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SUMMARY 

\ 
\ 

A graph is k-arc-connected if it is necessary to remove 

at least   k   arcs in order to disconnect the graph.    Thia 

paper solves the problem of determining the least number of 

arcs required in a k-arc-connected graph on   n   nodes by 
kn describing constructions  that produce such graphs having    -j- 

arcs  (for   kn   even) or    ^±i    arcs  (for   kn   odd).    These 

results have application to the practical problem of synthe- 

sizing minimum cost,  "k-reliable" communication networks. 
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MINIMAL k-ARC-CONNECTED GRAPHS* 

I.     INTRODUCTION 

Tn considering the synthesis of reliable communication 

networks with respect to link failure,   ':he following question 

seems a natural one to raise.    Suppose given the complete, 

unoriented graph   G   on   n   nodes    N ■ |x,y,z,..-', and let 

each arc    (x,y)    of   G   have associated with it a nonnegative 

number   c(x,y),  to be thought of as the cost of installing 

a communication link between stations    x   and    y.    For each 

k ■ 1,  2,   ..., n-1,    find a minimum cost k-arc-connected 

spanning subgraph of   G.    Here the cost of a subgraph   H    is 

the sum of the numbers    c(x,y)    corresponding to arcs of   H, 

a spanning rubgraph of   G    is a subgraph that has the same 

node set    N   as    G   does, and a k-arc-connected graph is one 

in which at least   k   arcs must be suppressed in order to 

disconnect the graph.    Thus    k   might be thought of as  the 

"reliability level" of the communication network, and the 

practical problem is  to minimize cost subject to achieving 

a stipulated reliability level. 

This  paper was written in 1961 but never published 
because the authors became .ware that Harary was preparing 
a paper which solved the more general problem of determining 
the least number of arcs required for k-node-connectivity. 
Harary's paper later on appeared under the title "The Max- 
imum Connectivity of a Graph" in Proc. Nat. Acad. Sei. 48 
(1962),   1142-1146.    The authors of the present paper feel 
that the method of proof, which is quite different from 
Harary's proof of the more general result, may be of some 
•interest. 
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For    k = 1,  the problem becomes that of finding a 

minimum cost spanning subtree of   G;  there fire simple methods 

known for doing this   f2,3].    But for   k > 1,    the situation 

seems to be quite different.    Here we need only mention the 

fact that, with   k = 2   and all arc costs    1   or   cr ,   the 

problem includes that of determining whether a given graph 

(the subgraph of unit cost arcs) contains a Hamiltonian 

cycle.    Even with all arc costs unity, an interesting graph- 

theoretic problem emerges:     to determine the minimum number 

of arcs required for a k-arc-connected graph on   n   nodes. 

Here,   for    k > 2,    there is an obvious lower bound for the 

number of arcs needed, namely   f (for even kn) or    ■ "A"- 

(for odd kn), and it is reasonable to ask if this bound is 

always achieved.    We answer this affirmatively by describing 

two constructions that produce graphs having the minimum 

number of arcs; one of these constructions is applicable for 

even    k,   the other for odd    k. 

Similar problems arise if one considers k-connectedness 

not with respect to arcs but rather with respect to nodes. 

Thus,   for example,  one can ask for the smallest number of 

arcs required in a k-node-connectcd graph on   n    nodes.    The 

lower bound mentioned above is unchanged, but very little 

appears  to be known about the problem for nodes  (cf.   [1], 

Appendix IV, Problem 11).    Since a graph that is k-connected 

with respect to nodes is k-connected with respect to arcs, 

♦ 

In the literature on graphs,   the phrase    K-connected 
graph" refers  to noder,  see   fl,4]. 
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but not always conversely, the fsct that the lower bound Is 

achievable In the arc problem Is a weaker assertion than the 

corresponding one for nodes. 

2.    CUT SETS OF ARCS 

Throughout this and the following sections, a graph is 

an unoriented one without 1 or 2-circuit8, that is, at most 

one arc joins a pair of nodes and all arcs join distinct 

nodes >    We write   G - fN; Cf] to mean that the graph   G has 

node set    N   and arc set   (7.    Nodes are denoted by   x,y,z,..., 

and arcs by unordered pairs of nodes,  (x,y),   (x,z),... 

Let   G - [N; Cf]    be a graph on   n   nodes, n > 2.    A 

subset   K c tf   is a cui; get of arcs in   G   provided that the 

graph   G1 ■ [N; <7 - K]    obtained from   G   by supressing arcs 

of   H   is disconnected.    A graph   G   is k-arc-connected if 

every cut set of arcs in   G   has at least   k   members; here 

0 < k < n.    In dealing with k-arc-^connectedness, attention 

can be restricted to cut sets of arcs of the following kind. 

Let   X   and    X ■ N - X   be a partition of the nodes of   G 

into two non-empty sets, and let    (X,X) denote the set of 

arcs in   G that have one end in   X,   the other end in   X. 

Thus    (X,X)  is a cut set of arcs in   G    separating the nodes 

in   X    from those in   X.    Moreover,  given any cut set   K c 0, 

one can determine   X <= N   so that    (X,X) £ K    by the recurs- 

ive rule: 

(a)    select a node   x   and put    x    in   X; 

See the first footnote, 
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(b) if x is in X and (x,y) is in a - K, then 

put y in X. 

The set X « N - X thus defined cannot be empty, since K 

is a cut set of arcs; it is also clear that (X,X) c },.    Thus 

it suffices to consider cut sets of the form (X,X), ar.d we 

shall do this. 

3. THE CASE k EVEN 

We give a simple construction which furnishes an induc- 

tive proof on   n,    for fixed even   k,    that there are k-arc- 
kn 

connected graphs on   n   nodes having   -y- arcs. 

Lemma 3.1    below will be used in the construction.    Call 

a set of arcs of   G   independent    if no two arcs of the set 

have a node in common.    The degree of a node   x   in   G   is 

the number of arcs on   x. 

Lemma 3..1.    If each node of a ^raph   G   has degree at 

least   k > 0    then any arc of   G    is contained in a set of 
k+1 l~2~i    independent arcs. 

rk+l1 k+1 Here      -jrl     denotes the biggest integer in   -y-.    A 

proof can be made hy induction on k.    The conclusion is 

obviously valid for   k ■ 1,  2.    Suppose    G   is a graph each 

of whose nodes has degree   > k > 2.    Select an arc    (x,y) 

arbitrarily in   G,    then suppress nodes    x,y,    and their 

arcs,   to obtain    G'.    Now each node of   G'    has degree 

> k - 2 > 0.    Since    k > 2,    G1    contains at least one 

arc; hence by the induction assumption,    G'    contains a 
"k-l set of   1 ^"j    independent arcs.    The arc    (x,y)    of    G, 

nil ■ .'I  ' -i ■■  ^ /■■^-L.. 
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together vdth these, giv^s a set of [^j independent arcs 

of G. 

The conclusion of Lemma 3.1 is very weak, but suffices 

for our purposes in this section. In treating odd k, a 

strengthened form of Lemma 3.1 will be used. The version 

given here has the advantage that the construction implicit 

in its proof is extremely simple: any maximal set of inde- 

pendent arcs will do. 

Theorem 3.2. Let n be a positive integer and k an 

even integer satisfying 2 < k < n. Then there is a graph 

on n nodes that is k-a re-connected and has Tp arcs. 

Let k ■ 2p. If n « k + 1, the complete graph on n 

nodes serves. We now proceed by induction on n, holding k 

fixed. Thus let G be a k-a re-connected graph on n nodes 

having np arcs. Then each node of G has degree k and 

hence by Lemma 3.1 G contains p independent arcs, say 

(3.1) (x1,y1), (xj^)' •••' ^VV' 

Now let G' be the graph on n + 1 nodes obtained from G 

by deleting the arcs (3.1), then adding node z and the arcs 

(3.2) (z^Xj), ..., (z,x ), (z^), .-., (z.y ). 

The graph    G1    has np + 2p - p - (n + l)p   arcs.    We assert 

that   G'    is k-arc-connected.    For suppoye not, and let    (X,X) 

by a cut set of arcs in   G*    containing    k - 1 or fewer arcs. 

Wc- may suppose    z    is in    X.    If   X   consists of the single 

 - "     ■    ■.■!■!..!.„.! .m,-- ,  ,„,     ■-■,„.„„,„. „„.nT-im.,,,,     , 
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node   z, then    (X,X) has   k   members.    Thus    X   contains a 

node of   G.    The cut    (X,X)    in   G1    then produces a cut 

(Y,Y)    in   G, by taking   Y » X - {z}.    But the number of arcs 

in    (Y,Y)    is less  than or equal to the number in    (X,X), 

since to each arc    (x^j^)    of the deleted set    (3.1) that 

is also in    (Y,Y),  there corresponds at least one of the 

added arcs (3.2),  either    (z^)    or    (z^), which is in 

(X,X).    Thus    (Y,Y)    has at most   k-1   members, contradicting 

the fact that   G   is k-arc-connected.    This prove? Theorem 

3.2. 

4.    THE CASE   k    ODD 

For the case of odd   k, say   k ■ 2p + 1, the analogue 

of the above construction can fail.    The difficulty comes 

in attempting to make the transition from odd   n    to even 

n + 1,    Here one would start with a k-arc-connected graph 

G   having    ^f^   arcs, so that some node of   G   has degree 

k + 1,    all others have degree   k.    Lemma 3.1 can be used 

to select   p + 1 independent arcs, one of which is on the 

node   x,    of degree k + 1.    If it could be shown that the 

graph   G'    obtained from   G   by deleting the independent 

arcs    (xj^y^),   ...,   ^x  .^   yD.Li)»   then adding node    z    and 

the arcs    (z,x2),   ..-(z^.j),  (z^),   ...,   (2.yp+1)»    we 

k-arc-connected,  a proof for odd   k   would be obtained.    But; 

this is false, as  the following example for    k « 3   shows. 

Let   G   be the graph of Fig. 4.1 below;    G    has the minimum 

ir       ■-      ■'■■■ 
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nuraber of arcs and it can be checked that   G    is 3-arc' 

Fig. 4.1. 

connected.    Let (x^y^),  (x2,y2) be the candidates for 

elimination.    One then obtains the graph   G*    of Fig. 4.2, 

which is only 2-arc-connected. 

x2 

NJ 
Y7 w xi 

Fig. 4.2. 

Fortunately,   the troublesome feature exhibited by the 

preceding example can be avoided by employing a construction 

that adds two nodes to the graph at each step,  instead of 

one.    For this we first need to strengthen Lemma 3.1. 

In Lenanas 4.1 and 4.2,    k   may be either even or odd, 

although we use them only for odd    k. 

■MM   - 
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Lemna 4.1. If each node of a graph G on n nodes has 

degree at least k,  then G contains at least min ([|],k) 

independent arcs. 

Let fl| c (7 be a maximum set of independent arcs in 

G » fN;^], i,e., one of maximum cardinality. Say that x in 

N is covered in W; if x is the end of some member of % 

uncovered otherwise.  If G contains at most one uncovered 

node, then 7H   has [j]   members. Suppose that G has at 

least two uncovered nodes, and let u,, u« be two such. Since 

ft is a  maximum independent set, each node x that neighbors 

an uncovered node must be covered. Let n,    have degree 

^ > k, i ■ 1,2, and separate the k, neighbors of u. 

into two types:  (a)  those joined together in pairs by 

arcs of %    (b) those not so joined. Let x be a neighbor 

of Uj of type (a), and let y be the neighbor of u, for 

which (x,y) is in 771.    Then x cannot neighbor u«» for 

otherwise the set Vt'  of arcs obtair.pd from fy   by deleting 

(x,y) and adding the arcs (u,, y), (x, u<,) is independent 

and contains more members than VI,  a contradiction. Hence 

if m. is the number of arcs of ty   that join type (a) 

neighbors of u., i ■ 1,2, then TU   contains at least 

m, + nu + max(k,-2m,, kj^m«) > k members. Thus, in any 

event, %   has at least min([j], k) members, proving 

Lemma 4.1. 

We need one other preliminary lemma before proceeding 

to the proof of Theorem 4.3. 
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Lemma 4.2.    If each node of a graph   G   on   n   nodes 

has degree at least   k > 5,   then   G   is k-arc-connected. 

Hence for such   k^n   there are k-arc-connected graphs on 

n   ßodgä having   [^pj arcs. 

To prove Lemma 4.2,   let (X,X)    be a cut in   G.    Let   X 

have    h   members.    We have    1 < h   and may assume    h < 5. 

Hence by hypothesis,    1 < h < k.    It follows that 

(k-h) (h-1) > 0,    and hence 

(4.1) kh - h(h-l) > k. 

But the number of arcs in (X,X) is greater than or equal to 

the left hand side of (4.1),  since each node of   X    has degree 

at least   k,    and hence at least   k- h + 1 arcs joining it 

to members of   X.    This proves the first part of the lemma. 

To prove the second part, we need only establish the exist- 
kn ence of graphs on   n   nodes having   -*   arcs  (for    kn even) 

or   -y-   arcs (for   kn   odd), with each node having degree 

> k.    This can be accomplished in various ways.    For example, 

the construction of the preceding section does  this  for even 

k,    and an entirely analogous construction works  for odd    k. 

Theorem 4.3.    Let    n    be a positive integer and    k   an 

odd integer satisfying    3 < k < n.    Then there is a graph on 

n   nodes that is k-arc-connected and has    I ~Y~" I    arcs. 

It follows from Lemma 4.2 that for   n   in the range 

k + i < n < 2k, Theorem 4.3 is valid.    The construction 

■-■     i  i ■ ■'"■—- Miui ■■---- ^_..^J_J.—..—^wJt^i^amaaii-M^«Li^.,.,-r 
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described below increases n by two at each step. If 

n > 2k i s even, we may start the induction at 2k in 

order to reach n; i f n > 2k is odd, we may start at 

2k - 1. We now descr i be the inductive step. 

Suppos e n > 2k - 1 and l e t G be a k-arc-connected 

graph on n nodes having the minimum number of arcs. By 

Lemma 4.1, G contains at least k- 1 independent arcs, 

say 

(4. 2) 

Here k ~ 2p + 1. Now form C' by deleting the arcs (4.2), 

then adding two nodes z,w together with the arcs 

(4. 3) 

(4.4) 

(4. 5) 

Observe 

the arc 

G' is 

(z,x1), ... , (z,xp)' (z,y1), ... , (z,yp)' 

(w,u1), .. . , (w,up), (w,v1), . .. , (w,vp)' 

(z,w). 

that G' has k more arcs than G does, so that 

count has gone up appropriately. The proof that 

k-arc-connec ted is similar to that given in the 

proof of Theorem 3.2. Let (X , X) be a cut set of arcs in 

G' and supp!JSe, contr ary to what we wish to show, that 

(X,X) has k-1 or fewer members. If both nodes z and 

w are on one side of this cut, say z and w are 1n XJ 

then X must surely contain nodes of G. As before, the 

cut (Y,Y) in G induced by taking Y =X- {z,w} can 

have at most k - 1 members, a contradic ion. If z and 
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w are on opposite sides of the cut, say z is in X, 

w in X, then both X and X contain nodes of G, since 

z and w each have degree k 

(Y,Y) induced in G by defining 

G' . Again the cut 

Y =X- [~ }, Y =X- [w), 

has no more arcs than does (X,X), and we have a contradiction. 

This completes the proof of ThP.orem 4.3. 
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