
43
NUSC Report No. 4169

Spectral Estimation by Means of Overlapped
Fast Fourier Transform Processing of Windowed Data

ALBERT H. NUTTALL

Office of the Director of Science and Technology

13. October 1971 k' APR 3

NAVAL UNDERWATER SYSTEMS CENTER

Approved for public release, distribution unlimited.

NATIONAL TECHNICAL
INFORMATION SERVICE

I V.,



ABSTRACT

An invest iga tion of power-density autospectrum estimation by means of overlapped Fist Fourier

Transform (FFT) processing of windowed data is conducted for four candidate spectral windows with

good side-lobe behavior. A comparison of the four spectral windows is made oil the basis of equal

half-power resolution bandwidths. The criteria for comparison are: ( 1) statistical stability of the

spectral estimates, (2) leakage (side lobes) of the spectral windows, (3) number of FFTs (number of

overlapped piecees) required, and (4) size of each FFT required. The dependence of these criterin on

the anieoint of overlap is investigated quantitatively.

Sonic striking invarilances are discovered. Specifically, it is shown that the ultimate variance-

reduction capabilities of the four windows, as measured by the equivl1ent number of degrees of

freedomi (EDF), are virtually identical under theconstraintof equal half-power bandwidths. Further-

more, when the proper overlap is used for each window, the stability of this method of spectral esti-

mation is identical to that of the "indirect" correlation approach. Also, the nutuberof FFTs required

to rea lize 99 percent (or less) of the maximum EDF is virtually independent of the particular window

employed. The required fractional overlap of the four data windows for 99 percent (or less) of the

ma xiniu inIEDF is v irriia liin dependent of the product of the available timet and thieresolution band-

width, althou~gh it does depentd on the particular window. Tables of req ijired overla p are presented.

[he only traldeoff amongithe four windows is that those with better side: lobes requnire larger- sime FP is.

A I of these resiu ts are deri~ id for aI G aussiani random process, uinder thev a ýSiihip1 loll that the ruso]I-

utiioui bandwidth of the sp.ctralI %\ilidO\% IS ;Imaller than tht: finest detail in III, triie. ýpvctroilu.

1knles of thu nub [or the miaximiunu EI)U and rhe number of [['rs required to realIize 9!) percent of
the m tiiinniuiii [71) are: given. The possibility of w.eightitig individual spectral e'Stimates unequnally
ini order to optitnize the 13DF is investig~ated; the gain is fouind to be negligible for cases5 of practical
jute rest.

AIM1INIST1X'RT V E iN FoRMAkT ION

[hswork was peirformed uinder NUSC Pioject No. A-0-11-00-00, and Navy Subproject No.
/F N N 112 00L , "A pplications of Statistical Conuuuuiieiiiat ionthe'lory to Tirget lDeteetioiu and classi-
ficarion,- lriiueipal Imlcvstigator, [Dr. A. 11. Nutta II, Code TC. The Sponsoring activity is Chie.f of
\.ival Nlateriafl, I'roui!ranu Manuager, D~r. J. If. 11111th.

Thev t echntic-al rev ie%%ter for this report tN ai Dr. I). W. I lyde, Code 'C

REVIEWED AND APPROVED: 13 October 1971

W. A. Von Winkle

Director of Science and Technology

.\j Inquiries concerning this report may be addressed to the author
via Officer in Charge, New London Laboratory, Naval Underwater

Systems Center, New London, Connecticut 06320



UNCLASSIFIED

DOCUMENT CONTROL DATA R & D

Naval Underwater Systems Center UNCLASSIFIED
Newport, Rhode Island 02840

SPECTRAL ESTIMATION BY MEANS OF OVERLAPPED FAST FOURIER TRANSFORM
PROCESSING OF WINDOWED DATA

lResearch Report

Albert IH. Nuttall

13 Octobe: 1971 48 13

A-041-00-00 4169
ZF XX 112 001

Approved for public release; distribution unlimited.

Departmeit ol the Navy

An investigation of power-density autospectrum estimation by means of overlapped Fast
lourier Transform (FFT) processing of windowed data is conducted for four candidate spectral
windows with good side-lobe behavior. A comparison of the four spectral windows is made on
the basis of equal half-power resolution bandw-idths. The criteria for conmparison are: (1) sta-
tistical stability of the spectral estimates, (2) leakage (side lobes) of the spectral windows,
(35 number of FFTs (number of ovurlapped pieces) requlrcd, and (4) size of each FFT required.

Some striking invariances are discovered in the ultimate variance-reduction capabilities
and in the number of FFt's required to realize 99 percent (or less) of the maximum EDF. The
onlN tea:k- off among the four windows is that those with bcttcr side lobes require larger-size
F Fl, 8.

DD, " 14 "'.... 'UNCLA-SSIFIED

•1 4 l(If ( Il•" I l, a.1)f



UNCLASSIFIED
S- eurim Classification

~''~ RI- - -, - _,

Spectral estimation

Fast Fourier Transform

Windowed data

Statistical bandwidth

Half-power bandwidth

Stationary random processes I

Short modified periodograms

I
I

I *1

I

DD ,'.":..1473 UNCLASSIFIED
2S.



1')

TABLE OF CONTENTS

Page

LIST OF FIGURES . ............................. iii

LIST OF TABLES.............................. . v

GLOSSARY.................................. . vi

INTRODUCTION.............................. . 1

PROBLEM DEFINITION ............ ....... 2

LIMITING VALVE OF EQUIVALENT NUMBER OF DEGREES
OF FREEDOM .............. .......... 7

DATA WINDOWS AND CHARACTERISTICS....... . . .. 10

RESULTS ................. ........... .. 18

OPTIMUM WEIGHTING OF INDIVIDUAL SPECTRlAL ESTIMATES . . 26

DISCUSSION.............................. . . . 27

APPENDIX A - DERIVATION OF MEAN AND VARIANCE 29

APPENDIX B - CORRELATIONS OF DATA WINDOWS .... 33

APPENDIX C - OPTIMUM WEIGHTS FOR EDF...... . .. .35

APPENDIX D - COVARIANCE OF SPECTRAL ESTIIATES . 37

REFERENCES ............................ .39

INITIAL DISTRIBUTION LIST ... .... .. Inside Back Cover

REVERSE BLANK

-j,I



LIST OF FIGURES

Figure Page

I Overlapped Data Windows..............................3

2 Data Window

3 Spectral Window for Triangular Data Wkindow ............. 14

4 Spectral Window for Cosine Data WVindow%.. .............. 15

5 Spectral Window for Quadratic Data Window%..............16

6 Spectral Window for Cubic Data Windo\ .................. 17

REVERSE BLANK



LIST OF TA BLES

Table Page

1 Bandwidth Constants ....... ........... .. 13

2 First Three Side Lobes of Spectral Windows . .

3 Equivalent Degrees of Freedom Versus Number of Pieces;
13T = b, Cosine Data Window. ... ....... . 19

4 Number of Pieces Required (P) and Corresponding Fractional

Overlap (FO) for a Speciflcd Fraction of the Maximum EDF . 22-23

5 Required Fractional Overlap for . 99 max EDF.... . . 24

6 Attainable Fraction of max EDF at .50 Fractional Overlap 2-

7 Attainable Fraction of max EDF at . 625 Fractional Overlap . 25

8 Optimum EDF Values ............ ........ 6

VI



GLOSSARY

T available record length

B desired frequency resolution, halt-power bandwidth

x random process

t time

f, f frequency

G power-density spectrum of process x

W data windo%%

L segment length

S shift of data windows

P number of pieces; number of FFTs

p integer in range (1, P)

yp Fourier transform of weighted p-th piece

G, G estimate of power density

At sampling increment of x

W Fourier transform of w

I\VI 2 , Qi spectral window

E JA statistical average of A

Var Aj variance of A

' correlations of data w•indows w, u

vi



K, K,,, equivalent degrecs of freedom

u normalizcd data window

B statistical bandwidthSt

C statistical-bandwidth constantst

U Fourier transform of u

sinc(x) Sinl(rx)/(Yrx)

C half-power-bandwidth constant

N number of samples in segment lng-thS

W p weighting applied to IYp12

B correlation of process x

"Y k correlation of weights I WVp

Mk normalized correlation(Eq. (C-6))

x ambiguity function of data window w

Abbrc viations

FFT Fast Fourier Transforni

EUF Eqtivdlent Degrees of Freedom

max Maxi mum

FO Fractional Overlap

Vii/vii
REVERSE BLANK



SIPECTIAXl, ESTIMATION UY ME IANS OF OVERLAPPED
FAS• FOULIlE TRANSFOI01 PROCESSING OF WINDOWED DATA

INTRODUCTION

Estimation of the power-density spectra of stationary random processes is
an important problem and occurs frequently in many fields. The resolution of
closely spaced frequency components, with limited amounts of data, presents
inherent limitations on the statistical stability of the estimates. Also, the pre-
vention of leakage of undesired frequency components into the frequency being
analyzed dictates a carcfud choice of data weighting. Lastly, the extent and
complexity of the data processing required to realize the desired resolution,
s•.bility, anid leakage control are important consideratLions.

The fundamental, conflicting desires involved in spectral estimation be-
come painfully obvious when the amount of data available for analysis is limited
and can not be augricinted by additionaal measurements. For example, the avail-
able record length may be limited bY

a. nonstationary conditions (changing environment),

b. storage limitations,

c. equipment failure, and

d. time-sharing requirements.

Although factors b, c, and d can ofteai be remedied or corrected, factor
often can not be controlled. Thus, only a small segment of the time record
may be usable for each spectral analysis. If fine frequency resolution is de-
sired, the limited number of independent observations available makcs stable
estimation impossible in some cases. One must then be willing to accept
coarser, but more stable, spectral estimates.

The two fundamenital parameters that control the performance of spectral
estimation are the available record length, T, in which the sample of the
randomn process is assumed stationary, and the desired frequency resolution,
B, of the spectral analysis. Large values of the fundamental BT product
yield good performance of the analysis technique, but small values are often
forced upon us by too siall a record lengtlh T or too fine a desired resolution
B. The problem here is to make maximum use of the a~ailable data.

PrP~epdin pnag hbInai
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Spectral analysis has received much attention in the past [1-6], especially
since the advent of the Fast Fourier Transform (FFT) [7, 8]. In particular, the
method of averaging short modified periodograms [9] is a prime candidate for
spectral analysis - for several reasons. First of all, nonstationary trends in
the data are more readily observable through the time-local spectral estimates
of each segment. Second, the size of each FFT can be kept reasonably small,
thereby reducing storage, execution time, and round-off error. Third, the fre-
quency resolution is easily controlled by the choice of segment length, and leak-
age (side lobes) can be controlled by the proper choice of window in the time
domain. Lastly, overlapped segments of windowed data utilize more fully the
variance-reduction capability of a given record length.

The problem to be addressed here has to do with the choice of window and
amount of overlap to employ for a particular application. Specifically, if we
employ a window with very small spectral side lobes, how much should the
segments be overlapped, and does the overlap vary greatly with the particular
window selected? (Fifty-percent overlap has been suggested as a reasonable
procedure for the triangular data window [9, p. 72].) How many FFTs of what
size have to be performed for the different windows? Is the variance-reduction
capability dependent on the particular window?

Four windows will be investigated. They are called data windows in the
tie domain, where they are multiplied by the available data record; they will
be called spe.ctral windows in the frequency domain, where their main effect
enters via convolution. The four data windows are called triangular, cosine, *
quadratic, and cubic and will be documented in a later section. Hamming
weighting [2, p. 14], although it possesses good adjacent side lobes, is not
considered here because the spectral window decays very slowly with frequency,
thereby responding to frequencies far removed from the analysis band of
interest.

PROBLEM DEFINITION

Consider that stationary random process x has been observed for a time
interval T seconds; thaL is, x(t) for 0 < t < T is av,!ilable. Let the power-
density autospectrum of this process at frequency f bc `0:,,;,ted by G(f), where
double-sided spectral notation will be employed. We wish to estimate spec-
truni G with a resolution of B hertz, where B is the half-power (-3 dB)
bandwidth of the desired resolution.

*Also called ilanning weighting.
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Fig. 1. Overlapped Data Windows

The method of obtaining the spectral estimates is depicted in Fig. 1. A
data window w of duration L seconds is applied successively to the available
data x in the overlapping intervals (0,L), (S,S+L), ... , ((P-1)S, (P-1)S+L).
S is the amount of shift each adjacent data window undergoes, and 11 is the
total number of pieces or segments employed. Since only T seconds of dala
are available, wc must have

(P-1)S+L _ T. (1)

The spgment length L should be large enough that the correlation function of
propess x is effectively zero for delays larger than L/2. (The relation be-
tween frequency resolution B and segment length L is discussed quantitatively'
later.) The form of the data window, depicted in Fig. 2, is even about the
origin and real. Also, w(t) is zero for it >L/2.

w(t)

-L/2 L/2

Fig. 2. Data Window
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When the overlap in Fig. 1 is a significant fraction of the segment length,
the effective use of the available data x is fairly uniform over the entire inter-
val T except for the edges of the data, where a gradual taper over an interval
of length L/2 takes place. This is consistent with earlier suggestions [10,
p. 58] for maximum use of the available data. Notice that the percentage of
taper depends on the desired frequency resolution and available record length,
and is not a constant, such as 10 percent, as has occasionally been suggested.

The estimate of the power-density spectrum G is obtained as follows.
First, a Fourier transform on the p-th windowed section is performed*:

Yp(f) fdt exp(-i2irft) x(t) % t - L _ (P-1SO , 1_ p ,- P. (2)

The spectral estimate at frequency f is then available as the average of the P
pieces:

(f) = , "Y .(3)

Equatioit (2) assunics 6a continuous, rather than discrete, form of sipJal
proeecsing [2, Sees. 4-11 versus 12-21]. However, if the discrete version of
Eq. (2), where samples of x are taken At seconds apart, is such that aliasing
is negligible, there is little difference between the two methods of spectral
analysis [2, pp. 37-39 and 123-125]. We shall assume that At is so chosen
and confine attention here zo the continuous processing technique of Eq. (2). Of

course, in practice, Eq. (2) is approximatcd by a discrete Fourier transform
[9, p. 70], in which case dc and iinear-trend removal should be considered for
the sampled data [2, pp. 47-49].

The spectral. estimate '"(f) in Eq. (3) is a rrnndom variable. Its mean and
variance are evaluated in Appendix A under the assumptions that x is a Gauss-
ian random process and that the frequency resolution of the spectral window

w2,where

w (t) =/d(it cpp(-i2-,ift.) w (t) , (4)

is narrower than the finest detail in the true spectrwii G. (This latter assutmp-
tion is equivalent to that given under Eq. (1) for segment length L.) The re-
sults are

*lntegrals without 1i": its are ovcr the range of non-zero integrand.

4



Var ['f~l • 1• _ (i - L uLfA exp(i2ir.kS) G(M) IW(f-M)12
k'~f' =f G(-D JWG(id,1 5

P-12

2 - ( k1 2k
k=-(P-I) (

where

S( (r) =fdt w(t) w*(t - r) (7)

Relation (5) shows that the mean of the spectral estimate is equal to the con-

volution of the true spectrum G with ,.hc spectral window IW1 2 . Relation (6)
expresses the variance of the spectral estimate in teri.is of the number of
pi.-ces P, the shift S, and the autocorrelation OW of the data window. The
result, Eq. (6), holds ii f is greater than the bandwidth of the spectral win-
dow, the right side of Eq. (6) must be doubled if f= 0 [see also 9, p. 71].

The equivalent number ol degrees of freedoin (EDF) in spectral c~timateSis defined as [2, p. 22] f

K = 2 E2 { (f)j
VK rar ml

P- 2P 2 (8)

P-i ( 1 ii) (0)

k. -(P-i)wI

employing Eqs. (4) through (6). Notice that under the assumptions given above,
"K is independent of the value of frequency f and true spectrum G; for f = 0,
"K is given by onc half of Eq. (8).

For computational purposes, it is convenient to define a normalized data
window u according to

u(x) :w(Lx). (9)

-



Then u contains the shap; i'nformation of data window w but extends only over
the interval (-1/2, 1/2). It follows that

Sw(r)= L 0u(/L) , (10)

where

0 (r) -fdt u(t) u*(t-r) . (11)

The EDF in Eq. (8) then becomes

21'
K 2P(12)

1 ) (kS/L) 2

k= -(P-1)

In order to minimize the fluctuations in the spectral estimate G, we
should maximize K in Eq. (12). To accomplish this for a given number of
pieces P and seginent length L the shift S in Eq. (12) should be chosen as
large as possible so that Ou is a.- small as possible at S/L, 2S/L, etc.
However, since Eq. (1) dictates a c,'qtrqint among these variables, the best
choice of shift S - for given record length T, numbter of pieces P. and
segment length L - is given by equality in Eq. (1):

T-L
S= (for P 92) . (13)P-1.,

Substituting Eq. (13) in Eq. (12), we have

2 2_P (14)

Equation (14) expresses the EDF as a fUnction of

6_



P, number of pieces in the average,

T/L, ratio of record length to segment length, and

* , autocorrelation of shape ot data window.

The problem now is to maxinuze the EDF in Eq. (14) by choosing, subject to
specifiod retc,&d length T ai.d desired half-power frequency resolution B, the
number of pieces, P, for several data windows, w. It will turn out that the
optimum value for P is not infinite.

One special case of Eq. (14) is worth comment: if P < T/L, the values
of Ou in Eq. (14) are zero since u extends only over (-1/2, 1/2). Then K
equals 2P, that is, regardlesF of the window, the EDF increases linearly
with the number of pieces P until overlap occurs (see Eq. (13)). As P in-
creases somewhat beyond T/L, K continues to increase, although at a slower
rate, because the overlapped pieces are progressively more statistically de-
pendent. Of importance in the behavior of K are the rate of increase of K
with P, and the maximum value of K attainable through the choice of P.

LI1ITUNG VALUE OF EQUIVALENT NUMBER OF DEGREES OF FREEDOM

As the number of pieces P tends to infinity, the overlap approaches 100
percent, and the denominator of Eq. (14) approaches an integral, yielding

K (A-- L I

S(0)

u
-(11

ST2 "(]5)

T
T L -5-]

L

7



This limiting value depends only on T/L and the correlation 0u of the shape
u of the window. It is finite because the overlapped pieces are statistically
dependent.

For large values of T/L (ratio of record length to segment length), an
alternate form of Eq. (15) is very illuminating. If Eq. (10) is utilized, the
denominatoz" approaches

2 f2

J 0 U(0) 0. w (L0) 1 d 0)(

but from Eqs. (7) and (4),

*w (0) =jdt Iw(t) I=/df IW(f)i (17)

and w(t) =fdf exp(i27ift) I\V(f)1 2  
(18)

giving

fdt 10 (t),2 =fdf JW(f)14  (19)

by Parseval's Theorem. Combining Eqs. (15) through (19), we obtain

j d tW (f),j2

K = 2 (T - L, for T (20)
"fdf W()1 4  L

If we define the statistical -bandwidth [5, p. 265] of spectral window I\V12 as

[fdf IW(f)12l CSt
B =_ _ _-- L- (21)

s f fdf W(f)14

then

K •2 (T - L) B = 2 1) C, for T->>1 (22)
st t L

8



The constant Cst is dimensiorless and of the order of unity; it depends only on
the shape of the window:

C -[Jdf I u(fI2 2(3
Cst P , f I U(f)14 '(3

where U is the Fourier transform of u (see also Eq. (9)).

The first form in Eq. (22) for KM, indicates that if windows are compared
on the basis of equal statistical bandwidths (by appropriate choice of segment
length L for each data window), then all windows have the same value of Kg,
for large T/L; that is, all windows have the same variance-reduction capabil-
ity, when compared on the basis of equal statistical bandwidths, if the avail-
able record length is much larger than the segment length. For other measures
of bandwidth, such as the hulf-power bandwidth B, we are led to anticipate
this same result. In a later section, we will demonstrate this quantitatively not
only for T/L >> 1 but for small values of this ratio as well, and for finite
values of P, the number of pieces.

It is of interest to compare Eq. (20) with the results of Blackman and Tukey
[2, Secs. B6-B8] for spectral estimation via the "indirect" correlation func-
tion approach. Their EDF at frequency fl is given approximately by

110 f [ i f~f+ Q 1(f- f)] G(f)]2

2T Oo (24)

0df [Qi(f+f1 ) + Qlf -f)2 G2 (f)

0

for long records, where Qi is their spectral window. For frequencies f,
greater than the width uf spectral window Qi, and assuming that Qi is narrow
comj,:ired with the finest detail in true spectrum G, Eq. (24) becomes approxi-
mately

t1b

2T L (25)

df Q (f-f 1 )

0



In order to relate the EDF in Eq. (25) to the 'oe used here, we note that the
._,an value of Blackman and Tukey's spectral estimate is given by the convolu-
on of Qi with G. We then identify Qi with JW1 2 , obtaining for the EDF in

.Lq. (25):

2T , (26)

/ I%(f)1
4

which is in agreement with Eq. (20) for long records. Thus, under the assump-
tiens given above, the same limiting value of EDF is realized by both the
"indircct" ccrrclzation approach and the present "direct" FFT approach; that is,
both methods are capable of the same statistical stability if the proper overlap

is used in the FFT approach.

DATA WINDOWS AND CHARACTERISTICS

Four data windows will be considered here. They' are all continuous; how-
ever, they have differing degrees of continuity in their derivatives, leading to
different rates of decay of their spectral windows ior large iroquencies. The
triangular data window, made up of two straight-line segments, has a discon-
tinuous first derivative. The cosine data window (Hanning) has a discontinuous
second derivative. The quadratic data window is made up of segments of
quadratic curves so chosen that the first derivative is every)vhere continuous,
but the second derivative is discontinuous; thus, the quadratic data window has
behavior simiiar to that of the cosine data window. The cubic data window is
made up of segments of cubic curves so chosen that the second derivative is
everywhere continuous, but the third derivative is discontinuous. This se-
quence of windows will have progre3sively better high-frequency decay and, as
will be seen shurtly, better side lubt.i at low frequencies. (Hamming weighting
is not considered because its discontinuous data window yields a slowly decay-
ing spectral window for large frequencies.) Computation of the quad;'atic
and cubic data windows is easier and faster than computation of the cosine data
window in the time donmain.* Their computational advantage and better .;ide-
lobe behavior, make them attractive candidates for spectral analysis.

*In the frequency domain, the cosine data w.ndow is equivalent to convolu-
tion with the sequence -1/4, 1/2, -1/4, which is easily implemented.

10



The four windows are detailed below in Eqs. (27) through (30). They have
ibeen normalized in such a way that U(O) = 1. From Eq. (9) end Fig. 1, notice
that u(t) = 0 for Itl t 1/2. (The expressions for the correlations Ou of the
windows are collected in Appendix B-, these correlations are necessary for the
evaluation of Eq. (14).) In the following, sinc(x) = sinirx)/(rx).

Triangular Data Window

u(t) = 2 (1 - 2mt), Itl < 1 1l

U(f) = sinc 2(f/2) . (27)

Cosine Data Window

u(t) = 1 + cos(21,rt), Itti_5

U (f) sine (f) (28)

Quadratic Data Window

u(t) 1

8 (1 - 21t,)2 It 1

U(f) sine (f/3) (29)

Ii



Cubic Data Window

8 (1 - 24t 2 + 8 1t13 ), It, < 1
3 -A

u(t) 4
116

44

4
U(f) sine (f!4) (30)

Thp function W(f) is available from the normalized function U(f) accord-
ing to

W(f) = L U(Lf) , 
(31)

upon Fourier transformation of Eq. (9). We define the half-power bandwidth
of spectral window IW12 as the frequency range over which I\W2 is greater
than half of its peak value:

W (± -2) 1 iw(od3Z)

In addition to the statistical-bandwidth constant Cst defined in Eq. (21), we
define a half-power-bandwidth constant C according to

C
B =-- L 33

L 33)

Numerical values for both of these dimensionless constants for the four win-
dows are given in Table 1.

The bandwidth constants are larger for the "smoother" data windows; thus,
their bandwidths arc larger for a given segment length L (Fig. 1). Alternatively,
if the bandwidths are to be kept equal for the four wLndows, the segment lengths
must be larger for the smoother data windows.

In the bottom row of Table 1, the ratio of the statistical-bandwidth constar.t
to the half-power-bandwidth constant is found to be relatively constant for the
four windows considered. Thus, the statistical stability of the spectral esti-

12



Table 1

BANDWIDTH CONSTANTS

Data Window

Triangular Cosine Quadratic Cubic

Cst 1.854 2. 079 2.304 2.686

C 1.276 1. 441 1.572 1.820

C s t!C 1.454 1.443 1.466 1.476

mates can be discussed in terms of either bandwidth without tear of changing
significantly the quantitative aspects. For example, Eq. (22) becomes

K ,,;2.9(T-L)B, for : >> 1, (34)

in terms of half-power banddwidth B. where Eqs. (21) and (33) and Table 1
have been employed. A more precise relation than Eq. (34) will be given for
K in the next vtutio~i, wher- thie nuiber of pieces P will be finite.

Halt of each symmetric spectral window is plotted in dB versus f/B in
Figs. 3 through 6. Here

dB K- 10 log10 }U12 (35)

since the power-density spectrum G is seen through a window proportional
to Iu12. All the plots go through -3.01 dB at f/B = 1/2, since B is the half-

power bandwidth. The slow spectral decay of the triangular data window and
the fast spectral decay of the cubic data window are evident. The cosine and
quadratic data windows exhibit intermediate behavior. The first three side
lobes of the spectral %kindows are given in Table 2, where it is seen that the
quadratic wvindow offers an 8. 3-dB improvement relative to the cosine window
in the size of the first side lobe, and the cubic window yields an additional
13.3-dB improvement.

13
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Table 2

FIRST THREE SIDE LOBES OF
SPECTRAL WINDOWS

Data Window Side Lobes (dB)

Triangular -26.5 -35.7 -41.6

Cosine -31.5 -41.5 -48.5

Quadratic -39.8 -53.5 -62.4

Cubic -53. 1 -71.3 -83.2

RESULTS

The general expression for EDF is given in Eq. (14). Wc climinate the
segment length L in this expression in favor of the half--power bandwidth B
by using Eq. (33) to obtair. the dependence on the fundamental parameter BT

(see Intro,,uction). It follows that

K 2P (36)

/ LT-/' C- 1\ 2

k=-(P- 1) •u(

For a particular window u and value of BT, K is computed vei'sus P. A

sample tabulation for the cosine datL window and 13T - 8 is given in Table 3.
The columnheaded "Fractional Overlap" is a measure of how much the individual
data windows overlap In the spectral processing technique depicted in Fig. 1 and

is given by
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Table 3

EQUIVALENT DEGREES OF FREEDOM
VERSUS NUMBER OF PIECES,

BT = 8, COSINE DATA WINDOW

P K FractionalOverlap

2 4.00 .00
3 6.00 .00
4 8.00 .00
5 10.00 .00
6 12.00 .09
7 14.00 .24
8 15.96 .35
9 17.74 .43

10 19.13 .49
11 20.03 .54
12 20.50 .59
13 20.69 .62

14 20.73 .65
15 20.71 .67
16 20.66 .70
17 20.61 .72
18 20.56 .73
19 20.52 .75

2' 20.48 .76
30 20.19 .84
40 20.04 .88
50 19.95 .91

106 19.77 .95
200 19.67 .98
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L-S P-T/L 1P-BT/C
FO L P-1 (37)

when non-negative. Equations (13) and (33) were employed in Eq. (37).

Several points in Table 3 are worth noting. For no overlap, the EDF
increases linearly with P, and even as overlap begins to occur, the rate
of increase of EDF remains the same. Thus, 24'C' overlap still yields the
maximum possible EDF for P = 7. However, as P and the overlap increase
further, the EDF increases more slowly, eventually reaching a maximum, *

after which it decreases slightly for further increases In P. A point of
diminishing returns is reached somewhere near P 12, where 98% of the
maximum (max) EDF is realized. The extra computational effort in spectral
analysis for P > 12 is not worth the return in stability. The fractfonal over-
lap for 98' of max EDF is .59; the EDF is then 20.5, whereas it was only
10. 0 for the last non-overlapped example. The case for overlapped processing
is well demonstrated by Table 3.

Similal "- foi .. fuu" .--iitdowt and BT = 2, 4, 8, 16, 32, and 64
are condensed in Table 4, which gives the required number of pieces and
the corresponding fractional overlap for a specified fraction of the max EDF.
For example, in Table 4B for the cosine data window, in order to realize
a specified fraction of 98% of the max EDF at BT = 8, the number of pieces
required is 12, and the corresponding fractional overlap is . 59. The bottom
row of each data-window table gives the max EDF for the corresponding
value of BT. Also provided is an equation for max EDF, which was empiri-
cally determined to fit through the numerical values obtained.

Several striking invariances are apparent upon inspection of Table 4. First,
for a given record length T and desired frequency resolution B, the max

* The existence of a finite value of P for maximum EDF is s~milar to the
situation cited in Reference 11,
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EDF is virtually independent* of the window employed; that is, all the windows

considered have the j variance-reduction capability in spectral estimation
when compared under the same frequency-resolution constraint. A simple,
approximate rule of thumb for all four windows is givln by

max EDF ;3 (BT - 1). (38)

I

Recall that B is the half-power bandwidth of the spectral window.

For a given window and specified fraction of the max EDF, it will be ob- I
served from Table 4 that for BT > 4, the required fractional overlap is
approximately constant (independent of BT). Therefore, in the last column of

Table 4 is entered a representative or "average" fractional overlap required
for the specified fractionof max EDF entered in the first column. (This simple
rule does not hold well when 1001,_ of the max EDF is required; accordingly, no

value is entered for this case.

For a givcn value of BT, the number uf pieces required to realize .99 (or
less) of max EDF is virtually independent of the particular window employed in
spectral analysis. This independence is very important; it says that all four
windows require the same number of FFTs in order to realize the same EDF
and that selection among the therefore, can not be based upon the

number of FFTs required, t based upon some other consideration
such as side-lobe level ur , (to be discussed). An approximate rule
of thumb for the number ui p, ,'.ired is given by

Number of pieces required - 1.75 BT for . 99 of max EDF. (39)

For large BT products, the number of pieces rcq.ired to realize max EDF
is significantly larger than the number required to realize 99, of max EDF;

thus, this large amount of additional processing yields insignificant improve-
ment and is to be avoided.

*Very small values of BT are ant exception; these are of little practical

interest however.
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Table 5

REQUIRED FRACTIONAL OVERLAP FOR. 99 max EDF

Data Window

Triangular Cosine Quadratic Cubic

Fractional .56 .61 .65 .70
Overlap

The required fractional overlap is greater for the better-side-lobe win-
dows. Thus, for examiple, to realize .99 of max EDF, we have (virtually inde-
pendent of the BT product) the values listed in Table 5. Notice that rather
large overlaps are required for some windows.

The difficulty of realizing general fractional overlaps, such as .56, raises
the question as to what fracLion of ina, ED7 ' ._tainable if one restricts over-
laps to a few easily realized overlaps such as .50 and .625- This question is
answered in Tables 6 and 7. * Table 6 indicates that the cosine data window at
50o; overlap (a popular case) yields 92"'4 of the max EDF. However, the cubic
data window realizes only 75%,ý of its potential at 5C overlap. Table 7 shows
that when the fractional overlap is increased to 5/8, the cosine and quadratic
data windows realize virtually their ultimate capability. If the overlap is in-
creased to 75(', the cubic data window then realizes its max EDF.

Table 6

ATTAINABLE FRACTION OF max EDF
AT .50 FRACTtONAL OVERLAP

Data Window

Triangular Cosine Quadratic Cubic

Fraction of .96 .92 .85 .75
max EDF

*These values are not attainable from Table 4 but come from the complete

tabular results, of which Table 3 is one example.

24



Table 7

ATTAINABLE FRACTION OF MAX EDF
AT .625 FRACTIONAL OVERLAP

Data Window

Cosine Quadratic Cubic

Fraction of 1. 00 .98 93
max EDF I I

Thus far, no trade-off has been necessary to realize the better side lobes
of the smoother data windows; that is, by proper choice of overlap, equal statis-
tical stability is attainable, and an equal number of FFTs is required, for all
four windows. However, there is one trade-off that enters as follows: if the
original record length T is composed of samples of a process at increments*
At, more samples are contained in the segment length L for the better-side-
lobe windows; that is, th- number of samples in interval L is

N =. .. (40)_
s At B't (

employing Eq. (33). Ns is directly proportional to half-power-bandwidth
constant C for a specified sampling increment At and resolution B. Thus,
using Table 1, the cosine data wi:.dow requires 1. 13 times as many samples as
the triangular data window requires. The corresponding ratios for the quad-
ratic and cubic data windows are 1.23 and 1.43, respectively. Thus, better
side lobes in spectral analysis can be realized at the expense of larger-size
FFTs, rather than at the expense of statistical stability or number of FFTs.
These comments hold for equal half-power -bandwidths of the windows.

For a specified sampling increment At, desired resolution B, and
particular window, Eq. (40) will generally not be a power of 2. Since FFTs run

*The sampling increment At must be chosen small enough to avoid alias-

ing; this is the only area where the bandwidth of the process comes into con-
sideration.

25

• ' ' I I I I



faster when conducted at powers of 2, it is recommended that the desired
resolution B be changed somewhat (increased or decreased) so as to make Ns
a power of 2. This is generally a tolerable situation since B is often a
"guesstimate" in tht first place.

i
OPTIMUM WEIGHTING OF INDIVIDUAL SPECTRAL ESTIMATES

In Eq. (3), the p-th estimate jYp(i)l 2 of the power-density spectrum was
weighted equally with all other estimates. In this section, ', e consider whether
unequal weighting will yield additional worthwhile variance reduction. Inas-
much as the edge pieces in Fig. I are weighted only once by a data window,
whereas the interior pieces are weighted moze than once, perhaps heavier
weighting of the edge pieces will yield additional stability. Tha power-density
estimate is formed as

P

G(f) w p IY (f)l,. (41)j

"The derivation of the EDF of this estimate is given in Appendix C, which also
presents the optimization of the EDF by choice of weights for a given P,
record length, and window. A summary of the numerical results is given in

Table 8, where P is varied up to 64. The largest value of EDF Pttained over
that range of P is quoted in Table 8, except for BT = 16 where, with the ex-

ception of the triangular data window, P = 64 was not yet great enough to
reach the max EDF by weighting.

Table 8

OPTIMUM EDF VALUES

BT
Data Window

2 4 8 16

Triangular 4.37 10.12 21.65 44.72

Cosine 4.50 10.15 21.44 >43.87

Quadratic 4.07 9.80 21.29 > 44.1l

Cubic 3.82 9.52 20.94 J 43.72
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A comparison ot Table 8 with the max EDF values of Fig. 4 reveals that
very little is to be gained by optimum weighting, except for small values of BT.
However, small v'alues of BT are not of great practical interest because the
estimates are very unstable statistically. Also, the number of pieces P
required to realize the optimum EDF is rather large; for example, in order
to gain an improvement in EDF of 0. 5 over the max EDF in Table 4, 19 pieces
are required for the cosine data window, 20 pieces for the quadratic data win-
dow, and 15 pieces for the cubic data window. Moreover, the optinmum weights
are found to alternate in sign for sonic cases, causing a loss in significance.

DISCUSSION

This investigation of four good dat.aq windows indicates that there is no best
window for spectral estimation. Rather, there Is a trade-off to be made when
choosing a window: the better-side-lobe windows require larger-size FFTs.
When the proper overlap is used for each data window, the selection of win-
dows can not be made on the basis of statistical stabilitvor the number of J'FTs
required.

The quadratic and cubic data windows are simpler and quicker to ccnp'ite
than the obiane data window in the tinme domain (but not in the frequency do-
main as regards their effects). In addition, the quadratic and cubic windows
have better side-lobe behavior and, therefore, merit serious consideration for
spectral analysis. However, they require larger-size (but not more) FFTs
than does the cosine data wirdow.

The reason that the better-side-lobe windows do not require more FFTs
than do the other windows is as follows. For a fixed half-power bandwidth B,
the better-side-lobe windows require larger segment lengths L; however, the
corresponding data windows tend to be more peaked near the center of the seg-

ment length. In order to utilize a given record length for ma_ximunm statistical
stability, these data windows must, therefore, overlap for a greater percentage
of the segment length. It turns out that the increased segment length and
increased overlap almost exactly compensate each other, so that a constant
number of FFTs is required regardless of the window selection.

This report has concentrated on the variance of the spectral estimates. In
Appendix D, it is shown that the covariance of spectral estimates at two differ-
ent frequencies is always positive but is essentially zero -when the frequencies
differ by more than the width of the spectral window. Thus, spectral estimates
at frequencies farther apart than B are statistically linearly independent of
each other.
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Appendix A

DERIVATION OF MEAN AND VARIANCE

From Eqs. (2) and (3), the spectral estimate at frequency f is

Pi
(f)du dv exp(-i2wf(u-v)) x(U)X*(v)

p=l 1

w[u (p-1)S] w* L -1)SJ (A-1)

(For completeness, process x and window w are allowed to be complex.)
The mean value of 1'0(f) is obtained by ensemble-averaging Eq. (A-i) over the
possible realizations of process x. Expressing the correlation of x as a
Fourier transform of spectrum G, we find the average value

P

E =G(~ -L 'SEffdu dv ex(ifuv d ' xi2R(-)') G(P)e

w [U -L - ( )S] w* [ - L - (P-i)S]

=jG()W( )12=dG( ()2 (A-2)

where we have utiiized Eq. (4). If spectral window 1W1 2 is narrower than the
finest detail in the true spectrum G, Eq. (A-z) becomes

Ej^G()[d G(f)fdv IW(V)1 2  (A-3)

Equation (A-2) is not limited to Gaussian processes but is, in fact, true for any
stationary process.

In order to evaluate the variance of the spectral estimate, we start with

Predingr nur, !•nk ]29
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L L
P ý ~ uv rd x (-~r~ -v~s)) E lx(u)x* (v)x(r)x*(s).

In order to simplify this expression, we must be able to evaluate the fourth-
order average. If x is a real Gaussian random process, the average in Eq.
(A-4) becomes

R(u-v) R(r-s) + R(u-r) R(v-s) + R(u-s) R(r-v) , (A -5)

where R is the correlation of process x. (If x is a complex envelope of a
Gaussian process, the middle term in Eq. (A-5) is absent [12].) When we
express correlation R as a Fourier transform of spectrum G and substitute
Eq. (A-5) in Eq. (A-4), we obtain

G-~ (fJl du dv -s wxp(-i2rLf(u-v+r-s))]
P2p=1 q~lf1

w[u -- (p-1)S] w* . - (P-1)S] w(r-.--(q-1)SJ W s-L-(q-l)S]_
2 2

ff d ud G(m.) G(P) (exp(i2wA,(u-v)+i2w&v(r-s)) + exp(i2irp~(u-r)+i2w &,(v-s))

+ xp(27rplu-.s)+i27r&,(r-.,,)) ]

ff~dMif C.(A) C(&') IWf + eCXI) (t2ir (m ~'(p -q) S). 9
P pl q= 1

W (f-M) WV*(f+,,) W(f+ V) W*(f-V) + CXp(i2r(M-1')(p-q)S) . \\-,f- )1" I (f-,,) ] ,

(A-6)

using Eq. (4). The first ternm in Eq. (A-6) is recognized from Eq. (A-2) as the
square of thc mean of G". Therefore,
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Var 11m - P P jjdA(u) cxp(i2rugp-q)S) W(f-.u) WfA

1 P p 12

P p=1 q--1

Now if f, the frequency of interest, is greater than the bandwidth of the spec-
tral window IVw2 (i.e., a couple of resolution cells away from the origin),
then W(f-,u) and \V(f-÷.) do not overlap significantly. Letting B be the half-

power bandwidth of the spectral window IW1 2 , we therefore have the exccllent
approximation* for f >B,

P P 2
"Va " IG(f)l fdM G(A) exp(i2w,•(p-q)S) tA(f-) 6)

(For I = 0, tile two terms in Eq. (A-7) are equal if data window w is real, in

which case Varf/(O0l is double that given by Eq. (A-8) at f = 0.) Making -.he
change of variable k - p-q in Lq. (A-8), wc obtain

P-i 2
V artI(f. :- (a -~p (1 dpxp(i27rmkS) G(P) IWf, (A A- 9))

P k-- _(P-l1) P/If

But if the bandwidth B of spectral window ,W12 is narrower than the iines,
detail in spectrum G, the integral on p in Eq. (A-9) can be approximated by

G(f) dM exp(i2,rmkS) IW(f-AA)I

SG(f) exp(i2,,fkS) * (kS) , (A-10)
w

where we have utilized Eqs. (4) and (7). Then Eq. (A-9) becomes

*When x is a complcx envelope, Eq. (A-8) is exact; scc comment under
Eq. (A-5).
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P-i

VarjW)fI 'a (32(f)-X E (1 _ LkA-l0i)Sj
k= -(P-i)

1 his equation is similar to that given in [9, p. 71].

Equations (A-3) and (A-1l) are the main products of this appendix.
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Appendix B

CORRELATIONS OF DATA WINDOWS

The correlation of the normalized data window u is given by Eq. (11) as

0u(r) =dt u(t) u*(t-r) . (B-1)

This quantity is required for the calculation of EDF, K, in Eq. (14). Since
u(t) = 0 for ItV >1/2, then ou(r)= 0 for '-ri 1. Thus, for the:

Triargular Data Window

1 6 2 + 61
Su~

u 2 (1 - I +6 r , - r 2t (B-2) -

Cosine Data Window

•U=r) (1 - Ir) 1 + 1 cos(21r)) +L siln( 2 rrirl), TI 1 (B-3)
0 (0) 3 L 2 + 21r

Quadratic Data Window

81 (< Irl -Ir,-<r< I

!u4) 2 5 • 1 2)

So-- = Q ,(r) -7 ( n- ' 5  Q 2 (r. 1< ,< .. T (B-4)
0 (0)1 1 1 3Q2 3

U
5 13•z( -L7 (- "' ''- x
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Cubic Data Window

1024 -1 - )7-7C (r). < <rl< 1

C 8192(3 1 <i:,<

(b- ( )1 -- - - ' ," = C 2 ( t )' 2 -

:. (0) (B-5)
u 28672(/_1 )7 I (

C,(T) + (--:)=-C (7), < <rITISc 151 \2 a 4

57344 (1 I7, 171 < 1

3 151 \4 / 4

The forms for the correlation of the quadratic and cubic data wiin(1ow are
compact and very useful for computer programming.
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Appendix C

OPTIMUM WEIGHTS FOR EDF

The estimate of the power-density spectrum is given by Eq. (41). By
generalizing the results in Appendix A, we have

P-1 12

V.artGO.4} • • "j'fd,,. exp(i2,rkS) G(,) IW(f-,-M)2 . (C-i)k~~ =-(-l

where

"It W W kvk Wq(C-2)
q

The sum is over all non-zero terms. Utilizing the same assumptions used in
Appendix A, we have

Var lG(f)doG (f) k 1 0".(kSL (C-3)
k=-(P-1)

E Gafoj Go(f) E wp 0 (o0) (C-4)1
pwP

yielding

12 2V

I{ 2 -1(C-3)

k=- (P-i)

k: k

".......



where

M ~ (S 12 'M(C-6)
k (0) -

Partially differentiating K with respect to wj [13, Appendix] and noting that
the absolute scale of weights !WpI does not enter in R, we see that the
optimum weights must satisfy the equation

E Mk w = 1, 1<j 5P (C-7)k

If we define the matrices

ur = ~n-n < 1•m, n<P

1T = - . ], wT [w1 . 2  Wp] , (C-s)

then the optimum weights are

w M- 1 1 , (C-')

and the optimum EDF is

K =2 1TM-1 (C-10)
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Appendix D

COVARIANCE OF SPECTRAL ESTIMATES

A generalization of the technique in Appendix A ieads to the following

expresbioi. fu,; the covariance between spectral estimates at frequencies f, and
f2:

ov f =(f2 .P Jdjd G()W(fM) X(f +m)exp(i27rp(p-q)S)2
p=1 q=1

(D-1)

Now if f 1 +f2 is greater than the bandwidth of the spectral window, W(fl-M)
and W(f 2 +9) are essentially non-overlapping. Then,

P - 1 i

Coy k P) (i - L_ G(A) W(f -A) W*(f 2 -u) exp(i2rrukS) .(D-2)Pk= -(P -1) P)f

This quantity is always positive. However, it is very small when if 2-fil>B
because W(fl-0) and W(f 2 -M) do not overlap then.

When true spectrum G varies but slightly over a frequency range B,

P-1

C oy G (f1 G(f29) (l (1' %(kS, f2-fl (D-3)

k=-(P-1)
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where

x( r, f) afd) exp(12wr)r) W(M+f)W*(M)

=Jdt exp (-i2xft) w(t) w*(t-r) (D-4)

is the ambiguity function of window w. Again, if I fl-f 2 l > B, Eq. (D-3) is
essentially zero, as shown by the first form in Eq. (D-4).

As an example, for the cosine window and 011 overlap, the covariance
coefficient (ratio of Coy to the square-root of the product of variances) is

41 1234
0,1,-r, 0,, ... for =0, L, , L, respectivel..

Thus spectral estimates 1 Hz apart are essentialli uncorrelated. For 501-

overlap (and large P), the corresponding covariance coefficients are slightly
larger, being 1, 495, .068, .005, 0.....
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