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ABSTRACT

An investigation of power-deusity autospectrum estimation by means of overlapped Fast Fourier
Transform (FFT) processing of windowed data is conducted for four candidate spectral windows with
good side-lobe behavior, A comparison of the four spectral windows is made on the basis of equal
half-power resolution bandwidths, The criteria for comparison are: (1) statistical stability of the
spectral estimates, (2) leakage (side lobes) of the spectral windows, (3) number of FFTs (number of
overlapped pieces) required, and (4) size of each FFT required, The dependence of these criteria on
the ameunt of overlap is investigated quantitatively,

Some striking invariances are discovered, Specifically, it is shown that the ultimate variance-
reduction capabilities of the four windows, as measured by the equivalent aumber of degrees of
freedom (EDF), are virwally identical under the constraintof equal half-power bandwidths, Further-
more, when the proper overlap is used for each window, the stability of this method of spectral esti-
mation is identical tothat of the "indirect” cotrelation appraach. Also, the numbcerof FFTs required
to realize 99 percent(or less)of the maximum EDF is virtually independent of the particular window
employed, The required fractional overlap of the four Jdata windows for 91 percent (or less) of the
maximum EDF is virtually independent of the product of the available time and the resolution band-
width, although it does depend on the particalar window, Tables of required overlap are presented,
The only tadeoff among the four windows is that those withbetter side lobes require larger-size FFTs,
A1 of these resnits are derived for a Gaussian random process, uuder the assumprion that the resol-
ution baadwidth of the spectral window is smaller than the finest detail in the e spectram,

Rules of thumb for the maximum EDE and the number of FETs required o realize 29 percent of
the maximum EDE are given, The possibility of weighting individual spectral vstimares unequally
in order to optimize the EDF is investigated; the gain is found to be negligible for cases of practical

interest,
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An investigation of power-density autospectrum estimation by means of overlapped Fast
‘wuricr Transform (FFT) processing of windowed data is conducted for four candidate spectral
windows with good side-lobe behavior. A comparison of the four spectral windows is made con
the Lusis of equal half-power resolution bandwidths. The criteria for comparison are: (1) sta-
tistical stability of the spectral estimates, (2) leakage (side lobes) of the spectral windows,

(3) number of FFTs (number of ovurlapped pieces) required, and (4) size of each FFT required,
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Some striking invariances are discovered in the ultimate variance-reduction capabilities
and in the number of FETS required to realize 99 percent (or less) of the maximum EDF. The

only teucde- off umong the four windows is that those with better side lobes require larger-size
FFTs.
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SPECTRAL ESTIMATION LY MEANS OF OVERLATPED
FAST FOURIER TRANSIFFORM PROCESSING OF WINDOWED DATA

INTRODUCTION

Estimation of the power—density spectra of stationary random processcs is
an importuant problem and occurs frequently in many fields. The resolution of
closely spaced frequency components, with limited amounts of data, presents
inherent limitations on the statistical stability of the estimates, Also, the pre-
vention of leakage of undesired frequency components into the frequency being
analyzed dictates a carceful choice of data weighting. Lastly, the extent and
complexity of the data processing required to realize the desired resolution,
stability, and leakage control are important considerations.

The fundamental, conflicting desirves involved in spectral estimation he-
come painfully obvious when the amount of data available for analysis is limited
and can not be auginented by additional measurements. For example, the avail-
able record length may be limated by

a. nonstationary conditions (changing environment),
b. storage limitations,

¢. equipment failure, and

d. time-sharing requircments.

Although factors b, ¢, and d can ofteu be remedied or corrected, factor ..
often can not be controlled. 7hus, only a small segment of the time record
may be usable for cach spectral analysis, If fine frequency resolution is de-
sired, the limited number of independent ohservationes available makes stable
estimation impossible in some cases. One must then be willing to aceept
coarser, but more stable, spectral estimates,

The two fundamental parameters that control the performance of spectral
cstimation are the available record length, T, in which the sample of the
random process is assumed stationary, and the desired frequency resolution,
B, of the spectral analysis. Large values of the fundamental BT product
vield pood performance of the analysis technique, but small values arc often
forced upon us by too small a record length T or too fine a desired resolution
B. The problem here is to make maximum use of the available data.

Precedi
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Spectral analysis has received much attention in the past [1-6], especially
since the advent of the Fast Fourier Transform (FFT) [7, 8]. In particular, the
method of averaging short modified periodograms (9] is a prime candidate for
spectral analysis — for several reasons, First of all, nonstationary trends in
the data are more readily observable through the time-local spectral estimates
of each segment. Second, the size of each FFT can be kept reasonably small,
thereby reducing storage, execution time, and round-off error. Third, the fre-
quency resolution is easily controlled by the choice of segment length, and leak-
age (side lobes) can be controlled by the proper choice of window in the time
domain, Lastly, overlapped segments of windowed data utilize more fully the
variance-reduction capability of a given record length,

The problem to be addressed here has to do with the choice of window and
amount of overlap to employ for a particular application. Specifically, if we
employ a window with very smull spectral side lobes, how much should the
segments be overlapped, and does the overlap vary greatly with the particular
window selected? (Fifty-percent overlap has bheen suggested as a reasonable
procedure for the triangular data window [9, p. 72].) How many FFTs of what
size have to be performed for the different windows? Is the variance-reduction
capability dependent on the particular window ?

Four windows will be investigated. They are called data windows in the
titne domain, where they are multiplied by the available data record; they will
be called spectral windows in the frequency domain, where their main effect
enters via convolution. The four data windows are called triangular, cosine, *
quadratic, and cubic and will be documented in a later section. Hamming
weighting [2, p. 14], although it possesses good adjacent side lobes, is not
considered here because the spectral window decays very slowly with frequency,
thercby responding to frequencies far removed from the analysis band of
interest.

PROBLEM DEFINITION

Consider that stationary random process x has been observed for a time
interval T seconds; that is, x(t) for 0<t<T is available. Let the power-
density autospectrum of this process at frequency f besionoted by G(f), where
double-sided spectral notation will be employed. We wish to estimate spec-
trum G with a resolution of B hertz, where B is the half-power (-3 dB)
handwidth of the desired resolution.

*Also called Hanning weighting.
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Fig. 1. Overlapped Data Windows

The method of obtaining the spectral estimates is depicted in Fig. 1. A
data window w of duration L seconds is applied successively to the available

data x in the overlapping intervals (0,L), (8,S+L), ..., ((P-1)S, (P-1)8+L).

S is the amount of shift each adjacent data window undergoes, and P is the
total number of pieces or segments cmploved. Since only T seconds of data
arc avaiiable, we must have

(P-1)S+L £ T. )

The segment length L should be large enough that the correlation function of
process x is effectively zero for delays larger than L/2. (The relation be-
sween frequency resolution B and segment length L is discussed guantitatively
later.) The form of the data window, depicted in Fig. 2, is even about the
origin and real. Also, w(t) is zero for it1>L/2.

wit)
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Fig. 2. Data Window
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When the overlap in Fig. 1 is a significant fraction of the scgment length,
the effective use of the available data x is fairly uniform over the entire inter-
val T except for the edges of the data, where a gradual taper over an interval
of length L/2 takes place. This is consistent with earlier suggestions [10,

p. 58] for maximum usc of the available data. Notice that the percentage of
taper depends on the desired frequency resolution and available record length,
and is not a constant, such as 10 percent, as has occasionally been suggested.

The estimate of the power-density spectrum G 1s obtained as follows.
First, a Fouricr transform on the p-th windowed scction is performed*:

Yp(f) =/dt exp(-i2xft) x(t) \vlt -2£ - (p—l)b‘] R 1<p P, 2)

The spectral estimate at frequency { is then available as the average of the P
pieces:

p

~ 1 2

S = Z |Y (f)l (3)
1

Eyuation (2) assuincs a continuous, rather than discrete, form of signal
procecsing [2, Secs. 4-11 versus 12-2 1]. However, if the discrete version of
Eq. (2), wherc samples of x are taken At seconds apart, is such that aliasing
is negligible, there is little difference between the two methods of spectral
analysis [2, pp. 37-39 and 1‘.:3-125]. We shall assume that At is so chosen
and confine attention here ¢ the continucus processing technique of Eq. (2). Of
course, in practicc, Eq. (2) is approximatcd by a discrete Fourier transform
[9, p. 70]. in which case dc and iinear-trend removal should be considered for
the sampled data [2, pp. 47-49].

The spectral estimate /C.‘y\(f) in Eq. (3) is a random variable. Its mean and
variance are evaluated in Appendix A under the assumiptions that x is a Gauss-
ian random process and that the frequency resolution of the spectral window
IWIZ, where

W) = /lit cxp(~i2aft) wq), (1)
is narrower than the finest detail in the true spectrum G, (This latter assump-

tion is equivalent to that given under Eqg. (1) for segment length L.) The re-
sults ure

*Integrals without lizhits are over the range of non-zero integrand.
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e} G} =ﬁv G-+ W) = G(f)/dv wl? (5)
P-1 2
Var 16(()} = 1-1; (l - %) ﬁu exp(i2rukS) G(m) |W(f—u)l?'
k=-(P-1)
P-1
2 1 1k 2
=6 MF ( —?)|¢W(I<S)| , (6)
k=-(P-1)
where
¢ (1) =fdt wit) Wt - 7). G

Relation (5) shows that the mcan of the spectral estimate is equal to the con-
volution of the true spectrum G with the spectral window |W|2. Relation (6)
expresses the variance of the spectral estimate in terias of the number of
pices P, the shift S, and the autocorrelation S of the data window. The
result, Eq. (6), holds ii f is greater than the bandwidth of the spectral win-
dow, the right side of Eq. (6) must be doubled if f=0 [see also 9, p. 71].

The equivalent number ot degrees of freedom (EDT) in spectral cctimate
L .
G is defined as [2, P. 22]

2 gy
koo E {C/:\(f)}
Var fG(f)*
= = ®)
L ()
/|5 @

k==(P-1)

cmploying Egs. (4) through (6). Notice that under the assumptions given above,
K is independent of the value of frequency { and true spectrum G; for =0,
K is given by onc half of Eq. (8).

For computational purposes, it is convenient to define 4 normalized data
window u according to

u(x) = w(lLx) . 9)
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Then u contains the shape information of data window w but extends only over
the interval (-1/2, 1/2). It follows that

"’w"’ =L ¢u(r/L) , (10)

where

¢u(r) ==/dt u(t) u*t-7) . (11)

The EDF in Eq. (8) then becomes

K= 2P . (12)

p-1 ) o 0s/L)[¢

> (-4

¢ (0)
k=-(P-1) u

In order to minimize the fluctuations in the spectral estimate 6, we
should maximize K in Eq. (12). To accomplish this for a given number of
picces P and scgment length L the shift § in Eq. (12) should be chosen as
large as possible so that ¢y is a- small as possible at S/L, 2S/L, etc.
However, since Eq. (1) dictates a cunstraint among these variables, the best
choice of shift § — for given record length T, number of pieces P, and
scgment length L — is gaven by equality in Eq. (1)

. _ T-L >0
S= 1 (for P >2). (13)

Substituting Eq. (13) in Eq. {12), we have

K = 2P (14)
Pl 1k
2 -5
k=-(P-1)

Equation (14) expresses the EDF as a function of

O n v e d gl M Lttt 4 S S I



P, number of pieces in the average,
T/L, ratio of record length to segment length, and

¢u. autocorrelation of shape ot data window .

The problem now is to maximize the EDF 1in Eq. (14) by choosing, subject to
specificd recosd length T and desired half-power frequency resolution B, the
number of pieces, P, for several data windows, w. It will turn out that the
optimum value for P is not infinite.

One special case of Eq. (14) is worth comment: if P < T/L, the values
of ¢, in Eq. (14) are zero since u extends only over (-1/2, 1/2). Then K
equals 2P; that is, regardless of the window, the EDF increases linearly
with the number of pieces P until overlap occurs (see Eq. (13)). As P in-
creases somewhat beyond T/L, K continues to increase, although at a slower
rate, because the overlapped pieces ure progressively more statistically de-
pendent. Of importance in the behavior of K are the rate of increase of K
with P, and the maximum value of K attainable through the choice of D,

LIMITING VALUE OF EQUIVALENT NUMBER OF DEGREES OF FREEDOM

As the number of pieces P tends to infinity, the overlap approaches 100
percent, and the denominator of Eq. (14) approaches an integral, yielding

4
-~

K = x
Y T2
fl ¢u (‘I- 1) x\)
dx (1 - 1x1) -
/) ¢u(0)
T
= z(t- 1) (15)
- I-l T 2’ -
L irf1 - T d’u( )
"( T_|)e.©
-I+] L
L




This limiting value depends only on T/L and the correlation ¢ of the shape
u of the window. It is finite because the overlapped pieces are statistically
dependent.

For large values of T/L (ratio of record length to segment length), an
alternate form of Eq. (15) is very illuminating. If Eq. (10) is utilized, the
denominator approaches

/ ¢u(r) 2 / 0W(Lr) 2 1/ mww 2
dr|—==] =Jdr |=———} =—[Jdt|—— y (16)
¢>u(0) <bw(0) L ¢w(0>

but from Eqgs. (7) and (4),

¢ (0)= f dt fwe] = f at lwini (amn

L0 =/d.f exp(i2nft) Iwa)l2 , (18)

fdt |¢w(t)|2 =/df Iwm]4 (19

by Parseval's Theorem. Combining Eqs. (15) through (19), we obtain

2
[ﬁf w @)l J

T
Km§2 (T - Ly— for -I:»l . (20)

fdt |W(f)i4

If we define the statistical -bandwidth [5, p. 265) of spectral window |w|? as

and

giving

2

AE
[ﬁf [w ) ] c,,

B = = N (21)
1
st /df lweol? T
then
o _ T T ,
Kw:-Z(I‘-L,\ Bst—-Z(L 1) Cst' for L>>1. (22)




The constant Cg is dimensiorless and of the order of unity; it deponds only on

the shape of the window:
2
[ !dflU(f)Iz]
C .= , (23)
* / gt jue|®

where U is the Fourier transform of v (see also Eq. (9}).

The first form in Eq. (22) for K, indicates that if windows are comparcd
on the basis of equal statistical bandwidths (by appropriate choice of segment
length L for each data window), then all windows have the same value of K,
for large T/L; that is, all windows have the same variance-reduction capabil~
ity, when compared on the basis of equal statistical bandwidths, if the avail-
able record length is much larger than the scgment length. For other measures
of bandwidth, such as the half-power bandwidth B, we are led to anticipate
this same result. In a later section, we will demonstrate this quantitatively not
only for T/L >> 1 but for small values of this ratio as well, and for finite
values of P, tne number of pieces.

It is of interest to compare Eq. (20) with the results of Blackman and Tukey
[2, Secs. BG-BS] for spectral estimation via the "indirect" correlation func-
tion approach. Their EDF at frequency fy is given approximately by

-w 2
[ 4 df [Qi(f+f1) + Qi(f-fl)] G(f)]

°T — (24)

2 2
-[ df [Q,(+)) +Q¢-f )] 6" ()

for long rccords, where Q. is their spectral window. For frequencies f}
greater than the width of spectral window Qg, and assuming that Qj is narrow
compared with the finest detail in true spectrum G, Egq. (24) becomes approxi-
matelv

)

['[dr Qi(f—fl)]z

2T . (25)

18}

2
/df Qi 1))

0
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In order to relate the EDF in Eq. (25) to thc one used here, we note that the
.-an value of Blackman and Tukcy's spectral estimate is given by the convolu-
.on of Qi with G. We then identify Q; with |W|z. obtaining for the EDF in

£q. (25):
[fdf |W(@)| ]
fclfl\v(f)l

-

which is in agreement with Eq. (20) for long records. Thus, under the assump-
tions given above, the same limiting value of EDF is realized by both the

"indircet" cerrelation approach and the present "direct'" FFT approach; that is,
both methods are capable of the same statigtical stability if the proper overlap
is used in the FFT approach.

DATA WINDOWS AND CHARACTERISTICS

Four data windows will be considered here. They are all continuous; how-
cver, they have differing degrees of continuity in their derivatives, leading to
diffcrent rates of decay of their spectral windows tor large irequencies. The
triangular data window, made up of two straight-line segments, has a discon-
tinuous first derivuative. The cosine data window (Hanring) has a discontinuous
second derivative. The quadratic data window is made up of segments of
quadratic curves so chosen that the first derivative is everywhere continuous,
but the second derivative is discontinuous; thus, the quadratic data window has
behavior simiiar to that of the cosine data window. The cubic data window is
made up of segments of cubic curves so chosen that the second derivative is
cverywhere continuous, but the third derivative is discontinuous. This se-
quence of windows will have progressively better high-frequency decay and, as
will be seen shortly, better side lobes at low frequencies. (Ilamming weighting
is not considered because its discontinuous data window yiclds a slowly decay-
ing spectral window for large frequencies.) Computation of the quadi-atic
and cubic data windows is easier and faster than computation of the cosine data
window in the time domain.* Their computational advantage and better side-
lobe behavior, make them attractive candidates for spectral analysis.

*In the frequency domain, the cosine data wandow is equivalept to convolu-
tion with the sequence -1/4, 1/2, -1/4, which is easily implemented.

10
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The four windows are detailed below in Eqs. (27) through (30). They have
veen normalized in such a way that U(0) = 1, From Eq. (9) ead Fig. 1, notice
that u(t) =0 for 1tI21/2. (The expressions for the corrclations ¢, of the
windows are collected in Appendix B; these correlations are necessary for the
evaluation of Eq. (14).) In the following, sinc(x)= sin(rx)/(rx).

Trianguwar Data Window

ut)=2 (1 -2ity, s

RCRT

U(l) = sinc2(I/2) . 27

Cosine Data Window

u(t) = 1 +cos(2mt), mS%
u) - sined) (28)
1-¢
Quadratic Data Window
%(1 -1268), s%

u(t) =

3
U@ = sinc ({/3) . 29)




Cubic Data Window

8 2 3 1

- - 3 , <..

3 (1-24% +a8it17), 1tis "
u(t) =

16 3 1 1

—3-(1-2m) v g Siis

u() = sinc4(f./4) . (30)

The function W({) is available from the normalized function U(f) accord-
ing to

w{(f) = L U(Lf) , (31)

upon Fourier transformation of Eq. (9). We define the half-power bandwidth
of spectral window |W|2 as the frequency range over which |\\,’|2 is greater
than half of its peak value:

|w(f %B)‘z = % |W(0)I2 ) (32)

In addition to the statistical-bandwidth constant Cg; defined in Eq. (21), we
define a half-power-bandwidth constant C according to

133)

-ie

B==,
Numerical values for both of these dimensionless constants for the four win-
dows are given in Table 1.

The bandwidth constants are larger for the "smoother' data windows; thus,
their bandwidths are larger for a given segment length L (Fig. 1), Alternatively,
if the bandwidths are to be kept equal for the four windows, the segment lengths

must be larger for the smoother data windows.

In the bottom row of Table 1, the ratio of the statistical-bandwidth constarnt

10 the half-power-bandwidth constant is found to be relatively constant for the
four windows considered. Thus, the statistical stability of the spectral esti-
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Table 1
BANDWIDTH CONSTANTS

Data Window
Triangular Cosine Quadratic Cubic
Cst 1,854 2.079 2,304 2, 686
1,276 1,441 1,572 1,820
Cst/C 1.454 1,443 L 1, 466 1,476

mates can be discussed in terms of cither bandwidth without fear of changing
significantly the quantitative aspects. For example, Eq. (22) becomes

T
~ 9 I =D
Km~ 2.9(T-L)B, for L l, (34)

in terms of half-power bandwidth B, where Egs. (21) and (33) and Table 1
have been employed. A more precise relation than Eq. (34) will be given for
K in the next scclion, where the number of pieces I will be finite.

Hall of each symmetric spectial window is plotted in dB versus /B in
Figs. 3 through G. Here

4B =10 log, lul?, 35)

since the power-density spectrum G is seen through 2 window proportional

to |U|2. Ali the plots go through -3.01dB at {/B=1/2, since B is the half-
power bandwidth. The slow spectral decay of the triangular data window and
the fast spectral decay of the cubic data window are evident. The cosine and
quadratic data windows exhibit intermediate behavior. The {first three side
lobes of the spectral windows are given in Table 2. where it is seen that the
quadratic window offers an 8.3-dB improvement relative to the cosine window
in the size of the first side lobe, and the cubic window yiclds an additional
13.3-dB improvement. .
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Table 2

FIRST THREE SIDE LOBES OF
SPECTRAL WINDOWS

Data Window Side Lobes (dB)
Triangular -26.95 =35.7 -41.6
Cosine -31.5 -41,5 -48,5
Quadratic -39.8 -53.5 -62,4
Cubic -03.1 -71.3 -83.2

RESULTS

The gencral expression fer EDF is given in Eq. (14). We c¢liminate the
segment Jength L in this expression in favor of the half-power bandwidth B
by using Eq. (33) to obtair the dependence on the fundamental parameter BT
(see Intro.wction). It followe that

K = 2P : (36)
P-1 @ (kB_T/C_'l_) 2
k=-(§-l) (1 _ Ll%l) “ “’T"‘l’)

For a particular window u and value of BT, K is computed veirsus P, A
sample tabulation for the cosine datz window and BT - 8 is given in Table 3,
The columnheaded '*Fractional Overlap' is a measure of how much the individual
data windows overlap in the spectral processing technique depicted in Fig. 1 and
is given by
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Table 3

EQUIVALENT DEGREES OF FREEDOM
VERSUS NUMBER OF PIECES,
BT =8, COSINE DATA WINDOW

Fractional
P K Overlap
2 4,00 . 00
3 6.00 .00
4 8,00 .00
5 10.00 . 00
6 12,00 .09
1 14, 00 .24
8 15,96 .35
9 17.74 .43
10 19,13 .49
11 20,03 . 04
12 20,50 .99
13 20,69 .62
14 20,73 .65
15 20,71 .67
16 20, 66 .70
17 20,61 .72
18 20.56 .13
19 20,52 .75
29 20,48 .76
30 20,19 . 84
40 20,04 . 88
50 19,95 .91
106 19,77 .95
200 16,67 .98
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_L-S _P-T/L _P-BT/C

FO L P-1  P-l ’

(387)

when non-negative, Equations (13) and (33) were employed in Eq. (37).

Several points in Table 3 are worth noting, For no overlap, the EDF
increases linearly with P, and even as overlap begins to occur, the rate
of increase of EDF remains the same, Thus, 24% overlap still yields the
maximum possible EDF for P =7, However, as P and the overlap increase
further, the EDF increases more slowly, eventually reaching a maximum, * 9
after which it decreases slightly for further increases in P, A point oi o
diminishing returns is reached somewhere near P = 12, where 98% of the
maximum (max) EDF is realized, The extra computational effort in spectral
analysis for P > 12 is not worth the return in stahility. The fractionsl over-
lap for 93% of max EDF is .59; the EDF is then 20.5, whereas it was onlyv
10, 0 for the last non-overlapped example. The case for overlapped processing
is well demonstrated by Table 3,

Similar .coulls for il four vwindows and BT =2, 4, 8, 16, 32, and 64
are condensed in Table 4, which gives the required number of pieces and
the corresponding fractional overlap for a specified fraction of the max EDF.
For example, in Table 4B for the cosine data window, in order to realize
a specified fraction of 98% of the max EDF at BT = 8, the number of pieces
required is 12, and the corresponding fractional overlap is .59. The bottom
row of each data-window table gives the max EDF for the corresponding
value of BT. Also provided is an equation for max EDF, which was empiri-
cally determined to fit through the numerical values obtained.

Several striking invariances are apparent upen inspection of Table 4, First,
for a given record length T and desired frequency resolution B, the max

* The existence of a {inite value of P for maximum EDF is s!milar to tne
situation cited in Reference 11,
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EDF is virtually independent* of the window employed; that is, all the windows
considered have the game variance-reduction capability in apectral estimation
when compared under the same frequency-resolution constraint. A simple,
approximate rule of thumb for all four windows is given by

max EDF =3 (BT - 1). (38)
Recall that B is the half-power bandwidth of the spectral window.

For a given window and specified fraction of the max EDF, it will be ob-
served from Table 4 that for BT > 4, the required fractional overlap is
approximately constant (indepesdent of BT). Therefore, in the last column of
Table 4 is entered a representative or ""average' fractional overlap required
for the specificd fraction of max EDF entered in the first column, (This simple
rule does not hold well when 1005 of the max EDVF is required; accordingly, no
value is entered tor this case.)

For a given valuc of BT, the number ol pieces required to realize .99 (or
less) of max EDF is virtually independent of the particular window employed in
spectral analysis. This independence is very iinportant; it says that all four
windows require the same number of FFTs in order to realize the same EDF

and that selection among the * therefore, can not be based upon the
number of FFTs required, t based upon some other consideration
such as side-lobe level or » {to be discussed). An approximate rule
of thumb for the number ui p. wired is given by

Number of pieces required ~1,75 BT  for .99 of max EDF. (39)

For large BT products, the number of pieces required to realize max EDF
is significantly larger than the number required to realize 99, of max EDF;

thus, this large amount of additional processing yields insignificant improve-
ment and is to be avoided.

-

*Very small values of BT are an exception; ihese are of little practical
interest however.
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Table 5
REQUIRED FRACTIONAL OVERLAP FOR , 99 max EDF
Data Window
0
Triangular Cosine Quadratic Cubic
Fractional
Overlap .56 .61 .65 .70

The required fractional overlap is greater for the better-side-lobe win-
dows. Thus, for example, to realize .99 of max EDF, we have (virtually inde-
" pendent of the BT product) the values listed in Table 5. Notice that rather
large overlaps are required for some windows.

The difficulty of realizirng general fractional overlaps, such as .56, raises
the question as to what fraction of mmax EDT (. atlainable if onc restricts over-
laps to a few easily realized overlaps such as .50 and .625. This question is
answered in Tables 6 and 7.* Table 6 indicates that the cosine data window at
507 overlap (a popular case) vields 92, of the max EDF, However, the cubic
data window realizes only 75% of its potential at 50 overlap. Table 7 shows
that when the fractional overlap is increased to 5/8, the cosine and quadratic
data windows realize virtually their ultimate capability. If the overlap is in-
creased to 75, the cubic data window then realizes its max EDF,

Table 6

ATTAINABLE FRACTION OF max EDF
AT .50 FRACTIONAL OVERLAP

Data Window

Triangular Cocine Quadratic Cubic

Fraction of

) =4
max EDF .96 .92 .85 .15

*These values are not attainable from Table 4 but come from the complete
tabular results, of which Table 3 is one example.
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Table 7

ATTAINABLE FRACTION OF MAX EDF
AT .625 FRACTIONAL OVERLAF

Data Window

Cosine Quadratic Cubic

Fraction of

max EDF 1,00 . 98 .93

Thus far, no trade-off has been nccessary to realize the better side lobes
of the smoother data windows; that is, by proper choice of overlap, equal statis-
tical stability is attainable, and an equal number of FFTs is required, for all
four windows. However, there is one trade-off that enters as follows: if the
original record length T is composed of samples of a process uat increments*
At, more samples are contained in the segment length 1. for the better-side-
lobe winduws; that is, the number of samples in interval L is

;L. _C
Ns'm B at '’ (40

employing Eq. (33). Ng is directly proportional to half-power-bandwidth
coristant C for a specified sampling increment At and resolution B. Thus,
using Table 1, the cosine data wi:.dow requires 1. 13 times as many samples as
the triangular data window requires, The corresponding ratios for the quad-
ratic and cubic data windows arc 1.23 and 1,43, respectively. Thus, better
side lobes in spectral analysis can be realized at the cxpense of larger-size
FFTs, rather than at the expense of statistical stability or number of FFTs,
These comments hold for equal half-power -bandwidths of the windows,

For a gpecified sampling increment At, desired resolution B, and
particular window, Eq. (40) will generally not be a power of 2. Sirnce FFTs run

*The sampling increment At must be chosen small enough to avoid alias-
ing; this is the only area where the bandwidth of the process comes into con-
sideration.




faster when conducted at powers of 2, i¢ {s recommended that the desired
resolution B be changed somewhat (increased or decreased) so as to make Ng
a power of 2, This is generally a tolerable situation since B is often a
""guesstimate'' in the first place,

OPTIMUM WEIGHTING OF INDIVIDUAL SPECTRAL ESTIMATES

In Eq. (3), the p-th estimate |Yp(t)]2 of the power-density spectrum was
weighted equally with all other estimates, In this section, ".e¢ consider whether
unequal weighting will yield additional worthwhile variance reduction, Inas-
much as the edge pieces in Fig. 1 are weighted only once by a data window,
whereas the interior pieces are weighted more than once, perhaps heavier
weighting of the edge pieces will yield additional stability. The power-density
estimate is formed as

P

G = p§ W |Yp(f)|2. (41)

T he derivation of the EDF of this estimate i3 given in Appendix C, which also
presents the optimization of the EDF by choice of weights for a given P,
record length, and window, A summary of the numerical results is given in
Table 8, where P is varied up to 64. The largest value of EDF attained over
that range of P is quoted in Table 8, except for BT = 16 where, with the ex-

ception of the triangular data window, P = 64 was not yet great enough tc
reach the max EDF by weighting.

Table 8
OPTIMUM EDF VALUES
BT
Data Window
2 4 8 16

Triangular 4,37 10,12 21,65 44,72
Cosine 4,50 10.15 21,44 >43. 87
Quadratic 4, 07 9. 80 21.29 >44,18
Cubic 3.82 9,52 20.94 >43,72
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A comparison ot Table 8 with the max EDF values of Fig, 4 reveals that
very litile is to be gained by optimum weighting, except for small values of BT.
However, small values of BT are not of great practical interest because the
estimates are very unstable statistically, Also, the number of pieces P
required to realize the optimum EDF is rather large; for example, in order
to gain an improvement in EDF of 0.5 over the max EDF in Table 4, 19 pieces
are required for the cosine data window, 20 pieces for the quadratic data win-
dow, and 15 pieces for the cubic data window, Moreover, the optimum weights
are found to alternate in sign for some cases, causing a loss in significance,

DISCUSSION

This investigation of four good data windows indicates that there is no best
window for spectral estimation, Rather, there {s a trade-off to be made when
choosing a window: the better-side-lobe windows require larger-size FFTs.
When the proper overlap is used for each data window, the selection of win-

dows can not be made on the basis of statistical stability or the nunmber of FITs
required,

The quadratic and cubic data windows are simpler and quicker to compnte
than the zosine data window in the time domain (but not in the frequency do-
main as regards their effects). In addition, the quadratic and cubic windows
have better side-lobe behavior and, therefore, merit serious consideration for

spectral analysis. However, theyv require larger-size (but not movre) FFTs
than does the cosine data wirdow,

The reason that the better-side-lobe windows do not require more FFTs
than do the other windows is as follows, For a fixed half-power bandwidth B,
the better-side-lobe windows require larger segment lengths L; however, the
corresponding data windows tend to be more peaked near the center of the seg-
ment length., In order to utilize a given record length for maximum statistical
stability, these data windows must, therefore, overlap for a greater percentage
of the segment length, It turns out that the increased segment length and
increased overlap almost exactly compensate each other, so that a constant
number of FFTs is required regardless of the window selection,

This report has concentrated on the variance of the spectral estimates, In
Appendix D, it is shown that the covariance of spectral estimates at two differ-
ent frequencies is always positive but is essentially zero when the frequencies
differ by more than the width of the spectral window, Thus, spectral estimates

at frequencies farther apart than B are statistically linearly independent of
each other,

27728
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Appendix A

DERIVATION OF MEAN AND VARIANCE

From Egs. (2) and (3), the spectral estimate at frequency { is
~ 1 P
G(f) =-1;pz=:1/ du dv exp (-i2nf(u-v)) X(u)x*(v) o

wlu -2£ - (p-1)S] w* [v -% - (p~1)S] . (A-1)

(For completeness, grocess x and window w are allowed to be complex.)
The mean value of G(f) is obtained by ensemble-averaging Eq. (A~1) over the
possible realizations of process x. Expressing the correlationof x as a
Fourier transform of spectrum G, we find the average value

P
Era(f)} = ip' Z/]:iu dv exp(-iZ:rf(u-v)) P exp(i21r(u-v)u) G(v)e
p=1

wlu -%‘- - (p-1)S]) w*[v - -211 - (p-1S)

='/::lv G(v) |\V(f—u)|2 =fdu G(-~v) |wm|2, (A-2)

where we have utiiized Eq. (4). If spectral window |W{¢ is narrower than the
finest detail in the true spectrum G, Eq. (A-Z) becomes

E{Gol = G(l')/du lwl? . (A=3)

Equation (A-2) is not limited to Gaussian processes but is, in fact, true for any
stationary process.

In order to evaluate the variance of the spectral estimate, we start with
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P Pp
E{ez(f)} = -% Z:l EL[[Z'ﬁudv drds cxp (-iZﬂ(u-vﬂ'-s)) E{x(u)x‘ (v)x(r)x‘(s)} .
P” PRlg-

w[u -,-.I;'- (p—l)S] w* [v —-211- (p-l)S] w {r --211~ (q—l)S] w'[s -% - (q-l)S] .
(A-1)

In order to simplify this expression, we must b¢ able to evaluate the fourth-
order average. If x is a real Gaussian random process, the average in Eq.
(A-4) becomes

R(u-v) R(r-s) + R(u-r) R(v-s) + R(u-s) R(r-v) , (A-3)

where R is the correlation of process x. (If x is a complex envelope of a
Gaussian process, the middle term in Eq. (A-5) is absent [12].) When we
express correlation R as a Fourier transforni of spectrumi G and substitute

Eq. (A-5) in Eq. (A-4), we obtain

A2 1 P P “
E{ G (f)§ = ") E ZWfdu dv dr ds cxp(-ian(u-\'ﬂ'-s)) .
P p=1 q=1

w [u -%- (-1)s] we[v -%: - (p-1s]) w(r -%‘- -@-1s] w*[s -; - (q-1)8] e

/]du dv G(u) G(v) [exp(i21m(u-v)+i21rv(r-s)) + exp(inru(u-r)ﬂZvrv(v-s))

+ cxp(x‘zr/u(u-s)+i27r v(r--v)}]

P P
1 2 p
== Z 2 /]c;u dv Gu) G(v) [I\V(_f-ﬂ)l W (- y)r2 + exXpOlnr(p- v)(p-q)S) e
P p=lg=

5 .
W (=) We(+5) W) WH(E- 1) + expli2ru- Wp-a)5) IWi-ml” WwE-01°],
(;\-(3)

using Eg. (4). The first term in Eg. (A-0) is recognized from Fg. (A-2) as the
squarc of the mean of C. Therefore,
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/c;“ G(u) exp(iZwu@p-q)3) W({{-u) W(l+n) 2

P S
var{Go)} "3 ZI :
p=1a

zp: P
(%1

p=1

Nl"

2
/:m G exp2rup-08) lwa-wl?| . @a-n

Now if {, the frequency of interest, is greater than the bandwidth of the spec-
tral window IW[* (i.c., a couple of resolution cells away from the origin),
then W(f-4) and W(f+#) do not overlap significantly. Lectting B be the half-
power bandwidth of the speciral window W2, we therefore have the excellent
approximation* for f > B,

A 1 P P
Var{G(n} = = z:{
P p=1qg=

(For f=10, the twotcrms in Eq. (A-7) are equal if data window w is veal, in
which case Var{@(O)} is double that given by Eq. (A-8) at {=0.) Making “he
change of variable k - p-q in L. (A-8), wc obtain

(A-8)

L, 12
-/:j“ G(u) exp(i2ru(p-q)S) |\\'(f~-u)|Z

P-1 2

var{G(n} = . (A=9)

lp (1 N 11;1/\]‘/;“- exp(iZrukS) G(u) I\V(f-ﬂ)iz
k=~(P-1)

But if the bandwidth B of spectral window |\'V|2 is narrower than the lines.
detail in spectrum G, the integral on u in Eq. {A-9) can be approximated by

G() [Jdu expli2muks) |W(f—u)|2
*®
= G(I) exp(i2xfksS) d>w(k5) R (A-10)

where we have utilized Egs. (4) and (7). Then Eq. {A-Y) becomes

*When X is a complex envelope, Eq. (A-8) is exact; see cominent under
Eq. (A-3).
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P-1

Var{’c;\(f)} > Gz(f)-:; k:%-n ( - '—‘I‘,')lowmsqz . (A-11)

This equation is similar to that given in [9, p. 71].

Equations (A-3) and (A-11) are the main products of this appendix.
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Appendix B

CORRELATIONS OF DATA WINDOWS

The correlation of the normalized data window u is given by Zq. (11) as

v”u(f) =fdt u(t) u*(t-7) .

(B-1)

This quantity is required for the calculation of EDF, K, in Eq. (14). Since

u{t) =0 for 1ti >1/2, then ¢,(1) =0 for |7y 2 1. Thus, for the:

-

Triangular Data Window

B =

@ (1) 1-672+6|T|3, It <
N

o (0}
N ENITS %517151

Cosine Data Window

¢u(f)

¢u(0)

XA

(1 =-111) [1 +lCOS(21rr) +-1- sin(2ni1y),
2 2n

Quadratic Data Window

81 3
22 (1 -~ lfl) :Q
¢u(-) l.\. o)

- L 1t R T
"’u“”— Q,(n 11(3 m) =Q, (1)

1215/1 5 1
Q +—= - < =
2(’) P (3 lrl) , I -

I <1,

(B-2)

(B-3)

(B-4)
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Cubic Data Window

1024
151 °

C.(r) -
6@ | ?
u

6,

-171)7EC1(7). % <imgl
8192 (3 7 1
—(=- = X<
1 (4 n)=cym, <
28672 /1 7 1
— - -_— <
151 (2 in) =Cy(m, 4 s

54344(_1__ m~)7, m<l
151 \4 4

<3
T4

ne L
2

(B-5)

The forms for the correlation of the guadratic and cubic data windows are
compact and very useful for computer programming.




Appendix C

OPTIMUM WEIGHTS FOR EDF

The estimate of the power-density spectrum is given by Eq. (41). By
generalizing the results in Appendix A, we have

2
/:M expl(i2rukS) G(u) I\V(f-u)lz , (C-~1)

where

= . X (e
K - “qw‘-k \\q (>-2)

The sum is over all non-zero terms. Utilizing the same assumptions used in

Appendix A, we have g
P-1
~ e 2 2
var {GH} =G (1) 2 " |¢w(k5)] , (C-3)
k=-(P-1)
E{GO} =G Zp: w90, (C~4)

yielding




Ll oy ah

where

M = =M . (C-6)

Partially differentiating K with respect to w; [13. Appendix] and noting that
the absolute scale of weights {wp} does not enter in R, we sce that the
optimum weights must satisfy the equation

;= <j<P. -7
Zk:mk““k 1, 1<j<P (C-1)

1f we define the matrices

oA

1]
—
—
-

2
:
=
[
[
A
3
s
A
P
~

1T

n
—
-
—
—
£
)

T [wl Wy e wp] , (C-%)
then the optimuin weights are

w=M11, (C-Y)
and the optimum EDF 1s

K=2 1Tm-11, (C-10)
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Appendix D

COVARIANCE OF SPECTRAL ESTIMATES

A generalization of the technique in Appendix A ieads to the following
expressionl [uy the covariance between spectral estimates at frequencies { and

f21

-
Covic(fy Q== |

p—lqz=;

P
1
—2—2 Iﬁu G(um) W(f -H) W“'(f ~H) exp(i2mpmp- q}bl
P op=1qg=1 (D-1)

./:Tlu G(u) W(fl-#) W(f2+u) exp(i2ru(p-q)S) 2

e}

2

Now if f1+f2 is greater than the bandwidth of the spectral window, Wy-un)
and W(fo+u) are essentially non-overlapping. Then,

P-1 9

|
COVE-;;» ( -—;‘)'-) /;p G(r) W(f =n) W*(f,=k) exp(i2nuks)| .(D-2)

This quantity is always positive. However, it is very smail when |f2-fl|>B
because W(fl-p) and W(fy~4) do not overlap then.

When true spectrum G varies but slightly over a frequency range B,

p-1 ki 2
Cov =G(f ) G(f,) E (1 -—P) Ix(ks, f2-f1)| . (D-3)
k=-(P-1)
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where

x(r,f) Efdu exp(i2mur) W(uH)W*(u)

==‘[dt exp (=i2nft) w(t) w*(t~r) (D-4)

is the ambiguity function of window w. Again, if |f1‘f2| >B, Eq. D-3) is
essentially zero, as shown by the first form in Eq. (D-4).

As an example, for the cosine window and 0% overlap, the covariance
coefficient (ratio of Cov to the square-root of the product of variances) is

11 1 2 3 4 ,
1.9,36,0,0,...,for |f2-f1l—0,L,L,L.L,....respectnel‘\.

Thus spectral estimates ZE Hz apart are essentially uncorrelated. For 509

overlap (and large P), the corresponding covariance coefficients are slightly
larger, being 1, .95, .068, .005, 0, ... .
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