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ABSTRACT

The probability of survival of a communication network
is defined as the probability that there exist at least one
path between any palr of stations within the network. 1In
this thesls, four methods for the calculation of the proba-
bility of survival of the network, which 1s under enemy
attack, are presented.

The first two methods deal with random networks whose
links have finite and identical probablility of survival,
while the third and fourth methods are based on the min-cut

max-flow theoremn.
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I. INTRODUCTION

A communication network 1s a set of nodes connected by
links. Every link has a branch capacity which indicates the
maximum amount of flow of messages. A communication network
must have large enough branch capacity such that all messages
can reach their destinatlions under specifled conditions. 1In
general these message requirements vary with time.

A communication network may be considered as a collection
of message centers that attempt to transfer information to one
another over a varlety of connecting channels. However, nel-
ther the centers nor the channels are necessarily survivable
at any given time. For example in military applications a
center might be destroyed by énemy attack, or lose its power
supply. Likewise, a communication channel might be busy, or
it mipght be 1lnoperative because of an ampllifier fallure, a
broken or cut telephone wire, or a jammed radlo link., In spite
of these possibilities, 1t 1is highly desirable that the re-
maining switching centers be able to communicate with each
other,

A reasonable definltion of survivabllity of a communication
network 1s that there be at least one path between any pair of
stations. The survivability of a military communication net-
work 1is related to the exact structure of the network and the
probabllity of survival of its links. IV 1s also related to

the enemy attack and the topology of the network.



If one wants to enhance the probability of survival of
the network, he might increase the probability of survival
of the links, or he might increcase the number of links between
pairs of stations without increasing the total probabilities
~f survival of the links or he might change the topology of
the network or use some combinations of these techniques.

The cholice of techniques depends heavily on the cost of the
network.

Communication links are made up of one or more elements
such as cables, antennas, repeaters, or buildings which house
the communication equipment.

The analysis of the survivability of the communication
networks has been studied by various investigators [5], [6],
[8] and [11]. In the work of E. Moore and C. Shannon [8],
the probability of communication between given pair (x,y) of
nodes in the network is investigated. 1In reference 5, the
idea of the overall survivability of the finite communication
network 1s introduced. Two formulas are given for calculating
the overall probability of survival,

In this papcr; random networks and finite networks whose
links have a finite probability of survival under nuclear
weapon attacks are considered. Four methods are glven to cal-
culate the probabllity of survival of the communication network.
First two methods apply to the random networks; one of them 1s
without the consideration of the length of the path between
any palir of stations. The probability of survival of the

finite networks are calculated by approxlmation methods using



the min-cut theorem. Last method gives accurate results for
finite networks and is computationally feasible for networks

with several thousand stations or nodes.

A. THE MATHEMATICAL MODEL
A communication network has n stations (or nodes) desig-

nated by ViseoosVps which are connected by links., Every

!
station has an average of s number of links and no self loops.
Also, all links are assumed identical with equal probability
of survival.

A communication network might have fixed topological
structure such as a microwave relay system, or might have
time varying structure such as a nonsynchronous satellite com-
munication network.

The stations are assumed to have high probability of
survival. In this model of a communication network, the prob-
abllity of suryival is assumed to be unity.

The probability of survival of a link 1s related to the
distance between a pailr of links and the structure of the
link. Also assumed i1s the separation between links of a net-
work be ensured that one weapon will not destroy more than a
predetermined number of links.

If the enemy wants to destroy a system, he can organize
his attack in one of many ways. He can aim his weapons at
all its series links, or he can aim at any portion of the net-
work. The cholce of his attack depends on probable location
of the links, the degree of importance of the links, and

energy level of his weapons, etc.



The following condition is assumed for ecnemy attack.

The nuclear weapon is aimed at random into a region of area
A. The probability that any given nuclear weapon is aimed at
a region of arca A is A/ A (A<A).

A nuclear weapon has many effects. 1n this thesxis, the
destructive effect is mentioned, which is due mainly to blast
or shock damages to structures either through the crushing
action of the peak overpressurec, or throupgh the lateral dis-
placement, tumbling or tearing apart caused by the dynamic
pressures. Also, the damare caused by a nuclear weapon is
classified by degree as follows: [2]

Type A: Completely destroyed.

Type B: Damage severely and beyond repair.
Type C: Damage that vequires.maJor repalirs.
Type D: Light damage.

The schematic 1llustratlion of distribution of the types of
damages 1s shown in ¥Wig. 1.

The averapge radius of damage 1s assumed to be R. Inside
Rl, every link is completely destroyed and there is no damage
outslide the radius R2 when nuclear explosion occurs at point
(0,0). Thus, some links will not be destroyed and some links
only partially destroyed, when the links are located between

the radii R, and R,. In this paper, it wlll be agssumed that

1 2
the probability of damage of links located between radii R]

and R2 follows the Gaussian distribution.



Figure 1

The diagram of distribution of the types of danuies.



II. SURVIVABILITY OF A LINK UNDER NUCLEAR WEAPON ATTACK

When a nuclear weapon falls near a target at a distance
less than the damage radius Rl from a 1link, the 1link 1s al-
ways totally destroyed. However the network may étill main-
tain communications.

If the distance between a pair of links 1s 2r miles and
r 1s less than the damage radius Rl for the nuclear weapon
used by the enemy, the links may have high probability of dam-
age or low probability of survival. The distance 2r must be
at least twice the damage radius R2 of the nuclear weapon in
order to get a high probability of survival. This radius R2
is a function of the yield of the nuclear weapon, If someone
wants to design a communication network, he must estimate the
size of the largest weapon of the enemy. For instance, 1if
the explosion occurs above the surface of the ground or water,
a 1 MT. nuclear weapon has a damage radius of about 10.5
miles and 20 MT. nuclear weapon has a 27 mile damage radius
[(2].

With the aid of a computer, the integration of the prob-
ability function over a known damage radius of the various MT.
wéapon is shown in Fig. 2. If a link 1s sufficiently distant
from a given MT'. explosion and the distance r lies well to
the right of the applicable MT. curve in Flg. 2, the survival
of that 1link is almost certain. If, on the other hand, the
distance r lies to the left of the applicable curve, the de-

struction of the 1link is almost certain.
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The probability of survival given by Filg. 2 is the prob-
ability that one nuclear weapon falls specified distance away
from the link. If more than one nuclear weapon is aimed at
different points of the communication network, the probability
of survival of the link is the product of the probability of

survival assoclated with each nuclear weapon. That is

o

2

%
=

(i

wZ

P(r) - Probability of Survival of the Link.

R et ]
i

e

r - Distance from Zero Point - in Miles

Flgure 2
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BIN) = py(x)) pplxy) «en By(xy) (1)

where P(N) 1s the total probabillity of survival of the link
under N nuclear weapon attacks. X} is the distance from the
zero point of the kth nuclear weapon. pk(xk) is the prob-
ability of survival as given in Fig. 2 for distance Xy at
various eﬁergy levels of the weapon.

If the 1link 1s sufficiently far from the zero points of
each weapon such that Xy lies well to the right of the associ-
ated curve for a glven weapon, pk(xk) is very close to unity
and considerably greater than 0.99. If, for example, the
number of nuclear weapons were 10, P(10) would still be 0.9.
Thus, the value of P(10) is still near 1.0. Therefore, if
the distance between zero points of each weapon and the 1link
is far enough, the number of the nuclear weapons does not in-
fluence the probability of survival of the 1link,

EXAMPLE 1: Let three 5-MT. nuclear weapons be aimed at
some area. The distance from the zero points to the link are
12, 15 and 18 miles respectively. What is the probability of
survival of the 1link?

According to equation (1)

3
P(3) = ’ ’pk(xk)
k=1
P(3) = py(x%)) py(x5) p3(x3)
where x1 = 12 miles
Xy = 15 miles
x3 = 18 miles

12



From Fig. 2 for a 5 MT. nuclear weapon
pl(lz) = 0.09
p,(15) = 0.895
p3(18) = 0.999

So, the probability of survival of a link is 0.08.

In practice, it 1s too difficult to estimate or measure
the distance between links and the zero points of each weapon
for which the probability of survival of a link is computed.
However, a communlcation network should always have more
than one link and also the nuclear weapon can destroy more
than one 1link.

Assuming 2r to be the average distance between each pailr
of links, we may now compute the average probabllity of sur-
vival of a 1link which is integrating over the area of radius

r. Then,

I8
p(r) = g £(x) dx (2)

where f(x) 1s the Gaussian distribution function of surviv-
ability with mean and variance, and 2r is the average distance
between links in miles.

When the communicatlon network 1is subjected to random
bombardment, the probabllity of survival of a link is a func-
tion of the average distance between links, but it 1is indepen-
dgnt of its-location. However, for one nuclear weapon, the
probabilitv of survival of a link is related to the ratio of
the damage area of the nuclear weapon to the area which is

subjected to random bombardment.
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Various energy level nuclear weapons have different
damage areas and different means and varlances. Every various
edergy level nuclear weapon has a different damage distribu-
tion of probability.

The nuclear weapon 1s targeted at random into a region of
area A square miles. The probability of a 1link being inside
the damage area of the nuclear weapon is the ratio of the
damage area of the nuclear weapon to an area which is sub-
Jected to random bombardment. Thus,

% (D<A)

where D 1s the damage area and equal to ﬂﬂg, R2 is the dumare
radius of the nuclear weapon.
The probabllity of damage of any given 1link which is in-

slde this area 1is
Q = R 1-o(r)]

where l-p(r) is the prodbability of damage of a link which is
2r miles from other link or r mlles from the zero point,
The probability of survival of any glven link inslde the

area of A square miles is
P = 1 -Q (3)

Equation (3) is valid for one nuclear weapon. If N nuclear
weapons fall at random 1in an area of A square miles, the fol=-

lowing 1s valid:

P(N) = {1-(1-=p(r) IgN (4)

14



EXAMPLE 2: Let 30 miles be the average distance between
links. Three 5 MT. nuclear weapons are randomly aimed at an
area of 1000 square miles. What is the probability of sur-
vival of any given link in this area?

The probability of survival of a link which is 15 miles
from the zero point is

p(15) = 0.90

The damage radius of the 5 NMT. nuclear weapon 1is 17 miles,
Therefore, the damage area, D, is 907.5 square miles.

The probability of a link belng in damage area, D, is

% = 0.9075

For one nuclear weapon, the probabllity of survival of

any given link in area of A square mlles 1is
P(1) = 0.989

For three nuclear weapons;

P(3) = 0.967

If the average distance between links 1s large enough,
the number of nuclear weapons does not appreclable affect the
probability of survival of the links.

If the average distance between a pair of links is 24
miles vice 30 miles, the probability of survival of any given
link 1s changed drastically. Thus, from Fig. 2

p(12) = 0.10
The probability of any glven link inside the damamge arca

is unchanged and again equal to 0.9075.

15



For one nuclear weapon, the probability of survival of a
link in same area of 1000 square miles is
P(1) = 0.183
For three nuclear weapons
P(3) = 0.0043
From the above examples, the average distance between
1inks is the most critical factor, since it was shown that a
change of only 6 miles or 20 percent resulted in a significant
difference in the probability of survival varied from 98.9

percent to 0.43 percent.
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III. RANDOM NETWORK

Let a communication network be an aggregate of stations
and each statlon is capable of issulng some number s of links.
Each link terminates at some station of the aggregate, and the
probability that a 1link from one station terminates at another
station is the same for every palr of stations. The resulting
configuration is called "random communicaticn network" [6].

A. THE SURVIVABILITY OF THE COMMUNICATION NETWORK WITHOUT

CONSIDERING THE LENGTH OF THE PATH

In the last chapter, the probability of survival of any
given link inside some area of A square miles 1is consldered
under various condltions basced on the size of the enemy weapons
and the distance between pairé of 1links.

The average number of links, s, alone cannot give precilse
information about the communication network survivability. In
addition, the relationshlp between the avefage number of links
énd the probability of survival of the communication network
is needed to determine the survivability of the network.

Markoff chains can be used to find the probability of sur-
vival of the random communlication network. Suppose that an urn
contains n balls with w white balls and n-w black balls and a
player has s tickets. He plays one ticket for the right to
draw a ball at random from the urn. If the ball drawn is
white, he recelves d additional tickets and 1f it is black he
receives nothing. The ball drawn is always replaced by a

black ball. Drawings continue until s=0. In this case, black

17



balls represent stations not reached previously, and tickets
represent the number of links emanating from previously
recached statlions, which have not yet been traced.

Let H be the probability of survival of the communication

network which is a function of the number of links.
H = f(s) (5)

The average number of links after the enemy attack can be
calculated as follows: Let d be the average number of links,
after the enemy attack, d 1s equal to the average number of
1links before the enemy attack times the probability of sur-
vival of any glven link inside some area of° A square miles.

Thus
d = s P(N) (6)

where P(N) is the probability of survival of any given link
inside some area of A square mliles and s is the average number
of links before the enemy attacxk.

The urn problem c¢an also be applied to our random communica-
tion networg. The existence of a path in a random communica-
tion network from a statlion vy to a station VJ implies the
possibility of tracing links from \ through any number of
intermediate stations to VJ‘

vJ is m links removed from Vis if m is the smallest number
of links contained in any of the paths from ] to vJ. Station
vy itself 1s zero link removed from Vye All the other stations

upon which the links of 7 terminate are one 1link removed, "The

stations upon which the links from these latter statlons

18



terminate, and which are not one or zero links removed, are
two links removed, etc., according to Ref. 6.
Let C(m) be the probability that a given station is con-

th

tacted at the m” stage. The probability that a station is

contacted for the first time at the m'}

c(m)I I[ 1 -0(1) ] (7

me=1l
{1 -B(m) 1} IB(1) (7.a)
1=0

stage 1s

where B(0) 1s the probability of not selecting a given station
at stage zero.

The average number of links emanating from a station that
has survived is d. Since each station sends on the average
d 1links, and there are n stations in the cormunication net-
work, the expected number of links to be traced on the (m+1)t‘h

tracing will be

X=dn[ 1 -B(m ]} |B(1) (8)
i=0
The probabllity that any given station in the aggregate
is not contacted by any of these 1links on the (m+1)th tracing
will then be

B(mt¢l) = (1 = 1/n )% (9)

which, for large n, may be written as

19



m=1

B(m+l) = Exp{-d [ 1 - B(m) ].]-T-B(i)} (10)
1=0
m-1 m
= Exp{-d [-'_I-B(i) -TTB(.'L) 1}
i=0 1=0

Taking the product of both sides of Eq. 10 with respect

to m, ylelds

m+l m J-1 J
B(J) =-I—I-Exp{-d i l | B(1) -ﬂ-am (1)
=1 =1 1=0 1=0

When m goes to infinity, the left hand side of Eq. 11

becomes

m+l

£im L
i g | | B(J) =1 -H (12)

J=1

The right hand side of Eq. 11 becomes

J-1 J
m
Exp{-d ng[ ‘ | B(1) - l | B(1) 1} (13)

1=0 i=0

Inside the braces 1is

-d[B(0) - B(0) B(1l) + B(0) B(1l) = <<+ + B(0) B(1) °*++ B(m=1)

- B(0) B(1) +++ B(m)] = -d[B(0) - B(0) B(1) -+ B(m)]

Equation 13 becomes

m

Exp{-d [ B(0) -ﬂm) 1 (13.a)
i=0

20



But B(0)=1-1/n%=1 as n goes to infinity and Eq. 13.a becomes
m
Exp{-d [ 1 --I-I-B(i) 1} (14)
i=0
Taking the limit of Eq. 14, as m approaches infinity

Exp{~d [ 1- (1 = H)}] = Exp (-d H) (15)

Equation 12 equals Eq. 15 under these conditions, Thus,
1l -H = Exp (-d H) or

H=1-Exp (-d H) (16)
Substituting Eq. 6 into Eq. 16 ylelds
H=1~Exp [ -s P(N) H ] (17)

Equation 17 is an equation for the probabllity of survival
of the communicatlion network after the enemy attack in terms
of the network parameters,

We note that for H=0, every d is the solution of the Eq.
16, If H#0 then Eq. 16 can be solved explicitly for a given
value of d, which is given by

=1n(1-H)
d = -————H‘—*—- D (18)

The right-hand side of Eq. 18 is analytic in every neigh-
borhood of the origin and tends toward unity as H goes to

zero. Expanding that function in power series of H, we have

2
d = 1+%+%+.” (19)

Negative values of H, being physically meaningless, must

be discarded. Thus in the region 0 £ 4 £ 1, we have H=0.

21



i

a1
i
|
!
L)
ﬂ_

e g —

e S w —

g ——

,..rf"#‘ =

H = Probabllity of Network

|
|
.J 1

e

d - Number of Links after Attack

Figure 3

The average number of links d is always an integer. So the
value of d equals uero which Is physically meaningless.

An examination of the meaningful part of Fig. 3 shows
that as long as the number of links does not exceed one link
per station H=0, i.e., for a very large n, the number of sta-
tions to which there exlst paths from an arbitrary station is
negligible comparsd to the total number of stations in the
communication network. On the other hand, as the average num-
ber of links increases from unity, H increases rather rapidly.
For d=2, H reaches about 0.80 of its asymptotic value and {is
within a fraction of one percent of unity for a quite moderate
value of d (say 6).

This means that no matter how large the communication net-

work ls, it 1s nearly certain that there will exist a path
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between two stations picked at random, provided only the
average number of links 18 a few times greater than unity.

EXAMPLE 3: Let 24 miles be the average distance between
links. Three 5 MT. nuclear weapons arc¢ randomly aimed at an
area of 3000 squarec miles., What 18 the average number of
links per station before the enemy attack in order to keep 80
percent survivability of the communication network?

Then, from Fig. 2, for r=12 miles and 5§ MT. nuclear weapon
p(l2) = 0.09
The probability of a 1link being in the damage area, D, 1is

% = 0.3025

The probability of survival of any given link Inside area
is :
P(1) = 0.73
Then, the probability of survival, for three 5 MT. nuclear

weapons is
P(3) = 0.39
Then, the average number of links 1s

=1n(1-H)
3

= 5,16
8 must be an integer. It 1s chosen 6.
If the average distance between 1inks 1s Increased to 30

miles, the probability of survival of any glven link 1increases.

23



So,
P(3) = 0.913

and the average number of links, s, is 2.5 and chosen 3.

B. THE EFFECT OF THE LENGTH OF THE PATH

Most communication networks have some processing time
assoclated with the links and stations. This processing time
may be the time necessary to transmit information through the
link or the time needed at station to decode, recode and re-
transmit the information. In any event, it is usually desir-
able to 1imit the time a message remains in the communication
network routes. Thus, instead of asklng for surviving fraction
of stations that can be reached from a given station by a path
of no more than m links.

In our urn problem, the drawing of balls are equivalent to
sampling a populatlion of n points with replacement; consequently,
the same ball may be selected more than once. A more reason-
able method of selection is to establish 1links sequentially.

The first station is selected equiprobably out of n possible
stations, the second station is selected equiprobably out of

the n-1 remaining stations; ... 3 the sth station 1s selected
equiprobably out of the n-s remaining stations (nonz of which
has been alrecady selected).

Assume that the links at station vy are determined by
sampling station vi, Vos eees Vy_ 9 Vygys covs Vg without re-
placement a total of d times.

In fact, Egq. 16 1s valid for infinite stations. It does

not make any difference for large ratios of populaticn-to-sample
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size, sampling with and without replacement. If the number
of stations is finite, Eq. 16 is not valid. Actually, Eq. 16
is a lower bound for H., This is because a communication net-
work with no parallel links in the same direction has higher
probability of being connected [4].

The probability of survival of the communication network
can be investigated without replacement for finite stations
as follows: Choose an arbitrary station 2 and let So'vi'
Let S1 be the set of stations connccted to vy by links direc-
ted from Vis ooy and let S1 be the set of stations connected
to set of stations Si-l by 1links directed from Si-l’ T
So on.

First, all links emanating from So are traced, 1.c., the

number of stations in S1 are found, ..., at the ith

stapge, all
links emanating from Sl-l which have not already been traced,
etc.

We shall rewrite Eq. 7 in terms of another probability E(m),

which will be defined as the probability of being contacted

for the first time on the mth tracing. Thus,
. m=1
E(m) = [ 1 -B(m) ]WB(i) (7.b)
1=0
mel m
- ﬂa(i) -nu(n
i=0 1=0

Taking the sum of both sides of Eq. 7.b with respect to

m, ylelds

25



-1 ]
m m
} E()) = 3§ [ﬂa<1> -ﬂs(i) ]
J=0 J=0

1=0

m

i=0
= s I I B(1) (20)
1=0
For (mi-l)t"h stage
m+l
m+l
} E(j) =1 - | I B(1) (21)
J=0
i=0
m
Solving Eq. 20 for | l B(1)
i=0
m
n
| lB(i) el - J B(J) (20.a)
J=0
i=0

Rewrite Eq. 7.b for (m+1)th stage

m .
E(mtl) = [ 1 - B(m+l) ]| |B(1) (7.c)
| 1=0
Substituting Eq. 20.a into 7.c
m
E(mtl) = [ 1 - B(m#l) [ 1 - JZOE(J) 1 (22)

The probability that any glven station in the aggregate
is not contacted by any of these links on the (m+1)th tracing

will be, for large n
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m=-1
B(m+l) = Exp{-d [ 1 - B(m) ]-]-]-B(i)} (10)
i=0
Since the term of inside the braces of Eq. 10 is equal to
[-d E(m)], Eq. 10 becomes

B(m+l) = Exp [ -d E(m) ] (23)

Substituting Eq. 23 into 22 in order to get E(m+l) in terms
of E(m). Thus,
m

E(m¢l) = [ 1 - JE() I {1-Exp[ -dE(m) 1)} (24)

J=0
with E(0) = 1/n

E(m) represents the probabllity that any station 1s exactly
m links removed from a statlion chosen at random. E(m) is ap-
proximately equal to the expected fraction of stations that are
connected by at least one path of m links and with fewer than
m links to the station picked at random.

When E(m) is known, the probabllity of survival of the
communication network can be figured out. If the only avail-
able path between a pair of stations i1s too long, it may be
considered that the enemy has effectively separated the two
stations. The probabllity of survival of the communication
network H does not take this factor into account. So,

®
H = J E(m) (25)
m=0

In fact, if we take the sum of Eq. 2! while m goes
infinity, we have '

H = 1 - Exp (-d H)

which is the expected result and the same as Eq. 16.
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As far as the information transit time is concerned, the
determination of probability of survival of the communication
network is closely related to the path of length when any
given station 1s connected by a path of length m or less to a
Station chosen at random. Thus,

m
H(m) = J E(k) m=1,2,... (26)
k=0
with E(0)=1/n, n is the number of stations.

EXAMPLE 4§: A communication network has 100 stations with
an average of 20 links per station. Let 27 miles be the average
distance between pairs of links. The enemy attacks at some
area of 3000 square miles with three 5 MI'. nuclear weapons.

It is desired to find the probability of survival of the com-
munication network which can be reached, after the enemy attack,
from a station chosen at random to any given station by a path
of no more than 2 links.

From Flg. 2, for r=13.5 miles

p(l3'5) = 0050
The probability of a 1link being in the damage area, D, is

% = 0.3025

The probability of survival of a given link inside the
area is, for one 5 MI'. nuclear weapon
P(1) = 0.8%
For three 5 MI'. nuclear weapons

P(3) = 0.62



Then, from Eq. 16
H = 1 -Exp (=20 0.62 H) =1 - Exp (-12.4 H)

The probability of survival of the communication network
H is very close to unity. However, when E(m) 1s calculated

from Eq. 24

E(0) = 17100 = 0.01
E(1) = (1 -0.01) [ 1 -Exp (-12.4 0.01) ] = 0.115
E(2) = (1 - 0.125)[ 1 - Exp (-12.4 0.,115)] = 0.665

Therefore, although nearly 100 percent of the stations can be
reached from a station chosen at random, H(3) = 0,01 + 0.115
+ 0.665 = 0.79 and only 79 percent of the stations can be

reached with paths of two or less links.



IV. FINITE NETWORK

A. COMPUTATION OF SURVIVABILITY BY EXACT METHOD

A communication network has n stations and m links. Each
1link has a finite probabillity of survival; they are denoted
by Pys Pps +oes P under the states Yis Yos s Yo reépec-
tively. It is assumed that each 1link is assoclated with a
stétistically independent random variable with only two pos-
sible states, namely, the state in which the link is in opera-
tion and the state in which it is not in operation.

If the link by exists in the network with the probability
of survival Pys this means that yi-l. Let the state Yk of the
entire network be described by a state vector (yl, Vos e
ym) vwhere yial or 0 according to whether the 1link b1 is in an
operating state or not. The totality of all the 2" state
vectors forms the sample space, and each state vector corres-
ponds to a vertex of o unit m-dimensional cube. Since the
links bl’ b2, il bm are consldered statlistically independent,
the probability of survival that the state Yk exists [5].

m
P, = .l_l-piyi( 1 -p, )1V (27)
1=0
where Py is the probability of survival of the 1link b1 under
state Yy3 and Pk is the probabllity of the state k.
In this communication network, all links a;e assumed lden-

tical with equal probability of survival. Then Eq. 27 can be
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written as follows:
m
AR -[—[’pyi (1 - p)l-yi (27.a)
i=0

A path between two stations, say, between the station vy
and vJ, is a subset of the 1links of the communication network
graph of the form (7172, VEV3 &~ il ?I:IVJ). A "loop" in a
graph 1s a path with one additilonal link Joining the two sta-
tions of the path. A "tree" is an n-station communication net-
work graph is a set of n-l1 links that contains a path between
every pair of station in the graph. It can easily be shown
that any set of n-l links that contains no loop 1is a tree.

In order to maintain communication among all stations in a
network, at least one path between any two stations of the net-
work 1s needed. It is well known that a finite graph is a tree
if and only if there exists exactly one path between two sta-
tions. Therefore, the communication is assured if and only if
there exists at least a tree in the network.

The probability of survival of a communication network is
defined as the probability of the communication between every
pair of its stations. So, it i1s the alpebralc sum of the
probabilities of all the possible states which contains at
least a tree of the network. Therefore, [5])

am

K & 3 t

e & (28)
k=1 K

Py

where Pk is the probability of the state k, tk is 1l or 0 1if
the state k contains a tree or no tree in the network as its

subnetwork respectively.
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communication network which is shown in Fig. 4?

EXAMPLE 5:

From Egs. 27
P1P2239,95P¢
P19,P3qP5%
P13,93P 3506
q,P2939P5Pg
P1P2439,P5Pg
P1Q,43PP5Pg
q;PoP3Py 5P

p1Q2p3pup5p6

What 1s the probability of survival of the

and 28

+

+

-+

+

+

+

P1P2a39,P5%
P19,P39,35P¢
q3P,P3P 56
,P,P34,5Pg
P1P,A3Py5Pg
P;45P 3y P5Pg
P1P,P3P 5P

plp2Q3pqp5p6

+

+

P1P,93P ;56
P13,93P,5Pg
Q) P,P39P5dg
P1P,P39y95Pg
P1PpA3P,P5dg
q,P,P3PyP5qg

plp2p3pu95q6

+

P1d,P3P,d50+
plq2Q3QQp5p6+
a,P,Q3P,d5P6+
P1P,P39,P5a6*
p1q2P3puq5p6+
q,P,P4a,P5Pg*

p1P293Q“p596+

qlp2p3pup5p6 + plp2p3pup5p6

where Py is the probability of link bi’ and qi=1-pi, i=1,
.." 6.

If Py = +o0 = Pgs above equation becomes

H=13p> q3 + 13 p

4

q

2

Figure U

32
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B. COMPUTATION OF SURVIVABILITY BY APPROXIMATION METHOD

In the exact method of calculation of the probability of
the communication network, first, all the trees in the net-
work must be found. Secondly, Pk that is the probability of
the state k has to be computed for all possible states. So,
if the network has a large number of stations and links,
computation takes a long time.

In this section, a finite network whose links have the
same finite probability of survival 1s considered. A general
method 1s given to compute the approximate probabllity of
survival of the communication network. An equivalent network
of the communication network can be used to compute the ap-
proximate probabllity of survival. If each link is assigned
a unit capacity, the maximum flow between any palr of stations
is equal to the corresponding mim-cutset, which must be re-
moved in order to separate these stations.

1. Equivalent Network

The network flow problem was first considered by Ford
and Fulkerson [%O] who introduced the basic concepts of flow,
cut, etc., and provided the main tool, the maximum-flow
minimum-cut theorem. Ford and Fulkerson discussed the flow
between two special points, the source and the sink. Gomory
and Hu [9] studied the problem of multi-terminal flow and sug-
gested the use of the equivalent network which has the same
flow of the original network.

The construction of Gomory and Hu is described as

follows: Select two nodes arbitrarily and solve a maximal
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flow problem between them. This locates a minimal cut (X,X),
which we represent symbolically by two nodes connected by a

link of capacity e, as in Fig. 5.

®©

®

€1
Figure 5

In one node, the individual nodes of X are listed; in the
other, those ofnf. Next, choose two nodes in X, and solve

the resulting maximal flow problem in the X-condensed net-
work, i.e., all the nodes of X can be shown as a single node.
The resulting minimal cut has capacity e, and 1s represented
by a link of thils capacity connecting the two parts into which
X 1s divided by the cut, say Xl and X2. The node X 1s con-
nected to Xl if it is in the same part of the cut as Xl; to

X, otherwise, as in Flg. 6.

€2 = €
Figure 6

This process discussed above is continued, and at
each stage of the construction some set Y, consisting of more
than one node, is chosen from the tree diagram at that stage.
The set Y willl have a certain number of links connected to
it in this tree. All of the sets that can be reached from Y

by paths using one of these links are condensed into a single
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node for the next maximal flow problem. This is done for
each link connected to Y in the tree. 1In the resulting net-
work a maximal flow problem i1s solved between two nodes of Y.
The set Y 1s partitioned into Yl and Y2 by the minimal cut
thus found; this 1s represented in the new tree by a link
having capacity equal to the cut capacity joining Yl and YZ;
the other nodes of the old tree are connected to Yl if they
are in the Yl part of the cut; to Y2 otherwise.

To -11llustrate the general step of the construction,
suppose that we have arrived at the tree diagram of Fig. 7,
with Y to be split. Removal of the links connected to Y leaves
the connected components Y; Xl; X2, X3; Xu, xs, X6. Then in

the original network the nodes X1 are condensed, as are those

X, X3 » and xqus\JXG !

A\
s \Yﬂ g ®

€3
——0®
€5

&

Figure 7

Solving a maximal flow problem between two nodes of
Y in the condensed network might then iead to the new tree,

as shown in Fig. 8.
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Figure 8

The process is repeated until all the sets consist of one
node each. If the original network has n nodes, this point
i1s reached after n-1 maximal flow problems have been solved,
since the final diagram is a tree on n nodes, cach 1ink of
which has been created by solving a flow problem. The nunber

h

attached to the kt 1ink of the final treec is the capacity

ek
of this 1link.
EXAMPLE 6:

Flgure 9

To begin the analysis for the network of Fig. 9, arbi-
trarily select node 1 and 6 for the first flow problem. Thils
ylelds the cutset ( (1,3}, (2,4,5,6)} ) represented by the

tree of Fig. 10,
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1,3 3 2450)

Figure 10

Taking 1 and 3 for the next flow problem and con-
densing 2,4,5,6 gives the network of Fig. 11, with the sub-

sequent cutset

Figure 11

( {1} , (3,4,5,6,2} ). Hence the tree of Fig. 10 becomes

O——O——@®

Figure 12

| (U8

Next choose 2 and 4 the condensed network is shown 1p

Fig. 13 with the cutset ( {4} , {1,2,3,5,6} )

Figure 13
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Hence the tree of Fig. 12 becomes

O——0Q)—1—55)—2
Flgure 14

Selccting 2 and 5 for the next flow problem and con=-

densing yields Fig. 15 with the cutset ( {5} , (1,2,3,4,6} )

Figure 15

Thus the tree diagram at this stage is as shown in Fig. 16

Figure 16

Finally choose 2 and 6 to pget the condensed network

of Fig. 17 with the cutset ( {1,2,3,4,5} , {6})
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Figure 17

Consequently the final cut-tree is as shown in Fig, 18

O——O——O——@

Figure 18

2. Computation of Anmvroxzimated Value of Survivability

Let an equivalent network be a tree with n nodes and
n-l links. FEach link has a capacity denoted by €y where
i=1,2,...,n=-1., The tree links with capacity e, can be repre-
sented by ey parallel links with unit capacity. As discussed
in the previous section, ey is always an integer. So, the
network of Fig. 8 can be redrawn as in Fig. 19, in which the
total number of 1links between Y2 and X1 is €gs +ovs Xu and
X6 is equal to ey

The probabllity of survival between two nodes, say,

and Y

X can be calculated, There are e6 links which have

1 2
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Figure 19

the same probability of survivgl. Then,
g(6) = 1 - (1-p) (1-p) ... (1-p)
¢ i sal (29)
where g(i) 1s the probability of survival between two nodes

with link capacity ey .

In general,
g(1) = 1-gq? (29.a)

where q=l-p.
The network of Fig. 19 could be redrawn as in Fig. 20

so that each link has probability g(i), where 1=1,2,...,n=1.
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Figpure 20

The probability of survival of the network of Fig.

20 can easily be computed as follows:
H = g(1) g(2) g(3) g(¥) g(5) e(6) a(7)
For n-node network
H = g(1) g(2) «o. g(1) ... g(n=1)

n=1

= I | 5(J) (30)

J=1
Substituting Eq. 29.a into 30, we have

e
H=||(1-qJ) (31)
J=l
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The exact and approximation probability of six dif-
ferent finite networks are computed for different probability
of survival of the links using Eqs. 28 and 31, respectively.
They are shown in Appendix A. The tables for these computa-
tions are shown in Appendix B.

All of the six figures have some similar character-
istics. The approximated value is always greater than the
exact value for any value of p. Equation 31 is a reasonable
approximation for computing the probability of survival of the
network, because the approximation is about equal to the exact
value when p € 0.20 and p > 0.80. The average maximum error
is only 3.2 percent when p 1s in this region. The average
maximum error for these networks occurs at p = 0,55, and 1t 1s
equal to 8 percent, as shown in Appendix B,

Using modifled equivalent network, the probability of
survival of the network can be calculated as before. The
modifled equivalent of the communication network mipght be ob-
tained as follows: Follow the same procedure used in petting
the equivalent network. If the original network ‘has n nodes,
solve n-1 maximal flow problens, since the final cdlagram 1s a

tree with n nodes. The k!

link has the capacity e Draw
the tree that links with capacity Cp between nodes xk and

X Represent the tree links by e, parallel links with

k+l’
unity capacities. FRemove cne 1link between nodes xi and x1+1’
where ey is maximunm in ey k=1,2,¢¢+,n=1, The final diapram

is the modified equivalent network.
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Figure 21

Assume eg is the maximum integer in s k=1,2,000,6.
The modified equivalent of ¥ . 8 can be drawn as in Fig. 21.
The survivabllity of Fig. 21 1is

H = g(1) g(2) g(3) s(4) g*'(5) s(6) s(7)

c.-1
where £'(5) =1 - q °

For ne-node network
Sl n=1
1-q * °k
o= 22— (1-q") (32)
l=q 1
k=1

where ey is the blggest integer in s k=1l,2,00¢,n=1,

Equation 32 gives better approximation for computation
of the probability of survival of the network. It can easily
be seen in Appendlx B, the averape maximum error is only 3.2

percent instead of 8 percent. Also for small p, say p £ 0.50,

the exuct and approximated value are almest the same,
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V. CONCLUSION

If the number of stations in a random communication net-
work 1s extremely large, then the first method (Eq. 16) is
best of the four methods for computing the probability of
survival. In Eq. 16, the path of length is not considered
important. It gives a lower bound for the probability of
survival of the communication networks.

When the path of length is a major factor, the second meth-
od (Eq. 26) results in a better computation of survivability.

The third and fourth methods (Eqs. 31 and 32, respectively)
are approximatlons of the survivability of finite networks.
The third method 1s based on the equivalent network which
utilizes the min-cut maxinmum-flow theorem and has been applled
to the computation of survivabllity of six networks. The ra-
sults are reasonable, l.e., the average maximum error between
the exact method and this approximation is 8 percent. The
fourth method is based on the modifled equlvalent network
which also utillzes the mine-cut maximum-f{iow theorem. Agaln
this method 1s appllied tc the same six networks, however, the
results are significantly improved.

Some suggestions for further studies are glven below.

For random networks:

1. Systems with nonuniform links and distance bilas,

2. Systems with repair and memory.
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For finite network: Methods three and four are applied
only to six simple networks.
1. They may be applied to more complex networks in order to
compare which method 1s best approximation.
The computation of survivability 1s based on the identical
probability of survival of links.
2. They may be extended for unequal probabllity of survival
of links.
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APPENDIX A
SIMULATION OF THE PROBABILITY OF SURVIVAL OF NETWORKS

O

Network-One Network-Two
Network-Three Network-~Four
Network=-Five Network-Six
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H - Survivabllity of Network
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? - Probability of Survival of the Link

Figure A-1. Sinmulation of the Probability of Survival of
Network One.

Solid line represents the exact value, cross and plus sign
represent approximated value using Eqs. 31 and 32,
respectively.
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-

H - Survivability of the Network

HM i)

P -~ Probability of Survival of the Link

Figure A-2. Simulation of the Probability of Survival
of Network Two.

Solid line represents the exact value, cross and plus sign
represent approximated value uslng Eqs. 31 and 820
respectively.
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Figure A-3. Simulation of the Probabllity of Survival
of Network Three.

Solid line represents the exact value, cross and plus sign
represent approximated value uslng Eqs. 31 and 32,
respectively.
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Figure A-4, Simulation of the Probability of Survival
of Network Four,

Solid line represents the exact value, cross and plus sign
represent approximated value using Eqs. 31 and 32,
respectively.
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Flgure A-5. Silmulation cf the Probability of Survival
of Network Flve.

So0lid 1line represents the exact value, cross and plus sipgn
represent approximated value using Fos, 31 and 32,
respectively.
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Flgure A-6. Simulation of the Probability of Survival
of Network Six.

Solid line represents the exact value, cross and plus slgn
represent approximated value using kgs. 31 and 32,
respectively.
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31, respectively.
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APPENDIX B

TABLES OF COMPUTATION OF SURVIVABILITY

Table B - 1

Network One

Network Two

DINK  Eq. 28 Eq. 31 Eq. 32 Eq. 28 Eq. 31 Eq. 32
0.05 0.001 0.001 0.001 0.000 0.001 0.000
0.10 0.007 0.010 0.007 0.004 0.007 0.004
0.15 0.022 0.030 0.021 0.012 0.021 0.012
0.20 0.048 0.063 0.047 0.027 0.047 0.026
0.25 0.086 0.111 0.084 0.051 0.084 0.048
0.30 0.137 0.171 0.133 0.084 0.133 0.078
0.35 0.199 0.242 0.193 0.126 0.193 0.117
0.4%0 0.271 0.321 0.262 0.179 0.262 0.164
0.45 0.352 0.406 0.339 0.241 0.339 0.219
0.50 0.437 0.492 0.422 0.312 0.422 0.281
0.55 0.526 0.578 0.507 0.391 0.507 0.350
0.60 0.613 0.660 0.593 0.475 0.593 0.423
0.65 0.698 0.737 0.676 0.563 0.676 0.501
0.70 0.775 0.806 0.754 0.652 0.754 0.580
0.75 0.844 0.865 0.824 0.738 0.824 0.659
0.80 0.901 0.914 0.885 0.819 0.885 0.737
0.85 0.946 0.952 0.934 0.890 0.934 0.812
0.90 0.977 0.979 0.970 0.948 0.970 0.882
0.95 0.995 0.995 0.993 0.986 0.993 0.945
1.00 1.000 1.000 1.000 1.000 1.000 1.000

54



Table B = 2

Network Three Network Four

yrgb. Eq. 28 Eq. 31 Eq. 32 Eq. 28 Eq. 31 Eq. 32

0.05 0.002 0.003 0.002 0.001 0.002 0.001
0.10 0.013 0.020 0.014 0.011 0.014 0.010
0.15 0.039 0.057 0.041 0.032 0.041 0.030
0.20 0.082 0.116 0.086 0.068 0.086 0.063
0.25 0.143 0.193 0.146 0.119 0.146 0.111
0.30 0.219 0.284 0.220 0.183 0.220 0.171
0.35 0.306 0.382 0.304 0.258 0.304 0.242
0.40 0. 400 0.482 0.393 0.340 0.393 0.321
0.45 0.498 0.579 0.485 0.428 0.485 0.406
0.50 0.594 0.670 0.574 0.516 0.574 0.492
0.55 0.684 0.751 0.659 0.602 0.659 0.578
0.60 0.766 0.820 0.736 0.683 0.736 0.660
0.65 0.835 0.877 0.804 0.756 0.804 0.737
0.70 0.892 0.921 0.862 0.821 0.862 0.806
0.75 0.936 0.954 0.908 0.877 0.980 0.865
0.80 0.967 0.976 0.945 0.922 0.94% 0.914
0.85 0.986 0.990 0.971 0.956 0.971 0.952
0.90 0.996 0.997 0.988 0.981 0.988 0.979
0.95 0.999 1.000 0.997 0.995 0.997 0.995
1.00 1.000 1.000 1.000 1.000 1.000 1.000




Table B - 3

Network Five Network Six

ggg EqQ. 28 Eq. 31 Eq. 32 Eq. 28 Eq. 31 Eq. 32

0.05 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.000 0.001 0.001 0.003 0.004 0.003
0.15 0.002 0.006 0.003 0.011 0.016 0.011
0.20 0.007 0.017 0.009 0.031 0.042 0.031
0.25 0.016 0.037 0.021 0.066 0.085 0.064
0.30 0.031 0.068 0.040 0.118 0.145 0.112
0.35 0.054 0.111 0.067 0.186 0.220 0.175
0.40 0.087 .168 0.105 0.269 0.308 0.2%2
0.45 0.131 0.237 0.153 0.362 0.404 0.338
0.50 0.187 0.316 0.211 0.461 0.502 0.431
0.5%5 0.256 0.405 0.279 0.559 0.599 0.525
0.60 0.337 0.498 0.356 0.650 0.689 0.618
0.65 0.428 0.593 0.439 0.730 0.769 0.705
0.70 0.528 0.686 0.527 0.795 0.838 0.784
0.7% 0.633 0.772 0.618 0.845 0.894 0.852
0.80 0.737 0.849 0.708 0.881 0.937 0.907
0.85 0.835 0.913 0.794 0.908 0.968 0.949
0.90 0.919 0.961 0.873 0.931 0.987 0.978
0.95 0.977 0.990 0.943 0.959 0.997 0.995 .
1.00 1.000 1.000 1.000 1.000 1.000 1.000
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Table B - 4

Link Prob. Error Eq. 31 Error Eq. 32

0.05 0.000 0.000
0.10 0.003 0.000
0.15 0.009 0.001
0.20 0.018 0.002
0.25 0.029 0.004
0.30 0.042 0.006
0.35 0.054 0.010
0.40 0.065 0.014
0.45 0.073 0.019
0.50 0.078 0.024
0.55 0.080 0.027
0.60 0.079 0.029
0.65 0.074 0.028
0.70 0.067 0.025
0.75 0.058 0.027
0.80 0.047 0.030
0.8% 0.034 0.032
0.90 0.022 0.029
0.95 0.010 0.019
1.00 0.000 0.000
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