;
& L
e
.
;
s
.
.
L
i
%
E
;

. ~
’
«
>
o
-
s

e

i

2 -

-

- ”
> g ‘
;
» &
»
A

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va 22151

«
‘
3
.
-
N
L]
~
-5
2L
-
.
<
L
»

3

e
£
\
i 4




L i e

MINIMAL k-ARC CONNECTED GRAPH

D. R. Fulkerson*
L. S. Shapley

—_—
Any views expressed in this paper are tnose of the
authcrs. They should not be interpreted as reflecting the
views of The Rand Corporation or the official opinion or
folicy of any of its governmental or private research
sponsors. Papers are reproduced by The Rand Corporation
as a courtesy to members of its staff.

S R Al i S sl




i

iit

SUMMARY

\
N

A graph is k-arc-connected if it is necessary to remove
at least k arcs in order to disconnect the graph. This
paper solves the problem of determining the least number of
arcs required in a k-arc—connected graph on n nodes by /
describing constructions that produce such graphs having kn "

2
kn+l
.T

~

arcs (for kn odd). These
“ - i)/

results have application to the‘practica problem of synthe-

arcs (for kn even) or

sizing minimum cost, "k-reliable' communication networks.
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MINIMAL k-ARC~CONNECTED GRAPHS"

1. INTRODUCTION

Tn considering the synthesis of reliable communication
networks with respect to link failure, :he following question
seems a natural one to raise. Suppose given the complete,
unoriented graph G on n nodes N = {x,y,z,...;, and let
each arc (x,y) of G have associated with it a nonnegative
number c(x}y), to be thought of as the cost of installing
a communication link between stations x and y. For each
k=1, 2, ..., n=1, find a minimum cost k-arc—connected
spanning subgraph of G. Here the cost of a subgraph H is
the sum of the numbers c(x,y) corresponding to arcs of H,
a spanning cubgraph of G is a subgraph that has the same
node set N as G does, and a k—arc-connected graph is one
in which at least k arcs must be suppressed in order to
disconnect the graph. Thus k might be thought of as the
"reliability level' of the communication networ%, and the
practical problem is tu minimize cost subject to achieving

a stipulated reliability level.

*This paper was written in 1961 but never published
because the authors became aware that Harary was preparing
a paper which solved the more general problem of determining
the least number of arcs required for k-node—connectivity.
Harary's paper later on appeared under the title 'The Max-—
imum Connectivity of a Graph' in Proc. Nat. Acad. Sci. 48
(1962), 1142-1146. The authors of the present paper feel
that the method of proof, which is quite different from

Harary's proof of the more general result, may be of some
interest.
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For k =1, the problem becomes that of finding a

] minimum cost spanning subtree of G; there sre simple methods

known for doing this [2,3]. But for k > 1, the situation

seems to be quite different. Here we need only mention the L
fact that, with k = 2 and all aivc costs 1 or a, the }
i problem includes that of determining whether a given graph *!

] (the subgraph of unit cost arcs) contains a Hamiltonian
cycle. Even with all arc costs unity, an interesting graph-
1 theoretic problem emerges: to determine the minimum number
of arcs required for a k—-arc—connected graph on n nodes.
Here, for k > 2, there is an obvious lower bound for the

| number of arcs needed, namely %F (for even kn).or EB%l

(for odd kn), and it is reasonable to ask if this bound is

always achieved. We answer this affirmatively by describing -

| two constructions that produce graphs having the minimum

number of arcs; one of these constructions is applicable for
even k, the other for odd k.

Similar problems arise if one considers k-connectedness*
not with respect to arcs but rather with respect to nodes.
Thus, for example, one can ask for the smallest number of
arcs required in a k-node—connected graph on n nodes. The
lower bound mentioned above is unchanged, but very little
appears to be known about the problem for nodes (cf. [1],
Appendix IV, Problem 11). Since a graph that is k—connected

with respect to nodes is k—connected with respect to arcs,

“In the literature on graphs, the phrase "k—connected
graph' refers to nodes, see [1,4].




but not always conversely, the fact that the lower bound is
achievable in the arc problem is a weaker assertion than the

corresponding one for nodes.”

2. CUT SETS OF ARCS
Throughout this and the following sections, a graph is

an unoriented one without 1 or 2-circuits, that is, at most
one arc joins a pair of nodes and all arcs join distinct
nodes. We write G = [N; 7] to mean that the graph G has i;
node set N and arc set 4. Nodes are denoted by x,y,z,...,
and arcs by unordered pairs of nodes, (x,y), (x,z),...

Let C = [N; 7] be a graph on n nodes, n > 2. A
subset ¥ < & 1is a cut gset of arcs in G provided that the |
graph G' = [N; @ - X] obtained from G by supressing arcs é
1 of ¥ 1is disconnected. A graph G 1is k-arc-conpnected if
every cut set of arcs in G has at least k members; here
0 <k <n. In dealing with k-arc-connectedness, attention
can be restricted to cut sets of arcs of the following kind.

Let X and X=N-X bea partition of the nodes of G

into two non—empty sets, and let (X,X) denote the set of

arcs in G that have one end in X, the other end in X.

Thus (X,X) is a cut set of arcs in G separating the rodes
in X from those in X. Moreover, given any cut set X c 4,

one can determine X c N so that (X,X) < ¥ by the recurs-

‘ve rule:
| (a) selec: a node x and put x in X;
r *See the first footnote.
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(b) if x is in X and (x,y) 1is in @ - X, then
put y in X.
The set X = N - X thus defined cannot be empty, since X
is a cut set of arcs; it is also clesr that (X,X) c ¥. Thus

it suffices to consider cut sets of the form (X,i), ard we

shall do this.

3. THE CASE k__EVEN

— e

We give a simple construction which furnishes an induc-
tive proof on n, for fixed even k, that there are k-arc-
connected graphs on n nodes having %? arcs.

Lemma 3.1 below will be used in the construction. Call
a set of arcs of G independent 1if no two arcs of the set
have a node in common. The degree of a node x in G is
the number of arcs on x.

Lemma 3.1. If each node of a graph G has degree at

LE%QJ independent arcs.
Here rk%l] denotes the biggest integer in E;l. A

proof can be made by induction on k. The conclusion is
obviously valid for k =1, 2. Suppose G 1is a graph each
of whose nodes has degree 2> k > 2. Select an arc (x,y)
arbitrarily in G, then suppress nodes x,y, and their
arcs, to obtain G'. Now each node of G' has degree

>k =-2>0. Since k >2, G' contains at least one

arc; hence by the induction assumption, G' contains a

set of [KELJ independent arcs. The arc (x,y) of G,
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together with these, gives a set of 'Ll—(-'z"l _| independent arcs
of G.

The conclusion of Lemma 3.1 is very weak, but suffices
for our purposes in this section. In treating odd k, a
strengthened form of Lemma 3.1 will be used. The version
given here has the advantage that the construction implicit

in its proof is extremely simple: any maximal set of inde-

pendent arcs will do.

Theorem 3.2. Let n be a positive integer and k a

even integer satisfying 2 < k < n. Then there is & graph 1]

on n nodes that is k—arc-connected and has %‘-‘ arcs.

Let kx = 2p. If n =k + 1, the complete graph on n
nodes serves. We now proceed by induction on n, holding k |
fixed. Thus let G be a k-arc—connected graph on n nodes
having np arcs. Then each node of G has degree k and

hence by Lemma 3.1 G contains p independent arcs, say
(3.1) (xl’yl)) (x21yz): ey (xplyp)‘

Now let G' be the graph on n + 1 nodes obtained from G

by deleting the arcs (3.1), then adding node z and the arcs

(3.2) (z,xl), R (Z,XP), (z:yl)’ tee (z:yp)'

The graph G' has np + 2p ~p = (n + 1)p arcs. We assert

e 20 S

SRR

that G' is k—arc—connected. For suppose not, and let (X,X)

by a cut set of arcs in G' containing k - 1 or fewer arcs.

We may suppose z is in X. If X consists of the single
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node z, then (X,X) has k members. Thus X contains a
node of G. The cut (X,X) in G' then produces a cut
(Y,Y) in G, by taking Y = X - {z}. But the number of arcs
in (Y,Y) 1is less than or equal to the number in (X,X),
since to each arc (xi,yi) of the deleted set (3.1) that

is also in (Y,?), there corresponds at least one of the
added arcs (3.2), either (z,xi) or (z,yi), which is in
(X,X). Thus (Y,Y) has at most k-1 members, contradicting

the fact that G is k-arc—connected. This proves Theorem

8.2

4. THE CASE k _ODD

For the case of odd k, say k = 2p + 1, the analogue
of the above construction can fail. The difficulty comes
in attempting to make the transition from odd n to even
n + 1, Here one would start with a k-arc—connected graph
G having knfl arcs, so that some node of G has degree
k +1, all others have degree k. Lemma 3.1 can be used
to select p + 1 independent arcs, one of which is on the
node X4 of degree k + 1. 1If it could be shown that the
graph G' obtained from G by deleting the independent

arcs (Xl’yl)’ o, \xp+1, yp+1), then adding node 2z and

the arcs (z,xz), ...(z,xp+1), (z,yl), 5 05 (z,yp+1), were
k-arc—connected, a proof for odd k would be obtained. But
this is false, as the following example for k = 3 shows.

Let G be the graph of Fig. 4.1 below; G has the minimum
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number of arcs and it can be checked that G is 3-~arc-

Fig. 4.1.

connected. Let (xl,yl), (xz,yz) be the candidates for
elimination. One then obtains the graph G' of Fig. 4.2,

which is only 2~-arc-connected.

y 2 X3 v
Fig. 4.2.

Fortunately, the troublesome feature exhibited by the
preceding example can be avoided by employing a construction
that adds two nodes to the graph at each step, instead of
one. For this we first need to strengthen Lemma 3.1.

In Lemmas 4.1 and 4.2, k may be either even or odd,

although we use them only for odd k.
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Lemma 4.1. If each node of a graph G on n nodes has

degree at least k, then G contains at least min ([%],k)
independent arcs.

Let mMc 4 be a maximum set of independent arcs in

G = [N;aq], i,e., one of maximum cardinality. Say that x in

N is covered in M 1if x 1s the end of some member of 7,
uncovered otherwise. If G contains at most one uncovered

node, then 7 has [%] members. Suppose that G has at

least two uncovered nodes, and let ups Yy be two such. Since
M is a maximum independent set, each node x that neighbors
an uncovered node must be covered. Let uy have degree

ki >k, 1 =1,2, and separate the ki neighbors of uy

into two types: (a) those joined together in pairs by

arcs of 7, (b) those not so joined. Let x be a neighbor
of uy of type (a), and let y be the neighbor of U for
which (x,y) is in 7. Then x cannot neighbor Uy) for
otherwise the set m' of arcs obtaired from 7 by deleting
(x,y) and adding the arcs (ul, y), (x, “2) is independent
and contains more members than 7, a contradiction. Hence

if my is the number of arcs of 7 that join type (a)
neighbors of ug, i=1,2, then M contains at least
m +m, +-max(k1-2m1, k2-2m2) > k members. Thus, in any
event, M has at least min([%], k) members, proving

Lemme 4.1.

We need one other preliminary lemma before proceeding

to the proof of Theorem 4.3.

T ICTIR S PRaueICETITer & P e WL S P “ . ——



Gt kil i L Ul e e R i Miod i s i bl i Aty

0=

Lemma 4.2. If each node of a graph G on n nodes

has degree at least k > 5, then G {is k-arc—connected.

Hence for such k,n there are k-arc-connected graphs on

n nodes having [‘i‘%l‘l arcs.

To prove Lemma 4.2, let (X,X) be a cut in G. Let X
have h members. We have 1 < h and may assume h < 3-
Hence by hypothesis, 1 < h < k. It follows that

(k=h) (h-1) > 0, and hence
4.1) kh = h(h-1) > k.

But the number of arcs in (X,X) is greater than or equal to
the left hand side of (4.1), since each node of X has degree
at least k, and hence at least k- h + 1 arcs joining it

to members of X. This proves the first part of the lemma.
To prove the second part, we need only establish the exist-
ence of graphs on n nodes having k_zn arcs (for kn even)
or li‘-‘zﬂ arcs (for kn odd), with each node having degree

> k. This can be accomplished in various ways. For example,

the construction of the preceding section does this for even

k, and an e¢ntirely analogous construction works for odd k.

Theorem 4.3. Let n be a positive integer and k an
odd integer satisfyinz 3 < k < n. Then there is a graph on

n nodes that is k-arc—connected and has [‘%tl_‘l arcs.

It follows from Lemma 4.2 that for n 1in the range

k + 1 < n < 2k, Theorem 4.3 is valid. The construction
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described below increases n by two at each step. If
n > 2k is even, we may start the induction at 2k in
order to reach n; if n > 2k 1is odd, we may start at
2k — 1. We now describe the inductive step.

Suppose n > 2k - 1 and let G be a k—-arc—connected
graph on n nodes having the minimum number of arcs. By
Lemma 4.1, G contains at least k - 1 independent arcs,
say

4.2) (xl,yl), p— (xp,yp), (ul,vl), eney (U ,vp).

P

Here k = 2p + 1. Now form G' by deleting the arcs (4.2),

then adding two nodes z,w together with the arcs

(4.3) (z’xl)’ teey (Z,XP), (Z,yl), ey (Z:Yp)’
(4.4) (w’ul)’ ceey (W,up), (w:vl): ey (W,Vp),
(4.5) (z,w).

Observe that G' has k more arcs than G does, so that
the arc count has gone up appropriately. The proof that
G' is k—arc—connected is similar to that given in the
proof of Theorem 3.2. Let (X,X) be a cut set of arcs in
G' and suppuse, contrary to what we wish to show, that
(x,i) has k-1 or fewer members. If both nodes 2z and
w are on one side of this cut, say z and w are in X,
then X must surely contain nodes of G. As before, the
cut (Y,Y) in G induced by taking Y = X - {z,w} can

have at most k — 1 members, a contradiction. If 2z and
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w are on opposite sides of the cut, say z is in X,

w in i, then both X and X contain nodes of G, since

z and w each have degree k in G'. Again the cut

(Y,Y) induced in G by defining Y = X - (=}, Y =X - {w],
has no more arcs than does (X,X), and we have a contradiction.

This completes the proof of Theorem 4.3.
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