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;
B Buoyancy
CD Ihrag coefficient
CDA Drag ar:a
c Current as a function of depth
D Drag
d Cable diameter
dg Diameter of the surface buoy 3
4 E Resultant error =|{/e 2 + 2
ki “Veu T &
-%f e Strain = (ds - ds }/ds
¥ o e i
% ey Er-or in the horizontal direction = TH - (DB + TBH)
5
% ey Error in the vertical direction = Tv - (WB + TBV)
. o Value of e, when ey < €
3 e Small prescribed value 3
S
: F Force
3 <@
3 f Tangential drag coefficient
; fc Function of strain = d/d0
é G Drag force per unit length tangential to the catle
? g Gravity constant 2
& 3
; H Buoy dra;t %
% I Drag force per unit length normal to the cable ;
" {I:‘l
% K Strain as a function of (T - To) %
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é Kl Compliance coefficient for a linearly elastic cuble = K/(T - T) %
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Maximum perpendicular distance between the chord and lower array

Cable length

Numerical factor

Numerical factor Dgﬂdsz/4

Total number of cable segments = total number of bodies

Poisson's ratio

Fluid velocity relative to the cable

Drag force per unit length when the cable segment is normal to

the stream = pCquIqI/Z

Distance measured along the cable
Cable tension

Drift velocity

I

Weight per unit length in water
Weight per unit length in air
Buoyancy force per unit length
Weight in water of the bottom unit

Direction normal to a cable segment

Horizontal direction positive to the right

PCpAr (o - cp)/2

w
a

=c-~-U

Direction tangential to a cable segment

Vertical direction positive downwards

Positive quantit;
Incremental value

Small positive constant

Small positive con:tant
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0 Angle with the vertical of a chord connecting the top of the ‘ ;
array with the bottom weight 3

Fluid mass density
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ABSTRACT

An analysis is given for the two-dimensional steady-state
behavior of extensible free-floating cable systems. The anal-
ysis includes the differential equations of equilibrium for an
extensible cable and the iteration schemes for the equilibrium
system drift velocity and surface buoy draft. Based on this
analysis, a FORTRAN IV program, FFZE. has been written. The
program allows the cable system-to have an arbitrary number of
different cable segments and intermediate bodics. The program
works well fcar the large majority of cases of practical interest.

. DMINISTRATIVE INFORMATION

This work was sponsored by the Naval Air Systems Command under Air
Task 5335330/440C/1WZ1400000.

INTRODUCTION

Until recently, steady-state cable studies have been concerned
largely with towing and single point moored cubles. For cases of a cable
towing a Jiven body or of a single cable mooring a surface buoy with a
given draft, the problem reduces to an initial value problem where the
differential equations of equilibrium of the cable are integrated z2long the
cable for given initial values at one end of the cable. The integration
stops when cable scope or the prescribed depth is reached. With the use
of subroutines for the solution of differential equations, such as the
subroutine KUTMER which uses the Kutta-Merson method, these initial value
problems can be conveniently solved on modern day digital computers. At
NSRDC, Cuthilll has developed a prograa for the two-dimensional shape of
inextensible towsd and moored cables in a uniform stream. More recently,
Wang? has developed a program for the three-dimensionai shape of an exten-
sible cable system moored in the presence of a current profile which may
change in magnitude and direction with depth.

lpeferences are listed on page 23.
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Perhaps the simplest case where iteration techniques are required
in the steady-state analysis of cable systems is the case of a cable of
given scope moored in a given depth. In this case the submergence of the
surface bucy must be iterated until the cable reaches the given depth with
the given cable scope. Where the current is severe and/or the depth is
large, the buoy may be completely submerged beneath the ocean surface.

The use of iteration techniques is required in the steady-state
analysis of some modern applications of cable systems. Skop and O'Hara3
have studied the problem of subsurface buoys moored by an array of cables.
The need for iteration procedures for this problem can be readily seen by
considering the case of a sinyle subsurface buoy moored by more thanr one
cable. It is clear that the subsurface buoy can be maintained in equilib-
rium by an infinite combination of the forces in the cables just below the
buoy. Conceptually, the forces at the tops of these cables must be con-
tinually iterated until the lower =nds of these cables reach the required
anchor positions. Instead of iterating the forces at the top of the
ciables, Skop and O'Hara choose the equivalent method of iterating the
forces at the lower end, i.e., at the anchor positions.

In the case of a cable towed in a circular path the radius of the
motion of the towed body must be continually iterated until the boundary
conditions at the towing end are satisfied. This problem has been con-
sidered by Huang,* Choo,5 Skop,® and Skop and Choo.”

In the case of free-floating cable systems, the problem considered
in the present study, iteration schemes are also required. Basically, the
drift velocity of the entire cable system and the draft of the surface buoy
must be continually varied until the entire system is in an equilibrium of
forces in both the horizontal and vertical directions.

The present report gives a description of computer program FF2E,
which is a FOxTRAN IV program for the two-dimensional steady-state behavior
of extensible free-floating cable systems. The iteration schemes for the
system drift velocity and buoy draft are described in detail. It is shown
that the schemes work well for the large majority of cases of practical
interest. For some cases of long cables in unusually severe current pro-
files the schemes may fail to converge due to the extreme sensitivity of

cable configuration to changes in drift velocity and buoy draft. The
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differential equations of equilibrium used in the present study are similar
to, but no'. :.dentical with, the equations used by Pode.® The differences
are simplr Jue to the difference in coordinate systems used. The program
allows the caile system to have an arbitrary number of different cable
segments and intermediate bodies. The surface buoy is taken to be a circu-
lar cylinder in the present study. However, by properly adjusting the
values for the length, diameter, and drag coefficient, other buoy shapes
may be approximated. For cases where the free-floating system contains a
lower array of hydrophones, the program calculates the inclination and
curvature of the array.

In the present study, the inclination of the buoy is taken to be
vertical. In actual cases, the buoy inclination is a function of such
factors as the center of gravity of the buoy, the center of buoyancy, the
point of attachment of the cabl: to the buoy, and the magnitude and loca-
tion of the resultant drag force (which is dependent on the inclination of
the buoy) acting on the buoy. The inclination of the bucy must be deter-
mined by solving a transcendemntal equation for each nes. assitwed set of
values for drift velocity and buoy draft. This would result in increased
complexity of program logic and computer time requirements. It is feit
that the present simple approach for the surface buoy will yield, in most
cases, reasonable answers for such system variables as system drift
velocity, cable configuration, and operating depth of the bottom unmit.

The equilibrium inclination of the surface buoy can taen be calculated
from the equilibrium values of the drift velocity and buoy draft furnished
by the present computer program. For those cases where the effect of sur-
face buoy inclination substantially affects cable system variables, then
this effect shkould, of course, be incorporated intc the program.

The program may also be used to approximately sclve cable payout
problems. In these applications, an object may be kept stationary on the
ocean bottom by having an intermediate cable pack pay out cable as it drifts
along. The amount of cable which is payed out depends on the drift velocity
of the cable pack. The actual drift of the cable pack is rather ccmplex.
The weight of the cable pack decreases as cable is being payed out, and the
tension exerted on the cable pack by the cable being payed ocut is a func-
tion of time. An approximate analysis of the motion of the cable pack may
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be made by assigning average values to the cable pack weight and the verti-
cal and horizontal components of tension exerted on the cable pack by the

e ot 3 il
S

cable being payed out. The resulting cable system consisting of surface

float, connecting cable. and cable pack may then be considered as a free- %
floating system,

GENERAL METHOD OF SOLUTION

The tree-floating cable system considered in the present study is

shown in Figure 1. The system cunsists of a surface buoy, an arbitrary

number of different cable segments and intermediate bodies, and a terminal g
weight at the bottom. As shown in Figure 1, a current profile which varies
with depth may be prescribed over the entire cable system.

In the presence of the given current profile, the entire cable sys-

NN rw eSSy SRR RN,

tem will drift at a velocity UD and the surface buoy will taxe a draft H

such that the entire cable system is in an equilibrium of forces. The

AL 2 % S SN

principal problem of the present study is to determine these equilibrium
values of UD and H, Using the iteration schemes described later in the
study, values for UD and H are chosen. From these values of UD and H, the
current relative to the cable system as well as the tension and angle of
the cable just below the bucy are determined. The differential equationms

of equilibrium may then be integrated down the cable. At intermediate

B e Y SRS e Tk L A5

7

oA

points along the cable the integration of the equations must be interrupted

to take into account intermediate attached bodies which may be drogues or
hydrophones.
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The integration of the z>quations proceeds in the above mannei until
the bottom unit is reached. At this point, the equilibrium of the bottom

4'25 oY ﬂ@"ﬁ‘ 2‘( &a ui'\'m\'ﬁ"aw' .
2y Sk winyrote 4

unit is checked. Since the conditions at the top of the cable are deter-

Y
DL & v

mined by equilibrium considerations for the surface buoy, and the cable

3

configuration is obtained by considering the equilibrium of the cable, then
the entire system is in equilibrium if the bottom n1it is in equilibrium.

Figure 1 shows that the imbalance of forces in the horizontal and vertical
directicns may be written as

ey = Ty - (D + Tpy) (1)
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ey = Tv - (WB + TBV) (2)

where ey and ey are the imbalances in the horizontal and vertical direc-

tions, respectively,

TH and 'I‘V are the horizontal and vertical components of the tension
just above the bottom unit, respectively,

DB and WB are the drag and weight in water of the bottom unit,
respectively, and

TBH and TBV’ in the case of a payout problem, refer respectively to
the horizontal and vertical components of tension exerted by the

cable being paid out on the bottom unit; for free-floating systems,
Tpy = Tpy = O-

As mentioned previously, the quantities TBH and TBv are taken to be con-
stants in the present study.

A number of criteria on the magnitude of the errors may be used to
determine when the problem is considered to be solved. For example, one

possible criterion would be to say that if the resultant imbalance in
forces E, defined by

E = ey * ey (3

is less than a presciibed amount Ep,, the problem is considered to be

solved,3 IfE > Ep, then new values must be found for UD and H. In the

present study the problem is considered to be solved if the following two
inequalities are simultaneously satisfied

leyl < ey [Dg + Tyl (42)

leyl < e, Wy + Tyl (4b)
where Ly and €, are small positive constants.

EQUATIONS OF EQUILIBRIUM

Figure 2 shows the coordinate systems used in the present study.

The (x,y) spatial coordinate system is taken to have fixed directions, with
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the origin at the undisturbed ocean surface. The x axis is positive to

the right and the y axis is positive downwards., The cable differential

equations are written for a coordinate system attached to the cable, called
the cable coordinzte system (X,Y). The Y axis is directed along the cable.

CABLE EQUATIONS

Differential Equations

The two-dimensional differential equations of equilibrium for a
flexible cable have besn derived by a number of authors; see, for example,
the derivation given by Pode.® For the coordinate systems used in the
present study, the equations of equilibrium for the cable in an arbitrary
stretched condition are

ar

is * G+Wsind =10 (5)

T gg +I+Wcos $=0 (6)

where T is the tension,

s is the stretched cable scope,

W is the weight per unit length in water of the stretched cable, and

G, I are the fluid drag forces per unit length acting on the cable

in the Y and X directions, respectively.

The above equations are similar to, though not identical with, the equa-
tions derived by Pode.® The differences are due to the difference in
coordinate systems used. The present coordinate system defines the verti-
cal coordinate as being positive downwards whereas in Reference 8 it is
positive upwards. Also, for 0 < ¢ < 90 deg, cable scope in the present
study is positive measured from the surface buoy, whereas in Reference 8
cable scope is positive measured from the bottom weight. The present
coordinate system is more convenient for free-floating and moored cable
systems while the coordinate system used in Reference 8 is more convenient
for towing cables.

As pointed out in Reference 2, it is converient to relate the quan-
tities ds, G, I, and W to quantities at some reference state where all the
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cable parameters are known. This reference state is taken to occur at

T =T, where T, need not be equal to zero. Summarizing the results of 3

Reference 2, the relationships between ds, G, I, and W in terms of these

quantities at the reference state T = 'I‘o are given by

: ds = dsO (1 +e) N %

I=f(e) I (8a)

>
G =£_(e) G (8b)

¥a0 2
W= goa - Wy [E(0)] 9
: where subscript o denotes quantities for the reference state,
e 1s the strain = K(T - To), (10a)

i K is an experimentally measured tension-strain function,

1 £ (e) = %;' (10b)

d is the cable dianeter,
wao is the weight per unit length in air of the cabie,

wbo is the buoyancy force per unit length

At n? CATIOAL ALY SR L e MR S DL IR AL IO S 11 A b o R BA ST s v 8 e WA T RO Db X M s e 1 S

[¢]
Wpo =P8 (10c)

PP LY

p is the fluid density, and
g is the gravity constant = 32.2 ft/secz.
In the presznt study the cable is assumed to be linearly elastic so that

K and fc are given by

= ° - r
K =K, (T -T) {1la)

R SNSRI~ PN WA AR MY At 170 W T S8 R e e 8 1o X
B 3
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s fc(e) =1 - pe (11b)

E ]

5 where Kl is a constant and p is Poisson's ratio. In Equation (¥}, W is

? given in terms of wao and Wbo‘ Usually the cable weight is specified in

< terms of Wo, the weight per unit length in water of the cable at the refer-

f ence state, In these cases, wao is simply given by

Ie ;

& ]

3 =

g 1 wao wo * wbo (12)

ﬁ where wbc is given by Equation (10c).

3 Upon using Equations (7)-(9), Equations (5) and (6) become

I L6 fey1+e)+sindlh -W f£lea+e) =0 (13

2 dso o ¢t ao bo "¢

A

. ¢

: 49 ] 2 -

: ' T dso + IO fc(e)(l +e) + cos ¢ wao wbo fc (eJ(1+e)] =0 (14
1 In gddition to the dependent veriables T and ¢, other dependent

variables are of interest. These include x, the horizontal displacement

: : of the cable measured from the point of attachment of the cable to the

b £ . .

A H buoy, y, the vertical displacement of the cable measured from the sea

i

3 § surface, and the stretched cable scope s. From Figure 2, it is seen

% £ that the differential equations for x and y are given by

E ? dx

e Jo- - - cos ¢ (1+e) (15)

e : 0 ;

i i :

" i H
4 : B
4 - sing (1+e) (16)
b ¥ ds E
A ¢ o 3
sk 2
3 g %
E % The differential equation for s is obtained by simply rewriting Equation §
IE: )

i { 4
e (7 g
i : 3 :
5 . 3 é
13 . . ds _ £
12 : = (1 +e) (17) :
e ° ;
P
i : Z
9 8 ' ;
It 5
:
; .j;
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Equations (13)-(17) along with Equation (10a) constitute six equations
for the six dependent variables T, ¢, x, y, s, and e. Upon substituting
Equation (10a) into Equations (13)-(17), the result is five differential
equations for the five dependent variables T, ¢, x, y, and s.

Fluid Drag Forces

For bare cable, the normal drag force Io is usualily written as®
1,=1/2pCyd qsin ¢ lq sin ¢] (18)

where CD is the drag coefficient, q = c(y) - UD’ and c is the ocean current
which is a function of depth. ‘

There is considerable variation among the forms proposed for the
tangential drag acting on bare cable; see the survey article by Casarella
and Parsons.? In the present study, the following form proposed by Pode®
is used

_ - cos
6y = Ry |cos 9|

(19)

where f is an empirical constant = 0.02 for normal bare cable and

R, =1/2 p Cyd_ qlq]. It should be noted that for the low velocities
relative to free-floating and moored cable systems, the tangential drag is
usually much smaller thaa the other fluid and gravity forces occurring in
Equations (13) and (14). Thus, it is not necessary to use a complex form
for the tangential drag. Other forms for the tangential drag can, of

course, be conveniently incorporatea into the formulation.

EQUATIONS FOR INTERMEDIATE BODIES

The integration of the preceding equations must be stopped when an
intermediate body such as a drogue or hydrophone is reached. The tension
and angle just below the body, Tb and ¢b, must be such that the body is
in an equilibrium of forces. These forces are the tensions in the cable
above and below the body and the fluid and gravity forces acting on the
body. Upon solving the two equations of equilibrium for the body the
following expressions for Tb and ¢b are obtained
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Tb = I/EFIx + Ta cos ¢a) + (Ta sin ¢a - FIy)

-1 Ta sin ¢a - FIY

1a cos ¢a + FIx

¢b = tan (200b)

where Ta and ¢a are the tension and angle of the cable just above the body,
FIx is the drag force acting on the body, and
FIy is the weight in water of the body.

The drag force F,_ is given by

Ix

F, = 1/2 0 CpAp ala (21)

where CDAI is the drag area of the body for horizontal flow.,

ITERATION SCHEMES

For chosen values of UD and H, the integratior ¢ the equatioms in
the preceding section proceeds until the bottom unit Is 7reached. At this
point, the equilibrium of the bottom unit is checksd. As pointed out
previously, if the bottom unit is 1ia equilibrium. taen the entire cable
system is in equilibrium. Practically speaking, if the errors e, and e

H v
are small enough to satisfy the given error criveriocn, the problem is

considered solved. If the criterion is not satistied, then new values
must be found for UD and/or H.

Computer program FF2E contains a preliminary scheme and two prin-
cipal schemes for iterating values of UD and H. They are as follows,

in the order that they appear in the program:

(a) Preliminary scheme for UD.

(b) Simultaneous binety scheme.

(c) Staggered binary scheme. 1
These schemes are described below.

10
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PRELIMINARY SCHEME FOR UD

In this scheme, only the value of UD is varied. The value of H is

fixed and is determined by the buoyancy required to support the weight of

the entire system in water, in the absence of any current.
The scheme searches for a value of Yp which gives a value of L
1° The scheme does this by

restricting UD to lie between successively closer barriérs. For ey greater

less than some small prescribed quantity e

srd
20

NI FATR,

(less) than zero, AUD is chosen so that the new value of UD lies halfway

1 between the present value of UD and the most recent preceding value of UD
'; which is greater (less) than the present value of UD. Basically, the
changes in UD are based on the sign given in Equation (28), which is
derived in the following section.

The principal purpose of the present scheme is to provide an improved

B

initial value of UD for the simultaneous binary scheme. It has been found
that with this initial value of UD, the convergence of the simultaneous

j bindry scheme is improved. Also, for certain cases of low ocean currents,
the steady-state draft differs very little from the value of H fixed in the
present scheme, i.e., the value of ey associated with the final value of

3 f UD is also small. Thus, in these cases, the present scheme presents a

i direct solution to the problem. Finally, as will be seen later, the present

scheme essentially is the first cycle of the staggered binary scheme.

BN Y e A

SIMULTANECUS BINARY SCHEME

This scheme changes the values of H and UD simultaneously.

Consider first the forces in the horizontal direction. The term

3 (TH - DB) appearing in the formula for e,, given in Equation (1), repre-

sents the horizontal component of the drag forces acting on the entire
cable system. It should be noted that (TH - DB) is a complex quantity
whick Jepends on the current relative to the cable and the inclination of

v ok A IR N o vt 0 TR RN A L e U LA U2 it J AR BN DAVECEI AN AL AL A A XM SN

the cable. An approximate measure for (TH - DB) is given by

N e o e

TH - DB v 1/2 p cDAr [1/2 (cM - UD)2 - 1/2 (UD - cm)z] (22)
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can be seen that ey depends directly on TV’ In particular, it can be seen

3
that if ey is greater (less) than zero, the change in T, ATV, should be %

E‘
K
k.
N N
3 where CpAp = (Cn“s * 2 Coifos it F Cn"n) :
% CDAS is the drag area of the surface buoy and any underwater packages
! mounted on the buoy,
3 N is ths total number of cable segments = total number of bodies,
f CDi’ goi’ and doi are respectively the drag coefficient, reference
= length, and refeicnce diameter of the ith cable segment,
3 CpA;; is the drag arsa of the ith body,
; . Cy is the maximum value of the current, and
; <h is the minimum vajue of the current.
lf It can be seen from the above definition for CoAr that it is a measure
; of the drag area of the entire cable system. Noting that TBH is simply
. a constant in Equation (1), it can be seen that €4 depends directly on 2
3 (Tﬁ - DB). In particular, it can be seen that if ey is greater (less) than %
3 zero, tie change in (TH - DB), A(TH - DB}, should be less (greater) than %
p zere. Thus, the grror e may be related to A(TH - DB) as follows %
€y = - BTy - Dp) v - 1/2 0 CA, [(cM - U (- AU - Uy - ) AUD] ; :
. : = AUD p CDAT 1/2 (cM - cm) = AUDMU (23) % %
: where M” =p CDAT 1/2 (cM - cm). An expression for AUD in terms of ey is g
4 ¢hen given by 3
E °H E é

£ AUD q’iﬂ; (24) : g
z % Consider now the vertical forces. By noting that the quantities %
< i WB and TBV are constants in the formula for ey given in Equatioan (2), it ]
v |

!

I
LT DO RE 7 L)

4

less (greater) than zero.

A3 L%

Provided that changes in the vertical component
of tension jist below the buoy are propagated without a reversal :in sign
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to the bottom of the cable, e, may be related to changes in the buoyancy of

the surface buoy Bg. The buoyancy force Bg is given by

WAL ™

2
nds

2 H= MVH (25)

Bg = pg

where ds is the diameter of the surface buoy and Hv = pg ﬂdsf/g. From the

nreceding discussior, e, may be related to AB_, the change in Bs, as

%
~
%
E
>
E
]
=
3
3
%
%
£
=
j
2
2
E4
b
3
3
I
4
3
H
2
3
£
H
]
€
L1
kd
3

S

e
3
2
.7,
&)
o

follows %

e = - AT - = - :
7 ey A.V ~ ABS Mv AH (26) :
E? An expression for AH in terms of ey is then given by i
. g A 27)
i %
%f A number of proportionality factors have been tested for Equations g
g' (24) and (27). No factors were found which cause the scheme to converge 3
g to the equilibrium values of H and UD for ail cases. The optimum defini- %
? tions for AUD and AH were found to be of the following form g
58, lel
. e.l e ] i

_ H'"H' "H :

AUD = T MU (28) j

é

i

E- N, (29)

where § is a positive proportionality quantity, 0 < § <1 and 6“ is a

positive quantity. As discussed in the following paragraph, the quantity

§ serves the purpose of reducing the changes in UD and H if these changes

%

lead to a resu.tant error which is larger than the preceding resultant
error. The quantity GH is initially set equal to 1. If the changes in ey
occur too siwly (fast), then 6" is increased (decreased). 7The ratiosz

e |/E and |e, |/E which occur in Equatizns (28) and (29), respectively,
H v P
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basically tell the scheme to concentrate on changing UD(H) 1f the predomi-

naat error is eH(ev). It was found that the presence of these ra:ios
increases the range of convergence of the scheme.

ey o s e pen

The scheme starts by choosing the initial values for H and UD to
be the final values of these quantities from the preliminary scheme and

calculatirg the cable configuration from these initi:l values. The

quantities AUD and AH are computed from the resulting error values eys €y

and E by using an initial value of § equal to 1. These vaiues of AU, and 'g
3

D
AH are added respectively to UD and H, resulting in new values of H and

b’ ' D" The cable configuration is again calcuiated using the new
values H' and UD'. New values of error are obtained: eH', e,', and E*.

\)
If E' < E, then § remains at its initial value, and the new values H' and

UD' are retained. The quantities AUD and AH are obtained from eH', e,',
and E'. 1€, however, E' > E, then the new values en', ev', E', H', and
UD' are rcjected. The quantities AUD and AH are obtained from the old

values of ey eyr and E using a smaller value of &. The quantity § is
continually reduced until:

(a) E' <E,

(b) eH' simuitaneously satisfies the following two conditions:
)
(ﬁ{/ﬁﬂ > 1 and

ch ] > !ev'{) or

(c) 6 is lower than a prescribed lower bound. This lower bound

is set equal to 0.2 for the first ten iterations of the scheme and 0.05
for subsequent iterations.

In any of the above three cases, § is reset equal to its initial vaiue of
1, and AUD and AH are computed by using the new error values eH', e,',
and E'. The resulting values of AUD and AH are added to UD' and H',
respectively. The scheme continues in the above manner until the errors

ey and e, are sufficiently small so that the given 2rror criterion is
satisfied.

In one cf the earlier schemes tested, the quantity & was allowed to

decrease indefinitely until E' < E. In other words, options (b) and (c)

of the preceding paragraph were not present. Furthermore, § was never

14
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reset equal to its original value, but either remained the same or decreased
(according to vhether E' was less than or greater than E) as the iteration
proceeded. This scheme was similar to one proposed by Skop and 0'Hara,3

who dealt with the protlem of subsurface floats moored by an array of cables.
It was soon found that this schame did not converge in many cases. It was
found that at certain steps of the iteration, the new error E' could never
be made smaller than E, no matter how smsll § was made. It was found that
this was due to interaction effec®s whereby changes in H have large effects
H e It should be noted
that interaction effects are not represented in Equations (28) and (29).

on ¢, and/or changes in UD have large effec?s on e

e 3 - It was found that these interaction effects arise in cases where
the current differential between the top and bottom ot the cable system is

fairly large. In these cases, the normal fluid drag forces acting on the

cablz, given in Equation (18), become significantly large. The interaction
efiects arise largely due to the strong dependence of the drag forces on
cable geometry as shown in Equation (18). Consider, for example, the case
where only UD or H is changed. For a given change, the geometry of the
entire cable may be chzanged significantly, a2nd the resulting changes in the
normal drag forces may have significant ccaponents in both directions.

Skop aud O'Hara3 prove that their scheme converges for moored cable
arrays. It snould be noted, however, that the proof depends on the assump-

A tmsEmEe e AR N s R g M N VY

tion that all of the forces acting on the cable are unaffected by changes
in the geometry of the cable. Thus, their work should be viewed with some
caution, particularly for cases of high ocean currents where the geometry
dependent fluid drag forces become significant.

The results of Reference 3 do suggest, however, that the convergence
of the present scheme may be improved by restricting the cable shape to
: lie between certain bounds. An auxiliary scheme has been incorporated into

the program whick changes UD by small amounts whenever the angle ¢ exceeds

} i or becomes less than certain prescribed bounds. This auxiliary scheme has ;

been found to improve the convergence of the main scheme. It should be

(224

noted that the bounds on ¢ can neither be too close nor too far apart. If
the tcunds on ¢ are too far apart, then it is clear that the scheme loses
its effectiveness. On the other hand, excessively close bounds may mean

many changes of UD’ thus increasing computer time requirements. Also, the
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equilibrium cable configuration may lie outside the bounds if they are too -
restrictive. It has been found that the optimum lower and upper bounds for
¢ are approximately 0 degrees and 125 degrees, respectively. )

As mentioned previously, this scheme does not converge for all cases.
The limits of convergence seem to depend most strongly on the current dif-
ferential between the top and bottom of the cable system, and on the length
of the cable. Based on many hundreds of runs already made with the program,

it seems that the scheme converges for the large majority of cases where

the current differential is less than 3.0 knots. In these cases, less than

approximately twenty iterations are usually required to obtain values of
H and UD which yield values of the resultant error E less than, say, 0.05
pounds. For some cases of high current differentials, the scheme cannot

minimize E beyond a certain amount, ranging from a few tenths of a pound
to several pounds.

In these cases, the computer program switches to the
staggered binary scheme.

T

STAGGERED BINARY SCHEME

Description of Scheme

The preliminary scheme constitutes the first cycle of the staggered
binary scheme. Basically, the scheme changes H and UD one at a time, thus
avoiding the interaction effects mentioned above. The changes in H and
UD are made in accordance with the signs indicated in Equations (29) and
(28), respectively. First, an initial value of H is chosen to be the
value required to support the weight of the entire system in water, in the

absence of any current. Then, keeping the value of H constant, the scheme

BN
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, searches for a value of U, which gives a value of ey less than e- The

procedure for deing this has already been discussed in the section dealing
with the preliminary scheme.

RN

When a value of UD has been found which gives rise to ey < 2% the

iteration for UD steps. The scheme calculates a new value for H based on

Yy TR TN

e

the value >f evo’ the value of ey associated with e < €, as follows
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where GV is a positive number and Mv is defined in Equation (25).
It may be noted that Equation (35) differs from Equation (29) in 4
that the guantities IeVI/E and 6§ which occur in Equation (29) have been :
replaced by 1 and Gv, respectively. For the case of vo’ where &y < €
the ratio levl/E is nearly equal to 1. The quantity 6V is initially chosen
to be 0.6. Should the convergence to the cquilibrium value of H be
excessively slow, SV is increased. Similarly, £v is decreised if the
changes in H cause excessively large changes in e’ It should be noted
that H is also restricted to be between successively closer barriers. For
eyo greater (less) than zero. the new valuz of H is restricted to he
greater (less) than the last preceding value of H which gives rise to an

error e, less (greater) than zero. Should the value of AH calculated in

(s SRS Yo
1 S LA %‘vﬁ‘}“\h«‘:,“, !

9 A
RN

Equation (30) lead to a new value of H which goes beyond the preceding

barrier, the new value of H is adjusted so that it lies between the pre-

B

sent value of H which gives rise to the givan value of evo and the barrier.

Keepirg this new value of Il constant, the scheme again searches for a value

S

RReNT

of Up which gives rise tc ey < ;- The scaeme proceeds in the above ¥anner

; until the error quantities €y and e, are -mall enough to satisfy the given

A error criterion

%’ Discussion of Convergence

% This scheme converges over a wider rarge of cable and current param-

§ eters than the simultaneous binary schime. It is, however, slower, usually é
z requiring at least sixty iterations to arrive at suitably small values of g
g ey and ey Based on many hundreds of computer runs made thus far, it seems g
g that the scheme converges for nearly all cases where the surface current ﬁ
é is less than approximately 5.0 knots. It should be noted that surface %3
N currents seldom exceed 5 knots (see, for example, Reference 10). ;

For some cases of long cables floating in the presence of surface

~ TR Y
soant W T
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did

currents in excess of S knots, the scheuwe may fail to converge. In these

cases, where the geowetry dependent fiuid drag forces dominate, the scheme
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cannot minimize the error E beyond a certain amount ranging froz a few g
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tenths of a pound to several pounds. The computer results for thesc cases

show that the cable configuration and the error quantities ey and ey are &
very sensitive to changes in H and UD. As an example, consider the partic-

ular case of a 2,000-ft cable fluating in the presence of a surface current
of 8 knets.

For this case, the computer results showed that at H = 0.86318

ft, a change in H in the sixth or higher decimal place produced a change in
&vo from -6.2 1b to 1.1 1b.

S ANAR

vy

ks

This large change of vo from regative to

positive values is typical of the behavior of the scheme when it fails to
converge.

S Em SN

AN

The preceding results were obtained for the case when the differ-
ential Equations (13)-(17) were integrated to an accuracy of 0.01 percent.
In view of the extreme sensitivit, of o to changes in H, it was decided
to investigate this particular case further by increasing the accuracy of
the integration of the differential equations.

e
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With accuracies up to and
including 0.0001 percent, the large changes of evo with changes in H in

the sixth or higher decimal place around ey = 0 continued to occur. The

values of H giving rise to these large changes in e
the accuracies.

o) oy
TS A

-
)

VO changed somewhat with
For example, with accuracies of 0.001 percent and 0.0001

percent, the large changes in evo from negative to positive values occurred

respectively at H = 0,86199 ft and H = 0.86066 ft. Tie investigation had

to be terminated when an attempt was made to integrate the differential
equations with an accuracy of 0.00001 percent.
became prohibitively large.

v

Computer time requirements

The preceding discussion shows the nature of the physical and/or
numerical instabiliry for cases oS unusually severe current profiles and

sufficiently long cables where the cable geometry dependent fluid drag

forces dominate. In order to thoroughly investigate the nature of this

instability, and to determine the solution, computer time requirements

beyond the scope of this study would be required. The preceding results '

do tentatively indicate that the equilibrium value of H is localized to '

a small neighborhoed by the scheme. In most cases where the scheme fails

to converge, the minimum resultant error does not exceed a f2w pounds. It

is expected that in most engireering applications involving .ibles a few

thousand feet or longer, an error of one or two pounds can be tolerated.
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DISCUSSTON OF UNLQUENESS

The uniqueness of the numerical solutions has not been investigated

in the present study. One way to study this question is to incorporate a

grid scheme into the computer program whereby H and U, are each assigned a

given number of values over prescribed intervals. Thg configuration of the
cable and the resultant error E are then calculated for each possible pair
of values of H and Up- If E is equal to zero for two or more different
pairs of values, then the solutions are nonunique. Based on the sensitiv-
ity of E to changes in H and UD, observed from the many runs using program
FF2E, it seems that in most cases a minimum of 50 to 100 values must be
prescribed for both H and UD’ around their respective equilibrium values

predicted by program FF2E, in order to discover the existence of any addi-

tional solutions which may exist. This means that for a given case, the
configuration of the cable must be calculated 2,500 to 10,000 times. The
execution time on the CDC 6700 for a single calculation of the configuration
of the cable is of the order of one second. Thus, several hours of computer
time probably would be required in order to investigate uniqueness for one
case. A sy;tematic investigation would require the consideration of a large
number of cases. The computer times required were beyond the scope of the

present study.
FORTRAN TV COMPUTER PROGRAM

Based on the preceding analysis, a FORTRAN IV computer progrim,
FF2E, has been written for the system shown in Figure 1. The program is
compatible with the CDC 6700 computer currently being used at NSRDC. The
program consists of a main program and four subroutines. The main program
reads in the parameters for the surface buoy, cable segments, intermediate
bodies, and botrtom weight, as well as the wiand speed and current profile.

The main program also prints out the input data.

1t is worthwhile to make several comments about the data which are
read in. The program reads in data for a cylindrical surface buoy. How-
ever, by reading in suitable values for the length, diameter, and drag
coefficient, other surface buoy shapes may be approximated. Also, as
previously mentioned, the program assumes that the cable is linearly
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elastic by reading in, for 2ach. cable segment, the constant quantity Kl’
given in Equation (11a). It is felt that this approximation is sufficiently
accurate for the large majority of engineering applications. If one

wishes to accurately model nonlinear tension-strain behavior, the subroutine
ELAS which is present in program MR3E2 may be conveniently incorporated into
the present program. It should be noted that in the above program the
differential equations are integrated only once. As pointed out earlier in
the section cn iteration schemes, the differential squations may have to be
integrated 100 times or more in the present program before a sclution is
achieved. Thus, the incorporation of the subroutine ELAS will increase
computer time requirements for the presert program. Finally, it should be
noted that in some free-floating cable systems, the lower intermediate
bodies form an array of hydrophones. In this case, the reader siuply reads
in the number of lower intermediate bodies, exclusive of the bottcm weight,
which form the array. As pointed out later in the present section, the
computer program prints out additional information about the configuration
of the array.

After reading in the input data, the program searches for the
equilibrium values of UD and H. This is done by the iteration schemes,
described previously, contained in tke subroutine STEADY. For given
values of H and UD’ the differential Equations (13)-(17) are integrated
down the cable. The differential equations are defined in the subrouvtine
DAUX and integrated by the subroutine KUTMER, which uses the Kutta-Merson
method for sciving systems of first-order differential equaticns. The
differential equations are integrated t¢ an accuracy of 0.01 percent. By
simply changing one or two statemeats in the program, any accuracy may be
prescribed. As mentioned earlier, ccmputer time requirements increase with
increasing accuracy. The proper value of the current is given by the sub-
routine CUR which linearly interpolates the input current profile points.
The calculation of Equations (20a)-(21) in the case of intermediate bodies
is performed by the subroutine STEADY.

When the bottom of the cable is reached, the errors ey and eﬂ are
calculated and are tested to see if they satisfy the inequalities given
in Equations (4a) and (4b). If both inequalities are not simultaneously

satisfied, new values must be found for H and/or UD' Before doing sc,
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the subroutine STEADY prints out the iteration number, the values of Up,
H, ey €y D,, 8§ (used in Equations (28) and (29)), and the temsions in
the cable just below the surface bucy and just above the bottom weight.

If both of the inequalities (4a) and (4b) are simultaneously satis-
fied, the program stops iierating for further values of H and UD and goes
on to print the following information:

1, System drift velocity U, and buoy draft H.

2. Vertical and horizontal components of the tension in the cable
just below the surfzce buoy.

3. Variables at voints along the cable, as functions of the refer-
ence cable scope S, measured from the surface buoy:

3, stretched cable scope,

x, horizontal displacement relative to buoy bottom,
y, vertical displacement relative to ocean surface,
T, tension in the cable,

¢, angle measured from the horizontal, and

¢V’ angle measured from the vertical.

4. Fluid and gravity forces DB and WB acting on the bottom unit.

5. Vertical and horizontal components of the tension just above
the bottom unit.

BESR RS EREA

In the event that there are two or more lower hydrophones, exclusive
of the bottom weight, the program prints out ©, the angle with the vertical
of a chord connecting the top of the array with the bottom weight, and k,
the maximum perpendicular distance betveen the chord and array. The quan-
tities © and k ure shown in Figure 3. It should be noted that the coor-
dinate system (xr, yr) shown in Figure 3 is defined such that the bottom
weight is the origin of the coordinate system.

After printing out the above information, the program goes on to a
new case.
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