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ABSTRACT 

The probability of survival of a communication network 

is defined as the probability that there exist at  least one 

path between any pair of stations within the network.    In 

this thesis,  four methods  for the calculation of the proba- 

bility of survival of the network, which is under enemy 

attack, are presented. 

The first two methods  deal with random networks whose 

links have  finite  and Identical probability of survival, 

while the third and fourth methods are based on the min-cut 

max-flow theorem. 
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I.     INTRODUCTION 

A communication network Is a set of nodes  connected by 

links.    Every link has  a branch capacity which Indicates the 

maximum amount of flow of messages.    A communication network 

must have large enough branch capacity such that all messages 

can reach their destinations under specified conditions.    In 

general these message  requirements vary with time. 

A communication network may be considered as a collection 

of message  centers that  attempt  to transfer information to one 

another over a variety  of connecting channels.     However, nei- 

ther the  centers nor the  channels  are necessarily  survivable 

at any given time.    For example  in military applications a 

center might be  destroyed by enemy attack,  or  lose  its  power 

supply.     Likewise,  a  communication  channel might  be busy,   or 

it  might  be  inoperative  because  of an amplifier  failure,  a 

broken or cut telephone wire,   or a jammed radio link.     In spite 

of these possibilities,   it  is  highly desirable  that the  re- 

maining switching centers be able to communicate with each 

other. 

A reasonable definition of survlvablllty  of a communication 

network is that there  be at least one path between any pair of 

stations.    The survlvablllty of a military communication net- 

work is related to the  exact structure of the network  and the 

probability of survival of its links.    It is  also related to 

the enemy attack and the topology of the network. 



If one wants to enhance the probability of survival of 

the network, he mlsht Increase the probability of survival 

of the links, or he might Increase the number of links between 

pairs of stations without Increasing tne total probabilities 

'•f survival of the links or he might change the topology of 

the network or use some combinations of those techniques. 

The choice of techniques depends heavily on the cost of the 

network. 

Communication links are made up of one  or more elements 

such as cables, antennas,     repeaters, or buildings which house 

the  communication equipment. 

The analysis of the survlvabllity of the  communication 

networks has been studied by various  investigators   [5J,   [6], 

[8]  and  [11].    In the work of E.  Moore and  C.  Shannon  [8], 

the  probability of communication between given pair  (x,y)   of 

nodes  in the network is  investir.atod.    In reference  5,  the 

idea of the overall survivabllity of the finite  communication 

network is  introduced.    Two  formulas are given  for  calculating 

the overall probability of survival. 

In this paper,   random networks  and finite networks whose 

links have a finite probability of survival under nuclear 

weapon attacks are  considered.     Pour methods  are  given to cal- 

culate the probability of survival of the  communication network. 

First two methods apply to the random networks;  one  of them is 

without the consideration  of the length of the path between 

any pair of stations.    The  probability of survival  of the 

finite networks are  calculated by  approximation methods  using 



the mln-cut theorem. Last method gives accurate results for 

finite networks and is computationally feasible for networks 

with several thousand stations or nodes. 

A.    THE MATHEMATICAL MODEL 

A communication network has n sttitlons (or nodes) desig- 

nated by V-,...|V , which are connectod by links.    Every 

station has an average of s number of links and no self loops. 

Also, all  links are ausumed identical with equal probability 

of survival. 

A communication network might have  fixed topologlcal 

structure such as a microwave relay system,  or might have 

time varying structure such as a nonsynchronous satolllto  com- 

munication network. 

The stationn are assumed to have hirfr probability of 

survival.     In this model of a communication network, the prob- 

ability of survival is assumed to be unity. 

The probability of survival of a link Is related to the 

distance between a pair of links and the structure  of the 

link.     Also assumed Is the  separation between links of a net- 

work be ensured that one weapon will not destroy more than a 

predetermined number of links. 

If the enemy wants to destroy a system, he can organize 

his attack in one of many ways.    He can aim his weapons at 

all Its series links, or he  can aim at any portion of the net- 

work.    The  choice of his  attack depends on probable  location 

of the  links, the decree of Importance of the  links,  and 

energy level of his weapons,  etc. 



The following condition la assumed for enemy attaok. 

The nuclear weapon Is aimed at random Into a region of area 

A.    The probability that any given nuclear weapon Is aimed at 

a region of area A la A/ A (A<A). 

A nuclear weapon haa many effects.    In this thesis» the 

destructive effect la mentioned, which la due mainly to blaat 

or shock damar.ea to atruuturea cither through the  crunhlnr 

action of the peak overprescurc,  or throurh the lateral dla- 

placement, tumbllnc or tearing apart  cuuood by the dynamic 

pressures.    Also, the damar.o oauaed by a nuclear weapon Is 

classified by degree as follows:   [21 

Typo A:     Completely destroyed. 

Type B:     Damage severely und boyond  i'eprilr. 

Type C:    Datnane that requires major repairs. 

Type D:    Light damage. 

The schematic Illustration of distribution of the types of 

damages  is shown in Vir..   1. 

The averaco radius of damage Is asaumed to be  R«    Inside 

R,,  every link Is completely destroyed and there Is no  danag«? 

outside the radius R2 when nucioar explosion occurs at point 

(0,0).    Thus, some links will not be destroyed and some links 

only partially destroyed,  when the links are located between 

the radii R,  and Rp.    In this paper. It will be assumed that 

the probability of damage of links located between  radii R^ 

and Rp  follows the Gaussian distribution. 

8 



KgUN   1 

The dla^rum of dl»trlbutlon of the typoo of daiwuva 



II.     SURVIVABILITY OF A LINK UNDER NUCLEAR WEAPON ATTACK 

When a nuclear weapon falls near a target at a distance 

less than the damage radius R,   from a link, the link is  al- 

ways totally destroyed.    However the network may still main- 

tain communications. 

If the distance between a pair of links is 2r miles and 

r is less than the damage radius  R,   for the nuclear weapon 

used by the enemy,  the  links may have high probability  of dam- 

age or low probability of survival.    The distance 2r must be 

at  least  twice the damage radius  Rp of the nuclear weapon in 

order to get a high probability of survival.    This radius Rp 

is a function of the yield of the nuclear weapon.    If someone 

wants to design a communication network,  he must estimate the 

size of the largest weapon of the enemy.     For instance,   if 

the explosion occurs above the  surface of the ground or water, 

a 1 MT.   nuclear weapon has a damage radius of about 10.5 

miles and 20 MT.  nuclear weapon  has a 27 mile damage radius 

[2]. 

With the aid of a computer,  the integration of the  prob- 

ability  function over a known damage radius of the various MT. 

weapon is shown in Fig.  ?.    If a link is sufficiently  distant 

from a  given MT.  explosion and the distance r lies well  to 

the right of the  applicable MT.   curve in  Fig.  2, the survival 

of that  link is  almost certain.     If, on the other hand,  the 

distance r lies to the left of the applicable curve, the de- 

struction of the link la almost  certain. 

10 



The probability of survival given by Pig. 2 Is the prob- 

ability that one nuclear weapon falls specified distance away 

from the link.  If more than one nuclear weapon is aimed at 

different points of the communication network, the probability 

of survival of the link Is the product of the probability of 

survival associated with each nuclear weapon. That is 

r - Distance from Zero Point - in Miles 

Figure 2 

11 



P(N)     =    P1(x:L)  P2(X2)   ...  PN(xN) (1) 

where P(N)   is the total probability of survival of the link 

under N nuclear weapon attacks,     x.   is the  distance  from the 

zero point  of the k      nuclear weapon.    Pk^if)  ls the prob- 

ability of survival as  given in Fig.   2  for distance xk at 

various energy levels of the weapon. 

If the  link is sufficiently far from the zero points of 

each weapon such that  x.   lies well to the  right  of the associ- 

ated curve  for a given weapon,  PvC^O  Is very close to unity 

and considerably greater than Q.99.     Ifi   for example, the 

number of nuclear weapons were  10,     P(10)  would still be 0.9. 

Thus,  the  value of P(10)   Is  still near 1.0.     Therefore,   If 

the distance between zero points  of each v/eapon and the   link 

is far enough,  the number of the nuclear weapons does not  in- 

fluence  the probability of survival of the   link. 

EXAMPLE 1:     Let  three  5-MT.  nuclear weapons  be  aimed  at 

some area.     The  distance  from the zero points to the link  are 

12,  15 and 18 miles  respectively.    What Is the probability of 

survival of the  link? 

According to equation (i) 

3 

P(3)    =   jJPk^ 
k=l 

P(3)    =    Pj/x^  PgC^  P3^x3^ 

where xl 
■ 12 miles 

X2 
= 15 miles 

X3 
& 18 miles 

12 



Prom Pig.  2 for a 5 MT. nuclear weapon 

p^U) =    0.09 

p2(15) =    0.895 

P3(18) =    0.999 

So, the probability of survival of a link is 0.08. 

In practice,  It  is too difficult to estimate or measure 

the distance between links and the zero points of each weapon 

for which the probability of survival of a link is computed. 

However,  a communication network should always have more 

than one link and also the nuclear weapon can destroy more 

than one link. 

Assuming 2r to be the average distance between each pair 

of links, we may now compute the average probability of sur- 

vival of a link which is  Integrating over the area of radius 

r.    Then, 
r 

p(r)     »    / f(x)   dx (2) 
0 

where f(x) is the Gaussian distribution function of surviv- 

ability with mean and variance, and 2r is the average distance 

between links in miles. 

When the communication network is subjected to random 

bombardment, the probability of survival of a link is a func- 

tion of the average distance between links, but It is indepen- 

dent of its location. However, for one nuclear weapon, the 

probabllltv of survival of a link is related to the ratio of 

the damage area of the nuclear weapon to the area which Is 

subjected to random bombardment. 

13 



Various energy level nuclear weapons have different 

damage areas and different means and variances.    Every various 

energy level nuclear weapon has a different damage distribu- 

tion of probability. 

The nuclear weapon is targeted at  random into a region of 

area A square miles.    The probability of a link being Inside 

the damage area of the nuclear weapon  is the ratio of the 

damage area of the nuclear weapon to an area which is sub- 

jected to random bombardment.    Thus, 

j ( D < A ) 
2 

where D is the damage area and equal to nFL, R0 is the damage 

radius of the nuclear weapon. 

The probability of damage of any given link which Is In- 

side this area is 

Q - £[ 1 - D(r) ] 

where l-p(r) is the probability of damage of a link which is 

2r miles from other link or r miles from the zero point. 

The probability of survival of any given link inside the 

area of A square miles is 

P - 1 - Q (3) 

Equation (3) is valid for one nuclear weapon.  If N nuclear 

weapons fall at random in an area of A square miles, the fol- 

lowing is valid: 

P(N)  -  {1 - [ l - p(r) ]J}N (il) 

14 



EXAMPLE 2:    Let  30 miles be the average distance between 

links.    Three 5 MT, nuclear weapons are randomly aimed at an 

area of 1000 square miles.    What Is the probability of sur- 

vival of any given link In this area? 

The probability of survival of a link which Is 15 miles 

from the zero point Is 

p(15)    -    0,90 

The damage radius of the 5 KT, nuclear weapon Is 17 miles, 

Therefore, the damage area,  D, Is 907.5 square miles. 

The probability of a link being In damage area,  D, Is 

|   -    0.9075 

For one nuclear weapon, the probability of survival of 

any given link In area of A square miles  Is 

P(l)    =    0.989 

For three nuclear weapons; 

P(3)    ■    0.967 

If the average distance between links  Is larr.e enough, 

the number of nuclear weapons does not appreciable  affect the 

probability of survival of the links. 

If the average distance between a pair of links  Is 2*1 

miles vice 30 miles, the probability of survival of any r.iven 

link is changed drastically.    Thus,   from Pig.  2 

p(12)    -    0.10 

The probability of any civen link inside tho damage area 

is unchanged and again equal to 0,9075. 

15 



For one nuclear weapon, the probability of survival of a 

link in same area of 1000 square miles is 

P(l)    -    0.183 

For three nuclear weapons 

P(3)    »    O.OOiJB 

Prom the above examples, the average distance between 

links is the most critical factor, since it was shown that a 

change of only 6 miles or 20 percent resulted in a significant 

difference in the probability of survival varied from 98.9 

percent to 0.^3 percent. 

16 



III.  RANDOM NETWORK 

Let a communication network be an aggregate of stations 

and each station Is capable of Issuing some number s of links. 

Each link terminates at some station of the aggregate, and the 

probability that a link from one station terminates at another 

station Is the same for every pair of stations. The resulting 

configuration is called "random communlcatjon network" [6]. 

A.  THE SURVIVABILITY OF THE COMMUNICATION NETWORK WITHOUT 
CONSIDERING THE LENGTH OF THE PATH 

In the last chapter, the probability of survival of any 

given link Inside some area of A square miles is considered 

under various conditions based on the size of the enemy weapons 

and the distance between pairs of links. 

The average number of links, s, alone cannot give precise 

information about the communication network survlvabillty. In 

addition, the relationship between the average number of links 

and the probability of survival of the communication network 

is needed to determine the survlvability of the network. 

Markoff chains can be used to find the probability of sur- 

vival of the random communication network.  Suppose that an urn 

contains n balls with w white balls and n-w black balls and a 

player has s tickets. He plays one ticket for the right to 

draw a ball at random from the urn. If the ball drawn is 

white, he receives d additional tickets and if it Is black he 

receives nothing. The ball drawn is always replaced by a 

black ball. Drawings continue until s=0.  In this case, black 

17 



balls represent stations not  reached previously,  and tickets 

represenit the number of links emanating from previously 

reached stations, which have not yet been traced. 

Let H be the probability of survival of the communication 

network which Is a function of the number of links. 

H    -    f(8) (5) 

The average number of links after the enemy attack can be 

calculated as follows:     Let d be the average number of links, 

after the enemy attack,  d Is equal to the average number of 

links before the enemy attack  times the probability of sur- 

vival   of any given  link  Inside some area of A square miles. 

Thus 

d    »    s P(N) (6) 

where I'CN) Is the probability of survival of any given link 

Inside some area of A square miles and s Is the averar.o number 

of links before the enemy attack. 

The urn problem can also be applied to our random communlca« 

tlon network. The existence of a path In a random communica- 

tion network from a station v. to a station v. implies the 

possibility of tracing links from v. through any number of 

Intermediate stations to v.. 

v. Is m links removed from v., 1f m Is the smallest number 

of links contained In any of the paths from v. to v..  Station 

V. Itself Is zero link removed from v..  All the other stations 

upon which the links of v, terminate are one link removed. The 

stations upon which the links from these latter stations 

18 



terminate, and which are not one or zero links removed, are 

two links removed, etc., according to Ref. 6. 

Let C(m) be the probability that a given station Is con- 

tacted at the m  stage.  The probability that a station Is 

contacted for the first time at the m  stage Is 

in—A 

C(ra)|T[ 

m-l 

[ 1 - C(l) ] (7) 

1-0 

Let B(m) ■ 1 - C(m), Eq, 7 becomes 

m-l 

[ 1 - B(m) ]TTB(1) (7.a) 

1-0 

where D(0) Is the probability of not selecting a given station 

at stage zero. 

The average number of links enumatlng from  a station that 

has survived is d.  Since each station sendn on the average 

d links, and there are n stations In the communlcation net- 

work, the expected number of links to be traced on the (m+l) 

tracing will be 

m-l 

- B(m) ]j B Kl) (8) X - d n [ 1 

1-0 

The probability that any given station In the aggregate 

Is not contacted by any of these links on the (m+l)  tracing 

will then be 

B(m+l) -  ( 1 - 1/n )X (9) 

which, for large n, may be written as 

19 



m-1 

B(m+1)   = Exp{-d [   1  - B(rn)   ]   |   j   B(l)} (10) 

1=0 

m-1 m 

- Exp{-d [TT B(l)  -TTB(1)   ]} 

i»0 1=0 

Taking the product of both sides of Eq.   10 with respect 

to m,  yields 

m+1 m J-l J 

JTBCJ)  =TTExp{-d  ["JTB(1)   -TTB(1)   ]} (11) 

J=l J=l 1=0 1=0 

When m goes to Infinity,  the   left hand side  of'Eq.   11 

becomes 

Aim 
m>oo 

m+1 

TT 
J-l 

B(j)   =  1   - H (12) 

The right hand side of Eq. 11 becomes 

J-l       J 

Exp{-d  y [TTßd) - Tod) ]} 

1=0 1=0 

Inside the braces  is 

(13) 

-d[B(0) - B(0) B(l) + B(0) B(l) - ••• + B(0) B(l) •••  B(m-l) 

- B(0) B(l) •••  B(m)] = -d[B(0) - B(0) B(l) •••  B(m)] 

Equation 13 becomes 

m 

Exp{-d [ B(0) -TTB(1) ]} (13.a) 

1=0 

20 



But B(0)"l-l/n"l. as n goes to infinity and Eq.   13.a becomes 

m 

ExpUd [  1 -TTBU)  ]} (Ik) 

1-0 

Taking the  limit  of Eq,   14,  as m approaches  Infinity 

Exp{-d [  1- (1 - H)}]    » Exp  (-d H) (15) 

Equation 12 equals Eq. 15 under these conditions, Thus, 

1 - H - Exp (-d H) or 

H = 1 - Exp (-d H) (16) 

Substituting Eq. 6 into Eq. 16 yields 

H = 1 - Exp [ -s P(N) H ] (17) 

Equation 17 is an equation for the probability of survival 

of the communication network after the enemy attack in terms 

of the network parameters. 

We note that for H=0, every d is the solution of the Eq. 

16. If HA) then Eq. 16 can be solved explicitly for a given 

value of d, which is given by 

d - r^lzäi  .       (18) 

The  right-hand side of Eq.  18 is analytic in every neigh- 

borhood of the origin and tends toward unity as H goes to 

zero.    Expanding that  function in power series of H,  we have 

2 
d    =    1+I+J-+... (19) 

Negative values of H, being physically meaningless, must 

be discarded. Thus in the region 0 <. d 1 1, we have H=0. 

21 



d - Number of Links after Attack 

Pi pure  'i 

The average number of links d la always an Integer. So the 

value of d equals ;'-ero which Is physically moanlnnless. 

An examination of the meaningful part of Pig« 3 shows 

that as lone as the number of links does not exceed one link 

per station H=0, I.e., for a very larp;e n, the number of sta- 

tions to which there exist paths fx-orn an arbitrary station Is 

negligible compared to the total number of stations In the 

communication network. On the other hand, as the average num- 

ber of links Increases from unity, H Increases rather rapidly. 

For d«2, H reaches about 0.80 of Its asymptotic value and Is 

within a fraction of one percent of unity for a quite moderate 

value of d (say 6). 

This means that no matter how large the communication net- 

work Is, It Is nearly certain that there win exist a path 

22 



between two stations picked at random, provided only the 

average number of links Is a few times greater than unity. 

EXAMPLE 3:    Let 24 miles be the average distance between 

links.    Three 5 MT. nuclear weapons sro randomly aimed at an 

area of 3000 square miles.    What is the average number of 

links per station before the enemy attack in order to keep 80 

percent survivablllty of the  communication network? 

Then,  from Pig. 2, for r«"12 miler. and 5 MT. nuclear weapon 

p(12)    -    0.09 

The probability of a link belnr, In the damage area,  I), is 

£   -    0.3025 

The probability of survival of any ^iven link  Inside area 

is 

P(l)     •=    0.73 

Then,  the probability of survival,   for three 5 MT.  nuclear 

weapons  Is 

P(3)    -    0.39 

Then, the average number of llnkt5 is 

8    B        H P(3) 

-    5.16 

s must be an  Integer.    It  is  chosen 6. 

If the average distance between links  Is Increased to 30 

miles,  the probability of survival of any given link Increases. 

23 



So, 

P(3)    ■    0.913 

and the average number of links,  s, Is 2,5 and chosen 3. 

B.    THE EFFECT OF THE LENGTH OP THE PATH 

Most communication networks have some processing time 

associated with the links and stations.    This processing time 

may be the time necessary to transmit Information through the 

link or the time needed at station to decode, recode and re- 

transmit the Information.    In any event,  it is usually desir- 

able to limit the time a message  remains  in the communication 

network routes.    Thus,  instead of asking for surviving fraction 

of stations that can be reached  from a given station by a path 

of no more than m links. 

In our urn problem, the drawing of balls are equivalent to 

sampling a population of n points with replacomont;  consequently, 

the same ball may bo selected more than once.    A more reason- 

able method of selection is to establish llnk'J sequentially. 

The first  station is selected equlprobably  out  of n possible 

stations,  the  second station Is  selected equlprobably out  of 

the n-1 remaining stations;   ...   ;  the s   * station is selected 

equlprobably out of the n-s remaining stations  (none of which 

has been already selected). 

Assume that the links at station v^^ are determined by 

sampling station vlt v2 
vi-i»  vi+l»   *••*  vn without  re' 

placement a total of d times. 

In fact,  Eq.   16 Is valid for infinite stations.    It  does 

not make  any difference  for largo  ratios of populatlcn-to-cample 
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size, sampling with and without replacement.    If the number 

of stations Is  finite, Eq.  16 Is not  valid.    Actually, Eq.  16 

Is a lower bound for H.    This is because a communication net- 

work with no parallel links In the same direction has higher 

probability of being connected [4]. 

The probability of survival of the  communication network 

can be Investigated without replacement  for finite stations 

as follows:    Choose an arbitrary station v.  and let S »v^. 

Let S, be the set of stations connected to v.  by links direc- 

ted from Vj,   ..., and let S. bo the set of stations connected 

to set of stations S.   ,  by links directed from S.   ,, •  • •      t 

So on. 

First,  all links emanating from S    are traced,  i.e., the 

number of stations in S,   are found,   ...,  at the 1   1 sta^e,  all 

links emanatlnc from 3.   ,  which have not  already been traced, 

etc. 

We shall  rewrite Kq.  7 in terrnc of another probability E(m), 

which will be  defined as the probability of being contacted 

for the first time on the m     tracing.     Thus, 

m-1 

E(m)    »    [  1 - B(m)   ]   |TB(1) (7.b) 

1»0 

m-1 m 

TBU) -TTiid) 
i*0 1-0 

Taking the sum of both sides of Eq. Y.b with respect to 

m, yields 
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J-l 
m 
I E(J) 

J-0 J 
f [TJBCD -"Tsd) ] 

i»o 1-0 i»o 

m 

1 - I  I B(i) 

1=0 

in 

-TT 
For (in+l)th stage 

m+1 
I E(J) 

J-0 

m 

m+1 

1  - TTB(1) 

1=0 

TT1 Solving Eq.   20  for       ]   B(l) 

:.=0 

m 

1=0 

m 
B(l)  =1-1 E(J) 

J=Q 

Rewrite Eq.   7.b  for  (m+l)*^    stage 

m 

•IT- E(m+1)     =    [   1  - B(m+1)   ]       B(l) 

1=0 

Substituting Eq.   20.a Into 7.c 

(20) 

(21) 

(20.a) 

(7*o) 

m 
E(m+1)  = [ 1 - B(m+1) ][ 1 - I E(J) ]  (22) 

JB0 

The probability that any given station in the aggregate 

is not contacted by any of these links on the (m+1)  tracing 

will be, for large n 
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m-1 

B(m+1) - Exp{-ci [ 1 - B(m) ]TTB(l)}      (10) 

1»0 

Since the term of Inside the braces of Eq. 10 Is equal to 

[-d E(m)3, Eq. 10 becomes 

B(m+1) » Exp [ -d E(m) ] (23) 

Substituting Eq.   23 Into 22 In order to get E(m+1)  In terms 

of E(m).    Thus, 

m 
E(m+1)     ■    C  I  -    | ECJ)   ]   {1 - Exp  [   -d E(m)   ]}       (2M 

with E(0)  = 1/n 

E(m) represents the probability that   any station Is exactly 

m links removed from a station chosen at   random.    E(m)  Is ap- 

proximately equal to the expected fraction of stations that are 

connected by at  least one path of m links and with fewer than 

m links to the station picked at random. 

When E(m)   Is known,  the probability  of survival of the 

communication network can be  figured out.     If the only avail- 

able path between a pair of stations is too long,  it may be 

considered that the enemy has effectively separated the two 

stations.    The probability of survival of the  communication 

network H does not take this factor into account.    So, 

H    »      I E(m) (25) 
maO 

In fact,  if we take the sum of Eq.  2l\ while m goes 

Infinity, we have 

H    «    1 - Exp (-d H) 

which is the expected result and the same as Eq,   16. 
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As far as the Information transit time Is concerned, the 

determination of probability of survival  of the communication 

network Is closely related to the path of length when any 

given station Is connected by a path of length m or less to a 

station chosen at  random.    Thus, 

m 
H(m)    -      I E(k)        m»l,2,... (26) 

k«0 

with E(0)"l/n, n Is the number of stations. 

EXAMPLE 111     A communication network has  100 stations with 

an average of 20 links per station.    Let  27 miles be the average 

distance between pairs  of links.    The enemy attacks at some 

area of 3000 square miles with three 5 MT.  nuclear weapons. 

It is desired to find the probability of survival of the com- 

munication network which can be reached,  after the enemy attack, 

from a station chosen at  random to any niven station by a path 

of no more than 2  links. 

Prom Fig.  2,   for 1—13.5 miles 

p(13.5)    •    0.50 

The probability of a link bcinc In the damage area,  D, Is 

£   -    0.30P5 

The probability of survival of a given link inside the 

area is, for. one 5 MT. nuclear weapon 

P(l) « 0.85 

For three 5 MT. nuclear weapons 

P(3) • 0.62 
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Then, from Eq. 16 

H    -    1 - Exp  (-20 0.62 H) « 1 - Exp  (-12.1 H) 

The probability of survival of the communication network 

H Is very close to unity.    However, when E(m)  Is calculated 

from Eq. 2M 

E(0)    •    1/100    »    0.01 

E(l)    -    (1  - 0.01)  [   1 - Exp  (-12.1  0.01)  ]     -    0.115 

E(2)    »    (1 - 0.125)[  1 - Exp (-12.1 0.115)]    ■    0.665 

Therefore,  although nearly 100 percent of the stations can be 

reached from a station chosen at random, H(3)  ■ 0,01 + 0.115 

♦ 0.66b ■ 0.79 and only 79 percent of the stations  can be 

reached with paths of two or loss  links. 
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IV.     FINITE NETWORK 

A.     COMPUTATION OP SURVIVABILITY BY EXACT METHOD 

A communication network has n stations and m links.    Each 

link has a finite probability of survival; they are denoted 

by P^» Pg Pm under the states y«, y2,   ...» y  , respec- 

tively.    It Is assumed that each link Is associated with a 

statistically Independent random variable with only two pos- 

sible states, namely, the state in which the  link Is In opera- 

tion and the state in which It is not in operation. 

If the link b^^ exists  in the network with the probability 

of survival p., this means that y.»l.    Let the state Y.   of the 

entire network be  described by a state vector (y,, y-  

y  )  whore y.Bl  or 0 accordinr: to whether the   link b.   is in 'm 1 1 
operating state or not.    T!ie totality of all the 2n state 

an 

vectors forms tho sample space,  and each state vector corres- 

ponds to a vertex of o unit m-dlraonsional  cube.     Since the 

links bj, b2,   ..., b    are considered statistically Independent, 

the probability of survival that the state Y.   exists  [5] 

m 
r    v. i .. 

1-0 

whore p. is the probability of survival of the link b^ under 

state y.; and P. is the probability of the state k. 

In this communication network, all links are assumed Iden- 

tical with equal probability of survival.  Then Eq. 27 can be 

% ■ ffn^i-p,)1-»» 



written as follows: 

m 

pk" TTpyi (i" p)1"yi        (27*a) 

1-0 

A path between two stations, say, between the station v, 

and v.. Is a subset of the links of the communication network 

graph of the form (v^2» ^3 1 •••» v, ^J ,  A "loop" In a 

graph Is a path with one additional link Joining the two sta- 

tions of the path. A "tree" Is an n-statlon communication net- 

work graph Is a set of n-1 links that contains a path between 

every pair of station In the graph. It can easily be shown 

that any set of n-1 links that contains no loop Is a tree. 

In order to maintain communication amont» all stations in a 

network, at least one path between any two stations of the net- 

work Is needed.  It Is well known that a finite graph is a tree 

If and only if there exists oxaotly one path between two sta- 

tions. Therefore, the conmunlcatlon is assured if and only if 

there exists at least a tree in the network. 

The probability of survival of a communication network is 

defined as the probability of the communication between every 

pair of its stations.  So, it is the algebraic sum of the 

probabilities of all the possible states which contains at 

least a tree of the network. Therefore, [5] 

2m 
H -  I    t P (28) 

k»l K K 

where P.   is the probability of the state k, t.   is 1 or 0 if 

the state k contains a tree or no tree in the network as its 

subnetwork respectively. 
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EXAMPLE 5:    What Is the probability of survival of the 

communication network which Is shown In Pig.   M? 

Prom Eqs.  27 and 28 

H ■ PiPa^ij^Pe + plp2q3qilp5q6 + plp2q3pilq5q6 + pi<l2p3pi|q5q6+ 

plq2p3q4p5q6 + plq2p3q'4q5p6 + plq2q3p4q5p6 + pic'2q3q^p5p6+ 

plq2q3pi»q5p6 + qlp2p3pHq5q6 + qlp2p3q4p5q6 + clip2q3pi|q5p6+ 

qlp2q3q1p5p6 + qlp2p3q^q5p6 + pip2p3q4q5p6 + pip2p3qHp5q6+ 

plp2q3qi»p5p6 + plp2q3pilq5p6 + PiP2q3pi|p5q6 * pi(l2p3p4q5p6+ 

plq2q3p4p5p6 + Plq2p3q4p5p6 + qiP2p3p'Jr5q6 + cliP2P3qi|P5p6+ 

qlp2p3p1q5p6 + PiP2p3Piiq5P6 + PiP2p3p^p5q6 + PiP2p3qiip5p6+ 

Plq2p3p4p5p6 + PiP2q3pHp5p6 + qlp2p3p'4p5p6 + plp2p3p4p5p6 

where p.   is the probability of link t^, and q^l-p^  i»l, 

»«11   o« 

If p, ■ ... = Pg, above equation becomes 

H = 13 P3 q3 + 13 p^ q2 + 6 p5 q + p6 

Figure k 
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B.     COMPUTATION OF SURVIVABILITY BY APPROXIMATION  METHOD 

In the exact method of calculation of the probability of 

the  communication network,  first,  all the trees  In the net- 

work must be found.    Secondly,  P.   that Is the probability of 

the state k has to be computed for all possible states.     So, 

if the network has a large number of stations and links, 

computation takes a long time. 

In this section, a finite network whose links have the 

same  finite probability of survival is considered.     A general 

method is given to compute the approximate probability of 

survival of the communication network.     An equivalent network 

of the communication network  can be used to compute  the  ap- 

proximate probability of survival.     If each link Is  assigned 

a unit capacity,  the maximum flow between any pair of stations 

is equal to the  corresponding mlm-cutset, which must be  re- 

moved in order to separate these  stations. 

1.     Equivalent Network 

The network flow problem was first  considered by Ford 

and Fulkerson [10] who Introduced the basic concepts of flow, 

cut,  etc., and provided the main tool, the maximum-flow 

minimum-cut theorem.     Ford and Fulkerson discussed the  flow 

between two special points,  the source and the sink.     Gomory 

and Hu [9] studied the problem of multi-terminal  flow and sug- 

gested the use of the equivalent network which has the same 

flow of the original network. 

The construction of Gomory and Hu is described as 

follows:    Select two nodes arbitrarily and solve  a maximal 
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flow problem between them. This locates a minimal cut (X,5c), 

which we represent symbolically by two nodes connected by a 

link of capacity e,, as In Pig. 5. 

© r © 
'I 

Figure 5 

In one node, the individual nodes of X are listed; in the 

other, those of JT, Next, choose two nodes In X, and solve 

the resulting maximal flow problem in the JT-condensed net- 

work, I.e., all the nodes of X" can be shown as a single node. 

The resulting minimal cut has capacity e2 and Is represented 

by a link of this capacity connecting the two parts into which 

X is divided by the cut, say X, and Xp. The node JT is con- 

nected to X-, if it Is In the same part of the cut as X,; to 

Xp otherwise, as in Fig. 6. 

<D e2    w    e1 

Figure 6 

This process discussed above is continued,   and at 

each stage of the construction some set Y,  consisting of more 

than one node,  is chosen  from the tree diagram at  that  stage. 

The set Y will have a certain number of links connected to 

it  in this tree.     All of the  sets that can be reached  from Y 

by paths  using one of these  links are condensed into a single 
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node for the next maximal flow problem.    This Is done for 

each link connected to Y In the tree.    In the resulting net- 

work a maximal flow problem Is solved between two nodes of Y. 

The set Y Is partitioned Into Y,  and Y2 by the minimal cut 

thus found;  this Is represented In the new tree by a link 

having capacity equal to the  cut capacity Joining Y,  and Ygj 

the other nodes of the old tree are  connected to Y,  If they 

are In the Y,  part of the cut; to Yp otherwise. 

To Illustrate the general step of the construction, 

suppose that we have arrived at the tree diagram of Pig.  7, 

with Y to be split.    Removal of the links connected to Y leaves 

the connected components Y;  X,;  Xp,  X-; Xj., X^i Xg.    Then In 

the original network the nodes X,   are condensed,  as  are those 

X2ÜX3  , and X^ÜX^UXg   . 

<X> ■© 

Figure 7 

Solving a maximal flow problem between two nodes of 

Y in the condensed network might then lead to the new tree, 

as shown In Fig. 8. 
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(S>—7 

Figure 8 

The process Is repeated until all the sots consist of one 

node each.    If the original network has n nodes, this point 

Is reached after n-1 maximal  flow problems have been solved, 

since the final diagram Is a tree on n nodes, each link of 

which has been created by solvlnr: a flow problem.    The number 

ek attached to the k      link of the  final tree Is the  capacity 

of this  link. 

EXAMPLE 6: 

Figure 9 

To begin the analysis for the network of PI»',.  9,  arbi- 

trarily select node 1 and 6  for the  first  flow problem.    This 

yields the  cutr.et (  {1,3} ,   {Z^.S.C»)  ) represented by the 

tree of Fig.  10. 
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Figure 10 

Taking 1 and 3 for the next flow problem and con* 

denslng 2,it,5*6 gives the network of Fig. 11, with the sub* 

sequent outset 

PiRure 11 

( (1) ,  (3»'l,5»6,2l ). Hence* the tree of Pig. 10 becomes 

(D-^—®- •(SSs) 

Figure  12 

Next choose 2 and k the condensed network Is shown in 

Fig.  13 with the cutset  (  {1)   ,  {1,2,3,5,6}  ) 



Hence the tree of Fig.  12 becomea 

Figure  11 

Selecting 2 and 5 for the next  flow problem and con- 

densing yields Fig.  15 with the cutset  (  (5)  , {1,?,3,M>   ) 

Figure 15 

Thus the  tree diagram at this stage  is as  shown In Pig.   16 

0_-i--0~3_(T6>-a—0 

© 
Figure  16 

Finally choose 2 and 6 to r;et the  condensed network 

of Pig.   17 with the  cutset  (   {1,2,3,^,5)   ,   (6)) 
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(VHS 

Figure 17 

Consequently the final cut-tree Is as shown in Pig, 18 

o-^-®- 

0 

& -© 

d) 
Flr.uro   18 

2.     Coinpututloti of Aggroxlmated Value of Survivablllty 

Lot  an equivalent network be a tree with n nodes   and 

n-1 links.    Each link has a capacity denoted by e., where 

i«l,2,...,n-l.     The tree links with  capacity e.   can bo  repre- 

sented by e.  parallel links with unit capacity.    As discussed 

in the previous  section, e.   is always an  interior.    So,  the 

network of Pig.   8 can be redrawn as in Fig.  19,  In which the 

total number of links between Yp  and X,   is Or X^.  and 

Xg  is  equal to en. 

The probability of survival between two nodes,   say, 

X,  and Y„ can be  calculated.    There are ec  links which have 12 b 
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Figure 19 

the same probability of survival.  Then, 

g(6)  = 1 - (l-p) (1-p) ... (1-p) 

1 - q (29) 

where g(l) is the probability of survival between two nodes 

with link capacity e.. 

In general, 

g(i) = 1 - q (29.a) 

where q=l-p. 

The network of Fig. 19 could be redrawn as in Fig. 20 

so that each link has probability g(i), where 1=1,2 n-1. 



Flcure 20 

The probability of survival of the network of Flß. 

20  can easJJy be  computed as  follow.s: 

H   =   til) G(2) gil) gC«) r.(r>) c(6) e:(7) 

For n-node network 

H B(l)   ß(2)   ...   K(1)   ...   r,(n-l) 

n-1 

TT BU) (30) 

Substltutlnc Eq.   29.a Into  30, we have 

n-1 

H TT 
J-l 

0 

(   1  - q J   ) (31) 
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The exact and approximation probability of six dif- 

ferent finite networks are computed for different probability 

of survival of the links using Eqa.  28 and 31» respectively. 

They are shown In Appendix A.    The tables for these computa- 

tions are shown in Appendix B. 

All of the six figures have some similar character- 

istics.    The approximated value is always greater than the 

exact value for any value of p.    Equation 31 is a reasonable 

approximation for computing the probability of survival of the 

network, because the approximation Is about equal to the exact 

value when p i 0.20 and p >. 0.80.    The average maximum error 

is only 3.2 percent when p is in this region.    The average 

maximum error for these networks occurs at p ■ 0.55, and It is 

equal to 8 percent,    as shown In Appendix B. 

Using modified tqulvalent network,  the nrobabiUty of 

survival of the network  can be  calculated as before.    The 

modified equivalent  of the  coinmunioatlon network mlrht be  ob- 

tained as  follows:     h'ollow the same procedure  uned in pelting 

the equivalent  network.     If the original network  has n nodes, 

solve n-1 maximal flow problems, since the final diagram is a 

tree with n nodes.    The k      link has the  capacity o.,    Draw 

the tree that  links with capacity a.   between nodes X.   and 

^k+l*    R^P^osent the tree  links by e.   parallel   links with 

unity capacities.     Remove  one  link between nodes X.   and X.+1, 

where e.   is MTlmmi in e.   k«l ,2,»« • ,n-l.    The   final dlarram 

Is the modified equivalent network. 
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PIcure 21 

Assume tv Is the maximum Integer In e. , kal(2l*«*l6. 

The modified equivalent of Fig, 8 can be drawn as In P1R. 21. 

The survlvablllty of Fig. 21 Is 

H » c(i) B(2) G(3) >:('0 r:,(5) P:(6) rM) 
or-i 

where gMt)) » 1 - q ' 

Poi' n-node network 

11 
l^    k-1 

(1 - q k) (32) 

where e. Is the blrr.est integer in e. , k»l,2, ••• ,n-l. 

Equation 32 give« better approximation for computation 

of the probability of survival of the network.  It can easily 

be seen in Appondlx B, the averare maximum error is only 3.2 

percent instead of 8 percent.  Aluo for small p, say r < 0.50, 

the exact and approximated value are alncst the same. 
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V.     CONCLUSION 

If the number of stations In a random communication net- 

work Is extremely large, then the  first method (Eq.  16)  Is 

best of the four methods  for computing the probability of 

survival.    In Eq.  l6t the path of length is not considered 

Important.    It gives a lower bound for the probability of 

survival of the  communication networks. 

When the path of length Is a major factor, the  second meth- 

od  (Eq.  26)  results  In a better computation of survlvablllty. 

The third and fourth methods  (Eqs.   31 and 32,  respectively) 

are approximations of the  survlvablllty of finite networks. 

The third method  is based on the equivalent  network which 

utilises the mln-cut  maxlnura-flow theorem and has been applied 

to the  computation of survlvablllty of six networks.     The  ro- 

sults are  reasonable.   I.e.,   the  average  maximum error between 

the exact method  and this  approxlnution  is  8 percent.     The 

fourth method is  based on the modified equivalent network 

which also utilizes the mln-cut maximum-flow theorem.     Again 

this method Is applied tc  the  same six networks,  however, the 

results are significantly  improved. 

Some suggestions  for further studies are  given below. 

For random networks: 

1. Systems with nonuniform links and distance bias, 

2. Systems with repair and memory. 
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For finite network: Methods three and four are applied 

only to six simple networks. 

1. They may be applied to more complex networks in order to 

compare which method is best approximation. 

The computation of survivability is based on the identical 

probability of survival of links. 

2. They may be extended for unequal probability of survival 

of links. 
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APPENDIX A 

SIMULATION OP THE PROBABILITY OP SURVIVAL OP NETWORKS 

Network-One Network-Two 

Network-Three Network-Pour 

Network-Five Network-Six 
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Figure  A-l.    Simulation of the  Probability of Survival  of 
Network One. 

Solid line  represents the exact  value, cross  and plus sign 
represent  approximated value usin^ Eqs.  31 and  32, 
respectively. 
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Figure A-2. Simulation of the Probability of Survival 
of Network Two. 

Solid lino represents the exact value, cross and plus sign 
represent approximated value usinr, Eq»« 31 and 32, 
respectively. 
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P - Probability of Survival of the Link 

Figure A-3. Simulation of the Prübablllty of Survival 
Of Network Three, 

Solid line representa the exact value, cross and plus slpn 
represent approxlnated value using Eqs. 31 and 32, 
respectively. 
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Figure  A-1.    Simulation of the Probability of Survl 
of Network Four. 

val 

Solid line  represent» the exact  value,  crocs and plus  slr;n 
represent approxlitiatcd value  using liqs.   31 and 32, 
respectively. 
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Figure A-5. Simulation of the Probability of Survival 
of Network Five. 

Solid lino represents the exact value, cross and plus s±rp 
represent approximated value usinp; F.os. j] and 32, 
respectively. 
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P - Probability of Survival of the Link 

Figure A-6.    Simulation of the Probability of Survival 
of Network Six. 

Solid line  represents the exact  value,   cross and plus sign 
represent  approximated value using Eqs,   31 and 32, 
respectively. 
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Figure 3-1 

Simulation of the  average error?, between the exact  method 
and approximations mot hods. 

Solid line  and plus  sign  represent  the errors  of Eos.   32 and 
31,  respectively. 
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APPENDIX B 

TABLES OF  COMPUTATION OF SURVIVABILITY 

Table B - 1 

Network One ] Network Two 

Link 
Prob. Eq.  28 Eq.   31 Eq.   32 Eq.   28 Eq.   31 Eq.   32 

0.05 0.001 0.001 0.001 0.000 0.001 0.000 

0.10 0.007 0.010 0.007 0.004 0.007 0.004 

0.15 0.022 0.030 0.021 0.012 0.021 0.012 

0.20 0.048 0.063 0.047 0.027 0.047 0.026 

0.25 0.086 0.111 0.084 0.051 0.084 0.048 

0.30 0.137 0.171 0.133 0.084 0.133 0.078 

0.35 0.199 0.242 0.193 0.126 0.193 0.117 

o.ko 0.271 0.321 0.262 0.179 0.262 0.164 

0.^5 0.352 0.406 0.339 0.241 0.339 0.219 

0.50 0.437 0.492 0.422 0.312 0.422 0.281 

0.55 0.526 0.578 0.507 0.391 0.507 0.350 

0.60 0.613 0.660 0.593 0.475 0.593 0.423 

0.65 0.698 0.737 0.676 0.563 0.676 0.501 

0.7Q 0.775 0.806 0.754 0.652 0.754 0.580 

0.75 0.844 0.865 0.824 0.738 0.824 0.659 

0.80 0.901 0.914 0.885 0.819 0.885 0.737 

0.85 0.946 0.952 0.934 0.890 0.934 0.812 

0.90 0.977 0.979 0.970 0.948 0.970 0.882 

0.95 0.995 0.995 0.993 0.986 0.993 0.945 

1.00 1.000 1.000 1.000 1.000 1.000 1.000 
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Table B - 2 

Network Three 1 Network Four 
Linie 
Prob. Eq.  28 Eq.  31 Eq.  32 Eq.   28 Eq.   31 Eq.   32 

0.05 0.002 0.003 0.002 0.001 0.002 0.001 
0.10 0.013 0.020 0.014 0.011 0.014 0.010 

0.15 0.039 0.057 0.041 0.032 0.041 0.030 
0.20 0.082 0.116 0.086 0.068 0.086 0.063 
0.25 0.143 0.193 0.146 0.119 0.146 0.111 
0.30 0.219 0.284 0.220 0.183 0.220 0.171 
0.35 0.306 0.382 0.304 0.258 0.304 0.242 
O.iJO doo 0.482 0.393 0.340 0.393 0.321 

0.15 0.^98 0.579 0.485 0.428 0.485 0.406 
0.50 0.594 0.670 0.574 0.516 0.574 0.492 
0.55 0.684 0.751 0.659 0.60? 0.659 0.578 
0.60 0.766 0.820 0.736 0.683 0.736 0.660 

0.65 0.835 0.877 O.SO'l 0.756 0.804 0.737 
0.70 0.892 0.9?i 0.862 0.821 0.862 0.806 

0.75 0.936 0.954 0.908 0.877 0.980 0.865 
0.80 0.967 0.976 0.945 0.922 0.945 0.914 

0.85 0.986 0.990 0.971 0.956 0.971 0.952 
0.90 0.996 0.997 0.988 0.981 0.988 0.979 
0.95 0.999 1.000 0.997 0.995 0.997 0.995 
1.00 1.0OO 1.000 1.000 1.000 1.000 1.000 
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Table B - 3 

Network Five Network Six 

EInk 
Prob. Eq.  28 Eq.   31 Eq.   32 Eq.  28 Eq.   31 Eq.   32 

0.03 0.000 0.000 0.000 0.000 0.000 0.000 

0.10 0.000 0.001 0.001 0.003 0.004 0.003 

0.15 0.002 0.006 0.003 0.011 0.016 0.011 

0.20 0.007 0.017 0.009 0.031 0.042 0.031 

0.25 0.016 0.037 0.021 0.066 0.085 0.064 

0.30 0.031 0.068 o.ono 0.118 0.145 0.112 

0.35 0.051J 0.111 0.067 0.186 0.220 0.175 
0.40 0.087 0.168 0.105 0.269 0.308 0.25? 

0.i»5 0.131 0.237 0.153 0.362 0.404 0.338 

0.50 0.187 0.316 0.211 o.nei 0.502 0.431 

0.55 0.256 0.i*05 0.279 0.559 0.599 0.525 
0.60 0.337 0.^98 0.356 0.650 0.689 0.618 

0.65 0.n28 0.593 0.'»39 0.730 0.769 P.705 

0.70 0.528 0.686 0.527 0.795 0.838 0.784 

0.75 0.633 0.772 0.618 0.8i45 0.894 0.852 

0.80 0.737 0.3'«9 0.708 0.881 0.937 0.907 

0.85 0.835 0.913 0.79^1 0.90B 0.968 0.949 

0.90 0.919 0.961 0.873 0.931 0.987 0.978 

0.95 0.977 0.990 0.9'I3 0.959 0.997 0.995 

1.00 1.000 1.000 1.000 1.000 1.000 1.000 

56 



Table B - 1 

Link Prob. Error Eq.   31 Error Eq.   32 

0.05 0.000 0.000 

0.10 0.003 0.000 

0.15 0.009 0.001 

0.20 0.018 0.002 

0.25 0.029 0.001 

0.30 0.012 0.006 

0.35 0.051 0.010 

0.10 0.065 0.011 

0.15 0.073 0.019 
0.50 0.078 0.021 

0.55 0.080 0.027 
0.60 0.079 0.029 

0.65 0.071 0.028 

0.70 0.067 0.025 

0.75 0.058 0.027 
0.80 0.017 0.030 

0.85 0.031 0.032 

0.90 0.022 0.029 

0.95 0.010 0.019 
1.00 0.000 0.000 
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