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ABSTRACT

Assuming that the x-coordinates of impact points of rounds fired at a target cen-
tered at the origin, x =0, are the sums of correlated aim errors and independent bal-
listic errors, we show how the likelihood function of the unknown statistical parameters,
associated with a sample Xps Xgo eoes Xy of impact points from a single burst, can be

quickly and simply computed. The likelihood function is used here as the basis for esti-
mating the parameters, and the results of our estimates, applied to a large number of
computer simulations, are summarized.
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ESTIMATION OF AIM-ERROR CORRELATION, AIMING DISPERSION,
AND BALLISTIC DISPERSION

INTRODUCTION

The importance of obtaining efficient estimates of the statistical parameters describ-
ing a rapid-fire gun system is well recognized. Such estimates are necessary in research
studies of future systems and tactics, and also for the design of closed-loop "filters" to
effect corrections at the gun site in actual firings, (references (b) and (c)). In reference
(a) we began the study of the estimation problem by investigating what could be achieved
from the traditional sample covariances of a time series X1 Xos e oo Xy and we showed
that for high correlations (p=1) in the aim error, the aiming dispersion T, was

virtually impossible to estimate tfrom a single burst, Since rapid-fire guns have a high o,
the results of reterence (a) demonstrate the need for numerous independent experiments
to estimate the parameters for any such gun system,

However, the information provided in reference (a) does not necessarily apply to
: cases with moderate p, or moderate burst lengths, and no attempt was made in refer-
ence (a) to provide formulas for estimating p and 012\ . Inthis paper, we show how to
calculate the likelihood function associated with a sample xl, x2, bBE | XN . This function

is then used to provide Bayes estimates of the parameters, as well as their second
moments., The latter quantitics permit us to obtain approximate confidence intervals
for the parameters.,

Familiarity with reference (a) is not required in reading this paper,
g ]

THE MODEL AND THE PROBLEM

With a target centered at the origin of a 1-dimensional coordinate system, we imagine
a burst of N rounds impacting in points X1 Xgs e eas Xy o (For a 2-dimensional picture,

the x's may denote the azimuth errors and equally well, the elevation errors, treated
separately and independently.) The model consists of the assumptions that cach X, is

the sum,

X =o + l
b n n Bn (1)
4 of two stationary Gaussian processes {an} . {Bn} , independent of cach other, in which
1 {an} represents the aim error, means zero, and covariances
( 2 |k

B (e 2
f “'n n+k] Tp° 4 (2)
i and {Bn} represents the ballistic error, means zero, and covariances
| BA0E, B o T=1055 5 3)

n+k B o, k
-l-
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The process {Bn] is often called "white noise,” Therce are exactly three parameters:
2 . . . 2 C .
Oy the aiming dispersion; Op» the ballistic dispersion; and p, the round-to-round
aim correlation,
The problem is to estimate the values of the 3 paramecters, and to obtain confidence
]

intervals for them from impact data, Equivalently, from a Bayes viewpoint, we want the
postcerior probability density in the parameter space, given a single sample TR TRERIR N

of impact points from a burst of N rounds.

According to this model, the gun is unbiased, E(xn) =0 for each n . The possibility

of a non-zero bias is of no importance in the design of a gun filter, because any such
possible bias will be removed by the filter, (reference (b)), Furthermore, in sampling

experiments on the firing range, the data Xr oo Xy Can be replaced by X - X, Xo = X,

veey Xy = X, where X is the arithmetic mean, The only parameters of importance are

N

) 2 |
O'A, OB, ana p.

We confine ourselves to the estimation problem based on a single burst Xpeees Xy

since there is no problem in combining the results of independent experiments, If
Lv(c'i, 0[2}, p) denotes the likelihood function of the wth independent trial (with the

same oi, 0'[23 , p) for v=1,2,...,r, then, of course, the combined likelihood function

is simply the product

G2 aR ) e (o)

THE LIKELIHOOD FUNCTION

From the last section, and cquations (1), (2), (3), we see that the sample vector
(xl, Xgr e xN) is Gaussian, with mean (0,0,...,0), and covariances

_2 |i-3] 2 ,
cov (xi, xj) =0, P e 6ij 4)

If C-= {ci.] is the N x N covariance matrix, cij = cov(xi, xj) , then the density function

for (xl, ...,xN) is

r —1'!5
rdet C t -1
2 2 >= L j -Xx_ C "x -
0 (xl, o, leaA. ogs P —7(211)N 5 exXp |——> (5)

=



. . p L.
where x is the N x 1 matrix with elements XpposorXyys X 18 the transpose of x ;

.=l - . . . - N
(5 is the matrix inverse to C ; and det C is the Jdeterminant of C . ‘The likelihood
function is precisely the quantity in equation (5),

2 2 2 2
L(ay» Op > p)="r*(xl,...,xN|oA. o5 o) (6)

(or any constant multiple thercof), regarded as a function of the (Greek-letter) parameters,
The obscrvations X peeer Xy are fixed, of course, for any one experiment,

But the form of » in equation (5) is practically impossible to evaluate, cven on a

high-spced computer, The matrix C is easy to write, equation (4), but C ! cannot he

written in terms of the parameters, and inverting large matrices on a computer is time-
consuming and subjecttogross round-off errors. Thurefore, we again consider the proba-
bility density of (xl, oL xN) and write, suppressing the Greek letters,

".ﬂ(xl, ok: .,xN) = (xl) fnz(lexl) "r~3(x3|xl,x2)...an(xNle, aC .,xN_l) (7)

where cach mj is the conditional density of xj given xl, o &Y xj [ Each F’Aj is a Gaussian

density, and we therefore need only the two quantities (for cach j=1,2,...,N),

A r -
xj—Eijlxl, ceer %y ] (8)
and
2 . 5w -
°j = E |_(xj xj) |xl, Tom ¢ xj_! p C)
and we can then write
1 r 1 A2
ToXLIXy, .., X.) = ——— ex - — .- X,
3(3, 1 3 /2 4. oL P &5 i’ (10)
P ]
From equation (6), (7), (10), we can write
L2, o2 6 = T - exp Flo (x407) (1)
UAI UBI £ = 21 7. exp i: 2 Xj xj y
J= ] 20j

. ; -1/2 . . N
where we have discarded the constant multiples (2m) / , and in which the xi depend on

2 2 2 2
X 19 ey X, y & ’ ’ reas R Y / Q ’ ’ '
X \j-l and o Ops P whereas the cj depend only on o Op» P



(The proof of the last clause can be carried out along the following lines,  'The condi-
tional density of xj given xl, bl xj | can be written

r'j\j(xj’xl) o-lpxj_l) = k(xl, ...,xj_l) '.l] (xl’ "')Xj)

where ¢ denotes the density of (xl, ST xj), and K (xl, b blog xj_l) is the normalizing

factor obtainable frox11fnj dxj = 1. Now ' has the form given by the r.h,s, of cquation

(5), with N replaced by j. The xj appears only in the exponent, so we can write

' ."1/2Q
9j(\j"\1’ ---)xj_l)‘k (xl’---,xj) *
where
X1
Q=(xl, ...,xj)A :
Ko
]

and A is the matrix inverse of the j-rowed covariance matrix of Xppeee .\'i . By famil -

iar methods, Q can be written '
0 =0_ (x X, 1) + AL (x.- %

o L2 0990 a3 33 xj xj

so that

A
) 1
where Ajj is the (j, j) element of A, For cur purposes, the main point is that c? does

l')

not depend on .\l, 0000 xj _

The interesting consequence of the last remark is that
2 2
E(x. -x)"]=0; (12)
bl i

2 - y '
50 that oj is the (unconditional) mean square difference between xj and xj(\l, 00
xj_l) . Now the problem of calculating x'j and oiz in our contest is a special case of the

Kalman filter theory, which is trcated, for example, in reference (¢), and which we sum -
marize in appendix A, for completeness.,



Calculating the Likelihood Function

For a fixed sample X[ X9y eaeshy and arbitrary Opr Op» Py WC require L, given

in equation (11), or equivalently,

h(o,, O 0) =log, L. (13)

Appendix A shows how the crj and Qj of equation (11) can be calculated recursively., The

essential equations are (A-17), (A-18), (A-20), (A-21), and (A-22), which we repeat here,

\ —
) ’0} (14)
u =0
)
22 2 -
o, =loytop-uy) (15)
2
p (0, = u )
L. A n=1
Yn - 2 (lb)
n
= o ( ' 2 ' 17
u = D-Yn)un_l+DcAYn (17)
A ! A [}
Xppp = (P - Yn) Xt Y ¥ (18)

In figure 1, we have displayed a flow diagram for computing h(cA, op p) . The
A\
letters V, H, C, U, Y stand for crlzl , h, yl'l, un, X, e This efficient algorithm for h
can be made faster bv pot calculating log (V) = log(clzl) for cach index, but rather by

e —

. . 2 . . :
forming the products | | o, recursively (guard against overflow!), and then calculating

1og(—-’§r 0121) just onnc=el, for each (crA, o a)
1

Estimating the Parameters

For cach parameter point (O‘A, og» p) — a point in 3-space — we can evaluate h

h . . . ,
and therefore L =c¢, from cquation (13). But in place of p, which we expect to be in
the interval 0 < p< 1, we prefer to use the variable (, where

= El—log-}-t—g- . (19)



This is equivalent to

2¢
(]

p= —2—r:'l—— = tanh (C)

(VI S |

and we take our parameter space to be the sct of all points (o

all three coordinates are 20,

H=0

J =

U=0

Y=0

Y

—P -] + |

Vo= (g% + a9 - U
-—(O’A+0’B) _

1 \
H<H -7logc( )

P

- g & 2 Y)

C = o(a® -U)V
PATA

Uep(p-C)U +pe

< /_‘%

A

v -

2

2
A

Y=Y (0-0)+Cx,

-

[Now have ﬂ

C

A

) in R,

FIG. 1: ROUTINE FOR CALCULATING h = logC L

-~

3

(20)

for which



It (cA, 0, £) denotes our prior probability density, then after the sample

(x TRRRE xN) is obscerved, our posterior density is

A - = h (21)
CP(oA, Ig () =C 9L =C 9 e

where C is the constant required to make equation (22) true:

e h (22)
‘\):}‘BCCDe doAdaBdC=1 ,

i.c.,

1

- -
‘\)35 9 e do, doy A€

We take for our estimates:

3A=E(0A) =353 aAE\Pch daB a¢ ,
A _ _ ’ A

o = Elog) =y ) jog ©® dop doy dC ,
A o P
C=E(C)=‘)\)3Ck‘9daAdaBdC,

and then, {rom ecquation (20),

A A
p = tanh () .
def

We have used for @, the constant (uniform) density for 0 < 0, < D,0 < 0y < D,

0 <f<3, where D2 is four times the Oth sample covariance, i.e., we put

D=2[
i

1

=

1
25
2 2
X,

i
1

(23)

2=

nr~
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We note that E l' 2 2 2 1/2

=z o . : 1 b S I,
‘ x:.l = GA + (J'B , and our D will be on the order of Z(O'A t GB) .
1 -

The interval 0 < < 3.0 corresponds to 0 < p < ().WS+ .

Zj-

With these assumptions on our prior, we are in a position to consider the evaluation
of integrals of the form

- (1 A
JyJ F (cA,aB,C) S O 75 ) do, dop dC .
L . . : . . S . 2
Wnar) "y % rreste t) ST “'.‘ Z. d = o §e = s, = sl = H
¢ are principally interested in 9 such I¥'s, viz,, 1 1= 0p0 12 Ty l‘3 ¢ l4 0y
F% = O'A rrn; cte,, i.e., we want the Ist and 2nd moments of Tps UB’ C, and more
important, the 2nd moments about the means, For example, with I = O'A r, our

integral is, using cquation (21):

h 1 I’ -
05 -Gl € (OA ) ¢) duA daB dq

A

A B

OC——WwW O W

O cC—.,0] 0c —.0O
O¢C— Ul O0c 0O

To calculate all the required integrals, of which there are now 10, with the 10th I
being F = 1, we used the Monte Carlo procedure, choosing 500 points (rrA, nB, 0

uniformly randomly in the region o < OuS D, o< Ty S D, 0« <3, and we used the
approximation

500 h
‘R Vi@
o I i (wv, e
\ { F. - de, do,d° = el
O ‘3 J i A B 500 N

2:10V
v=1

for j=1,2,...,9, where wv denotes the vth random point (rTA, T ¢) . (Since the
h,) were on the order of h\) = =200, the sums in the previous equation were replaced by

sums of the form

%:l" (u:v) exp (hv - h*),

where h* = max h\) and, of course, the constant factor exp (-h*) cancels in numerator
v ?
and denominator,)



EXPERIMENTAL PROCEDURE

We chose 16 parameter combinations, viz., Op = 6,4,2,1, with p= .98, .90, .80,

.50 (40A's times 4 p's), with ¢ = 2 throughout. For each parameter combination we

I
took 5 independent samples Xl’ vees xN with N = 100 in every case. So we collected
80 independent samples in all, Each sample was generated by the computer, programmed

to simulate the process {xn} according to the model described earlier.,

The computer calculated and printed out the estimates E (G‘A), E (O‘B), E (f) (expec-

tations with respect to our posterior density in the parameter space), together with the
sccond moments about the means, as described in the last section, This was done for
cach of the 80 independent samples,

Experimental Results

/ A /
The means (}A, GB’ € (and also 6 = tanh (&)), and the standard deviations

\{DT(GA) ,\/52(08) ,\IDZ( £) that resulted from the 80 samples are all presented in
appendix B, The mixed moments such as E (oAcB) and the covariances were of less
importance and are not given here, (The covariances indicated, as expected, that the

A A .
estimates Opr Op t‘: were not independent of ecach other.,)

The main purpose of computing the second central moments was to provide a method
{for calculating confidence intervals for the parameters G Op €. Let O denote the

A 2 .
true value, oA its estimate, and D% (o A.) the second central moment (with respect to

the posterior density associated with a sample STRERY xN) c

Define . 2
(o, -0,)
e A A 24)
AT
D (cA)

We have 80 independent samples of this quantity when we aggregate all the rrA's and o's,

We calculated these quantities - or rather their square roots - and grouped them in
intervals, and compared the frequencies with those obtainable on the hypothesis that XA

is distributed like chi-square with | degree of freedom. The comparison indicated that
the latter hypothesis is a good assumption, i.e., that VxA is distributed like the absolute

value of the standard unit normal variate (so Xp is chi-square with 1 d.f.).

-9-

™™



I'he table below shows the observed and expected frequencices,

A
Frequencies of , x, = -'—————OA GA’
2
YD (op)

Interval Obscrved = O Expected = I} O-E
0- .5 28 30 -2
S -1 21 25 -4

1.0 -1,5 18 14 4
1.5 -2,0 6 7 -1
>2,0 7 + 3

The chi=-square test applied here gives
G=3 = 4.30,

which is small for four degrees of freedom, and indicates a satisfactory fit,

(0-E£)°
i';

We did exactly the same sort of calculation for

G 2
X = @, - o)
DZ(UB) (25)

and for

(L -2) |
N T 2 (20)
T

and found excellent agreement with the hypothesis that X and Xp are also distributed

|
like chi-square with one degree of freedom.,

Using the division points 0, .5, 1.0, 1.5, 2.0, =, as before, the numbers of
obscrvations of VxB in the 5 intervals were 35, 27, 11, 3, 4, yiclding O=-E =5,2,-3, -4,0,

The chi=square Q turns out to be Q = 3.9t (four degrees of freedom),  The correspond-
ing numbers ol observations of «/{,'C in the 3 intervals were 29, 25, 12, 9, 5, and the

corresponding Q was 1,13,

-10-



As a result, we are justified in saying that cach of Xar X Xp is like chi-square

with 1 d,f, Accordingly, if )‘p denotes p - percent value of a normal deviate, i.c.,

x®
' 2
P _ 2 3 =Lt
= e dat
100 vz Ty
then we can uwse the intervals
| <Ly o
a " °al = 'pAb? (o) ,
A I
= <
lop = ol < Mg 42 (og) '
i3 =% Ry e
ERb p vn? () :

as (100 - p) percent confidence intervals (though not all simultancously),
As an example, take p = 10 percent, Then )‘p = 1.64 . Suppose that we observe

Y 'T—'
(calculate) €= 1.20, ND7(L) = .57 . Then we can say

[ -1.20] <(1.64)(.57)
or
s < € < 2,20
at the Y0 percent level, Since o - tanh (£) is a monotonic function of €, we can also
say

Al < p< 97

at the 90 percent level, If we follow such a procedure, then in a long series of such
independent experiments and asscrtions, we will be wrong about 10 percent of the time,

CONCLUDING REMARKS

We have described a model for the miss distances (plus or minus) Xppoeor Xy
arising from a single burst of a rapid-fire gun. This model contains 3 parameters:
Oy» Og» 0 The problem is to estimate these 3 parameters from one or more samples

(x [?eee xn), though we concentrated on the case of one sample, (There is no problem

in combining independent samples, because the required likelihood function is obtainable
from those of cach single sample by multiplying the latter together.)

-ll-



We recommended a Bayes type of procedure, in which we used a uniform prior density
over a certain 3-dimensional interval in the parameter space of U‘A, GB’ € = tanh (p) .

The posterior density is then the product of the likelihood function and the prior, apart
from a multiplicative constant factor, For our estimates, we took the expectation of oA

and ol

procedure when our loss function is the mean square error. More precisely, supposce we
concentrate on Oy for example, and somebody proposes a rule W(xl, coag xn) for csti-

3 and £, relative to our posterior density, This procedure is precisely the optimal

mating O‘A , L.¢., Observe (xl, o or xn) , form the real number l!r(xl, | xn) and takc
this to be our estimate GA of o, .

- Y o . . . /\

For any fixed O‘A, GB , €, the totality of all possible estimates GA = (xl, T x“)

-- (xl, S0 ¢ xn) varying according to its p.d.f,-- has a certain p.d.f. We form the
A A 2 .
differences =squared, (cA - A) , and their expected value:

r r‘[“’(‘i x ) 2
L. _. e s\ l)-..,- ‘0 ]
oy, O C5 8) ==~ E

X f(xl, ...,xnlo ,O'B,C)dxl, ...,(lxN

where {is the probability density of (xl, o .xn) given Ops Op s €. We assume that

this function p, depending on the parameters and on ¥, is the loss that we wish to he
small, Let ‘1'0 denote the rule proposed in this paper, To say that ¢ is better than

is not yet a meaningful statement, for this statement, according to our assumption, ouglt
to mean that
1) < S I
o(ays Oy L) <p(oy, O L5 t)
But for which values of (@,, Oy £)? We will not know, in practice, what the parameters

are--if we did, there would be no problem. One possible way to make precise the state-
"

ment "' is better than ‘30 is to use the definition: for all possible values of (cA, Ty 0),

we have
ol ] . i
O(OA GB) gr V) —< o (GA’ OB’ C’ llo) b4
and for some (GA, Oy ) the inequality is strict,

Butitis not hard to prove the following for our problem: let m(oA, Oy €) denote any
prior probability density that is non-zero in every region of 3-space where oy > 0,

GB >0, and ict '1'0 be the function for which

-12-



¥
[

JJ‘J D(C'A.GB,C: ¥) o (OA,UB,Q) dUAdOBdQ
is smallest, This rule 'Jfo will turn out to be

[lr CA L L(GAIGB:C) dOAdOBdC

(X, eee,x ) = :
o1 n J.“'@L(QAOBQ) doAdoBdC,

Then there is no other ¥ about which one can say, "U is better than "o In more

technical language, 1 is "admissible,"

In our situation, we took a prior +(o,, Ty £) that was zero for £ <0 or > 3,00

l
L
and for OA >2 [Z xi] =D and for GB >D . The reason was that we knew that £ >0,
|
at least in our simulations and very likely in practice (although it may be safer to take
the interval - .5 < €< 3.0 in practice), and in no simulation, of which we have run about

N
. 2 1 2 . ]

200, have we ever obscerved a case with 2‘ A -4—(0': + O‘B) . So the latter event is one

J

1
with very small probability, and we ignore that possibility in our procedure,
It is, consequently, unlikely that anyone will produce a rule ' that is (uniformly, for
all Oy 0,, L) better than our rule 11!0 , and ol course, the same also applies to the other

parameters o and € .
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APPENDIX A
We consider the stationary Gaussian process .\'l, xz, orekels xn, ... With means zcero,

and covariances

2 |i-j| 2 (A-1)
1 =
E[xixj gy P + oy 6ij

. 2 2 o ) ,
with GA’ UB , o assumed known, The problem is to calculate recursively

« = E[ 1 (A-2)
xn Exnlxl,..., xn—l
and
2 _ r _ 2 2-]
o = E (xn xn) (A-3)

It is well known that for Gaussian variables fxn], the X4 of (A-2), is a lincar

combination of X{seees "n-l , and in fact, it is that lincar combination for which

g A :
Q(Xn) - (Xll"‘l xn_ll xn) An ' . (A_4)

is a minimum, Here An is the matrix inverse to the covariance matrix of xl, o .,xn g

[t follows that

n-1 A .
. nj . -
e f\;l —A::: "] s

where (Anl, 00 Ann) is the nth row of An . But (A-5) is not very useful, since we don't
have simple formulas for the Anj .

Let Cij = cov(xi, xi), and form the sums

n-l

YCA =5 -C. A (A-0)
i=l ij nj in in nn .,

A-1



Theretore, the cocefticients = Anj/Aun in (A-5) satisly the (n-1) cquations

n-1 -Anj
;;_Cu (‘K“) =Cin

(A-7)
nn
for i=1,2,...,n-1 . So, whenwe put
) n-l ,
*n :j=l SN (A-5)

the (vl, o 'Yn-l) vector is the unique solution to the matrix equation cquivalent to (A-7):

Yl Cln

(A-Y)

) » o

n-1 n-1,n

where € is the (n-1)-rowed matrix with elements Ci' .

The equation (A-9) can be solved recursively in a simple manner, Indeed, lat
(y'l, oo Yl'l It vl'1) be the corresponding coefficients when n is replaced by n+l. Then
we have to solve the equation

r— - - . - r by
Cin Y1 Y5
‘
n-1,n | |Yn-1 n-1,n+1
. - 3
L I B ] C
Cnl Cn,n-l Cnn J Yn n,n+l
L L = L .
We observe that
C
Cl,n+l lln
. = p i (A-11)
C
Lcn-l,n+1 n-1,n



using (A-1). So the first n-1 rows of (A-10) can be written

o (A-12)
1 Cin Cia
Cc 3 = =y 3 + 5
' 'n c : c
Yn=1 n-1,n n-1,n
?
and when this is compared with (A-9), we see that
yi Yl (;\-1.5)
. = (p - v 5
L}
Yn-1 Yn-1

yj are obtainable from vy. for j <n-l, once ¥vy'

3 is known. The
last row of (A-10) is now used, to give

and this shows how the

Y4
bt - -v!) + y! =
(Cnl’ 'Cn,n-l) (p Yn) Yncnn Cr1,n+l (A-14)
Y
n-1
in which (A-13) has been used. This cquation vields
n-1
=gy O Y
o n, n+l Wl (A-15)
‘yn = n-1
Co i ¥ Coy
nn = njj ]
It is convenient here to introduce the quantities
n-1
u. :JZ::lC“ij . (A-16)

A-3




Then (A-15) becomes

2
y' = o“J'A B pun-l
n 2 2
By TR “YUni)
(A-17)

making use of (A-1). Finally, replacing n by n+l in (A-16) yiclds
n
Un = ZC n+l, j _]
=p 3. C_ .v(p 'Y')+002V'
nj'j n A'n
where we have used (A-11), (A-13), and (A-1). With (A-16), we now can write
=o(p-v)u _ +poly (A-15)
n’ “n-l AVn ¢ ‘
The recursive solution for the v's is now complete. But the v's themselves are not what

we want; it is the x's , and the v's are merely a means to an end,

: A - . .
Suppose then that we have obtained X and Uy - From (A=8), with n+l in place

of n, we get
| _L TR B (A-19)

We use (A-13) now to write
n-1

Z \’x (o-v)+v N

n+l nn

i.C.,

A

X v - V') x + Vn‘( (A-20)

n+ l n

A
This equation permits the recursive calculation of X when combined with (A-17) and

(A-18), The starting values are

xl=0

g (A-21)
u =0

0

A-4



Finally, the cﬁ of (A-3) arc obtainable from

In
2 ..,.2 e 2 2 :
o= L(Xn) L(Xn) =0, 10 (yl’ PEW Vn-l) 3
n-L,n| ,
l.e.’
2 9 79
o =0y top-u (A-22)

The only equations required for the actual computations are (A-i7), (A-18), (A-20),
(A-21), and (A-22).

A=5
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ARENDIX B
The following 7 tables display the estimates that resulted from 80 independent samples
of time series XppeenrXgg (miss distances in a burst of 100 rounds), simulated by the

computer, The heading of cach table defines the quantity whose values arc tabulated in the
body of the table, The 4 numbers on the left and the 4 at the top represent, respectively,

the true value of p (or £) and Oy - The value of 0 was taken to be 2.0 throughout,

FFor cach Opr 0 there are 5 numbers presented, which correspond to the 5 independent

samples used for each parameter combination, See the main text for additional details.

As an cxample, the estimates for Oy viz., E(ch), for p= .80 and Ty = 4 were
l.4, 1.8, 1.8, 2.3, 2.3,

The parameters p and £ are related to each other by the equation
o = tanh(Z).

We used € in the computer calculations,
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# = tanh ({;\) (where é= Xq)

TABLE B-11

B-4

llA
S — S R
6 4 1
e T o
.99 .99 .98 .98
.98 .99 .99 .98
99 .99 : 96 .29
.89 .98 .97 75
99 .99 .98 .98
.97 a7 .93 .97
.76 .94 .96 . 86
. 80 .96 .94 .95
.96 .92 . 88 .97
. 85 .97 . 81 .95
. 68 . 84 . 85 .82
I .90 . 85 .78 . 82
. 86 o1 .71 .72
.70 . 85 . 89 .92
| .91 .91 .95 .94
Tr . 47 . 39 . 66 =53
. 48 . 65 .76 .93
.83 . 84 .62 .57
55 . 68 .66 .82
. 62 .62 . 80 .94



TABLE B-IV

¢=E(C)

AAMO M AN

—— o0 I~ |

NPT O =282
!

2w oC O \O

2. 30

47

1. 10
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TABLE B-V

B-6

|IA

6 4 2 1
1.24 1. 42 .50 .95
2,54 3. 47 1. 03 .63
1. 30 .70 .72 .54
.92 1. 34 . 88 .61
1,33 1. 47 . 09 . 70
2,09 1. 00 1. 09 .93
1.01 1. 67 1.10 . 06
. 86 1. 60 .71 a0l
1. 87 1. 25 .58 . 65
i 1. 35 1. 40 . 59 . 80
. 69 1. 38 .59 4107
1.78 1. 09 . 85 . 60
1.93 1. 31 A7S J62
.78 1. 20 .79 . 64
1. 37 2. 36 1,08 1. 06
.95 . 69 . 44 . 47
1.10 1.23 . 84 . 05
1. 50 .99 .90 79
1,07 1. 02 7 . 48
1.19 . 90 . /2 .61




TABLE B-VI

[D (oB)] = 3E [ (OB-?B) ]f

(TA

o 6 4 2 1
.98 ) .15 .20 .16
.22 .21 .16 .18
12 . 24 .18 .16
. 34 .16 .20 . 48
.18 .21 102 .13
.90 .61 | .32 . 07 . 40
.87 .35 .29 .33
.55 .35 .41 24
36 . 31 .35 .16
o 45 | .23 .63 .21
. 80 .52 .68 .49 . 45
.68 .50 .59 .62
1. 03 . 47 .53 .43
. 84 .82 .26 .28
.33 .43 .23 .22
.50 1.13 . 82 . 36 .55
1. 81 . 1. 39 .63 .38
.78 | 1. 05 .83 .88
1.26 1.11 .64 . 30
1.59 1R .76 .24
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TABLE B-VII

5
[DZ(C)] =

3E [(c-€)2]$

%

[ N
- 6 i 4 2 1
2. 30 . 36 .21 .27 . 41
.28 .42 .25 .38
.09 . 26 .38 .50
.32 .28 . 44 .78
10 .39 .54 . 46
1. 47 .38 .38 .61 .75
N . 36 .70 .79
. 32 . 39 .78 .81
.31 .23 .38 .51
.33 . 36 L 63 .60
1. 10 .18 .32 .57 .67
.23 .54 .43 .35
.35 .28 .69 .64
.25 .36 .41 . 84
25 .51 . 49 .50
.55 .15 .27 . 30 .25
.21 o537 .71 . 86
.54 .68 .58 .71
41 .33 .70 .82
.34 .33 .82 1,02




