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ABSTRACT 

The incoherent scattering cross section of an underdense 

turbulent boundary layer adjacent to both a perfectly conducting 

ground plane and a perfectly conducting cylindrical surface is de- 
termined.    It is found that the effect of the metallic surfaces on 
scattering from the turbulent plasma depends on the thickness of 
the boundary layer and the characteristics of the incident electro- 
magnetic waves.    For optically thin boundary layers,  a plane 
metallic surface will enhance scattering in one linear polariza- 
tion by up to 12 dB while eliminating scattering in the other 
polarization. 
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ELECTROMAGNETIC  SCATTERING 

FROM TURBULENT  BOUNDARY  LAYERS 

I.      INTRODUCTION 

Scattering of electromagnetic (EM) waves from plasmas residing in 
turbulent media has largely been treated as a scalar problem rather than a 

vector problem.    In the vector problem,  the radar cross section (RCS) of a 

turbulent medium is determined from a coherent summation over the rays 
scattered from the medium,  whereas in the scalar problem,  the phase of the 
scattered ray is ignored and an incoherent summation is used.    Generally, 

polarization is also ignored in the scalar problem because the incoherent 

summation makes all polarizations equivalent. 
Scattering of EM waves from wakes of hypersonic vehicles has been 

treated as a scalar problem because the turbulent fluctuations in the "thick" 
wake rapidly randomize the phase of any signal propagating through the me- 
dium.    However,  the thickness of turbulent boundary layers on hypersonic 
vehicles is often much smaller than the wavelength of the incident EM waves 
and one would not expect phase to be randomized.    Therefore,   a vector solu- 
tion is appropriate. 

1 
Yakimenko   has suggested a very convenient relationship for obtaining 

such vector solutions.    He applied his technique to "thick" turbulent media 

and discontinuous media.    A generalized form of his relationship derived in 

the Appendix may be used to investigate "thick" as well as "thin" media.    In 
Section II we show that vector solutions are essentially limited to cases where 
the Born Approximation is valid,   and that the Born Approximation always re- 
quires a vector rather than a scalar solution.      Then in Sections III and IV the 
results are applied to a turbulent boundary layer on a ground plane and on a 
cylinder. 

* Note that if the EM scattering process can be fully described by a single ray 
in the high frequency limit,  then vector and scalar solutions are equivalent. 



II.     SCATTERING FROM  TURBULENT MEDIA 
IN  THE GEOMETRICAL OPTICS  LIMIT 

Limits on the validity of vector solutions and scalar solutions may be 

established in the WKB limit using Eq. (1) which includes both vector and 

scalar solutions as special cases.    Equation (1) is derived in the Appendix. 

For our purposes it is sufficient to regard the constitutive parameter K(r) as 

a scalar «K( r) = e(r)/e  .    Equation (1) is valid for scattering from a weakly 

turbulent medium (A • In K(~r) « 1 and 8/at K(lr) « d/dt E(~r) in which the 

electric field E( r) is completely continuous except at perfectly conducting 

surfaces. 

<<rUs|k.)>= ^ Jd37jd37' <<5K(7) öK(r') E(T) 

U ( r ) E ( rf) • U ( rf )> (1) 

where <5K( r) = K( r) — 1, and where E ( r) is the solution to the propagation 

problem for a plane wave incident in the k. direction on the configuration of 

perfect conductors and turbulent plasma media.    U ( r) is the solution to a 

special propagation problem of a plane wave incident in the -k    direction on s 
the same configuration of perfect conductors but with the plasma replaced with 

free-space. The function U ( r) is essentially the Green's function of the scat- 

tering problem evaluated at r' —* °°. 

In the geometrical optics limit,  the solutions to the propagation problems 

may be expressed as a summation of rays, 

U(r) = EPn
Un(r) exp   "ikn'(r+J 

n 

5<7) = £pmEmU)exp|ikm.(7 + J 

<5K(T) dr 

6K( T ) d T 

(2) 

(3) 



where p     and p   are the polarization vectors of each ray and the path integrals 

are unique for each ray.    Upon substitution of Eqs. (2) and (3) into Eq. (1),  one 

obtains 

<a(t |k.)> = ^ I (£m • $n) (£m, • £n,) 
m,m',n,nf 

4 d    r<Em(r) E£1'
(r)Un(r)U£'(r) 

x exp k        k ,) • | r + (      öK(T) dr m        m'        n        n1      \        J 

*J d   A r 6K( r ) 6K( r + A r ) exp i(k     - k  ) v   m        n 

(_^     pr+A r        _^ pr 
Ar + \ <5K(r) dr ■    \      ÖK(T) dT -s (4) 

where Ar =  r - r',   and E    ( r + A r ) = E    ( r ) and U  ( r + A r ) = U  (r)is m m n n 
assumed.    In order to relate Eq. (4) to the conventional spectrum function: 

Sfk) E jd3Ar <<5K(7) 6K(7 + Ar)) exp{ik • AT} (5) 

it is necessary that 

exp i(k     - k ) m        n' 

r+A r        _^     _^     n r        _ 
6K(T) dT- \      6K(T) dr «1      , 

or conservatively, 

<öK("r r> kA « 2      , (6) 



where  A is the turbulence scale size and Ik     - k   I < k.    Equation (6) is 1   m        n1 ^ ^ 
consistent with the treatment of turbulence as weak fluctuations in a laminar 

medium in the Appendix. 

The two limiting cases of a vector solution and a scalar solution may be 

established by further examination of Eq. (4).    A vector solution is obtained if 

the lengths of all ray paths in the medium are so short that phase is not ran- 

domized by the weak fluctuations.    This limit is given by 

exp i(k"    -k   , -"k   + "k ,) •  \      ÖK(T) d7 m        m'        n       n'      J « 1 

or conservatively, 

<<5K(7)2> ki « 1      , (7) 

where I  is the longest ray path in the plasma medium.    It is interesting to 
compare this to the conditions for validity of the Born Approximation. 

2 
Salpeter and Treiman   indicate that the restriction on use of the Born Approx- 
imation is usually the requirement that the incident beam is not diffused over 

a wide angle <<5G   > by small angle scatterings.    Since <<50   > = <<5K(r)  > i/A, 
the Born Approximation is valid in the region 

<ÖK(7)2> I « A      . (8) 

Because scale size  A is always small compared to I,   Eq. (8) is more re- 
strictive than Eq. (7) and the Born Approximation always requires a vector 
solution,   but the converse is not necessarily true.    In the limit given by Eq. (7), 
Eq. (1) reduces to Yakimenko's relationship, 

<cr("ks|k.)> = |^ Jd37jd3~? <ÖK(7) ÖK(~?)> U(T) 

E(r) U*(r') • E*(r*)      . (9) 



A scalar solution is obtained from Eq. (1) in the opposite limit that ray- 

paths are long and phase is randomized.    In this case, 

exp ("k    - k   . - k"   +~k,).\      6K(T) dT  » 1 v   m        m'        n        nf      J (10) 

for all values of m,  m\  n,  and n' except m = m' and n = n'.    This limit is 

obtained if <<5K( r)  > ki » 1 for all ray paths where Eq. (1) reduces to 

<ff(ks|k.)>=^<6K(7)2>£Z<£       *  -1 

m n 

S  r S(k m      n m - k n 

s X \ dJ rlm(r)ln(r) (11) 

where I    ( r ) = E    ( r ) E* ( r ),   and I  ( r ) = U  ( r ) U*( r ).    The scalar solution 

is essentially the vector solution with cross terms removed.    The ray inten- 

sities have been left as functions of position because diffusion of the incident 

beam may be important when <<5K(r)  > ki » 1 in a weakly turbulent medium. 

III. SCATTERING FROM TURBULENT BOUNDARY LAYERS 
ON GROUND PLANES 

The thicknesses of turbulent boundary layers are normally sufficiently 

small for a vector solution to be valid,  except perhaps near grazing angles of 

incidence.    Although the condition for the validity of the Born Approximation, 

<<5K(r)  > i « A,  is even more restrictive than Eq. (7),  we choose to use the 

Born Approximation for mathematical convenience.    In the Born limit,  the 

integrand of Eq. (9) is given by Eqs. (2) and (3) with öK(T) = 0 and U   ("r) = 

E    (r) = 1. mv    ' 

Horizontal Polarization (electric vector normal to the plane of incidence) 

E(r) • U(r) = 
ik.* r        ikl* r 

e    x      -e    J 
-ik • r        -ik'    r s s 

e - e (13) 



Vertical Polarization 

E( r) • U( r) = cose    cos0, s 

ik.- r       ik!- rl f -ik • r       -ik' • ... ... \[ • .. 
+ sin 9    sine, s 1 

ik.* r       ik!* r 
e    x      +e    * 

X 

where 

-ik • r       -ik' * r s       . s e + e 

k. = k(x sine. - y cose.) 
l l     J l 

k! = k(x sin e. + y cos e.) 

k    = -k(x sine^ - y cos9 J 
S So 

k!   =-k(x sine    +y cosG   ) s s s 

and e. and e    are measured from the normal to the ground plane y. 
Upon substitution into Eq. (10) one obtains 

Horizontal Polarization 

aH=   (lr) «SK^AcKC+S" +C;S + }      . 

Vertical Polarization 

ry =   (^A  <6K2>Ad fcos2ei cos2eg (C^S" + C1"S+} 

+ sin2e. sin2eg {C2
+S" + C2"S + } 

+ sine. sineg cose. cos9g {C3
+S~ + C~ S + }1 

(14) 

(15) 

(16) 



where 

9. ± e / u. ± u  \ 
S    = S(2k cos -i-j—-1 

sin [2kd(cos9. ± cos9   )]       sin [Zkd cosG.] 
C     = 2 + — -  ~ 1 kd(cos 9. ± cos9   ) kdcos9. 

is 1 

sin[2kd cos 9   1 _ L s_ 
kd cos 9 s 

sin[2kd(cos 9. ± cos9   )]       sin[2kd cos 9.] 
C     = 2 +   - —   +   — 2 kd(cos9. ± cos 9   ) kdcos9. 1 s 1 

sinf2kd cos 9   1 
+  - a: 

kd cos 9 s 

± sin[2kd(cos9. ± cos9   )] 
C3  = 2 kd(cos9. ± cos 9   ) 1 s 

and d is the thickness of the boundary layer and A is the illuminated surface 
area. 

The properties of this solution become apparent when evaluated in the 
2 

limit of an optically thin boundary layer (kd)    « 1 and compared to the cross 
section a   of a boundary layer that is not backed by a ground plane. 

4\ „ / 9.-9 
% =   (^j <6K2)Ads(2kcos     *2     s)       . (17) 

The spectrum of the turbulence is isotropic because the scale length of the 

turbulence is small compared to thickness of the boundary layer (i.e.,  kA « 1] 
For the example of a Kolmogoroff spectrum, 

/ ei ± eo\ *  r 99        9  /e- ± Ö   \1 -11/3 
S (2k cos    \     s]   = 15.5 A3    1 + 4k2A2 cos2 (   ^     s) 

~ 15.5 A3 

kA « 1 (18) 



For (kd)2 « 1 and using Eqs. (17) and (18),   Eqs. (15) and (16) reduce to 

°v ? ? 
-2- ~ 16 sin   0. sin   0 
°"n 7 IS 
°    (kdr«l 

+ ^| (kd)2 sin0. sin0    cos20. cos20c      , (19) 
-j 1 S 1 s 

-5 ~ ^| (kd)4cos20. cos20        . (20) 
0" ? is 
°    (kdr«l 

We see that the effect of the ground plane is virtually to eliminate horizontally 

polarized scattering from thin boundary layers while enhancing vertically 

polarized scattering for angles of incidence and reflection greater than 7r/4. 
If the medium is so underdense that the <C<5K(r)  > it « A condition is satisfied 

for both I = d/cos0. and i = d/cos 0   ,  then vertical polarization is enhanced 

by 1Z dB at grazing angles of incidence.    If circularly polarized waves were 

incident at grazing angles of incidence,  equal principal and orthogonal returns 

would be scattered with a 9-dB enhancement. 

IV.    SCATTERING  FROM  TURBULENT  BOUNDARY   LAYERS 
ON PERFECTLY CONDUCTING CYLINDERS 

The incoherent scattering from a thin boundary layer wrapped around a 

large perfectly conducting cylinder shall be determined in the limit that ka » 1 
and kd « 1,  where a is the radius of the cylinder.    In this limit,  the surface 
of the cylinder may be assumed to be locally plane and the results of Section III 
applied.    For mathematical convenience only backscattering is considered. 

At every point on the cylinder the scattering properties of the optically thin 
boundary layer may be represented as a spectrum function as follows: 

Syv = 16 cos2av sin   ß S(2k)      , (21) 



2 4 
SHH = l6 COS   aH Sin   ^ S(2k)       ' (22) 

4 
SVH = STTV = 16 cos a*    cos QLj. sin  ß(cos a^, cos CL. 

+ sino^ sino^) S(2k)      , (23) 

where 

coso'    = cos (p sinG      , (24) 

cos Q'    = sin</> sinG      , (25) 

cos/3 = cos cp cosG      , (26) 

and G  is the angle between the incident ray and the normal to the cylinder 

axis (the complement of the aspect angle) and cp is the angular location on the 

cylinder. 

The incoherent cross section is then obtained by integrating <p  over the 

upper surface of the cylinder, the lower half-surface being shadowed. 

HH      0    .   2 ~.      / 2 ,~     ,2iov   = 8 sin   G - 6 cos   G sin   G 
ao 

- 5 sin4G cos2G(l - | cos2G)      , (27) 

^VV 2 2 2 
——  = 8 sin   G + 6 cos   0(1 + sin   G) 
% 

+ sin4G cos2G(l + ^ cos2G)      , (28) 

aVH      aHV      „    .   6^       1.4^ 4 = 2 sin   G + -r- sin   G cos   G       , (29) — —     fc-     Olli        V^ I ~ 

o o 

2> 
% =   (5ff)  <öK2>7TdbS(2k)       , (30) 

where b = length of the cylinder illuminated. 



In the cylinder case, avv ~ ovrrr a* near grazing angles of incidence with 

9 dB of enhancement due to the presence of the perfectly conducting cylinder 

surface. The VV return comes primarily from the top of the cylinder while 

the HH return comes primarily from the sides of the cylinder. Contrary to 

the case of a flat ground plane, the turbulent boundary layer is polarizing at 

broadside incidence. 

Backscattering from a turbulent boundary layer on a conical surface for 

axisymmetric incidence is similar to the cylinder case at grazing angles of 

incidence except for the lack of a shadow boundary.    The point-by-point spec- 

trum functions are given by Eqs. (21),   (22),   and (23) but with Eqs. (24),   (25), 

and (26) replaced by 

cos G'    = cos <p cosG cosy - sinG siny      , (31) 

cos o?H = sin <p cosG cosy - sinG siny      , (32) 

cosß = cos cp sinG cosy + cos G siny      , (33) 

where y is the one-half the vertex angle of the conical surface.    After in- 

tegration over the illuminated surface of the cone,  the incoherent cross section 

is obtained 

^HH       °VV      Q 4        , 6       .   2 ,,A,   =   = 8 cos  y - 6 cos  y sin y      , (34) 
°o °o 

aVH = <THV=0      ' <35> 

Thus at grazing angles of incidence,  G « (TT/2) - y,  the cylinder solution to 

zero-order in G   equals the conical solution. 

10 



APPENDIX 

Consider a plane wave E1( r) incident on a weakly turbulent medium 

containing plasma.    The medium may be bounded by and/or contain perfectly 

conducting surfaces.    The fields in the turbulent medium must satisfy a wave 

equation having a variable or fluctuating constitutive parameter   K(r, t).    Fol- 
3 ~*"S ~~•* lowing Kodis,   an integral equation may be set up for the fields E   ( r ) scat- 

tered from the medium assuming weak fluctuations: 

£|T(7,t)|«it V- In | K(r,t)| «1      ,       |r| K(r,t)| « %r |E(7,t) 

E s(7) = \ d3 r   r U | "rf) • "j U') 

+ (integrals over surfaces of discontinuous E( r)) (A-l) 

where V x vx T(~r | ~?) -k2?("r | "?) = Tö(T- "?) with n x T = 0 at the 
conducting surfaces defines the dyadic Green's function,  where 

1= k2fK(7) -T) • EU)      , (A-2) 

and where E ( r) is the total field in the turbulent medium. 

The treatment of the surface integral in (A-l) is not understood.    There- 

fore,  the following derivation is restricted to problems where sharp interfaces 
between the plasma and vacuum do not occur.    The dyadic Green's function 
may be determined by writing Eq. A-l in a form that is equivalent to the 
reciprocity theorem. 

A 
P. Id3 r {Es(r') <5(r - r') -   T(r |7') •   J(T')}      . (A-3) 

Since E   ( r ) may be considered to be the field produced by the source J ( r ) 
in the original configuration of plasma media and perfectly conducting surfaces 

11 



but with the plasma medium replaced by free space, then 

Eo(T|T') = Ps •   rfr| r') (A-4) 

must be the field produced by a source p <5( r' - r) in the same configuration s . 
of conducting surfaces and free-space.    Here p   is the polarization vector of 

the scattered fields.    Barring discontinuous fields,  Eq. (A-l) may then be 

written as 

A ES(T) ■S d
3"r'E("r' | ~r) • "j(~?) (A-5) 

and the incoherent scattering cross section of the turbulent medium may im- 

mediately be obtained from Eq. (A-5) 

— i2 <<r(ks| k.)> = 4jr| r | 
Ps • ESU)   2" 

Pi • ¥(T) 

4ir i-*i2 
<cr(ks|k.)> = 

I Pi • E  (r)[ ■yfe^3^ 
3 — 

dJ rM 

<EQ(r | r1) •  J(r) EQ( r | r") •   J(r")> (A-6) 

It is mathematically convenient to approximate E  ( r | r') in the neighborhood 

of the plasma medium by the solution U ( r) to the propagation problem for a 

plane wave incident in the direction — k    (from the direction of the source at 

r as  r -*■ °°) upon the free-space configuration. 

E  ( r    r1) 
o 

U(?)   e
iks'r 

47r| r I 
(A-7) 

12 



Then using Eq. A-2 and assuming all incident fields have unit magnitude,   a 

generalization of Yakimenko's relationship is obtained. 

<a("ks| k.)> =   (^1 Jd37" Jd3T'  <[öTt(7") • E(7") • U(7")l 

X [6 K*(r') ' E*(rf) ■ U*(r')]>        , (A-8) 

where ö K( r1) =   K( r') - I and E( r') is the solution to the propagation problem 

in the configuration of plasma medium plus perfectly conducting surfaces for 

incidence in the k. direction,  and U ( r') is the solution to the propagation 

problem in the same configuration but with incidence in the -k    direction and s 
the plasma medium replaced by free-space. 

REFERENCES 

1. I. P. Yakimenko,   "Application of the Reciprocity Theorem to 
Scattering of Electromagnetic Waves by Fluctuations in a 
Bounded Plasma," Soviet Physics - Technical Physics 14, 
No. 5,   602 (November 1969). 

2. E. E. Salpeter and S. B. Treiman,   "Backscatter of Electro- 
magnetic Radiation from a Turbulent Plasma," J. Geophys. 
Res.   69,   No. 5,   869 (March 1964). 

3. R. D. Kodis,   "Propagation and Scattering in Plasmas," Proc. 
IEEE 53,   1016 (1965). 

ACKNOWLEDGMENT 

The author wishes to acknowledge helpful discussions 
with K. Sivaprasad (University of New Hampshire), S. Hong, 
and other members of the Group 35 Lincoln Laboratory Staff. 

13 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 

I.    ORIGINATING   ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.    REPORT   SECURITY   CLASSIFICATION 
Unclassified 

2b.    GROUP 

None 
3.    REPORT   TITLE 

Electromagnetic Scattering from Turbulent Boundary Layers 

4.    DESCRIPTIVE   NOTES  (Type of report and inclusive dates) 

Technical Note 
5.    AUTHOR(S)  (Last name,  first name, initial) 

Ruquist, Richard D. 

6.    REPORT   DATE 

21 January 1972 

7«.    TOTAL   NO.  OF   PAGES 

20 

7b.    NO.  OF   REFS 

3 

8«.     CONTRACT   OR   GRANT   NO.      F19628-70-C -0230 

b.   PROJECT NO.  ARPA Order 600 

9«.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1972-6 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-72-30 

10.    AVAILABILITY/LIMITATION   NOTICES 

Approved for public release; distribution unlimited. 

II.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Advanced Research Projects Agency, 
Department of Defense 

13.    ABSTRACT 

The incoherent scattering cross section of an underdense turbulent boundary layer 
adjacent to both a perfectly conducting ground plane and a perfectly conducting cylindrical 
surface is determined.   It is found that the effect of the metallic surfaces on scattering 
from the turbulent plasma depends on the thickness of the boundary layer and the char- 
acteristics of the incident electromagnetic waves.   For optically thin boundary layers, a 
plane metallic surface will enhance scattering in one linear polarization by up to 12 dB 
while eliminating scattering in the other polarization. 

14.     KEY   WORDS 

electromagnetic scattering 
underdense turbulent boundary layers 

14 UNCLASSIFIED 

Security Classification 



r * 



- 


