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INTRODUCTION AND SURVEY

"The concept of hierarchic order occupies a central place in
this book, and lest the reader should think that I am riding
" & private hobby-horse, let me reassure him that this concept
has a long and respectable ancestry. So much so, that defend-
ers of orthodoxy are inclined to dismiss it as 'old hat' -
and often in the same breath to deny its validity. Yet I
hope to show as we go along that this old hat, handled with
some affection, can produce lively rabbits.'
A. Koestler
(The Ghost in the Machine)

It is in economic theory that aggregation of variables has been most
explicitly used &s a technique to study and evaluate the dynamics of sys-~

tems of great size and complexity, This technique is founded on the idea

that in many large systems all variables can somehow be clustered into a
E small number of groups so that: (i) the interactions among the variables
of each single group may be studied as if interactions among groups did not

exiet and (ii1) interactions among groups may be studied without reference

to the interactions within groups. This is trivially correct when vari-

ables are functions of the values of variables of the same group but not

s e

of the values of any variable in any different group. The system in this

%
case can be said completely dscomposable: it truly consists of independent

subsystems, each one of which can be analyzed separately, without reference

to the others.

*It 1s worth making the terminology more precise at the outset: such a sys-
tem may be represented by a completely decomposable matrix, i.e., a square
matrix such that an identical permutation of rows and columns leaves a set
of square submatrices on the principal diagonal and zeros everywhere else;

a decomposable matrix, as opposed to caupletely decocposable, is a matrix
with zeros everywhere below the principal submatrices but not necessarily
also above. Near-complete-decomposability and near-decomposability are' de-
fined by replacing the zeros in these definitions by snall non-zero numbers.

e .




II

H. A. Simon and A. Ando [S161] investigated circumstances under which
variable aggregation still yields satisfactory approximations when the
variables of a group do depend on the values of the variables of the other
groups, but only weakly compared with intra-group dependency. Several
examples taken from economics [S161], physics [S161] [Si62]1[5169], and
social sciences [F162/1], indicate that systems of that kind are likely to
be more freﬁuently encountered in reality than systems verifving the assump-
tion of complete decomposability., The authors of [S161] show that in these
systems, qualified in [An63] as Nearly Completely Decomposable Systems, aggregation
of variables separates the analysis of the short-rur from that of the long-
run dynamics., They proved two theorems. The first one states that, pro-
vided inter-group dependencies are sufficiently weak as compared to intra-
group ones, in the short-run the system will behave approximately, and can
therefore be analyzed, as if it were completely decomposable; whatever
stqndard of approximation is required, there will always exist a non-zero
degree of weakness of dependency such that the analysis will meet this
standard of approximation. The second theorem states that even in the long-
run, vhen neglected inter-group dependencies have had time to influence the
system behavior, the values of the variables within any group will remain
approximately in the same ratio as if those inter-group influences had never
existed. The results obtained in the short-run will therefore remain ap-
proximately valid in the long-run, as far as the relative behavior of the
variables of a same group is concerned,

These two theorems are formally introduced in the first section in
the case of stochastic systems; our approach and our notation only deviate

in a few details from [Si61]. Furthermore, we indicate how aggregative
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variables representing fused states [Ve69] may be used at an arbitrary
number of levels of aggregation to evaluate the limiting equilibrium
probability distribution of storhastic systems with a large number of
states.

In the following four sections we exploit the concept of near-complete-

decomposability to analyze stochastic netvorks of interconnected queues,

In Section II we define a model of a network which is a particular case

of W. J. Gordon's and G. F. Newell's model [Go67]. An arbitrary fixed

! number of customers make use of an arbitrary fixed number (L+1) of re-
sources, each of which provides a certain type of service. When service is
completed by resource 4, a customer proceeds directly to resource m with
probability Pon The conditions under which such a system is nearly completely

decomposable into L levels of aggregation are established in Section III

in terms of the resource service rates and the transfer probabilities Py’
We show in Section IV how, when these conditions are fulfilled, the set
of resources may be organized in a hierarchy of aggregate resources,
each aggregate resource being analyzable merely as a single server queuing
system.
This aPprolch presents several advantages which are discussed in
E Section V. Firsé, the determination of the equilibrium marginal prob-
é abilities does not require, as in [Go67], the inversion of the transfer

mltrix'lphn". Explicit and closed form solutions are obtdined for these

/
probabilities, as well as for the average time a customer waits at each

resource., These expressidns facilitate the estimacionybf the equilibrium

probabilities when the number of states is large, i.e., in the ccse of a

t
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large number of customers and/or resources. Next, these solutions apply
to queuing networks which are more general than the model considered in

[ Go67]; they may be used to evaluate networks in which, as in the general
model of J. R, Jackson [Ja63], the service rates are at each service stage
almost arbitrary functions of the congestion at this stage; transfer prob-
abilities dependent on the congestions at the stage of departure may be
taken into account as well. Finally, this hierarchical wmodel of aggregate
feaources appears to be a good approximation to multi-queue systems in
which, instead of being exponentieally distributed, the service times are
random variables with arbitrary distribution functions; in other words,
near-complete'decomposability can under suitable circumstances dispense
with the Poissonian service times assumption, which is classically made

in networks of queues by sheer necessity of overcoming analytic diffi-
culties.

Networks of interconnected queues are in several respects adequate
models for studying congestion problems ir multiprogramming computing
systems [Wa66] [Sm66] [Ar71] [Bu7l]. We show in Section VI that the char-
acteristics inherent in memory hierarchies are of such a nature as to make
near-complete decomposability an intrinsic property of their models. Hence, con-
sidering a computer memory as a hierarchy of aggregate memory levels, we
use the model set up in Section IV to define and evaluate performance
criteria for multiprogramming computer memory hierarchies. We indicate
also how its ability to cope rather simply witk state-dependent transfer
probabilities may render this model sensitive to allocation policies which
acdjust dynamically the space allotted per program in each memory level to

the demand made by the programs in the course of their axecution.

-
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In the second part of this same section, we discuss the similitude
existing between the hierarchical model of aggregate resources defined in
section IV and tha structure of levels of abstraction advocated by E. W,
Dijkstra for the software of multiprogramming computer systems [D169/1].
We conjecture that the criteria that indicate what resources to aggregate
are, in many cases, the same as those which specify what the levels of
abstraction should be. The conditlons for aggregation in such systems
are expressed in terms of parameters closély related to the physical
characteristics and the usage of the hardware resources. Hence, provided
these parameters may be assessed, resource aggregation conditions might
help the designer choose the ordering of the levels of abstraction.
Variable aggregation appears in these two m&dels as a technique that en-
ables the level-by-level evaluation of the system to be interlaced with
its level-by-level design. This stems from the fact that the conditions
for aggregation are the same as those necessary to provide sufficiently
approximate knowledge of the performances of a still incomplete system
on which further design decisions may be based. Aggregative models of
queue networks are, in the sphere of computing system analytical models,
a counterpart of the level-by-level simulation techniques recommended in
[Pa67] [Pa69] [Zu68] [Ra69].

The last section is intended to illustrate the use of an aggregative

model in analyzing a given computing system. This concrete case study

_reveala that aggregation is not only adequate in obtaining numerical

results when the number of parameters involved is large, but also helps

to gain insight and conceptual clarity on the respective parts played by
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these parameters. We study the model of a time-sharing system in which

memory space and processor time are respectively allocated on a demand

paging and a multiprogramming basis. We first carry out the analysis of

the short-run equilibriym attained by the page traffic between primary

and secondary memory. Several interesting phenomena are then revealed .
by relating these results to the long-run behavior of the flow of trans-

actions between the set of user consoles and the entire computing system.,

e show that, owing to the fluctuations of processor usage with the degree

of multiprogrmnning,*the working conditions of a paging time-sharing system

may be either stable or unstable. When the regime of operations is stable,

the fluctuations of the congestion, measured by the current number of pending
user transactions, damp out as a result of the alterations they cause

to the ratio of the tranaacltion input rate to the processor usage factor;

in the unstable regime, these congestion fluctuations are reinforced by

the way they alter the input rate to processor usage ratio. We indicate

how these stable and unstable values of the congestion may be calculated

from a set of parameters defining the computing load on the system and

the page traffic between primary and secondary memory, Moreover, the
analysis reveals that below a certain computing load the average congestion
and the mean system response time increase less than linearly with the . .
load, while beyond this computing load they increage more than linearly,
This critical computing load is an extension to service systems with
congestion-dependent service rate of the saturation point defined in

[(K168]. These notions of instability And saturation lead to a more complete
definition of the circumstances under which the severe system performance

degradation known as thrashing [De68/2] may occur,

S gt e 0




1.0

I. NEARLY COMPLETELY DECOMPOSABLE SYSTIMS

We introduce in this firsf section two theorems on nearly completely
decomposable systems proved by H, A, Simon and A, Ando. We limit our-
selves to the case of stochastic systems, which is the only case relevant
to our study.n Except for the subscripts, we have kept the same notation
as in [S161]. We show afterwards how aggregative variables may be used
to represent fused states [Ve69] and to evaluate the limiting state prob-
ability distribution in stochastic multi-level nearly completely decompos-

able systems.

1.1 The Simon-Ando Theorems

We are interested in stochastic models of the form
x(t+l) = x(t)Q ; . (1,1)

where x(t)vis a row probability vector and Q a stochastic matrix., The
system having n possible state, xz(t) is the unconditional probability
of the system being in the Lth state at time t; Gy 18 the conditional
probability that the system is in the tth state at time (t+l) given that
it is in state k at time t.

We consider next a matrix Q*, that can be arranged in the following

form after an appropriate identical permutation of rows and columns:




1.1

*
where the QI's are square matrices and the remaining elements, not dis-
N
*
played, are all zero. Let n, be the order of Qs thenn= I n.
I=1
*
following notation is adopted to refer t¢ the elements of the vector x (t):

The

x'(6)= (g ()] = {[xIl(t)]....,[x: ()]0 s x; (£)])
I N

vwhere [xI (t)] 1is a vector of elements of {x:(t)] so that 1if
I

* *
in(t) = x (),

I-1
then k= ¥ nJ+i, 1-1,...,n1;
J=1
1-1...0..Nl
*
The matrix Q 1s said to be completely decomposable, 1t is clear
that in the system
* ¥%* *t
x (t) = x (0) Q
* * *
the subset [xi (t)} depends, for any t, only on [xi (0)] and QI’ and is
I, . I
independent from [xI (t)] and QJ, JFI.
J

Let us now consider the slightly altered matrix Q defined by
*
Q=Q +¢C (1.2)

where C is a matrix of the same size as Q* vwhich has the property of keeping
both Q and Q* stochastic (i.e., elements of C are at most equal to unity in
absolute value and their rowsums amount to zero), and where ; is a very

small real number to be specified later in §1.5. Matrices of the form of Q are

defined in [An63] as being nearly completely decomposable matrices,




1.2

The two theorems to be introduced apply to the dynamic behavior of
systems defined by (1.1) with. Q defined by (1.2). Let the roots of the

*
submatrix QI be designated by )‘i » 1ml, .00, We assuw.e that these roots

I.
I & * * *
are distinct and so arranged that )\1 > )‘2 Sees> )‘n . Q@ being completely
I I I1

decomposable and atochaétic, we have
*
11 - 1. I-I.Z.O.Q.N.
I
: *
Let us also define § as being the minimum of the absolute values of the
*
differences among all roots of Q whose values are not unity and of their

differences from unity; we have in particular:

* * '
|13, | 28, 12,000mp I=1,000,N. (1.3)
I

The roots of a matrix being continuous functions of its elements (see [Web98)
904, or [Bo07], e.g.), we can define for amy positive real number §, however
) K K
small, a small enough ¢ so that, for every root of Q , )\i , there exists a
I

root of Q, )‘i , such that
1

%*
I, - xill <8, 1=l,0.0,n55 I=1,.00,N, (1.4)

i
Hence, we may classify the roots of Q so that

Il'll | < 6. 1-1..¢..N.
! (1.5)

%*
Il-RiII > 6 -6’ 1-2""Dn1; I-lpooo.N.

where § spproaches zero with e.
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1.3

Now, assuming all roots of Q to be distinct, the Sylvester expansion

of Q into itself gives (see e.g., [Fr52) page 78):

I |

Q= T E N\ Z(ki) (1.6)
I=1 i=1 I I

vhere 20 ) = jnJ @y In)/jIlJ TR
1,01, 1 J=1,...,N.

The matrices Z()\i ) have the following properties (see e.g., [Wel34] page 25);
1

(2, )1 = 20 ),
I I

z2(hy ) X 2Oy ) = Oy 1Ay,

I J

N 1

T T ZO\, )=1I
I=1 i=1 i n’

where 0n is an nxn matrix of zeros and In the nxn unit matrix,

On the other hand Q may also be written

N M

T T oA, ui) V),
=1 4=1 ip I I .
where the symbol ~ denotes the transpose and the column vectors u(iI) and

v(iI) are respectively the left and right normalized eigenvectors of Q

associated with A (see [Ta60], e.g.). So that

I
zk.t“‘il) =y () v, 15k, L=n,
d Z ()\ )=1. 1'1,...,n .
L kgl kpke g E
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Moreover as Q 18 stochastic, uz(ll)-l (#=1,...,n) and "\3(11) is the

limiting probability vector lim x(t).
=0

It follows from (1.6) and from the properties of idempotency and

orthogonality that

t N nI t
"= £ A za). (1.7)
I=1 i=1 I 1

Following the classification of roots defined by (1.5), we may divide

the righthand side of (1.7) into three terms:

E N g N I o
Q = z(k1 )+ T 11 Z(k1 )+ £ T 11 z(k1 ). (1.8)
1 I=2 1 I I=1 i=2 I 1

*
Q may not be expanded directly as Q since the N largest roots of

* * *

Q are all unity. However, any non decomposable submatrix QI of Q may '

be so expanded: i

n
Ttazot )+ Tt ) |
I 11 {m2 MI MI )

*
Bordering each matrix QI with the appropriate number of rows and

columns of zeros and designating those nxn matrices by the same name, we have

* N
Q = I Q
1=1
n
*t N o % N I % % %
and thereby Q = I 2 (A )+ T L A 2 (7(1 de (1.9)
I=1 I I=1 i=2 "I 1 '




1.5

*
The dynamic time behaviors of x(t) and x (t) are specified respectively
by (1.8) and (1.9). To compare those behaviors, Simon and Ando [S161] have

proven the following propositions:

Theorem 1.1. For an arbitrary positive real number B,s there
exists a number €, such that for € < €,,

max |z, (0 )-2z, M) <e
x -
Ko B i "y i 2

I’
And
Theorem 1.2. For an arbitrary positive real number w, there exists

a number € " such that for € < €y’

B *
max | z g A-v, 1) o, (N ) | <w
i,] inJ 1]( jJ 4 1 ll(
for K’l’o..’N; I’l.ooo’N; Jal’ooo’N; 1<i SnI; 1 sj < nJ;

-* 4
where [Vj (1,)] ie the right row eigenvector of Q , associated with
J

the root of unity

%
v, (1))
jJ(lJ) nJJ ’ b 1,...,I'IJ, ~

T v (1)
v
jm1 457 \

-t
\Y

and where uIJ()\IK) 18 given by

e S |

-t
el )= T T v (1) z (A ).
LT a1 ga1 1 U il L
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1.6

1.2 Interpretaticn of the Theorems

The implications of these two theorems may be discussed in more con~
crete temms.

Since by (1.5), the 11 » Il,...,N are almost unity, for any small
t,t < Tz. 11 » I=!l,...,N will stay close to unity. Thereby, the first two
terms of the righthand side of (1.8) will not vary very much while the
first term of the righthand side of (1.9) will not vary at all. Thus, for
t<T

2
of (1.8) and (1.9), respectively. But, as ¢ = 0, it results from (1.4)

*
» the time behavior of x(t) and x (t) are defined by the last terms

that

and from theorem 1,1 that

20y ) =2 0y )
I 1

for i=2,...,n_ and I=1,,..,N.

I

*
Hence, for t < TZ’ the time path of x(t) must be very close to that of x (t).

*
Now, since the Ai ’ iﬂZ,...,nI; I=1,...,N, are less than unity (1.3),
I

*
for any positive real gl, we can define T1 such that
n

max z I V] L N )| <E, for t > T
k,t =1 i=2 M } 1°

1<k, £ Sn

Likewise, we can define T, such that

1

| B F |
max T T M (N )| <&, fort>T,.
Ky 2 1 1= Lp 4 M 1 1

1<k, L <n
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Moreover, theorem 1.1 and (1.4) ensure that

*
Tl'*Tlase-'O,

* L
'1‘1 being independent of ¢, Since T2 can be mad2 as large as we want by

*
taking ¢ sufficiently small, while T, remains independent of €, We shall .

take € go that T, ie very much larger than 1.

Finally, provided that ¢ is not identically zuro so that, except for

M

0 Al s I=2,...,N, is not identically unity, we may define T3 so that for
1

1
an arbitrary positive real number §3 and t > T3

N
t .
max | = a M) | <e,.
k,4 I=2 lI et lI .

1<k, 4sn

Owing to the classification of roots defined above, T3 is greater than Tz;
it increasgs without limit as ¢ » 0, For Té <t< T3, the last summation
term of (1.8) is negligible and the time path of x is determined by the two
first summation temms. But theorem 1.2 gpecifies that for any I and J, the
elements of Z(AHK)

z (1 ) P (A )
LBy g Oy ez

()
I'JJ K

depend only upon I,J and j, and are almost independent of 1, That is, for .
any I and J they are proporticnal to the elements of the characteristic

*
vector of QJ associated with the root of unity

-% =% %
v, (1 ),ooo,\’ (1 ),c.c,\’ (1) (1.10)
1J J jJ J n g J

R i e e
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and are approximately the same for 1=1,...,nI.
Thereby, since for Té <t< T3 ‘Qt is mainly determined by the two first

terms of (1,8), the vector [x, (t)] will vary with t during that period

3
keeping for a given J an approximately constant ratio among distinct elements
which is identical to that of the elements of (l1.10). In other words a local
equilibrium is reached within each subsystem J. We may at this stage use
such an equilibrium probability distribution as (1,10) to cluster all states
of a subsystem I, that is to replace the n-dimensional vector x(t) by an
N-dimensional vector of aggregative variables xI(t), I=1,...,N, nnd the nxn
matrix Q by a NxN matrix IquJII'

Finally, for t > Tys all terms of the righthand side of (1.8) except

the first one become negligible and the behavior of x(t) will be dominated

by the largest root of Q, as in any linear dynamic system.

We may summarize the above discussion by saying that the dynamic be-
havior of a system representable by a nearly completely decomposable matrix
may be analyzed in four stages called respectively by Simon and Ando:

(1) short-run dynamics, (ii) short-run equilibrium, (iii) long-run dynamics,

(iv) long-run equilibrium. In more precise terms, these stages are:

L) Short-run dynamics: t < T1 < Tz; the preponderantly varying
term of (1.8) is the last one and this term is close to the

*
last one of (1.9); x(t) and x (t) evolve similarly.

(11) Short-run equilibrium: T1 <:t<:1§; the last terms of (1.8) and
(1,9) have vanished while the time powers of the N largest
roots Al , I=l,...,N, remain close to unity. A similar equil-

ibrium is being reached within each subsystem of x(t) and x (t)

i ]
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(iii) Long-run dynomics: T2 <t< T3; the preponderantly varying
term of (1.8) is the second one, The whole nearly completely
decomposable system moves toward equilibrium, an equilibrium
among relative values of variables within each subsystem being

approximately maintained.

(iv) Long-run equilibrium: ¢t > Tb; the first term of (1.8) dominates
all the others. A global equilibrium is attained since in this

case A\, = L.
1,

We conclude that in the short run, i.e., stages (i) and (ii), a system
which enjoye the property of near-complete-decomposability may be considered
a8 a set of independent subsyatems which may approximately be analyzed sep-
arately from one another. In the long run the whole system appears to evolve
keeping roughly the state of equilibrium within each subsystem. Each subsystem
may be replaced by an aggregative variable, and the whole system analyzed as a

get of interactions among those variables, the interactions within each subsystem
being ignored. '
1.3 Fused States

In prirciple, the aggregative variables xI(t), i=l,...,N, can be any
function of the equilibrium state distribution [GII(II)] of the system Q:
provided that appropriate transition probabilities qpy may be derived ac-
cordingly. A straightforward approach which has been discussed from another - 3
point of view in the literature (see e.g., [Ve69]), is that of "fusing" the
étates of each subsystem I, In this case xI(t) is taken as the sum of the

probabilities of being in any one state 11, 1=1,...,nI of subsystem QI at

time t:
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ny

x ()= T x (t);
L =1 11

then, assuming the system defined by (1.1) to be a- time t in any one
state 1, i.'-l,...,nI of subsystem I, the probability that it will be in

I
any one state jJ, j-l,...,nJ of subsystem J at time (t+l) is given by

ny Ny

-1
q..(t) = (x_(t)) r x, (t) ¥ q
u L f=1 i1 j=1 iy

For Tz <t< T3, we may write

and thereby analyze the whole system as a set of subsystems I=1,...,N

vhose interactions among subsystems are tndependent of time and given by

lquJll where
"I . %
., L v, (1) T q , . (1.11)
O S B o

Since, at this stage, only the roots AIK, K=1l,...,N, are to be taken

into account, we have

N
T hl z,

q
1IJJ K=1 'K IjJ

Ay ) (1.12)
K

Introducing (1.12) into (1.11) we obtain

n
N ) S

-k
q..= ¥ z v 1
1J K=lxll( {=1 j-l \’11( I) zi'IjJ 0\11()
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which yields the relation between elements dy; and the constants au()\1 )

which were introduced by theorem 1.2:

N

975 " KE kl arg lk

Let Xy I=1l,...,N, be the long-run equilibrium probability of being
at some time t > T3 in subsystem I which is obtained by studying the whole
system as a set of subsystems whose interactions are defined by (1.1ll).

From those probabilities one can approximate the long-run equilibrium prob-

abilities of being in any one elementary state iI by:

-*
X, =X v, (1), (1.13)
11 I iI I
with
"
r x, =1x,
=1 1 I
and
N
z X = 1. i=1’...’n ; I=1’...,N.

=1 ! I

1.4 Multi-level Systems

The system of variables discussed in the foregoing paragraph can be
represented as a two-level hierarchy with the aggregative variables at the
higher level. It is clear, and Simon and Ando do not fail to observe it,
that such an hierarchy may be extended to more than two levels, each vari-
able at a certain level being an aggregate of variables of the immediately
lower level. An example of a two level nearly decomposable matrix (cor-

responding to a three-level hierarchy) would be




1.12
|

L U R
)

% Pz:sa S

-,'————l —————

55 %, B304
|

57 Ss1 % B

where the order of magnitude of the elements of submatrices P is larger
than that of matrices Q, this lattervbeing larger than that of matrices S.
At the first level of aggregation there could be four aggregative variables,
one for each matrix P; at the second level of aggregation two aggregative
variables would correspond to :he partitions 1nd1cltgd by the dotted lines.
More generally, we will say that to the (L+l) levels #=0,...,L of a nearly
completely decomposable hierarchy may correspond L levels of aggregation
#=1,...,L and that such a hierarchy is representable by an L-level nearly
completely vdeaompoeable matriz. In such a system the time instant T2, ‘
beyond which the whole system ceases behaving as a set of nearly independent
subsystems at the l.th level of aggregation is also the time instant TO, 81
at which subsystems of the adjacent upper level (#+l) of aggregation start

moving towards their internal equilibrium (which they reach at time T1 frl-l):
’

TZ,jE To’u_l, bl,ooo,L'l

The time instant '1‘3 at which a global equilibrium is reached throughout

the whole system is the time instant T at which equilibrium is reached among

1,L
the aggregative variables in terms of which the whole system is described
at the uppermost level L. These time relations among levels are schema-

tized in the following diagram:
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T T =T
level L ,-Q'L———'I’L 3
T T LN N ]
level (Ml) &1“1 1,_,0"'] t_
Ty, o411
level £ To.g T1,y
__11 Ta,2
2, 4-1 -

Each level £ is a level of aggregation provided there exists an ez

small enough so that

Tl,z-l < (TZ,L-I = To,z) for f~2,...,L.

The analysis of the entire structure proceeds then from the lowest
level of aggregation through each adjacent level up to the highest one: at
each level of aggregation the system is viewed as a set of independent sub-
systems whése short-run equilibriwm is analyzed in terms of aggregative
variables descriptive of the short-run equilibria reached by the subcom-
ponents which were considered at the adjacent lower level. The equilibrium
obtained ultimately in this way at the most upper level defines in terms
of aggregative variables the long-run equilibrium of the whole system.

From this long-run equilibrium at the uppermost level it is possible
to deduce the long-run equilibrium probabilities for each lower level,

In the case of "state fusing" discussed above, we may for instance general -
(L°
I

ize the relation (1.13).as follows. Let x be the long-run equilibrium

probability of being in some aggregate subsystem I of the upper level L at
any time t, t > T3. Then the long-run equilibrium probability ng-l) of

being in subsystem J of I at the (L-1)th level of aggregation is given by

PR
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v
I
Using recurrently this relation successi&ely with L, L-1,...,1 and for all
subsystems at each level, yields ultimately the long run equilibrium prob-

ability xio) of being in the elementary state i, for all {i.

1,5 Cohesiveness
It is easy to show [F162/2] that the largest characteristic root

A of an nIxn

1

7 bon negative matrix QI is equal to

(1.15)

t=1 1p

n
where S
I
istic vector associated with 11 , the strict inequality holding trve if and
1
only 1if QI is not decomposable. Now, if QI is a principal sutmatrix of a
stochastic matrix Q, 81 may be interpreted as the probability, when in
' 1

state 11, of remaining in the subsystem defined by QI after the next transi-
tion; moreover, the distribution of the probabilities of being in state

11. 1-1,...,n1, at time t on condition to be in QI at time t=0, approaches

the distribution of the x, as t - ®, Thus, the weighted average (1.15)
I

is the long-run probability, having been in subsystem QI during the interval
[0,t], of remaining in Q; at time (t+l), t = =, Following [F162/1] we will

refer to the probability *1 as being the cohesiveness of the subayatem QI'
1

4 designates the ith row sum of Q; and {x1 2 0]121 is the character-
1
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One can deduce from (1.15) that a Necessary and sufficient condition

for Q to be nearly completely decomposable into the indecomposable matrices

QI's 1s that the roots 11 » I=1,,...,N be sufficiently close to unity. This
I

condition is hecessary to have the two first terms of (1.8) suf-

ficiently close to the first term of (L.9). It is a sufficient condition )
since if the X; 4are strictly greater than zZero, (1.15) requires that the
I
si s Just as Al » be close to unity, with the result that
1 I

€<1 - maxs,)
i
11 I

will be sufficiently small to satisfy the conditions of theorems 1,1 and 1.2,

Now, the Frobenius theorem (see e.g. [Ma64 ], page 152) states that

where 8, = min S1 and sI = max Si « Thus, 8; 1s a lower bound of the

i I i I

cohesiveness of QI; & sufficient condition of the hear-complete-decompos -

ability of Q is thereby that 8y be sufficiently close to unity for all sub-.

systems QI’ or that

min(sI) >> l-min(s_). (1.16)
I

I I

I=1’.I.’N

Relation (1.16), merely expressed in terms of the entries of a matrix, -

will be used in section III as a criterion of the near-complete~-decompos-

ability of matrices defining the dynamic behavior of networks of queues,
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1.6 Remark

Ando and Fischer [An63] proved that the Simon-Ando theorems could

be extended to the case of nearly decomposable matrices, defined by replac-

ing the zeros in a decomposable matrix by small numbers. They showed
that, mutatis mutandis, the conclusions of paragraph 1.2 remain true for
such systems: the short-run dynamics may be analyzed as if the system
were decomposable, thus ignoring the weak 'fee;lbacks' between subsystems;

the long-run influence of these feedbacks may be analyzed in terms of

aggregative variables representative of the short-run equilibrium attained

by each subsystem, The subsystems which are aggregeted and which, in the i
*

Simon-Ando case, are associated with the submatrices’ PI’ are in this case

those corresponding to submatrices

I * *
P 6
0 * *
Prr

*

*
where the G_ are submatrices of dimensions (n_, N - Z n_ ). Such systems

I I J
J<I
are referred to in [An63] as nearly deasomposable block triaigular systems.
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II. A STOCHASTIC MODEL FOR MULTIPROGRAMMING SYSTEMS

We consider a system which consists of a set of independent resources
RO’RI""’RL' Each of those resources ) is capable of providing a dif-
ferent type of service. We define a sequential process ) in this system
as being the sequential execution of an ordered sequence of requests for
those resources, every single request applying to a single resource, every
resource completing one request at a time,

Let the service time of resource RL be a random variable exponentially
distributed with a mean value equal to l/uz; W, measures the average number
of requests which may be completed by RL per time unit,

A sequential process is stochastically defined by a set of transfer
probabilities Pog? 0<m, L<L; Pus is the probability of a request for
resource RL following immediately the completion of a request for resource
Rm in the same sequential Process, We have

L

L p

l 0 m L 1’ ‘FO’...’L.

j/
The fact that Py M8Y be nonzero means that a sequential process that has
Just completed service at resource R.m may need to be rnserviced immediately

by the same resource,

———ee
*

In queuing theory, the terms server and customer would be common,
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Let N, N < », be the total number of sequential processes concur-
rently executed in the system, these sequential processes being mutually
independent and identically defined by che same probability set {an]°
As resources may at the most service one request at a time, sequential .
processes will eventually queue up for resources. Let iz be the number
of sequential processes in service or in queue at resource RL' Since
sequential processcs may at most be waiting for one resource at a time,
we have

L
z iz = N, (2.0)
=0
N is supposed to remain constant in our system. That is, each process is
to be considered as lasting for an infinite period of time. This is not
so important a restriction as might appear at first glance. We could
indeed easily construct an equivalent system in which the total number of
processes ; iz would vary in time without exceeding N by simply consider-

#0
ing a resource RL+1 with service rate

Axi (2.01)

7S L+l

L

= N - z ’
0 1y

and where iL+1

\
which would model the creation of processes in our system. The probability

of a request to RL being the last request of a sequential process, i.e.,
the probability of a sequential process '"dying" on completion of a request

to R‘, would be p‘(L+1); P(L+1)t would be the probability that RL is the

first resource requested by a sequential process.




2.3

The state of the system is uniquely defined by the (L+l)-tuple
(io,...,iL) and there are <?I§> distinguishable such states, i.e,, the
number of partitions of N processes among (L+l1) sets.

Let P (io,...,iL,t) be the joint probability that at epoch t the
system is in state (io,...,iL). These probabilities satisfy the system of

difference equations of a generalized time-homogeneous birth and death

process:

P(io’il’...’il" t+h) L

L
P(1gslysecenl;s t) (1-h 3 n(il‘) “z(l"’u))

=0
L L ‘
+£o mfo n(1) P(Lgseeest #lyeenyd =lyeueyty sty py
nf £
+ 0(h), (2.1)

where 0(h) is the probability, negligible for small values of h, of more
than one request being completed during the time interval (t,t+h], and
the binary function

if1,=0,
u(iz) =
1f1£,lo,

accounts for the impossibility of any iz taking negative values.
This system of difference equations may be represented by the matrix
equation

P(t+h) = P(t) (h A+I) + O(h), (2.2)

where P(t) is a vector whose each element is the probability for the system
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being at time t in one of the (?:i) distinguishable states. A is a matrix
of constants called the transition intensity matrix of the process, with

the properties that

T a,,=0
i
J 3
for all values of i, and
‘1j 20

for all 1fj. I is the matrix unity.

Eqdltion (2.2) may be rewritten in the form
(P(t+h) - P(t:))h'l = P(t) A + ﬂﬁl .

As h » 0, the last term tend's to zero; hence the limit of the lefthand side

exists and

P'(t) = P(t)A

whefe P'(t) is the vector of the time derivatives of the elements of P(t).

An equilibrium probability distribution

P = 1lim P(t)

| gl
is, by definition, a solution of the system
P A=0 (2.3)

satisfying the condition that the sum of the elements of P equal 1, For a
birth and death process, this limiting distribution always exists and 1is

independent of the initial conditions P(0).

i A —————————

amik ooy atme
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We shall not pursue the investigation of this equilibrium distribu-
tion which has been studied in [Ja63], [Go67]; we shall instead concentrate

on the structure of the matrix A which defines the dynamic behavior of the

model.
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III. NEAR-COMPLETE-DECOMPOSABILITY OF MULTIPROGRAMMING STOCHASTIC MODELS

We establish in this section the conditions under which the system
defined by equations (2.1) enjoys the property of near-complete-decompos-

ability.

Henceforth we will neglect 0(h), take h=l and Q=A+I, so that equation

(2.2) may be rewritten
P(t+l) = P(t) Q.

L
The time unit is chosen small enough so that I My <1,

L+N .
Each index value ]}, j-l,...,(L ) of the stochastic
matrix Q refers to a distinct state (10,11,...,1L) of the system, We
choose an arrangement of the rows and columns of Q such that the (L+1) -tuple
10,11,...,1L which is associated with the index value j, yields for the
function

L

£(x) = 10 + 11x +1 x2 +o00t 1Lx

2

a value fj (x) such that

£f.(x) > ¢

3 (x) for vj>1 and Vx> N,

3-1

An example of a matrix whose rows and columns are arranged in this order

is giver in figure 3.1,

It results from equations (2.1) that any non diagonal entry qjk of Q,

j;‘k, is non zero and equal to Wy Pyys !q‘m, i1f and only if there exists &
pair (4,m) so that

1]& = 1k!. + 1

i, =41 -1 (3.1)

i, =1 " for VpfL,m,
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where {,,6 is the value of the coefficient of xzin £, (x).

jL i)
It results also from (2.1) that any diagonal entry q“, j referring

to some state (10""’15""’1m""1L) is given by

L L L
S Z g e1l-T I wp)p e, =l- T ulpu(lp,y
oy AL TR Y Iy 1w (lopyy
mf 4 (3.2)

1y =L

Denoting Q(N,L), N> 0, L > 1, the matrix of order (?Iﬁ) defined by

equations (2.0),(2.1) and this numbering of states, we can prove the following

Lerma 3.1. The entries of the stochastic matrix Q(N,L), N>0, I>1,
may be partitioned among (N+l1) principal submatrices Q' 1),
iL = 0,...,N 80 that
(1) the set of all non diagonal entries /f each matrix

Q'(iL), iL-n, 18 the set of all trangition probabilities between

14N-n
L-1

(11) Any non zero entry outside the main diagonal of

any two distinct states of the (L- states with i,=n;
Q(N,L) takes only the value WP gns ﬂ;‘m, with Lnll <if it is
located within one of these submatrices, and with max(f,m) = L

if it i8 located outeide these submatrices.

Proof. 1) Owing to the numbering of system states according to increasing
values of f(x), the smaller index values of Q(N,L) refer to all

L-14N

states with iL 0; there are ( L-1

number of distinct integer solutions of equation

such states, i.e,, the

L-1
r 1,=N.
w0 L
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+N -2
L-1

states with iL = 1, and 80 on up to 1L = N. All states may

therefore be partitioned among (M+l) sets, i

Likewise, the <'L ) following index values refer to all

L = 0,-00,“, the

(1L+1)th grouping all the <? Lo 1£) states for which

L-1
L 1,= N-i

o L L’

in agreement with the identity

;G- (49

iL'

These (N+l) sets define as many principal submatrices denoted
Q'(lL) all of vhose non diagonal entries are the transition
probabilities between any two states of the set of all states

for which 1L has a given value,

The second proposition of the lemma follows immediately. Any
off diagonal entry qjk(N’L)’ jfk, of Q(N,L) is non zero and
equal to WP 0 <4, m<L, provided there exist a pair (L,m),
ﬁﬁn, which verifies equalities (3.1),

For any entry qjk(N’L)’ jfk, located within a submatrix

' - = .
Q (iL), ijL ikL iL’ it is thereby necessary that

(#L) and (mfL)

for qjk(N,L)'to be non zero.

Alternatively, for any entry qjk(N’L) jfk, located outside
all the principal matrices Q'(iL), 1L=0,...,N, by definition
iy # 1,13 that is

(L) or (m=L),

which completes the proof.
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In order to help visualize the structure of matrix Q(N,L), Q(2,3)
1s displayed in figure 3,1, Plain lines isolate submatrices Q' (0), Q' (1),
Q'(2); L denotes the ith rowsum of non diagonal entries,

i
Using the preceding lemma, we may now prove the following proposition:

Lerma 3.2, If,

[ L .L-1 L-1

min 1- 2 allw + & w(@)Iu(Z p,_ - p..)
12....,1L k=0 e’ kw0 K K gp Tl CKL
Ti =N

k=0 ¥ =

-n(l ) (Z p, -p )]>>0, (3.3)
L7L o Im LL

then the sparse stochastic matriz Q(N,L),N > 0, L > 1, defines a system
nearly completely decomposable into (N+1) systems which may be represented

by stochastic matrices Q(N-n,L-1), n=0,,..,N.,

Proof. (1) Lemma 3.1 allows to write:
QN,L) = Q (N,L) + ¢ CN,L) 3.4)

with
Q' (0)

* Q' (1)
Q (N,L) = '..
Q')
*
where all entries of Q (N,L) not displayed are zero, non diagonal entries
*
of Q (N,L) have only values Omep s kfm, with k,m < L, and non diagonal
: S | -1
entries of C(N,L) have only values {0,¢ By Prm? € ”hme} withm < L,
On the other hand, the jth rowsum of Q(N,L), say Sj, j referring to

some state (10,...,1k,...,1m,...,1L_1,1L), may be expressed as
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L-1 L-1 L-1 L-1
Sj = qj.1 + kfo mfo u(ik)pkpkm + kfo u(ik)u.kpkL + u(iL) mfo u,Lme. (3.5)
mk

It results from lemma 3.1 that the sum of the two first terms of Sj,
is the sum si of the entries of the corresponding row in Q'(iL), 1170,...,N.
We know from § 1.5 that a sufficient condition.for Q(N,L) to be nearly
completely decomposable into Q'(0),...,Q'(N), is that the lower bound of

the cohesiveness of any of these submatrices be sufficiently close to unity;

or that (cfr. inequality 1.16):

min(S')>> 1 - min(S}).

y y
Since Sj-l, this conditior is equivalent to
L-1 L-1 L-1 L-1
min|q,,+ T I (i )mpP > £ w(l)uwp., +n(l) I P, .
el k-O:;O k7 MPlan| 77 20 ML L oo M m
k

Replacing qjj by its value given by relation 3.2, yields inequality (3.3).
Inequality (3.3) expresses the condition that the probability of an

individual sequential process moving between the subsystem of resources

Ro,...,RL_1 and the subsystem RL is small relative to the minimum prob-

ability of his remaining in the :::» subsystem or of no sequential process

moving at all,

(2) All states referred by the incdex values of a matrix Q'(n),

n=0,...,N, are arranged'lccording to increasing values taken by the function
L-1

(1 te..H xP-l + nxL) with £ i, = N-n. Hence, it rcsults from propositior

(1) of lemma 3.1 that each non diagonal entry of Q'(n) is identical tc the
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corresponding entry of a matrix Q(N-n,L-1). Q'(n) is however not stochastic;

its jth rowsum S is equal to the two first terms of S. in (3.5) and is
I

] ]
therefore strictly smaller than unity. But the stronger the inequality
(3.3), the more negligible will be the two last terms of (3.5) relative to

the two first ones, so that

53 - SJ with SJ = ],

and Q'(n) - Q(N-n,L-1), n=0,...,N, |

which completes the proof.
Applying recurrently lemma 3.2 on the matrices Q(n,4), n>0, £>1,

produced by the recurrence matrix relation (3.4), one obtafns the following.

Theorem 3.1: The system defined by matriz Q(N,L), N> 0, L> 1, ;5 (L-1)-
level nearly completely decomposable and may be represented at each level
of aggregation A, f=L-1,...,1, by a set of (N+1) aggregation variéblea,
each one defining the short-run equilibrium of a system Q(n 2 £, n 2705000, N

if, for kL'I’ooo’I:

51 2 2
min 1- 2 n(dp, + T #@ ) (T p_ -p )
Lgseeesl [ k=0 o k=0 ikp"‘mao lan — Tk(HDT (4 5 1)
51
2
1
= n(d, I, (2 -p 3»0.

1.<.k£:0 1k.<N ALV 0 p()(m)m (L+1) (L+1

A sufficient condition for near-complete -decomposability which is

stronger than the above condition but also easier to verify is given by :

Corollary 3.1: A sufficient condition forQWN,L) to be (L-1)-level nearly 3

completely decomposable into systems Q(nz, L, nz-O,...,N; fRL-1,...,1, i8:

T T
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1
4
oy mL-1,...,1: min [p (X p, - p )]l >
f U 0sisy K mag km T Pl(A+L)
)
b1 C B Pogiym ~ Pearymny)s GO
m=0 .
' : 1l
This condition is obtained by ignoring in (3,5,1) the term [l - % w4 ]
k=0

which is always non-negative.

Remarks, (1) The inequalities specified in theor-m 3.1 are sufficient but
not necessary conditions for near-complete-decomposability since they refer

to the lower bound of the subsystems' cohesiveness. On the other hand,

let us recall that theorem 1,1 guarantees that whatever standard of approxi-
s\ © mation is required, a degree of inequality exists which is sufficient to
[ :

produce results satisfying that standard.

(2) We will be more particularly concerned in the sections VI
and VII with the special multi-queue model in which Vk: Pk = 0; for k;‘O,
Pio = 1; and for k and k0, Pip~0- This model is referred to in [Bu7l]

as the central server model. 1In this case conditions (3.6) reduce to:

, for f=L-1,...,1: min (y, )>> ' | (3.7.1)
= ocksy K g
- /

on the other hand, it is easy to verify that a sufficient (but

bl 4
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not necessary) condition for (3.7.2) to hold, is Po1 > Po2 S>>, 00> PoL°

(3) Each submatrix Q'(i ), i -1,...,N may itself be partitioned
into principal submatrices Q'av ’1L 1) 0 < 1L 1 < N-i L’ whose set of non
diagonal entries is the set of all transition probabilities between any two
distinct states of the set of all states which have the same pair (1 1,1 ).
Following this scheme recurrently, Q(N, L) may eventually be decomposed into
principal submatrices Q' (1L,1L 12°00> 2) In figure 3.1 for exnmple, dotted
lines isolate submatrices Q'(0,0), Q'(0,2), Q' (1,0), Q'(1,1), qQ (2 0). Let
xh+1,n be the number of sobmaordceo Q'(iL"f"iL-E)’ #0,...,L=2; x£+1,n

obeys the recurrence relation

i T *on t ¥l n-1
&
where n = z 1 and with the boundary conditions X = M1, x =1,
Mi l 1,n
Therefore X oy (E ) and the total number of submatrices Q'(iL""’iL-L)
is given by

. (m-.m)
ne0 Ml N /°

Using identity (12.16) of [Fe68] page 65 one may verify that the sum
of the orders. of matrices Q'(iL""’iL-L) amounts to the order of Q(N,L)
or that

z (!ﬂ-n) (L-!,-1+N-n (L-I-N)

,“=°
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(4) One can observe in figure 3,1 that by the mere virtue
of fhe resource service rate inequalities, Q(N,L) is & nearly decomposable
block triangular matrix if all transfer probabilities have approximately

the same value,

S

- R o
B L, R - S S st

S
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IV, A HIERARCHY OF AGGREGATE RESOURCES

We assume henceforth that the stochastic multiprogramming model de-
- fined by matrix Q(N,L), N > 0, L>1, is a (L-1) level nearly-completely-decomposable

system. This amounts to postulating that there exists a numbering of the
resources RO’RI""’Rz""’RL so that the service rates by and the sto-
chastic behavior {Pij}’ 0<1i,j <L, of the sequential processes obey
the (L-1) inequalities of theorem 3.1.

Theae‘inequalitiea imply that L subsystems 8, s=1,,.,.,L, consisting
of the (s+l) resources RO""’Rs may be distinguished so that, on the average, the
rates at which resources of a same subsystem interact upon each other are higher
than rates of interaction between any resource within that subsystem and
any resource outside it. In other words, although the values of variables
io,...,i8 defining the state of the sequential process population in any subgystem s

depend on the past values of variables is+1""’iL outside this subsystem,

these dependencies are weak compared to intra-subsystem dependencies. ;
In this case the first Ando-Simon theorem (theor. 1,1) guarantees the {
following: provided that inter-subsystem dependencies are weak compared

to intra-subsystem dependencies, the former may be neglected when carrying

out the analysis of each subsystem; the results of this analysis will re-

main approximately valid in the short run; the weaker inter-subsystems
influences are, the better the degree of approximation. .pr, as pointed
out by M. Fisher and A. Ando [Fi62/1}"...1if this were all, it would be

useful but not very remarkable for it would merely mean that if neglected

influences are sufficiently weak they take a long time to matter much;...",
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But the second Ando-Simon theorem asserts that, even after a time period
long enough for inter-subsystem influences to make themselves felt, the
relative values of variables within each subsystem will remain approxi -
mately the same as those yielded by the short-run analysis., This Justi-
fies an analysis of the long-run behavior of the system in its entirety
carried out strictly in terms of aggregative variables representative of
these intra-subsystem short-run equilibria and in terms of inter-subsystem
dependencies. On the basis of those general concepts, the recurrent de-
composition scheme defined by theorem 3.1 enables a hierarchical model of
the multiprogramming system defined in section 2 to be set up. This model
is approximately equivalent to Q(N,L), the degree of approximation de-
pending on the relative degree of weakness of inter-subsystem dependencies.
We now proceed to describe more precisely this "nearly equivalent" hier-
archical model, which will turn out to be a generalization of the model

described in [Cg70].

4.1 Decomposition into Levels

Any matrix Q(nz,z), 1= n, SN, 1 <4<1L, defines a system in which
n, sequential processes compete for the (4+1) resources RO’RI”"’RL'
Let us associate with each such matrix a queueing system which will be

denoted!mz(nz) and which may be schematically represented as follows:



=t
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A fixed and finite population of n, sequential processes is considered
to be-cycling in this system. These sequential processes request alterna-
tively two resources: resource RL and what we call an aggregate resource
which will appear to be a synthesis of resources RO”"’RL-I' We say that
the system!mz(nz) is in state Ez(nz_llnz) whenever n, , among n, sequential

processes are either waiting for or being executed by that aggregate re-

Cael

source, i,e.,, whenever n,_ among n, sequential processes are either wait-

ing for or being executed by any one of the resources Rz-1”"'Ro’ and

(nx - nx_l) sequential processes are either waiting for or being executed

by the resource RL’

Assuming Q(N,L) to be a (L-1) level nearly-completely-decomposable system, we may

analyze the time behavior of !mz(nz) in the following way. We regard !mz(n!‘)




as a closed system that no sequential process may leave or enter. In
other words, we disregard all interactions between !mz(nz) on the one hand
and R!A—l""’RL on the other hand; we will see hereafter that the rates

of those interactions are sufficiently low to be neglected in the analysis
of the time behavior of sm (n ) We further suppose that all conditions are

fulfilled for the existence of a probabilistic equilibrium in M (nz) This

means that it may be taken for granted that each state E!‘(nz llnz) by 1™ ,...,nz,

may be reached from any other state E (J In ),J;‘n » within a finite time
) )} 2-1

period (irreducibility and non-null recurrence).

These conditions are neces-
sary for the stochastic matrix Q(n 2 L) to have a unique root equal to unity
and will in fact be fulfilled in most cases when resources have a non-zero
and finite service rate since the population of ‘mz(nz) is finite. Emz(nz)
thereby enjoys the property of ergodicity: there exists a stationary dis-
tribution of the probabilities ﬂ!,(n.e-llnl,) of finding tmz(nz) in state
Ez(nz_llnz),nz_l-o,...,nz, which is independent of time and of the initial
conditions of !mz(nl’).

An immediate consequence of theorem 3.1 is that this probabilistic
equilibrium of ‘.!.'lz(nz) which is defined by Q(nz, £) will establish itself by
some time Tl,.e (see section 1,4), that is, before some time
TO,M-I’ vhen resources RM—I""’RL have had time to influence ‘.mz(nz).
Interactions between those resources and sz(n z) may therefore be ignored
when atudying the evolution of M (nz) towards its probabilistic equiiibrium

[ﬂ (n ]_I“ )]
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Similarly, just as Q(nz, L) is itself decomposable into subsystems
Q(“L-l’ L-1) ,nt_l-O,...,nL " Emz(n!‘) is nearly decomposable into subsystems
-1(“1,-1)' By definition, these subsystems have attained a state of in-

n
-1
]L

ternal equilibrium {n!‘_fnz_zlnz_l) n, =0 at some time Tl,!,-l’ before

time T when ‘m!‘(ne) starts moving towards equilibrium; those internal

equilibria are maintained during the period from T to T when M,(n,)

_ 0,2 1,2 LR
settles down to equilibrium. In the study of the time behavior of sz(nz)
during that period, we may therefore assume that the aggregate resource of
m, (n ) which by virtue of our decomposition scheme is nothing but m,_, (n z-l)
when sm (n ) i8 in state Ez(n II“L)’ is already in a state of equilibrium,

Mp-1
conditioned on N, and defined by the distribution {nz 1(“2, 2|n 1)] 1,-2 -0*
More precisely, let “z(“:,) be the mean number of requests completed
per time unit in !mz(nz); this number is the sum of the mean number of re-
quests completed by RL and the mean number of requests completed by the
aggregate resource per time unit. As our decomposition scheme implies that

the aggregate resource of ‘.m!‘(n!‘) is !m!‘_l(nt_l) whenever !m!‘(n!‘) is in state

E!,(nt,-ll n!‘) , We have

n
.
o,y = (1-m,(n lny) + z n,(n, 4|0, 1(n, ). (4.1)
-1
(#2,..0,1),(a=1,...,N)

For #1, (4.1) reduces to

oy () = wy (Lom (g In)) + pg (M 0f0)),  (ap=lyeess). (4.2)
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We will refer to °z(“z) as being the service rate of !Ulz(nz); clearly,
requests to RO’RI""’RL are completed in ﬂz(nz), when !m!'(nz) is in
equilibrium, at a rate of oz(nz) requests per time unit; oz(nz) being de-
duced from the rates Hootpoeeesthy and the equilibrium distributions

n
4-m
{nz_m(nz_m_llnz_m) }nz-m_l-O’ for nz-m-l’ooo,nz’ and m-o,...,z"lo

Remark. Relations (4.l1) and (4.2) seem to imply that the constituents

of mtz(n z), R 4 and the aggregate resource, work independently of each other,

while in reality these resources interfere with each othe=., 1In fact oz(nz)
is an aggregative variable describing only the equilibrium of Emz(n!’) in which

these interferences have reached a steady state defined by the distribution

a1t
{m,(n, . |n,) I
211", =0

Let [h X *L k(n!‘) + 0(h)] designate the probability that during any
] .
interval (t,t+h], t > T1 g4 @ request is completed by '.mz(n!') and the sequen-
' ’
tial process being serviced applies to resource Rk’ k> A As az(nz), U,k(“z)

obeys a recurrence relationm:

n

/ .

I Vg (mp = wylomy(agladip, + ] Eﬂlﬂz(nz_llnz)vz_l’k(nz_l). (4.3)
2-1

(k > L),(!FZ,...,L-l),(nzﬂl,...,N);
For f=1, (4.3) reduces to

"l’k(nl) m ulplk (l'ﬂl(nllnl)) + uopok(l'ﬂl(olnl))l (k=2""’L) (nl-lin"N) (404)
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*L k(n ) will be referred to as the interaction rate of ﬂ%(nt) upon
t

resource Rk’ k > 4

Probabilities {m (“olnl)} _o,n =]1,...,N appearing in (4.2) and (4.4)
may easily be expressed as function;of n, and n;. They define the equilib-
0 and Rl‘ The probability

that a state transition El(nolnl) - El(no+1|n1),no-0,...,nl-l, occurs during

rium state of Eml(nl) whose constituents are merely R

a time interval (t,t+h], t< Tg.2° is. equal to (ulploh + 0(h)) where 0(h)

14
is negligible for small values of h, Jlikewise, the probability of a transi-
tion El(nolnl) - El(no-llnl), noﬂl,...,nl, during a same time interval is
equal to (uopOIh + 0(h)). In such a system, equilibrium equations reduce

to (see e.g., [Fe68], pp. 460 £f£f.):
BP1g ™ Olmy) = wopgy ™ (Afmy),
(B1P1g * HoPg1 )™ (Mglny) = Wypyg m (mg-1|my) + wgpy, ™ (agH[ny),
no-l,...,nl-l,

boPo1 M1 (M lny) = Bypyg ™ -1fny).

With the additional condition that the nl(nolnl), no-O,...,nl, add

to unity, these relations yield

n
m, (n In ) = Elglg ’ o (0|n ), n=1 n (4.5)
1 "l™ ) A e E B e AR | .
0”01
1p1
with @ (0|n)) = (1 + (4.6)
. ag =1 uo"o1

Introducing (4.5) and (4.6) into (4.4) yields the values of

2 k(n ),n =1,...,N; k=2,...,L, given the service rates of Ry and R, and
14

the transfer probabilities {pOR}k=0’{p1k}k=o

”

R e e e o ) MRSy IWEORL D
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Using the values obtained for *1 z(nl), nlal,...,N, one may easily
?

obtain the distributions {"é(“llnz)] of the equilibria which will be

nl-O

attained bx systems m&(nz). n,=1,...N, at some time T1,2'
The probability of a state transition E2(n1|n2) - E2(n1-1|n2), n=n,,...,l,
occurring in m&(nz) during any time interval (t,t+h], t < T is equal to
0,3
(*1,2(“1)h + 0(h)) while the probability of a transition Ez(nlan) - Ez(n1+1|n2),
91-0,...,n2-1, is equal to [uz(p20+921)h'+ 0(h)]. The equilibrium equations

are therefore:

[*I,Z(nl) + uz(pzoﬂz:l)] “Z(nllnz) - “Z(nl-llnz)[uz(pzo.PPZl)]
+ ﬂé(nl+1|n2) *1;2(n1+1),
(nl-lpooo,nz-l)t
[y (Pog*P21) 1 M (Ony) = my(1[ny) ¥, ,(D),

¥1,2(00) Myl ) = 1y (ny-1ny) [, Rty )1

n
The additional condition that probabilities {m,(n;|n,)} 2., add to
1

unity yields

n
1
“2(“1|“2) - [“Zi:20+P21)] “h(olnz)' n,=1,...,0
¥, ,(k)
kwl 1,2

2

n n1 -1
. 2 [py(Pyatr,,]
with m,(0[n,) =( 1+ 5 22021 . (4.7.1)
n
nl-l 1 )
my, ,(k
. mp 12




4.9

Introducing these probabilities into (4.3) yields. the values of the
interaction rates 'z,k(“z)' nz-l,...,N; k = 3,...,L, given the values of
the rates '1 k(nl)’ nl-l,...,nz. Proceeding reourrently in this way up

’
to level £, the probabilistic equilibrium of a system !mz(nz), nz-l,...,N,

is obtained as

-1 n
W, T Py
A k=0 /3
n"_l

L P
oy Va1,

L-1

ﬂz(nz_llnz)- ﬂz(olnz)

2-1 -1
L @, T p

m,0ay = {1+ T b ymg K
nl,-l-l N,y

| (k)
T S W

n
) 2-1

n

. (4.7.2)

.

bzgloo’L; n.]-,..o,No

Starting with the systems of the bottom level =1, the probability dis-
n
L
tributions {ﬂz(nz_l|n!‘) }“1,-1'°' for n=1,...,N, are obtained from (4.7.1) and
(4.7.2) successively for each level up to the uppermost one. At each level
L the values of the interaction rates h‘ k(n!‘), k = f+1,...,L necessary for
’

the analysis of the levels above, must be deduced by (4.3) from the values

of ¥1,k "1

4,2 Inter-level Relationship

So far, each subsystem !mz(nz), f=1,,..,L-1, has been analyzed as a
closed system inaccessible to entry or exit from the upper levels. Tor

this reason the equilibrium distributions obtained are conditioned on a
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fixed number n, of sequential processes supposed to be permanently cycling
in ‘Jﬁz(nz). These conditional internal equilibria are what Simon and Ando
call the short run equilibria which are successively attained at each level
of aggregation. We have seen in section 1.4 of Chapter I how

the long-run equilibrium probabilities for each lower level of aggregation
could be deduced from the long-run equilibrium at the uppermost level. If
az(nz_l),(nz_1=0,...,N), (£&=1,...,L), is the long-run and unconditional
‘probability of n,q sequential processes being in service or in queue at
any one resource Rm’ m=0,...,4~1, and sz(iz), ii=0”"’N is the long-run
and unconditional probability of iz sequential processes being in service

or in queue at resource Rz, the relations (1.14) yield:

a (m =m0, s )= M (N-1 W), (1,120,000 ,N);

and for each level f=L-1,...,1:

N
a(n, )= r a,.(n)u,(n ln )s
441 - M1V 4 4-1 g
ng=n, %.8)
N
s 1P = T oag@pmatlnp.
n£=iz

At level 1, whose only constituents are resources R1 and Ro, we have

so(io) = al(io), 10=0,...,N.

These relations express simply that the probability of having a popula-

tion of n, sequential processes cycling at level £ is equal to the probability



.equal t.o"'(].ﬁ-b'!:(ﬁ)‘)."v’rhe mean respanaé time W P of resource R Pr defined

% b1l | T
L ]
) |

"-?_bfi“sl_i“ one of the states EMl(nLinMI)’ n&]-n”...,N at level (f+l).

' "Ihe-‘ib_rjlg-ifi;n f;raction-_of time a resource Rz', #0,...,L 18 busy is

as being the mean time spent by a seqdéﬁtial process in queue or the

service at resource R.G may be eaai_].f 'dedliced using Little's formula [Li61]:

R

N
: R _
W, = [by(l-s,(0))] . ::1 1,8,1,), £=0,...,L. (4.9)
| l' g .

Moreover, if the uppermost level resource RL is the model of an input
mechanism of sequential processes whose: input rate B, obeys equation (2,01),
1 '
N =g» using Little's

-1

formula, the mean life time of a sequential process:

one may deduce from the probabilities {a_( )}
At A A |

' N
-1 _
W= [ (1-s,(0))] . T om sy )i (4.10)
-1 '

W is the mean time spent by a sequential process in queue or in service at

the aggregate resource of level (L-1). We will refer to W as being the

Noxs

mean response time of this aggregate of resources RO"" ’RL-I'

4.3 Concluding Remark

Near-Complete-Decdmposabii1ty allows the time analysis of a system to be
broken up into distinct stages at each of which only a supspace of the system state
space needs to be t:.aken into consideration. Thanks to this property we
were able to substitute the closed multiqueues system Q(N,L) whose state

space is of size (ﬂﬂ), with L X N subsystems mz(nz),(bl,...,L; n£=1,...,N),
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each having no more than (n£+1) distinct states, Each of these subsystems

is an equivalent representation of the x " subsystems, x

4,N-n .Q,N«n‘c .
4=14N-n - N ey .
%), defined by the x principal submatrices
L- 1 z’ N-nz
L-1
Q'(iL""’iL-b+1) of Q(N,L), with T 1L_m-N-n£’(cfr. remark 3 - at the end of

m=0

section 3), An interesting consequence of this state space partitioning
is that lafger state spaces of more refined models than the one in section

2 may be analyzed. Examples are given in the following section.,

i . - 3 : S
B A e L et T N -
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5.1

V. CLOSED MULTI-QUEUES SYSTEM ANALYSIS

In this section we discuss some of the advantages of the hierarchical
approach of resource aggregation in the analysis of multi-queues systems enjoying
the property of near-complete decomposability. We are introducing two generaliza-
tions of the model defined in section 2 which may be approached by this

method.

2:1 In [Go67] W. J. Gordon and G. F. Newell solve very elegantly the system
of equilibrium equations (2.3) by a separation of variables technique, They
obtain an exact expression of the equilibrium joint probability P(io,...iL).
However, the form of this expression is such as to make the determination

of the marginal probabilities tedious for large values of N or L. So, for
the case of systems with non-uniform service-rates, assuming that one re-
source, say RL,has an effective slower service rate than all the other re-
sources, they show that, at the limit for N - @, the distribution of sequen-
tial processes within the system 1s regulated by this slower resource; they
are able to give in this case asymptotical expressions for the marginal
probability of iz sequential processes in queue or in service at a resource
RZ’ #0,...,L-1, This method may in certain cases present two types of dis-
advantages: Firstly, the values obtained are only asymptotical values

for N » o, and secondly, the method requires the inversion of the

(L+l) x (L+l) transfer probability matrix " Pij"' Both disaanntages may

be avoided if the service rates and the transfer probabilgties obey the
conditions of near-complete-decomposability of theorem 3.1 so that expres-

sions (4.8) may be used to calculate the marginal probability distributions.
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5.2 FEquecion (2.1) may be generalized so as to allow, as in (Ja63], the
service rates of any resource Rz,ﬁ-o,...,L, to be a function “z(iz) 20
of the number 12 of sequential processes currently in queue or in service
at this resource (VL:uL(O)-O).

The conditions under which this model is nearly-completely-decomposable
are obtained by substituting n.(i.‘c)p.‘c with u(iz) in the inequalities of

theorem 3.1, Simpler but stronger conditions are given by corollary 3.1:

FOI‘ bL'l,.o.,l:

2
minfp (L)( S p,_ «p )1 >>
k’ik"'k 10 CE Pian * Pe(pan)
2
“‘m“m"mfop(ul)m " Parl) (ar1))° (5.1)

where 0 k < 4, 0 < 1b+1 < N-1l, 1< 1k < N-1£+1.

The interaction rate of the aggregate M,(n,), n =1,...,N, upon resource
f A )

Rk’ k > 4, may then be obtained as

1 (5.2)
n,- n,
V@ = T mny ey, )+ IR AL JRRU A
" 1" -1

And the equilibrium equations of this aggregate are:




el

5.3

2-1 2-1

g1, 4 poy Uy (ngmy, ) P LCTRIL AL AR TE RIS X E Pacl

@ tngvy, ) 4, 4,

n!,-l.l’.”’nz-l’

L-1
[uz(nz)xkfopm]ﬂz(olnz)=ﬂ£(llnz)¢£_1’£(1).

2-1

[*z_l’z(nz)]ﬂz(nzlnz) =ﬁ£(n£-1|n£)[uz(l)xkfzp‘k],

)/

n
| The additional condition that probabilities f"z(“z-llnz)}nz_l-o add

to unity yields
n -1
2-1 n, 1 £2-1

[Z p,] n B,(n,<k)
k=0 &7 10 L4

nz(nz_llnz) - o™ 'n'z(O'nz) (5.3)
n oy (k)
k=1 z-l’z
o 4-1 nz-l nz_l-l -1
L [z Py i) I “z(“z'k)
with nz(OInz) =1+ 3§ =g k=0
nge1"1 -1
n (k)
k.l z-l’z

which extend expressions (4.7.2), Using (4.8) one obtains the uncondi tional
probabilities sz(iz), 1ﬁ=0""’N’ of 1£ sequential processes in service

or in queue at any resource R #0,...,L.

l"
Applications of this generalization are mentioned at the end of [Cg70)

and use is made of it later on in paragraph 7.9. The special case of this
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generalization studied in [Go67] is the case in which “L(il? is given by

u‘(iz) - 0"(1‘)“‘, bo...o'L'

(5.4)
g if 1‘ < Vg
Vs if 1‘ 2 v‘;

i
where a‘(iz) =

at each level of this system there are \p parallel exponential servers,

each with mean service rate My Sufficient conditions for inequalities

. (5.1) to be satisfied are then, for %L-1,.,.,1:

2 '
"o E P~ P41’ > Vb CE Py < P gy (aey)e 5-5)

0
Osk<y

Finally, by a very similar generalization, transfer probabilities
sz(iz') depending on the congestion at the stage of departure may also be
coped with. Conditions (5.1) as well as reletions (5.2) and (5.3) are easily

rewritten in this case. An application of state-dependent probabilities

will be considered in 46.1.4.

5.3 The hierarchical model of aggregate resources may also approximate
multiqueues closed systems in which, instead of being exponentially dis-
tributed,‘the service times of the upper level resources R‘, #L,L-1,...
are random variables identically and independently distributed with

arbitrary distribution function, say B‘(x). This conjecture is base§ on
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the following argument. After time Tl 2 vhen aggregate resources !mz(nz),
’
nz-l,...N, are in equilibrium, the time sequence of the occurrences of a
transfer of a sequential process by !Dlz(nz) to a resource Rk’ k> 4, on a
request completion, may be regarded as a stationary point process of
intensit n f. [Kh55]). If we expand in terms of th
nsity ¥, (ny), (c [(Kh55]) pand ¥, (n,) in tems of the

transfer rates "’!,-j X p(z-j)k’ j=0,...L, we have:

L
*Z,k(nz) - JE() Az(z'.’; nx‘)[l - "z_j(nz_jlnz_:’)]uz_:’p(z_:’)k
where ﬁo(n0|n0) =0, Az(z; nz) = 1; and for j=l,...,%,

o) Rg-3+l
Az(z-j; nz) -n ):-1... . z o "z(“z-ll"x.)"'"z-j+1(“z-j|“z-j+1)'
2-1 L-3

] L,k(n !.) may be considered therefore as the intensity of a stationary point
process resulting from the superposition of (1) independent stationary
renewal processes, each of intensity [Az(z-j; n"‘)(l-ﬂz_J (“z-j|“z-j”“z-.jp(z-j)k]’
3=0,...,4. It has been proved (cf. Chapter V, in [Kh55]) that such a super-
posed process rapidly approaches a Poisson Process, as the number ({+1) of
{ndividual renewal processes increases, This result holds true whatever

the distribution of the time intervals between successive renewals in each

individual process is, and theveby, in this particular case, whatever the

distribution functions Bj (xX), j=0,.0.,4%, with respective means

Un; = ond Bj(x.) < @,
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of the service times of resource Rj are, For [ large, one could therefore
envisage analyzing each subsystemnﬂnz(nz), nt-N,...,l, as a finite queuing
system G|M|1|nz with an arbitrary inter-arrival time distribution Bz(x) and
a Poisson service process of parameter *z-l,z(“z-l)' dependent on the con-
! gestion LPRT nz_l-o,...,nz.
Under appropriate circumstances, more adequate assumptions than the
classical Poissonian service times assumption may therefore be made if

necessary, when an aggregative closed queuing model as defined in section IV

is used,

"
e, i e



VI. NEAR-COMPLETE-DECOMPOSABILITY IN COMPUTING SYSTEMS

We deal in this section with two near-complete-decomposable models of
- computer system operations. The first one which is more especially hardware
oriented, is the model of a computer memory organized as a hierarchy of
storage devices of increasingly slower access speed in which computations are

executed on a multiprogramming basis. Near-complete-decomposability condi-

tions of this model turn out to conform with those a computation must satisfy

to minimize the frequencies at which it needs to access the slower levels of
i the hierarchy. Given a statisticgl definition of the computations, the model
set up in Section IV is then used to define and evaluate performance criteria
for multiprogramming storage hierarchies; an optimal degree of multipro-
gramming minimizing the average hierarchy access time is evaluated. We
finally show how state-dependent transfer probabilities (cfr. §5.2) may
render the model sensitive to allocation policies which ad just the space
allotted to each computation aé every memory level as a function of the state
of the multiprogrammed computations.

In the second part, which is more software oriented, the model of ag-
gregate resources is interpreted as a simplified model of the resource
control and allocation function of a multiprogramming operating system.

We conjecture that conditions for resource aggregation provide in many cases
rational criteria to order the levels of abstraction [Di68] [D169/1] of such
a system, These conditions turn out to be closely related to the physical char-

acteristics and the usage of the hardware resources and may therefore help the

designer choose the ordering of these levels.
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Aggregation of variables appears in these two models as a technique which

allows the level by level evaluation of the system to be interlaced with
its level by level design. This results from the fact that the conditions
for aggresgation are the same as those necessary to provide sufficiently
approximate knowledge of the performances of a sti]] incomplete system on
which further design decisions may be based. Ag such, the aggregative
model of & network of queues defined in Section IV 18 a counterpart of the
level-by-level simulation techniques recommended in [Pa67) [Pa69] and

[Zu68] [Ra69], in the sphere of computer System analytical models,

6.1 Storage Hierarchies
6.1.1 Computations

Although the conclusions of this section apply to a wider class
of hierarchies, we shall make use of the concept of linear storage hier-
‘archy, defined and investigated in (Mg70], to introduce a stochastic defi-
nition of program execution,

Let MO’MI""’ML be a linear storage hierarchy of memory levels
Mz, £=0,...L; the higher the number of the level is, the larger its capa-
city tends to be and the lower its access speed. We define the capacity
<y of Mz as the maximum number of distinct information elements szay

contain,

A computation p in this hierarchy may be identified in machine-

independent termg by a reference string [De70], 1.e., a sequence of refer-

ences p = (rg,...,r;,...,rg(p)) where it ig understood that, if r; =°’?)

computation p references a (not necessarily distinct) element of information

T M S
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of name A7 at the yth reference, We define T(r;) as the time instant at
which computation p makes its yth reference; T(r;+1) > T(r;).

We assume, as is generally the case, that a reference may only
be serviced from the fastest level My and we denote by (|,;,0)-1 the expecta-
tion of the amount of time needed by a computation p to complete a refer-
ence to an element rg which is located in Mo, (rs € Mo), at time instant
T(rs). An element r; located in MQ#O’ at the time T(r;) at which it is
referenced, must be accessed and retrieved in Mz, and transferred from

M. to M. where the reference may be serviced. Instead of being transferred

) 0
one by one, elements are transferred by blocks, called pages, between levels.
We denote ‘“z)-l the expectation of the amount of time needed to access
and retrieve in Mz#o a page containing a given element r; € Mz, and to
transfer this page from Mz to Mo. The major component of (|.;."')-1 is the
time needed to retrieve and access the page containing the requested
element. This is a characteristic of each memory level. We assume that
memory levels are identified by this characteristic and ordered in such a

way that

(u.l)'1 << (p.z)'1 <Le o oK (p.L)'l. (6.1)

A linear storage hierarchy is a hierarchy in which the only paths
to move pages up the hierarchy are direct ones from each level Mz to level
Mﬂ+1’ 4=0,...,L-1, Paths to move pages down are unrestricted., Let f%’
/~0,...,L, denote the number of elements r& which, in a given reference

string p of length d(p) are located in Mz at time instant T(ry). A pro-

cedure which determines these numbers according to page size, replacement

rule, and capacity of each level of a linear demand paging hierarchy may be
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found in [Mg70]; for a large class of replacement rules it is shown that

fi may be obtained as a function fp(cz-l'cz) of cz and of the total lower

L
2-1
levels' capacity Cz_1 = I Cps 4> 1; for =0, we denote this function
k=0

P
fo(co).
The relative access frequency to Mz of a given reference string

p is then given by
FR(C, 1oe,) = d)™! x £¢c, . c)) #1,...,L
z z_l’ z z z_ll z 90ecoylyy

L
p -1 - P
with Fo(co) 1 LEI Fz(cz_l,cz).
Letting n be an arbitrary number of distinct raference strings p,
p=l,...,n, each with access frequencies Fi(cz-1'°z)’ #~1,...,L, we may de-

fine an acczss probability Pz‘°z-1'°z) as

n
p
E EChrcy

Pz(cz-llcz) - iiﬂi: E:Jn » 1,...,L
Z d(p)
p=1

L
with po(co) =]1.-. ¥

p,(C 1€ ).
=1 L2 70-1""g

L
The set of probabilities [pz(cz_l,cz)]m0 is taken as the defini-
tion of the stochastic behavior of a computation in the hierarchy MO,...,ML;

the remainder of this section 6,1 is applicable to any memory hierarchy pro-

vided such a set of probabilities may be defined,

. ==
O



6.5

6.1,2 Single Process Storage Hierarchy

Let us assume that one computation at a time is executed in the
hierarchy. Then, we may suppose that the time instant ¢(r;+1) at which
a computation makes its (y+l)th refr.rence is also the time instant at
which the yth reference is completed. The mean. time interval between two
successive references of any computation is in this case:
(po)-l, 1f r €M at time r(eP)
y y

Efr(rP ) - r(xP) = ) |
y+l y (po) 1 + (uz) 1, if ry € M‘#O at time T(r;) (6.2)

An average hierarchy access time T may then be defined as
- -1 L -1 -1
T = po(co) X (po) + 21 pz(Cz_l.cz) X [(po) + (“z) ]
=

L
Te (w4 I PaCppeeg X (7, (6.3)

as well as an average fraction of time TN lost in transferring pages between

any one level MZ' £> 1, and MO:

T - (po)

T

-1

'n = — (6.4)

6.1.3 Multiprocess Storage Hierarchy

Suppose now that transferring pages from szo to Mo and servicing
references in Mo may be performed simultaneously. Suppose also that memory

space at the various levels is equally, statically and permanently shared

among N independent computations Py p=1,...,N, executed in a multiprogramming

i)

e gamnd L Apcarldgme T

T L T
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basis. This means that the execution of the N reference stringsis inter-

leaved in the following way: iff r; € Maﬂo at instant T(r;) and iff 7 a

]
computation p' of which rs. is the last reference completed and for which

p
ry'+1

]
ing ry is completed, then r;,+1 is serviced at time ¢,

]
€ Mo at some time t 2 T(t;) before the transfer of the page contain-

This scheme provides for a befter utilization of Mo in which
references may now be serviced while pages are being transferred. As a
consequence of this however, the performance measures defined by (6.3)
and (6.4) are no longer valid: they require indeed that only one reference
to any one level Mz, #0,...,L, be ma‘e and completed at a time, whereas
under multiprogramming time intervals [T(r;+1)- T(rS)] of distinct computa-
tions p may overlap each other,

In a multiprogramming storage hierarchy, the average time during
which Mo is not being referenced within a time interval [r(xP 1) - T(rp)]
may be less than (u.!‘)-1 when rp € Mz#o at time T(rp) On the other hand,
as one page only may be transferred from a level Mg#o to Mo at a time,
requests for page transfers will eventually queue up at each level and time
intervals [T(r 1) - T(rp)] will be prolonged by these queuing times._

Performance criteria corresponding to (6.3) and (6.4) which allow
the benefit of multiprogramming to be assessed will be introduced in para-

graph 6. 1-5.

6.1.4 Near-Comglete-Decomgoaabilitx

Let us identify each memory level Mz with a resource R, with

7

exponentially distributed service times of mean pil, and each of the N

Lot ke o R b b i,




multiprogrammed computations to a sequential process stochastically de-

| €1 S oL
fined by the same probability set {pl(_i-— ’ ﬁia]j_o. Let 15,

=1l,...,L, 1£f0,...,N, be the number of computations which at some time t

are waiting for a page to be transferred from Mj¥0 to Mo, and let

L
i =N- Ti

0 Y

Defined in this way, this model of a multiprogramhing storage
hierarchy is a closed multiqueue system whose state may be defined by the
(L+l) -plet (10,...,1L) and vhose transition stochastic matrix is Q(N,L).
Conditions for near -complete-decomposability of this system into subsystem Q(nz,z),

ngl,...,N, #L-1,...,1, reduce to (see remark 2 , end of section III):

for bL'lgooo,l: min u1( >> u'bl-l’

= (6.5)
) c c C, ¢ .
-1 il
and gl B oy ) < Ry e ADI >y,

m=1
since transfer probabilities {on32=1 are all equal to unity.

Conditions (6.5) are expressed in terms of rates at which a page
may be retrieved, accessed and transferred from each level, and in terms

of rates at which levels are referenced by an individual computation, More

Cp1
N

behavior of a computaiion in a single process storage hierarchy of capacities

precisely, the set of probabilities {PL( ,Eé)}z_o defines the stochastic
c

f—#];_o. These probabilities follow from the statistical properties of the

reference strings, but also from the choice of storage management parameters

such as the memory level capacities, the page size, the replacement rule,

The near-complete decomposability of the multiprogramming storage hierarchy

model may be assessed by using e.8., & technique as the one described in
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(Mg70], provided that these parameters be the same for each multiprogrammed
corputation.

One may expect inequalities (6.5) to hold in most storage hier-
archies for various reasons. First, the lower bound for the average time
needed to comﬁlete a single reference in a N-process hierarchy, which cor-

responds to the case of no queuing of page transfer requests, is equal to

()" + ;51 Py (Eé%.i,%) X (up (6.6)
Minimizing (6.6) is mandatory to optimize the average execution time of a
computation. Both the user and the system storage manégement policies will
aim at this insofar as they have control over the placing of information
elements in the various levels, i.e., over the values of the access prob-
abilities, But, as a result of inequalities (6.1), the only possible way

to minimize (6.6), is to achieve the set of inequalities
c C, ¢ c c
0 0 "1 -1
Po(D) >> by 4 eee>> 2 (ZEHD, (6.7)
which, together with (6.1), are (see remark (2), end of section III) suf-
ficient conditions for (6.5) to hold.

Secondly, it has been observed that computations enjoy what has
been called the ‘property of locality [Be66, Va67, Be68, De68/1, De70]; that
is they favor at each instant of their execution a subset of their informa-
tion instead of scattering their references uniformly over their total set

of information, this subset changing membership relatively slowly in the

course of the computation execution.
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As a consequence of this, every page transfer which is occasioned by a
single reference to one upper level is likely to generate several refer-
ences to Mo. On the other hand, page replacement policies like LRU (see
e.g8., [De68/2]) take advantage of this property to accentuate inequalities
(6.7). In most cases, therefore, con&itions for L-level near-complete-

decomposability will be satis‘f‘ied.

Remark. 1t is probably worth saying a word about what happens when in-

equalities (6.i) only are verified and not inequalities (6.6), One could

show that in this case stochastic matrices Q(nz, L), »1,...,L, are (see remark 1.6)
near-decomposable block-triangular matrices in the sense of Ando and Fisher
[An63]. They proved that the Simon-Ando theorem could be modified to the

case of such matrices, A resource aggregate model analogous to the model

defined in Section IV could therefore be set up to cope with such systems,

6.1.5 Memory Level Aggregation

If conditions (6.5) are verified, the aggregative model
defined in Section IV may be used. We proceed now by demonstrating how
pevformance criteria comparable to (6.3) and (6.4) may be defined within
that model.

We regard the aggregate ‘ml’(nz), n"-l,...,N; #1,...,L, as a stor-
age hierarchy of levels M ,....,M", in which n, computations defined by a
same probability set {pk(—l-‘ﬁ-l-,-c—lt;-) }l':'_o are being multiprogrammed. ¢ L(n L)
is ¢efined as the mean number of references serviced in Mo per time unit

within this aggregate, and is given by (4.1) , (4.2) which reduce to
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L
(n) = g n£<nz_1|n£)az_1<nz_1) (6.8
2-1
o (®)) = ug(1-m (0[n))), s=2,...,L (6.9)

'H’nfl“'”N’

In the same way, wﬂ k(n ) defined as the rate at which aggregate ﬂl(n )

references memory level Mk k> 2, is given by relations (4 3) and (4.4) in which
Py = 0, l,e..,L , k> L,

o Cka1 Sk
Pok = P (-

Conditional probabilities ﬂz(nz_llnz) are yielded by (4.7.2) in which

pzo= 1, FI’OOO’L

Py =0, 0<1is g1,

An average hierarchy access time TN is then obtained as the in-

verse of the average number of references serviced per time unit in smL(N):

N
iy = lo, 17! = (g Do oy 17 (6.10)
-1

the long-run equilibrium probability aL(nL_l), n 0,...,N, being given by

4.8).
Moreover, an average fraction of time during which all N computa-

tions are waiting for a page transfer from some memory level Mz, £>1,

to Mo is given by

Ty = 5

Sl g Noc oo ol e
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1

It may be proved that “N and T, are bound by the same relation

N
(6.4) as 1T and T:

Lemma 6.1 T =1 - [uoxTN]-l.

N
Proof: 30(0) E} 11(0) =] - 21 al(no),
n -
0
N -1 iy
ml- o= ) DMy lng)eee Emnglnp.
M1 M-2 %o
Since by virtue of (6.9),
n, N
T . m (ng|n,) = wg X 0yp(ny)
n -
0
and by virtue of (6.8)
)
n -
2-1
we obtain
.1 N
8@ =1 -y, nLE -1 4 op ()
-1

which completes the proof,
T and T being defined by (6.4) and (6.3) re pectively, the follow-
ing relations may also be established:
Lerma 6.2 T, = T; M) = 1,

Proof: From the definition (6.10) of TN’ it results that for N=l;
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i e, oy W1 = maly o @ (6.11)

In the queuing system ﬁnz(l), #2,.0.,L, "z(1|1) may be ex-
pressed as (see (4.7.2)):
-1
¥p1,0D

m,(1|1) =
) = TS
by + ¥,

(6.12)

In this particular case where transfer pronbabilities P g’ k > £,

L> 0 are all zero, (4.3) and (4.4) yilelds, using (6.8) and (6.9):

-1 -1
Vo1, D = [py (€ q0ep) xo, ) (D)7, #2,..0,L. (6.13)

Replacing ﬂi(lll) in (6.11) by the value yielded by (6.12) and then

1

; 1.1 (1) by the value yielded by (6.13), gives:
=i

¥
T o=p. € we)ul+ol )
1 Pp ‘opa1e€) Wy Top,y (M)

Using the relation o (1) = ﬂz(lll) 04_1(1), successively for f=L-1,L-2,...2,

gives:
2 -
1% F Py (Cppoey) by

1

T + cIl(l).

But 0;1(1) = [uo ﬂl(lll)]-l

where, by virtue of (4.5) and (4.6), ﬂ;l(lll) may be replaced by

- . -1
[Ho Pl(coacl)] + “1

n{l(lll) = =
(kg Py(egscy)]
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which gives evidence that il = T. Then “1 = 1) results directly from

Lenma 6.1, which completes the proof.

Furthermore, let us remark that the utilisation factor of the
storage hierarchy component which performs transfers from ML to Mo, L>1,
is equal to (l-sz(O)), probability sL(O) being defined by (4.8). Like-
wise (4.9) defines the mean response time ﬁz of this component.

Finally, if the uppermost level ML is the model of some infinite
reservoir from which all computations originate at a rate given by (2.01)
and to which they all return when being completed, then W, the mean

response time of the aggregate of MO,MI,...,ML_I,defined by (4.10), is

the mean time required to service all references of a reference string.

6.1.6 Dynamic Space Sharing

By virtue of lemmas 6.1 and 6,2, the performance improvement
achieved by multiprogramming N computations so as to take advantage of the
simultaneity between transfers among memory levels and servicing references’

in Mo may be measured by the ratios:

Loeh (6.14)
LA

In general, there will exist one optimal value Nopt which max-
imizes these performance ratios, This optimum results from two counter-
acting effects: on the one hand the probability (1-31(0)) of having at

least one computation not waiting for a page transfer from some level

e R . e e, L p
- T T ——— 3
: i
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My 4>1, to M, 1is inclined to increase with N; on the other hand the
c

—é, #0,1,... available to each computation at the

average memory space —g

lower levels shrinks as N increases with the consequence that the prob-

abilities pz(gﬁzl’gﬁ) of accessing the upper levels increase rapidly.

The probabilistic model described above provides a means to evaluate this
optimum, given (i) a family of programs defined by their reference strings

from which access probabilities may be inferred by e.g., a8 stack processing
technique like that proposed in [Mg70], and (ii) a nearly-completely-decomposable
memory hierarchy of an arbitrary depth, each memory level being character-

ized by its capacity and a distribution of the amount of time required to

access, retrieve and transfer a page from this level to the executive memory.

c

_&’ Fogoo.L

So far we have assumed that a fixed and equal portion N

of memory space was permanently allocated at every level to every computa-
tion in the hierarchy. This is, howevur, not the case in most hieiirchical
storage systems. Usually, in order to keep moderate the access probabilities
to the upper levels, an upper limit, say Jmax’ is imposed upon the number

of computations J allowed simultaneously to share space in the faster memory

levels, say Mo,...,M Moreover, any of these computations is expro-

£(max)
priated from the space it has accumulated in these levels as soon as it
makes a reference to or above a certain level, say Mk’ k > A(max). Thus, {f

Mol designates the number of computations not waiting for a page transfer

from levels Mk""’ML’ we have

J= min(nk_l, Jmax);

and the average space allotted to any of these computations at any time
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instant T(r;),(y-1,2,...),(p-1,...,J), at any level ML’ 4 € famax), is the

integer part of (cz X J-l).

This space allocation policy preserves the near-complete-decomposability

property of the hierarchy since its net effect is to enhance the differ-
ence between access probabilities to the lower levels MO""’MZ(max)’
and the upper levels Mzﬁmax)+1""’ML' Jmax distinct access probability dis-

tributions, conditioned on the value of n o1 must be considered:

4~lc, c
Y
pz(ifo ai’az)’ bl’l..’L
D(ey )
i L tlec, (6.15)
Po=1 - ZPZ( ===}

min(nk_l, Jmax)’ i=0,..., 4(max),

where oy =
N, i‘Z(mBX)'i'l.-..,L.

There are three stages in the analysis of such a hierarchy:

(1) The bottom levels MO""’MLOnax) are modelled by Jax aggregates
ﬁnz(max)(J), J=1,...,Jmax, each one with the appropriate access
probability distribution D(J). The analysis of these aggregates
yields the interactive rates *z(max),i(J) of the bottom levels

upon each level i = ‘hax+1""’L'

(11) Next, one considers N aggregates mk_l(nk_l), nk_l-l,...,N. The
interaction rate of the bottom levels upon any one intermediary

level M f=!max+1,...,k-1, in each of these aggregates is taken

i”

equal to
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Vomax),1' (Me-1?  1E My <3
vl(max),i'(Jmax) if M1 2 Jmax'

(111) The analysis of each aggregate mL-l(nk-l) yilelds the inter-
active rates 'k-l,i"(nk-l) upon the upper levelsi'',
1''=k,...,L; using these interaction rates in (4.7.2) and

(4.5), the upper levels may be modelled by a system ﬂi(N).

The same argument which leads to an optimal value for N, is
applicable to Jmax' The model outlined above may be used to estimate the
value J;:: of an optimal maximun degree of multiprogramming in the lowest

memory levels, which for a given N value maximizes the ratios (6.14). Such

pt

ax will be calculated in the last section for a hypo-

an optimal value J;
thetical computer system enjoying the space allocation policy discussed

abgove.

6.1.7 Remark
A variant of the model investigated here may be found in [Cou70/1],
[Cou70/2]. There, a computation is stochastically defined by a set of

arbitrary distribution functions
Bz(x) = Prob{cl < x}, #1,...,L

where the random variable Cz is the number j of references made by a
computation p within the time interval (T(r;+j) - T(r;)] if T(r;) and

7(r_,.) are two successive instants of an access to memory level M

p L]
¥+ A
If n is an arbitrary number of computations, the expectation EL and the
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access probability pz(cz_l,cz) are related by

no A 1
_ . le ft(cz-l’ct) N f
€, = j‘o XdB ,(x) = tll_‘ir: - = [pz(cz-l’cz)] . i
z d(p)
p=1

When the system is nearly completely decomposable, the conditional
probability distribution "z‘“z-llnz)' #=1,...,L, nznl,...,N, is obtained as
the distribution of the congestion in a MIGIIIN queuing process whose dis-
tinctive feature is that the service rate "4-1(“;-1)' “3-1-1""’“1. (defined
by (6.8), (6.9)) at which references are serviced is dependent upon the cur-

rent congestion n, 1 This type of MlGlllN queuing process is studied in
[Cou71].

bt -, R — P
B o e " -
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6.2 Hierarchical Structure of Multiprogramming Computer Operating Systems

The technique of aggregation proved useful to (i) break a system up

{nto a small number of subsystems, (ii) evaluate the interactions within the
subsystems as though interactions among subsystems did not exist, and (iii) eval-
uate the interactions among subsystems without regard to the interactions with-
in sybsystems, We may expect that this evaluation technique has some simi-
larity with the design technique which consists of assembling a complex system
from subsystems designed independently; we may expect that the criteria that
indicate what variables to aggregate might also help in specifying what the
building blocks should be.

In particular, it seems worth discussing the similarity existing between
the hierarchical model of aggregate resources defined in Section IV and the
well known hierarchical organization advocated by E. W. Dijkstra for the

software of multiprogramming computer systems [Di69/1].

6.2.1 Levels of Abstraction

An essential function of a multiprogramming computer operating
system is to control and allocate hardware resources. The problem of creat-
ing a system which achieves this function could be formulated as follows:
Given the hardware of a computer, construct a set of programs whose function
is to provide a collection of convenient and efficient abstractions from some
physical characteristics (quantity, speed, access mechanism,...) of these

resources; two constraints which further complicate the problem are that:

(1) to achieve these abstractions, the programs themselves

use or consume hardware resources;



3
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(11) if these azbstractions are to serve any useful purpose,
their designer, because of his own "inability to do
much" [D169/2], should be their firstc Leneficiary;
rather than using and being defined in terms of raw
hardware resources, the programs should insofar as

possible be defined in terms of and use these abstractions.

E. W. Dijkstra showed [Di68], [Di69/1] that, from a designer point
of view, it is advantageous to structure such a system as a hierarchy of
levels of abstraction. He considers an ordered sequence of machines
AO’AI""’AL"" where the level Ao is the given hardware and where the soft-
ware of level £, #=0,1,..., defined in temms of and executed by machine A

z’
transforms machine AL into machine Ah+1' The software of each level £ creates

an abstraction from some physical properties of the hardware. Examples of

such abstractions implemented in the THE system are:

- at level 0, the central processor is allocated among concurrent
processes 8o that'the actual number of these processor(s) (one in
this system) is no longer relevant: each process ready to use a
processor may be considered above this level as having access to its

own virtual processor;

- at level 1, the differences in mode and speed of access between
a drum and a core memory are ahstracted from in order to create
an homogeneous store. Above this level the physical location of
information in this store is no longer relevant; information is

identified by a segment name.
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Each level gives access to a certain type of abstracted resource,
e.g., a virtual Processor, a segmented address space,... To do so, it has
recourse only to the abstractions created at the lower levels. This approach
facilitates the step by step construction, testing and evaluation of the
system., These advantages are the direct consequence of the restricted
nature of the interactions which are permitted among distinct levels., This
very same restriction, however, leads to the following dilemma: if we use
the simplification introduced by abstracting from device Rz in producing
the abstraction from device Rm, then we cannot use the simplification intro-
duced by abstracting from Rm in writing the programs that abstract from Rz;
.in other words, each level helps only those above it. The choice of the

ordering of the abstractions may therefore be quite difficult,

6.2.2 Aggregation and Ordering of Abstractions

It is possible to identify at least two types of conditions which

must be satisfied to decide that the abstraction from a device Ri should be

created at a lower level than the level of abstraction of a device R, of

]

another type:

1) The abstraction from the details of device Ri should be more

convenitent to program the abstraction from device Rj than con-

versely; if the abstraction from R, is not more convenient, it

i

need not come below the level of abstraction from R,.

3

'2) The use of an abstraction from Ri to program the abstraction from
Rj should not prevent the latter resource from being controlled

and allocated efficiently
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ey

We may (and in fact we shovld) expect that in most cases the degree
to which an abstracted resource is a 'convenient' tool or concept to program
will be reflected in the execution of the program by the frequency at which

- this abstracted resource is accessed. Then, the result of applying the first
condition to each type of abstraction is that the abstracted resources imple-
mented at the lower levels of abstraction are those which will be the more
frequently accessed,

The second condition must be interpreted as follows. Drums, disks,
tapes, readers,..., are mutually asynchronous 1/0 devices, each one being
capable of transferring information at a certain speed. In order to control
and allocate efficiently one of these devices, a program must be able to
execute at a speed comparable with the speed of the device; in other words,
the speeds at which the resources (abstracted or not) used by such a program
can be accessed, e.g. those of an abstract machine Az, should not be slower
than the speed of the hardware being abstracted from at level £; or, at least,
the resources which make exception to that rule should be used infrequently.

The application of conditions 1) and 2) to each type of abstraction
leads to an ordering such that the more frequently accessed abstracted. re-
sources should be implemented at the lower levels and should also have faster
access. The interactions between the levels of an 'efficien;' and 'convenient'
hierarchy of abstractions should, in other words, obey the conditions for
near-complete decomposability.

Since the speed of access to an abstracted resource is bound by the

o

speed of the hardware which is abstracted from, conditions for near-complete-

PEIRAL LT a1

decomposability explainwhy the fastest and more frequently used hardware
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1s taken care of at the lowest levels of a hierarchy of abstractions. These
conditions specify in terms of usage and speed the type of hardware which
should advantageously be abstracted from at a certain level of abstraction
and may thereby give the designer some guidance in the choice of the order-
ing of these levels,

Another consequence is that each level of abstraction may be

analyzed as a level of aggregation. Suppose for example that the model of

‘the network of queues defined in Chapter II may bc taken as a simplified

model of a set of interacting abstracted resources; the abstract machines
Al""’Az”" could then .. evaluated respectively by the aggregates
WH(nl). W&(nz),...,m%(nz),..., each aggregate m&(nz) being a mod¢. of the
equilibrium attained in the abstract machine Ag+1 by the interactions be-
tween AL and the abstracted resource implemented at level 4. By definition,
the dynamic behavior of the aggregate m%(nz) towards its equilibrium may
be evaluated with good approximation merely in terms of aggregative vari-
ables.representative of the short-term equilibria attained at the lower
levels of aggregation and without regard to the interactions with the upper
levels. Since Al’AZ"" represent as many distinct stages in the design,
production and testing of an operating system, such an evaluation techniéue
which allows these stages to be evaluated independently should prove more
valuable than techniques which may only be used after the design is completed.
To close thir section, let us say that the above discussion reveals
a property of these stages A1’A2’°" of the design process: the rate of
interaction between the cdmponents of a machine Az, i.,e., between Az_1 and
the abstraction implemented at level f£-1, is higher than the rate of inter-
action between the corresponding components of Ab+1' Several arguments in
favor of a decomposition of the design process into successive stages at
vwhich the subsystems coped with have a similar property, may be found in C.

Alexander's essay, ''Notes on the Synthesis of Form" [Alo4].
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VII. SHORT- AND LONG-RUN EQUILIBRIA
IN A TIME-SHARING PAGING MULTIPROGRAMMING SYSTEM

The purpose of this last section is to illustrate the use of an ag-
gregative model in analyzing the performances of a given computing system.
It follows on from this concrete case study that aggregation is not only

adequate to obtain numerical results when a large number of parameters

_are involved, but also helps to gain insight and conceptual clarity on

the parts played by these parameters.

A set of hardware and software dependent parameters is defined as
the model of an hypothetical time-sharing paging system. Conditions for
this model to be nearly completely decomposable are defined in terms of the para-
meters and in terms of a stochastic representation of the computing load, The
formulation of these conditions makes their prior verificatrion possible
and may give an assessment of the precision which may be achieved by using
an aggregative model.

Page traffic between primary and secondary memory is studied as the
internal traffic of a resource aggregate of type ma(nl). This analysis
focuses on the respective influence on processor usage of the usetr program
paging activity, the degree of multiprogramming and the length of a so-
called execution interval, viz. the amount of processor time a user pro-
gram is allowed to consume before losing its pages accumulated in primary
memo.y.

The entire system is then regarded at a higher level of analysis as

a finite set of N active user terminals supplying tasks for this aggregate.
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The congestion and the response time of the hypothetical system are studied

| as the characteristics of a system m&(N). The concept of stable and un-

stable congestions is introduced as the consequence of the peculiar de-

pendency of the aggregate service rate on the system congestion. Likewise,

a saturation point extending the definition given in [K168] to systems with
congestion-dependent service rate is defined, Finally, the evaluation of

the system response time reveals that these concepts of stability and satura-
tion relate the phenomenon known as thmshing to parameters defining the computing
load upon the system in addition to those defining the page traffic between

primary and secondary memory.

7.1 The Hypothetical System

A schematic representation of this hypothetical system is given in

figure 7.1. Three types of func:ion are essentially ensured:

7.1.1. A finite number N of active user terminals originate random

requests for program execution,

7.1,2, User programs are executed on a multiprogrammed basie in a

primary memory Mo consisting of set of Co pase frames.

7.1.3. Pages which cannot be contained in Mo are swapped in a rotation-~
al secondary memory M1 (Trot = duration of a rotation).

These functions are supposed to comply with the following strategies:

7.1.4. A terminal cannot originate a request for program execution

before the previous request issued from the same terminal has been served

R AR Y
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and completed. In other words, there may exist a maximum of one program

per terminal in the system at a time.

7.1.5., User programs are loaded from M, where all pages are supposed
to be initially located into M, on a page on demand strategy. An upper
limit K is imposed upon the number of page iiames & user program may occupy
in Mo. Pages of a same user program_superimpose each other whenever the
number of distinct pager required in'Yo by this program exceeds thi:. upper

limit.,

7.1.6. Multiprogramming: At any moment of its lifetime in M,, a user

‘program is in one of three states:

ready i.e., demanding but not receiving the control of the
processor
running receiving the control of the processor

suspended waiting for a page transfer between M, and M, to be
- completed

Multiprogramming means that user programs are concurrently executed
in Mo in order to maintain the processor busy as long as not every user
program is suspended. We assume that a maximum number Jmax’ 0< Jmax < N,
of user programs may at wost be concurrently executed in MO‘ Further re-
quests for program executions are queued until one of the Jmax programs
ceases to be multiprogrammed (see 7.1.7). JﬁAx will be referred to as the

maximum degree of multiprogramming .
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7.1.7. Time-glicing: A program ceases to be multiprogrammed either
when it is completed or when the total time it has spent in running state
since its last loading in Mo reaches a maximum value Q. In this latter
eventuality and if programs are waiting to be multiprogrammed, the pro-
gram will lose all its pages accumulated in Mo, and will join the queue of
programs waiting to be multiprograrmed until it is allocated an additional
quantum Q. If no programs are waiting to ba multiprogrammed, the program

keeps its pages in Mo.

7.18, The tracks in Ml may be written and read in parallel by fixed
heads. Each track is divided into c; sectors, each cector containing
exactly one page. Each request for a page transfer is put into a queue

associated with the sector containing the demanded page [Wei66].

7.2 The User Programs

The user programs are stochastically defined by the following random

variables:

(1) the user reaction time, i.e., the time interval elapsing between
the completion of a user program execution requested by a
terminal and the origination of the mext request by the same

terminal
(11) the total amount of processor time consumed by & user program

(iii)the amount of processor time gn, n=1,2,..., consumed by a

user program between any two successive references rn,rn+1

frn_lf...frl’

to distinct pages not already referred to, rn+lfrn

(user program paging activity).
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The distributions of these random variables are defined in the next

section.

7.3 Simplifying Assumptions

The hypothetical system takes liberties with reality on a certain

number of points:

7.3.1, Pages are assumed to be uniformly distributed over the <
sectors of L'H the probability of a demanded page being located in a

specific sector is thereby equal to (% ).
1

7.3.2. We suppose that the traffic of demanded pages from M, to Mo
is not hindered by the opposite traffic of pages from MO to Ml' This
assumption is valid if a page frame is permanently maintained vacant in

M. as well as in each sector of Ml [Sm67]. Hence we need only to take

0
into account the traffic of pages from Ml to Mo.

7.3.3. The maximum number of distinct pages a program may accumulate
in M, at some tiue t is a function of the number J, 1 £J=J  of programs

being multiprogrammed at that time t. This fun:stion is supposed to be

simply
c

K(J) = entier (—g-).

7.3.4. We define an execution interval as the amount of processor
time consumed (i.e., the amouat of time spent in running state) by a user
program between two conéecutive loading of this user program from M1 into

My An execution interval is at most equal to Q.
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The total amount of processor time consumed by a user program is

considered as an independently, identically, negative exponentially dis-

tributed random variable with mean (¢)'1. As a result of this assumption,

an execution interval is an i.1.d.r.v. with distribution function:

0 ¢ (£E=0)
Q(t) = Prob(x < t) =(1l-e P (0<t<Q)
1 (Q = t)

Denoting #(S) the Laplace-Stieltjis transforms of Q(t), one obtains:

n(s) = [~ e a qee) (Re(s) > 0)
0

= IQ e"t te-wtdt + e-sQ-tPQ
0

_ o+ se 2R
ot

Let (n)-1 denote the mean length of an execution interval:

WL = wr(0) = (1-e WL,

Q(t) will be approximated by an exponential distribution of parameter u.

7.3.5. User reaction times are considered as i.i.d.r. exponentially dis-

tributed with parameter )\; a discussion of the validity of this assumption

may be found in [Cof66].

7.3.6. Random variables §n, n=1,2,..., are considered as i.i.d.r.

exponentially distributed with respective parameters On, =1,2,,.. &

‘R‘v’t ,L ” 2 e it s e —_— - - L
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7.4 Actualizing the Hypothetical System

The Hypothetical System is now defined in terms of the parameters
CO’ €1 Trot’ qQ, Jmax' Although the aggregative model of section 4 is in
principle adequate for investigating the influence of any of these para-
meters on the performance measures defined by (4.7), (4.8), (4.9) and (4.10),
we shall center our analysis around the part played by Jmax and Q. And

in order to be able to put our results in concrete form, we shall attribute to

each of the other parameters a fixed, and hopefully representative value, namely:

CO*‘ 48 page frames,
¢ = 4 sectors,

T = 20.10-3 seconds.
rot

Likewise, as far as the load on the system is concerned, we shall
restrict ourselves to the study of the system sensitivity to fluctuations
of the number.N of active user terminals., The parameters of the distribu-
tion functions which define the users' and their programs' stochastic be-
havior are assigned values inferred from statistical observations. At the
time this example was elaborated, available statistics were those observed

by SDC, [Fin66] [To65], on the Time-Sharing system Q-32, [Sc64] [Sc67]:

:

- The total average processor time (cp)-1 consumed per user program

R is taken equal to 1.39 sec.
" = The average user reaction time ()\)-1 is taken equal to 32 seconds.

- The paging activity of user programs in the course of their exe-

cution is given in figure 7.3, It is based on a page size of

1024 words. The number ¥ of instructions executed between any
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to successive references ToeTg tO distinct pages not already
referenced (rn+1frnfrn_1f...fr1) is plotted against n. The ex-

ponential ccefficients en are given the values
0 = (y x 5101 mm12.... 19
a yn X J. ) , nm 3£3900,17,

where 5.10-6 sec. is the average total execution time of ar instruc-
tion in the T-S Q-32 system. No more than 20 distinct pages are
supposed to be referred to during a program execution so that

9,,=0,

20"

Remark. The branch of hyperbola in figure 7.3 is representative of the
behavior of programs whose page references would be uniformly distributed
over 20 pages, The probability of such programs making a reference to a
page not yet referenced decreases linearly with n, the number of distinct
pages already referenced. Obviously this probabi;ity decreases much more
rapidly th;n linearly for the program executions actually observed. This
gives partial evidence that these programs enjoy the property of locality,
viz. they favor a subset of their pages at each instant of their execution,
Such a program behavior has been discussed in [Be66) [Va67] [Be68] [De68/1]
De70]. The values which have been assigned to @ , n=1,2,.., are therefore

representative of this behavior.

7.5 The Page Demand Rate

The page demand rate is the mean number of page transfers from M1 to

Mo requested per time unit by a program in running state. In the evalua-

tion of this rate two cases must be distinguished depending on whether




'
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more than Jmax requests for program execution are pending or not.

7.5.1. In the first case the Jmax programs which are multiprogrammed
lose all their pages in Mo when the execution interval has run out. The
minimum number of page transfers requested over an execution interval is
therefore equal to the number of distinct pages referred to during this
interval, This number is augmented whenever the number of distinct pages
referred to exceeds K(Jmax) so that pages have to superimpose each other.,

Following the approach taken in [Sm67], the average number a(Jmax’ w)

of page transfers per execution interval may be obtained as the average

number of events of a non-homogeneous Poisson process occurring within aa

exponentizlly distributed time interval:

-1
8, K(Jmax)-1 o K(Jpax) - B, BH{JH‘“
3w =1+ +oo0t 1 + 1 = (1 -
max’ 01+p. n=1 On'h.b n=1 Bﬂlh'II Bht']m] +
or
KUpgd™l 2 o XUnad™h 0 Ry (7.1)
3 ,u) =1+ T 1 + 1
max’ z21 =l “n™* el O tu v

It is assumed in (7.1) that the page transfer request rate remains
constant and equal to eK(J ) after page superimposition first occurs, viz,
max

th
after the occurrence of the K(Jmax) transfer request.

The page demand rate is thus equal in this first case to p X a(Jmax’u)'

7.5.2. In the second case the J programs, 1LsJIsJ 0 which are
multiprogrammed do not lose at the end of each execution interval the pages

they have accumulated in Mo. On the assumption that in this case programs
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are never throughout their execution deprived of their K(Jmax) page
frames in Mo, the page demand rate may be approximated by @p X a(me, ®).
This assumption will be justified by the conditions for near-decompos -

ability discussed in §7.8.

7.5.3. We will assume that the probability of a page missing in Mo
within some interval (t,t+h) when a program is running, depends on h only

and not on t, and is equal to

h X p X a(me.u.) + 0(h)

or hXeoxdJo +0h), 1<J< Jax’

according to the number of requests for program executions which are pending.

7.5.4. Some basic properties of the page demand rate may be found in
expression (7.1), taking into account that coafficients Bn, n=1,2,,.., are
representative of a general property of program paging activity. Consider-
ing only the first case above and denoting by AK(J ) the page demand

max
rate difference which would result from an allotment of an additional page

frame (K(Jmax) - K(JmaX) + 1) to each multiprogrammed user program, we have

K({J ) -
max Bn % . :
= n — - . 7
AK(Jmax) n=1 anu k(Jmax)+1 k(Jmax) ) !

The shape of the paging activity displayed in figure 7.3 is, on the

average, such that

<
Y1 =Yy = .o yx(.rma )y 1SKW__) 2.

X

e L
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Thus

ei 28, 2...28 (7.3)

K (Jmax )

and the stronger the locality property is, the greater the inequalities are,

AK(Jmax) is thereby negative for all values of K(Jmax) with the well known
consequence that the page demand rate is a decreasing function of the

primary memory space guaranteed to each multiprogrammed program. The

product
K(Jmax) en
L

‘decreases as K(Jmax) increases. This decrease is more than exponential
owing to inequalitites (7.3). IAI' | decreases even faster than this
&Jmax)
product when K(Jmax) increases, strong evidence being given by figure 7.3
(and other studies, see e.g. [Va67]), that the decreasing function o is

strictly concave since for its inverse yn:

Vn,yn >y
where y is a positive branch of hyperbola; hence

le,-6.|=]0,-0,]2...|8 -8 l.
21 3 "2 K(Jmax)+1 K(Jmax)
Thus the page demand rate increases all the more steeply when the

main memory space guaranteed to each program shrinks as this space allot-

ment 18 small.

The product (7.4) and thus the decrement AK(J ) increase also as
max

p = 0, this influence of u growing exponentially with K(me) .

sl b b it et
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On the other hand, it results from (7.1) that B X a(Jmax,p,) - eK(Jmax)

as - 0 and p x 3(J

max""') = 4 8s y - ®, where, owing to inequalities

(7.3), o
K(Jmax) 1s a minimum for any fixed value of K(JmAx)'
So, for any value l((.]m ax) of the main memory allotment the page

demand rate approaches a minimum @ ) as the average execution interval

K(Jnax

is increased until it becomes equal to the average processor time consumed

per user programs. When.:. the average execution interval decreases (b = =),

the page demand rate finishes by growing like y.

7.5.5. These tendencies of the page demand rate in function of K(Jmax)
and (|,1.)"1 are illustrated by figures 7.4 and 7.5. These figures reveal
that from the point of view of the page demand rate, there would not be much
to be gained from guaranteeing each program a parachar (*) of more than
about seven page frames in Mo and an execution interval loager than 0,2
seconds; conversely they show that a minimum execution interval of 0.05
seconds and & minimum parachor of four page frames are mandatory. It will
be shown in $7.9.2 that these parachor values which are satisfactory for
pregrams coneidered as individuals are far from optimizing performance
eriteria which take page transfer rates into account . What is optimal

for programs considered as individuals will not appear optimal when they

are considered collectively.

*
Parachor is a term in use to designate the amount of primary memory needed
by a program to achieve some "satisfactory" level of performance [Be68] .
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7.6 The Rate of Page Transfer Completions

Let J, 1 £J = Jmax’ be the number of programs being multiprogrammed
at some time t and 1i, 0< 1i < J, be the number of programs being in
suspended state at this time t. It is shown in the appendix of [Sm67 ]
that because of the simplifying assumptions 7.3.1 and 7.3.2, the rate at

which page transfers from M1 to Mo are completed may be taken equal to

20 ¢

'Y=

M) =TI X T (7.5)
1771 rot

‘This rate is obviously null for 1i = 0, and approachés asymptotically
c

T as 1i increases (see figure 7.2).
rot

7.7 Conditions for Aggregation
It results from the simplifying assumption made in ?7.3 and 7.5 that

the hypothetical system may be regarded as a closed multi-queues system in

which a fixed number N of programs cycle between three stages of service,

1L, #=0,1,2, being the number of programs at stage £, we may suppose .that
i, {s the number of programs in ready and/or running state;
11 = 1i+i¥ where 1i is the number of programs in guspended state
and 1; the number of programs waiting to be multiprogrammed;
12 is the number of terminals without pending request for

program execution.

At any time t, t > 0, when J programs are being multiprogrammed, these

variables must obey the following relations:
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- N qn
12 N (10+:l.1+11),

(1'1'>0) o (10+1i - me).

(1?>0)

Denoting pipij, 1,j=0,1,2, the transfer.rate from stage i to stage §,

jfi, we have

s WX, W) L1 > 0 (7.6)
0701\ exa(d, ) L€ 14 = 0 (7.9)
woPg2 = (7.8)
%1P10 - pl(ii) (see equation (7.2)) (7.9
boPyy = ML, (7.10)

All other transfer rates being null, the condition (5.1) for near-ccuplete-de-

composability amounts in this case to:
For i-2 L 0’.||,N'Jmax’

IESBEA |

xx12 << min [ul(ii).(uxa(Jmax.u))-cp]
1 "max :

.nd fot i - N-J +1’..I’N-]-
: max

2

Ai, << min [, (17),9%(3(3,9)-1) ],

1<1!,J<J
m

1 ax

Since we have ¢ < u, and gxd(J,p) < pxa(Jmax.p),(J < Jmax) as well as

for a < b:
cpxa(a.(P) 2 (an(bptp) and Lll(a) 2 ul(b)p

a necessary and sufficient condition for (7.11) to be satisfied is
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A(N-1) << min[ul(l), ox(0(L,ep)-1) 1,

or, replacing pl(l) by its value yielded by (7.2):

A1) << min (65— x —L0), ex@(Lo)-D].  (7.12)
roc 1

Condition (7.12) stipulates that the lowest possible rate of page trans-
fers between primary and secondary memory be higher than the highest possible
rate of interaction between the set of terminals and these memories. This
is in fact a common state of affairs and we may reasonably expect to see
this condition satisfied by most paging computer systems.

Moreover, Condition 7.12 is strictly expressed in terms of the hardware

parameters N,cl, Tro » the user reaction time (x)-l, and the characteristics

t
of a non-multiprogrammed user program execution, namely:

(¢)-1, the average processor time consumed per execution;

d(1l,¢), the average number of page faults per execution if the
entire primary memory space C0 is available; relaticn
(7.1) completely determines 3(l,¢) in function of

¥ Cy» and the user program activity [En}, =l,,.. .

A prior knowledge of these hardware and load parameters therefore,makes
the verification of near-decomposability possible and may give a prior esti-
mation of the precision achievable by using an aggregative model. 1In this
pﬁrticular case, given the values assigned in 597.4 to ¢, A, Trot and C»

and since 9o(1l,p) ~ 19, (7.12) is satisfied as long as

N << 1+h-1x¢x(a(1,¢)-1) ~ 300, Under this condition
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the hypothetical system is nearly-completely-decomposable into the set of
user temminals on the one hand, and a primary-secondary memory aggregate
on the other hand. The short-run equilibrium attained by the aggregate may
be studied independently of the interactions with the user terminals; the
long run equilibrium attained by these interactions may be studied in tewms

of the equilibrium characteristics of the aggregate.

7.8 Analysis of the Aggregates NH(J), mf(Jmax)

Throughout this short-run equilibrium analysis we may therefore disre-
gard the activity of the user terminals, We may simply assume that a fixed
number (N-iz), 0 < 125 N-1, of requests for program execution are pending,
This implies that a fixed number J of programs, J = min[(N-iz),Jhax] are
being permanently multiprogrammed. It was shown in 57.5.1 and 7.5.2 that
depending on whether or not (N-iz) > Jhax’ the page demand rate was differ-
ent. For this reason we consider two types of aggregates: A gaturated
aggregate,.denoted mf(Jmax), in which the page demand rate is equal to
uxa(Jmnx.u), and a non-saturated aggregate M(J), J-l""’Jmax’ in which che
page demand rate is equal to ¢x3d(J,p).

Considering this latter case first, a probability distribution
"2(“0'3)' no-O,...,J, J=1,...,Jmax, of n, programs being in ready or running
state on condition that J programs are being multiprogrammed may be obtained
as the distribution of the congestion in a NH(J) queueing system, whose in-
put rate is the page transfer rate and whose service rate is the page demand
rate oxd3(J,p). Since the page transfer rate is dependent on the congestion,
probabilities ﬂz(nolJ) are defined by relations (5.3), Introducing into

(5.3) the rates yielded by (7.9) and (7.7) yields for J=1""’Jhax:
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J-n0+1

n ul(k)

_k=J -
ﬂl(nolJ) —EG;STETST“E ﬂl(OlJ), n, 1,000,J

J-n0+1 -1

J mw (k)
with 'nl(OIJ) n(l+ T k=J
ny=1 X3 (J, ) JN0

Next, replacing [¢Xd(J,p)] by [uxa(Jmax,u)], ylelds a similar distribu-

J
max
no=0

% %
tion for ﬂl(Jmax) which will be designated [ﬂl(nolJmax)]

In particular,

GI(J) l-ﬂl(OIJ), J‘l’.--’J

max’

‘or in the saturation case
*G ) = 1em 0] J
cl( max -"1( max)’

is the probability of the processor not being idle when J (or Jmax) programs
are being multiprogrammed. This probability will be henceforth referred to
as the processor efficiency.
*
In figure 7.6, Ul(Jmax) is tabulated for 1 < Jmax < 20, i.e.,

2 <K@, ) S48, and for four values of the average execution interval [u]-l.

7.8.1 Optimal Maximum Degree of Multiprogrammipng.

Figure 7.6 reveals that distinct optimal maximum degrees of multi-
programming, say J:g:, correspond to distinct values of the execution inter-

opt ) *
val, Jmax maximizes the processor efficiency ol(Jmax), i.e., maximizes the

Jen,+1
swn 0
I wq (k)
Jmax k=J L
5 max .

n
n,=1 0
0 [uXB(Jmax,u) ]
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An essential property of near-dacomposability is that the relative

values of the short-run equilibria attained in each systan!mi(Jmax),

J =1,2,..., are maintained in the long-run. Therefore, J;z: is also the

max
maximum degree of multiprogramming which maximizes the long-run fraction of

time the processor is busy when the system is saturated.

The existence and the value of this optimum depend on the relative

importance of two antagonistic effects: as the degree of multiprogramming

increases, processor efficiency

(1) tends to increase the probability of at least one program

being in ready state,

(i1) tends to decrease owing to the increase of the page fault

rate which results from the reduction of primary memory

space allotted to each program,

A method to evaluate such an optimum has already been proposed in
[(wa69] but it applies to the simpler case of identically distributed

channel service times and a geometrically distributed number of page faults

per program execution; thus the locality property of programs is not taken

into account,
Figure 7.6 reveals also that the optimal maximum degree of multi-
s - -1
programmng increases as the average execution interval [p] = decreases.

Indeed, the second counteracting effect does not become operative until

pfograms have exhausted: their primary memory allotment K(Jmax)' The shorter

the execution interval, the smaller this exhaustible space allotment becomes.,

T R U ROSTS L  te ve
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7.8.2. Thrashing

It is evident from figure 7.6 that the primary memory allotment
which must be guaranteed to each program in order to achieve maximal pro-
cessor efficiency is considerably larger than the parachor value evaluated
in $7.5.5.

The difference is justified by the fact that the parachor is an
individual program characteristic whereas ol(J) and oi(Jmax) are measures
of the overlapping achieved between page transfers and processor busy
p2riods and depend on secondary memory transfer rates as well.

P. J. Denning's argumentation on trashing [De68|2] helps us to
understand why the parachcr is smaller than K(JoPt).' A measure e of the

max
ability of a program to use the processor may be defined as

u-l
e= T o1
WA k) X (k)
. max
where By= . EO "1(n0|Jmax) p‘I(Jma\x'no)
0

is the average service rate of page transfer requests; [B(Jmax,u) X (ﬁl)-l]
is thus the average time a program spends waiting for page transfers during
an execution interval, Denoting by m the page transfer rate, we obtain

1

e= p— .
L+mx (u)

The slope of e in function of m is
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de. . G~
din —1
(1+mx (uy) ]

2

vhich means that e is more sensitive to m variations as (;.'1'.1)-1 is great and
m small. Therefore, the larger (|].'1)-1 is, the larger K(ngi) and the smaller
opt - =1 opt
Joax® Large (ul) values are responsible for K(Jmax) exceeding the paracher.
This extreme sensitivity of processor efficiency for large (;'1'.1)-1

to m variations is responsible for serious degradations of the system re-

JoP¢E,

sponse time when the degree of multiprogramming is allowed to exceed i

These degradations are analyzed in paragraphs 7.12 and 7.13.

7.8.3. Processor Efficiency Versus Execution Intervals

Figure 7.6 shows that the longer the mean execution interval is,
the smaller the primary memory space K(Jmax) required to attain a specified
processor efficiency is. Or, that the larger K(Jm.x) is, the more advantageous
it is from the point of view of processcr efficiency to provide for the long-
est possible execution intervals, This is & consequence of the increasingly
preponderant influence (p)-l has on the page fault rate decrement AK(J )?
(cf. $1.5.4) as K(Jmnx) increases, owing to the property of locality 6?ax
references (inequalities 7.3).

Therefore a policy which optimizes processor efficiency by taking
advantage of the locality property, should provide the user program with
the longest possible execution intervals. Such a policy gives most effec-

tive results when the primary memory allotment per program is large, viz.

the degree of multiprogramming small, This is a supplementary argument in
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favor of processor allocation methods which have already been advocated
[(Mu70] to minimize changes of tasks (and thereby reduce overheads on
processors) when the system is underloaded, viz. when the number of out-
standing requests for program execution is less than the number of quanta
contained within the prerequisite response time.

One may also observe in figure 7.6 that c:(Jmax) is practically
igsensitive to J ox if (u.)-1 is so small, in this example less than about
21 9;1 ~ 430 ps, so that programs are not given enough time, whatever
;(Jmax) is, to accumulate in Mo the minimum number of pages necessary for

the property of locality to have effective results (about four pages as

-shown in figure 7.4).

7.9 The Long-Run Equilibrium

The entire system may now be regarded as a set of N active user terminals

originating requests for program execution to the aggregates ﬂﬁ(j), J=1l,000,:J

max’

and mq(Jmax). Let n, = (N-iz) be the number of pending requests, i.e., the
number of programs being or waiting to be multiprogrammed. We will refer
to n, as being the system congestion.

We may consider that the programs are executed by a single aggregate
m&(nl) such that

m&(nl) = mH(J), for n, = J < Jmax’

ﬂ&(n]) = mq(Jmax)’ for ny > J o e

The rate at which programs are completed by m&(nl) is
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o[1-m (0n)] = gxo,(n.), if n, $J
1T T PO 1" “max (7 13)

* *
cp[1'“1(0“::1&::)] - ¢x°1(Jmax) L ny > Jmax

¥ (n1)=

1,2

\31 2(nl) will be referred to as the system service rate, '1 2(“1) is
’ ’
displayed in figure 7.8.

Tte rate at which requests are originated at some time t when the sys-

tem congestion is equal to n, is equal to

uzpzl = X(N'nl)’ nl'o,...,N (7.14)

Introducing (7.13) and (7.14) into (4.7.1) yields the long-run equili-

brium probability distribution {né(n1|N)}§ =0 of the system congestion:
1

nl N(N-I)OOO(N-n1+1)
o (k)
n
L] 1,2

ﬂé(nllN) = X [ nl-lgooo,N

N n; N(N-l)...(N-nj+1) | -1
where mON) =/1+ T A
2 n
n1=1 1 &
ny
m1 | 1s2

7.10 The System Congestion Avalanche-Like Effect

Assuming N=20, the distribution fnz(nllN)}g =0 has been calculated for
1
various values of Jmax (see figure 7.7). Some representative values of the

mean congestion
N

E= L

n, nz(n1|N)
n, | .

among those obtained are:
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max g
1 12
2 7.49
3 5.25
4 5.71
10 15,7
20 19.1

These mean congestions, as well as the distributions of figure 7.7
suffice to advocate multiprogramming towards 'batch-processing' (Jmax=1)
and to advocate policies which control the maximum degree of multiprogram-
ming so as to keep it around its optimal value (J;Z: ~3).

In particular, the last mean congestion in the list above, almost equal
to N=20, indicates how the system may become overcrowded if all programs
present are allowed to compete for primary memory (Jmax=20). An intuitive
interpretation of this behavior may be deduced from the shape of ¢1’2(n1) as
a function of n, for scme given value of Jmax (cfr. figure 7.8): once
the congestion exceeds an optimal value which maximizes the system service
rate wl’z(nl), any increase of the congestion results in a service rate
decrease which, in turm, accentuates the initial corgestion increase.

The upper limit Jmax of the degree of multiprogramming acts as a barrier
against this avalanche-like effect: the system service rate never decreases
below wxat(Jmax), no matter how great the congestion becomes.

This avalanche-like behavior of the congestion is analyzed in greater

detail in section 7.12,
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7.11 The System Saturation Points

In figure 7.9, the mean system congestion E has been plotted against
the number N of active user consoleé(l < N £ 20) for various values of Jmax'
As N increases, the mean congestion approaches and follows asymptotes

of slope 1. This is due to the fact that, for increasing values of N, all

other system parameters remaining constant:

J
max
my ([0 = 0}n1=0 ;

the system therefore tends to behave as a N-consoles system with constaat
service rate [wxo*(lmax)]' Kleinrock [17] has shown how, beyond a certain
N value, such systems get saturated, each additional user interfering com-
pletely with all the other users and adding one more unit to the mean con-
gestion. He has shown that the corresponding mean congestion asymptote
of slope 1 intersects the line E=1 for a certain value of N which is pre-
cisely the average number of consoles the system may handle without ex-
periencing any mutual delaying interference among the user requests; this
number, which he defines as the saturation point of the system, is equal
to the average number of user requests which may be satisfied until comple=-
tion within & time interval equal to the sum of the average user reaction time
and the average user request service time.

We may well verify that, in figure 7.9, the asymptotes intersect the

line E=1 at point

' * -1 -1
% - [(PXO'l(Jmax)] + A

(7.15)
)17t

N

J L3
o [wxol(Jmax
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which would be "the saturation point" of the system if its service rate
were not congestion-dependent but equal to [wxgi(Jmax)]. On. the other
hand, the behavior of the mean congestion in the domain of smaller N
values is considerably different from that of a system with congestion-
independent service rate. In these latter systems the mean congestion
cannot increase more than linearly with N. The causes of the sharp non-
linearities which may be observed in figur. 7.8 are discussed in the next
section where a definition of saturation for systems with a congestion-

dependent service rate of the same shape as Wl 2(nl) is introduced.
?

7.12 The Congestion Stability

A peculiarity of the aggregate W&(nl) is that both its input rete
x(N-nl) at which requests for program executions are originated and its
service rate wl’z(nl) at which these executions are completed are depen-
dent on the system congestion n, n1=0,...,N. The general shape of these
rates is displayed in function of n, on figure 7.10,

One observes that, depending on the relative values of N, Jmax‘ A @

ol(nl), there may be at most three congestion values nys Ogs NG for which

the input equates the service rate, viz. which are solutions of

}\-(N'nl) = wl’z(nl)’ (7.16)

where Wl 2(nl) is given by (7.13).
?

It is simple to prove that n

.y and n, are stable congestions around which

the system is inclined to come into equilibrium. Let us consider the system
at some instant when the congesticn is equal to n,. An increment Anl

of the congestion will cause the service rate to exceed the input rate.
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This excess, which is greater to the extent that Anl is large (provided

A

1y Likewise a decrement -An1 would cause the input rate to exceed the

output rate, compelling the congestion to re-increase. The same reasoning

+ An1 < nopt), will tend to reduce the congestlon to its original value

applies to the congestion n..

Inversely, a similar argumentation indicates that in the vicinity of
ng the congestion variations are reinforced instead of being deadened by
the alterations they cause to the output to input rate ratio . N, i8 an
unstable congestion, i.e. a state the system will always be zealous to leave
in favor of stable congestions ‘u the vicinity of n, or n..

Depending on the relative values of the various Qyten parameters, inter-
section B may or mev not exist. In the first case the congestion will be-
come preferentially steady around values near n, Or n.. This is well re-
flected by the shape of the long-run equilibrium distribution {"2(n1|N)}21-0’
figure 7.7. Comparing figure 7.7 and 7.8, it may be verified for Jmax=3
that the two congestions of highest probability, n, ~ 1 and n, ~ 6, are
respectively equal to n, and n.» and that the congestion of least prob-
ability, viz. n, ~ 3, is identical to ng. Similar extremes, too small to be
distinguishable on figure 7.7, affect the distributions corresponding to
Jmax = 1,10,20. It may be conjectured that the transient time behavior of
the congestion in such systems is increasing oscillation between values in
the vicinity of n, and values in the vicinity of n..

1f no B intersection exists, {ﬂz(nllN)}zl_o exhibits a single
maximum equal either to n, or n., depending on the value of N. Compare for

A
instance figure 7.8 with the distributions displayed on figure 7.11 for
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Jmax=3 and N=25,14 respectively.
The behavior of the congestion as a function of N, 0 < N < «, may be
summed up as follows, For N small, the congestion at first remains in

the vicinity of n,. As soon as N exceeds a certain value, denoted N.r
max
and defined graphically in figure 7.10, B and C intersections exist and the

mean congestion must reach abruptly a value between n, and N.s N P n,.

c

This explains the sharp increase of E on figure 7.9, once N exceeds a value

which is equal to N; . For N larger, the system tends to behave as a
max
system with constant service rate and the congestion increases almost

)
linearly with N as does n,. The smaller G{(Jmax) is, the closer to N is

c

"Ne obviously, For N - «, it is easy to show that, for a given value of

J s E=n

— In the steady state we may equate the mean input and service

C.

rates; the mean input rate is

N
Az ﬂé(n1|N) X (N-n;) = A(N-E);
n1=0

N
Equating with the mean service rate z né(nllN)wl 2(n1), we find:
=1 ’

ny

N ¢1 z(nl)
E=N- T m(n|N—=—. (7.17)
2+ A
n1=1

For N » =, the system tends to behave as a system of constant service

rate wl’z(nc) so that

¥y,2(0g)
lin E=N - [1 - m,(0|N)]—=— (7.18)

Now A

ﬁ%
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As n, is solution of equation (7.16), and né(OIN) ~» 0 as N =+ o, (7,18)

becomes
lim E = n.e
N>
N} is the saturation point of the system: the mean congestion in-
max
creases less than linearly with N, for N < N} s and more than linearly
max
for N} < N< o, N} may easily be deduced for given values of the
max max

parameters which define the hypothetical system by coustructing an equili-

brium diagram of the type defined in figure 7.10,

7.13 The System Response Time

The mean response time of the system is given by relation (4.70):
-~ -1
W= [M1-m,(NN]T x E

It is the mean time spent by a program in the system, waiting for or
being multiprogrammed, W is plotted in function of N for Jmax=3,10,20, in
figure 7.12, Sharp non-linearities may be observed as soon as N exceeds
the saturation point N} . For N larger, the system tends to behave as

max

if the service rate were congestion-independent so that the limit of the

slope of W with N is

lim dW _ * -1,
Mo dN [¢X61(Jmax)] i

*

the smaller Ul(Jmax)’ the steeper this boundary slope is.
These sharp increases of the congestion and of the response time when
the number of active temminals exceeds the saturation point are the conse-

quences of the extreme sensitivity of the processor efficiency (see section
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7.92 on trashing) to fluctuationsof the page demand rate when the page
transfer rate is slow and the degree of multiprogramming is allowed to
exceed ngi .

The fluctuations of W in function of Jmax for N fixed are displayed
in figure 7.13, The discontinuities for J =7 13 correspond to ol(Jmax)
minimae (cfr. figure 7.6).

By virtue of the property of near-decomposability we have been able to
specify within a single analytical model the condition of existence of
thrashing in terms of parameters defining (i) the traffic of pages between
primary and secondary memory and (ii) the load on the system, and to measure

the consequences of this phenomenon on overall system performances such

as the congestion and the response time.

7.14 Long-Run and Unconditional Distributions

N-J
The distributions {s (i )} “max {51(11)} Tmax o {s (1n)} " max may

_0’ '_0
be obtained from the system congestlon {nm (nllN)] = by means fo relations
R |

(4.8). More precisely, the long-run and unconditional probability of io

programs in ready or running state is

max
5,(ig) = ) Ei m, (ny | N (g n))
170
% I:{
+mgla o) oz my(n [N, 1p=0,..0,0 s
n,=J _ +1
1 “max

The long-run and unconditional probability of ii programs in suspended state is:
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Jmax
51(1'1)= T nz(nllN)"l(nl'iiIN)

=4
n1 11

N

) T "2(“1|N)

n1=Jmax+1

*
- ]
+ 1.'I(Jmax i I'Jmax

L .
il o.ooo.Jmax,

The long-run and unconditional probability of 1'1' programs waiting to be

multiprogrammed is simply "2(Jmax+i'1'|N)' 1920000 N-T .
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