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PREFACE

The research described in this report, "Analysis of a Continuum
of Processor-Sharing Models for Time-shared Computer Systems,” by
Jiunn Hsu, is part of a continuing investigation of Computer Network
Research, sponsored by the Advanced Research Projects Agency (ARPA),
Department of Defense Contract DAHC-15-69-C-0285, under the direction
of L. Kleinrock, Principal Investigator, and D. Estrin, M. Melkanoff,
and R. Muntz, Co-Principal Investigators, in the Computer Science
Department of the School of Engineering and Applied Science, University
of California, Los Angeles. This project was also partially sponsored
by an IBM Fellowship.

This report was the basis of a Ph.D. dissertation (June 1971)

submitted by the author under the chairmanship of Leonard Kleinrock.
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ABSTRACT

Processor-sharing models of time-shared computer systems are defined
and some new results are presented. The major emphasis of this research is
on the modeling and analysis of new wmodels of time-shared computer systems
and on the finding of some fundamental properties which apply to the average
nurber of customers in the system and the average response time functions for
a large class of time-shared computer systems.

The family of selfish scheduling algorithms is defined and the Laplace
transform of the response time functions are cbtained. The selfish round
robin (SRR) and the selfish foreground backgrcund (SFB) systems are given
as tvo illustrative examples.

A family of scheduling algorithms whose performance ranges between that
of the RR system and the FB system is constructed. A weighting function g(t)
is given to define the scheduling algorithm such that a customer's rate of
attaining service -epends on how much service time t he has already got.

The average response time function for this family of systems is obtained.

A simple relationship between the time-dependent average number of
customers in the system and the average response time functions for a large
class of M/M/1 systems is formulated. The result shows that the behavior of
one customer can strongly influence the total number of customers in the
system.

Finally, some fundamental properties are established which apply to the
average response time functicns for all time-shared computer systems. Among

them, tight upper and lower bounds on the average response time are obtained.
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QIAPTER 1

INTRODUCTION

1.1 Time-Sharing Camputer Systems

The value of time-shared processing systems as a means of pro-
viding a processor to many users concurrently is well-established. The
rationale for most time-sharing systems is to provide fast service for
customers with short, highly interactive programs in order to facilitate
debugging, to encourage experimentation with improvisation of computing
methods, and to support general interactive camputations. In the typi-
cal operation of such a system, the users cammunicate with the computer
by means of teletype or similar 1/0 devices. As each user makes a re-
quest for computer processing, he in effect enters a queue whose mem-
bers are served in a way detemmined by the specific scheduling algorithm
being used. Here we define a scheduling algorithm as a set of decision
rules detemining which user will next be serviced and how long he will
be given use of processing facilities. Thus each program in turn is
transferred into memory. owerated upon and transferred out. It is obvi-
ous, unless this swapping of programs can be dore at no cost in time or
the memory is large cnough so that no swapping of programs is needed,
that this mode of operation is less efficient than the batch system
where each request is run to completion. The technique of time-sharing,
however, results in faster average rosponse time for the user with short
request. This fast response makes it appear, to such a user, that he is

the only one using the camputer.



The effectiveness of the time-sharing systems depends in large
part on the efficiency with which the resources are allocated to the
individual users. Thus, considerable attention has been focusad on the
time and space scheduling problems of time-sharing systems and many ana-
lytical results have been cbtained [1) since the appearance of the first
applied paper pubiished in 1964 [2). In most of the results, anly one
resource (the CPU) is to be shared, where it is acsumed that the size of
the main merory is infinite. There are two reasons for this assumption:
in the past, most of the tools used to analyze time-sharing systems have
been drawn from queueing theory, and it is very difficult to analyze a
system with two resources (thus two queueing structures) which are not
independen’: of each other. The second reason is that modeling of pro-
gram behavior and peripheral devices is very difficult. Of course, the
assumption of infinite memory somewhat weakens our models. However, the
CPU is one of ‘he most important resources in the computer system, as
lmgasthesizeoftheminmryisadequate (so that the system is
not memory bound) . The analysis of single resource systems gives us a
good feeling of how time-sharing systems behave. In this dissertation,
we concentrate on the single resource case. We analyze a class of such
systems and also give some general behavior constraints.

1.2 An Existing Time-Sharing Computer System
In this section we describe an existing time-sharing camputer

system. We choose the Model 67 of the IBM System/360 as our example.
The following description is quoted fram Gibson (3].

The basic architecture of the IBM System/360 makes it well
suited to processing in a multiprogramming and multiprocessing environ-
ment. The Model 67 extends this basic architecture to provide the



additional capabilities ot an advanced time-sharing system.

The Model 67 incorporates multiprogramming, multiprocessing, and
multiaccess capabilities. Multiaccess allows several users at remote
consoles to cammunicate directly with the system and to present a number
of applicaticns ranging from conversational campiling to desk calculator
functions. Multiprogramming is defined as the ability to have several
active programs reside in core similtaneously. As soon as one job is
finished, or is held up by an I/O request, or has depleted its time
allowance, the next task can begin immediately.

The dynamic relocation feature built into the hardware facili-
tates multiprograming; peripheral operations will now be just like any
other tasks in the memory. Even without the multiaccess capability,
1ultiprogramming provides much more efficient utilization of the com-
puter's resources than in a stacked job operation. For the first time,
a central processing unit is a resource that can be allocated. With
multiaccessing, where same of the jobs in core belong to remote termi-
nals, the multiprogramming capability is further enhanced as this en-
ables the rapid switching between jobs, or "time-slicing."

The Model 67 enables each processor of a multiprocessor system
to operate as a single processor with its own I/0 subsystem, or jointly
with other processors in a symmetric multiprocessing configuration.

1.3 The Mathematical Model

Figure 1.1 shows a general feedback queueing model where the CPU
is being shared. Incaming jobs are queued and scheduled for service in
same way. At its scheduled service time, each job is processed for a
time period callad a quantum. If during this quantum the job is com-~
pleted, that job departs and service begins on the next; otherwise, the



uncanmpleted job rejoins the system of queues to await further service.
In some systems, priorities are assigned to customers. These priorities
can be assigned extermally (4] they can be assigned to the custamers as
functions of their attained service time (the amount of service time so
far obtained by a customer) [5); or they can be assigned as functions of
their waiting time [6], etc. Such priority queueing systems are called
preemptive if the customer in the service facility is preempted whenever
there exists another customer in the system who has higher priority.

1

ARRIVALS SYSTEM OEPARTURES
OF CPU _—
QUEUES

GENERAL FEEDBACK QUEUEING MODEL

FIGURE 1-1

It is necessary to specify the arrival and the service processes
before any analysis can be carried out. Let A(t) denote the distribu-
tion function of the interarrival times with average time 1/) seconds.
If the interarrival times are exponentially distributed as

At

A(t) = Plinterarrival time < t] =1 - e t>0 (1.1)

then the arrival process is called Markovian (Poisson). Otherwise, it
is called general. Also let us use B(x) to denote the distribution
function of the service times with mean request equal to 1l/u seconds.
If the service times are exponentially distributed as
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B(x) = P[service time < x] =1 -e x>0 (1.2)

then the service process is referred to as Markovian (exponential) to
differentiate it fram the general case.

Usually, two letters and a number are used to specify the ar-
rival and service processes as well as the nuwber of servers in the sys-
tem. The first letter is used to specify the arrival process, the sec-
ond letter for the service process, and the nmber is used to designate
the nunber of servers in the system. The letter M is used for the
Markovian process, and the letter G is used to represent a general
process. All of the models to be analyzed in this dissertation are of
either /W1 or M/G/1 type, namely, there is one server (CPU) in the
system; the arrival process is Markovian (Poisson); and the service
process is either exponential or general.

The utilization factor p, representing the percentage of time
that the system is busy, is defined as the ratio of the average arrival

rate and the average service rate.

(1.3)

Re]
"
>

p has to be smaller than 1 so that the average work load offered to the
processor is less than its capacity to handle such a load.

Another interesting quantity in the system is the size of the
quantum which is defined as the time interval allocated to a custamer
when he enters the service facility. In a real system, the quantum size
has to be finite in order to get any work done, but the analysis tends
to be difficult and the results tend o be in complex form under this
assumption {1}. In 1967, the notion of allowing the quantum to shrink



to zero was first studied [4) and is referred to as "processor-sharing."
As the nane Inplies, this zero-quantum limit provides a share or portion
of the processing unit to many custamers simultaneously. Under the
assumption of processor-sharing, the difficulty in analyris disappears
in large part and the results tend to be in simpler form. Of course,
this assumption of infinitessimal quantum can never be reached in prac-
tice due to the consideration of overhead time; nevertheless, it usually

can serve as a good appraximation of the actual systems.



CHAPTER 2

QUEUEING THEORY TOOLS AND SUMMARY OF ANALYTIC RESULTS
FOR TIME-SHARED SYSTEMS

2.1 Queueing Theory Tools

Queues were first studied systematically by Erlang (7). Others
who have made key contributions to the mathematical theory of queues are
Pollaczeck (8,9]), Kolamwogorov [10], Kendall (11,12], Lindley [13], and
Takacs [14-17), to mention a few. Mathematical models of time-sharing
systems are stochastic in nature and their analysis thus draws heavily
on queueing theory results. In this section, we present same of the
queueing theory results that will be used later in this dissertation for
the analysis of our mathematical mocdels.

2.1.1 Little's Result [18]

Let n denote the expectad number of customers in a queueing
system and T the expected time that they spend in the system. Assume

that the average rate of arrival is A. Refer to Figure 2-1.

commapmmmenenalii ﬁ'T pe————

A GENERAL QUEUEING SYSTEM

FIGURE 2-1

We assume that the box is "conservative" in the sense that custamers are

neither created nor destroyed nor on the average accumulated within that



system, and so clearly, the average departure rate must be A. Under
the constraint that the stochastic process inwolved is erogodic (19],
Little [18) proved that the following reiationship is always true.

n =T (2.1)

2.1.2 Mamoryless Property of the Markovian Process [19])

As the nave indicates, the past history of a random variable
which is distributed exponentially in no affects its future. The fol-
lowing equation expresses this property for a randam variable T.

A

PIT<t+ty|T>t =1l-e""=PlTctl t20 (2.2)

The distribution of time until the next event (say, an arrival) occurs
given that t seconds have clapsed since the occurrence of the last
event is identically equal to the distribution of time until the next
event occurs measured from tiie time when the last event. occurred. Thus
the time a future event occurs is independent orf how long it has been
since the last event occurred. In other words, the Markovian process is
mamoryless.

2.1.3 Markovian Process (M/M/1) [19]

For an M/M/]1 system with infinite queueing roam, since both the
arrival and the service process are Markovian, the all-important memory-
less projarty holds, and the results of birth-death processes can be
applied directly. For such systems, the equilibrium probability of hav-

ing n customers in the system is given as
p, = (1- o) " n=0,1,2,... (2.3)

where p is tne utilization factor definx by Eq. (1.3), and p < 1.



The expected number of custamers in the system n can be calculated as

n=Y np, ='I‘-9'6' (2.5)

We may now apply Little's result in order to cbtain the average time

spent in the systeam as follows:

~nh_ 1/
T-A'l-p (2.6)

2.1.4 The Imbedded Markov Chain (M/G/1) [12]

For general service time distributions the nice property of
menorylessness no longer exists, and the results of birth-death pru-
cesses can no longer be applied directly to the system. However, when
the system is studied at discrete time points, the collection of state
probabilities may constitute a Markov chain. Kendall [12]) introduced
the concept of an imbedded Markov chain so that a non-Markovian process
can be studied by extracting a set cf points (called regeneration points)
at which the Markov property holds. For a M/G/1 system, the set of
departure instants from service is an extremely convenient. set of regen-
eration points. It is clear that if we specify the nuwber of customers
left behind by a departing custamer, we can calculate the same quantity
at same point in the future given only additional inputs to the system.
Fram the analysis of the imbedded Markov chain, we get the following two
important results:

A. Pollaczek-kKhinchin Formula {19)

The average nutber of queueing custamers (those custamers

waiting in the queue) left behind by a departing customer is given as

2
(1+C)
asp-&pzﬂl—;};’- (2.6)



where Ct is the coefficient of variation defined as the ratio of the
standard deviation 0 of the service time distribution to its mean
value.

%
G = 7 = "% (2.7)
If we aoply Little's result to Bg. (2.6), we get the average time spent
in the srstem as
2
= 1+q)
=9=1,p
T % T + i m (2.8)
Equation (2.8) is easily interpreted. The average total time spent in
the system is clearly the average time spent in the service plus the
average time spent in the queue.
B. Distribution of Waiting Time (19]

Q2 = B*(h - A2 P2 (2.9)

where Q(z) is the z transform of the distribution function of the num-
ber of custamers in the queue. Let Py, denote the stationary probabil-
ity that there are n custamers in the queue, then Q(2) is defined as

Qz) = Xp 2" (2.10)
0
B*(s) is the Laplace transform of the service time density function

B gefined by B*(s) = g" e B (x) .

From Eq. (2.9) the Laplace transform S*(s) of the distribution
of total time spent in the M/G/1 system can be obtained as

s*(s) = B*(s) = £ pils (2.11)
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Since the waiting time in the queue for a custamer is independent of his
own service time, we easily get the Laplace transform of the waiting

time as

wr(s) = —AL =0 (2.12)

Differentiating Bgs. (2.11) and (2.12), various moments of the waiting
time and the system time can be derived.

2.1.5 The Busy Period [19]

The queueing system can be viewed as passing through alternating
cycles of busy periods and idle periods as depicted by Figure 2-2.

u(t) %

NG N D e

TATO Te ToTe
b= Y, fol ==Y, —t=—1, : Yy

THE UNFINISHED WORK AND THE BUSY PERIOD

FIGURE 2-2

In this figure we plot
U(t) = the unfinished work in the system at time t
= the time required to empty the system of all customers
present at time t.

We assume that customers arrive at time epochs Each

TA' B'T goee o
arrival to the system will add same unfinished work to the system

11



(namely, his service time) as shown by Figure 2-2. U(t) is sometimes
referred to as the virtual waiting time at time t. Behavior of this
function is extremely important in understanding queueing systems when
one views them fram the point of view of the busy period. In Figure
2-2, Yl'Yz’ ... represents busy periods, and 11,12, ... represents
idle periads.

For M/G/1 systems in general, since the arrival time distribu-
tion is memoryless, the moments of the idle period are the same as the

maments of the interarrival time, namely,
F(r) = Plidle period time <r] =1-e* r>0 (2.11)
The analysis for the busy period distribution is much more com-
plicated. The result is given by the following recursive equation [19].

P*(s) = B*[s + A ~ )\P*(s)] (2.12)

where P*(s) is defined as the Laplace transformm of the distribution
f.nction of the busy period. Fram By. (2.12) the first two moments of
the length of the busy period can be abtained as

u
t—z 14)
gy =——3 (2.
. (1 - p)

where ? is the second mament of the service time distribution. Com-
paring Eqs. (2.13) and (2.6) we find that the average length of a busy
period for the system M/G/1 is equal to the awverage time a customer
spends in an M/M/1 system.

12



2.2 Review of Same Analytic Results for Time-Shared Systems

In this section we wish to present same of the antlytic results
that were obtained in the past. They served as a point of departure for
the research of this dissertation. The emphasis of this collection of
results is on thuse for the processor-sharing models, although some of
the relevant results for the finite-quantum systems are also presented.
Typically, the quantity that is solved for in a time-sharing system is
the distribution of the response time which is defined as the total time
a customer spends in the system conditioned on that he requests and gets
t seconds of service. Most of the time, however, we can only solve for

the average response time defined as

T(t) = E[resporse time for a custamer conditioned on that he

requests t seconds of service] (2.15)

Another quantity, W(t), defined as the average amount of wasted (wait-
ing) time spent in the system, is also often used as a performance mea-

sure for time-sharing systems, clearly

W(t) =T(t) - t (2.16)

Swap time is assumed to be negligible for the following results;

its effect on the response time can often be taken into consideration by
reducing the average service rate of the service facility [20].

2.2.1 First-Come-First-Served (FCFS) System

This system is also known as batch processing. New camers
always join the tail of the queue (there is only one queue in this sys-
tem) and once a customer enters the service, ne will be served until
completion. We can regard this as a special case of time-sharing sys-

tems with infinite quantum size. The average response time for this

13



case with general service time distribution is [19]

At
T(t) = m +t (2.17)
and
At
W(t) = T =p) (2.18)

where ? is the second moment of the service time distribution. A

very important characteristic of W(t) is that it is independent of t.
For the system of exponentially distributed service, Eq. (2.18) becomes

wie) = (2L (2.19)

2.2.2 Last-Oome-First-Served (LCFS) System

In this system a newly arrived custamer captures the use of the
server until he leaves campletely served or until he is preempted by a
newly arriving customer. At all times, the custamer who has been in the
system for the least amount of time will occupy the service. No more
than one customer can be in the service at any time. The average re-
sponse time for the LCFS system is given by [19)

T(t) = o (2.20)

2.2.3 Shortest Job First Served (SJF) System

In this system the server selects the custamer in the queue with
the shortest required service time and serves it until completion.
This algorithm requires the knowladge of the service time request in
advarce which is usually assumeci to be 1mavailable in other algorithms.
The average response time with general service distribution is given as

14



(a)

1 th
T(t) = -—-2.—:9'—5 (2.21)
(1 - E,,)
with 2 and T, defined by Bq. (2.5D).

2.2.4 Found Fobin (RR) System

A. Finite-Quantum

This discrete time model was first studied by Kleinrock [22].
The system works in the following way: arriving custamers are queued in
order of arrival. The server selects the custamer at the head of the
queue and services him for at mst Q seconds, where Q is the quantum
size. If after Q seconds of service the customer needs more, he is
returnad to the end of the same queue. The service time of a newly
arriving customer is chosen independently from a geometric distribution
such that for ¢ < 1,

s_ = (- ol n=1,23,... (2.22)

where S is the probability that a custamer's service request is

exactly nQ seconds. See Figure 2-3.

po

ARRIVAL DEPARTURES
> ™1 auewe —.@} ——

AQ

THE DISCRETE TIME FOUND ROBIN MOEL

FIGURE 2-3
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At the end of each time interval, a new customer arrives to the system
with prabability Q; thus, the average arrival rate is A. There are
wotypesofsyste\sdepa\dent\pontmorderiﬁﬂmid\amarrivaland
ﬂneejecdmofﬂnecmmrinservicecmtakeplaceatﬁ\eemiof
each quantum. The average response time for a customer needing nQ
seconds in the early-arrival system is given by [22]

2 n-1
A l=-oa)(l=-a )
T(nQ) = 1£—_ -pQ - IQ_P__ 1+ ] (2.23)
P P (1 - 0)2(1 - p)
where
a=0+ )Q (2.24)

o= 22 (2.25)

Similarly, the average response time for a customer requesting nQ
seconds of service in the late-arrival system is given by [22]

n-l) .

2
T(nQ) gl_'g—_p-llg—p-[l-o- (l-m%-a ] (2.26)

(1 -a) (1 =09

B. Processor-Sharing

As the quantum size shrinks, customers get served at a
faster rate but with less service each time. For the limit case of zero
quantum, a custamer is required to make an infinite nuber of cycles,
each infinitely quickly and each time receiving infinitessimal service,
until he finally accumilates enouch service time (to be equal to his
request) , at which time he leaves. The average time for such a proces-
sor-sharing RR system is given as

(8 = o (2.27)
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ot
1-p

W(t) = (2.28)

Kleinrock (4] abtained this for the case of exponential service distri-
bution. Sakata [23,24] proved that it is also true for general service
distribution. Ccffman, Muntz, and Trotter (25]) solved for the Laplace

transform of the waiting time distribution for the system M/MW/1.

wit) | RR

FCFS

-

-t

WATTING TIME FUNCTION FOR THE FCFS AND RR SYSTEMS

FIGURE 2-4

In Fiqure 2-4 we plot W(t) against t for the FCFS and the RR
systems. Both of them are straight lines. Let us assume that these two
lines intersect each other at the point t = t;. This point t, is of
great interest to us because for a custamer requesting less than t;
seconds of service, then he has to wait more than the average as repre-
sented by FCFS when he is in a RR system. t; can easily be calculated

as

17



rpfip - m"?p) (2.29)
e, = l‘-;z (2.30)
For exponential service distribution, 2 =2, ths,
H
¢ = % (2.31)

For M/W/1 systems, any customer who needs more than the average service
request (1/p seconds) will be better off as measured by his average re-
sponse time when he is in the FCFS system than in the RR system.

2.2.5 Round Robin with Priorities System

In this model we assume that an external priority assigmment is
made to the arriving customers. We assume that there are P priority
groups with Foisson arrivals, each at an average rate Ap per second
and an exponentially distributed service requirement with mean request
of 1l/up seoconds for the pth group. A processor-sharing model is as-
sumed. A positive number % which denotes the relative fraction of

the processing time that is reserved for the customers fram the pth

th

priority group is associated with the p~ priority group, with larger

values of gp being given to those higher priority groups. The average
response time Tp(t) for a customer fram the pth priority group is

given by (4]

9
t ﬁ i_ -
Tp(t) 1—:—0 [1 + 2 (a; 1) Di] P 1,2, eoe 'P (2.32)
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py = A /hg (2.33)
) Y

p= 2o, (2.34)
i=1

2.2.6 Selfish Round Robin (SRR! System

This system was introduced by Kleinrock [26) for the processor-
sharing model only. He solved for the mean response time for the case
of exponential service time distribution. 'The algorithm works in the
following way: For each custamer in the system, a time-varying value of
priority is assigned. This priority value begins at zoro upon his entry
to the system. It increases at a positive rate a as long as he is not
served; whenever he is in the service facility, his priority value in-
creases at a positive rate 8 where a > 8 > 0. All the customers in
the service facility share it equally among them as in a processor-
sharing RR system. Note that a queueing custamer gains priority at a
rate greater than those in the service. Eventually he will catch up
with those in service and then jeoin and remain with that group. Since
the customers in service are attempting to run away with the processor
and prevent waiting custamers from joining them (there attempt is futile,
though) , this system is called selfish round robin.

The average response time for the SRR system 1s [26)

I V41 (t = 1/u)
™0 = L+ oo A (2.35)

and also the average waiting time is given by



- p/u_ . (t=1/p(l - B/a)

The ratio B8/a provides one degree of freedam which can be ad-
justed over a continumm of system bchaviors ranging from the FCFS
(B/a = 1) to the RR system (B/a = 0). Another important property of
the SRR systems is that a job with average service requirement will re-
ceive the same response in all of these SRR systems. Please refer to
Chapter 3 for more details.

2.2.7 Foreground-Background (FB) System
A. Finite Quantum

FEEDBACKS

ARRIVALS cPE‘ DEPARTURES

= |* QUEUE

Lnl
DISCRETE TIME FOREGROUND-BACKGROUND MODEL

FIGURE 2-5
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We assume that there are N levels of queues in a 7B system as
depicted by Figure 2-5. Arriving custamers enter the level 1 queuz to
await allocation of their first quantum, Q1 seconds. If more process-
ing time is needed, they enter the end of the level 2 queue to await the
second allocation, this time of 02 seconds. This process continues
until either the custamer leaves the system campletely served or he

th th

enters the N queue. Mambers of the N queue are served as in a

i queue only if

RR system. The server services a customer from the I
all lower level queues (I - 1,I - 2,...,1) are empty. If a new custo-
mer enters level 1 during execution of a custamer fram a higher queue,
the current custamer is not preempted until the allocated quantum is ex-
pired. The average response time with Q1 =0y = ... = QN has been
derived by Coffman and Kleinrock [5] as

p/u
1-p0 - p(1 - e "N-1Q

T(t) =

, ol - MY

o, (K-1Q+t K>N (2.37)

(0/2) B (D) + vE, (19)]

T(t) = Yy 7
N-o1-e"™Y)pn-oa-e u(K 1)Ql
-p(K-1)Q
ol - e ] _
+ = T STC A (K-1Q+ ¢t 1<K<N (2.38)
where
(K-1)Q <t <KQ (2.39)
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e
Y, = —— (2.40)
K l-e wQ
o
E(t)) = j v2aF, (1) (2.41)
0
1-e™"  o0<T<K
FK(T) = l (2.42)
1l T°>K)

Schrage [27) has provided analysis of this model with general
service distribution and N = », In particular, he solved for the
Laplace transform of the response time distribution under the assumption
of arbitrary quantum size for each level. Schemer [28] also contributed
to the infinite-level FB model by obtiining the average response time as

K
T(H) =t+ 2T, (2.43)
i=1

where K is defined by the following inequality

b5t 3
=1 1§1 1

and T4 is given as
T, = 0y (T,_y +Q, )2 +Q, (1, _, +Q; Ne @+ ..
i 1'i-1 i-1 2" i-2 i-2 *e
- -ut4-1 — 'U(i'1)65 .
+ 00Ty + Qg g)le l+ ...+ Qe (2.45)

with

a -;11- [ - e M4 (2.46)
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o t.
g =in+ $i ety ? (2.47)
G = |
t
- -1Q 2 -ut. e,
9 =0-e N+ Tole oo (2.48)
i=
>
t, = Yo. (2.49)
i =] j

B. Processor-Sharing

Coffman and Kleinrock [S5] and Schrage [27] independently derived
the average response time for this case. With general service time dis-

tribution, T(t), is given by

W, +t
T(t) = -l-f-f—-p— (2.50)
<t
where

on tn nf°

A =f x"aB (x) + x / dB (%) B
0 t
Pep = NEgy (2.52)
2

oo =TT =5 (2.53)

Schrage [27] also obtained the Laplace transform of the response

time function for M/G/1 systems. Refer to Chapter 3 for nore details.
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2.2.8 Multilevel Processor-Sharing Systems

Multilevel (ML) queueing models were first analyzed by Kleinrock
and Mmtz [29).* They can be considered as a generalization and consol-
idation of the FCFS, the RR, and the FB systems. In particular, a set
of attained service times {a;} is defined such that

0-a0<a1<a2<...<aN<aNﬂ=°° (2.54)

The discipline for a job when it has attained service, 71, in the
interval

a; ) ST<ay i=1,2,3, «e., N+1 (2.55)

will be denoted as D;. Where D, is considered for any given level to
be either FCFS, FB, or RR. Moreover, between intervals the jobs are
treated as a set of FB disciplines. The behavior of the average oondi-
tional response time in any particular level is independent of the
discipline in all other levels. See Figure 2-6.

An expression for T(t), the mean response time for jobs with
service time t such that a; , <t <ay, i.e., jobs which reach the
it"h level queue and there leave the system, has been cbtained by
Kleinrock and Mtz as [29)

a. ih level discipline is FB

"

t <t
T(t) = + (2.56)
1- Per 201 - oq?f

¥wo other not yet published papers by these authors are "Processor-
Sharing Queueing Models of Mixed Scheduling Disciplines" and "The Pro-
cessor-Sharing Queueing Model for Time-Shared Systems with Bulk Arrivals"
(with E. Rodemich).

24



ATTAINED SERVICE, t

DN#I; ‘

-

FB D.
BETWEEN i
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INTERVALS OF ATTAINED SERVICE WITH DISCIPLINES, Di

FIGURE 2-6
b. ith level discipline is FCFS
W<ai + t
T(t) = =——— (2.57)
1- Pea
i-1
where
)‘t<a.
Ww_ = T(I'__Tl
Qy " Pea
i
c. 17 level discipline is RR
In this case, the results are limited in the it‘h interval
to service time distribution in which
B(x) =1 - p(x)e.Bx a <X <a (2.58)
i-1 - i i
= n
p(x) = Py + PyX + ..+ P X (2.59)
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th

The service time distribution F(x) for this i~ level is then
B(a + x) - B(a, ,)
i-1 i-1’ _ -Bx -
1-B0a,_;) 1-q(x)e 0<x<a; -a
F(x) = (2.60)
1 x> a; -a,
where
- a,
e “'lp(ai_l + x) 2
q(x) = T _;B(ai-l) = qo + qlx + o0 + % (2.61)
Except for the first level the average response time is given as
T(a; , + 1) = 1= 1 {w<a +a, .+ o)) (2.62)
I Paa; ; Q17 %1 T %2 y
where
a,(1) = 3
27 kol
My
-Y,T _ =~y )%, YT
bl - v Al +u-Da-e 1y -a@e Tle! -
. .
2)ay, [Yl +u-2( -e )]
(2.63)
-ua, _ -ua, _
" Al - e 11-ua-le 1-,
a, | - == (2.64
i-1 2., A =TEY,
[l - 3(1 -e 1-1)]
with
1 - B(a,_,)
as= _____i._l_. (2.65)
l-~- )‘t<a.

i-1
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P B
My = (2.66)
(1-e )

_ _ -2ux
Y =V/;2 -3+ @31 -e b (2.67)

*158 734

For the first lewel, T(t) 1is given as

t

1-9p
<a
1

T(t) = 0<t<a (2.68)

1

In Figure 2-7 we show the behavior of each of the three disci-
plines for the system N =1 with exponential service distribution. We
also assume that p =1, A =0.75, and a, = 2.

2.,2.9 Attained Service [30]

A. Finite-Quantum

The attained service for an incompletely serviced customer
is defined as the number of seoconds that he has so far spent in the ser-

vice facility. Assume that there are p priority groups in the system

and let
Np(t) = density of the nutber of customers in the system from
priority group p who have so far received exactly t
secords of service
'\‘p = average arrival rate of the pt:h priority group
Bp(t) = service distrikution of the customers from the pth

priority group
Tp(tn)= average response time for custamer fram pth group
oconditioned on that he has attéined t seoconds of

service
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FIGURE 2-7
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Kleinrock then proved that the following equation is true

B. Processor-Sharing

If we define

np(t) = average density of customers from the pt'h priority
group still in the system who have so far received t
seconds of service

then Eq. (2.55) can be modified for the process-sharing models as [3C)

ar_(t)

- - —R— =
np(t) Ap(l Bp(t)] 3 p=1,2,3, ..., P (2.70)

t

2.2.10 Round Robin with Finite Input Population

In “he real world, there is no such thing as an infinite popula-
tion on which most of the mathematical models of time-sharing systems
are based. Nevertheless, if the dependence of the arrival process upon
the nuwber of custamers in the system is negligible, the assumption of
infinite population usually serves as a good approximation to the real
system. In same of the systems, however, the arrival process does de-
pend on the nutber of customers in the system in a perceptible way. The
analysis of such models with finite input population then becomes a
necessity.

Typically, a time-varying model with finite number of inputs is
modelled as by Figure 2-8. Here we have M users which make demands on
the time-shared system. The dashed lines in Figure 2-8 surround a feed-
back queueing model similar to the one used for infinite population
models. When a user (a console) makes a request for service to the com-
puter, he enters the dashed box and gets served according to the
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FIGURE 2-8

scheduling algorithm in the system. When his request is completely
served, he leaves the dashed bx and starts to generate a new request to
the CPU. The time spent by the user in generating this new request
after the conmpletion of the previous request is referred to as the
"think time."” Thus, alternating periods of thinking and processing take
place.

Scherr (31) considered the case for which he assumes exponen-
tially distributed service time and think time, namely

P(think time < t] = 1 - et t>0 (2.71)
average think time = 1/a (2.72)
Plservice time < X] =1 -e™ x>0 (2.73)
Average service request = 1/u (2.74)

He solved for the average response time in the system without
conditioning that result on the service time required. His result is
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(2.75)

X
]
‘g
]
Q-

where Py is the probability that no customer is in the queue or in the
service facility and is given by
M o d F
m=0
In Figure 2-9 we plot the normalized waiting time uT against

the nurber of input population M. The point M* on Figure 2-9 is de-
fined by Kleinrock (32] as the saturation number because whenever the

nO 10 20 30 40 5060 70 80 90 100
NUMBER OF CONSOLES, M

FINITE POPULATION PERFORMANCE AND SATURATION
FIGURE 2-9

total nurber of consoles exceeds this nunber, every additional customer
will severely interfere with the existing customers as far as the aver-

age response time is oconcermed. M* can be easily calculated as

M,_Mu+1/a=u+a
R V4T o (2.77)
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Greenberg (33], Adiri and Avi-Itzhak (34]), and Krishnamoorthi

and Wood (35]) also considered systems with finite input population.

2.2.11 A Oonservation Law

Kleinrock [36]) showed that a conservation law holds for any

queueing system with priorities which satisfies the following restric-

tions:

b.

d.

there is a single server in the system

arrival process is Poisson, service process is arbitrary

with arrival and service processes independent of each
other
work can not be destroyed nor can it be created within

the system

preamption allowed only if service process is exponential

and then preemption must cause no losses.

The conservation law is that the weighted average of waiting

times is a constant regardless of the scheduling discipline, namely,

P oM,
W =
pz,;lppp T=o

where P is the number of priority groups and

A
]/UP

W
P

%

= average arrival rate for pt‘h priority group
th

= average service request for a customer from p
priority group
= average waiting time for customers from pth priority

group

= average amount of work left in the service facility

32

(2.78)



found by an arriving customer (independent of schedul-
ing algorithm)

2.3 Summary of Results in this Disscrtation

There are two major topics in this dissertation. The first
theme is on the modeling and analysis of new models of time-shared com-
puter systems; the emphasis is on models with same degrees of freedom
which the system designer can use to adjust the system performance over
a continuum of system behaviors. In order to provide those degrees of
freedam to the system designer, some parameters have to be injected into
the system. Different algorithms with this property are discussed in
Chapters 3 and 4. The second major topic is the finding of same funda-
mental properties which apply to the average number of custamers in the
system and the average response time functions for a large class time-
shared computer systems. Chapters 5 and 6 are dewvoted to the discussion
of these topics.

Chapter 3 is devoted to the study of the family of selfish
scheduling systems in general, with the selfish round robin (SRR} and
the selfish foreground-background (SFB) as two illustrative examples.

In the selfish system, customers are divided into two sets: those in
the queue box waiting to be served, and those in the service box sharing
the service facility in same fashion determined by the scheduling algo-
rithm being used. When a customer is waiting in the queue box, his
priority (a nuwber) increases at a positive rate a; when he is in the
service box, his priority increases at a positive rate R. We consider
the case a > B > 0. If the scheduling algorithm in the service box is
RR (namely, everyone in the service box shares the facility equally
among themselves), the system is called selfish round robin (SRR). If
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only those customers in the service box with the least amount of at-
tained service are sharing the server, then the system becomes selfish
foreground-background (SFB). The ratio B/a provides to the system
designer a degree of ‘reedan to control the system performance. For the
SRR system, the average response cime is solved for general service dis-
tribution, and the Laplace transformm of the waiting time distribution is
cbtained for the /Wi system. The Laplace transform of the waiting
time distribution for the SFB system is solved for M/G/1 in general.

In Chapter 4 we discuss a family of algorithms whose performance
ranges between that of the RR system and the FB system. Similar to a
processor-shared RR system, all customers in the system share the serv-
ice facility simultaneously; but unlike the RR system, the customers do
not share the facility equally among themselves, rather their share of
the processor varies according to their amount of attained service time.
A weighting function g(t) = ge 9% is given to define the scheduling
algorithm such that a custamer's rate of attaining service, given that
he has attained t seconds of it, is directly proportional to g(t).
The more service a custamer has accumulated, the slower he gets served
in the service facility. A customer always gets some service even
though he has spent a long time in the service facility. Thus this new
scheduling algorithm shows more discrimination against long jobs than
the RR system, but less discrimination than the FB system. The para-
meter g provides one degree of freedom to the system designer. With
g = 0 the system becomes RR; with g = » it becomes FB. The average
response time for this family of systems is obtained in Chapter 4.

In Chapter 5, conditioned on the presence of a "tagged” custamer,
we find a simple relationship between the time-dependent average number
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of custamers in the system and the average r.sponse time function for a
large class of systems with Poisson arrival and exponential service
processes. The result shows that the behavior of one customer can
strongly influence the total number of custamers in the system for all
algorithms except RR, in which case the average nutber of custamers in
the system is a oonstant.

From the results obtained in Chapters 3 and 4, as well as fram
some published papers [ 1], we see that by slightly modifying the
scheduler of a time-shared system, a different model can easily be con-
structed and corresponding analytical results can be obtained. This
process can go on and on with no end in sight. Clearly, one is tempted
to seek same order in these results. For example, do there exist any
invariants in behavior? Can we bound the possible range of performance
regardless of structures?, etc. In Chapter 6 we try to answer same of
these important questions. Fortunately, we are able to state a monoton-
icity property, a conservation law, and tight upper and lcwer bounds on
the system performance as measured by average response time. Examples
of the tight bounds ave given for the exponential, the hyperexponential,

the 2-stage Erlangian, and the uniform service time distributions.
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CHAPTER 3

THE FAMILY OF SELFISH SCHEDULING ALGORITHMS (SSA)

3.1 The Mathematical Model

The concept of selfish scheduling algorithms was first intro-
duced by Kleinrock [26]. He solved the average response time for the
selfish round robin (SRR) system. His work is extended and gereralized
in this chapter by obtaining the Laplace transform of the waiting time
distribution for M/G/1 systems.

The principle behind this model is that all customers in the
system are divided into two groups: those in a "queue box" waiting for
service; and those in a "service box" sharing the service facility in a
way as specified by the specific scheduling algorithm being used in the
system. A newoomer always enters the queue box where his priority (a
numerical value) increases from zero at a positive rate a; similarly,
when he is in the service box (he may be sharing the service facility or
he may be waiting for his turn depending upon the scheduler), his prior-
ity increases at a positive rate 8. All customers possess the same para-
meters a and B. We are interested in the region o > 8 > 0. Typi-
cally, a customer enters the queue box as soon as he arrives to the sys-
tem, and starts to build his priority with rate a while he waits in
the queue box. Since o > B > 0, sooner or later he will zatch up with
those customers in the service box and join them to share the service
facility. There is no feedback from the service box to the queue box,
although there may be feedback within the service box. Kleinrock ([26]

Preceding page blank
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defined a as the queueing slope and B as the serving slope. If an
RR scheduling algarithm is being used in the service, then everyone in

the service box shares the service facility on an equal basis and the

system is referred to as selfish round robin (SRR). If the server only

serves those in the service box with the least amount of attair.ed ser-

vice as in an FB system, then the whole system becomes selfish fore-
ground-background (SFB). Figure 3-1 shows a decomposition of the sel-

fish system.
e ——————— -
2sglVAL§ o QUEUE SERVICE : SPART
sl M
80X 80X |

DEQOMPOSITION OF THE SSA SYSTEM

FIGURE 3-1

Let us define the following quantities:

Et:

s(t)

w(t)

q(t)

y(t)

The event that customer needs t seconds of ser-
vice

a random variable representing the total time a
customer spends in the system conditioned on Et'
a randam variable representing the total time a
customer wastes while waiting in the system con-
ditioned on E,.

a random variable representing the time a cus-
tomer spends in the queue box conditioned on E,.
a random variable representing the time a cus-
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and

tamer spends in the service box conditioned on
Et'
v(t) = a random variable representing the time a cus-
tamer wastes (the waiting time) in the service
box conditioned on E..
B(t) = P[service time < t]
B*(s) = The Laplace transfomm of the service time dis-
tribution dB(x).
= [” e @B (x) (3.1)
1/p = average service request.

A

average arrival rate.

p = Mu = utilization factor of the system.

S*(t,s) = The Laplace transform of s(t,x), the equili-
brium density function of s(t).

{ e “Xs(t,x) dx (3.2)

The Laplace transform of w(t,x), the equili-

W*(t,s)

brium tensity function of w(t).
=[ e~ S (t,x) ax (3.3)
Q*(t,s) = The Laplace transform of q(t,x), the equili-
brium density function of q(t).
= [* e altxax (3.4)
Y*(t,s) = The Laplace transform of y(t,x), the equili-
brium density function of y(t).
r e Ry(t,x)dx (3.5)

The Laplace transform of v(t,x), the equili-

V*(t,s)

brium density function of v(t).
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= [[ e vt ax (3.6)
Clearly we have that
s(t) = q(t) + y(t) (3.7)
wit) = q(t) + v(t) = s(t)-t (3.8)
Let us also define
T(t) = E [response time|E,]
=E [s(t)]
- - Mn Bt (3.9)
W(t) = E [wasted time in systenlEt]

=E W(t)]

= _ lim W*(t,s)

= -0 e T(t)~-t (3.10)

wz(t) = second moment of the equilibrium waiting time

distribution given E,

_ 2im 390 (t,s) (3.11)
=9 s )

oz(t) = variance of the equilibrium waiting time dis-

tribution

Wy(t) - WA (t) (3.12)

wq(t) = E (waiting time in the queue boxIEt)

=E [q(t))

Lim 9Q*(t,s)
- g (3.13)

V(t) E [waiting time in the service boxIEt]
E [v(t)]

_ _ Lim 3v*(t,s)
&= 0 _;as (3.14)
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Since there is no feedback fram the service box to the queue
box, and all the service is done in the service box, the waiting time a

custamer spends in the queue box must be independent of his service re-

quest. Thus,
q(t) =g (3.15)
Q*(t,s) = Q*(s) (3.16)
Wq(t) =Wq (3.17)

3.2 The Analysis of the SSA Systems

By solving the SSA system, we mean to find the equilibrium
waiting time distribution of the system. Since we are unable to do that
directly, we first obtain the Laplace transform of this distcribution and
then obtain the various moments by differentiation.

Before going into details of the analysis of the SSA system, we
present the following well-known theorem for FCFS system; it will be

used later.

Theorem 3.1 [19]
The Laplace transform of the equilibrium density function of

the waiting time for the FCFS system is given as

W(t,s) = AB,(S;I_'Apl s (3.18)

which is independent of t. Here p = M\p

When an FCFS scheduling algorithm is used, there can be, at
most, one customer being served in the service box at any time (no pro-
cessor-sharing takes place in this case). The time a customer spends in
the queue box is independent of the time he spends in the service box

(t seoconds).
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Let us look at the service box of the SSA system as depicted by
Figure 3-1. In order to solve V*(t,s), let us follow a custamer, which
we shall refer to as the "tagged" customer, through the system given
that this custamer requires t seconds of service. The arrival rate of
custamers to the service box conditioned on the presence of a tagged cus-
tamer in that box is no longer A, but rather some new average arrival
rate 1A', although the arrival process is still Poisson [26]. fThus (in
conjunction with the fact that work can be done to a customer only when
he is in the service box) the service bax itself, conditioned on the
presence of a tagged custamer, then becomes a M/G/1 system with average
arrival rate A' and service distribution B(x). Therefore, V*(t,s)
can be obtained reudily from previous results for M/G/1 system with A’
replacing A. In the case of FCFS, from Eq. (3.18), we can write down

=81 -2/
v*(t'S) —WS) - A' + s (3.19)

In order to calculate A', we refer to Figure 3-2 following Kleinrock

(26].

PRIORITY |
S —

—= TIME

L Lz
CALCULATION OF THE CONDITIONAL ARRIVAL RATE TO THE SERVICE BOX
FIQURE 3-2
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In this figure, assume that two successive customers arrive at time tl

and t,; the average time between t and t, is clearly 1/A. Let us

2
also assume that these two customers enter the service box at time t:3
and time tyr respectively, it is obviocus that the average distance

and t

between t (which is equal to 1/A') is larger than that be-

3 4
tween t, and t, because the custoners in the service box increased
their priority at a rate B and the newcomers catch up with them at a
rate a as shown by Figure 3-2. In order to calculate A', we express

the vertical offset y in two different ways:
1
i (x.)B (3.20)

y = G- Do (3.21)
and so A' 1is solved as

=1 -8
A= (1 -2 (3.22)

for convenience, we now define

g _B
pl=g = p(1 a) (3.23)

Before we proceed to find W*(t,s) and Q*(s), we wish to es-
tablish the independent relation between q(t) and v(t) for the SSA
system. That is, we wish to prove that the time a customer spends in
the queue box is independent of the time he spends (or the time he wastes)
in the service box. If this is true, we can find V*(t,s) and Q*(s)
independently and then nultiply them together to get W*(t,s) (i.e.,
for two independent random variables, the Laplace transform of the den-
sity function of their sum is the product of the individual Laplace
transforms) . The task will be greatly simplified since V*(t,s) is
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available to us already; all we have to do then is to find Q*(s) fram

Q*(s) = et (3.24)

Theorem 3.2

For any customer requiring t seconds of service, the time he
spends in the queue bax is independent of the time he spends in the
service box (or independent of the time he wasted in the service box
because t is not a random variable).

Proof: See Appendix A

By virtue of Theorem 3.2, all we have to do now is to fimd
Q*(s), the Laplace transform of the probability density function of the
waiting time spent in the queue bax. Before we proceed, let us make the

S — R
!
RER%INALS ' QUEUE SERVICE : DEPARTURES
=1 Box [™] BOX [T
|
| on !
2 _____ —

DBECOMPOSITION OF THE SSA SYSTEM
FIGURE 3-3

Figure 3-3 is a modificatinn of Figure 3-1. Arrivals came into
the system as a Poisson stream with mean arrival rate A. If the service
bax is not idle, custamers leave the gi~ie box for the service boax at a
rate A'. If the service bax becames idle, then the customer with the
highest priority in the queue box (if it is not empty) enters immediate-
ly into the service bax. This flow of custamers keeps on going inde-
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pendent of the scheduling algorithm being used in the service box.
From the viewpoint of the queue bax, it does not make any difference
whether an FCFS, an RR, or any other scheduling algorithm for this mat-
ter is being used in the service box. As far as the flow of custamers
fram the queue box to the service bax is concemed, the rate is always
A' if the service box is not idle and infinite if it is and if the
queue box is not empty. For different scheduling algorithms, there
will be different W*(t,s)'s and V*(t,s)'s, but their ratio Q*(s)
remains the same, and it is this Q*(s) that we are trying to solve
(see Eq. 3.24).
Theorem 3.3

The Laplace transform Q*(s) of the density function of the
waiting time spent in the queue box by a customer requiring t seconds
of service time (actually, it is independent of t as we explained
earlier) is

(1 ~p) A'B*¥(s) - A' + s

Q*(s) = T=o" AB*(s) - A + s (3.25)
with first moment equal to
. 2 o2
w o= dim Q*(s) At A't (3.26)

q s+ s 2(1-p 2(L =00
Proof: See Appendix A

By cambining Theorem 3.2 and Theorem 3.3, we get the following

important result.

Theor=m 3.4

The Laplace transform of the equilibrium waiting time distribu-

45



tion function can be expressed as

Wt (t,8) = Q*(8) V*(t,s)

= {1 = p) ; A.Xg;((:; :;\'++ss . VE(L,S) -\
and the mean waiting time as
W(t) = W, + v(t)
- 2()1\? o) i(é.i-) + V(t) (3.28)
where
e= [ ") (3.29)

0

Proof: The proof is obvious from the fact that the Laplace transform
of the density function of the sum of two independent random variables
is just the product of the individual Laplace transforms.

3.3 The Selfish Round Robin (SRR) System

We choose the SRR system as our first exanple. Figure 3-1 is
replotted below to demonstrate the system behavior. Customers arrive
as a Poisson stream with average arrival rate ). Upon their arrival,
they enter the queue box where their priority will increase from zero
at a positive rate a. After a customer's priority catches up to that
of those in the service box, he will join them there and start to share
the service facility. All customers in the service box share the ser-
vice facility equally among themselves as in an RR system; at the same
time, their priority increases at a positive rate 8. The range of «

and B of interest to us is when a > 8 > 0.
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[ECOMPOSITION OF THE SAA SYSTEM
FIGURE 3-1

Unfortunately for the RR system, the Laplace transform of the
waiting time distribution has been solved only for the case of exponen-
tial service distribution. For general service distributions, only the
mean waiting times are available [23,24) as given by:

t
Wep(t) = IP_—D (3.30)

Since the service box looks like an RR system with an average
arrival rate A', the average waiting time in the service box for a
custamer requiring t seconds of service is the same as in Eq. (4.30)

with A' replacing A, thus

vie) = 2t (3.31)

From Eq. (3.26), we know that the waiting time in the queue box

2 )
W o= At A

q 2T -9 2T -0o" (3.32)

thus, for M/G/1, that we can write down [from Eq. (3.28)]

At? A't? p't

WO =T =y "2l =5 T ="
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A2 °'(t -

I -, TTA-0M

) |"~|
S a—

(3.33)

Three exanples are given to demonstrate the nature of the mean
waiting times for the SRR systems. As our first example, we choose the
M/W/1 system (i.e., the service times are expanentially distributed).

For this case, the mean waiting time W(t) becomes

- o/ _ p'/u p't
W(t)-l_p 1-6""1—-0'

< p/u (t - 1/p'
1 - p + 1 - p' (3'34)

this result was first cbtained in [26].

In Figure 3-4, we plot the average waiting time function W(t)
against the requested service time t for different ratios of 8 and
a with A=0.75 and p =1.0. From Figure 3-4, as well as fram Eq.
(3.34) , we dbserve that the dependence of W(t) upon t is linear for
the entire family of SRR systems; and all the waiting time functions
intersect at the same point (t = %) . Thus, the performance of a cus-
tomer who needs exactly 117 seoconds of service time is the same that he
would encounter for any SRR system. In Section 2.2.4, we had observed
that correspondance between the RR system and the FCFS system; now we
show it holds for the entire class of SRR systems. We also cbserve that
for a customer requesting more than % seconds of service, his waiting
time in the SRR system is longer than that he would experience in the
FCFS system; conversely, a customer who requests less than -11; seconds of

service gets better treatment in the SRR system than in the FCFS system.
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W(t)

12

A
SAR = =0, RR
o= 076
i MM/
i
[ = =1, FCFS§
-'u— o
1 I i 'S ] j
a 1 F 3 4 5 6

AVERAGE WAITING TIME FUNCTIONS FOR THE SRR SYSTEMS WITH
EXPONENTIAL SERVICE DISTRIBUTIN. A = 0.75, u= 1.0

FIGURE 3-4
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We shall show, through the next two examples, that this prcoerty holds
true for general service distributions as well, although the point of
intersections t, varies for different distributicns._f IL can be
easily proved by referring to Eq. (3.33) that t, = £ in general.
As our second example, we choose the system WEz/l. In this

system, we have

= 2% e?* x>0 (3.35)

aB(x)
&

with mean service time equal to 1/u; the second moment of this distri-
bution is 3/2u°. Figure 3-5 shows the behavior of this system with
=1 and X =0.75. Again, the response time curves cross each other
at the same point. It can be easily shown that the point of intersec-

tion ti is at

—
= bt

t; = J‘T = 0.75 (3.36)

Because the second moment ? is smaller for this distribution than the

exponential distribution, t; is to the left of 1l/u.

i
In the third exanple, we show the waiting times for the M/H2/1

system, where H, stands for hyperexponential service distribution with

2

B(x) = 0.5 e 1" + 0.5 ue ™2 x>0 (3.37)
Td&x

We choose u; = 5y, by = (5/9)u, resulting in a mean service time
of 1/u. The second mament of this distribution is 82/25u2. Figure
3-6 shows the waiting times of the M/H2/1 systemwith p=land A=
0.75. Again, the waiting times are linearly proportional to t and

crossing each other at the same point, only this time, the point of
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W(t)

AVERAGE WAITING TIME FUNCTIONS FOR THE SRR SYSTEMS WITH
2-STAGE ERLANGIAN SERVICE DISTRIBUTION. A = 0.75, p = 1.0

FIGURE 3-5
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AVERAGE WAITING TIME FUNCTIONS FOR THE SRR SYSTEMS WITH
HYPEREXPONENTIAL SERVICE DISTRIBUTIN. A = 0.75, u = 1.0

FIGURE 3-6
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intersection t, is to the right of 1/u because of the larger seccnd
maoment of service time distribution.

As we mentioned earlier, the Laplace transform of the waiting
time dis'xribution W#*(t,s) for the RR systems has been solved only for

the M/W/1 case; it is given as [25]

_ 2 =AMl -1t
(L-p)(l -pr’) e — (3.38)

2) e-ut(l - orz)/r

W*RR(t,s) = 5
(lL-pr)" =p(1l ~-r

where r is taken as the smaller of the two following expressions:

r=(A+u+s - [Os)? - aunl/3 /2 (3.39)
or
r=2u(A+u+s+ [()\+u+s)2 - 4u)&]1/2)-1 (4.40
From Eq. (3.25), for the /W1 system, Q*(s) is given as
_(l=-p) s+u-=2'
Q*(s) = 1=% EETER Y (3.41)

Since V*(t,s) is the same as W*RR(t,s) with A' replacing A,
we can readily write down W*(t,s) for the W/M/1 SRR system as
W*(t,s) = Q*(s) * V*(t,s)

_(1-p) st-) (1-p"(1=-p'rd ML-Tht

T 1 -p") stu-A e-ut(l - p'r'j)/r'

(a-prh2- o1 -'?
(3.42)
wiere r' is defined by Egs. (3.39) and (3.40) with )\ replaced by
At
By differentiating Eq. (3.42), the first two moments of the

waiting time distribution are obtained as, respectively,
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W) = - (S )g o
=R _ p'fu . p'-t
1-p 1=-=p"" 1-0p7 (3.43)
W = 3%+ (¢, s) Is = 0
3s
=—20'tlp - p") (0't)? +—20't
Ml -p9%0 -0 @-p"2 w1 -on3
+ 2(p - p') _ 2p' 4[l-e-(l - p')ut] (3.44)

W - o0 - 0% wfa -

In Figure 3-7, we plot the standard deviations of the waiting
time versus t for different values of B/a. By camparing Figures 3-4
and 3-7, we see that when t is small, the standard deviation tends to
be somewhat larger than the mean value; and when t gets large, the
mean value tends to be higher than the corresponding standard deviation.
In Figure 3-8, we plot the ratio of the standard deviation g(t) to
the average of the waiting time against ut with A =0.75and u = 1.0.
As shown by the figure, o(t) is monotonically nonincreasing with t
for the entire family of the SRR systems. It can easily be shown that,
when t is large, o(t)M(t) is proportional to 1/V£. Thus, the mean
waiting times give a better indication of the system behavior when the

requested service time is large compared to 1/u.

3.4 The Selfish Foreground-Background (SFB) System

The SFB system is very similar to the SRR system we just discus-
sed, the only difference being that the scheduling algorithm being used
in the service box is FB instead of RR. Customers enter the service box



STANDARD DEVIATION

. STANDARD DEVIATIONS OF THE WAITING TIME FOR THE SRR
SYSTEMS WITH EXPONENTIAL SERVICE DISTRIBUTION. X = 0.75, u = 1.0

FIGURE 3-7
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o(t)/W(t) PIOTTED AGAINST ut FOR THE SRR
M/M/1 SYSTEMWITH X = 0.75, u = 1.0

FIGURE 3-8
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after they have experienced some waiting in the queue box. Once a cus-
tomer enters the service bax, he will occupy the service facility imme-
diately all by himself because he is the one with the least amount of
attained service in the service box. From there on, this "tagged" unit
sees a pure FB system with a Poisson arrival process at 1A' customers
per second until he leaves the system completely served.

The Laplace transform of the response time distribution for FB
systems with general service time distributions has been solved by
Schrage [ 27 ). Thus, by substituting A with X' in his results,

we get
Y*(t,s) = H*(t,s) (3.45)
where
D*(t,s) = B*[s + A' {1 - A*(t,s)}) (3.46)
A*(t,s) = G*[t,s + A' {1 - A*(t,s)}) (3.47)
H*(t,s) = (1 = p') [s + 1A' {1 - A*(t,s)}] (3.48)

and G*(t,s) is defined as

t
2im (-1)m&%ﬂ = f tTaB(t) + t"[1 - B(t)) (3.49)
s+0 3s 0

Substitute Eq. (3.45) into Eq. (3.27) and we get

ey = L= p A'B*(s) - X' +s

From Eq. (3.50), we can derive the first two noments of the
waiting time distribution of the SFB system as

1ol '
At2 U AT e " tlo’ )

W(t) = - — +
m - p) 5(1 o] ) 2(1 - p'<t)2

57



3 . 2 29 w2 2
2 M (A t <t)z t“(p <t:) Aot <t
W(t%) = 3 + 1 + > + 3
3(1 - p;t) (1 - p;t) (1- p;t) (1- p<'t)
el
+ 2(p - p') + 2o =0 [ <t tep'<t
' 2 ul - p)(1 - p 2 1-p" °
w1l =-p")(1 = p) 2(1-p',_t) <t
(3.52)
where
= t
£, = f f'a(t) + t£"[1 - B(t)] (3.53)
0
and
p' . =A' o t (3.54)

<t <t

Three examples are given to show the nature of the waiting time
we just derived. As the first example, we again choose the M/M/1 sys-
tem. In Figure 3-9, waiting times for different B/a ratics are } Jt-
ted against t with the assumption that A = 0.75, uy = 1. When B/a
= 0, the system becomes a pure FB system with no waiting in the queue
box. As the ratio B/a increases, the average wait in the queue box
also increases until it hits the maximum point when B8/a = 1, which
happens to be a pure FCFS system. The curves representing different B8/a
ratios do not intersect the same point as in the SRR system, but the
points of intersections are relatively close to each other. Figure 3-10
shows the standard deviations as plotted against t. In Figure 3-11,
o(t)M(t) is plotted against ut with A =0.75and u=1. When t
is small, the standard deviation tends to be samewhat larger than the
mean waiting time, indicating a rather large zone for the mean value to
vary. When t gets large, the ratio o(t)/MW(t) varies with 1//k,
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the standard deviation levels off faster than does the mean value, thus
making the mean waiting time a "better" result.

As our second example, we choose the system WEZ/l The ser-
vice time distribution is defined as Eq. (3.35). Figure 3-12 shows the
behavior of this systemwith p =1and A = 0.75. These figures are
somewhat similar to those for the M/M/1 system, with smaller average
waiting time in the queue box. Figure 3-13 shows the standard devia-
tions as plotted against t. For B/a not equal to zero, the standard
deviation assumes a rather large value at t = 0, then tapers off a bit
before going up again. When t is a few times larger than the average
service time 1/y, the mean waiting times are much higher than their
corresponding standard deviations, indicating that relatively small
range where the waiting times can fall.

Once more, we choose the M,/Hz/’l system defined by Eq. (3.37) as
our third example. With A = 0.75 and b =1, mean waiting times and
standard deviations are plctted against t as shown in Figures 3-14
and 3-15, respectively. The average waiting times in the queue box (as
indicated at t = 0 in Figure 3-14) are larger than their correspond-
ing terms in an M/M/1 system because the second moment of the hyper-
exponential service distribution is larger. Again, when t is large
campared to 1/y, the standard deviations tend to be less than their
corresponding mean waiting times in a similar manner as were mentioned

earlier for the W/M/1 and M/E2/1 systems.

3.5 Summary
In this chapter, we discussed the family of selfish scheduling

algorithms. The results obtained in Section 3.2 can be applied to any
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SSA system. Two parameters. a and B, are introduced to the system so
that one degree of freedam (appearing as the ratio B8/a) is provided to
the system designer which he can use to adjust the system performance
as a function of service time over a continuum of service behaviors.

Two specific systems, the selfish round-robin and the selfish
foreground-background, are describad in detail to demonstrate the nature
of the results. For the SRR systcr:, the average response time always
varies linearly with the requested service time; the Laplace transform
of the waiting time distribution is available only for the exponential
service time distribution. When the SFB algorithm is used by the sys-
tem scheduler, the Laplace transform of the response time distribution
is obtained for M/G/1 system in general. Examples for exponential,
Erlangian, and hyperexponential service distribution are given in Sec-
tions 3.3 and 3.4.

Once again we wish to emphasize the generality of the results
obtained in this chapter. Given the result of any M/G/1 system, time-
shared system analysis, the result for the corresponding selfish system
can be readily obtained by referring to Eq. (3.27) (Laplace transform

of the waiting time) and Eq. (3.28) (the average waiting time) .
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CHAPTER 4
A CONTINUUM OF FEEDBACK SCHEDULING ALGORITHMS

4.1 The Mathematical Model

In Chapter 3 we discussed the family of selfish scheduling al-
gorithms. In particular, we discussed the SRR and the SFB systems where
the performance of those systems varies over a continuum of system be-
haviors with the FCFS system at one end of the continuum (i.e. B/a = 1).
The RR system lies at the other end of the continuum (i.e. B/a = 0) for
the SRR systems; and the FB system lies at this end (8/a = 0) for the
family of SFB systems. In this chapter we look into another family of
scheduling algorithms whose performance also ranges over a continuum of
system behaviors.

In Section 2.2.5 we discussed the RR system with externally
assigned priorities. In such a system, we assuve that there are P
priority groups each with Poisson arrival process, and an exponentially
distributed service request for customers from each group. A positive

th

number % is associated with the o priority group, with larger

values of gp being given to those higher priority groups. All gp's
are assumed to be of constant values. g_ can be interpreted as the rela-

p
tive fraction of the total service facility (the CPU time) that is allo-
cated for the customers from the pth priority group.
The model we introduce in this chapter is an extension of this
Round Fobin system with priorities. The gp's are no longer assigned

externally, rather they are assigned to the customers acoording to their

Preceding page blank
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attained services t (which also implies that we transform the dis-
crete priority system into a continwus priority system). In particular,

we let g(t) vary exponentially with t, namely,

g(t) = ge 9t (4.1)

glt)

g(t)=ge™9t

— t

g AS FUNCTION OF ATTAINED SERVICE TIME

FIGURE 4-1

As shown by Figure 4-1 and Eq. (4.1), all customers in the system share
the service facility simultaneously, and customers with lesser amounts
of attained service get served at a higher rate than those with greater
attained services. The mve service a customer has received, the slower
he will get served. Let n(t) denote the density of the number of cus-
tomers in che system with t seconds of attained service (Section
2.2.9). Since his rate of attaining service is directly proportional

to g(t), the fraction f(t) (a randam variable) of the total service
facility allocated to a custamer with t seconds of attained service

is calaulated as

~ -gt
Ft) = at) __e (4.2)

o c
-/0' g(t)n(t)dt
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where c is a constant independent of t.

The RR system is a special case of this family of algorithms.
With very small value of g, the slope of the exponential curve drops
very slowly with t, and so the discrimination against customers with
large attained services (as measured by the relat.ve rates at which
they accumulate service time) decreases as g decreases. As g goes
to zero, the exponential curve in Figure 4-1 becomes a horizontal (non-
discriminatory) line, and every customer get treated equally at all
times (independent of his attained service time). This, of course, be-
canes the Found Robin system.

On the other hand, if we let the value of g be very large, the
curvature of g(t) becomes very steep. This means that a custamer with
a slightly lesser amount of accumulated service time will be served at a
much higher rate than another customer in the system with slightly more
attained service. The higher the value of g, the more pronounced is
this discrimination against long jobs. As g goes to infinity, the
only time a customer can get into the service facility is when he is the
customer with the least amount of attained service in the system, thus
the system becames FB.

The parameter g can assume any value betveen 0 and infinity.
By varying g, a degree of freedam is provided to the system designer
which he may use to adjust the system performance over a continuum of

behaviors with the RR and the FB systems serving as the two boundaries.

4.2 The Analysis
We consider the case M/W/1 with scheduling algorithm g(t) as

defined above.
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Theorem 4.1
The average response time T(t) for the system with the sched-
uling algorithm defined by g(t) = ge-gt, is the solution of the follow-

ing integro-differential equation

-p 0

-

t
-p 4' 7 (1) [Tt - eTT41] W9 (4.3)

Proof: See Appendix B
In Eq. (4.3), if g = 0, it gives us the result of the RR system.

As g+0, the tem [eg'r+egt_1]-u/g becomes
Lim gt , gt _ .. -w/g _ im S VT
(97 + 9t - 1) W{[l+g‘r+l+gt 1) }

o0

= ;i,‘(‘,‘{u +glt + rnl/‘-’}-u

- [et + 1']"u
=e (E+T (4.4)

The limit of [eTF - eI7 + 1]™W9 4 g goes to zero can similarly be

calculated as

gim . gt _ gr . ,,-W/g _ Lim s /9"
g_,ole + 1) g_,0{[1+qt: l -gr+1) }

= ;i’g{u +g(t - r)]]‘/g}-u
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f
=eMe- T (4.5)

Substituting Egs. (4.4) and (4.5) into Eq. (4.3), we get

S t
(1 -p)T(t) =t + 1—"{—3 - p/ T (t)e Mt *+ Tgp - Df (g e M - Dgy
0 0
a t
= BAU _ oMt f ' “HTs3 _ ,e HE f ' HT
trpopoee ] THnear - e T r(metiae
(4.6)

Since fram [36], we have

[oe]

f T'(T)e-md - 1/11 (4.7)
0

1-p
Eq. (4.6) becomes

t
(1 -p)T(t) =t + lp'_/”p - l%up eHt- pe-utf T (1)eMTdr (4.8)
0

Miltiply e on ioth sides of Eq. (4.8) to yield

t
(1 - p)e'tr(t) = teVt + IP—{“—O(e“t- 1) - p-/o‘ T (1) M Tdr (4.9)

Now differentiate Eq. (4.9) with respect to t, to get
(1 - oMt + u(l - Tyt

= @+t + 2o M - et (4010

Multiplying e "% on both sides of Eq. (4.10) and simplifying, we get

TE) + u(l - p)T() = 1—%-0- +ut (4.11)
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With the initial condition T(0) = 0, Eg. (4.11) is easily solved as
T(t) = o (4.12)
l1-p *

which, of course, is the average response time for the RR system.
On the other hand, when g ooes to infinity, for

-W/g
[egt+eg'r_1] , we must consider two cases:

Case 1) when T < t, then 1<<egT<<egt

;i:f[egt L ]-u/q ) ‘,;?:[egt]-u/q

=gt (4.13)

Case 2) when Tt > t, then l<<egt<<eg

;_iﬂ[egt . T 1]-u/q , ;ﬂ'[eg"] -u/q

=e M (4.14)

gt gt -w/q o
Similarly, the limit of [e - +1 as g goes to infinity
becomes

pmf gt _ gt , 1]-u/q ) ;ﬂ[egt]-u/q

= e Mt (4.15)

Substituting BEqs. (4.13), (4.14) and (4.15) into Eq. (4.13), we get

t
(1 -p)T(t) =t + Teép—p- - f T'(r)e-utd'r
0

o t
- _/ T'(r)e"“dr-pf T (1) e Par (4.16)
t 0
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or ]
- -ut - p/u _ f ey oHT
(1 p + 2pe )T(t) t + T—_—B o] A T'(T)e dr (4.17)
Differentiating Eq. (4.17) with respect to t yields

T - p+ 200 M) - e FEr() =1 4+ T (D) HE (4.18)

Rearranging, we get

TR (L - p + part) = 2eMEr(E) +1 (4.19)

With the initial condition T(0) = 0, the solution of Eq. (4.19) is

P

=11 - a7Ht_ peTHE

'r(t)=“[1 e E“:z]+ L2 (4.20)
(1-p+pe ")

1-p+pe-ut

which, of ccurse, is the average response time for the FB system (with
exponential service time distribution).

Unfortunately, we cannot solve Eq. (4.2) analytically in general
except for the special cases with g=0 and g = ». An approximate
solution of Eq. (4.2) with large values of ¢ is presented in the next

section.

4.3 An Approximate Solution

Gon_ Igt -1u/g9
When g is large compared to 1y, the term le® + e’ ™= 1
car. be approximated by using
1+e)¥T1+ek  fore <<l (4.21)

We consider two cases:
Case 1) 1 <t

-wg  _ ~u/9
Ity T -] = 14 eI - 1)
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= M1 - (wWe)e T - 1) (4.22)

Case 2) T >t

Iegt +e7" - l]-U/g =e "1 + e"gT(egt -1) e
e - (wgle ¥ (€™ - ] (4.23)
Similarly, [egt -7 4 ll-u/g can be appraximated as
Iegt -7 4 l]-u/g = e-utll - eI - l)]-w’g
et + (e e T - 1)) (4.24)

Substituting Egs. (4.19) to (4.21) into Eq. (4.2), we get

t
(1-p)T(t) =t + -l-eé"—p - p{ T (1) [e M (/g e T EEIT - 1))ar

- of () eV - (u/~‘:l)e-(gﬂm(egt - 1))dr
t

t
-0 f T (drle ™t + (u/gle T EETT - 1))

(4.25)
Simplifying Eq. (4.25), we get
T)(L-p+20e ") =t +2h - of T (e M
5o
+ p(eTt - 1)[ (wa)e "9 g (1yar (4.26)
t

Differentiating Eq. (4.26) with respect to t yields
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T L - o + pe "E 4+ A/g(eTt - e~ MY | ppme ™t
=1+ xegtf T (r)e” (M9 14, (4.27)
t

Fraom Eq. (4.27), by setting t = 0, and recognizing that T(0) = 0, we

get the initial condition

T'(O) =1 +f AT (1) e (W Ty (4.28)
0

Iultiplying e 9% to both sides of Eq. (4.27) and then differentiating
it with respect to t, and rearranging the result, we get
') L - p + pe Mt + a/g(edt - 1)e” (Y

t

+T'(t) [~g + gp - goe T = de Mt - e (@WEIE )22 + wa))

+ D+ gerre) +g=0 (4.29)
with the initial conditions

T(0) =0
T(0) =1+ xf 'r'(r)e"“*g)‘dr (4.30)
0

Milhe's mechod [37]) is used to solve Eq. (4.30). Since the
initial condition T'(0) is given in terms of some unknowr: results,
many iterations are needed in order for the results to converge. W(t)

is plotted against t on Figure 4-2 with 2 =0.75 and u = 1.
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CHAPTER 5
THE AVERAGE NUMBER OF CUSTOMERS IN THE SYSTEM

5.1 Introduction
In Section 2.1.3 we discussed the menoryless property of Mar-

kovian process. In particular, the average number of customers in an

M/M/1 system was given by

— o= p
n= z:np = o (5.1)
=0 " 1=» ’

where Pp is the equilibrium praobability of having n customers in

the system and is given as
pn = (1 e D)Dn ns= 0'1'2'3'¢¢¢ (5.2)

Equation (5.1) holds true only when no more information about the sys-
tem is available besides that the arrival and service processes are
Markovian. Otherwise, the average nutber in the system will change
according to the additional information. For example, let us assume
that the system is not idle when the average is taken; in other words,
there is at least one customer in the system, and ask what is the
average nunber of customers in the system under this condition.

Equation (5.2) then becomes
pn = (1 - O)pn-l rl = 1'2'3'000 (503)

Pp =0 (5.4)
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The average nutber of custamers in the system becomes
n= ann
=0

Y. n - pp"
=0

Ol

n
ol
L]

L
l-9p

-

(5.5)

n

1-p

which is just the overall average mumber p/(1l - p) divided by p, the
probability that the system is busy.

Both Egs. (5.1) and (5.5) were obtained under the asumption
that no specific information about any single custamer was available;
all custamers were assumed to be identically distributed as far as
their interarrival and service times were concerned. In most of the
time-sharing models, however, the quantity that is solved for is the
average response time in the system conditioned on a tagged customer
needing exactly t seconds of service time. In those systems, one of
the customers in the system [the tagged customer] behaves differently
fram others. His service time request becomes deterministic and is no
longer drawn from an exponential distribution as are all other service
times.

Given this additional information (that one customer will not
leave the system before he has obtained exactly t seconds of service),
one would expect that the average nutber of customers in the system will
change as a function of this t. In fact it does as is shown by the
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following theorem in a very sinmple way.

5.2 The Analytical Results

Theorem 5.1
The average number of customers m(t) in an M/M1 system

given that one (the tagged) customer has attained t seconds of service

is given by

1

= *+ MT(E) - (t) (5.6)

m(t) =

where T(t) and W(t) are the average response and waiting time,
respectively, for the tagged custamer.

Proof:

- T(t) =]
} $ » TIME
To

To + T(t)

THE REAL TIME AXIS

FIGURE 5-1

The proof of this theorem is very simple. Let us look at the
real time axis as shown in Figure 5-1. Let the tagged customer arrive
at an arbitrary time instant Tg - Since no &' information about
the system is available, there are on the average 1/(1 - p) customers in
the system (including this just arrived tagged customer) at 'I‘o. At
time ['I‘0 + T(t)], the tagged customer has spent T(t) seconds in the
system and thus has been in the service facility for an average of t
seconds. During the interval [To To + T(t)], on the average, there

are \T(t) [Poisson arrivallnew customers arriving to the system.
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There are u[T(t) - t] custamers leaving the system because the death
rate becames zero when the tagged customer is served (no customer can
leave the system when the tagged custamer is in the service facility).

The average number of the custamers m(t) in the system at T, + T(t)

0
is then calculated as
P | L -
m(t) =15 5+ AT(t) - uT(t) - t]
= ﬁ + AT(t) = lJW(t) (5-7)

Q.E.D.

Equation (5.7) can be rearranged in one of the following two

different forms.

1
T3 - (M- MWL) + 2t (5.8)

or
m(t) = %p - (W= NT(L) + ut (5.9)

Since the average mumber of custamers in a busy system with no
constraints is 1/(1 - p), the weighted average of m(t) for ail possi-
ble t must be equal to 1/(1 - p). This can be easily shown by using
the Conservation Law (Eq. (2.78))

f m(t)dB(t) =f I + MT(8) - i (6)] pe tat
0 0

— + y T(t) ue-"tdt - 1:/ W(t) ue'"tdt
0 0

l-p

=1 v _ o, p/u

=Tt -p ¥ -p

- 1

- 1= (5.10)
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For the RR system, the average response time is linearly pro-

portional to t and is given by

t

T . (t) =T-—p

RR (5.11)

swbstituting Eg. (5.11) into Eg. (5.9), the average number of custamers
in a RR system given that a custamer in the system has obtained t

seoonds of service time becomes

t
me(t) = 755 = (1= Np=—=+ 1t

T=5 - M+t

=== (5.12)

which is independent of t and always assumes the same value. As a

consequence of Eq. (5.12), we get the following theorem:

Theorem 5.2

For any scheduling algorithm and its corresponding average
response time function T(t), if T(t) assumes the same value as the
average response time function TRR(t) (for the RR algorithm) at
some t = t., then at this point t, (that is, given the information
that one of the customers in either system has atta.ned exact t.

secords of service time), the average nurber of custamers in both

systems equal to 1/(1 - p), i.e. if

then m(t,) = 1
1 1- P
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Prouf:

If we substitute

_t
TRR(t)— 1 -p
into Eq. (5.7), then "hR(t) becomes
mRR(t) = Ti_p (5.13)

the average nutber of customers in a constant in the RR system, indepen-
dent of t.
Now, if for some scheduling algorithm which gives an average

response time T(t), it intersects with TRR(t) at t=t,, then

t.
_ _ 1
T(t;) = Tpplty) = =5
and
pti
Wit = Weelty) = 7= (5.14)

Substituting Eq. (5.14) into Eq. (5.7), we get

]
+
[}

L]
=

m( ti)

= (5.15)

Q-Ech

5.3 Exanples
Equation (5.7) is good for all M/M/1 systems, be it infinite-

quantum or processor-sharing. In this section we wan'. to plot the aver-
age nutber of custamers for different scheduling algoritims to demon-

strate the nature of Eq. (5.7).
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5.3.1 First-Come-First-Served (FCFS) System

The average waiting time is given by Eq. (2.19) as

wie) = 22k (5.16)

substituting Eq. (5.16) into Eq. (5.8) gives

m(t)=1£o-(u-}\)1£{—ua+xt
a=l =
bl ear p+ At
2
_l-p+p
=gt At (5.17)

m(t) is plotted against t in Figure 5-2 with A = 0.75 and
u=1. The average number of customers increases with t because once
the tagged customer enters the service facility, he will occupy the
facility all by himself and thus block all those who come to the system
later than he does. The number of "blocked" customers increases with
rate A\, and if t goes to infinity, so goes the average nurber of

customers in the systam.

5.3.2 Round Robin (RR) System

As proved by Theorem 5.2, the average number m(t) is always
equal to 1/(1 - p) in the RR system. It serves as a natural reference

algorithm for all other algorithms.

5.3.3 Selfish Round Robin (SRR) System

The average response time for the SRR system is given by Eq.

(2.35) as
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R g1 (t - 1/v)
) = 755+ T[T =5 (5.18)

Substituting Eq. (5.18) into Eq. (5.9), m(t) is obtained as

~ 1 _ 1 1/u (t - 1/u)
LU A SR wr A wTo e o LR

= P 1-o0 o(B/a)
ST tT-on - P TEo0 - B (5.19)

m(t) is plotted ageinst t for the case of B8/a = 0.2 in Figure 5-2
with XA = 0.75 and p = 1. The behavior of the SRR system is again
bounded by those of the RR and the FCFS systems. The average nurber
goes to infinity but at a slower rate than that for the FCFS system
because the "blocking” effect is not as severe in the SRR system. All

SRR curves give m(t) = 1/(1 - p) for t=1/p .

5.3.4 Poreground Background (FB) System

Substituting Eg. (2.50) into Eg. (5.9), m(t) for FB system is

expressed as

-t -u
1 {p/w) (1 = e Mt —uee™h t
m(t) o i (u=2( - +
e (1-o-0»oem")2 1l -p + pe

‘Ut‘i + ut

(5.20)

this is plotted against t in Figure 5-2 with A = 0.75 and | = 1.
When t is small, the tagged customer receives service at a rate larger
than most of the other custamers in the system, thus causing a smaller
death rate and the nutber of customers in the system increases. As his
attained service time accumilates, the tagged customer constantly loses
priority and gets served at decreasing rate. The death rate of the

system increases as t increases, and there are fewer and fewer
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custamers remaining in the system. When t gets very large, the only
time the tagged customer can get any service is when he is the only
custamer in the system, thus the awverage number goes down to 1 as t
goes to infinity.

5.3.5 Multilevel Processor-Sharing Models

Let us use a two-level mo-i2l for our example. FCFS algorithm is
used for both levels, and let x denote the break point. Combining

Egs. (2.57) and (5.7), m(t) is given by

- e HX_ =X
1-t>+peux
m(t) = (5.21)
T ] a e R g
P 1-o+peux

In Figure 5-2, m(t) for x =2 and x =3 are plotted against t
with X =0.75 and u =1. m(t) increases at the same rate as in a
FCFS system when t is smaller than x because the tagged customer is
the only one in the service facility and he blocks all the late comers
as well as all those in the system who have thus far received more than
x seconds of service. Having attained x seoonds of service, tho
tagged custamer moves to the lower priority group, and he must wait
there until the system serves all those customers previously blocked by
him up to x seoconds each as well as those who have received more than
x seconds of service time and were preempted by him when he entered the
service in the lower level. This accounts for the large drop of custom-
ers at t=x . Even after he regains control of the service facility

at same later time, the tagged custamer is always subjected to preemption
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whenever a new customer arrives. The tagged customer still can block
those customers who need more than x secands of service after they
have gained that much, but the rate of increase of custamers in the
system is rather low if x is considerably larger than the average

service request 1/p .

5.3.6 Tight Upper and Lower Bounds

In Chapter 7, tight upper and lower bounds as measured by the
response time function are derived for the processor-sharing nodels for
time-shared systems. They are given by, respectively,

T (t) = o/ + - (5.22)
4 (L-p+pe"Hh-p 1-p+0e™
- a7kt _ -pt
() =2Al-e - hb ) (5.23)
l-p+pe

In Eq. (5.9), T(t) appears only once and has a minus sign in front of
it. Por a given t, if we substitute the tight upper bound 'ru(t) cf
T(t) into Eq. (5.9), we get the tight lcwer bound of the number of cus-
tamers in the system. 3imilarly, the tight upper bound of m(t) is
obtained by substituting the tight lower bound Tg(t) of the response
time functions into Eq. (5.9). The tight bounds of the average number
of custamers in the system are plotted against t in Figure 52 with
A=0.75 and p = 1.0. As is shown by Figure 5-2, as t goes to infin-
ity the lower bound goes to 1; and the upper bound approaches the average
nuwber for the FCFS system asympotically.

In Figure 5-3, m(t) is plotted against W(t)/t which denotes
how large a price (in temms of wasted time) a customer must pay in order

to get a wnit of service with A = 0.75 and u=1.0 for different
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TIME-VARYING AVERAGE NUMBER OF CUSTOMERS PLOTIED AGAINST t
FOR DIFFERENT ALGORITHMS WITH A = 0.75, u =1

FIGURE 5-2
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algorithms. For RR, both m(t) and W(t)/t are constants, it says that
every customer pays the same amount for a unit of servi.e time indepan-
dent of his attained service, and the average number of customers in the
system does not change with t or any function of t . For all other
algorithms, m(t) is larger than 1/(1 - p) when W(t)/t is smaller than
p/(1 = p). The interpretation of this phenamenon is that with W(t)/t <
p/(1 = p), the tagged customer has been treated better than the average
(as represented by the RR svstem) so that his occupancy in the service
facility has been somewhat longer than that he would encounter in a RR
systen. As a consequence of this, the average death rate (rate of de-
partures) of the custamers in the system is somewhat lower than the
average arrival rate during his stay in the system (since for RR system,
these two rates are the same), thus the average number of customers in
the system goes up. On the other hand, m(t) decreases as W(t)/t

goes above the constant p/(1 - p) since the average departure rate
from the system would then be higher than the average arrival rate to
the system. For the FB systam (refer to Figure 3.9 where W(t) is
plotted against t), the function W(t)/t increases with t until it
hits its maximum value (at t =5.25 for A =0.75 and p=1). It
then starts to decrease as t increases and approaches 1/(1 - p) as

t goes to infinity; at. the same time the average number of customers
in the system goes down to 1 asympotically. This accounts for the
hook-shaped curve for the FB system in Figure 5-3.
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CHAPTER 6

TIGHT BOUNDS ON THE AVERAGE FESPONSE TIME*

6.1 Introduction

In the previous chapters of this dissertation we discussed a
fow models of time-shared computer systems. By slightly changing the
set of assumptions for those systems, more models could be constructed
and more analytical results could be obtained. As a result of this
flood of results, it is natural that we should seek same order. For
example, do there exist any invariants in behavior? Can we bound the
possible range of pe.formance regardless of structure? Vhat constitute
feasible solutions for these systems? These, and many nore, are reason-
able inquiries to make amidst the confusion of results.

In this chapter we try to answer some of the questions. Our
focus is on a class of processor-sharing models of time-shared camputer
systems. For these processor-shared systems, it is useful to display,
in one figure, the wasted time W(t). This we do in Figure 6-1 for the
case of expontial service with A = 0.75 and T = 1.0 (thus p = 0.75).
We purposely superimpose the performance curves for many scheduling dis-
cipiines. We are ronfronted with quite a selection of possible perform-
ance functions! For these systems we are able to state a monotonicity
property, a conservation law, and tight upper and lower bounds on the

system performance as measured by average response time.

*These results were obtained in collaboration with L. Kleinrock and
R. R. Muntz ([44].
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It is wortlwhile mentioning that numerous papers have recently
been published which address themselves to bounds, inequalities and
approximate solutions to general queueing systems. Among these are
Marshall [38,39], Kingman [40], Iglehart (41], Daley and Moran [42],

and Gaver [43], to mention a few.

6.2 The Analytical Results

In this section we present results concerning the response
functions (W(t)) which are feasible when the scheduling discipline is
based only on attained service time and elapsed waiting time of jobs.

In Theorem 6.1 we state a monotonicity property for W(t). In Theorem
6.2 we give a conservation relationship which the response function must
satisfy. In Theorem 6.3 and 6.4 tight lover ard upper bourds are derived.
As a result of Theorem 6.4, a necessary condition for W'(t) is obtained

in Theorem 6.5.
Theorem 6.1 W(t) is a nondecreasing function of t or equivalently

an(t)

Wit = =g

>0 (6.1)

Proof: See Appendix C

Theorem 6.2 There is a conservation law that W(t) has to satisfy,

namely
© 2
Y t
{ WB) L - BB lae = yrf— (6.2)
For T(t), the conservation law becomes
fw'r(t) [1 - B(t]dt = t_z (6.3)
0 2(1 - pS ¢

Proof: See Appendix C



We refer to Egs. (6.2) and (6.3) as Conservation Laws since they

are based on the conservation of average unfinished work in the system.
This places an integral constraint on W(t) (and T(t)) as a second
necessary condition, regardless of scheduling algorithm. The implica-
tion of the conservation law may be seen by recognizing that [1 - B(t)]
is a non-increasing function of t. Thus, if one had a given W(t) as
a result of same scheduling algorithms, and then changed the algorithm
so as to reduce W(t) over same interval (o,to), then the conservation
law would require that the new W(t) be considerably above the old
value for same range above toe This follows since the weighting factor,
1 - B(t), is smaller for large t.

With the help of Theorems 6.1 and 6.2, we now proceed to prove
the main theme of this chapter.

Theorem 6.2 The lower bound Wg(t) of waiting time functions is
given by the waiting time for the FCFS discipline with the service time
distrihution truncated at t, namely
22
LI

Note: that WE(O) = 0 and that wg(oo) = WECFS (the average waiting time

for the FCFS system as given in Section 2.2.1); also W'Q(O) = w’z(w) = 0.
Proof: See Appendix C

Theorem 6.4 The upper bound Wu(t) of waiting time functions is

given as
2 tep
At <t
Ww.(t) = + (6.5)
u ﬁﬁ-pq;) T-0 "IT-p,
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One scheduling discipline which gives wu(t) is a two-level system with
both levels served FCFS and switching point (see Chapter 6) at t.

= w) = . = (o) =
Note that W}(0) = Wy (%) = Woope, that Wi(0) = 0 and that W((«) I-E—p

Proof: See Appendix C

As a consequence of Theorem 6.2 and Theorem 6.4, we get the
following necessary condition for W'(t).
Theorem 6.5 For a response time function W(t) which is continuously
differentiable, W'(t) = %—t(__—tl- can not be monotonically non-decreasing

with ¢t.
Proof: See Appendix C

6.3 Examples
Four examples are given in this section to demonstrate the

nature of the tight bounds we have ocbtained. As a performance measure,
the equilibrium average waiting times, W(t), are plotted as a function
of t. We begin with the M/W/1 system (i.e., Poisson arrivals and ex-
ponential service). The response functions of Figure 6-1 are given
again in Figure 6-2 with the upper and lower bounds superimposed. At
t = 0, the upper bound and FCFS start at the same point because, under
the constraint of the conservation law, no other scheduling algorithm
can give longer average waiting time at t = 0 than FCFS. The upper
bound approaches the FB response asymptotically as t approaches infin-
ity. Therefore, a custamer with a very long requested service time (as
compared to the mean) cannot be delayed much more than he is with FB.
The lower bound starts at zero (as does the FB curve), increasing less
rapidly with t than the upper bound. It approaches the FCFS curve

asymptotically as t goes to infinity. Thus we note that the least
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discriminating scheduling algorithm (RCFS) ‘Suches the upper bound at
t=0 and forms the asymptote for the lower bound as t approaches in-
finity; conversely, the most discriminating scheduling algorithm (FB)
touches the lower bound at t = 0 and forms the asymptote for the
upper tound as t approaches infinity. The above-mentioned behavior
of the upper and lower bounds applies not only for the M/M/1 system,
but also holds true for any M/G/1 system in general, although the rate
of convergence for the bounds to their respective limits varies for dif-
ferent service distributions.

!brﬂ\esmﬂemplewedmsethesysumwz/l. In this
system we have

B o 2 %eP*  x30 (6.6)

with mean service time equal to 1/u; the ecand moment of this distri-
bution is 3/212. Because the second moment is smaller than that of the
exponential distribution (whose value is 2/;:2) , the bounds are tighter
in this example than the /M/1 case, just as one would expect. Figure
6.3 shows the behavior of this systemwith y=1 amd A = 0.75. It is
cbvious fram the figure that for t > 5/u, the upper ana lower bounds
have essentially reached their asymptotic form.

Inthetlﬁrdacarplewedmthebmnﬂsforﬂleu/ﬂz/l system,
where H, stands for hyperexponential service distribution with

9&:‘&- = 0.5ule-u]'x + 0.5;12@_'-““"x x>0 (6.7)

We chose u1-5u ' My = (5/9)u , resulting in a mean service time of
1/y. The second moment of this distribution is 82/25;2. Figure 6-4



shows the behavior of the M/Hz/l systemwith p=1 and ) = 0.75. The

upper and lower bounds approach to their respective limits at a slower

rate than either WMW1 or M/Bz/l because of the larger second roment.
For our last example we choose the system M/u/l where u stands

for unifoim service distribution. For this particular example we have

0.25 2<x<6
daB(x)

dx (6.8)
0 otherwise

and \ = 0.1875, t = 4.0, p = 0.75. Figure 6-5 shows the behavior of
this system. Notice that when t > 6, the upper bound coincides exactly
with the FB curve and that the lower bound coincides exactly with the
FCFS curve. The prabability of having any customer requesting more than
six seconds of service in this example is, of course, equal to zero.
Another performance measure, W(t)/t, is given in Figure 6-6 for
theW/M/1 case and is of interest to us, since (as mentioned in Chapter
5) it gives same feeling for how large a price (in terms of wasted
time) a customer must pay in order to get a unit of service. For the
case of RR, this measure is a constant; thus each customer has the same
penalty rate, regardless of his service time. In this sense, everyone
is treated equally in the RR system. The curve representing FCFS is
monotonically decreasing with t, and so the loncer jobs pay at a smaller
penalty rate. System users might then attempt to "pool" their requests
to take advantage of this "quantity discount."” Another extreme example
is provided by FB; W(t)/t increases rapidly when t is small, then
drops slowly to a constant (p/(1 - p)). A customer with a long request
can do better by breaking his job into smaller independent jobs and
submitting them separately to the system (if this is possible) because
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then the average waiting time per wnit of service time will be greatly
reduced.

Figure 6-7 shows the range of the bounds for the M/W/) system
with p = 0.75, 0.5 and 0.25, respectively. As can be seen, the region
included betwean the \pper and lower bounds for a particular utilization
factor p depends heavily on p; the larger the value of p, the great-
er is the vertical separation between the two hounds, thus allowing
larger variation of the mean waiting times for different scheduling al-
gorithms.
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CHAPTER 7
OONCLUSION iND SUGGESTED AREAS FOR FUTURE RESEARCH

In Section 2.2, we made & survey of same of the results in
modelling and analysis of scheduling algorithms that provided for us
the starting point of this research. In Chapters 3 and 4, as an exten-
sion of this line of work, we modelled and analyzed the family of sel-
fish scoeduling algorithms and a new family of algorithms whose perform-
~ance ranges between that of the RR and the FB systems. The emphasis of
these algorithms is to introduce parameters into the models so that
various degrees of freedam can be cbtained by adjusting these para-
meters. It is now possible to go fram the algorithm (FCFS) which shows
no discrimination with regard to job length to that discipline which
shows maximum discrimination (FB) on job length among customers in a
systam. We are able to show models whose performance ranges in between
these two extremes on a cantim'um basis. In Chapters 5 and 6, we ans-
wered some of the fundamental questions regarding the existence of order
and structure in the analytic results for time-shared computer systems.
In particular, conditional average number of custamers in the system for
different scheduling algoritlms is calculated and tight upper and lower
bourds are obtained for the class of processor-siiaring model queuing
systams.

Since we have limited ourselves to the modelling and analysis of
only the processor-sharing systems in this dissertation, it is natural
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then to ask as our first question what kind of extension needs to be
done in regard to this area. In Chapter 6, we discussed some of the
fundamental properties of the processor-sharing models regardless of
scheduling algorithm; specifically wc have obtainad some of the neces-
sary conditions that a given response function has to follow. But that
is only part of che answer; the question as to what are the necessary
axt sufficient conditions for a given response function to be feasible
remains unsolved.

The assumption of zero quantum size is samewhat unrealistic in
the real wrrld. The motivation of this assumption is one of simplicity
of analysis and in the presentation of results which serve as good ap-
proximations to finite-quantum models. Also, the assumption of infinite
population may be undesirable if the arrival process samehow depends on
the nutber of customers in the system {45,46]. Clearly, more work needs
to be done in these areas as well as the case for more general arrival
and service processes so that results that are of more significance
could be obtained.

In the past, most of the effort has been spent on the models
with single resource. It is true that the central processing unit is
probably the most important element in a camputer system and the schedul-
ing of its resources is vital to the performance of such a system. And
if the size of the memory and the number of I/0 devices are adequate
then the allocation of the CPU time should be relatively independent of
other resources. But in a real caomputer system, we know this seldom can
be attained. The speed of the I/0 devices, the size of the main menory,
the allocation schemes of the main memory, the size of pages and segments
in a paged memory system, program behaviors, as well as the data chan-
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nels which connect the I/0 devices and the menory all have same effect
on the performance of a computer system. For example, the effect of a
page faulting in a paged memory system may be as important or even more
important than the scheduling algorithm in some cases. If a system
"thrashes" as described by Denning (47), the central processing unit
would be idle most of the time because customers page fault at a very
high raie, and it would then make little difference as to what schedul-
ing algo-ithm is being used in the CPU. Unfortunately, very little work
has been done in this area mainly because of the difficulty in analyzing
such a queuing system with two or more inter-dependent queuing struc-
tures. However, much work must be done in this area in order to get a
better understanding of the behavior of the time-sharing computer sys-
tems.

Another very important question that has not been answered is
the one of optimization where this term itself is yet to be well-defined.
So far we have talked about modelling and analyzing of schedulign algor-
ithms that usually all favor the short job over the long one, and in most
of the cases the average response time is solved for as the performance
measure of the system. We may ask whether this is the only valid criter-
ion for awarding priority in a time-sharing system. If we want to attract
custamers with long jobs to a computing facility, we must be able to
award high priority to them whenever they indicate a willingness to pay
the high price. Here we introduce the cost of delay as a performance
measure and as a criterion for optimality for time-shared computer sys-
tems. Even though the modelling and analysis of a system with different
cost functions assigned to different users may become very difficult, a

lot of work is needed in this area if same criteria of optimization of

109



models with costs taken from the vicwpoint of the systam and the users
are to be formulated.
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APPENDIX A
THEOREMS AND PROOFS FOR THEOREMS IN CHAPTER 3
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A.l Theorem 3.2 and Its Proof

Theorem 3.2 For any custamer requiring t seoonds of service,
the time he spends in the queue box is independent of the time he spends
in the service box (or independent of the time he wasted in the service

box because t is not a randam variable).

Proof: We prove this theorem by using an argument for busy period dis-
tributions [19]. The Laplace transfomm P*(s) of the distribution of
the busy periods for the M/G/1 system is given as (see Eq. (2.12))

P*(s) = B* [s + )\ - \P*(s)]) (A.1)

with mean value 9 and second moment g, as follows:

. 1/u
K
2 (1 - p)
where
=7 _ 2im ¥B*(s) .
t" = = second moment of service (A.4)
840 52 time distribution

Since all the work has to be done in the service box and since
the arrival process to the service box when it is not idle is Poisson,
the service box itself can be regarded as an M/G/1 system with average
arrival rate A'. The Laplace transform P*(s) of the busy period

distribution can alsoc be expressed as
P*(s) = B*[s + A' = )\' P*(s)] (A.5)

with mean value gi and second moment gi
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91' = —ILu—r (A.6)

v ot
gy F————y (A.7)

PRIORITY

f

BUSY PERIOD DISTRIBUTION OF AN SSA SYSTEM

FIGUEE A-1

Refer to Figure A-1; a customer arrives to an enmpty systenm at

time To

vice box because he does not have to spend any time in the queue box.

and starts a busy period in the system as well as in the ser-

From To to T,, the service box is busy as more custoners arrive to the
system. Suppose that the last customer in the service box leaves at Ty
that marks the end of this "small" busv period. If the queue box is not
enpty at this time, the customer with the highest priority will be ad-
mitted immediately into the service box, thus starting another small
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busy period. The priority of the service box will adjust to whatever
priority this customer has; usually this means a drop of priority as
shown by Figure A-1. If, when the last customer in the service box de-
parts and there is no customer waiting in the queue box, the system goes
idle and this means the end of a busy period of the system. In order to
differentiate this with the small busy period we mentioned earlier, we
call this a large busy period. In short, a large busy period is the
time interval when the system is busy; and a small busy period is the
time interval the service box is busy (with no drop in prioricies).
Gbviously, a large busy period usually contains one or nore small busy
periods. For an M/G/1 system with average arrival rate A and service
rate u , the average length of a large busy period is i-]%“-s ; simi-
larly, the average length of a small busy period is 1—14‘3... Therefore,
on the average, there are (i—:—g'-) small busy periods in a large busy
period. In Figure A-1, the interval ('ro,'r3) is a large busy period,
while time intervals (To, 1). (TI'TZ)' and ('rz,'r3) are small busy
periods.

In order to prove the theorem, let us refer to Figure A-l.
Assume that custamer A starts a large as well as a small busy period;
customer B enters the service box at Ty and, therefore, starts a
small busy period but not a large ane. Thus, customer A does not have
to wait in the queue box while customer B does. After they enter the
service box (at different times), customers A and B will see the same
environment (M/G/1 system with average arrival rate 1'). There is no
way to differentiate these two customers statistically from the time
they enter the service box because they both start a small busy period
and all small busy periods are identically distributed, as expressed by
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BEq. (A.5) [19]. Thus, for custamers A and B, the tine they spend in the
service box must be independent of the time they spend in the queue box.
Next, let us look at customers C and D under the assumption the

distarnces (T. - T.} and (TD-TB) are the same, that is, C and D

c 0
enter their respective small busy periods at the same corresponding
time (i.e., the service box has been busy for the same amount of time
since the start of current small busy period). Then, as far as the time
spent in the service box is concermed, there is no difference between
C and D statistically because the small busy periods are identically
distributed, but their waiting times in the queue box are different (as
represented Ly their respective priorities when they enter the service
bax) as depicted by Figure A-1. Therefore, for customers C and D, the
theorem holds true; but C aqd D can be customers, so the independent

assumption must be true for every customer.
Q.E.D.

A.2 Theorem 3.3 and Its Proof

Theorem 3.3 The Laplace transform Q*(s) of the density func-
tion of the waiting time spent in the queue bax by a customer requiring
t seoonds of service time (actually, it is independent of t as we

explained earlier) is

_(l-p) , ABMs) - ) +s
) =T =o T TEE A T s

with first mament equal to

o o km_0Ms) € e

q_ s+0 8 2(l-p 201 -p7
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Proof:

C = o 9
! |

ARRIVALS |_J QuEue | X _|servicE | | DEPARTURES
| Box [ eox [ o
I
o wew__ my N

DECOMPOSITION OF THE SSA SYSTEM
FIGURE A-2

As we said earlier, the scheduling algorithm in the service box
will not affect the waiting time distribution as long as no feedback
from the service box to the queue box is possible. For canvenience,
let us assume that an FCFS scheduling algorithm is being used, namely,
after a customer enters the service box, he will be served on an FCFS
basis to completion. This makes the whole system FCFS. The Laplace

transform, S*(t,s), of the equilibrium response time distribution for an
FCFS system is well known [19], namely

S*(t,s) = BA(s) il S (A.8)

After the tagged custamer enters the service box, he is in an-
other FCFS system with the average arrival rate )' instead of ), thus

we can easily get Y*(t,s) as

Y*(t,s) = B*(s) ’A"Ta%s)- f'i? o (A.9)

Fram the independent preperty proved in Theorem 3.2, Q*(s) can
easily be obtained as the ratio of S*(t,s) and Y*(t,s)
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n_(l = p)  A'B¥(s) =)' +s
= -p XB*(s) - A + ¢ (A.10)
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APPENDIX B

THEOREM 4.1 AND ITS PROOF
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Theorem 4.1 and Its Proof

Theorem 4.1 The average response time T(t) for the system
with the scheduling algorithm defined by g(t) = ge 9%, is the solution
of the following integro-differential equation

- - Y RN S
(1 - p)T(t) t+1-eé“—p p‘{'r(t)le +e l] drt

- p‘{t'r'(r)legt -9+ ll-u/gd'r

Proof: In Section 2.2.9 we discussed the attained service and remarked
that the density of custamers having obtained t seconds of attained
service is given by (30]

n(t) = AT'(t) (1 - B(t)] (B.1)

Although n(t) is not available to us, nevertheless, we can use it as

an intermediate step for the calculation of T(t).
g(t)
|

ge-d!

- t
QUANTUM ASSIGNMENT AS FUNCTION OF ATTAINED SERVICE TIME

FIQURE B-1

In Figure B-1 we plot g(t) against t, where g(t) denotes
the relative rate of attaining service for customers with different
amwunts of attained service times. What we are interested in is that

Preceding page blank
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given an elapsed time interval T, what are the relative amounts of
services attained by customers who have different accumlated amounts
of service times to begin with. In other words, we wish to consider
the time interval during which a customer (let us call him customer A)
remains in the system and qains t seconds of service. During this
interval, we are interested in how muxch service time x a cus tamer
(let us call him customer B) can get during this same time interval
given that customer B has received 1 seconds of service just prior to
the beginning of this time interval. In order to calculate x, let us
first make the following cbservation:

ar(y)

dy dz

df(y) _ _dF(z) _

oY gz c (B.3)

where x and y are arbitrary time instants on the time axis and "i"(y)
is a random variable denoting the response time for getting y seconds
of service time. Equation (B.2) states that the rate of gaining service
for a customer with y seconds of attained service is equal to F(y) h
the fraction of the tntal service facility that is allocated to him.
Bquation (B.3) says that a customer with y seconds of service gains
service at a rate proportional to e ; and a custamer with 2z seconds
of attained service at a rate proportional to e 92, The proportionally
constant is given as c which does not depend on either y or =z
Bquation (B.3), of course, just restates the definition of the algorithm

as defined by Eq. (4.1) and is a direct consequence of BEgs. (4.2) and
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(B.2). Since the time interval during which customer A gains t sec-
onds of service is the same as that during which custamer B gains x

seconds of service, we get the following equation

g ™+X
dT(y) | dT(2)
'/o' _E'L dy —[ . B dz (B.4)

Substituting Bg. (B.3) into Eq. (B.4), we get

t ™
c f egydy =c f e%%az (B.5)
0 T

egt -1= eghﬂ() -7 (B.6)

Rearranging Eq. (B.6), we get

x = -‘];ln[e-gT(egt - 1) +1] (B.7)

Thus, in order for a tagged customer to get t seconds of ser-
vice time, the service facility has tno serve customers who are already
in the system with 1 3econds of attained service when the tagged cus-
tomer arrives to the system each with up to x seconds of service.

Since the density of customers in the system is assumed to be distributed
as n(t), the total amount of work U(t) which needs to be done to them
is calculated as

u(t) = ‘4' n(1) [t Jdu

=.{ n(1) (1/w [1 - e ¥)ar
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-u/g
=f n(v) (/w1 - e T et - 1) + 1) dr (B.8)
0

where ?x is the average amount of service time with the service dis-
tribution truncated at x.

U(t) takes care of all the custamers who are in the system
prior to the arrival of the tagged customer. The next step for us is
to calculate the ano'nt of work V(t) that needs to be done to those
customers who arrive to the system later than the tagged customer but
before he leaves the system with his t seoconds of service. Let us
assume that one of those later comers (let us call him customer C) ar-
rives to the system when the tagged customer (customer A) has accumulated
exactly 1 seconds of service. We wish to find out how much service
w that customer C is going to get during the same time interval that
custamer A gets served by (t-t) seconds. Eq. (B.4) can be readily
modified as

W ooy t o~
[ED g [CdE g ®.9
0

T

or

e - 1=t - T (B.10)
Rearranging Eq. (B.10), w can be calculated as

W= %ln[egt -eT 4 1 (B.11)
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w is the maximum amount of service customer C can get during the in-
terval when the tagged customer accumlates his attained service time
fran 1 to t seconds. The actual service time customer C gets before
he leaves the system is, cn the average, smaller than w. It can easily

be calculated for exponentially distributed service times as

Ty = %(1 - ) (B.12)

During the differential time interval when the tagged customer gets from
T to T + &t seconds of attained service, there are, on the average,
T'(7)dr (Little's Result) new arrivals coming to the system, there-

fore, V(t) can be expressed in the following eguration:

t
v(t) =f AT (1) (Ewldr
0
t
=f A0 Ln-e™a
0 ]
t £ -y
=f dr'(r)ll - eIt _ 9T 4 117V ar (B.13)
0

The average response time T(t) (i.e., the total average time the tag-
ged customer spends in the system in order to get served for t seconds)
is the sum of t,U(t) and V(t). FromEq. (B.7) and (B.13), T(t) is
given by

T(t) = T + A(t) + B(t)

=t +f n(T)% |1 - €9 - 1) + 117V
0
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t
+ p-{ 'r'(r)|1 - (7% - &9 4 1)WY g (B.14)

n(t) is given by Eq. (B.l1), swstituting n(t) into Eq. (B.14) and
simplifying, we get

1 = ® - -ut, -gt, gt -u/g
T(t) =t + = n(t)dr - p T'(T)e ""[e " (e” - 1) + 1] dt
1] -{ ‘{

t
+ pT(t) - D.{ T' (1) [egt -9 4 1]-“/gdr (B.15)

For WMW/1 systems (from By. (2.5)) the average nunrber in the system is
given by

f n(t)dr = L (B.16)
0 L=»v

Equation (B.15) becomes

Tt - P) =t + Teéu? = 9.4. T (T)e-mem[egt -1+ egT]'H/ng

t
- pf T (1) [eT° - %4 1) W% (B.17)
0

Finally, we get

T (1 - p) = ¢ + (L - o.{ (1) (% + &7 - 1) W

t
- pf T (1) (TF - &I + 1] W9, (B.18)
0

Q.E.D.

130



APPENDIX C
THEOREMS AND PROOFS FOR THEOREMS IN CHAPTER 6

131



C.l Theorem 6.1 and Its Proof

Theorem 6.1 W(t) is a nondecreasing function of t or
equivalently

wie =38 >

Proof: We are considering scheduling disciplines in which each job is
characterized by (1) its attained service time, tg and (2) its elapsed
waiting time, L Therefore, the state of the system is the nunber of
jobs in the system and tg ad for each job. A particular sched-
using discipline may effectively ignore one or both of these parameters,
but this information is assumed to be available for each job. Because
scheduling decisions are made only on the basis of these two parameters,
the following statement is self-evident. The history of a job requiring
L2t seconds of service from the time of its arrival at the system
until it has received t seoconds of service is independent of the
exact value of t,. A direct consequence of this fact is that W(t) is

a nondecreasing function or eguivalently

W'(t) < %t(,_—t’- >0 (C.1)

QoEo Do

C.2 Theorem 6.2 and Its Proof

Theoram 6.2 There is a oconservation lav that W(t) has to

satisfy, namely

f;(t) [l - B(t))dt = ot?
0 izI - Ds

For T(t), the conservation law becomes

Preceding page blank
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= &
[T(t) 1 -B(Y)]dt = m
Proof: From [30] we have that
n(t) = All = B())W'(t) + 1) (C.2)

where n(t) is the density of jobs in the system with t seconds of
attained service time. We define the "work" in the system at time t
as the additional time required to empty the system if no new arrivals
are permitted entry; this is aleo referred to as the "unfinished work"
and as the"virtual waiting time.” The mean work W in the system can
be expressed as

w =fn(t)s[zeraming service time for a job with attained
0 service time of t)dt

or

= ® dB(1)
W -fn(t) (1 - t) = dt
AVENES

Substituting from (C.2)

W=2[ @W( + 1)/°°(r - t)dB(1)dt
0 t

By changing the order of integration

L T
W= A/ /(W'(t) +1)(t - t)dt | aB(t} (C.3)
0 0

Integrating the inner integral by parts

T T
/(w'(t) +1(t=-t)dt= (1 - t)(W(t) + t) +f W(t) + t]dt
0 0

T 0
=/ W(t) + t]dt
0

Substituting into Eq. (C.3)
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w=ajo'wjo'TMt) + tlat & (1)

Again changing the order of integration

W= A.{m[wu;) + t) [mcm(t)dt

But integrating by parts, we have that

T &
‘{ t[l - B(t)]dt = 5

Moreover, the mean work in the system is known

—
W At

= L -o) (C.4)

Thus we have the following conservation laws for T(t) and W(t):

£ fm'r(t) [1 - B(t)]dt (C.5)
and
— .
t = -
T&TpT' _{ W(t) [1 - B(t)]at (C.6)
QOE.D.

c.3 Theorem 6.3 and Its Proof

Theorem 6.3 The lower bound wl(t) of waiting time functions
is given by the waiting time for the FCFS discipline with the service
time distribution truncated at t, namely

At
W () = <t
L 2(1 - p<t5
Note that Wl(O) = 0 and that Wl(w) = Weops (the average waiting time for

the FCFS system as given in Section 2.2.1), also w',“(O) = w‘l(w) =0,
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Proof: We claim that to minimize W(x) the scheduling discipline must
1. never service jobs with attained service time greater
than or equal to x while there are jobs in the system

with attained service time less than x, and

2. never preampt a job once it has been selected for service
until it has at least x seconds of attained service

time,

Under these conditions the response function in the interval (0,x) is
just the response function for a nonpreamptive system with service times
truncated at x. For convenience we will assume a FCFS scheduling dis-
cipline. In this case the response function (denoted wm_x(t) has
the form shown in Figure C-1 (see Section 2.2.9). Note that

wr'as_x(t) = 0 over (0,x). The scheduling of jobs with attained service
time greater than x is of no concern in this argument as long as con-

dition 1 is maintained.

w(t)

A

i ¢

RESPONSE FUR FCFS UP TO X SEOONDS OF SERVICE

FIGURE C-1
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Let W  be the mean work in the system excluding work to be
done on jobs beyond providing x seconds of attained service to each.
In other vords, if a job requires t > x seconds of service and has
received y < x seconds of service, its contribution to Wx is

X - y. By the same method used to derive BEq. (C.5) it can be shown that
- X
wx=A[ M(t) + t] (1 - B(t)]dt

Now since W, (t) has minimum slope (i.e., 0) only over the inter-

FCFS-x
val (0,x), and due to the monotonicity given in Eq. (C.1l), if any

other response curve W(t) is such that W(x) < Wiops—x (X) it must be
such that W(t) < wm_x(t) for 0 < t < x. But under condition 1 above,
Wx has its minimum value since work in this class is continuously de-
creased at maximun rate whenever there is such work in the system.

Therefore, for any W(t),
A./)(IW(t) + t][1 - B(t)dt

0
X
2 %[mes-x(t’ + t)[1 - B(t))at

Thus we conclude that W(t) <Wp..  (t) in (0,x) is impossible and
therefore W(x) > wm_x(x) .
The lower bound wz(t) is given by the waiting time for the

FCFS discipline with the service times truncated at t, namely

"2

Wz (t) ﬂ-l—-_——p? (C.7)

QoEcDo
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C.4 Theorem 6.4 and Its Proof

Theorem 6.4 The upper bound wu(t) of waiting time functions

is qgiven as
] . et

) 1P

- A
wu(t) - 2(1 - p

One scheduling discipline which gives wu(t) is a two-level system
with both levels served FCFS and switching point (see Chapter 6) at t.
p

Note that W,(0) = Wy (=) = Wpepo, that WL(0) = 0 and that W(=) = 12—,

Proof: In this case we begin with a discrete time system.
Assume that the service time distribution is of the form

Pr(service time = kq] = Py k=1,2,3,...

where q is the quantum size. Therefore, the only possible service
time requirements are multiples of q. We shall also assume that arri-
vals may take place only during the instant before the end of a quantum
and that the processor is assigned to a job for a quantum at a time.
The probability that an arrival takes place at the end of a quantum is
Aq so that the mean arrival rate is ). It should be clear that any
continuous service time distribution can be approximated arbitrarily
Closely by a discrete time distrubution by letting q approach 0.
Also, these restrictions on the service discipline and arrival mechanism
are effectively eliminated when q + 0. In this discrete time model our
goal is to maximize W(kq).

We claim that the following scheduling rule is necessary and
sufficient to maximize W(kq): no allocation of a kth quantum is made
to any job when there is some other job in the system waiting for its
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its jth quantum where j # k. We note in passing that many scheduling
disciplines will satisfy this rule.

We relabel the time axis so that t = 0 at an arbitrary point
in some idle perind. The times at which some job is allocated to a kth
quantum we call “"critical times." Let 4 be the time that the iﬁ"
critical time occurs. We wish to maximize ER (the average of c,) for
some fixed 2, and we will show that to accomplish this it is necessary
and sufficient to satisfy the condition that at the 2 critical time
no job is waiting for a j5' quantum where j # k. Certainly this con-
dition is necessary since if a proposed scheduling discipline did not

have this property then ¢, can easily be increased when the condition

L
is not satisfied as follows: follow the proposed schedule untii the

th

point where the £~ critical time would occur and then assign a quantum

to a job waiting for its jth (# k) quantum.

Since we have already shown necessity, to prove the sufficier.cy
of the condition for maximizing c-:z, we need only show that any schedule
satisfying the condition yields the same value for EQ. let A be any
scheduling algorithm which satisfies the rule that at the Rth critical
tinenojobiswaitingforajmquanunnwhere j # k. Let a be the

th

time at which the &~ job arrives which will require at least kq

seconds of service. The state of the system at a, will, in general,
depend on the algorithm A. In particular, the number of critical times
that have occurred prior to a (let this be s) is a function of A.
Let E,lc, - aRI state of systems at a,] be the expected value of

c, - a, under algorithm A oonditioned on the state of the system at

L 2

a The state of the system is given by the nurber of jobs in the

2'0
system, the attained service time of each job in the system and s, the
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nunber of critical times that have occurred. Thus we have
E,lc, - azlstate of system at a]
= [remaining work in system not requiring a kth
quantum|state of system at a)

+(L~-s - 1)E(remaining service time for job
with (k - 1)q seconds of attained

service]
+ (k- 1)gq

+ At<(k _ l)qEA[cz - azlstate of the system at ay] (C.8)

But the sum of the first two terms on the righthand side of this equa-
tion is equal to the expected amount of work in the system at a, given
the state at a. Thus

E,lc, - anlstate of system at a]
= EA[work in system at a, state at azl

+ (k - g

* At 1)qEalCy — a;lstate of system at a,]

Removing the condition on the state of the system at a, we have

EA[cz - azl = EA[work in the system at a£]
+ (k- 1)g + AE<(k - ngEaley - ay]
or
EA[work in system at aIL] + (k - 1)g
EA[cJZ. - azl =

1- M:<(k - 1)q
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But EA[mrk in system at al] is not a function of the particular
scheduling algorithm and therefore EA[°9. - all does not depend on A.
Since E[cl] =E[c - 9.] + E[al] and the right-hand side is independent
of A, E[cl] is independent of A. Note that the form of Eq. (C.8)
depended on A having the property that at <, there are no jobs in
the system waiting for a 3 quantum where j # k. We have now shown
that this condition is necessary and sufficient to maximize Elc ) (= El) .
We now show that the general scheduling rule to maximize W(kq)

is the same rule which maximizes ¢

o applied for all f%. We have

(C.9)

'meag

scheduling rule is necessary and sufficient to individually maximize

are independent of the scheduling discipline and the proposed

the EIL' Therefore, the same rule is necessary and sufficient to maxi-
mize W(kq), which establishes our earlier claim.

It should be clear that in a continuwus time system we can ap-
proach the maximum of W(x) by the following rule: no job with attain-
ed seivice time in the open interval (x - €,x) (for € > 0) is serviced
while there is a job waiting for service which has attained service time
outside this interval. By pemmitting € to shrink to zero, we approach
the maximun for W(x).

One scheduling discipline which maximizes W(x) is the two-level
system in which jobs are served FCFS in the first level up to x
seconds of attained service. A job which does not finish is placed in
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the second level queue. The second queue is serviced FCFS to completion.
The second queue has a lower priority and is only serviced when the
first queue is empty (see the ML systems described in Section 3). This
queueing system satisfies the condition for maximizing W(x) and there-

fore from Eq. (2.57) we have

2 to
n A <t
l® = T T T (c.10)

Q.E.D.

C.5 Theorem 6.5 and Its Proof

Theorem 6.5 For a response time function W(t) which is con-

tinwusly differentiable, W'(t) = d;t(:t) cannot be monotonically non-

decreasing with t.

Proof: Let us prove this theorem by contradiction. Suppose that we
can find a W' (t) which is monotonically non-decreasing with t, then
W(t) either does not intersect WRR( t) which represents the waiting
time function for the RR system; or it intersects WRR( t) at only one
point as shown in Figure C-2. If W(t) does not intersect with wRR( t)
then it either lies entirely above W(t) or entirely below W(t),
neither of these two situations is possible because they violate the
conservation law as depicted by Eq. (C.5).

On the other hand, if W(t) crosses WRR(t) at t,, since W(t)
is continuwously differentiable and non-decreasing, W'(t) has to be
larger than W'RR(t) for all t > t;. But in Theorem 6.4, we prove that
w"l(w) = W'RR(t) = I—%, thus we have W'(t) > Wl'l(w) for all t > t..

It means that W(t) increases at a faster rate than the upper bound for
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all waiting time functions. Sooner or later, W(t) will intersect
wu(t) and then assumes larger value than wu(t) . 'This, of course,
violates the definition of the upper bound.

wit) wit)
} Wan(t)
|
|
|
J _—_
L
WAITING TIME FUNCTION POSSIBILITY
FIGURE C=-2
Q.E.D.
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