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ABSTRACT 

Assuming that the x-coordinates of impact points of rounds fired at a target cen- 
tered at the origin, x = o, are the sums of correlated aim errors and independent bal- 
listic errors, we show how the likelihood function of the unknown statistical parameters, 
associated with a sample x., x», ..., x^ of impact points from a single burst, can be 

quickly and simply computed. The likelihood function is used here as the basis for esti- 
mating the parameters, and the results of our estimates, applied to a large number of 
computer simulations, are summarized. 

-i- 
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ESTIMATION OF AIM-ERROR CORRELATION, AIMING DISPERSION, 
AND BALLISTIC DISPERSION 

INTRODUCTION 

The importance of obtaining efficient estimates of tlic statistical parameters describ- 
ing a rapid-fire gun system is well recognized.   Such estimates are necessary in researcli 
studies of future systems and tactics, and also for the design of closed-loop "filters" to 
effect corrections at the gun site in actual firings, (references (b) and (c)).   In reference 
(a) we began the study of the estimation problem by investigating what could be achieved 
from the traditional sample covariances of a time series  x , x-, .. .x^ , and we showed 

that for high correlations   (p % 1)  in the aim error, the aiming dispersion  rr.   was 

virtually impossible to estimate from a single burst.   Since rapid-fire guns have a high p, 
the results of reference (a) demonstrate the need for numerous independent experiments 
to estimate the parameters for any such gun system. 

However, the information provided in reference (a) does not necessarily apply to 
cases with moderate   p , or moderate burst lengths, and no attempt was made in refer- 

2 
ence (a) to provide formulas for estimating   p and   a.  .   In this paper, we show how to 

A 
calculate the likelihood function associated with a sample  x , x„,..., x    .   This function 

is then used to provide Bayes estimates of the parameters, as well as their second 
moments.   The latter quantities permit us to obtain approximate confidence intervals 
for the parameters. 

(Familiarity with reference (a) is not required in reading this paper.) 

THE MODEL AND THE PROBLEM 

With a target centered at tlie origin of a I-dimensional coordinate system, we imagine 
a burst of  N   rounds impacting in points x-.x«, ...i x.. .   (For a 2-dimensional picture, 

the   x's   may denote the azimuth errors and equally well, the elevation errors, treated 
separately and independently.)   The model consists of the assumptions that each  x    is 

the sum, 

x   =0   +ß (1) 
n      n      n 

of two stationary Gaussian processes    [a ] ,  {ß } , independent of each other, in which 

[a ]   represents the aim error, means zero, and covariances 

and   [ß }   represents the ballistic error, means zero, and covariances 

n^n+kJ    yB   o,k   ' 

•1- 



The process   [ß }   is often called "white noise."   There are exactly three parameters: 
2 n 2 a. , the aiming dispersion;   aR , tlie ballistic dispersion; and   p , the round-to-round 

aim correlation. 

The problem is to estimate the values of the 3 parameters, and to obtain confidence 
intervals for them from impact data.   Equivalently, from a Bayes viewpoint, we want the 
posterior probability density in the parameter space, given a single sample   x., x„, ..., x 

of impact points from a burst of N   rounds. 

According to this model, the gun is unbiased,   E(x ) = 0 for each  n .   The possibility 

of a non-zero bias is of no importance in the design of a gun filter, because any such 
possible bias will be removed by the filter, (reference (b)).   Furthermore, in sampling 

experiments on the firing range, the data   x.,..., x^.   can be replaced by   x    - x, x2 - x, 

.,.,Xvi - x",   where   x  is the arithmetic mean.   The only parameters of importance are 

2        2 ffA , aB,   and   p . 

We confine ourselves to the estimation problem based on a single burst  x., ..., x , , 

since there is no problem in combining the results of independent experiments.   If 

2      2 L  (cA, (Jn,  p)   denotes the likelihood function of the  vth_ independent trial (with the 

2      2 same   a.. crR ,   p) for  v= 1,2, ...,r, then, of course, tlie combined likelihood function 

is simply the product 

L ('A ' 0
B ' p) = TT, L 

^=i 

2 2 

THE LIKELIHOOD FUNCTION 

From the last section, and equations (1), (2), (3), we see that the sample vector 
(x., x-, ..., X-,)   is Gaussian, with mean  (0,0, ...,0) , and covariances 

cov   (x^   xj)   ^ ffA     P 
2     Ji-jl    ,     2 

B     l] 
(4) 

If C = I'C]   is the   N x N   covariance matrix,   c, = cov(x.,x.) , then tlie density function L LJJ '      l} 
v  i'   / ' 

for  (x,, . .^x.,)  is 
i i\ 

r ■,-H 

( I   2       2       VL^fliJ T   ixl X
NI0A'   ''B'   £V"-^N72       eXp 

t  „-1 -x    C    x 
(5) 



where   x   is the   Nxl   matrix with elements   x,...,x    •   x    is the transpose of   x; 

C       is the matrix inverse to C ; and det C is the determinant of C .   The likelihood 
function is precisely the quantity in equation (5), 

9 9 9 9 
L(ffA.  (7R .  p) = ."(x^ ...,xN| ffA , crB ,   p) (6) 

(or any constant multiple thereof), regarded as a function of the (Greek-letter) parameters. 
The observations   x ,...,x.,  are fixed, of course, for any one experiment. 

But the form of r in equation (5) is practically impossible to evaluate, even on a 

high-speed computer.   The matrix  C   is easy to write, equation (4), but  C       cannot be 
written in terms of the parameters, and inverting large matrices on a computer is time- 
consuming and subject to gross round-off errors.  Tkirefore, we again consider the proba- 
bility density of  (x., ..., x..)  and write, suppressing the Greek letters, 

"Kx^ ..., xN) = ^ (x^ T2 (x2 Ix^ T3 (x3 [xj, x2)... ^N(xN Ix^ ...,\^_l)        (7) 

where each  -p.   is the conditional density of   x.   given x., .... x.   . .   Each  ri.   is a Gaussian j y      j 6       r    ' j-i j 
density, and we therefore need only the two quantities (for eacli  j = 1, 2, ..., N) , 

A 

x,   -  E   LX^IXJ^ xj-i J (8) 

and 

erf  = E   I (x.- x.)''|x1 ,    ...,   x.  i     , (9) 

and we can then write 

■:   (x,|x       ...,  x   )   = —r     exp  [- —r  (xi   ~ x-i)2 I d«) 
:,      J J /2TT  ,, 2o J J 

From equation (6), ("), (10), we can write 

Lie?,   ol   P)  =Tr    ~exp[-V  (x-x.)2] (ID 
AB j=l       ffj L2a2 3     D     J 

j 

-1/2 ^ where we have discarded the constant multiples   (2TT)    '   , and in which the   x.   depend on 

2       2 2        2 x   x       ,   and   cr. , crn ,  p,   whereas the   rr.   depend onlv on   ff.  ,  crn ,   p! 
1 J -1 A        15 j An 



(The proof of the last clause can be carried out ahmg Hie following lines.     The coiuli 
lional density of   x.   given   x , ..., x.       can be written 

-\(xJxj, ...,x     ) - k(x1, ...,x     ) ii (x^ ...,x ) 

where  t denotes the density of (x.,...,x.), and  k (x ,\.   .)  is the normalizing 

factor obtainable from hn. dx. = 1 .   Now   i  has the form given by the r.h.s. of equation 

(5), with  N   replaced by  j .   The   x.   appears only in the exponent, so we can write 

r\(x. |x1,...,x._1) = k,(x1 x.) • 
■1/2 Q 

w lie re 

Q  =   (xl,    . . . ,   x . )   A 

x . 
] 

and  A  is the matrix inverse of the   j-rowed covariance matrix of  x,,..,,x. .   Bv lamil 
r j        ■ 

iar methods,   Q   can be written 

Q  = Q0   (Xj^,    ...,   x.   j^)   + A^^   (x^- x^) 
A   x2 

so that 

a. = A..       , 
J      JJ 

where   A.,   is the (j,j) element of  A .   For car purposes, the main point is that   cr.   does 

not depend on   \ x       .) 

The interesting consequence of the last remark is that 

ECCx.-x/]^2. (12) 

so that   a    is the (unconditional) mean square difference between   \.   anil   \.(\ ,..., 

x _ ) .   Now the problem of calculating  x.   and   a.   in our context is a special case of the 

Kaiman filter theory, which is treated, for example, in reference (c), and which we sum- 
marize in appendix A, for completeness. 



Calculating the Likelihood Function 

For a fixed sample   x-.x», ..., x..  and arbitrary   cr., a,,,   p, we require   L, given 

in equation (I I), or equivalently, 

li(crA, cr,^  o) = loge L . (13) 

Appendix A shows how the   a.   and   x.   of equation (11) can be calculated recursively.   The 

essential equations are   (A-17), (A-18), (A-20), (A-21), and (A-22), which we repeat here, 

*1=0| 

u   =0J 
(14) 

^WB-VI) ^ 

p    (ffA   "  "n-^ Y     =  A  n_i  (16) 
n ^ 

Un   =   P   (P   -   Yn)   un-l  +   p  »A   Yn (17) 

^n+l  =   (p  "  ^  K +  Yn xn (l8) 

In fipjre 1, we liave displayed a flow diagram for computing  h((TA, a^,  p) .   The 

2 ^ letters   V, H, C, U, Y  stand fo^   rr   , h, Y  , u , x   .   This efficient algorithm for   h 
2 

can be made faster by not calculating  log(V) = log(cr )  for each index, but rather by 

forming the products 11    a      recursively (guard against overflow!), and then calculating 

log{—pp cr   ) just once, for each  (a., rj„,  p) . 

1 
Estimating the Parameters 

For each parameter point  ((j ., aR ,  p) — a point in 3-space — we can evaluate   li 

and therefore   L = e   , from equation (13).   But in place of   p , which we expect to be in 
the interval   0 < p <  1 , we prefer to use the variable  C • where 

^4-log^       • (19) 

-5- 



Tliis is equivalent to 

e2C-l 
D = -^rr = tanl1 (C) (20) 

and we take our parameter space to be the set of all points (fi., cr.., C)  in  R,,  for which 

all three coordinates are   5 0 . 

11 = 0 

.1 = 0 

u = 0 

Y = 0 

J *J +1                            1 

V = ill + 4) - 11 

H ^H-^log^V) 

"  2V h " Y)2 

C = pi"2
A- u)/v 

u *p(p -C)U+ DfT^C 

Y ♦ Y(p-C)+C >c. 

Now have   11 

FIG. 1:   ROUTINE FOR CALCULATING   li - W   L 
"e 



Um ((T., O1,,, O  denotes our prior probability density, then after the sample 

(x ,..., x^) is observed, our posterior density is 

$   iak.   oB,   C)   = C  cp L  = C  cp eh (21) 

where  G   is the constaiu required to make equation (22) true: 

i.e., 

C   = 
1 

\   \  ^    cp eh daA dffB dQ 

(22) 

We take for our estimates: 

A 
0 i =  E(ffA)   =  U  S    0A   '   dffA  d0B   dC   ' 

'B   =  ElaB)   =  ^  ^"B* doA  dffB  dC   ' 

C  = E   (O   = ^ ^  C $ daA daB dC, 

and then, from equation (2Ü), 

p   =     tanh   (C) 
def 

We have used for  m , the constant (uniform) density for Ofiff.sD.OsOpSD, 
2 

0 < C<3 , where  D     is four times the  Oth sample covariance, i.e., we put 

N 

D = 2 i     "     x2 

i=l 
N    z,    Xi (23) 



Wc note that E 

N 1 
—        x.     = (TÄ + CT., , ami our  I) will be on the order of 2(a't  f a.,) 

The interval  0<iJ<3,0  corresponds to Ü<psO,<Jl)5   . 

With tiiese assumptions on our prior, we are in a position to consider the evaluation 
of integrals of the form 

W 

y^d     F   (flA'ffB'£)   ;1   (oA  ^B   :)   daA  daB  d£      ' 
e are principally interested in 9 such F's, viz.,   !■'   = cr.; F,? = rr..; F„ = C P. = cr A 

F- - a. (7.,; etc., i.e., we want the 1st and 2nd moments of   rr.,   j..,  £, and more 

important, the 2nd moments about the means.   For example, with   F = a.  f, our 

integral is, using equation (21): 

3 D  D 

GOO 

daA  daB df 

3  D  D 

IW    l    eh<"A-B'"a,Aä,Bd: 

GOO 

To calculate all the required integrals, of which there are now 1Ü, with the U)th F 
being   F = I, we used the Monte Carlo procedure, choosing SOU points   (rr., rr , ^) 

uniformly randomly in the region   o < a. s D, o < rr.  s D, o <: C < 3 , and we used the 
approximation 

500 li 
V,' F. (a) ) 

,    I      v 

~Süö   n 

V 

\    \   F. T d(T.   der., d: 

J  J  J    J A      B 

\r-] 

for  j=l,2,...,9,   where   cOs   denotes the   vth   random point   (rr   ,  rr.,,  £) ,   (Since the 

h     were on the o 

sums of the form 

l     were on the order of   h    = -200, the sums in the previous equation were replaced by 

£F(a'v)exp(hv-h*), 
v 

where   h* = max h and, of course, the constant factor exp (-h*) cancels in numerator 
v 

anil denominator.) 



EXPERIMENTAL PROCEDURE 

We chose lb parameter combinations, viz., rr.    = 6, 4, 2,1, with   p = .9H,  .90,  .80, 

.5U (■*<TA's times 4 p's), with  a.. = 2 throughout.   For each parameter combination we 

took 5 independent samples   x. x.,  with  N = 100 in every case.   So we collected 

HO independent samples in all.   Each sample was generated by the computer, programmed 

to simulate the process   [x }  according to the model described earlier. 

The computer calculated and printed out the estimates   E {a/.), E (Tn)» E (C) (expec- 

tations with respect to our posterior density in the parameter space), together with the 
second moments about the means, as described in the last section.   This was done for 
each of the 80 independent samples. 

Experimental Results 

The means   (T., &„, C  (and also   p = tanh  (£))» and the standard deviations 

\D (rr .),\D (crn),\D (0   that resulted from the 80 samples are all presented in 

appendix B.   The mixed moments such as E (ff AcrR)  and the covariances were of less 

importance and are not given here.   (The covariances indicated, as expected, that the 

estimates   a., crR,   C were not independent of each other.) 

The main purpose of computing the second central moments was to provide a method 
for calculating confidence intervals for the parameters   a>, (y„,   C.   Let   ff.   denote the 

"> 2 true value,   a.   its estimate, and  D (a.) the second central moment (with respect to 

the posterior density associated with a sample  x., ..,, xN) . 

Define        A „ 

%1^_ (24) 

We have SO independent samples of this quantity when we aggregate all the   rr.'s   and   p's. 

We calculated these quantities - or rather their square roots - and grouped them in 
intervals, and compared the frequencies with those obtainable on the hypothesis that   x . 

is distributed like chi-square with 1 degree of freedom.   The comparison indicated that 

the latter hypothesis is a good assumption, i.e., that VxT is distributed like the absolute 

value of the standard unit normal variate (so  x.   is chi-square with 1 d.f.). 



The table below shows the observed and expected frequencies. 

Frequencies  of v  x2 

Interval Observed = O 

lffa~  "i1 — -   -              A         A 
A              f "« 

Expected = E 0 - E 

31) -2 

25 -4 

14 4 

7 -1 

4 3 

0 -    .5 28 

.5-1.0 21 

I.Ü - 1.5 18 

1.5 - 2.0 ö 

>2.ü 7 

The chi-square test applied here gives 

Q.V 1^1 = 4.30. 

which is small for four degrees of freedom, and indicates a satisfactory fit. 

We did exactly the same sort of calculation for 

xB = V qB)2 

0VB) (25) 

and for 

c    i)-(0 

and found excellent agreement with the hypothesis that   x.,   and   x* are also distributed 

like chi-square with one degree of freedom. 

Using the division points 0, .5,  1.0,  1.5, 2.0, », as before, the numbers 

.■rvations of \ x„   in the 5 intervals were 35, 27,  11, 3, 4, yielding  O-K - 

The ciii-square Q  turns out to be   Q = 3.tM (four degrees of freedom).   The correspum 
ing numbers of observations i 

cevrresponding Q  was 1.13 . 

»bservations of \ x„   in the 5 intei"vals were 35,  27,   11, 3,  4,  yielding  O-K - 5,2, -3, -1,(1 

. ..   t> 
ing numbers of observations of ■/Tl in the 5 intervals were 21-), 25,   12, 9, 5, ami the 

-10- 



As a rüSLilt, wc arc justiliccl in saying that each of  x., x.,, x    is like chi-square 

with 1 d.f.   Accordingly, it"   \    denotes  p - percent value of a normal deviate, i.e., 

oo 

p 2 \ -k   t2 

roö - ,7=    ^   e        dt  ' 
V 2~ p 

then we can use the intervals 

A   '   <   X 
'A   -  "A'   <   XpVD2   (aA) 

A 

I < K 0B   "  "B1    V   ^p VD"   (aB) 

C   "   £   I   <   X^ ,;r2 p vr.'  (0 

as   (100 - p)   percent confidence intervals (though not all simultaneously). 

As an example, take   p= IÜ percent.   Then   \   = 1.64 .   Suppose that we observe 
(—9  

(calculate)   £= 1.26, \D*"(0 = .57 .  Then we can say 

|C - 1.26 I <(1.64)(.57) 

or 

.32 < C<2.20 

at the 90 percent level.   Since   0     lanh (0   is a monotonic function of  £ , we can also 
say 

.31 < D< .97 

at the 90 percent level.   If we follow sucli a procedure, then In a long series of such 
independent experiments and assertions, we will be wrong about 10 percent of the time. 

CONCLUDING REMARKS 

We have described a model for the miss distances (plus or minus)  x., ...,x 

arising from a single burst of a rapid-fire gun.   This model contains 3 parameters: 
(7., 0,x ,  a ,    The problem is to estimate these 3 parameters from one or more samples 

(x ,..., x ), though we concentrated on the case of one sample.   (There is no problem 

in combining independent samples, because the required likelihood function is obtainable 
from those of each single sample by multiplying the latter together.) 

-11- 



Wc recommended a Hayes type of procedure, in which we used a uniform prior density 
over a certain 3-dimensional interval in the parameter space of  CT., er.,, C = tanh (p) . 

Tiie posterior density is then the product of the likelihood function ant! the prior, apart 
from a multiplicative constant factor.    For our estimates, we took the expectation of nv. 

and ou and C» relative to our posterior density.   This procedure is precisely the optimal 

procedure when our loss function is the mean square error.   More precisely, suppose we 
concentrate on  cr., for example, and somebody proposes a rule   il'(x ,...,x )   foresti- 

A i II 
mating  CT.  , i.e., observe  (x ,...,x ), form the real number   i!'(x ,...,x ) and take 

tiiis to be our estimate ff.   of  a.  . 
A A 

For any fixed  a., Oj, , C , the totality of all possible estimates   rr. = '!'(x , ...,x ) 

-- (\.,...,x )  varying according to its p.d.f.--   has a certain p.d.f.   We form the 

A 2 
differences-squared,   (cr. " cr.)   . and their expected value: 

/•••J,[y(x1,...,x ) -crj2 

x   f^, • • •. x
n lo^' ^B' ^C|X1 dX 

N 

where   I   is the probability density of  (x.,...x )  given   a.,  0|, ,   f.   We assume that 

this function   p , depending on the parameters and on   t , is the loss that we wish to be 
small.   Let   i    denote the rule proposed in this paper.   To say that   t is better than 

is not yet a meaningful statement, for this statement, according to our assumption, ought 
to mean that 

o((7A, C7B,   £; v) < p (crA, (fy   £; tj  . 

lint tor which values of (a.,  OU, C)?  We w^ not know, in practice, what the parameters 

arc--if wo did, there would be no problem.   One possible way to make precise the state- 
ment "C'   is better than   v   "   is to use the definition:   for all possible values of (a., cr,,, 0» 

we have 

and for some   ((T., OU, O the inequality is strict. 

i?utitis not hard to prove the following for our problem: let  ^(a., ou,  C) denote any 

prior probability density that is non-zero in every region of 3-space where   or.  >0, 

a, > Ö, and let   t    be the function for which 

•12- 



JJJ  P(aA'0B'C?    *)CP   (0A'aB'C)   d0AdaBdC 

is smallest.    This rule   i'    will turn out to be 
o 

^o(xl Xn)   = 

IT   eÄ   I L^A'aB'0   d0Äd0Bd^ 
n5vUohaQ0   daAdcBdC 

Then there is no other   is about which one can say, "i  is better than   !■  ."   In more } o 
technical language,   ii    is "admissible." 

In our situation, we took a prior  ^(CT., ou, C) tliat was zero for C ^ " or C > '5.ÜÜ 

and for  CT» > 2 
N       -l/2 

'     2 

L 1     l 
- D   and for Tii > D .   The reason was that we knew that   C > Ü , 

at least in our simulations and very likely in practice (although it may be safer to take 
the interval   - .5 < C^ 3,0   in practice), ami in no simulation, of which we have run about 

2      12        2 2ÜÜ,  have we ever observed a case with V x.  <- ^(cr. + cr")   .   So the latter event is one Z,^   i      4 v A       ir 
1 

with very small probability, ami we ignore that possibility in our procedure. 

It is, consequently, unlikely that anyone will produce a rule    !'   that is (uniformly,  lor 
all   OK, CTR, 0  better than our rule   ilf   , and of course, tile same also applies to the other 

parameters   a,  and   C . 
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APPENDIX A 

We consider the stationary Gaussian process   x., x„, ..., x  , ...   with means zero, 

and covariances 

E[x.x.l = af pl^l  +o^e.. (A"I) 

i   ] A B     i] 

2       2 
with   a ., a |> ,   p assumed known.    The problem is to calculate recursively 

x     =  Elx   |xn . .. .,   x        1 (A"2) 

n n'   1 n-1 

and 

c^   =  Er(x     -   x   )'1 
n n n (A-3) 

It is well known that for fraussian variables   fx }, the    x   of (A-2), is a linear 
nJ n      v      ' 

combination of  x , ..., x  _. , and in fact, it is that linear combination for which 

Q('V   =   (xl    Xn-1'   Xn)   An       *' 1 <h-^ 

is a minimum.   Here A     is the matrix inverse to the envariance matrix of  x,, ...,x    . 
a In 

It follows that 

n-1    A 

n       f-",    A        j v 

j=l       nn     J 

where   (A  ,...., A    )   is the nth row of  A   .   But (A-5) is not very useful, since we don't v  nl nn — n v      ' J > 
have simple formulas for the   A  . . 

Let  C. - cov(x.,x.), and form the sums 
ij i    J 

n-1 
VC.A  . = 6.    -C.  A (A-ft) 
f^.   ij   nj       in       in   nn   . 

A-l 



Tluuvfore, t.lie coefficients   - A ./A      in (A-5) satisfy the  (n-l) equations nj'   nn       v      ' ' 

n-l / -A .v 

j=l     J \     nn/ 
= C, m (A-7) 

for  i = 1,2,..., n-l .   So, when w e put 

n-l 

11 -i J J 1=1 j j 
J 

the   (Y. , ... Y    ■)  vector Is the unique solution to the matrix equation equivalent to 

In 

n-l 'n-l. 

(A-S) 

(A-7): 

(A-M) 

where   C   is the   (n-l)-rowed matrix witli elements   C. . 
il 

The equation (A-9) can be solved recursively in a simple manner.   Indeed, let 
.... Y'   ,, Y')  be the coi 

we have to solve the equation 

(Y',...,Y'   ,, Y') be the corresponding coefficients when n  is replaced by   n+1. Tlien 

nl n.n-l 

In 

'n-lt n 

nn 

'n-l 

n 

l.n+l 

n-l.n+1 

'n,n+l 

(A-10) 

We observe that 

l,n+l 

n-l,n+1. 

=  P 

l.n 

C     . 
n-l.n. 

(A-11) 

A-2 



using (A-l) . So the f i rs t n-1 rows of (A-10) can be written 

n - 1 

= "Y ' 

c. c In I n 

. + P I 
C , C , n - 1 , n n - 1 , n 

(A-12) 

and when this is compared with (A-9), we see that 

' n - 1 

(P Y;> 

n - 1 

(A-13) 

and this shows how the v! are obtainable from y. for i s n-1, once v ' is known. Tin. 
J J n 

last row of (A-10) is now used, to give 

(C . , ,C . ) n l n , n - l 
n - 1 

( P - Y ' ) + Y = c
n n n nn n , n + l 

in which (A-13) has been used. This equation violds 

(A-14) 

n-1 
C n, n+l 

Y* n 

pY C .Y. k 1111 
n-1 

• y. c -Y-nn A- nj j C 

It is convenient here to introduce the quantities 
n-1 

u ,^YC .Y. n-1 nj j 

(A-15) 

(A-16) 
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Then (A-15) becomes 

...,0gA-pVl 
Yn-    2   ,    2  

A       B       n-l (A.17) 

making use of (A-l).   Finally, replacing  n  by  n+1   in (A-16) yields 

n 

n-I 
= D  T" c   .Y.(D - 7')+ D<J1Y' , v.     , Y.l o - Y  ; f P i"" "' <    n. i  r n'     K 

J: 

where we have used (A-ll), (A-13), and (A-l).   Witli (A-16), we now can write 

un=p(p-Y;>vi + pffAY;  ' (A"18) 

The recursive solution for the   y's is now complete.   But the   v's   themselves arc not wliat 
we want; it is the   x's , and the   v's are merely a means to an end. 

Suppose then that we have obtained  x    , and  u   _. .   From (A-8), with   n+1   in place 

of  n , we get 

n-l 

Vl^/jV^n      . ^-^ j = l       J 

We use (A-13) now to write 

n-l 
A V"' X = Z-<   Y. X. ( D - v') + V   X     , ■ 1     .,11 n'       n n n+1     •\   J J j-1 

i.e., 

x ^1 = (D - V') x   + v'x (A-20) 
n+1 n    n       n n 

This equation permits the recursive calculation of   x    when combined with (A-17) and 

(A-18).   The starting values are 

x   =0) 
, 1       } (A-21) 
u   =0) o       ' 

A-4 



Finally, the  rr     of (A-3) are obtainable from 

a2 = E(x2) - E(x2) = fT2 + c- -(V, v    .) n       v n'       v n'      A      B        l n-l 

C In 

C n-l, n 

i.e.. 

2       2        1 
n       A       B      n-l (A-22) 

The onlv equations required for the actual computations are (A-i7), (A-18), (A-'2Ü), 
(A-21), and (A-22). 
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AffENDIX B 

TliL' following 7 tables display the estimates that resulted from HU independent samples 
of time series   xi»«»»»xiAn   (miss distances inaburstof 1ÜÜ rounds), simulated by the 

computer.   The heading of each table defines the quantity whose values are tabulated in the 
body of the table.   The 4 numbers on the left and the 4 at the top represent,  respectively, 
the true value of   p  (or  0  and  ff.  .   The value of  a, was taken to be 2.Ü throughout. 

For each   (T.,  p there are 5 numbers presented, which correspond to the 5 independent 

samples used for each parameter combination.   See the main text for additional details. 

As an example, the estimates for  ou,   viz.,   E(o'R), for   p = . 80  and   TA - 4 were 

1.4.   1.8,   1.8, 2.3,  2.3. 

The parameters   p and    £ are related to each other by the equation 

o = tanh(0. 

We used   ^   in the computer calculations. 

B-l 



TABLE B-l 

Frrr   1 

"A 

p 6 4 2 ] 

.98 4.4 7,0 2.8 2.2 
8.6 7.2 3.4 1.6 

10.7 4.8 1.8 1.0 
3.9 5.0 2.1 1.1 
8.7 6.3 1.7 1.8 

.90 10.7 3.8 2.6 1.6 
4.8 5.'' 2.1 1.2 
4.4 7. o 1.9 0.9 
7.1 4.7 2.1 1.4 
5.1 5.0 2.0 J.7 

.80 5.4 4.9 2.2 1.6 
8.8 3.8 3.4 0.9 
7.9 6.5 1.8 1. 1 
4.9 5.2 2.3 0.8 
7.0 7.2 3.4 2.4 

.50 5.5 4.0 2.2 2,4 
5.3 3.8 1.8 1, 1 
5.0 3,9 2.0 1.6 
4.7 4. ] 1.2 0.6 
6.4 4.3 1.9 0.7 
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TABLE B-II 

E[(TB1 

"A 

p 6 4 2 1 

.98 2.5 1.7 2.2 1.8 
2.2 2.2 2.2 2.0 
1.5 2.2 2.0 2.1 
1.7 2.1 1.8 1.5 
2.2 2.1 1.9 2.0 

.90 2.4 2.6 2.2 2.1 
1.4 2.3 2.2 1.9 
2.2 1.7 1.9 1.9 
2.5 2.0 2.0 2.1 
2.3 2.3 1.7 1.9 

.80 1.4 1.4 1.9 2.2 
1.3 1.8 1.6 1.7 
1.7 1.8 2.2 1.8 
2.1 2.3 2,1 2.3 
2.2 2. 3 2.4 2.2 

.50 2.6 1.2 1.8 1.1 
2.2 2.8 2.3 2.4 
4,3 2.3 1.9 1.2 
3.2 2.3 1.9 1.9 
2.8 1.4 2.0 2.1 
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TABLE B-II1 

A 
P = tanh (C) (where C'=[?l) 

"A 

p 6 4 L          2 1 

.98 .99 .99 .98 .98 
.98 .99 .99 .98 
.99 .99 1            .96 .99 
.89 .98 .97 .75 
.99 .99 .98 .98 

.90 .97 .97 .93 .97 
.76 .94 .96 .86 
.80 .96 .94 .95 
.96 .92 .88 .97 
.85 .97 .81 .95 

.80 .68 .84 .85 .82 
.90 .85 .78 .82 
.86 .91 .71 .72 
.70 .85 .89 .92 
.91 .91 .95 .94 

.50 .47 .39 .66 .53 
.48 .65 .76 .93 
.83 .84 .62 .57 
.55 .68 .66 .82 
.62 .62 .80 .94 
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TABLE B-IV 

"A 

4 6 4 2 1 
■ 

2. 30 2.59 2.78 2.36 2.43 
2.43 2.60 2.48 2.40 
2.50 2.57 2.01 2.48 
1.43 2.30 2.04 0.97 
2.72 2.70 2.25 2.33 

1.47 2.11 2.16 1.64 2.09 
1.01 1.72 1.98 1.28 
1.09 2.01 1.78 1.84 
1.98 1.61 1.38 2.04 
1.27 2.07 1.13 1.79 

1. 10 0.83 1.23 1.26 1.15 
1.45 1.26 1.05 1.16 
1.28 1.51 0.88 0.91 
0.86 1.24 1.40 1.58 
1.56 1.54 1.84 1.78 

.55 0.51 0.41 0.79 0.59 
0.52 0.78 0.99 1.66 
1.19 1.23 0.72 0.65 
0.62 0.84 0.79 1.16 
0.72 0.72 1.09 1.72 
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TABLE B-V 

[D2(oA)p  =   -'E[(OA 
2   "> 

'A' 1} 

"A 

p 6 4 2 1 

.98 1.24 1.42 .50 .95 
2.54 3.47 1.03 ,63 
1.30 .70 .72 ,54 
.92 1.34 ,88 .61 

1.33 1.47 ,69 .70 

.90 2.09 1.00 1.09 .93 
1.01 1.67 1.10 .66 
.86 1.60 .71 .51 

1.87 1.25 .58 ,65 
1.35 1.46 ,59 .80 

.80 .69 1.38 ,59 .67 
1.78 1.09 .85 .60 
1.93 1.31 .75 ,62 
.78 1.26 .79 ,64 

1.37 2.36 1. 08 1.06 

.50 .95 .69 .44 ,47 
1.10 1.23 .84 ,65 
1.50 .99 .90 ,79 
1.07 1.02 .71 ,48 
1.19 .96 .72 .61 
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TABLE B-VI 

P'-'J^K 
H 

,rA 

p 6 4 2 1 

.98 .22 .15 .20 .16 
.22 .21 .16 . 18 
.12 .24 .18 . 16 
.34 .16 .20 .48 
.18 .21 .22 .13 

.90 .61 .32 .27 .40 
.87 .35 .29 .33 
,55 .35 .41 .24 
.36 .31 .35 . 16 
.45 .25 .63 .21 

.80 .52 .68 .49 .45 
.68 .50 .59 .62 

1.03 .47 .53 .43 
.84 .82 .26 .28 
.33 .43 .23 TO 

.50 1.13 .82 .36 .55 
1.81 1.39 .63 .38 
.78 1.05 .83 .88 

1.26 1.11 .64 .30 
1.59 1.18 .76 .24 
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CABLE B-VII 

[D2(C)]   2=JE   [(C-C)2]j' 

"A 

4 6 4 2 1 

2.30 .36 .21 .27 .41 
.28 .42 .25 .38 
.09 .26 .38 ,50 
.32 .28 .44 .78 
.10 .39 .54 .46 

1.47 .38 .38 ,61 .75 
.27 ,36 .70 .79 
.32 .39 .78 .81 
.31 .23 .38 ,51 
.33 .36 .63 ,60 

1.10 .18 .32 .57 ,67 
.23 .54 .43 .35 
.35 ,28 .69 .64 
.25 .36 .41 .84 
.25 ,51 .49 .50 

.55 .15 .27 .30 .25 
.21 .37 .71 .86 
.54 ,68 .58 .71 
.41 .33 .70 .82 
.34 .33 .82 1.02 
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