm- 

puter, he enters the dashed box and gets served according to the 



SYSTEM 
OF 

QUEUES 
-fcpuV 

TIfE-SHARINC M3CEL WITO    M    INPUT CTNSOIES 

FiGura: 2-8 

scheduling algorithm in the systan. Wien his request is ocnpletely 

served, he leaves the dashed booc and starts to generate a new request to 

the CPU. The time spent by the user in generating this new request 

after the oarpletion of the previous request is referred to as the 

"think time." Thus, alternating periods of thinking and processing take 

place. 

Scherr [31] considered the case for which he assunes exponen- 

tially distributed service tin» and think time, namely 

P [think time < t) = 1 - e 

average think time = I/o 

-at t > 0 

-JjX 
F[service time < *] = 1 - e 

Average service request = 1/u 

x > 0 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

He solved for the average response time in the system without 

conditioning that result on the service time required.    His result is 
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u    M/U 1 
" 1 - P0  a 

(2.75) 

where p. is the probability that no customer is in tho queue or in the 

service facility and is given by 

P0 = r(?r| 
-i 

(2.76) 

In Figure 2-9 we plot the nonralized waiting time    uT   against 

the nunber of input peculation   M.    The point   M*   on Figure 2-9 is de- 

fined by Kleinrock  (32]  as the saturation nurber because whenever the 

0  10 20 30 40 50 60 70 80 90 100 
NUMBER OF CONSOLES. M 

FINITE POPULATION PERFOPMANCE AND SATORATI0N 

FIGURE 2-9 

total muber of consoles exceeds this nutber, every additional customer 

will severely interfere with the existing customers as feu: as the aver- 

age response time is ocnoemed.    M*   can be easily calculated as 

1/u a (2.77) 
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Groenberg (331» Adiri and Avi-Itzhak [34], emd Krishnamoorthi 

and Wood [35] also considered systans with finite input population. 

2.2.11 A Cbnservation La/ 

Kleinrock [36] showed that a conservation law holds for any 

queueing system with priorities which satisfies the following restric- 

tions: 

a. there is a single server in the system 

b. arrival process is Poisscn, service process is arbitrary 

with arrival and service processes independent of each 

other 

c. work can not be destroyed nor can it be created within 

the system 

d. preemption allowed only if service process is exponential 

and then preenption nust cause no losses. 

The conservation law is that the weighted average of waiting 

times is a constant regardless of the scheduling discipline, namely, 

P      PW0 

£ PPWP ■ r^ (2-78) 

where P is the nurber of priority groups and 

X  = average arrival rate for p  priority group 

1/     = average service request for a customer from p 

priority group 

W  = average waiting time for customers from p  priority 

group 

W0  = average amount of work left in the service facility 
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found by an arriving customer (independent of schedul- 

ing algorithm) 

2.3   Sxinnaiy of Results in this Dissertation 

There are two najor topics in this dissertation. Tfte first 

thene is on the modeling and analysis of n&i models of time-sharod ocm- 

puter systems; the anphasis is on models with sane degrees of freedom 

which the system designer can use to adjust the system performance over 

a oontinuun of system behaviors. In order to provide those degrees of 

freedom to the systan designer, some parameters have to be injected into 

the systan. Different algorithms with this property are discussed in 

Chapters 3 and 4. The second najor topic is the finding of sore funda- 

mental properties which apply to the average number of custoners in the 

systan and the average response time fmotions for a large class time- 

shared cotputer systans. Chapters 5 and 6 are dented to the discussion 

of these topics. 

Chapter 3 is devoted to the study of the family of selfish 

scheduling systems in general, with the selfish round robin (SRR) and 

the selfish foreground-background (SFB) as two illustrative exanples. 

In the selfish system, customers are divided into two sets: those in 

the queue box waiting to be served, and those in the service box sharing 

the service facility in scne fashion determined by the scheduling algo- 

rithm being used. When a customer is waiting in the queue box, his 

priority (a ntmber) increases at a positive rate a; when he is in the 

service box, his priority increases at a positive rate P. We consider 

the case a > B > 0. If the scheduling algorithm in the service box is 

RR (namely, everyone in the service box shares the facility equally 

atong thanselves) , the system is called selfish round robin (SRR) . If 

33 



only those custaners in the service box with the least amount of at- 

tained service are sharing the server, then the system beoomes selfish 

loregrojnd-badcground (SFB). The ratio B/a provides to the system 

designer a degree of Ireedon to oontrol the syston perfbrmanoe. For the 

SRR system, the average response cime is solved for general service dis- 

tribution, and the Laplace tiansform of the waiting time distribution is 

obtained for the H^V-i system. The Laplace transform of the waiting 

time distribution for the SFB system is solved for H/G/l  in general. 

In Chapter 4 we discuss a family of algorithms whose performance 

ranges between that of the RR sysban and the FB rystan. Similar to a 

processor-shared RR systan, all customers in the systan share the serv- 

ice facility simultaneously; but unlike the RR system, the custaners do 

not share the facility equally among themselves, rather their share of 

the processor varies according to their amount of attained service time. 

A weighting function g(t) = ge"9* is given to define the scheduling 

algorithm such that a custcmer's rate of attaining service, given that 

he has attained t seconds of it, is directly proportional to g(t). 

Tlie more service a custcmer has accumulated, the slower he gets served 

in the service facility. A customer always gets some service even 

though he has spent a long time in the service facility. Ttius this new 

scheduling algorithm shows more discrimination against long jobs than 

the RR system, but less discrimination than the FB system. The para- 

meter g provides one degree of freedom to the system designer. With 

g « 0 the systan becomes RR; with g = " it becomes FB. The average 

response time for this family of systems is obtained in Qiapter 4. 

In Chapter 5, conditioned on the presence of a "tagged" custcmer, 

we find a sinple relationship between the time-dependent average nunber 
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of custoners in the systan and the average response time function for a 

large class of systare with Poisson arrival and exponential service 

processes.    The result shows that the behavior of one custaner can 

strongly influence the total mutoer of custoners in the systan for all 

algorithns except PR, in which case the average nanber of custoners in 

the systan is a constant. 

Fran the results obtained in Chapters 3 and 4, as well as fron 

some polished papers [ 11, we see that by slightly modifying the 

scheduler of a time-shared systan, a different model can easily be ccn- 

structed and corresponding analytical results can be obtained.    This 

process can go on and on with no end in sight.    Clearly, one is tatpted 

to seek sore order in these results.    For exanple, do there exist any 

invariants in behavior?   Can we bound the possible range of performance 

regardless of structures?, etc.    In Chapter 6 we try to answer sane of 

these important questions.    Fortunately, we are able to state a monoton- 

icity property, a conservation law, and tight upper and lewer bounds on 

the systan performance as measured by average response time.    Exaitples 

of the tight bounds are given for the exponential, the hyperexponential, 

the 2-stage Erlangian, and the uniform service time distributions. 
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CHAPTER 3 

THE FAMILY OF SELFISH SCHEDULING ALOORITWE  (SSA) 

3.1 The Mathematical Mxiel 

The ooncept of selfish schoduling algorithns was first intro- 

duced by Kleinrock  [26].    He solved the average response time for the 

selfish round robin  (SRR)  system.    His work is extended and generalized 

in this ch^ter by obtaining the Laplace transform of the waiting time 

distribution for M/G/l systams. 

The principle behind this model is that all custoners in the 

system are divided into two groips:    those in a "queue boK" waiting for 

service; and those in a "service box" sharing the service facility in a 

way as specified by the specific scheduling algorithm being used in the 

system.    A newcomer always enters the queue box where his priority (a 

nunerical value)  increases fron zero at a positive rate a; similarly, 

when he is in the sen/ice box (he may be sharing the servioe facility or 

he ray be waiting for his turn depending upon the scheduler), his prior- 

ity increases at a positive rate 0.    All customers possess the same para- 

meters   ot   and   6.   We are interested in the region   a > ß > 0.    Typi- 

cally, a customer enters the queue box as soon as he arrives to the sys- 

tem, and starts to build his priority with rate   o   while he waits in 

tiie queue box.    Since   a > ß > 0, sooner or later he will ratch up with 

those customers in the servioe box and join them to share the service 

facility.    There is no feeefcack from the service box to the queue box, 

althou^i there may be feedback within the service box.    Kleinrock [26] 

Preceding page blank 
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defined   a   as the queueing slope and   ß   as the serving slope.    If an 

PR scheduling algorithni is being used in the service, then everyone in 

the service box shares the service facility on an equal basis and the 

system is referred to as selfish round robin (SRR).    If the server only 

serves those in the service box with the least amount of attaii^H ser- 

vice as in an FB system, then the whole system becomes selfish fore- 

ground-badcgromd (SFB).    Figure 3-1 shows a deocnposition of the sel- 

fish system. 

NEW 
ARRIVALS 

I 
l.iar,, QUEUE 
in BOX 

I 
SERVICE 

BOX 

I 
I   DEPARTURES, 

CEODH'OSITICN OF THE SSA SYSTEM 

FTGUFE 3-1 

Let us define the following quantities: 

E :   The event that customer needs t seconds of ser- 

vice 

s(t) = a random variable representing the total time a 

customer spends in the system conditioned on E . 

w(t) - a random variable representing the total time a 

customer wastes while waiting in the system con- 

ditioned on E . 

q(t) = a random variable representing the time a cus- 

tomer spends in the queue box conditioned on E . 

y(t) = a random variable representing the time a cus- 



toner spends in the service box conditioned on 

Ef 
v(t) = a random variable representing the time a cus- 

toner wastes (the waiting time) in the service 

box conditioned on E.. 

B(t) = P [service time _< t] 

B*(s) = The Laplace transform of the service time dis- 

tribution dB{x). 

= f e'^mix) (3.1) 
and * 

1/u = average service request. 

\ = average arrival rate. 

p = X/w = utilization factor of the system. 

S*(t,s)  = The Laplace transform of   s(t,x), the equili- 

brium density function of   s(t). 

= r e"sxs{t,x)dx (3.2) 

W*(t,s)  = The Laplace transform of   w(t,x), the equili- 

brium tensity function of   w(t). 

= f e"sxW(t,x)dx (3.3) 

Q*(t,s) ■ The Laplace transform of   q{t,x) ,  the equili- 

brium density function of   q(t) . 

= f e"SXq(t,x)dx (3.4) 

Y*(t,s)  = The Laplace transform of   y(t,x), the equili- 

brium density function of   y(t). 

= |o0e"sxy(t,x)dx (3.5) 

V*(t,s) = The Laplace transform of   v(tfx), the equili- 

briun density function of   v(t). 
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= /" e"s,cv(t,x)dx (3.6) 

Cleeurly vie have that 

s(t) = q(t)  + y(t) (3.7) 

w(t) = q(t)  + v(t) = s(t)-t (3.8) 

Let us also define 

T(t) = E  [response timelE.] 

- E  [s(t)] 

, _ Aim a6*(t,s) 
' &*0       9s (3.9) 

W(t) = E   [wasted time in system|E.] 

= E  [W(t)] 

..MjÄg*SL.T(t>-t (3.10) 

W2(t) = second nonent of the equilibriun waiting tijre 

distribution given E. 

" s*0  ^2  C3•U, 

2 , , . , o (t) = variemce of the equilibriun waiting tune dis- 

tributicn 

= W2(t)  - ^(t) (3.12) 

and 

W (t) ■ E (waiting time in the queue box|E ) 

= E  [q(t)) 
Him ^(t^s) ,, .,. 
s-*0       9i U••LJ, 

V(t)    ■ E  [waiting time in the service box|Ej 

= E  [v(t)] 

Aim av*(t,s) 
s-K)       9s (3.14) 
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ainoe there is no feedback fron the service box to the queue 

box, and all the service is done in the service box, the waiting time a 

custanBr spends in the queue box must be independent of his service re- 

quest. Ihus, 

q{t)   = q (3.15) 

Q*(t,8) = Q*(s) (3.16) 

Wq(t)  = Wq (3.17) 

3.2   The Analysis of the SSA Systans 

By solving the SSA system, we mean to find the equilibriun 

waiting time distribution of the system. Since we are unable to do that 

directly, we first obtain the Laplace transform of this distribution and 

then obtain the various mcments by differentiation. 

Before going into details of the analysis of the SSA system, we 

present the following well-kncwn theorem for PCTS system; it will be 

used later. 

Vheorem 3.1 [19] 

The Laplace transform of the equilibriun density function of 

the waiting time for the FCFS system is given as 
i 

w*(t's) ■ wss)(1-Vl s 
(3-1{» 

which is independent of t. Here p = X/p 

When an PCFS scheduling algorithm is used, there can be, at 

most, one custcmer being served in the service box at any time (no pro- 

cessor-sharing takes place in this case). The time a customer spends in 

the queue box is independent of the time he spends in the service box 

(t seconds). 
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l£t us look at the service box of the SSA systan as depicted by 

Figure 3-1. In order to solve V*(t,s), let us follow a custcner, which 

we shall refer to as the "tagged" customer, through the system given 

that this custoner requires t seconds of service. The arrival rate of 

custcmers to the service box conditioned on the presence of a tagged cus- 

toner in that box is no longer A, but rather some new average arrival 

rate \',  although the arrival process is still Poisson [26]. Thus (in 

conjunction with the fact that work can be done to a customer only when 

he is in the service box) the service boc itself, conditioned on the 

presence of a tagged customer, then becomes a M/G/l  systan with average 

arrival rate A' and service distribution B(x). Therefore, V*(t,s) 

can be obtained readily from previous results for H/G/l  systan with A' 

replacing A. In the case of PCFS, from Eq. (3.18), we can write down 

\7*H- *) -     s(l - A'Ai) (3.19) 

In order to calculate A', we refer to Figure 3-2 following Kleinrock 

(26]. 
PRinOITY 

 ■ «M ..—. 

ß 

PRIORITY 

^- TIME 

CALCULATION OF THE OCNDITICNAL ARREWL RATE TO TOE SERVICE BOX 

FIGURE 3-2 
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In this figure, assure that two successive customers arrive at tiire    t, 

and    t2;  the average trre between    t,    and    t-    is clearly   1/A.    Let us 

also assure that these two custcners enter the service box at time    t, 

and time    t., respectively,  it is obvious that the average distance 

between    t,   and    t-    (v^ich is equal to   l/X')   is larger than that be- 

tween    t,    and    t2   because the custcners in the service box increased 

their priority at a rate   ß   and the nörfconers catch up with than at a 

rate   a   as shewn by Figure 3-2.    In order to calculate   A', we express 

the vertical offset   y   in two different ways: 

y « (p)ß (3.20) 

y =  (^,- ^)a (3.21) 

and so    X*    is solved as 

A'-Xd-I) (3.22) 

for convenience, we new define 

p'-i* »    p(l -£) (3.23) 

Before we proceed to find W*(t,s) emd 0*(s), we wish to es- 

tablish the independent relation between q(t) and v(t) for the SSA 

system. That is, we wish to prove that the time a customer spends in 

the queue box is Independent of the time he spends (or the time he wastes) 

in the service box. If this is true, we can find V*(t,s) and Q*(s) 

independently and then nultiply than together to get W*(t,s)  (i.e., 

for two independent randan variables, the Laplace transform of the den- 

sity function of their sun is the product of the individval Laplace 

transforms). The task will be greatiy simplified since V*(t,s) is 
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available to us already; all we have to do then is to find Q*(s) fron 

o*/^ ~ W*(t,s) 
Q (8) = V^Tt^T (3.24) 

Iheorew 3.2 

Par any custaner requiring t seconds of service, the tine he 

spends in the queue box is independent of the time he spends in the 

service box (or independent of the time he wasted in the service box 

because t is not a random variable). 

Proof; See Appendix A 

By virtue of Theorem 3.2, all we have to do now is to find 

Q*(s), the Laplace transform of the probability density function of the 

waiting time spent in the queue box. Before we proceed, let us make the 

following observation: 

r" —| 

NEW                 , 
ARRIVALS QUEUE 

BOX T*" 
SERVICE 

BOX 
DEPARTURES > 

xl' 
I ©__                                 J 

imM'OSITICN OF THE SSA SYSTEM 

F IGUPE 3-3 

Figure 3-3 is a modificatinn of Figure 3-1. Arrivals come into 

the system as a Poisson stream with mean arrived rate \.    If the service 

bcoc is not idle, custcmers leave the q u-ie box for the service box at a 

rate A*. If the service box becomes idle, then the customer with the 

highest priority in the queue box (if it is not empty) enters immediate- 

ly into the service box.  This flow of custcmers keeps on going inde- 
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pendent of the schedulinq algorithm being used in the sen/ice box. 

From the viewpoint of the queue booc, it does not make any difference 

whether an PCFS, an RR, or any other scheduling algorithn for this nat- 

ter is being used in the service box. As far as the flow of custorcrs 

from the queue box to the service boot is concerned, the rate is always 

A' if the service box is not idle and in'inite if it is and if the 

queue box is not anpty. For different scheduling algoritlirs, there 

will be different W*(t,s)'s and VM^s)'s, but their ratio Q*(s) 

retains the same, and it is this 0*(s) that we are trying to solve 

(see Eq. 3.24). 

Theoron 3.3 

The Laplace transform Q*(s) of the density function of the 

waiting time spent in the queue box by a customer requiring t seconds 

of service time (actually, it is independent of t as we explained 

earlier) is 

o*^ - {1  - El  A'BMS) - A' + s n ._. 
Q (s) "-(I - P') XB*(S) =TTi        (3-25) 

with first moment equal to 

Um _ aQ*(s) _  X?      X't2 ..  _,. 
Wq " s^O  -5?- " i(l - p) " 2(1 - p») (3-26) 

Proof; See Appendix A 

By combining Theoran 3.2 and Theorem 3.3, we get the following 

inpDrtant result. 

Theoian 3.4 

The Laplace transfarm of the equilibrium waiting time distribu- 



tion function can be expressed as 

W*(t,8) « 0*(8) V*(t,s) 

(1 - P)     . A'BMs) - X' + s . ^,      . ., 27) 

and the mean waiting time as 

W(t) » W   + V(t) 

jjrn* - ITT^ST 
+«« (3•2," 

where 

?»    /" t2dB(t) (3.29) 

Proof; The proof is obvious fron the fact that the Laplace transfonti 

of the density function of the sun of two independent random variables 

is just the product of the individual Laplace transforms. 

3.3   The Selfish Round Rabin (SRR) System 

We choose the SRK system as our first exanple. Figure 3-1 is 

replotted below to demonstrate the system behavior. Cusborers arrive 

as a Poisscn stream with average arrival rate X. Upon their arrival, 

they enter the queue box where their priority will increase from zero 

at a positive rate a. After a customer's priority catches vp to that 

of those in the service box, he will join them there and start to share 

the service facility. All custoners in the service box share the ser- 

vice facility equally among themselves as in an RR system; at the same 

time, their priority increases at a positive rate ß. The range of a 

and 6 of interest to us is when a ^ ß > 0. 
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Lhfortunately tor the RR system, the Laplaoe transform of the 

waiting time distribution has been solved only for the case of exponen- 

tial service distribution.    For general service distributions, only the 

mean waiting times are available  [23,24] as given by: 

Mit)  « x^— 
RR1 1 - p (3.30) 

Since the service box looks like an RR system with an average 

arrival rab    X', the average waiting time in the service box for a 

custcrer requiring    t   seconds of service is the same as in Eq.   (4.30) 

with   X'    replacing       A, thus 

VCt) = x^V (3.31) 

From Eq. (3.26), we know that the waiting 'öinB in the queue box 

Wq " 2(1 - p) " 2(1 - p») 

thus,  for WG/l, that we can write down  (from Eq.   (3.28)] 

wm _     A? A'?       (    p't mti - 2a - p)    2(1 - p») + r^r 

(3.32) 
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xT7 p,(t-2t' 

Three exanples are given to danonstrate the nafune of the nsan 

wcdting times for the SRR systems.    As our first exanple, we choose the 

WWl system (i.e., the servioe times are exponentially distributed). 

For this case,  the mean waiting time   W(t)    beoones 

« J&   ♦ (\- V^P' (3.34) 
1 - P 1 - P' 

this result was first obtained in  [26]. 

In Figure 3-4, we plot the average waiting time function   W(t) 

against the requested service time   t    for different ratios of   ß   and 

a   with   X ■ 0.75   and   p = 1.0.    From Figure 3-4, as well as from Eq. 

(3.34), we observe that the dependence of   W(t)    upcr.    t   is linear for 

the entire family of SRR systems; and all the waiting time functions 

intersect at the same point    (t = -).    Thus, the performance of a cus- 

torer who needs exactly - seconds of servioe time is the same that he 

would encounter for any SRR system.    In Section 2.2.4, we had observed 

that correspondanoe between the RR system and the FCFS system; ncv we 

show it hol<fe for the entire class of SRR systems.    We also observe that 

for a ciBtcmer requesting more than - seconds of service, his waiting 

time in the SRR system is longer than that he would experience in the 

FCFS system; conversely, a customer who requests less than - seconds of 

service gets better treatment in the SRR systan than in the FCFS system. 
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We shall show,  through the next two cxanplos,  that this pzcperty holds 

true for general service distributions as well, althoix^i the point of 

intersections    t.    varies for different distributions.    It can be 

easily proved by referring to Eq.   (3.33)  that   t. = ^r-   in general. 

As our second exanple, we choose the system M/Ej/l.    In this 

system, we have 

^-=  (2lJ)
2xe-2^ x>0 (3.35) 

with mean service time equal to 1/u; the second ncnent of this distri- 

2 
bution is 3/2p . Figure 3-5 shows the behavior of this system with p 

= 1 and  A = 0.75. Again, the response time curves cross each other 

at the same point. It can be easily shown that the point of intersec- 

tion t. is at 

^ = ^-= 0.75 (3.36) 

~7 
Because the second moment    t     is smaller for this distribution than the 

exponential distribution,  t.    is to the left of   1/p. 

In the third exanple, we show the waiting times for the H/H-/! 

system, where   H.   stands for hyperexponential servioe distribution with 

dB(x) =0.5 Vi,e~Mlx + 0.5 p-.e"^ x > 0 (3.37) 
ST- 1 2 

We choose p, = 5p, p, " (5/9)p, resulting in a mean service time 

2 
of 1/p. The second moment of this distribution is 82/25p . Figure 

3-6 shows the waiting times of the M/H-/!  system with p = 1 and X = 

0.75. Again, the waiting times are linearly proportional to t and 

crossing each other at the same point, only this time, the point of 
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AVERAGE WMTING TM: FLNCTIONS FOR THE SRR SYSTEMS WITH 
2-SIME ERLMJGIM SERVIO: DISTRIBUTION.     A = 0.75,  u = 1.0 

FiGura: 3-5 
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intersection   t.    is to the right of   l/p   because of the larger second 

nonent of service tijne distribution. 

As we mentioned earlier, the Laplace trans form of the waiting 

tine dis .ribution   W*(t,s)    for the RR systans has been solved only for 

the WWl case; it is given as  [25] 

W.    ,t,s. (1 - PMl - pr2) e-"1 - ^ (3.38) 

(1 - pr)2 - p(l - r2) e""«1 " «^ 

where   r is taken as the smaller of the two following expressions: 

r= (X + ii + s- ((X+u+s)2 - 4uX]1/2)/2X (3.39) 

or 

r = 2y (X + u + s+ [(X+u+s)2 - 4pX]1/2)"1 (4.40 

Fran Eq.   (3.25), for the WWl system, Q*(s)    is given as 

Since V*(t,s)  is the same as   W*RR(t,s)    with   X'    rQ)lacing   X, 

we can readily write down   W*(t,s)    for the WWL SRR systan as 

W*(t,s) = Q*(s)   • V*(t,s) 

_nJ^S+ü-X' (1 - p')(l - p'r'^) e A u     r^  
(1 - p')  s+y-X 2 2   -ut(l - p'r'^/r' 

(1 - p'r')  - P'd - r^)e lJ,:U     pr   ;/r 

(3.42) 

where r' is defined by Bqs. (3.39) and (3.40) with X replaced by 

X*. 

By differoitiating Eq. (3.42), the first two noments of the 

waiting time distribution are obtained as, respectively, 
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W(t) = - ^'^Is = o 

-   p/^   _   p'/p   , p' • t 
(3.43) 

VMt) = iW^s) 
3s 

2(t) = ISJfSk   |s = 0 

_        2p't(p - p')       ,     (p't)2      ,        2p't 

yd - p,)2(l - p)       (1 - p")2      ^{1 - p')3 

+    ,      2(P-p') _ 2p' ^-(1 - p.)ut 
U^d - D')11 - n)'i      u*n   - nM4 (3.44) 
U  (1 - p'jd - p)'      M (1 - P') 

In Figure 3-7, we plot the standard deviations of the waiting 

time versus t for different values of ß/a. By corparing Figures 3-4 

and 3-7, we see that when t is small, the standard deviation tends to 

be soneahat larger than the mean value; and when t gets large, the 

mean value tends to be hitler than the corresponding standard deviation. 

In Figure 3-8, we plot the ratio of the standard deviation  a(t) to 

the average of the waiting time against yt with A = 0.75 and u = 1.0. 

As shewn by the figure, o(t) is monotonically nonincreasing with t 

for the entire family of the SRR systems. It can easily be shown that, 

when t is large, o(t)^(t) is proportional to 1/Jt.    Thus, the mean 

waiting times give a better indication of the system behavior when the 

requested service time is large corpared to l/v- 

3.4   The Selfish Poreground-Backgraund (SFB) Systan 

The SFB system is very similar to the SRR system we just discus- 

sed, the only difference being that the scheduling algorithm being used 

in the service box is FB instead of RR. Customers enter the service box 
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STWEARD DEVIATICNS OF THE WAITING TlfE FOR THE SRR 
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after they have experienced sore waiting in the queue box. One» a cus- 

tomer enters the service box, he will occupy the service facility iitme- 

didtely all by himself because he is the one with the least amount of 

attained service in the service box. From there on, this "tagged" unit 

sees a pure FB systam with a Poisson arrival process at \' custoners 

per second until he loaves the system oorpletely served. 

The Laplace transform of the response time distribution for FB 

systems with general service time distributions has been solved by 

Schräge [ 27 ). Thus, by siiastituting A  with X' in his results, 

we get 

Y*(t,s) = H*(t,8) (3.45) 

where 

D*(t,8) - B*ts + A' (1 - A*(t,s)}] (3.46) 

A*(t,s) = G*[t,s + X* (1 - A*(t,s)}] (3.47) 

H*(t,s) = (1 - p') [s + A' (1 - A*(t,8)}I (3.48) 

and G*(t,s) is defined as 

£iin ^maVo^s) = y* tmdB(t) + tm(1 _ B(t)J    (3> 49) 
s-0      as" 

Substitute Eq. (3.45) into Eq. (3.27) and we get 

s*(t,s) -f^ r^is! - mr H*{t's) D*(t's)     (3-50) 

F'rcm Eq. (3.50), we can derive the first two moments of the 

waiting time distribution of the SFB system as 

A?     A'7       X,^<t    ^V 
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3(1-p;t)3 (i-p;t)4 (i-p;t)2 (i-p;t)
3 

x«? 
fc    2(p - p')    . .  (p - p') <t   . t-p^t , 

where 

and 

(3.52) 

t"  = /  tm<fi(t) + tm[l - B(t)] (3.53) c •'o 

p'<t=A'.t<t (3.54) 

Three excnples are given to show the nature of the waiting time 

we just derived. As the first exaqple, we again choose the M/M/l sys- 

tem. In Figure 3-9, waiting times for different ß/ot ratios are t Jt- 

ted against t with the assunption that X = 0.75, u = 1. When B/a 

« 0, the system becomes a pure FB system with no waiting in the queue 

box. As the ratio ß/a increases, the average wait in the queue box 

also increases until it hits the maxinum point when ß/a = 1, which 

happens to be a pure PCPS system. The curves representing different ß/a 

ratios do rot intersect the same point as in the SRR systan, but the 

points of intersections are relatively close to each other. Figure 3-10 

shows the standard deviations as plotted against t. In Figure 3-11, 

o(t)/Wt) is plotted against \it   with X = 0.75 and u = 1. When t 

is snail, the standard deviation tends to be somewhat larger than the 

mean waiting time, indicating a rather large zone for the mean value to 

vary. When t gets large, the ratio a(t)/W(t) varies with l//t. 
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the standard deviation levels off faster than does the mean value, thus 

making the mean waiting time a "better" result. 

As our secorei exanple, we choose the system WZ^/l.    Ihe ser- 

vice time distribution is defined as Eq. (3.35). Figure 3-12 shews the 

behavior of this system with M ■ 1 and A = 0.75. These figures are 

somawhat similar to those for the WWl systan, with analler average 

waiting time in the queue box. Figure 3-13 shews the standard devia- 

tions as plotted against t. For ß/a not equal to zero, the standard 

deviation assunes a rather large value at t = 0, then tapers off a bit 

before going up again. When t is a few times larger than the average 

service time 1/y, the mean waiting times are much higher than their 

corresponding standard deviations, indicating that relatively anall 

range where the waiting times can fall. 

Once nore, we choose the H/U^'l systan defined by Eq. (3.37) as 

our third exanple. With A = 0.75 and y = 1, mean waiting times and 

standard deviations are plotted against t as shown in Figures 3-14 

and 3-15, respectively. The average waiting times in the queue box (as 

indicated at t = 0 in Figure 3-14) are larger than their correspond- 

ing terms in an lVM/1 system because the second moment of the hyper- 

exponential service distribution is larger. Again, whati t is large 

conpared to 1/y, the standard deviations tend to be less than their 

corresponding mean waiting times in a similar manner as were mentioned 

earlier for the WWL  and IH/E^/1  systems. 

3.5   Sunmary 

In this chapter, we discussed the family of selfish scheduling 

algorithms. The results obtained in Section 3.2 can be applied to any 
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AVERAO: WAITING TUG FLNCIIONS FDR THE SFB SYSTEMS 
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FTGUFE 3-14 

65 



> 
UJ 
O 
o 
or. 
< o z 
< 

STANDARD DEVIATIONS OF THE WAITING TUG FOR THE SFB SYSTEMS 
WITH HYPEraiXPONENTIAL SERVICE DISTRIBUTICN.     X = 0.75,   u = 1.0 

FIGUPE 3-15 

66 



SSA system. Two parameters, a and 8« are introduced to the system so 

that one degree of freedcm (appearing as the ratio ß/ot) is provided to 

the system designer which he can use to adjust the system performance 

as a function of service time over a ountinuvm of service behaviors. 

TVio specific systems, the selfish round-robin and the selfish 

foreground-background, are descrihad in detail to demonstrate the nature 

of the results. For  the SRR systa , the average response time always 

varies linearly with the requested service time; the Laplace transform 

of the waiting time distribution is available only for the exponential 

service time distribution. When the SFB algorithm is used by the sys- 

tem scheduler, the Laplace transform of the response time distribution 

is obtained for IVG/1 systan in general. Exanples for exponential, 

Erlangian, and hyperexponential service distribution are given in Sec- 

tions 3.3 and 3.4. 

Once again we wish to emphasize the generality of the results 

obtained in this chapter. Given the result of any H'Vl system,time- 

shared systan analysis, the result for the corresponding selfish system 

can be readily obtained by referring to Eq.   (3.27) (Laplace transform 

of the waiting time) and Eq. (3.28) (the average waiting time). 
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CHAPTER 4 

A OONTINUUM OF PEEDBACK SCHEDULING ALQORnHMS 

4.1   The Mathematical ^xiel 

In Ch^»ter 3 we discussed the family of selfish scheduling al- 

gorithms. In particular, we discussed the SRR and the SFB  systems where 

the performance of those systems varies over a continuun of system be- 

haviors with the PCFS system at one end of the continuun (i.e. 3/a ■ 1). 

The RR systan lies at the other end of the continuum (i.e. 3/a = 0) for 

the SRR systems; and the FB  systan lies at this end (ß/a = 0) for the 

family of SFB systems. In this chapter we look into another family of 

scheduling algorithms whose performance also ranges over a continuun of 

systan behaviors. 

In Section 2.2.5 we discussed the RR system with externally 

assigned priorities. In such a system, we assune that there are P 

priority groups each with Poisscn arrival process, and an exponentially 

distributed service request for customers from each grotp. A positive 

+*Vi 
number q  is associated with the D  priority group, with larger 

P 
values of g  being given to those higher priority groups. All g 's 

are assuned to be of constant values, g  can be interpreted as the rela- 

tive fraction of the total service facility (the CPU time) that is allo- 

cated for the easterners fron the th priority group. 

The model we introduce in this chapter is an extension of this 

RDund Robin system with priorities. The g 's are no longer assigned 

externally, rather they are assigned to the customers according to their 

Preceding page blank 
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attained services t (which also  implies that we transform the dis- 

crete priority system into a continuous priority system). In particular, 

we let g(t) vary exponentially with t, namely. 

g(t) 

i 

g(t) = ge"gt 

g(t)«ge"flt 

(4.1) 

g AS FUNCTION OF ATTAINED SEWLCE TIME 

FIGUBE 4-1 

As shown by Figure 4-1 and Eq. (4.1), all custcroers in the systan share 

the service facility simultaneously, and customers with lesser amounts 

of attained service get served at a higher rate than those with greater 

attained services. The nc^-e service a customer has received, the slcwer 

he will get served. Let n(t) denote the dea«?ity of the nvmber of cus- 

tomers in die srrstm with t seconds of attained service (Section 

2.2.9). Since Ids rate of attaining service is directly proportional 

to g(t), the fraction f (t)  (a randan variable) of the total service 

facility allocated to a custoner with t seconds of attained service 

is calculated as 

f(t) = 
g(t) .-9t 

X 
(4.2) 

r0 g(t)n(t)dt 
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where c is a oonstant indei,-indent of t. 

The RR systan is a special case of this family of algorithms. 

With very snail value of g, the slope of the exponential curve drops 

very slowly with t, and so the discrimination against custoners with 

large attained services (as measured by the relat.ve rates at which 

they accumulate service time) decreases as g decreases. As g goes 

to zero, the exponential curve in Figure 4-1 becomes a horizontal (non- 

discriminatory) line, and every customer get treated equally at all 

times (independent of his attained service time). This, of course, be- 

comes the Itound RDbin systan. 

On the other hand, if we let the value of g be very large, the 

curvature of g(t) becomes very steep. This means that a customer with 

a slightly lesser anount of accunulated service time will be served at a 

nuch higher rate than another customer in the systan with slightly nore 

attained service. The higher the value of g, the more pronounced is 

this discrimination against long jobs. As g yes to infinity, the 

only time a customer can get into the service facility is when he is the 

customer with the least amount of attained sen/ice in the systan, thus 

the system becomes FB. 

The parameter g can assune any value between 0 and infinity. 

By varying g, a degree of freedom is provided to the systan designer 

which he may use to adjust the systan performance over a continuun of 

behaviors with the RR and the FB systems serving as the two boundaries. 

4.2   The Analysis 

We consider the case IV^I with scheduling alyrithm g(t) as 

defined above. 
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The average response tine   T(t)    for the system with the sched- 

uling algorithn defined by   g(t) = ge"^*, is the solution of the follow- 

ing integro-differential equation 

(1 - p)T{t) - t ♦ T2^- - pjTVw [e^ + e^-lj'^dt 
p      -o 

- p /" V (T) [e^ - e^+ll-^dr (4.3) 
0 

Proof; See Appendix B 

In Eq. (4.3), if g = 0, it gives us the result of the RR system. 

As g*0, the term [e^ + e** - l]"^9 beocmes 

Uj U9T + egt . irv/g . U.|a + g,,1^. yi/gj-" 

]{[1 * git * T))1^) g^ot 

= e" (t + T) (4.4) 

The limit of    (e91 - e91 + 1] "^   as   g   goes to zero can similarly be 

calculated as 

11 
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■ [e* - 1 
-M 

= e^(t " T) (4.5) 

Substituting Eqs.   (4.4)  and (4.5)  into Eq.   (4.3), we get 

(1 - p)T(t)  = t ♦ ^ - p/Vwe"^ + T)dT - P/V^.^^ " T)dT 
p        "T) •'O 

= t ♦ jiOL - pe-,jt/00T'(T)e-VJTdT - p.-^/Vw.^dt 

(4.6) 

p -o -o 

Since fron (36], we have 

/      IP* IT\*~1X~AT   -  _____ 
1 - p '0 

Eq.   (4.6)  becomes 

/*00T'(T)e-lJTdT=^y- (4-7) 

(1 - p)T(t) = t ♦ JAL -   P^iL 5Mt. pe"^ /,tT'(T)eUTdT (4.8) 

1   i" 
Multiply   e       on uoth sides of Eq.  (4.8) to yield 

(1 - p)e1,tT(t)  - te^ + MP-C**' I)  -pf  T'(T)eyTdT (4.9) 

New differentiate Eq. (4.9) with respect to t, to get 

(i - p^Va) + Md - P)T(t) e Vt 

= (1 + jit)«11* + j-§— eyt - pe^^t)  (4.10) 

Multiplying   e ^     on both sides of Eq.  (4.10) and sijnplifying, we get 

T'tt)  + M(l - P)T(t) =2-4-^+ Mt (4.11) 
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With the initial condition T(0) = 0, Eq. (4.11) is easily solved as 

T(t) = 3-4- (4.12) 

which, of course, is the average response time for the RR system. 

On the other hand, when g goes to infinity, for 

r gt  gr  ,l"y/g 
e' + e3 - II   , we nust consider two cases: 

Case 1) when T < t, then 1 « e^ « e9^ 

e~Mt (4.13) 

Case 2) vben T > t, then 1 « e^ « eg 

-le^ . jr . ^ . «.[^-^ 

= e"^ (^.14) 

Similarly, the limit of    I e9* - e^ + ij as   g goes to irifinity 
l-u/g 

.y, the limit of le^ - eyi +1 

becomes 

t[^ - e^ + l]"
P/9 - £[.*J 

T^t =e-vjt (4.15) 

Substituting Bqs.   (4.13),   (4.14) and (4.15)  into Eq.   (4.13), we get 

(1 - p)T(t) = t + T^i- -    f T,(T)e'ptdT 
1 - P        JQ 

- of T,(T)e"WTdT -of T,(T)e"lJtdr (4.16) 
Jt J0 
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or 
T'dJe^dT (4.17) 

Differentiating Eq.   (4.17) with respect to   t   yields 

T'CtHl - P + 2pe"yt)  - 2Xe"yt'i(t) = 1 + p T'(t)e"ut (4.18) 

Rearranging, we get 

T'ftHl - p + pe^) = 2Xe"ytT(t) + 1 (4.19) 

With the initial condition   T(0) = 0, the solution of Eq.  (4.19)   is 

£[.     -tit    fc -utl 
T(t)   = »V-*      -^2

J  ♦  1-^£ (4.20) 
(1 - p + pe UV 1 - p + pe PT: 

vrtiich, of course,  is the average response tirre for the FB system (with 

exponential service tüne distribution). 

Unfortunately, we cannot solve Eq.  (4.2)  analytically in general 

except for the special cases with   g = 0   and   g = <».    An approxinate 

solution of Eq.  (4.2) with large values of   v   is presented in the next 

section. 

4.3 An Approxinate Solution 
( or      at      r^9 

Wl.en   g   is large oonpared to   u, the term |e^+ e3 - ij 

car. be approximated by using 

(1 + e)k = 1 + ek f or e « 1 (4.21) 

We consider two cases: 

Case 1) T < t 

-V'/g    .„M     -^  err     1-^/9 le^.e^-ir^e-^ll^e^e^-l)! 
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S e~vtll - (\i/q)e'^t(egJ - 1)1 (4.22) 

Case 2)    T > t 

|egt + egT . ^ m e-Pt^ f e-gT(egt _ y] 

^ e"pTtl - {p/g)e"^(egt - 1)] (4.23) 

Similarly,  le^" - e^ + ij can be approocinated as 

- e~ut[l + (iJ/g)e"gt(egT - 1)] (4.24) 

Svbstituting Eqs.   (4.19)  to (4.21)  into Eq.   (4.2), we get 

(1 - p)T(t) - t ♦ Ia^r - p/"tT'(T)(e~ut -(u/g)e_(9flj)t(egT - DJdx 
i - P        •Q 

- P /"r(T)[e-l,T - (u/^e-^^^e^ - l))dT 

- p/ T'(T)dTle~VJt + fu/g)e'(9+u)t(egr - Dldx 

(4.25) 

Sinplifying Eq.   (4.25), we get 

T(t) (1 - p + 2pe"lJt) « t -»■ yß^- - cf T (T)e_UTdT 

+ p(e9t - 1)/ (u/g)e"(u4g)TT,(T)dT (4.26) 

Differentiating Eq. (4.26) with respect to t yields 
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T'tt) [1 - p + pe"yt ♦ X/qle9*- - l)e'(p+g)t]  - 2AT(t)e"At 

/oo 

T'(T)e'(u+g)TdT (4.27) 

Fran Eq.   (4.27), by setting    t = 0, and recognizing that   T(0)  = 0, WB 

get the initial condition 

XT,(T)e"(p+g)TdT (4.28) 
u 

Ilultiplying e-^ to both sides of Eq. (4.27) and then differentiating 

it with respect to t, and rearranging the result, we get 

T'tt) (1 - p + pe"pt + X/g(e9t • l)e'(M4g)t] 

+ T'(t) (-g + gp - gpe"pt - \e~Vt - e'(g+lJ) t(egt - 1)X(2 + u/g)] 

+ 2A(w + g)e~;jtT(t) + g = 0 (4.29) 

with the initial conditions 

T(0)  = 0 

/OO 

T'(T)e"(p4g)TdT (4.30) 

MiLie's mechod [37]  is used to solve Eq.  (4.30).    Since the 

initial condition   T* (0)    is given in terms of some unknown results, 

many iterations are needed in order for the results to converge.   W(t) 

is plotted against   t   on Figure 4-2 with    A = 0.75   and   p ■ 1« 
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CHAPTER 5 

THE AVERAGE NUTOER OF CUST[»CRS IN THE SYSTEM 

5.1 Introduction 

In Section 2.1.3 we discussed the matDryless property of Mar- 

kovian process. In particular, the average nuttoer of custoners in an 

M/H/l system was given by 

" = J^ = r^ 
where p  is the equilibrium probability of having n customers in 

the system and is given as 

pn=(l-p)pn   n = 0,1,2,3,... (5.2) 

Equation (5.1) holds true only when no more information about the sys- 

tern is available besides that the arrival and service processes are 

Markovian. Otherwise, the average nurber in the system will change 

according to the additional information For exanple, let us assume 

that the system is not idle when the average is taken; in other words, 

there is at least one customer in the system, and ask what is the 

average nurber of customers in the system under this condition. 

Equation (5.2) then becomes 

pn = (1 - p)pn'1 n = 1,2,3,... (5.3) 

and 

Pn = 0 (5.4) 
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The average nuitoer of custaners in the system becomes 

n = L nPn 
n=0   n 

= i£n(l-p)pn 
p^0 

1 

n = 

P     1 - P 

1 (5.5) 
1 - P 

which is just the overall average nunber p/(l - p) divided by p, the 

probability that the systan is busy. 

Both Bqs. (5.1) and (5.5) were obtained under the asutption 

that no specific infontaticn about any single custoner was available; 

all customers were assvited to be identically distributed as far as 

their interarrival and service times were concerned. In most of the 

time-sharing models, hcwevsr, the quantity that is solved for is the 

average response time in the system conditioned on a tagged custoner 

needing exactly t seconds of servioe time. In those systems, one of 

the customers in the system [the tagged customer] behaves differently 

from others. His sendee time request becomes deterministic and is no 

longer drawn from an exponential distribution as are all other service 

times. 

Given this additional information (that one custoner will not 

leave the system before he has obtained exactly t seconds of servioe), 

one would expect that the average roxnber of customers in the system will 

change as a function of this t.   In fact it does as is shewn by the 
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following theorem in a very sinple way. 

5.2   The Analytical Results 

Theorem 5.1 

The average number of custoners m(t) in an M/Wl    systan 

given that one (the tagged) customer has attained t seconds of service 

is given by 

m(t) = j-i-p + XTM  - W* (5-6) 

vdiere T(t) and W(t) are the average response and waiting time, 

respectively, for the tagged custoter. 

Proof: 

V* T(t) *A 
.\ 1 ^ TIME 
T0 T0*T(t) 

TOE REAL TIME AXIS 

FIGURE 5-1 

The proof of this theorem is very sijiple. Let us look at the 

real time axis as shown in Figure 5-1. Let the tagged custcmer arrive 

at an arbitrary time instant T0.  Since no e>-'  information about 

the system is available, there are on the average 1/(1 - p) customers in 

the system (including this just arrived tagged custcmer) at T«. At 

time [T. + T(t)], the tagged customer has spent T(t) seconds in the 

system and thus has been in the service facility for an average of t 

seconds. During the interval [TQ TQ + T(t)], on tht average, there 

are Vr(t) (Poisson arrival] new customers arriving to the systan. 
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There are u[T(t) - tj custoners leaving the systan because the death 

rate becones zero when the tagged custoner is served (no customer can 

leave the system when the tagged custoner is in the service facility). 

The average nunber of the custoners m(t) in the systan at T. + T(t) 

is then calculated as 

m(t) =Y4-^+ ^T(t) - y[T(t) - t] 

■ J-Tp + »<*> - UW(t) (5.7) 

Q.E.D. 

Equation (5.7) can be rearranged in one of the following two 

different forms. 

Mt) = Y— - (V - A)W(t) + At (5.8) 

or 

«(t)   = j-^ -  (U " ^)T(t)  + yt (5.9) 

Since the average number of custoners in a busy systan with no 

constraints is 1/(1 - p), the weighted average of m(t) for all possi- 

ble t nust be equal to 1/(1 - p). This can be easily shown by using 

the Conservation Law (Eq. (2.78)) 

y. a aa 

in(t)dB(t) = f  [T-^* Vr(t) - uwanpe'^dt 
0 ./o    p 

■ j-r-p + A/'T(t)Me"lJtdt - M/*0W(t)ue"Mtdt 

=  1  +X IZiL-p . JÄL. 
1 - p   1 - p  M  1 - p 

1 
(5.10) 
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For the RR systan, the average response time is linearly pro- 

portional to t and is given by 

TRR(t)=r^T {5'n) 

substitutinq Eg. (5.11) into Eq. (5.9), the average nunber of custoners 

in a RR systan given that a custoner in the system has obtained t 

seconds of service time beoomes 

1  - yt + ut 
1 - P 

■ rh (5-12) 

which is independent of t and always assumes the same value. As a 

consequence of Eq. (5.12), we get the following theorem: 

Theorem 5.2 

For any scheduling algorithm and its corresponding average 

response time function   T(t), if   T(t)    assumes the same value as the 

average response time function   T_(t)     (for the   RR   algorithm) at 

some   t = t., then at this point   t.    (that is, given the information 

that one of the customers in either systan has atta.jied exact   t. 

seconds of service time), the average nurber of customers in both 

systans equal to   1/(1 - p), i.e. if 

T(tiJ = w 

thai m(t.)  =      ! 

T    r^? 
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Proof; 

If we substitute 

TOD(t)=      '■ 
RR 1 - p 

into Eq.  (5.7), then nLjJt) beocres 

V^ ■ rh; (5-13) 

the average nutber of custorers in a constant in the RR system, indepen- 

dent of t. 

Now, if for some scheduling algorithm wnich gives an average 

response time T(t), it intersects with T—Ct) at t = t., then 

ti 
T(tJ  = Tm(t,)  = i RR    i        1-0 

and 

*v ■ w ■ Ä (5-14) 

Si±)Stituting Bq.  (i.14)  into Eq.  (5.7), we get 

1 X^ pt. 

(5.15) 
1 - P 

Q.E.D. 

5.3        Exanples 

Equation (5.7)  is good for all H^lVl systems, be it infinite- 

quantum or processor-sharing.    In this section we wan:, to plot the aver- 

age nutber of custcners for different scheduling algorithms to demon- 

stratE the nature of Eq.   (5.7). 
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5.3.1     First-Cone-First-Served (FCFS)  Systan 

The average waiting time is given by Eq.   (2.19) as 

W(t)  = y^H- (5.16) 

substituting Eq.   (5.16)  into Eq.  (5.8) gives 

m(t) - r^-p - (y - ^I^p + * 

''      - p ♦ Xt 
1 - P 

= 1 " P •*• p   » Xt (5.17) 
1  -     D 

m(t) is plotted against t in Figure 5-2 with X = 0.75 and 

p ■ 1. The average nuntoer of customers increases with t because once 

the tagged customer alters the service facility, he will occupy the 

facility all by himself and thus block all those who oome to the system 

later than he does. The nuirber of "blocked" customers increases with 

rate \,     and if t goes to infinity, so goes the average nurber of 

custcmers in the syctan. 

5.3.2 Round Robin (RR)  System 

As proved by Theorem 5.2, the average mmber   m(t)    is always 

equal to 1/(1 - p)    in the RR system.    It serves as a natural reference 

algorithn for all other algorithms. 

5.3.3 Selfish Round Robin (SRR)  System 

The average response time for the SRR system is given by Eq. 

(2.35) as 
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Substituting Eq. (5.18) into Eq. (5.9), m(t)  is c±>tained as 

m(t) is plotted ageinst t for the case of 8/a -0.2    in Figure 5-2 

with X = 0.75 and u - 1. The behavior of the SRR system is again 

bounded by those of the RR and the PCFS systans. The average nutber 

goes to infinity but at a slower rate than that for the FCFS systen 

because the "blocking" effect is not as severe in the SRR system. All 

SRR curves give in(t) = 1/(1 - p) for t = 1/M • 

5.3.4  Foreground Background (FB) System 

Substituting Eg. (2.50) into Eg. (5.9), m(t)  for FB system is 

expressed as 

m(t)    *  . (v . x)[(P/.)(l-e-^-,te-^,  1_^ + 
r^ (l-p + oe"^)2     1 -p + pe"^ 

(5.20) 

this is plotted against t in Figure 5-2 with X = 0.75 and u « 1. 

When t is snwll, the tagged custoner receives service at a rate larger 

than most of the other custoners in the system, thus causing a smaller 

death rate and the nutber of customers in the system increases. As his 

attained service time aocunulates, the tagged customer constantly loses 

priority and gets served at decreasing rate. The death rate of the 

system increases as t increases, and there are fewer and fewer 



customers remaining in the system.    When   t   gets very large,  the only 

time the tagged customer can get any service is when he is the only 

customer in the system, thus the average nutber goes down to    1   as    t 

goes to infinity. 

5.3.5     Multilevel Processor-Sharing Fbdels 

Let us use a two-level mx'^l for our exanple.    PCPS algorithm is 

used for both levels, and let   x   denote the break point.    Oxibining 

Eqs.   (2.57)  and (5.7),    m(t)    is given by 

frh-to-»** m (1' '^'JSf^i * Mt    t<x 

m(t) = _■ 

1 - P + pe^ 

L-.  (y - X) [ 0/(1 - p)  :j ♦ ,t t>x 

(5.21) 

1 - p - -px 
1 - P + pe 

In Figure 5-2, m(t) for x = 2 and x = 3 are plotted against t 

with X ■ 0.75 and u = 1. m(t) increases at tlie same rate as in a 

PCFS system when t is smaller than x because the tagged customer is 

the only one in the service facility and he blocks all the late comers 

as well as all those in the system who have thus far received more than 

x seconds of service. Having attained x seconds of service, thn 

tagged customer moves to the lower priority group, and he must wait 

there until the system serves all those customers previously blocked by 

him up to x seconds each as well as those who have received more than 

x seconds of servioe time and were preenDted by him when he entered the 

servroe in the lower level. This accounts for the large drop of custom- 

ers at t = x . Even after he regains control of the servioe facility 

at seme later time, the tagged customer is always subjected to preemption 
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whenever a new custaner arrives.    The tagged custoner still can block 

those custoners who need irore than   x   seconds of service after they 

have gained that nuch, but the rate of increase of custoners in the 

system is rather low if   x   is considerably larger than the average 

service request   1/U    • 

5.3.6      Tic^t Upper and Lower Bounds 

In Chapter 7,  tight upper and lower bounds as measured by the 

response time function are derived for the processor-sharing nodels for 

time-shared systere.    They are given by, respectively, 

Tu(t) -  ß^r ♦ 1—^ (5.22) 
u (1 - p + pe ^(1 - P)      1 - p + pe yT: 

T (t) = P/H(l-e~Mt-Pt.'^L (5.23) 
1 1 - p + pe"ut 

In Eq. (5.9), T(t) appears only once and has a minus sign in front of 

it. For a given t, if we substitute the tight upper bound Tu(t) < f 

T(t) into Eq. (5.9), we get the tight lewer bound of the nurber of CUE- 

tcners in the system. Similarly, the tight upper bound of m(t)  is 

obtained by substituting the tight lower bound T^t) of the response 

tüte functions into Eq. (5.9). The tight bounds of the average mmber 

of custoners in the system are plotted against t in Figure 5 2 with 

X ■ 0.75 and y = 1.0. As is shown by Figure 5-2, as t goes to infin- 

ity the lower bound goes to 1; and the vpper bound approaches the average 

nurber for the PCFS systan asynfXJtically. 

In Figure 5-3, m(t) is plotted against Wvt)/t which denotes 

how l.\rge a price (in terms of wasted time) a custoner must pay in order 

bo get a unit of service with A = 0.75 and p = 1.0 for different 
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algorithms. For RR, both in(t) and W(t)/t are constants, it says that 

every customer pays the same amount for a unit of servi,*» time inder in- 

dent of his attained service, and the average nurber of customers in the 

system does not change with t or any function of t . Ftor all other 

algorithms, m(t) is larger than 1/(1 - p) when W(t)/t is smaller than 

p/(l - p). The interpretation of this phencmenon is that with W(t)/t < 

p/(l - p), the tagged customer has been treated better than the average 

(as represented by the RR system) so that his occupancy in the service 

facility has been somewhat longer than that he would encounter in a RR 

system. As a consequence of this, the average death rate (rate of de- 

partures) of the customers in the systan is somewhat lower than the 

average arrival rate during his stay in the system (since for RR system, 

these tvro rates are the same), thus the werage nvmber of customers in 

the system goes up. On the other hand, m(t) decreases as W(t)/t 

goes above the constant p/(l - p) since the average departure rate 

frcm the systan would then be higher than the average arrival rate to 

the system. For the FB systusn (refer to Figure 3.9 where W(t) is 

plotted against t), the function W(t)/t increases with t until it 

hits its maximon value (at t = 5.25 for X  = 0.75 and JJ = 1). It 

then starts to decrease as t increases and approaches 1/(1 - p) as 

t goes to infinity;   at the same time the average nimber of customers 

in the systan goes dcwn to 1 asynpotically. This accounts for the 

hook-shaped curve for the FB system in Figure 5-3. 
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CHAPTER 6 

■narr BOUNDS CN TOE AVERACI: ICSPONSE TIME* 

6.1 Introduction 

In the previous chapters of this dissertation we discussed a 

few rodels of tire-shared oorputer systems.    By slightly changing the 

set of assunptions for those systems, more models oould be constructed 

and nore analytical results could be obtained.    As a result of this 

flood of results,  it is natural that we should seek sane order.    For 

exanple, do there exist any invariants in behaviv.r?   Can we bound the 

possible range of performance regardless of structure?   What constitute 

feasible solutions for these systems?   TOese, and many nore, are reason- 

able irejuiries to make amidst the confusion of results. 

In this chapter we try to answer sane of the questions.    Our 

focus is on a class of processor-sharing models of tire-shared corputer 

systems.    For those processor-shared systems, it is useful to display, 

in one figure, the wasted tire   W(t).    This we do in Figure 6-1 for the 

case of expontial service with    X = 0.75 and t = 1.0 (thus    p - 0.75). 

We purposely superinpose the performance curves for many scheduling dis- 

ciplines.    We are ronfrotted with quite a selection of possible perform- 

ance functions:    For these systems we are able to state a monotonicity 

property, a conservation law, and tight upper and lorfer bounds on the 

system performance as measured by average response tire. 

A-riiese results were obtained in collaboration with L. Kleinrock and 
R. R. Muntz (44]. 

Preceding page blank 
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It is worthwhile mentioning that nunerous papers have recently 

been published which address themselves to bounds, inequalities and 

approxiitate solutions to general queueing systems. Among these are 

Marshall [38,39], Klngman [40], Iglehart [41], Daley and Moran [42], 

and Gaver [43], to mention a fw. 

6.2   The Analytical Results 

In this section we present results concerning the respDnse 

functions (W(t)) which are feasible when the .scheduling discipline is 

based only on attained service time and elapsed waiting time of jobs. 

In Theoran 6.1 we state a monotonicity property for W(t). In Theoron 

6.2 we gi^e a conservation relationship which the response function must 

satisfy. In Theorem 6.3 and 6.4 tight la;er and upper bounds are derived. 

As a result of Theorem 6.4, a necessary condition for W'U) is obtained 

in Theorem 6.5. 

Iheoron 6.1  W(t) is a nondecreasing function of t or equivalently 

w.(t) 5^L>0 (6.1) 

Pioof: See Appendix C 

Theorem 6.2   There is a conservation law that W(t) has to satisfy, 

namely 

W(t) [1 - B(t)]dt = 2^. p^ (6.2) 

For T(t),  the conservation law becomes 

0 

Proof;    See Appendix C 

/ T(t) [1 - B(t]dt   = 2(1
t. p) (6-3) 



Vte refer to Eqs. (6.2) and (6.3) as Conservation Laws since they 

are based on the conservation of average unfinished vork in the syston. 

This places an integral constraint on W(t)  (and T(t)) as a second 

necessary condition, regardless of scheduling algorithm. The iitplica- 

tion of the conservation law may be seen by recognizing that [1 - B(t) ] 

is a non-increasing function of t. Thus, if one had a given W(t) as 

a result of scroe scheduling algorithms, and then changed the aly)rithm 

so as to reduce W(t) over seme interval (0,t0), then the conservation 

law would require that the new W(t) be considerably above the old 

value for sore range above t0. This follows since the weighting factor, 

1 - B(t), is smaller for large t. 

With the help of Theorems 6.1 and 6.2, we now proceed to prove 

the nein theme of this chapter. 

Theoran 6.?   The lower bound W£(t) of waiting time functions is 

given by the waiting time for the PCFS discipline with the service time 

distribution truncated at t, namely 

Note: that vyo) = 0 and that W^H = W^^g (the average waiting time 

for the PCFS system as given in Section 2.2.1); also W'^C) = W^«) = 0. 

Proof; See Appendix C 

Theoran 6.4   The upper bound Wjt) of waiting time functions is 

given as 

x?      t,p<t 
wu(t) = ^i-p<t)  (i-ß) + r^ 

(6.5) 
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One scheduling discipline which gives Wu(t) is a two-level syston with 

both levels served fCFS and switching point (see Chapter 6) at t. 

Note that W^O) = W^») = W^^g, that W^(0) = 0 and that W^H = j-J-p 

Proof; See ^»pendix C 

As a oonsequence of Theorem 6.2 and Theoran 6.4, we get the 

following necessary oondition for W'Ct). 

Theorem 6.5  For a response time function W(t) which is continuously 

differentiable, W^t) = ^^ can not be monotonically non-decreasing 

with t. 

Proof: See Appendix C 

6.3   Exanples 

Four exanples are given in this section to danonstrate the 

nature of the tight bounds we have obtained. As a performance measure, 

the equilibriim average waiting times, W(t), are plotted as a function 

of t. We begin with the M/Wl  systan (i.e., Poisson arrivals and ex- 

ponaitial service). live response functions of Figure 6-1 are given 

again in Figure 6-2 with the upper and lewer bounds superimposed. At 

t = 0, the upper boundl and PCFS start at the same point because, under 

the constraint of the conservation law, no other scheduling algorithm 

can give longer average waiting time at t = 0 than PCFS. The upper 

bound approaches the FB response asymptotically as t approaches infin- 

ity. Hierefore, a customer with a very long requested service time (as 

conpared to the mean) cannot be delayed much more than he is with FB. 

The lower bound starts at zero (as does the FB curve), increasing less 

rapidly with t than the upper bound. It approaches the PCFS curve 

asynptotically as t goes to infinity. Thus we note that the least 

97 



discriminating scheduling algorithn (FXTS)  touches the vpper bound at 

t ■ 0   and form the asynptote for the lower bound as   t   approaches in- 

finity; conversely, the most discriminating scheduling algorithn (FB) 

touches the lower bound at   t « 0   and forms the asymptote for the 

upper bound as   t   approaches infinity.   The above-mentioned behavior 

of the upper and lower bounds applies not only for the HWl system, 

but also holds true for any tVtyl systan in general, although the rate 

of oonvergenoe for the bounds to their respective limits varies for dif- 

ferent service distributions. 

For the second exanple we choose the systan WE/y/l •   In this 

systan we have 

^-(2u)2xe-2l0t x>0 (6.6) 

with mean service time equal to   1/u; the jecond moment of this distri- 
2 

bution is 3/2p . Because the second moment is analler than that of the 
2 

exponential distribution (whose value is 2/\. ), the bounds are tighter 

in this eranqple than the WWl case, just as one would expect.   Figure 

6.3 shows the behavior of this system with   y = 1   and   A > 0.7S.   It is 

obvious fron the figure that for   t > 5/u, the upper ana lower bounds 

have essentially reached their asymptotic form. 

In the third exanple we show the bounds for the H/H-Zl systan, 

where H, stands for hyperexponential service distribution with 

nn/v» "^i* "^ 
2jiS--0.5y1e   1   + O.Sjije   ' x>0 (6.7) 

We chose   p. > 5p , u, ' (V9)u t resulting in a mean service time of 
2 

l/p.   The second moment of this distribution is 82/25p .   Figure 6-4 
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shows the behavior of the H/HV1 systero with   u = 1   and   X ■ 0.75.    The 

\tpper and lower bounds approach to their respective limits et a slower 

rate than either HW1 or H/EVl because of the larger second ntxnent. 

For our last exarple we choose the systen» tVv/1 where   u   stands 

for mifomi service distribution.    For this particular exanple we have 

/0.25 2 < x < 6 
*(x) =   I 
Sr~       I (6.8) 

' 0 otherwise 

and    ,\ ■ 0.1875,  t = 4.0, p = 0.75.    Figure 6-5 shows the behavior of 

this system.    Notice that when    t ^ 6, the vpper bound coincides exactly 

with the re curve and that the lower bound coincides exactly with the 

FCFS curve.    The probability of having any custaner requesting more than 

six seconds of service in this exanple is, of course, equal to zero. 

Another perfontanoe measure, W(t)/t, is given in Figure 6-6 for 

theH^l case and is of interest b:> us, since (as mentioned in Chapter 

5)    it 9ives sore feeling for how large a price (in terms of wasted 

time)  a customer must pay in order to get a unit of service.    For the 

case of RR,  this measun? is a oonstant;  thus each customer has the same 

penalty rate, regardless of his service time.    In this sense, everyone 

is treateo equally in the RR system.    Ihe curve representing FCFS is 

monotonically decreasing with    t, and so the lonner jobs pay at a smaller 

penalty rate.    System users might then attempt to "pool" their requests 

to take advantage of this "quantity discount."    Another extreme exanple 

is provided by FB; W(t)/t   increases rapidly when    t    is small, then 

Irope slowly to a constant    (p/(l - p)).    A customer with a long request 

can do better by breaking   his job into analler independent jobs and 

submitting them separately to the system (if this is possible) because 
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then the average waiting time per mit of service tiro will be greatly 

xeduoed. 

Figure 6-7 shows the range of the bounds for the WW1 system 

with   p « 0.75, 0.5 and 0.25, respectively.    As can be seen,  the region 

included between the i^per and lexer bouids for a particular utilization 

factor     p   depends heavily on   p;  the larger thi value of   p, the great- 

er is the vertical separation between the two bouids,  thus allowing 

larger variation of the mean waiting times for different scheduling al- 

gorithms. 
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CHAPTER 7 

OCNCLUSICN ;iND SUQdSTED ARLAS FX)P FUIURE RESEARCH 

In Section 2.2, we nade u  survey of some of the results in 

model ling and analysis of scheduling algorithms that provided for us 

the starting point of this research. In Chapters 3 and 4, as an exten- 

sion of this line of work, we modelled and analyzed the family of sel- 

fish soieduling algorithms and a new family of algorithms whose perform- 

-ance ranges between that of the RR and the FB systems. The anphatis of 

these algorithns is to introduce parameters into the models so that 

various degrees of freedan can be obtained by adjusting these para- 

meters. It is now possible to go fron the algorithm (FCFS) which shows 

no discrimination with regard to job length to that discipline which 

shows maximun discrimination iFB)  on job length among customers in a 

systan. We are able to show models whose performance ranges in between 

these two extremes on a contim'im basis. In Chapters 5 and 6, we ans- 

wered some of the fundamental questions regarding the existence of order 

and structure in the analytic results for time-shared computer systans. 

In particular, conditional average nunber of customers in the systan for 

different scheduling algorithms is calculated and tight upper and lower 

bounds are obtained for the class of processor-sharing model queuing 

systans. 

Since we have limited ourselves to the modelling and analysis of 

only the processor-sharing systans in this dissertation, it is natural 
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then to ask as our first question what kind of extension needs to be 

done in regard to this arc«. In Chapter 6, we discussed sane of the 

fundanental properties of the processor-sharing models regardless of 

scheduling algorithm,- specifically wc have obtainod scne of the neces- 

sary conditions that a given response function has to follow. But tlat 

Is only part of the answer; the question as to what are the necessary 

and sofficienc conditions for a given response function to be feasible 

remains unsolved. 

The assunption of zero quantixn size is scmewhat unrealistic in 

the real wrrld. The motivation of this assmption is one of simplicity 

of analysis and in the presentation of results which serve as good ap- 

proximdtions to finite-qiantun models. Also, the assmption of infinite 

population may be undesirable if the arrival process somehow depends on 

the nurber of custoners in the system [45,46]. Clearly, more work needs 

to be done in these areas as well as the case for more general arrival 

and service processes so that results that are of more significance 

could be obtained. 

In the past, most of the effort has been spent on the models 

with single resource. It is true that the central processing unit is 

probably the most important element in a corputer system and the schedul- 

ing of its resources is vital to the performanoe of such a system. And 

if the size of the memory and the nuiber of I/O devices are adequate 

then the allocation of the CPU time should be relatively independent of 

other resources. But in a real conputer system, we know this seldom can 

be attained. Ihe speed of the I/O devices, the size of the main memory, 

the allocation schemes of the min memory, the size of pages and segments 

in a paged memory system, program behaviors, as well as the data chan- 
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nels which oonnect the I/O devices and  the marory all have sane effect 

on the perfomanoe of a oonputer system. Ft>r exanplc, the effect of a 

page faulting in a paged marory system nay be as iirportant or even more 

liiportant than the scheduling algorithm in some cases. If a system 

"thrashes" as described by Denning [47], the central processing unit 

would be idle most of the tine because custcmers page fault at a very 

high rave, and it would then make little difference as bo what schedul- 

ing alga ithm is being used in the CPU. Uhfortunately, very little vrork 

has been done in this area mainly because of the difficulty in analyzing 

such a queuing system with two or more inter-dependent qumiing struc- 

tures. However, much work must be done in this area in order to get a 

better urderstanding of the behavior of the time-sharing oonputer sys- 

tans. 

Another very inportant question that has not been answered is 

the one of optimization where this term itself is yet to be well-defined. 

So far we have talked about modelling and analyzing of schedulign algor- 

ithitB that usually all favor the short job over the long one, and in most 

of the cases the average response time is solved for as the perfontance 

neasure of the system. We may ask whether this is the only valid criter- 

ion for awarding priority in a time-sharing system. If we want to attract 

custcners with long jobs to a conputing facility, we must be able to 

award hi^i priority to them whenever thy indicate a willingness to pay 

the high price. Here we introduce the cost of delay as a performance 

measure and as a criterion for optimality for time-shared oonputer sys- 

tena. Even though the modelling and analysis of a system with different 

cost functions assigned to different users may become very difficult, a 

lot of work is needed in this area if some criteria of optimization of 
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models with costs taken from tJie viewpoint of the system and the users 

are to be foimulated. 
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A.l Theoran 3.2 and Its Proof 

'Hieoran 3.2       Por any custoner requiring    t seocnds of service, 

the time he spends in the queue box is independent of the time he spends 

in the service box (or independent of the time he wasted in the service 

box because   t   is not a randcm variable). 

Proof:    We prove this theorem by using an argument for busy period dis- 

tributions  (19].    The Laplace transform P*(s) of the distribution of 

the busy periods for the H^G/l system is given as  (see Bq.   (2.12)) 

P*(s) = B*   [s + X - AP*(s)] (A.l) 

with mean value   g,    and second moment   g-   as follows: 

7 
 5 
(i - pr 

(A. 3) 

where 

s-»0  T"^ ~  seoon^ "c^ent of service    (A. 4) 
ds     time distribution 

Since all the work has to be done in the service box and since 

the arrival process to the service box when it is not idle is Poisson, 

the service box itself can be regarded as an M/Q/l system with average 

arrival rate V,    The Laplace transform P*(s) of the busy period 

distributicn can alsc be expressed as 

P*(s) « B*(8 + X' - A* P*(s)) (A.5) 

with mean value gl    and second moment gl 
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gi - r^^ (A.6) 

92 = -L—r 
(1   -   P') 

(A. 7) 

PRIORITY 

BUSY PERIOD DISTRIBUTION OF Äi SSA SYSTEM 

FiGura: A-l 

Refer to Figure A-l; a customer arrives to an erpty system at 

time   TQ    and starts a busy period in the system as well as in the ser- 

vice box because he does not have to spend any time in the queue box. 

Fran TQ    to   T,, the service box is busy as more custcmera arrive to the 

system.    Stqppose that the last customer in the service box leaves at   T, ; 

that marks the end of this "small" busv period.    If the queue box is not 

enpty at this time, the customer with the hi^>est priority will be ad- 

mitted iitmediately into the service box, thus starting another small 
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busy period.    Tte priority of the servioe box will adjust to whatever 

priority this custoner has; usually this means a drop of priority as 

shown by Figure A-l.    If, when the last custoner in the servioe box de- 

parts and there is no ca toner waiting in the queue box,  the system goes 

idle and thio means the end of a busy period of the system.    In order to 

differentiate this with the small busy period we mentioned earlier, we 

call this a large busy period.    In short, a large busy period is the 

time interval when the system is busy; and a small busy period is the 

time interval the servioe box is busy (with no drop in priori cies). 

Obviously, a largr» busy period usually oontains one or more small busy 

periods.    For an WQ/l system with average arrival rate    X    and servioe 

rate    y    ,  the average length of a large busy period is   T~- ; simi- 

larly, the average length of a small busy period is   «^j     .    Therefore, 

1 - D* on the average,  there are («      ^ )  snail busy periods in a large busy 

period.    In Figure A-l, the interval    (T0,TJ  is a large busy period, 

while time intervals (TQ,?,) ,  (T, ,T2), and (T-,?,)    are small busy 

periods. 

In order to prove the theorem, let us refer to Figure A-l. 

Assune that custoner A starts a large as well as a small busy period; 

customer B enters the servioe box at T, and, therefore, starts a 

small busy period but not a large one. Thus, customer A does not have 

to wait in the queue box while cistomer B does. After they enter the 

servioe box (at different times), customers A and B will see the same 

environment (*V^1 system with average arrival rate X'). There is no 

way to differentiate these two customers statistically from the time 

they enter the servioe box because they both start a small busy period 

and all small busy periods are identically distributed, as expressed by 
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Eq.   (A.5) [19).    Thus, for cujtoners A and B, the tine they spend in the 

service booc must be independent of the time they spend in the queue box. 

Next, let us look at customers C and D under the assutption the 

distances    (Tc - T0)    and    (TD - T^)    are the sane,  that is, C and D 

enter their respective small busy periods at the same oorresponding 

time (i.e., the service box has been busy for the same amount of time 

since the start of current snail busy period).    Then, as far as the tine 

spent in the service box is ccncemed, there is no difference between 

C and D statistically because the snail busy periods are identically 

distributed, but their waiting times in the queue box are different (as 

represented by their respective priorities when they enter the service 

box) as depicted by Figure A-l.    Therefore, for customers C and D, the 

theorem holds true; but C and D can be custoners, so the independent 

assunpticn must be true for every customer. 

Q.E.D. 

A.2 Theoran 3.3 and Its Proof 

Theorem 3.3       The Laplace transform Q*(s)  of the density func- 

tion of the waiting time spent in the queue box by a customer requiring 

t   seconds of service time (actually, it is independent of   t   as we 

explained earlier)  is 

o*^ - Ü : P*    •  ^B*(s)  - A' -*• s 
0 (s) " (1 -p')        XB*(s)  - X •»• S 

with first moment equal to 

„   _ Aim     aQ*(s) X? A'? 
Wq " s-0 " —äi- = i(l - p)  " 2(1 -p') 
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Proof: 

r- 

1 
i 

~" 
— T 

ARRIVALS QUEUE 
BOX 

X' SERVICE 
BOX 

i   DEPARTURES 

i 
L_ 

CEOM'OSITICN OF TOE SSA SYSTEM 

FIGURE A-2 

As we said earlier, the scheduling algorithm in the service box 

will not affect the waiting time distribution as leng as no feedaack 

from the service box to the queue box is possible.    For convenience, 

let us asstme that an FCFS scheduling algorithm is being used, narely, 

after a customer alters the servioe box, he will be served on an FCFS 

basis to oonpletion.    This makes the whole system FCFS.   The Laplace 

transform, S*(t,s), of the equilibrium response time distribution for an 

FCFS system is well known [19], namely 

^t,rt.B.W    B4VtS+s (A.8) 

After the tagged custcmer enters the service box, he is in an- 

other FCFS system with the average arrival rate    X'    instead of    A, thus 

we can easily get   Y*(t,s)    as 

Y#(t's) ■ B*<s> A'BIU -'I' + (A.9) 

From the independent property proved in Theorem 3.2, Q*(s) can 

easily be obtained as the ratio of S*(t,s) and Y*(t,s) 
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0*(s) = SM^s) 

(1 - P) A'B*(s) 
TWTsT 

- A' + 3 
- A + (A. 10) 

O-^.D. 
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Theorem 4.1 and Its Proof 

Theorem 4.1   The average response time T(t) for the systan 

with the scheduling algorithm defined by g(t) ■ ge"^, is the solution 

of the following integro-differential equation 

(1 - p)T(t) - t 4 j^H- . pyVmje^ + e^ - if^dT 

-p/V^le^-e^ + lp^dt 

Proof: In Section 2.2.9 we discussed the attained service and ranarked 

that the density of customers having obtained t seconds of attained 

service is given by [30] 

n(t) = xram - BUM (B.l) 

Although n(t) is not available to us, nevertheless, we can use it as 

an intermediate step ^oi the calculation of T(t). 

g(t) 

QUANTUM ASSKSMNT AS FUNCTION OF ATTAINED SERVICE TDC 

FIGUFE B-l 

In Figure B-l we plot g(t) against t, vrtiere g{t) denotes 

the relative rate of attaining service for customers with different 

amounts of attained service times. What we are interested in is that 
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given an elapsed tiro interval   T, what are the relative anomts of 

services attained by custorers who have different accunulated aromts 

of service times to begin with.    In other words, we wish to consider 

the time interval during which a customer (let us call him custoror A) 

remains in the system and gains    t   seconds of service.    During this 

interval, we are interested in how much service tirc   x   a custoner 

(let us call him customer B) can get during this sare tire interval 

given that customer B has received   T    seoonds of service just prior to 

the beginning of this tire interval.    In order to calculate   x, let us 

first make the following observation: 

dy * 
—L~  = f(y) (B.2) 
dT(y) 

dy dz 

e-gy e-gz « (B.3J 

where x and y are arbitrary tire instants on the tire axis and T(y) 

is a random variable denoting the response time for getting y seoonds 

of service time. Equation (B.2) states that the rate of gaining servict 

for a customer with y seoonds of attained service is equal to f (y), 

the fraction of the totol service facility that is allocated to him. 

Equation (B.3) says that a customer with y seconds of service gains 

servia» at a rate proportional to e~gy;  and a custorer with z seconds 

of attained service at a rate proportional to e"92. The proportionally 

cOTstant is given as c which does not depend on either y or z. 

Equation (B.3), of course, just restates the definition of the algorithm 

as defined hy Eq. (4.1) and is a direct consequence of Eqs. (4.2) and 
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(B.2). Since the time interval during which customer A gains t sec- 

onds of service is the same as that during which customer B gains x 

seconds of service, wc get the following equation 

i ̂ •■fl äüi*./TO^a.dz 

Substituting Bq.   (B.3)  into Eq.  (B.4), we get 

if    e^dy = cj        e9Zdz (B.5) c 
'0 

e^ - l - eg(T+x) - e^ 

Rearranging Bq.   (B.6), we get 

(B.6) 

x = ilnle'^Ce^ - 1) + 1] (B.7) 
9 

Thus, in order for a tagged customer to get t seconds of ser- 

vice time, the service facility has to serve customers who cure already 

in the system with T seconds of attained service when the tagged cus- 

tomer arrives to the system each with up to x seconds of service. 

Since the density of customers in the system is assumed to be distributed 

as n(T), the total amount of work U(t) which needs to be done to them 

if   n(T) (1/u) II - e'^Jdx 
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n(T) (t<x]dT 



-u/g, 
■ / n(T)(Vli)|l - [e^ie* - 1) + 1)      9|dT (B.8) 

vrfiere   t ^   is the average aitomt of service time with the service dis- 

tribution truncated at   x. 

U(t)    takes care of all the custoners who are in the systan 

prior to the arrival of the tagged customer.    The next step for us is 

to calculate the ano-r.t of work   V(t)    that needs to be dene to those 

customers who arrive to the system later than the tagged customer but 

before he leaves the system with his    t   seconds of service.    Let us 

assure that one of those later comers (let us call him customer C) ar- 

rives to the system when the tagged customer (customer A)  has accunulated 

exactly   T   seconds of service.   We wish to find out how murh service 

w   that customer C is going to get during the same time interval that 

customer A gets served by    (t-r) seconds.   Eq.  (B.4)  can be readily 

nodi f led as 

and Eq.  (B.5) becomes 

/'Wegydy = /"t   eqzdz 

or 

e** - 1 » e«* - eV (B#10) 

Rearranging Eq.   (B.10), w   can be calculated as 

W = iln[e9t-egT + 1] (B.ll) 

128 



w   is the naxiimm amount of service customer C i^n get during the in- 

terval when the tagged customer aocunulates his attained service time 

frcm   T    to    t   seconds.    The actual service time customer C gets before 

he leaves the system is, en the average, smaller than   w.    It can easily 

be calculated for exponentially distributed service times as 

l<w = ^(1 " e'W) (B-12) 

During the differential time interval when the tagged customer gets from 

T to T + dr seoonds of attained service, there are, on the average, 

T,(T)dT (Little's Result) neu arrivals oorung to th^ system, there- 

fore, V(t) can be expressed in the following ec aticn: 

v(t) »y    XT'dHt^Idx 

■/ 

XTMT) ^ (1 - e'^Jdr 

•/V(T) |l -  'e9t - e91 * ll-u/9|dT (B.13) 

The average response time   T(t)     (i.e., the total average time the tag- 

ged customer spends in the system in order to get served for    t   seconds) 

is the sun of   t,U(t)    and   V(t).    Frcm Eq.   (B.7) and (B.13), T(t)  is 

given by 

T(t) = T ♦ A(t) + B(t) 

»t+/" ^ I1 -1^^ -« + H"^9!* 
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of   T'(T)|l - (e^ - e^ 4 l]"^ + 0JQ     
T'«T'|* - !•" " •"' * U  M^|dT {B.14) 

n(T)    is given by Bq.  (B.l), sifcstituting   n(T)    into Bq.   (B.14) and 

sinplifying, we get 

T(t, ' t + U /    n(T)dT - *£' T'(T)e-liT[e-gT(e9t - 1)  ♦ ij-^dr 

+ pT(t) - of    T'd) (e91 - e^ + ir^dr (B.15) 

For WWl systans (fron Bq.  (2.5)) the average nurber in the system is 

given by 

f   D^dr-j-f- (B.16) 

Equation (B.15) beoores 

T(t) (1 - p) - t 4 ^ _ Py*00 T^De^V1^ - 1 4 e^]-»/^ 

-p/    T'(T)[egt-e9T+l]-^ ddT (B.17) 
u 

Finally, we get 

T(t) (1 - p) = t + jfi^L - py" T'(T) [•«* ♦ e91 - IJ-^d, 

-p/    T'(T)[egt-e9T + 1]-^, dt (B.18) 

Q.E.D. 
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C.l Thooran 6.1 and Its Proof 

Theorgn 6.1       W(t)    is a nondecreasing function of   t   or 

equivalently 

WMt)   H 2^-   > 0 

Proof;    We are considering scheduling disciplines in which each job is 

characterized by (1)  its attained service time,    t     and (2)  its elapsed 

waiting time,    t .    Therefore,  the state of the system is the muber of 

jobs in the system and   t     and   t      for each job.    A particular sched- 

using discipline may effectively ignore one or both of these parameters, 

but this information is assuned to be available for each job.    Because 

scheduling decisions are nude only on the basis of these two parameters, 

the following statement is self-evident.    The history of a job requiring 

t, ^ t   seconds of service from the time of its arrival at the system 

until it has received   t   seconds of service is independent of the 

exact value of   t,.   A direct consequence of this fact is that   W(t)    is 

a nondecreasing function or equivalently 

W(t)   = ^^-> 0 (C.l) 

Q.E.D. 

C.2 Theorem 6.2 and Its Proof 

Theorem 6.2       There is a oonservation law that W(t) has to 

satisfy, namely 

For   T(t), the ccnservation law becomes 
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Proof:    Fran [30] we have that 

n(t) = X[l - B(tJ]IW'(t)  + 1] (C.2) 

where   n(t)    is the density of jobs in the system with    t   seconds of 

attained service tine.   We define the "work" in the systan at time   t 

as the additional time required to erpty the system if no new arrivtds 

are permittee: entry; this is also referred to as the "unfinished work" 

and as the"virtual waiting time."   The mean work   W   in the system can 

be expressed as 

W = / n(t)E [remaining service time for a job with attained 
•'0 service time of   t]dt 

■ ■yrn(t,/a0(T -«r^iwdt 
0        't 

Sttostituting from    (C.2) 

W= X/d^CtJ  + 1) /"(T - t)dB(T)dt 
•'O Jt 

By dianging the order of integration 

W= Ay    y(W(t)  + 1)(T - t)dt 

Integrating the inner integral by parts 

/Wit)   +  1) (T  -  t)dt =   (T  -   t) (W{t)   +   t) 

■ / tW(t) + t]dt 

dB(T; (C.3) 

>J   [W(t) + t]dt 

Substituting into Eq.   (C.3) 
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W = A /* f   tW(t) -t- t]dt dB (T) 

■/0 •'0 

Again changing the order of integration 

[w(t) + tj y cfi(T)dt 
10 

But integrating by parts, we have that 

t[l - B(t)]dt = t 7 
r 

Mnr<-.vor, the nean work in the system is known 

w " 271^17 (c-4) 

Thus we have the fbllcwing conservation laws for T(t) and W(t) : 

? 
id - pi =   /    T(t)[l - B(t)ldt (C.5) 

and 

^y= J[   W(t)tl - B(t)]dt (C.6) 

Q.E.D. 
irr^y   .0 

C.3 Theorem 6.3 and Its Proof 

Theoran 6.3       The lower bound   W.Ct)    of waiting time functions 

is given by the waiting time for the PCFS discipline with the service 

time distribution truncated at   t, namely 

V« ■ id - p<ti 

Note that Wj^O) ■ 0 and that W^H ■ W^^ (the average waiting time for 

the PCFS system as given in Section 2.2.1), also W'^O) = W'^M = 0. 
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Proof; We claim that to minunize W(x)  the scheduling discipline must 

1. never service jobs with attained service time greater 

than oi <s]ual to x while there are jobs in the system 

with attained service time less than x, and 

2. never preempt a job once it has been selected for service 

until it has at least x seconds of attained service 

time, 

Uider these conditions liie response function in the interval (0,x)  is 

just the response function for a nonprecsiptive system with service times 

truncated at x. For oonvcnianoe wc will assume a PCFS scheduling dis- 

cipline. Iri this case the response function (denoted Wp^pc-x^ ^as 

the form shewn in Figure C-l (see Section 2.2.9). Note that 

WJL_ (t) ■ 0 over (0,x). The scheduling of jobs with attained service 

time greater than x is of no concern in this argument as long as con- 

dition 1 is maintained. 

W(t) 

♦►t 

FESPONSE FoR PCFS UP TO    X    SECONDS OF SEW1CE 

FIGURE C-l 

136 



Let   W     be the mean work in the systan excluding work to be 

done on jobs beyond providing   x   seconds of attained service to each. 

In other vrords,  if a job requires    t > x   seconds of service and has 

received   y < x   seconds of service, its contribution to   W     is 

x - y.    By the sane method useö to derive Bq.   (C.5)  it can be shown that 

V>/ XIW(t)  + t][l - B(t)]dt 

Now since wpCps_x(
t) h*3 mininum slope (i.e., 0) only over the inter- 

val (0,x), and due to the monotcnicity given in Eq. (C.l), if any 

other rerponse curve W(t) is such that W(x) < w    (x) it must be 
r\Jra"*X 

such that W(t) < wFrFc-.x<
t)  for 0 < t < x. But under oonditicn 1 above, 

W has its miniimm value since work in this class is continuously de- 

creased at maximun rate whenever there is such vork in the system. 

Therefore, for any W(t), 

^/[W(t) + t)[l - B(t)dt 
«7i '0 

> x/tv 
^PCFS^C^ 4 t!(1 -D(t)Idt 

Thus we conclude that W(t) < W___ ^(t) in (0(x) is impossible and 

therefore W(x) > Wpx^g^ (x). 

The lower bound VMt) is given by the waiting time for the 

FCFS discipline with the service times truncated at t, namely 

V11' m - P,J (c-7> 

Q.E.D. 
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C.4 Thsorgn 6.4 and Its Proof 

Tteoran 6.4       The iwer bound Wu(t) of waiting time fuictions 

is given as 

W  (M   - >?        »      t'><t 
V« " 5(1 - P<t) 

+ T^Trt 

Qie scheduling discipline which gives   W (t)    is a two-level systan 

with both levels served FCFS and switching point (see Chapter 6)  at   t. 

Note that   Wu(0) = W^M = W^^, that W^(0) = 0   and that W^(») » p^— 

Proof:    In this case we begin with a discrete time systan. 

Assune that the service time distribution is of the form 

Pr(service time = kg] = p^ k = 1,2,3,... 

where   q   is the quantun size.    Therefore,  the only possible service 

time requirements are multiples of   q.   We shall also assune that arri- 

vals nay take place only during the instant before the end of a quantun 

and that the processor is assigned to a job for a quantun at a time. 

The probability that an arrival takes place at the end of a quantun is 

Aq   so that the mean arrival rate is    A.    It should be clear that any 

continuous service time distribution can be approximated arbitrarily 

closely by a discrete time distrtfcution by letting   q   approach   0. 

Also,  these restrictions en the service discipline and arrival mechanism 

are effectively eliminated when q ■*■ 0.    In this discrete time nodel our 

goal is to maximize   W(kq). 

We claim that the following scieduling rule is necessary and 

sufficient to maximize   W(kq) :    no allocation of a kth quantun is made 

to any job when there is some other job in the systan waiting for its 
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its jth quantun where j ^ k.   We note in passing that many scheduling 

disciplines will satisfy this rule. 

We relabel the time axis so that    t = 0   .»t an arbitrary jmint 

in sane idle period.    The times at which some job is allocated to a kth 

quanton we call "critical times."    Let c. be the time that the i 

critical time occurs.    We wish to raximize c.     (the average of   c.)     for 

some fixed   I, and we will show that to acocnplish this it is necessary 

and sufficient to satisfy the condition that at the   i     critical time 

no job is waiting for a    j     quantum where   j ^ k.    Oertainly this con- 

dition is necessary since if a proposed scheduling discipline did not 

have this property then   c.    can easily be increased when the condition 

is not satisfied as follows:    follow the proposed schedule until the 

point where the i     critical time would occur and then assign ■ quantun 

to a job waiting for its j        (^ k)    qiantun. 

Since we have already shown necessity,  to prove the sufficier.cy 

of the oendition for maximizing c., we need only show that any schedule 

satisfying the condition yields the same value for   c .    Let   A   be any 

scheduling algorithm which satisfies the rule that at the   I       critical 

time no job is waiting for a j     quantum where    j / k.    Let   a     be the 
Ml 

time at which the   £        job arrives which will require at least   kq 

seconds of service.    The state of the system at   a.   will, in general, 

depend on the algorithm   A.    In particular, the norber of critical times 

that have occurred prior to   a.    (let this be   s)    is a function of   A. 

Let   E.tc, - a. |  state of systaro at   a.]    be the expected value of 

c. - a.    under algorithm   A   oenditioned on the state of the system at 

a..    The state of the system is given by the nurtoer of jobs in the 

system, the attained service time of each job in the system and   s, the 
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mnber of critical times that have occurred.    Thus we have 

EA^C£ " a41 state of system at   a ] 

- Irenaining work in system not requiring a k^ 

quantunjstate of system at   a.] 
X» 

+ (A - s - 1)E [remaining service time for job 

with (k - l)q seconds of attained 

service) 

+ (k - l)q 

+ At<(k - l)qEA[ci " ^ I state of the system at   aj (c.8) 

But the sum of the first two terms on the righthand side of this equa- 

tion is equal to the expected amount c,f work in the system at   a     qi^n 
the state at   a£.    Thus 

EA^cJl ~ aj2,lstate of system at   aj 

■ EAIwDrk in system at   a^ state at   aj 

+  (k - l)q 

+ At<(k - l)qEAIC£ " a£ I state of system at   a£] 

Removing «M oondition on the state of the system at   a^   we have 

Ä1^ ~ a£J = ^iwork in the system at   aj 
A» 

EA^CI ~ a£J = EAtwork in the 

or 

EA[C£ " ^ 
i                _ EA[wDrk ^ system at a ) + (k - l)g 
ic« ~ a.) — . *-  

1 * ft+n.      n. <(k - l)q 
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But   E-Jwork in system at   a.]    is not a function of the particular 

scheduling algorithm and therefore   EAIc, - aj    does not depend on   A. 

Since EEc^] = E[c   - a£] + E(aJl]    and the right-hand side is independent 

of   A,   Etc^]    is independent of   A.    Note that the form of Eq.   (C.8) 

depended on   A   having the property that at   c.    there are no jcbs in 

the system waiting for a j     quantun where j ^ k.   We have now shown 

that this condition is necessary and sufficient to maximize   E[cJ («= c.). 

We rai show that the general scheduling rule to maximize   W(kq) 

is the same rule which maximizes   c.    applied for all   I.   We have 

n _        n 

W(kq)  = lim S     H (eg) 

The ä^ are independent of the scheduling discipline and the proposed 

scheduling rule is necessary and sufficient to individually maximize 

the c£. Iherefore, the same rule is necessary and sufficient to maxi- 

mize W(kq), which establishes our earlier claim. 

It should be clear that in a continuous time system we can ap- 

proach the maximun of W(x) by the following rule: no job with attain- 

ed sei vice time in the open interval (x - G,X)  (for e > 0) is serviced 

while there is a job waiting for service which has attained service time 

outside this interval. By permitting e to shrink to zero, we approach 

the maximun for W(x). 

One scheduling discipline which maximizes W(x) is the two-level 

system in which jobs are served PCFS in the first level up to x~ 

seconds of attained service. A job which does not finish is placed in 
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the second level queue. The second queue is serviced PCPS to oorrpletion. 

Ttie second queue has a later priority and is only serviced when the 

first queue is erpty (see the ML systems described in Section 3). This 

queueing system satisfies the condition for naxindzing W(x) and there- 

fore from Eq. (2.57) we have 

w it A? ^t wu(t) - 2(1 - p<t) (i - pi + r^r^ (cio) 

Q.E.D. 

C.5   Theorem 6.5 and Its Proof 

Theorem 6.5  Ft>r a response time function W(t) which is con- 

tinuously differentiable, W(t) = ^S. cannot be nonotonically non- 

decreasing with t. 

Proof: tet us prove this theorem by contradiction. Suppose that we 

can find a W'dJ which is monotonically non-decreasing with t, then 

W(t) either does not intersect WRR(t) which represents the waiting 

time function for the RR system; or it intersects WD_(t) at only one 

point as shown in Figure C-2. If W(t) does not intersect with W_D(t) 
RR 

then it either lies entirely above W(t) or entirely below W(t) , 

neither of these two situations is possible because they violate the 

conservation law as depicted by Eq. (c.5). 

Oi the other hand, if W(t) crosses W (t) at t., since W(t) 

is continuously differentiable and non-decreasing, W'ft) has to be 

larger than W,
RR(t) for all t > ti. But in Iheorem 6.4, we prove that 

Wu(oo) = "'RR^ = i~=T' thus m have w,(t) > wu(ro) for a11 t > t,. 
It means that W(t) increases at a faster rate than the ipper bound for 

■ pj^w ^     ui, o^.».c «vw 
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all waiting time fmctions. Sooner or later, W(t) will intersect 

W (t) and then assumes larger value than W (t). This, of course, 

violates the definition of the ipper bound. 

W(t) , W(t) 

w,R(l) 

WAITING TDE FTJNCTICN POSSIBILnY 

FIGUFE C-2 

Q.E.D. 
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