


St'cuiiiy CliiKHi(ir«lion 

«.   ORIG 

DOCUMENT CONTROL DATA - R & D 
(Sfeiitllv elHUKllltallon n> UltBi fcortv «> «»oiwicl mi.1 iiH>«'«i»i« »nnofflon mu»t 6» «ititwfpi» ivhi-n rfie nwiull t«porl In clu.^tl,»,!} 

INATINC ACTIVITY (C°orfii>rii(i>«il>lor> £■. REPORT SECURITY CLASSIFICATION 

Carnegie-Mellon University 
Department of Computer Science 
Plttsbtirctl,    P^nneylvanifl 15213 

UNCLASSIFIED 
w. mm 

1.   REPORT TITLE 

ON THE NEAR-COMPLETE-DECOMPOSABILITY OF NETWORKS OF QUEUES AND OF STOCHASTIC MODELS 
OF MULTIPROGRAMMING COMPUTING SYSTEMS 

*.   DESCRIPTIVE NOTES (Typ» of trpott and inclucit« d»f) 

Scientific   Interim  
S.   AUTHORIS) (Fltfl nmm; mlddlu Inlllml, laat nrnif) 

P. J. Courtois 

S. REPORT DATE 
November 1971 

S*. CONTRACT OR ORANT NO. 

F44620-70-C-0107 
b. PROJECT NO. 

AO 827 

61102F 
681304 

7«. TBTJCC MÖ. 8? WKSR 
129 

7b. NO. OP RE FS 
49 

•a. ORIGINATOR'S REPORT NUMBERI» 

•6. OTHER REPORT NOtSl (An? oihmt numbara Mia« may ba 
«Ma tmpotl) 

AFOSR -TR-72-0632 
10. DISTRIBUTION STATEMENT 

Approved for public release; 
d is tr ibu t ion unlimited. 

II. SUPPLEMENTARY NOTE» 

TECH, OTHER 

12.   SPONSOMNG MILITARY ACTIVITY 

Air Force Office of Scientific Research 
1400 Wilson Boulevard     (MM) 
Arlington.   Wr^Ma     22209  

ITRACT 

Sufficient conditions under which a closed network of interconnected queues 
is nearly completely decomposable [Si6l], [An63\ are defined In terms of the 
resource service rates and the probabilities of transfer between queues. It is 
shown that when such conditions hold, the network may be organized as a hierarchy 
of 'aggregate resources', Lhe equilibrium equations of which may be obtained 
separately as those of a Unite single server queuing system. The interest of 
this approach in the analysis of multiqueue systems is discussed. 

.This approach is used to define and evaluate performance criteria for multi- 
programming storage hierarchies which are shown to be nearly completely decom- 
posable systems. . We discuss also the relation between the concept of aggregate 

/resource and th<5 concept of abstract machine proposed by E. W. Dijkstra to struc- 
ture the software of laultiprogramming operating systems [0169/1]. 

•Finally, the use of an aggregative model is illustrated by the queuing 
analysis of a given paging time-sharing computing system. This analysis reveals 
that the regime of operations in such a system may be elthet^ stable or unstable, 
owing to the fluctuations of processor efficiency with the degree of multi- 
programming. This notion of instability leads to a more complete definition 
of the circumstances under which thrashing may occur. 

DD .Fr.sM73 
Security Ctnssification 

'..''./...       .       . '«MIXBUtfM 



CMU-CS-7Z-111 

ON THE NEAR-COMPLETE-DECOMPOSABILITY 
OF NETWORKS OF QUEUES 

AND OF STOCHASTIC MODELS OF      ^ 
MULTIPROGRAMMING COMPUTING SYSTEMS 

F.  J.  Courtois 

November 1971 

D D C 

MAR  ** 1972 

VThl8 work was supported in part by the Manufacture 
Beige de Lampes et de Materiel Electronique S.A., 
Brussels, and in part by the Advanced Research 
Projects Agency of the Office of the Secretary of 
Defense (F44620-70-C-0107) (monitored by the Air 
Force Office of Scientific Research). 

Approved for public release; 
distribution unlimitea. 



ACKNOWLEDGMENTS 

I am Indebted to Professor H. A. Simon, Carnegie-Mellon University, for 

several conversations on the concept of near-decomposablllty and for his many 

helpful suggestions which contributed to the Improvement of different parts 

of this paper. 

I am also Indebted to Professor D. L. Parnas, Carnegie-Mellon University, 

for several discussions and valuable suggestions, particularly with regard to 

the examination In section 6.2 of the relation between the concept of resource 

aggregation and that of level of abstraction In multiprogramming computer 

systems. 

Mr. J. Georges, MBLE Research Laboratory, deserves my special gratitude. 

A great part of this research Is the continuation of the work we did earlier 

together [Cou70], [Cou71].  The discussions I have had with him and his use- 

ful suggestions concerning this paper are numerous.  He also wrote the computer 

program by which the numerical results discussed in the last section have been 

obtained. 

I want also to thank Mrs. D. Josephson for her diligence in typing the 

manuscript. 



/ CONTENTS 

Acknowledgments 

Introduction and Survey 

I. Nearly Completely Decomposable Systems 

1.1 The Simon-Ando Theorems 

1.2 Interpretation of the Theorems 

1.3 Fused States 

1.4 Multi-level Systems 

1.5 Cohesiveness 

1.6 Remark 

II. A Stochastic Model for Multiprogramming Systems 

III. Near-Complete-Decomposabillty of Multiprogramming Stochastic Models 

IV. A Hierarchy of Aggregate Resources 

4.1 Decomposition into Levels 

4.2 Inter-level Relationship 

4.3 Concluding Remark 

V. Closed Multitjieues System Analysis 

VI.  Near-Complete-Decomposability in Computing Systems 

6.1 Storage Hierarchies 

6.1.1 Computations 

6.1.2 Single Process Storage Hierarchy 

6.1.3 Multiprocess Storage Hierarchy 

6.1.4 Near-Complete-Decomposability 

6.1.5 Memory Level Aggregation 

6.1.6 Dynamic Space Sharing 

6.1.7 Remark 

6.2 Hierarchical Structure of Multiprogramming Computer Operating 

Systems 

6.2.1 Levels of Abstraction 

6.2.2 Aggregation and Ordering of Abstractions 

VII. Short- and Long-run Equilibria in a Time-Sharing Paging Multl- 

progranm!.ng System 

11 . 



7.1 The Hypothetical System 

7.2 The User Programs 

7.3 Simplifying Assumptions 

7.4 Actualizing the Hypothetical System 

7.5 The Page Demand Rate 

7.6 The Rate of Page Transfer Completions 

7.7 Conditions for Aggregation 

7.8 Analysis of the Aggregates ^(J), 3JI (Jmax) 

7.8.1 Optimal Maximum Degree of Multiprogramming 

7.8.2 Thrashing 

7.8.3 Processor Efficiency versus Execution Intervals 

7.9 The Long-Run Equilibrium 

7.10 The System Congestion. Avalanche-like Effect 

7.11 The System Saturation Points 

7.12 The Congestion Stability 

7.13 The System Response Time 

7.14 Long-Run and Unconditional Distributions 

Figures of Chapter VII 

References 

iii 

li^iitojaiiiii,;rl'äiiilte^iw^-fc^.... 



INTRODUCTION AND SURVEY 

"The concept of hierarchic order occupies a central place In 
this book, and lest Che reader should think that I am riding 
a private hobby-horse, let me reassure him that this concept 
has a long and respectable ancestry. So much so, that defend- 
ers of orthodoxy are Inclined to dismiss It as 'old hat* - 
and often In the same breath to deny Its validity. Yet I 
hope to show as we go along that this old hat, handled with 
some affection, can produce lively rabbits." 

A. Koestler 
(The Ghost In the Machine) 

It Is In economic theory that aggregation of variables has been most 

explicitly used es a technique to study and evaluate the dynamics of sys- 

tems of great size and complexity. This technique is founded on the idea 

that in many large systems all variables can somehow be clustered into a 

small number of groups so that:  (1) the Interactions among the variables 

of each single group may be studied as if interactions among groups did not 

exist and (11) interactions among groups may be studied without reference 

to the interactions within groups. This is trivially correct when vari- 

ables are functions of the values of variables of the same group but not 

of the values of any variable in any different group. The system in this 

case can be said completely duoomposable:      it truly consists of independent 

subsystems, each one of which can be analyzed separately, without reference 

to the others. 

It is worth making the terminology more precise at the outset: such a sys- 
tem may be represented by a completely deoompoaable matrix,  i.e., a square 
matrix such that an identical permutation of rows and columns leaves a set 
of square submatrices on the principal diagonal and zeros everywhere else; 
a decompoecible matrix, as opposed to completely decomposable, is a matrix 
With zeros everywhere below the principal submatrlces but not necessarily 
also above. Near-oomplete-deoompoaobility and near-decompoeabtHty  are de- 
fined by replacing the zeros in these definitions by small non-zero numbers. 



II 

H. A. Simon and A. Ando [8161] Investigated circumstances under which 

variable aggregation still yields satisfactory approximations when the 

variables of a group do depend on the values of the variables of the other 

groups, but only weakly compared with intra-group dependency. Several 

examples taken from economics [Si61], physics [Si61] [Si62][Si69], and 

social sciences [Fi62/l], indicate that systems of that kind are likely to 

be more frequently encountered in reality than systems verifying the assump- 

tion of complete decomposability. The authors of [Si61] show that in these 

systems, qualified In [An63] as Nearly Completely Deoompoeable System,  aggregation 

of variables separates the analysis of the short-run from that of the long- 

run dynamics. They proved two theorems. The first one states that, pro- 

vided inter-group dependencies are sufficiently weak as compared to intra- 

group ones, in the short-run the system will behave approximately, and can 

therefore be analyzed, as if it were completely decomposable; whatever 

standard of approximation is required, there will always exist a non-zero 

degree of weakness of dependency such that the analysis will meet this 

standard of approximation. The second theorem states that even in the long- 

run, when neglected inter-group dependencies have had time to influence the 

system behavior, the values of the variables within any group will remain 

approximately in the same ratio as if those inter-group influences had never 

existed. The results obtained in the short-run will therefore remain ap- 

proximately valid in the long-run, as far as the relative  behavior of the 

variables of a same group is concerned. 

These two theorems are fonnally introduced in the first section in 

the case of stochastic systems; our approach and our notation only deviate 

in a few details from [Si6l]. Furthennore, we indicate how aggregative 
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variables representing fUaed  states [Ve69] may be used at an arbitrary 

number of levels of aggregation to evaluate the limiting equilibrium 

probability distribution of stochastic systems with a large number of 

states. 

In the following four sections we exploit the concept of near-complete- 

decomposability to analyze stochastic networks of interconnected queues. 

In Section II we define a model of a network which is a particular case 

of W. J. Gordon's and G. F, Newell's model [Go67]. An arbitrary fixed 

number of «stomers make use of an arbitrary fixed number (L+l) of re- 

source«, each of which provides a certain type of service. When service is 

completed by resource A. a customer proceeds directly to resource m with 

probability p . The conditions under which such a system is nearly completely 

decomposable into L levels of aggregation are established in Section III 

in terms of the resource service rates and the transfer probabilities p^. 

We show in Section IV how. when these conditions are fulfilled, the set 

of resources may be organized in a hierarchy of aggregate reeouroea, 

each aggregate resource being analyzable merely as a single server queuing 

system. 

This approach presents several advantages which are discussed in 

Section V. First, the determination of the equilibrium marginal prob- 

abilities does not require, as in [Go67], the inversion of ^e transfer 

matrix lip 11. Explicit and closed form solutions are obtained for these 
1' An " / 

probabilities, as well as for the average time a customer waits at each 

resource. These expressions facilitate the estimation /of the equilibrium 

probabilities when the number of states is large, i.e.. In the case of a 
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large number of customers and/or resources. Next, these solutions apply 

to queuing networks which are more general than the model considered In 

[ Go67]; they may be used to evaluate networks In which, as in the general 

model of J. R. Jackson [Ja63], the service rates are at each service stage 

almost arbitrary functions of the congestion at this stage; transfer prob- 

abilities dependent on the congestions at the stage of departure may be 

taken into account as well. Finally, this hierarchical model of aggregate 

resources appears to be a good approximation to multi-queue systems in 

which, instead of being exponentially distributed, the service times are 

random variables with arbitrary distribution functions; in other words, 

near-complete decomposability can under suitable circumstances dispense 

with the Foissonian service times assumption, which is classically made 

in networks of queues by sheer necessity of overcoming analytic diffi- 

culties. 

Networks of Interconnected queues are in several respects adequate 

models for studying congestion problems in multiprogramming computing 

systems [Wa66] [Sm66] [Ar71] [Bu71]. We show in Section VI that the char- 

acteristics inherent in memory hierarchies are of such a nature as to make 

near-complete decomposability an intrinsic property of their models. Hence, con- 

sidering a computer memory as a hierarchy of aggregate memory levels*  we 

use the model set up in Section IV to define and evaluate performance 

criteria for multiprogramming computer memory hierarchies. We indicate 

also how its ability to cope rather simply with state-dependent transfer 

probabilities may render this model sensitive to allocation policies which 

adjust dynamically the space allotted per program in each memory level to 

the demand made by the programs in the course of their execution. 

f^.^,.—v..::;. uiaib , awiattaiiia tdütitüi 



In the second part of this same section, we discuss the similitude 

existing between the hierarchical model of aggregate resources defined In 

section IV and the structure of levels of abstraction advocated by E. W. 

Dljkstra for the software of multiprogramming computer systems [Di69/l], 

He conjecture that the criteria that Indicate what resources to aggregate 

are. In many cases, the same as those which specify what the levels of 

abstraction should be. The conditions for aggregation In such systems 

are expressed In terms of parameters closely related to the physical 

characteristics and the usage of the hardware resources. Hence, provided 

these parameters may be assessed, resource aggregation conditions might 

help the designer choose the ordering of the levels of abstraction. 

Variable aggregation appears In these two models as a technique that en- 

ables the level-by-level evaluation of the system to be interlaced with 

its level-by-level design. This stems from the fact that the conditions 

for aggregation are the same as those necessary to provide sufficiently 

approximate knowledge of the performances of a still Incomplete system 

on which further design decisions may be based. Aggregative models of 

queue networks are, in the sphere of computing system analytical models, 

a counterpart of the level-by-level simulation techniques recommended in 

[Pa67] [Pa69] [Zu68] [Ra69]. 

The last section Is intended to illustrate the use of an aggregative 

model in analyzing a given computing system. This concrete case study 

reveals that aggregation is not only adequate in obtaining numerical 

results when the number of parameters involved is large, but also helps 

to gain insight and conceptual clarity on the respective parts played by 
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1.0 

I. NEARLY COMPLETELY DECOMPOSABLE SYSTQ1S 

We Introduce In this first section two theorems on nesrly completely 

decomposable systems proved by H. A. Simon and A. Ando. We limit our- 

selves to the case of stochastic systems, which is the only case relevant 

to our study. Except for the subscripts, we have kept the same notation 

as in [Si61]. We show afterwards how aggregative variables may be used 

to represent fused  states [Ve69] and to evaluate the limiting state prob- 

ability distribution in stochastic multi-level nearly completely decompos- 

able systems. 

1.1 The Simon-Ando Theorems 

We are Interested in stochastic models of the form 

x(t+l) - x(t)Q (1.1) 

where x(t) is a row probability vector and Q a stochastic matrix. The 

system having n possible state, x.(t) is the unconditional probability 

of the system being in the i     state at time t; q. . is the conditional 

th 
probability that the system is in the I      state at time (t+1) given that 

it is in state k at time t. 

* 
We consider next a matrix Q , that can be arranged in the following 

form after an appropriate identical permutation of rows and columns: 

fN 
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*. where the Q's are square matrices and the remaining elements, not dls- 
JU N 

played, are all zero. Let nT be the order of QT; then n " £ nT. The 
I"1      * 

following notation is adopted to refer tv  the elements of the vector x (t): 

x*(t)'- {xL(t)) - {[x* (t)].,..,[x* (t)] [x* (t)]] 
n li h 

1e It 
where [x. (t)] is a vector of elements of (x. (t)} so that if 

1I 

xi (t) " ''k^^ 

1-1 
then k - E n.+i,      i-1 n ; 

J-l J l 

1-1 N. 

it 
The matrix Q is said to be oompletely deoompoBable,    it is clear 

that in the system 

x (t) - x (0) Q t 

* it it 
the subset [x. (t)l depends, for any t, only on [x. (0)] and Q , and is 

I I 
•k It 

independent from [x. (t)] and Q , J^I. 
J 

Let us now consider the slightly altered matrix Q defined by 

Q - Q* + * C (1.2) 

* 
where C is a matrix of the same size as Q which has the property of keeping 

both Q and Q stochastic (i.e., elements of C are at most equal to unity in 
0 

absolute value and their rowsums amount to zero), and where « is a very 

small real number to be specified later in il.5. Matrices of the form of Q are 

defined in [An63] as being nearly oompletely deoomposable matrioea. 



1.2 

The two theorems to be Introduced apply to the dynamic behavior of 

systems defined by (1.1) with Q defined by (1.2).    Let the roots of the 

submatrlx Q* be designated by X.  , 1-1,...,n.    We essuue that these roots 
• T >, 

ere distinct and so arranged that X,   > X-   >...> X        .Q   being completely 

decomposable and stochastic, we have 

- 1,    1-1.2, .N. 

Let us also define ft* as being the minimum of the absolute values of the 

differences among all roots of Q whose values are not unity and of their 

differences from unity; we have in particular: 

ll^ 1^6, 1-2,...,n; I-1,...,N. 
I 

(1.3) 

The roots of a matrix being continuous functions of its elements (see tW*98] 

&4, or [Bo07], e.g.), we can define for any positive real number ft, however 
*  * 

small, a small enough c so that, for every root of Q , X. , there exists a 
I 

root of Q, \.   , such that 

|X.  - X-   | < 8,    1-1 n ;  1-1 N. 
1I        I 

(1.4) 

Hence, we may classify the roots of Q so that 

ll-Xj  | < ft. 1-1,...,N, 

jl-Xj^  |  > ft -ft,    1-2,...,^;   I-1,...,N, 

(1.5) 

where ft approaches zero with e. 



1.3 

Now, asBuming all roots of Q to be distinct, the Sylvester expansion 

of Q into itself gives (see e.g., [Fr52] page 78): 

N   ni 
Q - E   S  X. Z(X. ) d-6) 

1-1 i-1  1I    I 

where    Z(X. ) - H   (Q-X. I )/ n  (X. - X. ),  j-1 n; 
lI   j.J     JJ n J,J    I  JJ 

JA JA J"1 N- 

The matrices Z(X ) have the following properties (see e.g., [Wei34] page 25); 
iI 

[Z(X. )]2 - Z(X. ), 
^•I       1I 

Z(X, ) X Z(X. ) - 0 , i/) , 
4     Jj    n   I J 

N   ni 
E   S  Z(X. ) - I . 
1-1 i-1    1I 

where 0 Is an nxn matrix of zeros and I the nxn unit matrix, 
n " 

On the other hand Q may also be written 

N   ni 
SEX. u(iT) v(iT), 
1-1 i»l  1I   1    ^ 

where the symbol " denotes the transpose and the column vectors vKlj) and 

v(i ) a" respectively the left and right normalized eigenvectors of Q 

associated with X. (see [Ta60], e.g.). So that 
1I 

and 
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Moreover as Q Is stochastic, u.O,)*! (*■!,...,n) and vCl,) is the 

limiting probability vector 11m x(t). 
t-*» 

It follows from (1.6) and from the properties of idempotency and 

orthogonality that 

N   "l 
Q1 - E   S  Xj ZiX.  ). (1.7) 

1-1 1-1  1I   1I 

Following the classification of roots defined by (1.5), we may divide 

the righthand side of (1.7) into three terms: 

t N   t N  ni 
Q - z(x1 ) + s   x.   z(x1 ) + r   EX:  Z(X. ).       (i.s) 

11   1-2  1I   Ll     1-1 1-2 1I   1I 

* 
Q may not be expanded directly as Q since the N largest roots of 

it *   * 
Q are all unity. However, any non decomposable submatrix Q of Q may 

be so expanded: 

nl 
*t       *   * *t     *.  *  V QT - z a, ) + E x^ z a.  ). 
1      Ll       1-2 ^    LI 

it 
Bordering each matrix Q with the appropriate number of rows and 

columns of zeros and designating those nxn matrices by the same name, we have 

*   N   ^ 
Q - E  Q 

1-1  1 

and thereby Q*t - E  Z*(X* ) + E  E X*1 Z (X. ). (1.9) 
1-1     I  1-1. 1'2  I     I 



1.5 

it 
The dynamic time behaviors of x(t) and x (t) are specified respectively 

by (1.8) and (1.9). To compare Chose behaviors, Simon and Ando [8161] have 

proven the following propositions: 

Theorem 1.1.    For an arbitrary poeitive real number   ?2» there 

exiate a number   e2 auoh that for « < «2» 

for   1-2,...,n; I"l N; l^k, i £ n. 

And 

Theorem 1.2.    For an arbitrary poeitive real number     u), there exists 

a number   • euoh that for € < e , 

ij ' ZI
IJJ 

(XCX' Vlj) <yij<XlK)' 
< UJ 

for   1C-1,...,N; I-1,...,N; J»l,...fN; 1 i i s n ; 1 < J « a ; 

where    [v. (ij)] ia the right row eigenvector of Qj aaeooiated with 

the root of unity 

* 

v. dj) ■ JJ J        J-l,...,n , 
Jj J   n. J 

J * 
E v. (1.) 

J-l JJ J 

and where   "TJ^I ) is given by 

nl     nJ .* 
aT (X, ) - E   E  v. (1T) z    (x. ). IJ  Sc     i-i  j-i   4    I    liJj   V 



  

1.6 

1.2 Interpretation of the Theorems 

The implications of these two theorems may be discussed in more con- 

crete tenufi. 

Since by (1.3), the \.  , IB1,...(N are almost unity, for any small 

t I 
t,t < T2, \,   , I"1,...,N will stay close to unity. Thereby, the first two 

I 
terms of the righthand side of (1.8) will not vary very much while the 

first term of the righthand side of (1.9) will not vary at all. Thus, for 

t < T-, the time behavior of x(t) and x (t) are defined by the last terms 

of (1.8) and (1.9), respectively. But, as c -* 0, it results from (1,4) 

that 

^I   I 

and from theorem 1,1 that 

ZO, ) -» Z*(Xi ) 
I       I 

for i-2 n and I-1,,,.,N. 

* 
Hence, for t < T,, the time path of x(t) must be very close to that of x (t), 

* 
Now, since the \.   , l'"2 n ; I-1,...,N, are less than unity (1.3), 

I * 
for any positive real g., we can define T. such that 

N   ni 
max 
k,je 

1 £k, A * n 

Is  S Xt^ «kjj a ) | < Si. for t > T-. 
1-1 1-2  I      I 1 

Likewise, we can define T. such that 

N   "l 

««x   I  S   r >t *.. (K, ) | < 5., for t > T.. 
k.jt     1-1 1-2  I K* ai     1 1 

1 £ k, i £ n 
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Moreover,  theorem 1.1 and  (1.4) ensure that 

Tj - Tj as e -♦ 0, 

< being independent of e. Since T2 can be mad. as large as we want by 

taking e sufficiently small, while ij remains independent of ., We ehaU 

take  e eo that  T2 ig vexv muoh z^g^ than T 

Finally, provided that e is not identically %wo BO  that, except for 

X^, X^. 1-2,...,N, is not identically unity, we may define T., so that for 

an arbitrary positive real number 53 and t > T 

N 

k,je      i»2 li ^  1
I '  *3* 

1 ^k, X ^ n 

Owing to the classification of roots defined above, T3 is greater than T,; 

It increases without limit .. . , 0. For T2 < t < T3, the last sunnnatio! 

term of (1.8) is negligible and the time path of x is determined by the two 

first suction terms. But theorem 1.2 specifies that for any I and j, the 

elements of Z(\    ) 

depend only upon I,J and J, and are almost independent of i. That is, for 

any I and J^they are proportional to the elements of the characteristic 

vector of Q* associated, with the root of unity 

VVlj) S/V V <lj) (1.10) 
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and are approximately the same for i«l,...,n-. 

Thereby, since for T- < t < T- Q Is mainly determined by the two first 

terms of (1.8), the vector [x (t)] will vary with t during that period 
J 

keeping for a given J an approximately constant ratio among distinct elements 

which Is Identical to that of the elements of (1.10). In other words a local 

equilibrium Is reached within each subsystem J. We may at this stage use 

such an equilibrium probability distribution as (1.10) to cluster all states 

of a subsystem I, that Is to replace the n-dlmenslonal vector x(t) by an 

N-dlmenslonal vector of aggregative variables x (t), 1=1,.,.,N, rmd the nxn 

matrix Q by a NxN matrix | [q^l |. 

Finally, for t > T3, all terms of the rlghthand side of (1.8) except 

the first one become negligible and the behavior of x(t) will be dominated 

by the largest root of Q, as In any linear dynamic system. 

We may summarize the above discussion by saying that the dynamic be- 

havior of a system representable by a nearly completely decomposable matrix 

may be analyzed In four stages called respectively by Simon and Ando: 

(1) short-run dynamics, (11) short-run equilibrium, (Hi) long-run dynamics, 

(Iv) long-run equilibrium.  In more precise terms, these stages are: 

(I) Short-run dynamics:  t < T. < T,} the preponderantly varying 

term of (1.8) Is the last one and this term Is close to the 

■if 

last one of (1.9); x(t) and x (t) evolve similarly. 

(II) Short-run equilibrium: Tj <t<T2',  the last terms of (1.8) and 

(1.9) have vanished while the time powers of the N largest 

roots Xj , ZHl>.«.tN» remain close to unity. A similar equll- 

I * 
Ibrlum Is being reached within each subsystem of x(t) and x (t). 
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(lil) Long-run dynamics: T2 < t < T3; the preponderantly varying 

term of (1.8) is the second one. The whole nearly completely 

decomposable system moves toward equilibrium, an equilibrium 

among relative values of variables within each subsystem being 

approximately maintained. 

(iv) Long-run equilibrium: t > T3; the first term of (1.8) dominates 

all the others. A global equilibrium is attained since in this 

case X. ■ I. 
il 

We oonolude that in the short run, i.e., stages (i) and (ii)s a system 

whioh enjoys the -property of near-oomplete-deoomposability may he oonsidered 

as a set of independent subsystem whioh may approximately be analyzed sep- 

arately from one another.    In the long run the whole system appears to evolve 

keeping roughly the state of equilibrium within each subsystem.    Each subsystem 

may be replaced by an aggregative variable, and the whole system analyzed as a 

set of tnteraotims among those variables, the interaations within each subsystem 

being ignored. 
1.3 Fused States 

In principle, the aggregative variables x^t), 1-1 N, can be any 

function of the equilibrium state distribution [\>i  (Ij.)] of the system Qj. 

provided that appropriate transition probabilities q^ may be derived ac- 

cordingly. A straightforward approach which has been discussed from another 

point of view in the literature (see e.g., [Ve69]), is that of "fusing" the 

states of each subsystem I. In this case x^t) is taken as the sum of the 

probabilities of being in any one state ij., 1-1 n1 of subsystem Qj. at 

time t: 
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nI 
xT(t) -Ex (t); 

1 1-1  1I 

then, assuming the system defined by (1.1) to be a/ time t In any one 

state 1 , 1-1,...,n of subsystem I, the probability that It will be In 

any one state jj, J-l nj of subsystem J at time (t+1) is given by 

nl        nJ 
qTT(t) - (x-Ct))"

1  E  x (t)  S  q. . . 
IJ      I      i-1  1I    J-l ll33 

For T2 < t < T3, we may write 

x1 (t) 

-4rr - v?  (iT) XjCt)     ij  I 

and thereby analyze the «hole system as a set of subsystems I-1,...,N 

whose Interactions among subsystems are independent of time and given by 

11 «lull where 

n
l        "J 

qTT - S v! (1T)  Z     <lt  *   - C1-11) 
13      1-1 lI I  J-l  lIJJ 

Since, at this stage, only the roots Xj , K-1,...,N, are to be taken 

into account, we have 

■IJJ  »-1 

Introducing (1.12) into (l.U) we obtain 

^1 i - E Xl zi J  (X1 K (1-12) iIJJ  »-1 TC 1IJJ   K 

mW 
qij ■ £ Xi *     s ^ (iT) z.  , (xlv) IJ      KFI lK  i-1    j-l       1I      I      iliJ      lK 
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which yields the relation between elements q      and the constants a    (X-,   ) 
j-j IJ    1 

which were Introduced by theorem 1.2: 

N 
qTT -    S    \,    ofTT  (X,   ). 

iJ      K-l      K    iJ       TC 

Let x ,  IB1,...(N, be the long-run equilibrium probability of being 

at some time t > T~ In subsystem I which Is obtained by studying the whole 

system as a set of subsystems whose Interactions are defined by (1.11). 

From those probabilities one can approximate the long-run equilibrium prob- 

abilities of being In any one elementary state iT by: 

x      - x        v* (1T), (1.13) 
I I 

with 

S      x,    a X-, 
1-1      1I        L 

and 
N 
E   x   ■ 1,        l"»l,..,,n ;   I"1,...,N. 

1-1    1 L 

1.4 Multi-level Systans 

The system of variables discussed In the foregoing paragraph can be 

represented as a two-level hierarchy with the aggregative variables at the 

higher level.  It Is clear, and Simon and Ando do not fall to observe It, 

that such an hierarchy may be extended to more than two levels, each vari- 

able at a certain level being an aggregate of variables of the immediately 

lower level. An example of a two level nearly decomposable matrix (cor- 

responding to a three-level hierarchy) would be 
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pl «I Sl S2 

^2 P2 S3 S4 

S5 S6 P3 % 

S7 S8 % P4 

where the order of magnitude of the elements of submatrlces P Is larger 

than that of matrices Q, this latter being larger than that of matrices S. 

At the first level of aggregation there could be four aggregative variables, 

one for each matrix P; at the second level of aggregation two aggregative 

variables would correspond to ^he partitions Indicated by the dotted lines. 

More generally, we will say that to the (Lfl) levels jfr»0,,..,L of a nearly 

completely decomposable hierarchy may correspond L levels of aggregation 

iFl,...,L and that such a hierarchy Is representable by an L-level nearly 

oompletely deaompoeabte matrix.    In such a system the time Instant T» . 

beyond which the whole system ceases behaving as a set of nearly Independent 

subsystems at the I     level of aggregation Is also the time Instant T0 .,., 

at which subsystems of the adjacent upper level (JW-1) of aggregation start 

moving towards their Internal equilibrium (which they reach at time T. ..■,)' 

T2,i5 T0,JM-1'    iFl L"1 

The time Instant T, at which a global equilibrium Is reached throughout 

the whole system Is the time Instant T   at which equilibrium is reached among 
1,L 

the aggregative variables in terms of which the whole system is described 

at the uppermost level L. These time relations among levels are schema- 

tized in the following diagram: 
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level L 

level  (jfrfl) 

level  i TM Ihl   j 
%i 

.O.L 

To.Afi hjti     t 
12,JW-1 

T      = T Jl.L    T3 

Each level A is a level of aggregation provided there exists an e 
I 

small enough so that 

h.t-l* ^X-l H T0,£>    for  ^.....L. 

The analysis of the entire structure proceeds then from the lowest 

level of aggregation through each adjacent level up to the highest one: at 

each level of aggregation the system is viewed as a set of independent sub- 

systems whose short-run equilibrluia is analyzed in terms ot  aggregative 

variables descriptive of the short-run equilibria reached by the subcom- 

ponents which were considered at the adjacent lower level. The equilibrium 

obtained ultimately in this way at the most upper level defines in terms 

of aggregative vaHablee  the long-run equilibrium of the whole system. 

From this long-run equilibrium at the uppermost level it is possible 

to deduce the long-run equilibrium probabilities for each lower level. 

In the case of "state fusing" discussed above, we may for instance general- 

ize the relation (1.13) as follows. Let xj ' be the long-run equilibrium 

probability of being in some aggregate subsystem I of the upper level L at 

any time t, t > T.. Then the long-run equilibrium probability x^'1^ of 

being in subsystem J of I at the (L-l)th level of aggregation is given by 
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,(1-1) . X(L)  ;*(l-l) (li). (1.14) 

Using recurrently this relation successively with L, L-lv...,l and for all 

subsystems at each level, yields ultimately the long run equilibrium prob- 

ability Xj  of being in the elementary state i» for all i. 

1.5 Cohesiveness 

It is easy to show [Fi62/2] that the largest characteristic root 

X  of an nTxnT non negative matrix Q- is equal to 
li 

(1.15) 

I 

\ 
- 

i-1 
x    S i    1 1I 1I 

ni 
S 

i-1 \ 

where S. designates the ith row sum of Q- and jx. i OL.i ia  the character- 1I j.     ij   i * 

istic vector associated with X- , the strict inequality holding true if and 
I 

only if QT is not decomposable. Now, if Qj is a principal submatrix of a 

stochastic matrix Q, S. may be interpreted as the probability, when in 

state i , of ranaining in the subsystem defined by Q- after the next transi- 

tion; moreover, the distribution of the probabilities of being in state 

i , i-l,...,n , at time t on condition to be In Qj at time t-0, approaches 

the distribution of the x  as t -» •. Thus, the weighted average (1.15) 
iI 

is the long-run probability, having been in subsystem Qj during the interval 

[0,t], of remaining in Qj at time (t+1), t -» «. Following [Fi62/l] we will 

refer to the probability X, as being the ooheeiveneaa  of the subsystem Q_. 
I 
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One can deduce from (1  ^ t-u**  - 
trom (1.15) that a necessary and sufficient condition 

for Q to be nearly completely decomposable into the inHa 
p OLB  into the indecomposable matrices 

Q/s is that the roots X   T-l    M K 
I \^  I l....,N be sufficiently close to unity. This 

condition is necessary to have the two first terms of (1.8) suf- 

ficiently close to the first term of (1.9).  It l8 a .^^ ^^ 

since if the ^ are strictly greater than zero, (1.15) requires that the 

S^. just as X^, be close to unity, with the result that 

e < 1 - max(S ) 

4   ! 
-1" be .„ffuu„tly 8Mll to 8atl6fy ^ ^^ of ^^^ i^ ^ i 2 

N», the Frobe„l„8 thMrOT (see ..,.  ^^ ^ lJ2) ^^ ^ 

•l'\'*t 

«Here .I . .lB .^ aod ^ . ^ ^ ^ u      ^ ^ ^ ^ 

.*..iv.M.. „f Qii . .uf(tcl.K con<11Eloii of the nMr.co„plete.dccompos_ 

abUlty „f „ t. thereby ^ 9i be sufftcientiy cio8e ^ ^^ ^ ^^ ^ 

systems Qj, or that 

f n<8I) >> ^f n<SI>- (1.16) 
I"1,...,N 

m«l,„ (l.U), mereljf expressed 1. „„. of eh. entrie8 of . natrix 

VU1 be „sed U sectlon „! as . erlrerion of rhe neer-c^leu^ec^os- ' 

.bill., of „errtces dofintn. th. d^lo ^.vior of „erworKs of q„eues 

.^^^.■.^, 
-   . 
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1.6 Remark 

Ando and Fischer [An63] proved chat the Slmon-Ando theorems could 

be extended to the case of nearly deoompoeable  matrices, defined by replac- 

ing the zeros In a decomposable matrix by small numbers. They showed 

that, mutatis mutandis, the conclusions of paragraph 1.2 remain true for 

such systems: the short-run dynamics may be analysed as If the system 

were decomposable, thus Ignoring the weak 'feedbacks' between subsystems; 

the long-run Influence of these feedbacks may be analyzed In terms of 

aggregative variables representative of the short-run equilibrium attained 

by each subsystem. The subsystems which are aggregated and which, in the 

* 
Slmon-Ando case, are associated with the submatrlces P., are in this case 

those corresponding to submatrlces 

1+1  WI+1 

N 

where the G- are submatrlces of dimensions  (n , N -    E n ).    Such systems 

are referred to in [An63] as nearly deaompoedble blook triangular ^y^tema. 
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II. A STOCHASTIC MODEL FOR MULTIPROGRAMMING SYSTEMS 

We consider a system which consists of a set of independent resources 

VR1 V *"* of tho8e resources <*> is capable of providing a dif- 

ferent type of service. We define a sequential process   <*> in thi8 8ystem 

as being the sequential execution of an ordered sequence of requests for 

those resources, every single request applying to a single resource, every 

resource completing one request at a time. 

Let the service time of resource R^ be a random variable exponentially 

distributed with a mean value equal to l/,£; ^ „.easures the average number 

of requests which may be completed by R^ per time unit. 

A sequential process is stochastically defined by a set of transfer 

probabilities p^. 0 * „. , ,e * L; „^ i8 ^ probability of a reque8t ^ 

resource R^ following Wdiately the completion of a request for resource 

Rm in the same sequential process. We have 

/„ Pmr  *'   m-0 L. 

The fact that p^ may be nonzero means that a sequential process that has 

just completed service at resource Rm may „eed to be rcserviced immediately 

by the same resource. 

(*) 

In queuing theory, the terns server and customer would be common. 
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Let N, N < 0°, be the total number of sequential processes concur- 

rently executed in the system, these sequential processes being mutually 

independent and Identically defined by ehe same probability set [p^}« 

As resources may at the most service one request at a time, sequential , 

processes will eventually queue up for resources. Let i« be the number 

of sequential processes in service or in queue at resource R,. Since 

sequential processes may at most be waiting for one resource at a time, 

we have 

S i. ■ N. (2.0) 
J8-0 £ 

N is supposed to remain constant in our system. That is, each process is 

to be considered as lasting for an infinite period of time. This is not 

so important a restriction as might appear at first glance. We could 

indeed easily construct an equivalent system in which the total number of 
L 

processes E i. would vary in time without exceeding N by simply consider- 
j&»0 * 

ing a resource IL . with service rate 

(2.01) 
r lil-i UTt. 

L 
and where 

which would model the creation of processes in our system. The probability 

of a request to R. being the last request of a sequential process, i.e., 

the probability of a sequential process "dying" on completion of a request 

to R,, would be ?m+iy Pfi^Di would be the probability that Rjj is the 

first resource requested by a sequential process. 

^L+l" 
\ X ^l 

L w N - 
A-o 1je 
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The state of the system Is uniquely defined by the (L+l)-tuple 

(!»,...,iT) and there are ( T ) distinguishable such states, i.e., the 

number of partitions of N processes among (L+l) sets. 

Let F (!»,...,l-.t) be the Joint probability that at epoch t the 

system is in state (1.,....! ). These probabilities satisfy the system of 

difference equations of a generalized time-homogeneous birth and death 

process: 

PdQ.li 1L, t-Hi) - 

L 
PdQ.ij,...^ , t)   d-h S H(1J lA.d-P,.)) 

J&"0 

L   L 
+ L   L H(V p(1o it1 im-1"--»vt)h^ PXm 

+ 0(h), (2.1) 

where 0(h) is the probability, negligible for small values of h, of more 

than one request being completed during the time interval (t,t4h], and 

the binary function 

fO if 1 - 0 , 
1    ^ ifi4/o. 

accounts for the impossibility of any i.  taking negative values. 

This system of difference equations may be represented by the matrix 

equation 

P(t-Hi) - P(t) (h A+I) + 0(h), (2.2) 

where P(t) is a vector whose each element is the probability for the system 
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balng at time t In one of the ( , J distinguishable states. A is a matrix 

of constants called the transition Intensity matrix of the process, with 

the properties that 

for all values of 1, and 

•u10 

for all i/j. I is the matrix unity. 

Equation (2.2) may be rewritten in the frmn 

(P(t-fh) - P(t))h"1 - P(t) A + ^ . 

As h -» 0,  the last term tern's to zero; hence the limit of the lefthand side 

exists and 

F'U) - P(t)A 

where P'(t) is the vector of the time derivatives of the elements of P(t). 

An equilibrium frobabllity distribution 

P - lim P(t) 
tr-m 

is, by definition, a solution of the system 

P A - 0 (2.3) 

satisfying the condition that the sum of the elements of P equal 1. For a 

birth and death process, this limiting distribution always exists and is 

independent of the Initial conditions P(0). 
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2.5 

We shall not pursue the Investigation of this equilibrium distribu- 

tion which has been studied in [Ja63], [Go67]; we shall instead concentrate 

on the structure of the matrix A which defines the dynamic behavior of the 

model. 
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l 

III 
NEAR-COMPLETE-DECOMPOSABILITY OF MULTIPROGRAMMING STOCHASTIC MODELS 

We establish In this section the conditions under which the system 

defined by equations (2.1) enjoys the property of near-complete-decompos- 

ability. 

Henceforth we will neglect 0(h). take h-1 and Q-A+I. so that equation 

(2.2) may be rewritten 

P(t+1) - P(t) Q. 

L 
The time unit is chosen small enough so that Z\i,jL * 1. 

Each index value J. j-1 ^f) of  the stochastic 

matrix Q refers to a distinct state (Ip.lj tj) of  the system. We 

choose an arrangement of the rows and columns of Q such that the (Lfl)-tuple 

i l  i „hich is associated with the index value j, yields for the 
0  1     L 

function 
2        L 

f(x) - i0 + V + 1-2*   +"'+  lLX 

a value f.(x) such that 

f (x) > t*ml(*)  for VJ >1 and Vx > N* 

An example of a matrix whose rows and columns are arranged in this order 

is given in figure 3.1. 

It results from equations (2.1) that any non diagonal entry qJk of Q. 

tfk. is non zero and equal to ^ p^, Vm. if and only if there exists a 

pair (Jt,m) so that 

^ " he* + 1 

ijp * V for ^^ 
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where i  is the value of the coefficient of x in f (x). 

It results also from (2.1) that any diagonal entry q... j referring 

to some state (ln,...,l. 1 ,...1.) Is given by 
u A m L 

^ (3.2) 

Denoting Q(N,L), N > 0, L > 1,  the matrix of order {^J defined by 

equations  (2.0),(2.1) and this numbering of states, we can prove the following 

Lenma 3.1.    The entries of the etoohaatiQ matrix Q(N,L), N>0, L>1, 

may be partitioned among (Nfl) principal submatrioea Q'd.), 

1. - 0,...,N so that 

(I) the set of all non diagonal entries of each matrix 

Q'dj^), lL"n. ie the set of all transition probabilities between 

any two distinct states of the r'LT/ states with 1-n; 

(II) Any non zero entry outside the main diagonal of 

Q(N,L) takes only the value V-jPfa»  M11» vith 4m<L    if it is 

located within one of these submatrioes3 and with max(jK,m) - L 

if it is located outside these submatrices. 

"Proof.       1)    Owing to the numbering of system states according to Increasing 

values of f(x), the smaller index values of Q(N,L)  refer to all 

states with iI"0;  there are (   T" i   ) such states, i.e.,  the 

number of distinct Integer solutions of equation 

L-l 
E    iA- N. 
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(L+N-2\ 
L_1 J  following Index values refer to all 

states with 1^ ■ I, and so on up to 1L - N. All states may 

therefore be partitioned among (Mfl) sets, i. - 0,...,N, the 

(iL+l)th grouping all the (L"J;ti"iL) 8tateB fo' which 

L-l 

IFO    l L 

in agreement with the identity 

These (N+l) sets define as many principal submatrices denoted 

Q'Ci^) all of whose non diagonal entries are the transition 

probabilities between any two states of the set of all states 

for which J. has a given value. 

2) The second proposition of the lemna follows immediately. Any 

off diagonal entry qjk(NfL)f j^k, of Q(N,L) is non zero and 

equal to I^P^, 0 s X, m s: L, provided there exist a pair U,m), 

Vm, which verifies equalities (3.1). 

For any entry q.k(N,L), j/k, located within a submatrix 

Q'dj^), i  - ikL » i^; it is thereby necessary that 

(VL) and (m^L) 

for q (N,L) to be non zero. 

Alternatively, for any entry qjk(N,L) j/k, located outside 

all the principal matrices Q'^), iL-0,...,N, by definition 

^^L ^ W that l8 

(J^L) or (m-L), 

which completes  the proof. 
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In order to help visualise the structure of matrix Q(N,L), Q(2,3) 

is displayed in figure 3.1. Plain lines isolate submatrices Q'CO), Q'(1), 

Q'U); Z denotes the ith rowsum of non diagonal entries, 
1 

Using the preceding lemma, we may now prove the following proposition: 

Lenma 3.2.    If, 

min 1 
ip,...(iL L 

S 1. - N 
k-0 K 

L-l L-l 

L *(V**+ i» "^^'J. "k» - >"kL> k-0 k-0 IBFO 

L-l 
K(iT>T < 2 P^ - PLL) L'^L 

iw-O 
> » 0, (3. 3) 

then the eparae stoohoatio matrix  Q(N,L),N > 0, L > 1, defines a ayetem 

nearly completely deoompoaable into  (N+l) ayatema which may be repreaented 

by atochaatic matrioea Q(N-n,L-l), n-0,...,N, 

Proofr.     (1) Lemma 3.1 allows to write: 

Q(N,L) - Q (N,L) + CL C(N.L) (3.4) 

with 

Q (N.L) - 

Q'CO) 

Q'd) 

Q'CN) 

If 

where all entries of Q (N,L) not displayed are aero, non diagonal entries 

of Q (N,L) have only values (O.^P^l, k^i, with k.m < L, and non diagonal 

entries of C(N,L) have only values tM'VjP^.e^iy)^} with m < L. 

On the other hand, the jth rowsum of Q(N,L), say S , J referring to 

some state ^Q»'»« »^»•••»^»•••»ij, »O, may be expressed as 
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SJ ■ *»+S 2K<ik)Vto+2 MWK+■,<ii-) 31Vi"- o-5) 

It results from lemma 3.1 that the sum of the two first terms of S., 

Is the sum Sj of the entries of the corresponding row In Q'Ci^)» iL-0,...,N. 

We know from £ 1.5 that a sufficient condition for Q(N,L) to be nearly 

completely decomposable Into Q'(0),...,Q'(N), Is that the lower bound of 

the ooheeiveneaa  of any of these submatrlces be sufficiently close to unity; 

or that (cfr. Inequality 1.16): 

mln(S!)» 1 - mln(S!). 

J  J       J  J 

Since S.al, this condition Is equivalent to 

mln 

J 

L-l L-l 

m-0 
m/k 

JJ      k-0 w-O 

L-l L-l 

»   = K(1k)»*kPkL + K(iL) Jn »*L
PIm- 

k"0 m^O 

Replacing q  by Its value given by relation 3.2, yields Inequality (3.3). 

Inequality (3.3) expresses the condition that the probability of an 

individual sequential process moving between the subsystem of resources 

R R    and the subsystem 1^ is small relative to the minimum prob- 

ability of his remaining in the »mt  subsystem or of no sequential process 

moving at all. 

(2) All states referred by the Itictax values of a matrix Q'fa), 

n-O,...^, are arranged according to increasing values taken by the function 

, ,    T     L-l 
(irt+...+lT .IT  + nxb) with Si,- N-n. Hence, it roaalts from proposition 

0     L-l J^Q * 

(1) of lemma 3.1 that each non diagonal entry of Q'(n) is identical to the 
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corresponding entry of a matrix Q(N-n,L-l). Q'di) is however not stochastic; 

its Jth rowsum Sj is equal to the two first terms of S in (3.5) and is 

therefore strictly smaller than unity. But the stronger the inequality 

(3.3), the more negligible will be the two last terms of (3.5) relative to 

the two first ones, so that 

S' - S with S - 1, 

and Q'Cn) -Q(N-n.L-l), n-0,...,N, 

which completes the proof. 

Applying recurrently lemma 3.2 on the matrices Q(n,jO, n> 0, X> 1, 

produced by the recurrence matrix relation (3.4), one obtains the following. 

Theorem 3.1:    The ayatem defined by matrix Q(N,L), N > 0, L > 1, ^s (L-l)- 

level nearly oempletely deoompoaable and may be repreaented at each level 

of aggregation  A, *-L-l,...,l, by a aet of (ml) aggregation variablea, 

each one defining the ahort-run equilibrium of a ayatem Q(n,,A), n."-0,...,N 

if» for  j&-L-l,...,l: 

JW-1 A -\ 

"a1*'* ' K<l*l)|^0 '<*!)» ■ '™«*4   >>0- 

A sufficient condition for near-complete -decomposability which is 

stronger than the above condition but also easier to verify is given by 

Corollary 3.1:   A auffioient condition /brQ(N,L) to be (h-l)-level nearly 

completely deoompoaable into ayatema QCn^Jt), n^-O,...^;  A-L-l 1, ie! 
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A 
for A-L-l....,!: »in [^( E   p^ - Pk(m))] » 

A 

*M(JO ?<A¥l)m ' PWUM)U   (3-6) 

This condition is obtained by ignoring in (3.5.1) the term [1 -    E   H(i. )|i. ] 
k-0 

which is always non-negative. 

Remarks.     (1) The inequalities specified in theorem 3.1 are sufficient but 

not necessary conditions for near-complete-decomposability since they refer 

to the lower bound of the subsystems1 coheslveness.    On the other hand, 

let us recall that theorem 1,1 guarantees that whatever standard of approxi- 

mation is required,  a degree of inequality exists örtlich is  sufficient to 

produce results satisfying that standard. 

(2)    We will be more particularly concerned in the sections VI 

and VII with the special multi-queue model in which Vk:  p      ■ 0;  for k^O, 
KK 

pk0 * 1; and for k andxutQ» Pjon"0*    T1118 model is referred to in [Bu71] 

as the central server model.    In this case conditions  (3.6) reduce to: 

for    XFL-1,...,1: min    (l^ )» n,., (3.7.1) 
(KksA     k X&L 

I 
and (^ p^ - p0(m)) » ^ (3.7.2) 

on the other hand, it is easy to verify that a sufficient (but 
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not necessary) condition for (3.7.2) to hold, is p . » P 2 »...» p 

(3) Each submatrix Q'^), iL-l N may itself be partitioned 

into principal submatrices Q'(vVl5'0 * 4.-1 * *mit*  who8e 8et of  non 

diagonal entries is the set of all transition probabilities between any two 

distinct states of the set of all states which have the same pair (i  ,i ). 

Following this scheme recurrently, Q(N,L) may eventually be decomposed into 

principal submatrices Q'(11»^.!,...,^). In figure 3.1 for example, dotted 

lines isolate submatrices Q^O.O), Q'CO.Z), Q'd/O), Q'd,^, Q,(2,0). Let 

XJH-I,n be the nuniber of «ubmatrices Q'(i i  ), JH),...,L-2; x^, 

obeys the recurrence relation 

XJfrU,n " xji,n + x£+l,n-l 

i 
where n = E i L-m and with the bounda>T conditions x.., . = jM-1, x.  ■ 1, 

Therefore K^j  "• ( A ) 
and the total number of submatrices Q'd ,...,i  ) 

is given by 

nfo XJH-l,n \   *   )' 

Using identity (12.16) of [Fe68] page 65 one may verify that the sum 

of the orders of matrices Q'^ i^) amounts to the order of Q(N,L) 

or that 

i cr) (w;:r) - (^. 
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(4)    One can observe in figure 3,1 that by the mere virtue 

of the resource service rate Inequalities, Q(NtL)  is a nearly decomposable 

block triangular matrix if all transfer probabilities have approximately 

the same value. 

. 
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IV, A HIERARCHY OF AGGREGATE RESOURCES 

We assume henceforth that the stochastic multlprogranmlng model de- 

fined by matrix Q(N.L). N > 0, L > 1, is a (L-l) level nearly-completely-decomposable 

system. This amount« to postulating that there exists a numbering of the 

resources R^....^ j^ so  that the service rates ^ and the sto- 

chastic behavior [p^}, 0 s ij s: L. of the sequential processes obey 

the (L-l) inequalities of theorem 3.1. 

These inequalities imply that L subsystems s, s-l,...,Lf consisting 

of the (s+1) resources R0....,R8 may be distinguished so that, on the average, the 

rates at which resources of a same subsystem interact upon each other are higher 

than rates of interaction between any resource within that subsystem and 

any resource outside it.  In other words, although the values of variables 

H ^ «»«"nln« the state of the sequential process population in any subsystem • 

depend on the past values of variables i^,...,^ outside this subsystem, 

these dependencies are weak compared to intra-subsystem dependencies. 

In this case the first Ando-Simon theorem (theor. 1.1) guarantees the 

following: provided that inter-subsystem dependencies are weak compared 

to intra-subsystem dependencies, the former may be neglected when carrying 

out the analysis of each subsystem; the results of this analysis will re- 

main approximately valid in the short run;  the weaker inter-subsystems 

influences are, the better the degree of approximation. .Now, as pointed 

out by M. Fisher and A. Ando [Fi62/l]:". ..if this were all, it would be 

useful but not very remarkable for it would merely mean that if neglected 

influences are sufficiently weak they take a long time to matter much;...". 



4.2 

But the second Ando-Simon theorem asserts that, even after a time period 

long enough for Inter-subsystem Influences to make themselves felt, the 

relative  values of variables within each subsystem will remain approxi- 

mately the same as those yielded by the short-run analysis.  This justi- 

fies an analysis of the long-run behavior of the system in its entirety 

carried out strictly in terms of aggregative variables representative of 

these intra-subsystem short-run equilibria and in terms of inter-subsystem 

dependencies. On the basis of those general concepts, the recurrent de- 

composition scheme defined by theorem 3.1 enables a hierarchical model of 

the multiprogramming system defined in section 2 to be set up.  This model 

is approximately equivalent to Q(N,L), the degree of approximation de- 

pending on the relative degree of weakness of inter-subsystem dependencies. 

We now proceed to describe more precisely this "nearly equivalent" hier- 

archical model, which will turn out to be a generalization of the model 

described in [Cg70]. 

4.1 Decomposition into Levels 

Any matrix Q^, £), I « i^ « N. 1 ^ A^ L, defines a system in which 

n^ sequential processes compete for the (JH-1) resources R^R.,...,!* . 

Let us associate with each such matrix a queueing system which will be 

denoted ^(n^) and which may be schematically represented as follows: 

..-.■: 
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A fixed and finite population of n. sequential processes is considered 

to be cycling in this system. These sequential processes request alterna- 

tively two resources: resource R. and what we call an aggregate resource 

which will appear to be a synthesis of resources R. R«_i* We say that 

the  system !DL(n.) is in state B.(n, .|n.) whenever n. . among n. sequential 

processes are either waiting for or being executed by that aggregate re- 

source, i.e., whenever n, . among n. sequential processes are either wait- 

ing for or being executed by any one of the resources R. R., and 

(n. - n, -) sequential processes are either waiting for or being executed 

by the resource R.. 

Assuming Q(N,L) to be a (L-l) level nearly-completely-decomposable system, we may 

analyze the time behavior of 5IL(n.) in the following way. We regard IR.(n.) 
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as a closed system that no sequential process may leave or enter.  In 

other words, we disregard all Interactions between ^(n^) on the one hand 

and R^j.....^ on the other hand; we will see hereafter that the rates 

of those interactions are sufficiently low to be neglected in the analysis 

of the time behavior of ^(n^). We further suppose that all conditions are 

fulfilled for the existence of a probabilistic equilibrium In SDL(n ). Ihls 

means that it may be taken for granted that each state tyvJ n^n^-0 n , 

may be reached from any other state E^J l^'^S-l' withln a flnite t^e 

period (irreducibility and non-null recurrence). 

These conditions are neces- 

sary for the stochastic matrix QCn^i) to have a unique root equal to unity 

and will in fact be fulfilled in most cases when resources have a non-zero 

and finite service rate since the population of 3JL(n ) is finite. iDL(n ) 

thereby enjoys the property of ergodicity:  there exists a stationary dis- 

tribution of the probabilities VVl^ of flndln8 ^(n^) in state 

Vnji-llnjR)»njt-r0 V w111^ is independent of time and of the initial 

conditions of !DL(n J . 

An immediate consequence of theorem 3.1 Is that this probabilistic 

equilibrium of El^n^) which is defined by Q(nje,£) will establish Itself by 

some time T^ (see section 1.4), that i8> before 80me ^ 

T
0.JW-1» 

when "sources R^,....», have had time to Influence 5JUnJ. 

Interactions between those resources and ^(n^) may therefore be Ignored 

when studying^the evolution of SDl^n^) towards its probabilistic equilibrium 

tVVlMn^-0- 
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Similarly, just as QOU.JO IS Itself decomposable Into subsystems 

Q(n ..Jl-D.n, -0,...,njt , ^(«^ l8 nearly decomposable Into subsystems 

III  (n  ). By definition, these subsystems have attained a state of in- 

ternal equilibrium Cn^i^K-l^n*' -0 at 8ome time ^^-l* before 

time T   whenTO/n.) starts moving towards equilibrium; those internal 

equilibria are maintained during the period from T0 ^ to 
T
lt A 

when ^V"^ 

settles down to equilibrium.  In the study of the time behavior of Hl^n^) 

during that period, we may therefore assume that the aggregate resource of 

HI (n ), which by virtue of our deoompoeition eaheme is nothing but W^in^i) 
Ml       I 

when SJUn.) is in state  E^n, Jn^), is already in a state of equilibrium, 
nA-l 

conditioned on n , and defined by the distribution frj.ifrj^l^-l^n „-0* 

More precisely, let cT«(nJ be the mean number of requests completed 

per time unit ImSDLCn.)} this number is the sum of the mean number of re- 

quests completed by R, and the mean number of requests completed by th«s 

aggregate resource per time unit. As our decomposition scheme implies that 

the aggregate resource of ^(n^) is El^n^) whenever ^(n^) is in state 

E^n^Jn^), we have 

nl 
(4.1) 

Vi 

ifrZ,,,, ,1.) »(nflf* **) 

For J^l, (4.1) reduces to 

CTj^) - ^(l-TT^njI^)) + ^(l-n^Olnj)),  (nj-1 N).        (4.2) 
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We vill refer to Gt^jj) «» being the service rate of SDMnJ; clearly, 

requests to RQ.RJ,...,!^ are completed InSDJ/n.), when   3Jl«(nJ  is In 

equilibrium, at a rate of tT,(n.) requests per time unit; a.Cn.) being de- 

duced from the rntes li»»^»*«« »li« and the equilibrium distributions 
n, 

W-fli^-m-ll^-m^n/1" ,-0'  for "je-m"1»" *' V and ,n"0 t'1' 

Remark.    Relations (4.1) and (4.2) seem to imply that the constituents 

of IDl^n^), R and the aggregate resource^ work independently of each other, 

while in reality these resources Interfere with each othe^. In fact oAn.) 

is an aggregative variable describing only the equilibrium of ^^.(n«) in which 

these interferences have reached a steady state defined by the distribution 

K'VlMn'-O' 
J&-1 

Let [h x If,  k^l^ + 0^h^ designate the probability that during any 

interval (t,t-fh], t > T- ., a request is completed by ^.(n.) and the sequen- 

tial process being serviced applies to resource R^, k > A. As cT;(n-), f. k(n.) 

obeys a recurrence relation: 

♦^k^^ * H^WWik  +      s .Wi'Vn-i.k^A-P-  (4-3) 

(k > A),(jfr»2,...,L-l)/ni"l N); 

For fcl,   (4.3) reduces to 

♦l.k^l* " •Vlk    C1-"!^!0!)) + ^oPOk(1'TTl(0lnl))»   (k=2 LHV1 N)   ^•4) 
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*  (n.) will be referred to as the interaction rate of !IR.(n.) upon 
titK      * t     Mi 

resource R, , k > I, 
n. 

Probabilities {TT-Cnj-Ii^)} „«.n ■!,...,N appearing In (4.2) and (4.4) 

may easily be expressed as functions of n0 and n.. They define the equilib- 

rium state of 3L (n.) whose constituents are merely R. and R.. The probability 

that a state transition EjCnJn.) -» E. (n0+l|n.) ,n =0,... .n.-l, occurs during 

a time Interval (t,t4h], t< T- 2, is equal to (^jPin
1» + 0(h)) where 0(h) 

is negligible for small values of h. Likewise, the probability of a transi- 

tion E.(n0|n1) -» Ej^n.-ljnj), n0«l,...,n., during a same time interval is 

equal to (tinPni^ + 0(h)).  In such a system, equilibrium equations reduce 

to (see e.g., [Fe68], pp. 460 ff.): 

l*lPlO V0!"^ ' ^QPOI "l^'V* 

^lp10 + »iopoi>1Ti<no',li) " ^lp10 "i^o-1!"^ + ^oPoi "i^o^K^ 

"Q"! Hj-l, 

^flPoi "l^ll"^ B ^iPlO "i^i"1!»!)' 

With the additional condition that the n^n jn.), n.^O,... ,n1, add 

to unity, these relations yield 

/ji.p.-A 0 

vnoini> =(iv^y v^v» vl—-»ni (4-5) 

with   n^Oln.) -<1 +     if^V^J   >   • 1    *   I   v1^'01/ J 
(4.6) 

Introducing (4.5) and (4.6) into (4.4) yields the values of 

^1 k^nl^'nla^'*"'^' ks2,...,L, given the service rates of R. and R. and 

the transfer probabilities CPok^»o'^Ik^k-O* 
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Using the values obtained for ♦, j^). Vlf...,N, one may easily 

obtain the distributions  («2^11«2» 2      »^ the equilibria which will be 
V0 

attained by systems ffl^), n2-l,...N, at some time T.  ,. 

The probability of a state transition E^nJ^) - E^nj-l^). nf^ 1, 

occurring ina^(n2) during any time interval  (t,t+h],  t < Tn , is equal to 

(h,2{nl)h + 0(h)> ^±le the Probability of a transition E^nJ^) - t(ii +l|^), 

nj-O....,^-^  is equal to  [p.2(p20-4>21)h + 0(h)].    The equilibrium equations 

are therefore: 

iiflt2^) +^2(P20+P21)] TT2(nlln2) " «2<Br1|a2)CH2(P20+P21)] 

+ TT2(n1+l|n2)  illt2(n1+l)t 

(nj-l n^-1), 

^2(P2o41>21)] TT2(0ln2) " TT2(1ln2) ♦l,2(l)» 

♦l^VV^IV " 1T2(ll2-lln2)t|A2(P2o^2l)3' 

The additional condition that probabilities {^(nj^)} 2     add to 

unity yields 

nl 
V«!^) - ^UgjU^ii]     ^(01^), n^l n2 

n ♦, 2(k) 
k^l l*£ 

■\ 

I n2     [MPOA+P,,]  1 

with TT2(0|n ) -/l +      z    ■• 2    20    21       I    . 

1 

2v„r.2/     ^ - n ^ -7q )   . (4.7.1) 

k> 
n ♦, 2(k) 
-i 1»4 

mülini 
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Introducing these probabilities Into (4.3) yields the values of the 

Interaction rates fj^)» V1»***»1'5 k " 3*'"»L* 8lven the value8 o£ 

the rates ^j^ k(n1). nj-l,...,^.    Proceeding recurrently in this way up 

to level t,  the probabilistic equilibrium of a system üJ^di^), n^-l,...^, 

is obtained as 

Vi 
\ ♦l-l,A(k) 
•1 * 

TTA(0|nA) 

k- 

r        n l"1 VlV1 

l+      ^      (^ t^O ^ I     . (4.7.2) 

I n   ♦i.M<k)J 

Starting with the systems of the bottom level Jfr-l, the probability dis- 

tributions ^(n^Jn^)}^ .„, for n^-l N, are obtained from (4.7.1) and 

(4.7.2) successively for each level up to the uppermost one. At each level 

t the values of the interaction rates ^ k(njt)» k - irH,...,L necessary for 

the analysis of the levels above, must be deduced by (4.3) from the values 

of ♦l-l.k(,lA-lK 

4.2    Inter-level Relationship 

So far, each subsystem TO^n^),  *-l L-l, has been analyzed as a 

closed system inaccessible to entry or exit from the upper levels,    ^or 

this reason the equilibrium distributions obtained are conditioned on a 
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fixed number n. of sequential processes supposed to be permanently cycling 

ln*PL(n ). These conditional Internal equilibria are what Simon and Ando 

call the short run equilibria which are successively attained at each level 

of aggregation. We have seen In section 1.4 of Chapter I how 

the long-run equilibrium probabilities for each lower level of aggregation 

could be deduced from the long-run equilibrium at the uppermost level. If 

aj^ni-l^t^nt..l'Q*"'1^*   (^S,1»««»»L)» i8 the long-run and unconditional 

probability of n. . sequential processes being In service or In queue at 

any one resource R^ m»0,...,X-l, and B^i^),  1^-0,...^ Is the long-run 

and unconditional probability of 1. sequential processes being In service 

or In queue at resource R., the relations (1.14) yield: 

W^ = Wi'*0' 8L(iL) = V^J^Vi'V10'---'105 

and for each level  iFL-l,...,1: 

N 

Vvi*= n *  Vi^WiK*' 
Wi (4-8> 

N 

At level 1, whose only constituents are resources R. and Rft, we have 

80(10) ■ ajdjj),  l0-0 N. 

These relations express simply that the probability of having a popula- 

tion of n. sequential processes cycling at level I  Is equal to the probability 
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of being in one of the state» ^j^i^Ji^f^i)»  njW.j"
n

J5»**
,»N at level <jW"1)* 

The long-run fraction of time a resource R., jfr"0,...,L is busy is 
Jo 

equal to (l-s.(Ö)). The mean reeponae time   v   of resource R., defined 

as being the mean time spent by a sequential process in queue or the 

service at resource R^ may be easily deduced using Little's formula [Li61]: 

-1  N 
W^- [^(1-8^(0))]    E ijjS^i^), 1-0,...,L.       (4.9) 

Moreover, if the uppermost level resource R is the model of an input 

mechanism of sequential processes whose input rate JL obeys equation (2.01), 

one may deduce from the probabilities {a (n. ,))    n, using Little's L lj"1 "L-I"" 
formula, the mean life time of a sequential process: 

-1      N 

W=  [^(l-sL(0))] ^ VlaL(Vl); <4-10> 

W is the mean time spent by a sequential process in queue or in service at 

the aggregate resource of level (L-l). We will refer to W as being the 

mean response time of this aggregate of resouroea    R ,...,R^ ., 

4.3 Concluding Remark 

Near-Complete-Decomposabllity allows the time analysis oi a system to be 

broken up into distinct stages at each of which only a subspace of the system state 

space needs to be taken into consideration. Thanks to this property we 

were able to substitute the closed multiqueues system Q(N,L) whose state 

space Is of size f L J, with L x N subsystems ^(n^) ,(J6»1 L; n.=l N) , 
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each having no more than (n^+l) distinct states. Each of these subsystems 

Is an equivalent representation of the xt „        subsystems, x     - 
A-l+N-nN '  * M"ni 
\   l-l    7' deflned by the *j, N-n PrlnclPal submatrlces 

Q'dj^....,^ ^j) of Q(N,L), with   E ^-m"^"* (cfr' remark 3 at the  end of 
m^O 

section 3). An Interesting consequence of this state space partitioning 

Is that larger state spaces of more refined models than the one In section 

2 may be analyzed. Examples are given In the following section. 
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V.  CLOSED MULTI-QUEUES SYSTEM ANALYSIS 

In this section we discuss some of the advantages of the hierarchical 

approach of resource aggregation in the analysis of multi-queues systems enjoying 

the property of near-complete decomposability. We are introducing two generaliza- 

tions of the model defined in section 2 which may be approached by this 

method. 

hi    in [Go67] W. j. Gordon and G. F. Newell solve very elegantly the system 

of equilibrium equations (2.3) by a separation of variables technique. They 

obtain an exact expression of the equilibrium Joint probability P(i ,...i ). 

However, the form of this expression is such as to make the determinationL 

of the marginal probabilities tedious for large values of N or L. So, for 

the case of systems with non-uniform service-rates, assuming that one re- 

source, say RL,ha8 an effective slower service rate than all the other re- 

sources, they show that, at the limit for N - », the distribution of sequen- 

tial processes within the system is regulated by this slower resource; they 

are able to give in this case asymptotical expressions for the marginal 

probability of i^ sequential processes in queue or in service at a resource 

V ^ L"1- 'nii8 method raay ^ certain cases present two types of dis- 

advantages: Firstly, the values obtained are only asymptotical values 

for N - », and secondly, the method requires the inversion of the 

(Lfl) X (L+l) transfer probability matrix || p^ ((. Both disadvantages may 

be avoided if the service rates and the transfer probabilities obey the 

conditions of near-complete-decomposability of theorem 3.1 so that expres- 

sions (4.8) may be used to calculate the marginal probability distributions. 
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LI   Equation (2.1) may be generalized so as to allow, as in [Ja63], the 

service rates of any resource R^O L, to be a function ^(i^) ^ o 

of the number i^ of sequential processes currently in queue or in service 

at this resource (V.^-W-O). 

The conditions under which this model is nearly-completely-decomposable 

are obtained by substituting HU^ with ^(i^) m the inequalities of 

theorem 3.1. Simpler but stronger conditions are given by corollary 3.1: 

For Jfr-L-I,...,l: 

"X^'^V-' '"W3» 

i 

»M^M-lXj^mym - p(J6fl)(m)
)- (5.1) 

where 0^ k ^. 0 ^ i^ S N.!. 1 ^ ik * N-l^. 

Ihe interaction rate of the aggregate ^(n,). n^-l N, upon resource 

Rjj, k > I,  may then be obtained as 

V1 ->, (5-2' 

X-l 

And the equilibrium equations of this aggregate are: 
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k-0 
p£k] 

+ Vni-i+llni>i'i.i,A<Vi+1). 

vr1»,"»v1» 
i-i 

W^^^l^^aln^^jl), 

X-l 
^i-i.^V^^je'V "VV^VM1)* spjfc]. 

k-0 

The additional condition that probabilities frr/n \n )]
1*' 

to unity yields 
7-1 0 add 

with 

A-i     nx jVr1 

1  £   PXk]        A        ^(Vk) 

Vl ^(0|nJ 

11     ♦l-l l(k> k»i      *-1»* 

vr1   ~~^z; f 7-1 
n   ♦, ,  /k) 

:-l    *-1.* 

(5.3) 

which extend expressions (4.7.2). using (4.8) one obtains the unconditional 

probabilities s/i^), if0 N, of 1^ sequential processes in service 

or in queue at any resource R^, J&"0,...,L. 

Applications of this generalization are mentioned at the end of [Cg70] 

and use is made of it later on in paragraph 7.9. The special case of this 

LVJ.V^Li:,:--::^.-. ..■ 
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generalicatlon studied In [Go67] is the case In which ^(1^) is given by 

r. (5.4) 

where a^l^ -/ x     A   A 

at each level of this system there are v^ parallel exponential servers, 

each with mean service rate ^ Sufficient conditions for inequalities 

(5.1) to be satisfied are then, for «L-l 1: 

f^JS* - W»'1 >> VlW,*, '(«,, - P(W)(W1)). (5.5) 

Finally, by a very similar generallaatlon, transfer probabilities 

pik(ii») dePendin8 on the congestion at the stage of departure may also be 

coped with. Conditions (5.1) as well as relations (5.2) and (5.3) are easily 

rewritten In this case. An application of state-dependent probabilities 

will be considered in ^6.1.4. 

5^3 The hierarchical model of aggregate resources may also approximate 

multiqueues closed systems in which, instead of being exponentially dis- 

tributed, the service times of the upper level resources R , JW.,L-1,... 

are random variables identically and Independently distributed with 

arbitrary  distribution function, say B^x). This conjecture is based on 
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the following argument. After time Tj j, when aggregate resources ayn^), 

a^l...*ll( «re in equilibrium, the time sequence of the occurrences of a 

transfer of a sequential process by ^(n^) to a resource 1^, k > A, on a 

request completion, may be regarded as a stationary point process of 

intensity ^ j^). (<*• [Kh55]). If we expand ♦^(«4) in terms of the 

transfer rates ^ X P(jj.j)k» J-0,...*. we have: 

I 1 

n.k^^ " *, kl{i-ii ninl ' Vj(Vjlni-j)]^-JP(A-J)k 

where       V^'V " 0' V*5 "^ ' l} and f0r J"1 *' 

ai        njJ-jn 
A,(Jt-J; nj -     E   ...      E   , ^Vl'^-'-Vj+^Vj'"*^^ 

ni-iml     Vj"1 

if      (n ) may be considered therefore as the intensity of a stationary point 

process resulting from the superposition of (AH) independent  stationary 

renewal processes, each of intensity [AjjOJ:; n^X1""^ (nl-j'V^Jt-JP(A-J)k]* 

j-0,...,Jl.  It has been proved (cf. Chapter V, in [Kh55]) that such a super- 

posed process rapidly approaches a Poisson Process, as the number (Afl) of 

individual renewal processes increases. This result holds true whatever 

the distribution of the time intervals between successive renewals in each 

individual process is, and thereby, in this particular caee, whatever the 

distribution functions BjW, j=0,...,A, with respective means 

-1 > r 
0    j 
xd B4(x) < «, 
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of the service times of resource R. are. For I large, one could therefore 

envisage analyzing each subsystem Ml, (nj, n,"N,...,l, as a finite queuing 

system G|M|l|n, with an arbitrary Inter-arrlval time distribution B.(x) and 

a Polsson service process of parameter if..  i^i-O»  dependent on the con- 

gestion ^»1» nt.~lm®*'*'*nl' 

Under appropriate circumstances, more adequate assumptions than the 

classical Polssonlan service times assumption may therefore be made If 

necessary, when an aggregative closed queuing model as defined in section IV 

is used. 

■ ■ ■ 

■ 
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VI.  NEAR-COMPLETE-DECOMPOSABILITY IN COMPUTING SYSTEMS 

We deal in this section with two near-complete-decomposable models of 

computer system operations. The first one which is more especially hardware 

oriented, is the model of a computer memory organized as a hierarchy of 

storage devices of increasingly slower access speed in which computations are 

executed on a multiprograimning basis. Near-complete-decomposability condi- 

tions of this model turn out to conform with those a computation must satisfy 

to minimize the frequencies at which it needs to access the slower levels of 

the hierarchy. Given a statistical definition of the computations, the model 

set up in Section IV is then used to define and evaluate performance criteria 

for multiprogramming storage hierarchies; an optimal degree of multipro- 

gramning minimizing the average hierarchy access time is evaluated. We 

finally show how state-dependent transfer probabilities (cfr. ^5.2) may 

render the model sensitive to allocation policies which adjust the space 

allotted to each computation at every memory level as a function of the state 

of the multiprogrnraued computations. 

In the second part, which is more software oriented, the model of ag- 

gregate resources is interpreted as a simplified model of the resource 

control and allocation function of a multiprogramming operating system. 

We conjecture that conditions for resource aggregation provide in many cases 

rational criteria to order the levels of abstraction [Di68] [D169/1] of such 

a system. These conditions turn out to be closely related to the physical char- 

acteristics and the usage of the hardware resources and may therefore help the 

designer choose the ordering of these levels. 
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AgSregatlon of variables ann«ar. *- ^i. 
"a. appear. In theae t«, «„dela a. a technique vhlch 

.Uo». the Uvel by !„.. .v.lumtlon ef ^ ^^ ^ ^ ^^ ^ 

f« a^regetlon ere cHe .... a. *... „„....^ „ provlda ^^^^ 

appro^ta ^U^e „f «,. I).rforMnCM of . ^ ^^       ^ ^ 

-ich farther l..ti. decl.lon. „.y ,. „.^  ^ ^^ ^ ^^ ^ 

»d.1 of a net«.rk of ,„«.„ ..fm... m Section IV 1. a counterpart of the 

lavel-hy-lerel .W.tlon technl^e. reckende, m [,067] [W9] a^ 

W«"] tR...]. in th. apher. of c„puter .y.ta. analytical ^ala. 

6'1 Storage Hierarchlea 

6al.l Computationw 

Although the cooduelon. of thl. ..ctlon epply to a wider oU.. 

of hlererchlee, .e aheU „aha u.a of the concept of Unear ,torage hier- 

archy, defined end Inveatlgeted m [«,70], to Introduce . „ochaatlc defl- 

nltion of program execution. 

Ut "»■"> "L be • 11°"' «"rage hlarerchy of ««ory level. 

M,, f-O....!., the higher the n^hor of the level la, the larger It. cape- 

«, of M, e. the ^tou,. n^nber of dl.tlnot Information elaaont. M^y 
contain. * 

A aomputaHon  p l„ this hierarchy may be identified i„ „achlne- 

independent terms by a referenoe string  rDe701 l e -»y L^e/uj, i.e., a sequence of refer- 

^^ P " (rl*,,,,ry*,-*»rd(p)) where ^ Is understood that, if rP «^ 
computation p references a („pt MG.Mtily dl8tlnct) ^^ of ^^ 
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of name c/'0 at the yth reference. We define T(r£) as the time instant at 

which computation p makes its yth reference; i^r^) > T(rp. 

We assume, as is generally the case, that a reference may only 

be serviced from the fastest level M0; and we denote by i^)'    the expecta- 

tion of the amount of time needed by a computation p to complete a refer- 

ence to an element rp which is located in MQ, (rj 6 HQ),  at time instant 

T(rp). An element rp located in M^Q, at the time T(rp) at which it is 

referenced, must be accessed and retrieved in M-, and transferred from 

M- to Mn where the reference may be serviced.  Instead of being transferred 

one by one, elements are transferred by blocks, called pages, between levels. 

We denote (p..)  the expectation of the amount of time needed to access 

and retrieve in Mw0 a page containing a given element r
p € M^, and to 

transfer this page from M, to MQ. The major component of (»i^)  is the 

time needed to retrieve and access the page containing the requested 

element. This is a characteristic of each memory level. We assume that 

memory levels are identified by this characteristic and ordered in such a 

way that 

(u^r1« (nj)"1«...« (^r1. C6-1) 

A linear storage hierarchy is a hierarchy in which the only paths 

to move pages up the hierarchy are direct ones from each level M^ to level 

M, ,, jfr»0,...,L-l. Paths to move pages down are unrestricted. Let f^, 

j&«0,...,L, denote the number of elements r which, in a given reference 

string p of length d(p) are located in M^ at time instant T(r ). A pro- 

cedure which determines these numbers according to page size, replacement 

rule, and capacity of each level of a linear demand paging hierarchy may be 
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found In [M870]; for a large class  of replacement rules it is shown that 

fP may be obtained as a function f{[(C^.o^ of c^ and of the total lower 

levels' capacity C^ - E e^ l>  1; for *.0. we denote this function 
n K.mQ 

The relative aooeee flrequenoy  to M^ of a given reference string 

p is then given by 

•X-l'V " d<P)"1 X 'iWi-l'V    «"I L. 

FS(C0) . 1 - ^ fjco^j..^. 
L 

with pPfc.) - 1 - v pP 

Letting n be an arbitrary number of distinct raference strings p, 

p-l,....n. each with access frequencies ^(C^,^). J6-1....,L, we may de- 

fine an atsosBB probability p-(C- „c.) as 

n 
E  fP,(C, ..cj 

P/Vl*0^ " liniit P"1 » A"lt.,,tL 
n -» «  n 

EdCp) 
p«! 

with Po(c0) - 1 - ^ p/C.^.c^). 

Hie set of probabilities CP/C^.C^))^ is taken as the defini- 

tion of the stochastic behavior of a computation in the hierarchy M P...,M ; 

the remainder of this section 6.1 is applicable to any memory hierarchy pro- 

vided such a set of probabilities may be defined. 



6.5 

6.1.2 Single Process Storage Hierarchy 

Let us assume that one computation at a time Is executed In the 

hierarchy. Then, we may suppose that the time Instant T(rp -) at which 
y+1 

a computation makes Its (y+l)th reference Is also the time Instant at 

which the yth reference Is completed. The mean time Interval between two 

successive references of any computation Is In this case: 

«C^) - rcrj)] - fo'V " ry^ Mo " ""' H'P 
|(^0)  + (»Ajj)" , if ry € M^JJ at time T(r

p)  (6.2) 

An average Herarohy aoaeee time  f may then be defined as 

-1   L T - P0(c0) x (^0)  + S P^V!.«^) x [(^r1 + (. )-1] 

f-V^ ^p^c^.c^x^)-1. (6.3) 

as well as an average fraction of time 11 lost in transferring pages between 

any one level M.» i>  1, and MÄ: 
* 0 

■1 

(6.4) 

* " (U0)" 

6.1.3 Multiprocess Storage Hierarchy 

Suppose now that transferring pages from Mw0 to M0 and servicing 

references in M0 may be performed simultaneously. Suppose also that memory 

space at tlie various levels is equally, statically and permanently shared 

among N independent computations p. p-l....,N. executed in a multiprogramming 
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basis. This means that the execution of the N reference string is inter- 

leaved in the following way: iff rj € M^ at instant T(rP) flnd lff a a 

computation p- of which rj.' is the last reference completed and for which 

rj.+1 6 M0 at some time t . rCrJ) before the transfer of the page contain- 

ing ry is completed, then rj,'^ is serviced at time t. 

This scheme provides for a better utilisation of M0 in which 

references may now be serviced while pages are being transferred. As a 

consequence of this however, the perfoimance measures defined by (6.3) 

and (6.4) are no longer valid:  they require indeed that only one reference 

to any one level M^, ^0 L. be ma.e and completed at a time, whereas 

under multiprogramming time Intervals [T^) . ^ of di8tinct computa_ 

tions p may overlap each other. 

In a multiprograming storage hierarchy, the average time during 

which M0 is not being referenced within a time interval [T(rP ) - T(rP)1 
_l y+1     V y' J 

may be less than (u,.)  when rp c M   -«. **   / Ov **       wften ry € M^0 at time T(rP). On the other hand. 

as one page only may be transferred from a level M^ to M, at a time, 

requests for page transfers will eventually queue up at each level and time 

intervals [T^) - T^)] will be prolonged by these queuing times. 

Performance criteria corresponding to (6.3) and (6.4) *hich allow 

the benefit of multiprogramming to be assessed will be introduced in para- 

graph 6.1.5. 

6'1'4 Near-Complete-DecomposabilttY 

Let us identify each memory level M with a resource R. with 

.Kpon.ntl.Uy dUtrtb..«! «rvlc. tta». of .«„ tf,  .„, .ach „, ,„, „ 

Kliiiirtaiiiriiiifirr'i^M^iMiHihifniiih^iri        r ■■■■•• "—f ■ 
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multlprogranmed computations to a sequential process stochastically de- 
C. .  c 

fined by the same probability set fp.(-^=- . -A) 1L    Let 1 

A"1,...,L, l^-O,...^, be the number of computations which at some time t 

are waiting for a page to be transferred from MWQ to M-, and let 

L 
i0 - N - El 

Defined In this way, this model of a multlprograraulng storage 

hierarchy Is a closed multlqueue system whose state may be defined by the 

(Lfl)-plet (10,...,1L) and whose transition stochastic matrix Is Q(N,L). 

Conditions for near-complete-decomposablllty of this system Into subsystem Q(n « 

«^»•••»N, Ä"L-l,..,rlt reduce to (see remark 2 , end of section III): 

for Mi-1,,.,,1; mln ^.»^4.,, 

A    C .  c        c. c (6»5) 

^ ^^1 P™(J^* ^ " P^(^ -^>3 >> ^1 ' 

since transfer probabilities {p^)^ are all equal to unity. 

Conditions (6.5) are expressed In terms of rates at which a page 

may be retrieved, accessed and transferred from each level, and In terms 

of rates at which levels are referenced by an Individual computation. More 

precisely, the set of probabilities {p^H^ .-|) }^0 defines the stochastic 

behavior of a computation in a single process  storage hierarchy of capacities 

AL 
^jfr-O* The8e Probabilities follow from the statistical properties of the 

reference strings, but also from the choice of storage management parameters 

such as the memory level capacities, the page size, the replacement rule. 

The near-complete decomposablllty of the multiprogramming storage hierarchy 

model may be assessed by using e.g., a technique as the one described in 
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[Mg70], provided that these parameters be the same for each multiprograimned 

cotrputation. 

One may expect Inequalities (6.5) to hold in most storage hier- 

archies for various reasons. First, the lower bound for the average time 

needed to complete a single reference In a N-process hierarchy, which cor- 

responds to the case of no queuing of page transfer requests, Is equal to 

v Xr>l 

Minimizing (6.6) Is mandatory to optimize the average execution time of a 

computation. Both the user and the system storage management policies will 

aim at this Insofar as they have control over the placing of Information 

elements In the various levels. I.e., over the values of the access prob- 

abilities. But, as a result of Inequalities (6.1), the only possible way 

to minimize (6.6), Is to achieve the set of Inequalities 

cn      cn ci CT.l CA 

which, together with  (6.1), are (see remark (2), end of section III) suf- 

ficient conditions for (6.5)  to hold. 

Secondly, it has been observed that computations enjoy what has 

been called the property of locality [Be66, Va67, Be68, De68/l, De70];  that 

is they favor at each Instant of their execution a subset of their informa- 

tion instead of scattering their references uniformly over their total set 

of information,  this subset changing membership relatively slowly in the 

course of the computation execution. 
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As a consequence of this, every page transfer which is occasioned by a 

single reference to one upper level Is likely to generate several refer- 

ences to MQ. On the other hand, page replacement policies like LRU (see 

e.g., [De68/2]) take advantage of this property to accentuate Inequalities 

(6.7). Inmost cases, therefore, conditions for L-level near-complete- 

decomposablllty will be satisfied. 

Remark,    It Is probably worth saying a word about what happens when In- 

equalities (6.1) only are verified and not Inequalities (6.6). One could 

show that In this case stochastic matrices Q(n.,£), j^l,...,L, are (see remark 1.6) 

near-decomposable bloak-triangular matrices In the sense of Ando and Fisher 

[An63]. They proved that the Simon-Ando theorem could be modified to the 

case of such matrices. A resource aggregate model analogous to the model 

defined In Section IV could therefore be set up to cope with such systems. 

6.1.5 Memory Level AgRregatlon 

If conditions (6.5) are verified, the aggregative model 

defined in Section IV may be used. We proceed now by demonstrating how 

performance criteria comparable to (6.3) and (6.4) may be defined within 

that model. 

We regard the aggregate ^(n^), n^-l,...,!*; jM L, as a stor- 

age hierarchy of levels WL M,, in which n. computations defined by a 
C. . c.  . 

same probability set ^("^"»"JJ^l^o are heins multiprogramned. a.(n,) 

is Cnfined  as the mean number of references serviced in Mn per time unit 

within this aggregate, and is given by (4.1) , (4.2) which reduce to 
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^^"n^! VVllW^VP (6.8) 

cr^nj) - ^(l-TT^OInp),     JJ.2 L (6e9) 

In the sme way.  ^(„^  defined as the rate at which aggregate ^^ 

references memory level M^  k > i.  ia givari by relatlons  (4#3) and  ^  ^ ^ 

C,   .   c. 

Ok      Pk^~l^•~N,• 

Conditional probabilities TT^n^Jn^) are yielded by  (4.7.2)  in which 

P£i - 0.      0 < i s jj-i. 

An average hierarchy access time !„ is then obtained as tfte tn- 

^r.8e 0/ the average nmber of referenaee eerviaed per time unit in     ^(N), 

"L-I 1 

the long-run equilibrium probability a (n  ) n  - 0    M K-^ y    L^ L-r ' T.-! U,...fN, being given by 
(4.8). 

Moreover, an average fraction of time during which all N computa- 

tlons are waiting for a page transfer from some memory level M . A > 1, 

to M0 is given by 

\ '  80(0) 
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It may be proved that TL and f   are bound by the same relation 

(6.4) as 1) and f: 

Lerma 6.1   T^ " 1 - [M-QX^]" . 

N 
Proof:    80(0) a a1(0) - 1 -     E   »X^Q), 

V1 

N Vl nl 

l n_ «■! nÄ"l vr1        "L^ 
Since by virtue of (6.9), 

"l ml 

E     V^olV " ^o    X CTl(nl) 

v 
and by virtue of (6.8) 

al 

nje-i ^ 

we obtain 

-1  N 

a^O) ■ I - HQ   S  «L^VP Vl^-l^ vr1 

which completes the proof. 

T] and T being defined by (6.4) and (6.3) re pectlvely, the follow- 

ing relations may also be establibhed: 

Lerma  6.2 fj - T; \  ■ T), 

Proof:    From the definition (6.10) of f , it results that for N-l: 
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Tj - [aL(l) a^jd)]"
1 - [TTL(1|1) fft-1(l)]"

1.       (6.11) 

In the queuing system  5^(1), Jfr"2t...,L, TT.(l|l) may be ex- 

pressed as (see (4.7.2)): 

♦i-1 Ia) 

V1!^" -i ' -i 
H 

+ h-ijl) 
(6.12) 

In this particular case where transfer probabilities p„ , k > A, 

ji> 0 are all zero,   (4.3) and (4.4) yields, using (6.8) and (6.9): 

♦|il,Jt (1> "  [p£ ^i-l»6^ X CTjt-l (1)1"1'    *"2 L-     <6-13) 

Replacing TTL(1|1) in (6.11) by the value yielded by (6.12) and then 

^L-l L  ^ by the value ylelded by  (6.13), gives: 

VPL  (CL-1»CL) ^1 + <TL-1  (1)- 

Using the relation a^l) - TT^lll) (Tjj_1(l), successively for jeFL-l,L-2,...2, 

gives: 

-    2 -1  -1 Ti" ^n^i-v'JH + 'i (1)- 

But a^d) - [^0 TTjdll)]"1 

-1. 
where,  by virtue of  (4.5) and  (4.6), TTj  (l|l) may be replaced by 

TTj   (1|1)  ■ 3j     ; 
[H0 P^CQ.CJ)] 
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which gives evidence that f1 - T. Then \'1\ results directly from 

Lemma 6.1, which completes the proof. 

Furthermore, let us remark that the utilizatior. factor of the 

storage hierarchy component which performs transfers from M^ to MQ, A> 1, 

is equal to (l-s^O)), probability s^O) being defined by (4.8). Like- 

wise (4.9) defines the mean response time W^ of this component. 

Finally, if the uppermost level ^ is the model of some infinite 

reservoir from which all computations originate at a rate given by (2.01) 

and to which they all return when being completed, then W, the mean 

response time of the aggregate of M^ M^,defined by (4.10). is 

the mean time required to service all references of a reference string. 

6.1.6 Dynamic Space Sharing 

By virtue of leranas 6.1 and 6.2, the performance improvement 

achieved by multlprogramnlng N computations so as to take advantage of the 

simultaneity between transfers among memory levels and servicing references 

in Mn may be measured by the ratios: 

*1 or \ <6-14> 

^    \ 

In general, there will exist one optimal value Nopt which max- 

üaizes these performance ratios. This optimum results from two counter- 

acting effects, on the one hand the probability (l-a^O)) of having at 

least one computation not waiting for a page transfer from some level 
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M-, Z >  1, to M0 is inclined to increase with N; on the other hand the 

average memory space -j--, jfe=0,l,... available to each computation at the 

lower levels shrinks as N increases with the consequence that the prob- 

CA-1»CA 
abilities p ,(-£— s*) of accessing the upper levels increase rapidly. r Jl N   N 

The probabilistic model described above provides a means to evaluate this 

optimum, given (i) a family of programs defined by their reference strings 

from which access probabilities may be inferred by e.g., a stack processing 

technique like that proposed in [Mg70], and (ii) a nearly-completely-decomposable 

memory hierarchy of an arbitrary depth, each memory level being character- 

ized by its capacity and a distribution of the amount of time required to 

access, retrieve and transfer a page from this level to the executive memory. 

So far we have assumed that a fixed and equal portion —, trO,...!. 

of memory space was permanently allocated at every level to every computa- 

tion in the hierarchy. This is, howevur, not the case inmost hie», irchical 

storage systems. Usually, in order to keep moderate the access probabilities 

to the upper levels, an upper limit, say J  , is imposed upon the number 

of computations J allowed simultaneously to share space in the faster memory 

levels, say Vln...,,M.,      v. Moreover, any of these computations is expro- 
'      *    Q*       '  £(max) 

priated from the space it has accumulated in these levels as soon as it 

makes a reference to or above a certain level, say M. , k > Jl(max). Thus, if 

a   designates  the number of computations not waiting for a page transfer 

from levels M^...,!^, we have 

J = mln(Vl' Jmax); 

and the average space allotted to any of these computations at any time 

*a'a^°^^'^1-i'- --"^^"^'"^'-"-'-■ 
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instant T(rp). (y-1.2... .).(p-l J). « any level M^  i * ivnax). Is the 

_1 
integer part of  (c^ X J    )• 

This space allocation policy preserves the near-complete-decomposability 

property of the hierarchy since its net effect is to enhance the differ- 

ence between access probabilities  to the lower levels M0,... ,MÄ(max), 

1»—i» M M_.    J        distinct access probability dis- 
and the upper levels M^ax)^»" • »"L*     max 

tributions,  conditioned on the value of n^, must be considered: 

r     A-l c    cA 

P.( S   ^.3»      *'1 L 

* i-0 "i "A 

D(aJ: (6.15) 
1     I L        A-l c    c 

V 0 j^-l * 1-0 ^i ajt 

rmind^^, J^,    i-0,...,£(maX), 

where    a, ^ \ «,      v., T 1      W, i-A(max)+l,...,L. 

There are three stages in the analysis of such a hierarchy: 

(i)  The bottom levels M,, M^^ are modelled by J^ aggregates 

ÜH    (J), J-1,....J  . each one with the appropriate access 

probability distribution D(J). The analysis of these aggregates 

yields the interactive rates ^^^(J) °f the bottom level8 

upon each level 1 - ^ax"*"1»** *,L* 

(ii) Next, one considers N aggregates ll^^d^^), t^^-l N. The 

interaction rate of the bottom levels upon any one intermediary 

level M,, 1'=; x+l,...,k-l, in each of these aggregates is taken 

equal to 
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hOnaxM^Vl* if V^ Jmax 

^jKm«x),l«<Jm«x) if Vl ^ Jmax- 

(ill) The analysis of each aggregate ÜR,(a,) yields the inter- 

active rates t. i"^\.i^ upon the uPPer levelai", 

i,,=k,...,L; using these interaction rates in (4.7.2) and 

(4.5), the upper levels may be modelled by a system SDL (N). 

The same argument which leads to an optimal value for N, is 

applicable to J  . The model outlined above may be used to estimate the 

value J ^ of an optimal maximum degree of multiprograrming  in the lowest 

memory levels, which for a given N value maximizes the ratios (6.14). Such 

an optimal value J *, will be calculated in the last section for a hypo- 

thetlcal computer system enjoying the space allocation policy discussed 

above. 

6.1,7 Remark 

A variant of the model investigated here may be found in [Cou70/l], 

[Cou70/2]. There, a computation is stochastically defined by a set of 

arbitrary distribution functions 

B^x) - Prob{t; s x], J&-1,...,L 

where the random variable £ . is the number j of references made by a 

computation p within the time interval  (T(rp.1)   - T(rP)]  if T(rp) and 
y+J    y     y 

T(r ..) are two successive instants of an access to memory level M . 
y+J J? 

If n is an arbitrary number of computations, the expectation £, and the 
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access probability Pj«^,^) are related by 

CVJ-xdB^x) 11m 

n 
E ffoa_,^a) 

ssl l-l^l' 
n 
E rt(p) 

p-1 

Cpx(c*.i'ci>3   • 

When the system is nearly completely decomposable, the conditional 

probability distribution ^(n^ln,), *•! L. vl N> i8 obtained a8 

the distribution of the congestion in a M|G|I|N queuing process whose dis- 

tinctive feature is that the service rate a^n^), „^-l „^ (deflned 

by (6.8). (6.9)) at which references are serviced is dependent upon the cur- 

rent congestion n^. This type of M|G|I|N queuing process Is studied in 

[Cou71]. 
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6.2 Hierarchical Structure of Multiprogramming Computer Operating Systems 

The technique of aggregation proved useful to (1) break a system up 

into a small number of subsystems, (11) evaluate the interactions within the 

subsystems as though interactions among subsystems did not exist, and (ill) eval- 

uate the interactions among subsystems without regard to the interactions with- 

in sybsysterns. We may expect that this evaluation technique has some simi- 

larity with the design technique which consists of assembling a complex system 

from subsystems designed independently; we may expect that the criteria that 

indicate what variables to aggregate might also help in specifying what the 

building blocks should be. 

In particular, it seems worth discussing the similarity existing between 

the hierarchical model of aggregate resources defined in Section IV and the 

well known hierarchical organization advocated by E. W. Dijkstra for the 

software of multiprogramming computer systems [0169/1]. 

6.2.1 Levels of Abstraction 

An essential function of a multiprogramming computer operating 

system is to control and allocate hardware resources. The problem of creat- 

ing a system which achieves this function could be formulated as follows: 

Given the hardware of a computer, construct a set of programs whose function 

is to provide a collection of convenient and efficient abstractions from some 

physical characteristics (quantity, speed, access mechanism,...) of these 

resources; two constraints which further complicate the problem are that: 

(i)  co achieve these abstractions, the programs themselves 

use or consume hardware resources; 
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(11) If these abstractions are to serve any useful purpose, 

their designer, because of his own "Inability to do 

much" [D169/2], should be their first ueneflclary; 

rather than using and being defined In terms of raw 

hardware resources, the program should insofar as 

possible be defined In terms of and use these abstractions. 

E. W. Dljkstra showed [D168], [D169/1] that, from a designer point 

of view, It Is advantageous to structure such a system as a hierarchy of 

levels of abstraotion. He considers an ordered sequence of machines 

AQIAJ,...^^,... where the level A. Is the given hardware and where the soft- 

ware of level X, JM,1,..., defined in terms of and executed by machine A.. 
I* 

transforms machine A^ Into machine A,^, The software of each level I creates 

an abstraction from some physical properties of the hardware. Examples of 

such abstractions Implemented In the THE system are: 

- at level 0, the central processor Is allocated among concurrent 

processes so that the actual number of these processor(s) (one In 

this system) Is no longer relevant:  each process ready to use a 

processor may be considered above this level as having access to Its 

own virtual processor; 

- at level 1, the differences In mode and speed of access between 

a drum and a core memory are abstracted from In order to create 

an homogeneous store. Above this level the physical location of 

Information In this store Is no longer relevant; information is 

Identified by a segment name. 
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Each level gives access to a certain type of abstracted resource, 

e.g., a virtual Processor, a segmented address space,... To do so. It has 

recourse only to the abstractions created at the lower levels. This approach 

facilitates the step by step construction, testing and evaluation of the 

system. These advantages are the direct consequence of the restricted 

nature of the Interactions which are permitted among distinct levels. This 

very same restriction, however, leads to the following dilemma:  If we use 

the simplification Introduced by abstracting from device R- In producing 

the abstraction from device R , then we cannot use the simplification Intro- m 

duced by abstracting from R    In writing the programs that abstract from R.; 
~     m        " jo 

.In other words, each level helps only those above It. The choice of the 

ordering of the abstractions may therefore be quite difficult, 

6.2.2 Aggregation and Ordering of Abstractions 

It is possible to Identify at least two types of conditions which 

must be satisfied to decide that the abstraction from a device R, should be 
1 

created at a lower level than the level of abstraction of a device R of 

another type: 

1) The abstraction from the details of device R. should be more 

convenient  to program the abstraction from device R. than con- 

versely; if the abstraction from R. is not more convenient, it 

need not come below the level of abstraction from R.. 

2) The use of an abstraction from R. to program the abstraction from 

R should not prevent the latter resource from being controlled 

and allocated efficiently, 
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We may (and In fact we shovld) expect that in most cases the degree 

to which an abstracted resource Is a 'convenient' tool or concept to program 

will be reflected in the execution of the program by the frequency at which 

this abstracted resource is accessed. Then, the result of applying the first 

condition to each type of abstraction is that the abstracted resources imple- 

mented at the lower levels of abstraction are those which will be the more 

frequently accessed. 

The second condition must be interpreted as follows. Drums, disks, 

tapes, readers,... are mutually asynchronous i/o devices, each one being 

capable of transferring information at a certain speed. In order to control 

and allocate efficiently one of these devices, a program must be able to 

execute at a speed comparable with the speed of the device; in other words, 

the speeds at which the resources (abstracted or not) used by such a program 

can be accessed, e.g. those of an abstract machine A., should not be slower 

than the speed of the hardware being abstracted from at level £; or, at least, 

the resources which make exception to that rule should be used infrequently. 

The application of conditions 1) and 2) to each type of abstraction 

leads to an ordering such that the more frequently accessed abstracted.re- 

sources should be implemented at the lower levels and should also have faster 

access. The interactions between the levels of an 'efficient' and 'convenient' 

hierarchy of abstractions should, in other words, obey the conditions for 

near-complete decomposabllity. 

Since the speed of access to an abstracted resource is bound by the 

speed of the hardware which is abstracted from,   conditions for near-complete- 

decomposabllity explain why the fastest and more frequently used hardware 
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Is taken care of at the lowest levels of a hierarchy of abstractions. These 

conditions specify in terns of usage and speed the type of hardware which 

should advantageously be abstracted from at a certain level of abstraction 

and may thereby give the designer some guidance in the choice of the order- 

ing of these levels. 

Another consequence is that each level of abstraction may be 

analyzed as a level of aggregation. Suppose for example that the model of 

the network of queues defined in Chapter II may be taken as a simplified 

model of a set of interacting abstracted resources; the abstract machines 

Aj,...,A.,... could then b . evaluated respectively by the aggregates 

^(nj), !D^(n2) STO^n^),..., each aggregate ^(n^) being a modt . of the 

equilibrium attained in the abstract machine A^, by the interactions be- 

tween A^ and the abstracted resource Implemented at level L    By definition, 

the dynamic behavior of the aggregate iDl.CnJ towards its equilibrium may 

be evaluated with good approximation merely in terms of aggregative vari- 

ables representative of the short-term equilibria attained at the lower 

levels of aggregation and without regard to  the interactions with the upper 

levels. Since A^Ag,... represent as many distinct stages in the design, 

production and testing of an operating system, such an evaluation technique 

which allows these stages to be evaluated Independently should prove more 

valuable than techniques which may only be used after the design is completed. 

To close this section, let us say that the above dlscussloa reveals 

a property of these stages A1,A2,... of the design process: the rate of 

interaction between the components of a machine A , i.e., between A   and 

Che abstraction Implemented at level £-1, is higher than the rate of inter- 

action between the corresponding components of A .. Several arguments in 

favor of a decomposition of the design process into successive stages at 

which the subsystems coped with have a similar property, may be found in C. 

Alexander's essay, "Notes on the Synthesis of Form" [Alb4]. 
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VII.  SHORT- AND LONG-RUN EQUILIBRIA 
IN A TIME-SHARING PAGING MULTIPROGRAMMING SYSTEM 

The purpose of this last section Is to Illustrate the use of an ag- 

gregative model In analyzing the performances of a given computing system. 

It follows on from this concrete case study that aggregation Is not only 

adequate to obtain numerical results when a large number of parameters 

are Involved, but also helps to gain Insight and conceptual clarity on 

the parts played by these parameters. 

A set of hardware and software dependent parameters Is defined as 

the model of an hypothetical time-sharing paging system. Conditions for 

this model to be nearly completely decomposable are defined in terms of the para- 

meters and in terms of a stochastic representation of the computing load. The 

formulation of these conditions makes their prior verificaKon possible 

and may give an assessment of the precision which may be achieved by using 

an aggregative model. 

Page traffic between primary and secondary memory is studied as the 

Internal traffic of a resource aggregate of type ffll^nj). This analysis 

focuses on the respective influence on processor usage of the user program 

paging activity, the degree of multiprogramming and the length of a so- 

called execution Interval, viz. the amount of processor time a user pro- 

gram Is allowed to consume before losing its pages accumulated in primary 

memory. 

The entire system is then regarded at a higher level of analysis as 

a finite set of N active user terminals supplying tasks for this aggregate. 
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The congestion and the response time of the hypothetical system are studied 

as the characteristics of a system !D^(N). The concept of a table attd un- 

BtabU  congestions is introduced an the consequence of the peculiar de- 

pendency of the aggregate service rate on the system congestion. Likewise, 

a eaturation point extending the definition given in[K168] to systems with 

congestion-dependent service rate is defined. Finally, the evaluation of 

the system response time reveals that these concepts of stability and satura- 

tion relate the phenomenon known as thmshing to parameters defining the computing 

load upon the system in addition to those defining the page traffic between 

primary and secondary memory. 

7.1 The Hypothetical System 

A schematic representation of this hypothetical system is given in 

figure 7.1. Three types of func:ion are essentially ensured: 

7.1.1. A finite number N of active  user terminals originate random 

requests for program execution. 

7.1.2. User programs are executed on a multiprograimed basis in a 

primary memory M0 consisting of set of C- pa^a frames. 

7.1.3. Pages which cannot be contained in »L are swapped in a rotation- 

al secondary memory M. (T   ■ duration of a rotation). 
i  rot 

These functions are supposed to comply with the following strategies: 

7.1.4. A terminal cannot originate a request for program execution 

before the previous request issued from the same tetminal has been served 
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and completed. In other words, there may exist a maximum of one program 

per terminal In the system at a time. 

7.1.5. User programs are loaded from M. where all pages are supposed 

to be Initially located Into MQ on a page on demand strategy.    An upper 

limit K Is Imposed upon the number of page frames a user program may occupy 

In Mn. Pages of  a same user program superimpose each other whenever the 

number of distinct pager required in   by this program exceeds thi upper 

limit. 

7.1.6. Multiprograntning:    At any moment of Its lifetime In MQ, a user 

'program is in one of three states: 

ready i.e., demanding but not receiving the control of the 
processor 

running        receiving the control of the processor 

suspended   waiting for a page transfer between Mj and MQ to be 
completed 

Multiprogramming means that user programs are concurrently executed 

in M0 in order to maintain the processor busy as long as not every user 

program is suspended. We assume that a maximum number J^f 0 < J ax 
s N, 

of user programs may at roost be concurrently executed in MQ. Further re- 

quests for program executions are queued until one of the J   programs 

ceases to be multiprogrammed (see 7.1.7). J   will be referred to as the 

maximum degree of multiprogramming. 



7.4 

7.1.7. Time-slioing..    A program ceases to be multiprograiraned either 

when it is completed or when the total time It has spent In running state 

since Its last loading In M0 reaches a maximum value Q.  In thl« latter 

eventuality and If programs are waiting to be multlprogrammed, the pro- 

gram will lose all Its pages accumulated in M,,, and will Join the queue of 

programs waiting to be multlprogrammed until it is allocated an additional 

quantum Q. If no programs are waUihg to be multlprogrammed, the program 

keeps its pages in MQ. 

7.18. The tracks in Mj may be written and read in parallel by fixed 

heads. Each track is divided into c1 sectors, each rector containing 

exactly one page. Each request for a page transfer is put into a queue 

associated with the sector containing the demanded page tWei66]. 

7.2 The User Programs 

The user programs are stochastically defined by the followiivj random 

variables: 

(1) the user reaction time, i.e., the time interval elapsing between 

the completion of a user program execution requested by a 

terminal and the origination of the next request by the same 

terminal 

(il) the total amount of processor time consumed by a user program 

(iii)the amount of processor time ?n, n-1,2...., consumed by a 

user program between any two successive references rn,rn+1 

to distinct pages not already referred to, rn+i^
r
n/
r
n.i^ "^l. 

(user program paging activity). 
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The distributions of these random variables are defined in the next 

section. 

7.3 Simplifying Assumptions 

The hypothetical system takes liberties with reality on a certain 

number of points: 

7.3.1. Pages are assumed to be uniformly distributed over the ^ 

sectors of M^ the probability of a demanded page being located in a 

specific sector is thereby equal to (- ). 

7.3.2. We suppose that the traffic of demanded pages from ^  to MQ 

is not hindered by the opposite traffic of pages from M,, to M^ This 

assumption is valid if a page frame is permanently maintained vacant in 

M as well as in each sector of M. [Sm67]. Hence we need only to take 
0 

into account the traffic of pages from Mj to MQ. 

7.3.3. The maximum number of distinct pages a program may accumulate 

in M0 at some tl.ae t is a function of the number J. 1 ^ J s «W of  programs 

being multiprogrammed at that time t. This function is supposed to be 

simply 
0 

K(J) ■ entier (—). 

7.3.4. We define an execution interval  as the amount of processor 

time consumed (i.e., the amount of time spent in Turning  state) by a user 

program between two consecutive loading of this user program from Mj into 

M0. An execution interval is at most equal to Q. 
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The total amount of processor time consumed by a user program Is 

considered as an Independently, identically, negative exponentially dis- 

tributed random variable with mean (cp)" . As a result of this assumption, 

an execution Interval is an i.i.d.r.v. with distribution function: 

1°  «i- <t s 0> 
Q(t) - Prob(x S t) -(l-e"^ (0 < t < Q) 

U      (Q ^ t) 

Denoting K(S)  the Laplace-Stleltjis transforms of Q(t), one obtains: 

H(8) -  f00 e"dt d QCt) (Re(8) > 0) 
0 

-  fQ e-8t te^dt + e"8^^ 
Jo 

_ tp ± se"8^^ 
s+cp 

-1 
Let (n)  denote the mean length of an execution Interval: 

(»i)"1 - H'XO) - (l-e^tp-1. 

Q(t) will be approximated by an exponential distribution of parameter g.. 

7.3.5. User reaction times are considered as i.i.d.r. exponentially dis- 

tributed with parameter X; a discussion of the validity of this assumption 

may be found in [Cof66], 

7.3.6. Random variables %  , 1^-1,2,..., are considered as i.i.d.r. 

exponentially distributed with respective parameters 0 , i^l,2,... . 

-_   ___..  :  .      __      
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7.4 Actualizing the Hypothetical System 

The Hypothetical System Is now defined In terms of the parameters 

Cnl c,, T  • Q. J  • Although the aggregative model of section 4 Is In 
0  1  rot     max 

principle adequate for Investigating the Influence of any of these para- 

meters on the performance measures defined by (4.7), (4.8), (4.9) and (4.10), 

we shall center our analysis around the part played by J   and Q. And 

In order to be able to put our results In concrete form, we shall attribute to 

each of the other parameters a fixed, and hopefully representative value, namely: 

Cft = 48 page frames, 

c1 = 4 sectors, 

-3 
T   = 20.10  seconds, 
rot 

Likewise, as far as the load on the system Is concerned, we shall 

restrict ourselves to the study of the system sensitivity to fluctuations 

of the number N of active user terminals. The parameters of the distribu- 

tion functions which define the users' and their programs' stochastic be- 

havior are assigned values Inferred from statistical observations. At the 

time this example was elaborated, available statistics were those observed 

by SDC, [Fln66] [To65], on the Time-Sharing system Q-32, [Sc64] [Sc67]: 

- The total average processor time (cp)- consumed per user program 

Is taken equal to 1.39 sec. 

- The average user reaction time (X)  Is taken equal to 32 seconds. 

- The paging activity of user programs In the course of their exe- 

cution Is given In figure 7.3. It Is based on a page size of 

1024 words. The number y    of Instructions executed between any 
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tr/o successive references r^r^ to distinct pages not already 

referenced (^Jr^J...^) Is plotted against n. The ex- 

ponential coefficients en are given the values 

en- (yn x 5.10"
6)"1. npl^,...,^. 

where 5.10  sec. Is the average total execution time of a» instruc- 

tion in the T-S Q-32 system. No more than 20 distinct pages are 

supposed to be referred to during a program execution so that 

e20-0- 

Remark.     The branch of hyperbola in figure 7.3 is representative of the 

behavior of programs whose page references would be unifomly distributed 

over 20 pages. The probability of such programs making a reference to a 

page not yet referenced decreases linearly with n. the number of distinct 

pages already referenced. Obviously this probability decreases much more 

rapidly than linearly for the program executions actually observed. This 

gives partial evidence that these programs enjoy the property of looalityt 

viz.  they favor a subset of their pages at each Instant of their execution. 

Such a program behavior has been discussed in [Be66] [Va67] [Be68] [De68/l] 

Ibe70]. The values which have been assigned to en> n-1,2,... are therefore 

representative of this behavior. 

7.5 The Page Demand Rate 

The page demand rate is the mean number of page transfers from M- to 

M0 requested per time unit by a program in running state. In the evalua- 

tion of this rate two cases must be distinguished depending on whether 
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more than J   requests for program execution are pending or not. 
■        max 

7.5.1. in the first case the J^ programs which are multiprogrammed 

lose all their pages in M() when the execution interval has run out. The 

minimum number of page transfers requested over an execution interval is 

therefore equal to the number of distinct pages referred to during this 

interval. This number is augmented whenever the number of distinct pages 

referred to exceeds KCJ^) so that pages have to superimpose each other. 

Following the approach taken in [Sm67], the average number 0(0^. \k) 

of page transfers per execution interval may be obtained as the average 

number of events of a non-homogeneous Poisson process occurring within an 

exponentielly distributed time interval: 

It is awumed In (7.1) that the page transfer request rate remains 

constant and equal to 6,..,  v after page sup.rtaposltlon first occurs, viz. 

max    th 

after the occurrence of the KU^)  transfer request. 

The page demand rate is thus equal in this first case to p, X W^tf' 

7.5.2. In the second case the J programs, 1 ^ J ^ Jmax, which are 

multiprogrammed do not lose at the end of each execution interval the pages 

they have accumulated in M,,. On the assumption that in this case programs 
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are never throughout their execution deprived of their K(J  ) pace 
max r B 

frames in HQt  the page demand rate may be approximated by ftp x h(J cp). 
niAx 

This assumption will be justified by the conditions for near-decompos- 

ability discussed in ^7.8. 

7.5.3. We will assume that the probability of a page missing in M 

within some interval (t.t-Hi] when a program is running»  depends on h only 

and not on t, and is equal to 

h X n X ÖU^.H) + 0(h) 

or h x cp x a(J,cp) + 0(h), 1 s j s j  . 
max* 

according to the number of requests for program executions which are pending. 

7.5.4. Some basic properties of the page demand rate may be found in 

expression (7.1), taking into account that cosfficlents 6 , n-1,2,..., are 

representative of a general property of program paging activity. Consider- 

ing only the first case above and denoting by ^     the page demand 

max 
rate difference which would result from an allotment of an additional page 

frame (KU^) - KU^) + 1) to each multiprogrammed user program, we have 

max   9 

^•W " ml       Ö> (ek(J  )+l " ek(j  >>• max   n-i    n r    max       max' 

The shape of the paging activity displayed in figure 7.3 is, on the 

average, such that 

yi*y2* ... yK (Jmax>' ^(W**». 
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Thus 
ei i92  ^ •'•  aeK(J       ) <7-3> max' 

and the stronger the locality property is, the greater the Inequalities are. 

(Jmax) i8 thereby negative for all values of K(Jmax) with the well known 

consequence that the page demand rate is a deoreaeing funation of the 

primary memory epaoe guaranteed to each multiprogranmed program.    The 

product 
K(J  ) a 

max' 9 

n-l  n p 

'decreases as K(Jnax) increases. This decrease is more than exponential 

owing to inequalitites (7.3).  |^    | decreases even faster than this 
max 

product when K(Jmax) increases, strong evidence being given by figure 7.3 

(and other studies, see e.g. [Va67]), that the decreasing function 6 is 
n 

strictly concave since for its inverse y : 
'n 

vn.yn > y 

where y is a positive branch of hyperbola; hence 

IVeiNve2l*-l8K(j   HreK(j   )!• 
max'    ^max' 

Thus the page demand rate  increases all the more steeply when the 

main memory space guaranteed to each program shrinks as this space allot- 

ment is small. 

The product (7.4) and thus the decrement A^   . increase also as 
max 

p, -* 0, this influence of p, growing exponentially with K(J     } . 
max 
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On the other hand, it results from (7.1) that u. X ö(J  .u.) -♦ 6 
max»**'   K(J „ ) 

max 
as n - 0 and ui x 0<Joax»H) -* H •■ ^ •♦ •, where, owing to inequalities 

* K(Jm-w) 
i8 a minimum for any fixed value of K(J  ). max ^ max' 

So, for any value K(J  ) of the main memory allotment the page 
■DAX 

demand rate approaches a minimum 0      as the average execution interval 
max 

is increased until it becomes equal to the average processor time consumed 

per user programs.  When, the average execution interval decreases (p, -♦ «), 

the page demand rate finishes by growing like p.. 

7.5.5. These tendencies of the page demand rate in function of K(J  ) 
max 

and (p,)" are illustrated by figures 7.4 and 7.5. These figures reveal 

that from the point of view of the page demand rate, there would not be much 

to be gained from guaranteeing each program a parachor (*) of more than 

about seven page frames in M0 and an execution interval longer than 0.2 

seconds; conversely they show that a minimum execution interval of 0.05 

seconds and a minimum parachor of four page frames are mandatory.  It will 

be shown in ^7.9.2 that these parachor values which are satiefactory for 

prcgrame considered as individuals are far from optimising performance 

criteria which take page transfer rates into account  . what is optimal 

for programs considered as individuals will not appear optimal when they 

are considered collectively. 

Parachor is a term in use to designate the amount of primary memory needed 
by a program to achieve some ,'sati8factoryM level of performance [Be68] . 

- l -JJAUULI^ 
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7.6 The Rate of Page Transfer Completions 

Let J, 1 * J ^ J  , be the number of programs being multiprogrammed 

at some time t and ij, 0 * ![ * J, be the number of programs being in 

8U8pended  state at this time t.  It is shown in the appendix of [Sm67] 

that because of the simplifying assumptions 7.3.1 and 7.3.2, the rate at 

which page transfers from M1 to M0 are completed may be taken equal to 

., (V)  a  L_x -L- (7.5) 
^iui; c^q-i x Trot 

•This rate is obviously null for q - 0, and approaches asymptotically 
c 
— as il  increases (see figure 7.2). 
T .     1 rot 

7.7 Conditions for Aggregation 

It results from the simplifying assumption made in ^7.3 and 7.5 that 

the hypothetical system may be regarded as a closed multi-queues system in 

which a fixed number N of programs cycle between three stages of.  service. 

1 , j^0,l,2, being the number of programs at stage I,  we may suppose that 
* 

I is the number of programs in ready  and/or running  state; 

i    m  i«+i"  where il  is the number of programs in suspended  state II 111 
and i" the number of programs waiting to be multiprogrammed; 

l is the number of terminals without pending request for 
2 

program execution. 

At any time t, t > 0, when J programs are being multiprogrammed, these 

variables must obey the following relations: 

.  .    •       .  . .  ■  ........    . •  .      .■■.-..     . . ■..■■■ 
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J-V1!» J-1 "W 
i2 - N-dQ+iJ+ip, 

(1^0) 3(1^- J^). 

(IJ>0)  S ((N-l2) > J^). 

Denoting ^^tx»  l.J"0»1»2! the transfer, rate from stage 1 to atage J, 

j/l, we have 

/^"W^     if iV > 0 (7.6) 

^^      \«pxa(J,«p)        If 1^ - 0 (7.V) 

»*0P02 " * (7,8) 

ji p10 -  ^(IJ)    (»ee equation (7.2)) (7.9) 

^2P21 "  XXi2 (7,10) 

All other transfer rates being null, the condition (5.1) for near-complete-de- 

composability amounts in this case to: 

For l2" 0 N-Jmax» 

Xxi, «       min      CUtdl^^xaCJ ÄV,|i)H»] 1       l^i'sy 1    1 max 

1   max 

and for i- - N-J     +l,...tN-l 2 max    '      * 

Xxi7 «       min        [^(in.cpxOU.^-l)]. z      Ut',J*J 1    l 
1'      max 

Since we have cp £ ii, and cpxd(Jlcp) ^ p.Xd(J      >|ji)l(J ^ J      ) as well as 

for a < b: 

cpxa(a,(p) i {pxa(b,cp) and |j.1(a) s ^(b), 

a necessary and sufficient condition for (7.11)  to be satisfied is 
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X(N-l) «minC^d), tpxOd.tp)-!)], 

or, replacing ^,(1) by its value yielded by (7.2): 

X(N-l) « min [fc— X -^Tf). cpx(ö(l,cp)-l)].     (7.12) 
rot   cf1 

Condition (7.12) stipulates that the lowest possible rate of page trans- 

fers between primary and secondary memory be higher than the highest possible 

rate of interaction between the set of terminals and these memories. This 

is in fact a common state of affairs and we may reasonably expect to see 

this condition satisfied by most paging computer systems. 

Moreover, Condition 7.12 is strictly expressed in terms of the hardware 

parameters N.Cj, T , the user reaction time (X)" , and the characteristics 

of a non-multiprogranmed user program execution, namely: 

(cp)  ,  the average processor time consumed per execution; 

<Hl,«p), the average number of page faults per execution if the 

entire primary memory space C0 is available; relation 

(7.1) completely determines 5(1,cp) in function of 

cp, CQ, and the user program activity [§ }, n-l  

A prior knowledge of these hardware and load parameters therefore,makes 

the verification of near-decomposability possible and may give a prior esti- 

mation of the precision achievable by using an aggregative model.  In this 

particular case, given the values assigned in 67 A  to cp, X, T   and c,. 
rot     1 

and since 9(1,CD) ~ 19, (7.12) is satisfied as long as 

N « 1+X" Xcpx(a(l,cp)-1) ~ 300.  Under this condition 

.■ ■ . 
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Che hypothetical system Is nearly-completely-decomposable Into the set of 

user teiminals on the one hand, and a primary-secondary memory aggregate 

on the other hand. The short-run equilibrium attained by the aggregate may 

be studied independently of the interactions with the user terminals; the 

long run equilibrium attained by these interactions may be studied in to-ms 

of the equilibrium characteristics of the aggregate. 

it 
7.8 Analysis of the Aggregates !DL(J)( SOI (J  ) 

Throughout this short-run equilibrium analysis we may therefore disre- 

gard the activity of the user teiminals. We may simply assume that a fixed 

number (N-i2), 0 « ijS N-l, of requests for program execution are pending. 

This implies that a fixed number J of programs, J - mln[(N-i,),J  ] are 

being permanently multiprogrammed. It was shown in ^7.5.1 and 7.5.2 that 

depending on whether or not (N-i9) > J  , the page demand rate was differ- 

ent. For this reason we consider two types of aggregates: A eaturated 
* 

aggregate, denoted 31 (Jmax)> In which the page demand rate is equal to 

^■W'^» and ^non-saturated aggregate TOU), J-1,...,J  , in which ehe 

page demand rate is equal to cpxd(J,cp). 

Considering this latter case first, a probability distribution 

^(n^lJ), nQ"0,...,J, J"l»«««iJmax» of no programs being in ready or running 

state on condition that J programs are being multiprograraned may be obtained 

as the distribution of the congestion in a SOI(J) queueing system, whose in- 

put rate is the page transfer rate and whose service rate Is the page demand 

rate tpxä(J,«p). Since the page transfer rate is dependent on the congestion, 

probabilities TT2(n0|j) are deiined by relations (5.3). Introducing into 

(5.3) the rates yielded by (7.9) and (7.7) yields for J-1.....J 
* max 
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J-n0+l 

n       ^Ck) 
TTi(nolJ) =[^xö(J,a]no V0'J)' V1"---1 

J-n.+l      | 1 

J   n \i,Ak) 
with TT (0|j) " (1 +  E    k^J 

n0=l [^^(J.^rpÖ 

Next, replacing [cpxa(J,(p)] by [(ixö(J „ ,u)], yields a similar dlstribu- 
v< ^ 

tlon for HI (J  ) which will be designated [TT, (njj  )}  « . 
max                0 t 1 0' max ■'n0'a0 

In particular, 

or in the saturation case 

1 max      lv ' max ' 

is the probability of the processor not being idle when J (or J  ) programs 
" max 

are being multiprograraned.    This probability will be henceforth referred to 

as the proaessop effioienay. 

* 
In figure 7.6, a,(J „ ) is tabulated for 1 ^ J   ^ 20, i.e., 

1 max max    *    ' 

2 ^ K(Jmax^ 
s ^8» and for four values of the average execution interval [y,]" . 

7.8.1 Optimal Maximum Degree of Multiproeramming. 

Figure 7.6 reveals that distinct optimal maximum degrees of multi- 

programming, say J j, . correspond to distinct values of the execution inter- 

val. Jm||x maximizes the processor efficiency cr-U  ), i.e., maximizes the 

sum 0 
j n   ^(k) 
max k"J 
S —^  

V1 [.xa(Jmax.,)]
no 
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An essential property of near-dacomposablllty is that the relative 

values of the short-run equilibria attained In each system SDL (J  ), 

J . -1,2,..., are maintained In the long-run. Therefore, J0p Is also the 
max • ' max 

maximum degree of multiprogramming which maximizes the long-run fraction of 

time the processor Is busy when the system Is saturated. 

The existence and the value of this optimum depend on the relative 

Importance of two antagonistic effects: as the degree of multiprogramming 

Increases, processor efficiency 

(I) tends to Increase the probability of at least one program 

being In ready state, 

(II) tends to decrease owing to the Increase of the page fault 

rate which results from the reduction of primary memory 

space allotted to each program. 

A method to evaluate such an optimum has already been proposed In 

[Wa69] but It applies to the simpler case of Identically distributed 

channel service times and a geometrically distributed number of page faults 

per program execution; thus the locality property of programs Is not taken 

Into account. 

Figure 7.6 reveals also that the optimal maximum degree of multi- 

programming increases as the average execution interval  [|i] decreases» 

Indeed, the second counteracting effect does not become operative until 

programs have exhausted their primary memory allotment K(J  ). The shorter 
IIIAX 

the execution Interval, the smaller this exhaustible space allotment becomes. 

,   ■ ■   ■ .   ■ 
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7.8.2. Thrashing 

It is evident from figure 7.6 that the primary memory allotment 

which must be guaranteed to each program in order to achieve maximal pro- 

cessor efficiency is considerably larger than the parachor value evaluated 

in ^7.5.5. 

The difference is Justified by the fact that the parachor is an 

* 
individual program characteristic whereas aAJ)  and cTjCJ  ) are measures 

of the overlapping achieved between page transfers and processor busy 

poriods and depend on secondary memory transfer rates as well. 

P. J. Denning's argumentation on trashing [De68|2] helps us to 

understand why the parachcr is smaller than K(J ". ). A measure e of the 
'    r max 

ability of a program to use the processor may be defined as 

-1  a      .  
•1  .  .,.       v     ,- v-1  ' 14 + ^w^x w 

J . -1 max   # 
whcre ^      E       TTl<nolJmax) »Al(Jmax-n0) 

V0 

,"  v-1 
is the average service rate of page transfer requests; [ö(J „„.p.) X (JJ,,) ] 

is thus the average time a program spends waiting for page transfers during 

an execution interv&l. Denoting by m the page transfer rate, we obtain 

1 + m x C^)" 

The slope of e in function of m is 

äi&m*mmKKB**^^m~*m   
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/- x-1 de _      (p.,) 
dm _ mi 2 

[1 + m X (ii1)  ] 

which meanB that e is more sensitive to m variations as ((Ij)" is great and 

m small. Therefore, the larger (j^)"1 is, the larger K(J°^) and the smaller 

jopt. Urge (il.)"1 values are responsible for K(J°^) exceeding the parachor. 
max 1 -. «1 

This extreme sensitivity of processor efficiency for large (j^) 

to m variations is responsible for serious degradations of the system re- 
opt 

sponse time when the degree of multiprogramning is allowed to exceed J^. 

These degradations are analyzed in paragraphs 7.12 and 7.13. 

7.8.3. Processor Efficiency Versus Execution Intervals 

Figure 7.6 shows that the longer the mean exeautian interval ie, 

the mailer the primary memory epaoe  KCJ^) required to attain a specified 

prooeeeor effioienoy  is. Or. that the larger KU^) is, the more advantageous 

it is from the point of view of processor efficiency to provide for the long- 

est possible execution Intervals. This is a consequence of the Increasingly 

preponderant influence C^)"1 has on the page fault rate decrement A^ y 

(cf. ^7.5.4) as K(J  ) Increases, owing to the property of locality of 

references (inequalities 7.3). 

Therefore a policy which optimiees processor efficiency by taking 

advantage of the locality property, should provide the user program with 

the longest possible execution intervals. Such a policy gives most effec- 

tive results when the primary memory allotment per program is large, viz. 

the degree of multiprogramming small. This is a supplementary argument in 

. 
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favor of processor allocation methods which have already been advocated 

[Mu70] to minimlB« changes of tasks (and thereby reduce overheads on 

processors) when the system Is underloaded, viz. when the number of out- 

standing requests for program execution Is less than the number of quanta 

contained within the prerequisite response time. 

One may also observe in figure 7.6 that a*(Jnax) is practically 

insensitive to J flv If (p.)'1 is so small, in this example less than about 

2 e"1 5.430 us, so that programs are not given enough time, whatever 
i  1 

K(j      ) is to accumulate In Mn the minimum number of pages necessary for v max u 

the property of locality to have effective results (about four pages as 

•shown in figure 7.4). 

7,9 The Long-Run Equilibrium 

The entire system may now be regarded as a set of N active user terminals 

originating requests for program execution to the aggregates 5^(j), J-l.....^. 

and ni>*(J  ). Let n. - (N-l„) be the number of pending requests, i.e., the 
1 max       1     z 

number of programs being or waiting to be multlprogrammed. We will refer 

to n, as being the system congestion. 

We may consider that the programs are executed by a single aggregate 

«^(Uj) such that 

SR^np s ©jU).   for »! 0 J s Jmax' 

aVnl> S^(Jmax)' ^^ W 

The rate at which programs are completed by Wl^) is 
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L2    W[l-"i(0|Jmax)] - <PX*l<W 
if nl > ^ax • 

*  (n,) will be referred to as the ayatem service rate,    ^ jCnj) Is 

displayed In figure 7.8. 

Tie rate at which requests are originated at some time t when the sys- 

tem congestion is equal to n. is equal to 

H2P21 - XCN-nj), n^O N (7.14) 

Introducing (7.13) and (7.14)  into (4.7.1) yields the long-run equili- 

brium probability distribution {^(njN)}^ o0 of the system congestion: 

TT^njN) - X 
Uj    N(N-l)...(N-n1+l) 

n ^ 2(k) 
k-1 

f    nj"l,.,«,N 

where TT (0|N) -^ 
N      n,     N(N-l)...(N-n1+l) 

1 +     EX1  
n -1 1 

n  ♦, 2(k) 

7.10 The System Congestion Avalanche-Like Effect 

N 
Assuming N=20, the distribution {^(njN)^ mQ  has been calculated for 

various values of J   (see figure 7.7). Some representative values of the 
max 

mean congestion 
N 
E n^  TT^njN) 

nl=1 

among those obtained are: 

. 
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J max E 

1 12 

2 7.49 

3 5.25 

4 5.71 

10 15.7 

20 19.1 

These mean congestions, as well as the distributions of figure 7.7 

suffice to advocate multiprograranlng towards 'batch-processing* (J^"^ 

and to advocate policies which control the maximum degree of multiprogram- 

ming so as to keep it around its optimal value (Jmax ~ 
3)- 

In particular, the last mean congestion in the list above, almost equal 

to N=20, indicates how the system may become overcrowded if all programs 

present are allowed to compete for primary memory (Jmax"
20)' An Intuitive 

interpretation of this behavior may be deduced from the shape of ij^ 2^ni) a8 

a function of n, for some given value of J .  (cfr. figure 7.8): enae 
X insx 

the congestion exceeds an optimal value which maximizes the system service 

rate  ^ 9(n1). any increase of the congestion results in a service rate 

decrease   which,  in turn,  accentuates the initial congestion increase. 

The upper limit J   of the degree of multiprogramning acts as a barrier rr        max 

against this avalanche-like effect:    the system service rate never decreases 

below cpXCT-U  ), no matter how great the congestion becomes. 

This avalanche-like behavior of the congestion is analyzed In greater 

detail in section 7.12. 

'. ■   . 
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7,11 The System Saturation Points 

In figure 7.9, the mean system congestion E has been plotted against 

the number N of active user consoles (1 s N ^ 20) for various values of J^. 

As N Increases, the mean congestion approaches and follows asymptotes 

of slope 1. This is due to the fact that, for increasing values of N, all 

other system parameters remaining constant: 

tVxlH) - »i™ : 

the system therefore tends to behave as a N-consoles system with constant 

it 
service rate [cpxa (J  )]. Kleinrock [17] has shown how, beyond a certain 

N value, such systems get saturated, each additional user interfering com- 

pletely with all the other users and adding one more unit to the mean con- 

gestion. He has shown that the corresponding mean congestion asymptote 

of slope 1 intersects the line E8»! for a certain value of N which is pre- 

cisely the average number of consoles the system may handle without ex- 

periencing any mutual delaying interference among the user requests; this 

nianber, which he defines as the saturation point of the system, is equal 

to the average number of user requests which may be satisfied until comple- 

tion within a time interval equal to the sum of the average user reaction time 

and the average user request service time. 

We may well verify that, in figure 7.9, the asymptotes intersect the 

line B"! at point 

*     -1   -1 

N*   =    1 /aX ^  (7.15) 

max    to^l^max^ 
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which would be "the saturation point" of the system If Its service rate 

were not congestion-dependent but equal to [cpX^CJ^)]- On. the other 

hand, the behavior of the mean congestion In the domain of smaller N 

values is considerably different from that of a system with congestion- 

independent service rate.  In these latter systems the mean congestion 

cannot Increase more than linearly with N.  The causes of the sharp non- 

linearities which may be observed in figur. 7.8 are discussed in the next 

section where a definition of saturation for systems with a congestion- 

dependent service rate of the same shape as ^^(n^ Is Introduced. 

7.12 The Congestion Stability 

A peculiarity of the aggregate ^(n^ is that both its input rste 

X(N-n ) at which requests for program executions are originated and its 

service rate If.  fy)  at which these executions are completed are depen- 

dent on the system congestion n^ n^O,...^. The general shape of these 

rates is displayed in function of ^ on figure 7.10. 

One observes that, depending on the relative values of N, J^, X, cp, 

CT (n ), there may be at most three congestion values nA, nB, nc for which 

the input equates the service rate, viz. which are solutions of 

XCN-np = ti^*!** (7.16) 

where ^ 2(nl) l8 given by (7*13)* 
It Is simple to prove that nA and  nc are stable congestions  around which 

the system is Inclined to come into equilibrium. Let us consider the system 

at some instant when the congestion is equal to nA. An increment fclj 

of the congestion will cause the service rate to exceed the input rate. 
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This excess, which is greater to the extent that toj is large (provided 

n + An ^ n  '-, will tend to reduce the congestion to its original value 
A    1   opt 

u . Likewise a decrement -An would cause the input rate to exceed the 
A i 

output rate, compelling the congestion to re-increase. The same reasoning 

applies to the congestion n . 

Inversely, a similar argumentation indicates that in the vicinity of 

n the congestion variations are reinforced instead of being deadened by 
B 

the alterations they cause to the output to input rate ratio . n^ is an 

unstable oongeation,  i.e. a state the system will always be zealous to leave 

in favor of stable congestions in  the vicinity of Uj or nc. 

Depending on the relative values of the various sytem parameters, inter- 

section B may or mpv not exist.  In the first case the congestion will be- 

come preferentially steady around values near r^ or nc. This is well re- 

flected by the shape of the long-run equilibrium distribution {TT2(Uj| N) }n^0, 

figure 7.7. Comparing figure 7.7 and 7.8. it may be verified for Jmax-3 

that the two congestions of highest probability, Uj ~ 1 and ^ ~f>,  are 

respectively equal to nA and nc, and that the congestion of least prob- 

ability, viz. n. ~ 3, is identical to nB. Similar extremes, too small to be 

distinguishable on figure 7.7, affect the distributions corresponding to 

j   - 1 10 20.  It may be conjectured that the transient time behavior of 
max   '  * 

the congestion in such systems is Increasing osoillation  between values in 

the vicinity of n. and values in the vicinity of nc. 

If no B intersection exists,     {^(n^N) }JJ mQ  exhibits a single 

maximum equal either to nA or nc, depending on the value of N.  Compare for 

instance figure 7.8 with the distributions displayed on figure 7.11 for 
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J  =3 and N=25,14 respectively, 
max 

The behavior of the congestion as a function of N, 0 £ N ^ "», may be 

summed up as follows. For N small, the congestion at first remains in 

the vicinity of n.. As soon as N exceeds a certain value, denoted N 
max 

and defined graphically in figure 7.10, B and C intersections exist and the 

mean congestion must reach abruptly a value between n. and n , n » n.. 

Thin explains the sharp increase of E on figure 7.9, once N exceeds a value 

t 
which is equal to N   . For N larger, the system tends to behave as a 

max 
system with constant service rate and the congestion increases almost 

* 
linearly with N as does n..  The smaller CT, (J  ) is, the closer to N is 

^ C 1 max 

•n > obviously. For N -♦ «>, it is easy to show that, for a given value of 

J  , E -♦ n .  In the steady state we may equate the mean input and service 

rates; the mean input rate is 

N 
X  E ^(njN) x (N-nj) - X(N-E); 
n^O 

Equating with the mean service rate   E n2(n-|N)^. An^),  we find 
N 

1= 

E = N -   E TT2(n1|N)-
li~^  . (7.17) 

For N -♦ o», the system tends to behave as a system of constant service 

rate ijf, ,(n ) so that 

*1 2(nC) 
lim E - N - [1 - TT (0|N)] ^ L (7.18) 
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As n is solution of equation (7.16), and TT2(0|N) -♦ 0 ag N -» *, (7.18) 

becomes 

lim E ■ n . 

N    is the saturation point  of the system:  the mean congestion in- 
max . 

creases less than linearly with N, for N < N   f and more than linearly 
j. j. max 

for N-   < N < <». N   may easily be deduced for given values of the 
max max 

parameters which define the hypothetical system by constructing an equili- 

brium diagram of the type defined in figure 7.10. 

7.13 The System Response Time 

The mean response time of the system is given by relation (4.70): 

w =• [xd - TT (NIN]"
1
 x E. 

It is the mean time spent by a program in the system, waiting for or 

being multiprogrammed. W is plotted in function of N for J  »3,10,20, in 

figure 7.12. Sharp non-linearities may be observed as soon as N exceeds 

the saturation point N   . For N larger, the system tends to behave as 
max 

if the service rate were congestion-independent so that the limit of the 

slope of W with N is 

lim dW „ ,  * T  v.-l 
N-dN" f^l^max^  ; 

the smaller a,(J      ),  the steeper this boundary slope is. 

These sharp increases of the congestion and of the response time when 

the number of active terminals exceeds the saturation point are the conse- 

quences of the extreme sensitivity of the processor efficiency  (see section 
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7.92 on trashing) to fluctuations of the page demand rate when the page 

transfer rate Is slow and the degree of multiprogramming is allowed to 

exceed J 
max 

The  fluctuations of W in function of J for N fixed are displayed 
max 

it 
in figure 7.13.  The discontinuities for J  =7,13 correspond to ff,(J _„) max i max 

minimae(cfr. figure 7.6). 

By virtue of the property of near-decomposability we have been able to 

specify within a single analytical model the condition of existence of 

thrashing in terms of parameters defining (i) the traffic of pages; between 

primary and secondary memory and (ii) the load on the system, and to measure 

the consequences of this phenomenon on overall system performances such 

as the congestion and the response time. 

7.14 Long-Run and Unconditional Distributions 
■"""""""""■""" ""'  J  * '^ ^   J N-J 

The distributions [BQUQ))*™,   {S^)]™™    and [sjd'') ^„^ may 

i   N 
be obtained from the system congestion (rr (n.JN)} _0 by means fo relations 

(4.8).  More precisely, the long-run and unconditional probability of i 

programs in ready  or running  state is 

J 
max 

nrio 

N 
+ Vi0lJmax)    T

E    "2(nllN)'  V0 Jmax; 

1 max 

The long-run and unconditional probability of i' programs in suspended state is; 
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J max 

V1! 
N) 

+ TTl(J
lnax-1,llJI„ax)       T

E       "2(nllN) 

n,"J _ +1 

N 
E 

1 "max" 

i;-o J „ ; 1 ' max 

The long-run and unconditional probability of i'J programs waiting to be 

multiprogrammed is simply TT2(J      +iV|N),  i'-'-O,,.. ,N-J       . 
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