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NOTATION

B Buoyancy

CD Prag coefficient

CDA Drag ar.a

c Current as a fu:ction of depth

D Drag

d Cable diameter

d S  Diameter of the surface buoy

E Resultant error =e H2 +

e Strain = (ds - dso)/ds°

eH  Error in the horizontal direction = TH - (DB + Ten)

eV  Error in the vertical direction = TV - (WB + TBV)

evo Value of e when e < e1

eI  Small prescribed value

F Force

f Tangential drag coefficient

fc Function of strain = d/d0

G Drag force per unit length tangential to the cable

g Gravity constant

H Buoy drait

I Drag force per unit length normal to the cable

K Strain as a function of (T - T
0

K Compliance coefficient for a linearly elastic cable = K/(T - To)
10



II

k Maximum perpendicular distance between the chord and lower array

£ Cable length

Numerical factor = CDAT (cM - c)/2

Mv Numerical factor = Pg1ds2 /4

N Total number of cable segments = total number of bodies

p Poisson's ratio

q Fluid velocity relative to the cable = c - U

D
R Drag force per unit length when the cable segment is normal to

the stream = C dq ql/2

s Distance measured along the cable

T Cable tension

U Drift velocity
D

W Weight per unit length in water = W - Wa b

Wa  Weight per unit length in air
Wa

Wb Buoyancy force per unit length

W Weight in water of the bottom unit

X Direction normal to a cable segment

x Horizontal direction positive to the right

Y Direction tangential to a cable segment

y Vertical direction positive downwards

6 Positive quantit;

A Incremental value

1 Small positive constant

2 Small positive con-tant
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0 Angle with the vertical of a chord connecting the top of the

array with the bottom weight

P Fluid mass density

Angle of the cable with the horizontal

fV Angle of the cable with the vertical

SUBSCRIPTS

a Above

b Below

B Bottom unit

H Horizontol direction

I Intermediate body

i Irteger index

M Maximum

a Minimum

o Reference state

p Prescribed value

r Lover array

S Surfice buoy

T Total

V Vertical direction

x x direction

y y direction

SUPERSCRIPTS

New values

v



ABSTRACT

An analysis is given for the two-dimensional steady-state
behavior of extensible free-floating cable systems. The anal-Mysis includes the differential equations of equilibrium for an
extensible cable and the iteration schemes for the equilibrium
system drift velocity and surface buoy draft. Based on this
analysis, a FORTRAN IV program, FF2E.. has been written. The
program allows the cable system-to have an arbitrary number of
different cable segments and intermediate bodies. The program
works well fol the large majority of cases of practical interest.

' .DMINISTRATIVE INFORMATION

STask 5335530/440C/WZ1400000.INOMTO

This work was sponsored by the Naval Air Systems Command under Air

INTRODUCTION

Until recently, steady-state cable studies have been concerned

largely with towing and single point moored cables. For cases of a cable

towing a liven body or of a single cable mooring a surface buoy with a

given draft, the problem reduces to an initial value problem where the

differential equations of equilibrium of the cable are integrated along the

cable for given initial values at one end of the cable. The integration

stops when cable scope or the prescribed depth is reached. With the use

of subroutines for the solution of differential equations, such as the

subroutine KUTNER which uses the Kutta-Merson method, these initial value

problems can be conveniently solved on modern day digital computers. At

NSRDCI, Cuthilll has developed a program for the two-dimensional shape of

* inextensible tow'ed and moored cables in a uniform stream. More recently,

Wang2 has developed a program for the three-dimensionai shape of an exten-

sible cable system moored in the presence of a current profile which may

change in magnitude and direction with depth.

an

I~References are li. ted on page 23.



K: Perhaps the simplest case where iteration techniques are required

in the steady-state analysis of cable systems is the case of a cable of

given scope moored in a given depth. In this case the submergence of the

surface buoy must be iterated until the- cable reaches the given depth with

the given cable scope. Where the current is severe and/or the depth is

large, the buoy may be completely submerged beneath the ocean surface.

The use of iteration techniques is required in the steady-state

analysis of some modern applications of cable systems. Skop and O'Hara.3

have studied the problem of subsurface buoys moored by an array of cables.

The need for iteration procedures for this problem can be readily seen by

considering the case of a single subsurface buoy moored by more than one

cable. It is clear that the subbirface buoy can be maintained in equilib-

rium by an infinite combination of the forces in the cables just below the

buoy. Conceptually, the forces at the tops of these cables must be con-

tinually iterated until the lower ends of these cables reach the required

anchor positions. Instead of iterating the forces at the top of the

c;bles, Skop and O'Hara choose the equivalent method of iterating the

forces at the lower end, i.e., at the anchor positions.

In the case of a cable towed in a circular path the radius of the

otion of the towed body must be continually iterated until the boundary

conditions at the towing end are satisfied. This problem has been con-

sidered by Huang, 4 Choo, 5 Skop,u and Skop and Choo. 7

In the case of free-floating cable systems, the problem considered
in the present study, iteration schemes are also required. Basically, the

drift velocity of the entire cable system and the draft of the surface buoy
must be continually varied until the entire system is in an equilibrium of
forces in both the horizontal and vertical directions.

The present report gives a description of computer program FF2E,

which is a FOnTRAN IV program for the two-dimensional steady-state behavior

*of extensible free-floating cable systems. The iteration schemes for the

system drift velocity and buoy draft are described in detail. It is shown

that the schemes work well for the large majority of cases of practical

interest. For some cases of long cables in unusually severe current pro-

files the schemes may fail to converge due to the extreme sensitivity of

cable configuration to changes in drift velocity and buoy draft. The

2
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4-7

differential equations of equilibrium used in the present study are similar

to, but not. identical with, the equations used by Pode.8 The differences

are simj4:: J!ut to the difference in coordinate systems used. The progrim

allows the cni Le system to have an arbitrary number of different cable
segments and intermediate bodies. The surface buoy is taken to be a circu-

lar cylinder in the present study. However, by properly adjusting the

values for the length, diameter, and drag coefficient, other buoy shapes
may be approximated. For cases where the free-floating system contains a

lower array of hydrophones, the program calculates the inclination and

curvature of the array.

In the present study, the inclination of the buoy is taken to be

vertical. In actual cases, the buoy inclination is a function of such

factors as the center of gravity of the buoy, the center of buoyancy, the
point of attachment of the cabh3 to the buoy, and the nagnitude and loca-

tion of the resultant drag force (which is dependent on the inclination of
the buoy) acting on the buoy. The inclination of the buoy must be deter-
mined by solving a transcendental equation for each nev: assmaed set of

values for drift velocity and buoy draft. This would result in increased
complexity of program logic and computer time requirezents. It is felt

that the present simple approach for the surface buoy will yield, in most

cases, reasonable answers for such system variables a; system drift

velocity, cable configuration, and operating depth of the bottom unit.

The eqilibrium inclination of the surface buoy can then be calculated

from the equilibrium values of the drift velocity and buoy draft furnished

by the present computer program. For those cases where the effect of sur-

face buoy inclination substantially affects cable system variables, then

this effect sh.ould, of course, be incorporated into the program.

The program may also be used to approximately solve cable payout

problems. In these applications, an object may be kept stationary on the

ocean bottom by having an intermediate cable pack pay out cable as it drifts

along. The amount of cable which is payed out depends on the drift velocity

of the cable pack. The actual drift of the cable pack is rather complex.

The weight of the cable pack decreases as cable is being payed out, and the

tension exerted on the cable pack by the cable being payed out is a func-

tion of time. An approximate analysis of the motion of the cable pack may



be made by assigning average values to the cable pack weight and the verti-

cal and horizontal components of tension exerted on the cable pack by the

cable being payed out. The resulting cable system consisting of surface

float, connecting cable, and cable pack may then be considered as a free-

floating system.

GENERAL METHOD OF SOLUTION

The tree-floating cable system considered in the present study is

shown in Figure 1. The system consists of a surface buoy, an arbitrary

number of different cable segments and intermediate bodies, and a terminal

weight at the bottom. As shown in Figure 1, a current profile which varies
with depth may be prescribed over the entire cable system.

In the presence of the given current profile, the entire cable sys-

tem will drift at a velocity UD and the surface buoy will taKe a draft H

such that the entire cable system is in an equilibrium of forces. The

principal problem of the present study is to determine these equilibrium

values of U and H. Using the iteration schemes described later in the

study, values for UD and H are chosen. From taiese values of UD and H, the

current relative to the cable system as well as the tension and angle of

the cable lust below the buoy are determined. The differential equations

of equilibrium may then be integrated down the cable. At intermediate
points along the cable the integration of the equations must be interrupted
to take into account intermediate attached bodies which may be drogues or

hydrophones.

The integration of the zquations proceeds in the above mannex until

the bottom unit is reached. At this point, the equilibrium of the bottom

unit is checked. Since the conditions at the top of the cable are deter-

mined by equilibrium considerations for the surface buoy, and the cable

configuration is obtained by considering the equilibrium of the cable, then

the entire system is in equilibrium if the bottom liit is in equilibrium.

Figure 1 shows that the imbalance of forces in the horizontal and vertical

directions may be written as

eH  T H (DB + TBH) (1)

4



e = Tv- (WB + TBV) (2)

where eH and eV are the imbalances in the horizontal and vertical direc-

tions, respectively,

1H and T are the horizontal and vertical components of the tension
just above the bottom unit, respectively,

DB and W B are the drag and weight in water of the bottom unit,

respectively, and

TBH and TBV, in the case of a payout problem, refer respectively to

the horizontal and vertical components of tension exerted by the

cable beii.g paid out on the bottom unit; for free-floating systems,

T T =0.
BE! BV

As mentioned previously, the quantities T BH and TBV are taken to be con-
stants in the present study.

A number of criteria on the magnitude of the errors may be used to

determine when the problem is considered to be solved. For example, one

possible criterion would be to say that if the resultant imbalance in

forces E, defined by

E= VeH + eV2 (3)

is less than a presciibed amount E. the problem is considered to be
sove. If E > Ep., then new values must be found for UD and H. In the

present study the problem is considered to be solved if the following two

inequalities are simultaneously satisfied

Ie1 < 'l IDB* TBH1 (4a)

levi < 2 1WB TBVI (4b)

where cz and 2 are small positive constants.

EQUATIONS OF EQUILIBRIUM

Figure 2 shows the coordinate systems used in the present study.

The (x,y) spatial coordinate system is taken to have fixed directions, with



the origin at the undisturbed ocean surface. The x axis is positive to

the right and the y axis is positive downwards. The cable differential

equations are written for a coordinate system attached to the cable, called
the cable coordinn:te system (X,Y). The Y axis is directed along the cable.

CABLE EQUATIONS

Differential Equations

The two-dimensional differential equations of equilibrium for a

flexible cable have been derived by a number of authors; see, for example,
the derivation given by Pode.8 For the coordinate systems used in the

present study, the equations of equilibrium for the cable in an arbitrary

stretched condition are

(IT + G + W sin = 0 (5)

ds
T - + I +Wcos €= 0 (6)

where T is the tension,
s is the stretched cable scope,

W is the weight per unit length in water of the stretched cable, and

G, I are the fluid drag forces per unit length acting on the cable

in the Y and X directions, respectively.
The above equations are similar to, though not identical with, the equa-

tions derived by Pode. 8 The differences are due to the difference in

coordinate systems used. The present coordinate system defines the verti-

cal coordinate as being positive downwards whereas in Reference 8 it is

positive upwards. Also, for 0 < < 90 deg, cable scope in the present

study is positive measured from the surface buoy, whereas in Reference 8

cable scope is positive measured from the bottom weight. The present

coordinate system is more convenient for free-floating and moored cable

systems while the coordinate system used in Reference 8 is more convenient

for towing cables.

As pointed out in Reference 2, it is convenient to relate the quan-

tities ds, G, I, and W to quantities at some reference state where all the

6
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cable parameters are known. This reference state is taken to occur at

T, where T need not be equal to zero. Summarizing the results of

Reference 2, the relationships between ds, G, I, and W in terms of these

quantities at the reference state T = TO are given by

ds =ds (I + e) (7)

G f (e) GO  (8b)

wa [0 e)]

IW W =1 + e Wbo [f~)'(9)

where subscript o denotes quantities for the reference state,

e is the strain = K(T- T), (10a)
0

K is an experimentally measured tension-strain function,

f (e) =d (10b)
c d

0

d is the cable diameter,

Wao is the weight per unit length in air of the cable,

W is the buoyancy force per unit length
bo

2nd

Wb° = Pg-o (10c)

p is the fluid density, and

2
g is the gravity constant = 32.2 ft/sec

In the present study the cable is assumed to be linearly elastic so that

K and f are given by
c

K=K * (T-T) 'Ila)

74



fc(e) =1 pe (1ib)

where K is a constant and p is Poisson's ratio. In Equation ( W), W is

given in terms of Wao and Wbo. Usually the cable weight is specified in

terms of Wo' the weight per unit length in water of the cable at the refer-

ence state. In these cases, Wao is simply given by

Wo Wo+ Wo (12)

where Wbe is given by Equation (lOc).

Upon using Equations (7)-(9), Equations (5) and (6) become

dT + G f c e)(l + e) + sin - Wbo fc2 (e)(l + e)l = 0 (13)

ds 0  c Wjo b

T- + I f (e)(l + e) + cos (e)(1 + e 0 (14)
ds o c bo a~ile+o~[o e)] :c 14

In addition to the dependent variables T and 0, other dependent

variables are of interest. These include x, the horizontal displacement

of the cable measured from the point of attachment of the cable to the

buoy, y, the vertical displacement of the cable measured from the sea

surface, and the stretched cable scope s. From Figure 2, it is seen

that the differential equations for x and y are given by

dx = - cos * (1+ e) (15)

0

-dv
- = sin (1 + e) (16)

0

The differential equation for s is obtained by simply rewriting Equation

(7)

ds (I e) (17)
ds

0

8



Equations (13)-(17) along with Equation (10a) constitute six equations

for the six dependent variables T, *, x, y, s, and e. Upon substituting

Equation (10a) into Equations (13)-(17), the result is five differential

equations for the five dependent variables T, *, x, y, and s.

Fluid Drag Forces

For bare cable, the normal drag force I is usually written as8

10 = 1/2 P Cd ° q sin q sin 01 (18)

where CD is the drag coefficient, q = c(y) - UD, and c is the ocean current
which is a function of depth.

There is considerable variation among the forms proposed for the

tangential drag acting on bare cable; see the survey article by Casarella

and Parsons. 9 In the present study, the following form proposed by Pode8

is used

G = fR (- cos *) (19)
0 o Icos fI

where f is an empirical constant = 0.02 for normal bare cable and

R = 1/2 p C d qqJ. It should be noted that for the low velocities

relative to free-floating and moored cable systems, the tangential drag is

usually much smaller thaa the other fluid and gravity forces occurring in

Equations (13) and (14). Thus, it is not necessary to use a complex form

for the tangential drag. Other forms for the tangential drag can, of

course, be conveniently incorporated into the formulation.

EQUATIONS FOR INTERMEDIATE BODIES

The integration of the preceding equations must be stopped when an

intermediate body such as a drogue or hydrophone is reached. The tension

and angle just below the body, Tb and 0b' must be such that the body is 1
in an equilibrium of forces. These forces are the tensions in the cable

above and below the body and the fluid and gravity forces acting on the A
body. Upon solving the two equations of equilibrium for the body the

following expressions for Tb and bb are obtained -

9
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T= 2
Tb -(FIx + Ta cos a) + (T sin a F (20a)

Ob tan' T a a Fly (20b)
T a cos a + FIx

where T and a are the tension and angle of the cable just above the body,

FIx is the drag force acting on the body, and

Fiy is the weight in water of the body.

The drag force Fix is given by

FIx = 1/2 p CDAI q~qJ (21)

where CDA, is the drag area of the body for horizontal flow,

ITERATION SCHEMES

For chosen values of U and H, the integration c the equations in .

the preceding section proceeds until the bottom unit --'c Teached. At this ,

point, the equilibrium of the botton unit is Lhecked. As pointed out

previously, if the bottom unit is in equilibrium. then the entire cable

system is in equilibrium. Practically speaking, if the errors eH and ev

are small enough to satisfy the given error criterion, the problem is

considered solved. If the criterion is not satisfied, then new values

must be found for U and/or H.

Computer program FF2E contains a preliminary scheme and two prin.-

cipal schemes for iterating values of UD and 11. They are as follows,

in the order that they appear in the program:

(a) Preliminary scheme for UD .

(b) Simultaneous binpry scheme.

(c) Staggered binary scheme.

These schemes are described below.

10



PRELIMINARY SCHEME FOR UD

In this scheme, only the value of UD is varied. The value of H is

fixed and is determined by the buoyancy required to support the weight of

the entire system in water, in the absence of any current.

The scheme searches for a value of u which gives a value of eH

less than some small prescribed quantity e1. The scheme does this by

restricting UD to lie between successively closer barriers. For eH greater

(less) than zero, AUv is chosen so that the new value of UD lies halfwayD D
between the present value of UD and the most recent preceding value of UD
which is greater (less) than the ?resent value of U. Basically, the

changes in U are based on the sign given in Equation (28), which is
D

I derived in the following section.

The principal purpose of the present scheme is to provide an improved

initial value of UD for the simultaneous binary scheme. It has been found

that with this initial value of U., the convergence of the simultaneous

bindry scheme is improved. Also, for certain cases of low ocean currents,

the steady-state draft differs very little from the value of H fixed in the

present scheme, i.e., the value of eV associated with the final value of

U is also small. Thus, in these cases, the present scheme presents a
D

direct solution to the problem. Finally, as will be seen later, the present

scheme essentially is the first cycle of the staggered binary scheme.

SIMULTANEOUS BINARY SCHEME

This scheme changes the values of H and UD simultaneously.

Consider first the forces in the horizontal direction. The term

(TH - D.) appearing in the formula for eH, given in Equation (1), repre-

sents the horizontal component of the drag forces acting on the entire

cable system. It should be noted that (TH - DB) is a complex quantity

which ;1epends on the current relative to the cable and the inclination of

the cable. An approximate measure for (TH - DB) is given by

) 2 21TA - 2 c (22)

Hl 11 (D



*1 N
where CDA T DAS +Y_ CD i %i doi + CAIi)

CDAS is the drag area of the surface buoy and any underwater packages

mounted on the buoy,

N is the total number of cable segments = total number of bodies,

CDi' Ioi, and doi are respectively the drag coefficient, reference

length, and refexence diameter of the ith cable segment,

CAi is the drag area of the ith body,

c is the maximum value of the current, and

c is the minimum value of the current.

IL can be seen from the above definition for CDAT that it is a measuze

of the drag area of the entire cable system. Noting that TBH is imply

a constant in Equation (1), it can be seen that e H depends directly on

(TH - D.). In particular, it can be seen that if eH is greater (less) than

zero, the change in (TH - DB), A(TH - DB), should be less (greater) than

zero. Thus, the error eH may be related to A(TH - D.) as follows

t =-- A(T = DB) ,-1/2 p CDAT [(,-UD)( AUD) - (UD- cm) AUD]

= AUo p CDAT 1/2 (cM - c) = AUDMU (23)

where , = P CDAT 1/2 (c% - c.). An expression for AUD in terms of eH is
a Bhen given by

Consider now the vertical forces. By noting that the quantities

WB and TBV are constants in the formula for eV, given in Equation 
(2), it

can be seen thaL eV depends directly on TV. In particular, it can be seen

that if ev is greater (less) than zero, the change in TV , ATv, should be

less (greater) than zero. Provided that changes in the vertical component

* of tension j,'st below the buoy are propagated without a reversal in sign

12



to the bottom of the cable, e, may be related to changes in the buoyancy of

the surface buoy BS. The buoyancy force B is given by

BS pg-- H VH (25)

where dS is the diameter of the surface buoy and M = pg 7rdS /4. From the

ireceding discussiop, ev may be related to ABS, the change in BS , as

follows

eV ATv " ABS MV 111 (26)

An exDression for AH in terms of eV is then given by

M (27)

A number of proportionality factors have been tested for Equations

(24) and (27). No factors were found which cause the scheme to converge

to the equilibrium values of H and UD for all cases. ihe optimum defini-

tions for AUD and AH were found to be of the following form

" H leHl eH
.. AU D =u (28): . *K

AH = (2 •9)tI(

where 6 is a positive proportionality quantity, 0 < 6 < I and 6 is a
positive quantity. As discussed in the following paragraph, the quantity

6 serves the purpose of reducing the changes in UD.and H if these changes I
lead to a resultant error which is larger than the preceding resultant

error. The quantity 6H is initially set equal to 1. If the change,; in e.

occur too sivwly (fast), then 611 is increased (decreased). The ratio.-z

IenI/E and IeVI/E which occur in Equatjns (28) and (29), respectively,

13



II
bsically tell the schae to concentrate on changing UD(i ) If the predomi-

nonit error is eHCeV). It was found that the presence of these ra-:ios

increases the range of convergence of the scheme.

The scheme starts by choosing the initial values for H and UD to
be the final values of these quantities from the preliminary scheme and

calculating the cable configuration from these initi..l values. The

quantities AUD and AH are computed from the resulting error values e., eH,

and E by using an initial value of 6 equal to 1. These values of ALD and

AH are added respectively to UD and H, resulting in new values of H and

UDo H' and UD'. The cable configuration is again calcuiated using the new

values H' and U D'. New values of error are obtained: %1 , ev' , and E'.

If E' < E, then 6 remains at its initial value, and the new values H' and

UD' are retained. The quantities AU and ALH are obtained from eH', eV',II
and E3'. if, however, E' > E, then the new values e ', e's Ef', H', and
UID' are rejected. The quantitss AU and AM are obtained from the old

D D
values of e , eV , and E using a smaller value of 6. The quantity 6 is

continually reduced until:

(a) E' < E,

(b) e.1 simuitaneously satisfies the following two conditions:

(e H/IN) > I and

leH'. > Je'1, or

(c) 6 is lower than a prescribed lower bound. This lower bound

is set equal to 0.2 for the first ten iterations of the scheme and 0.05

for subsequent iterations.

In any of the above three cases, 6 is reset equal to its initial va;ue of

1, and AUD and AH are computed by usiig the new error values el', eV', 

and El. The resulting values of AUD and AP are added to UD' and H',

respectively. The scheme continues in the above manner until the errors

eH and eV are sufficiently small so that the given error criterion is

satisfied.

In one of the earlier sthemes tested, the quantity 6 was allowed to

decrease Indefinitely until E' < E. In other words, optior.s (b) and (c)

of the preceding paragraph were not present. Furthermore, 6 was never
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reset equal to its original value, but either remained the same or decreased

(according to whether E' was less than or greater than E) as the iteration

proceeded. Tihs scheme was similar to one proposed by Skop and O'Hara, 3

who dealt with the problem of subsurface floats moored by an array of cables.

It was soon found that this seee did not converge in many cases. It was

found that at certain steps of the iteration, the new error E' could never

be made smaller than E, no matter how small 6 was made. It was found that

this was due to interaction effects whereby changes in H have large effects

on eH and/or changes in UD have large effects on e . It should be noted

that interaction effects are not represented in Equations (28) and (29).

It was found that these interaction effects arise in cases where

the current differential between the top and bottom ot the cable system is

fairly large. In these cases, the normal fluid drag forces acting on the

cabl?, given in Equation (18), become significantly large. The interaction

effects arise largely due to the strong dependence of the drag forces on

cable geometry as shown in Equation (18). Consider, for example, the case

where only UD or H is changed. For a given change, the geometry of the

entire cable may be cha-nged significantly, and the resulting changes in the

normal drag forces may have significant components in both directions.

Skop a;d O'Hara3 prove that their scheme converges for moored cable

arrays. It should be noted, however, that the proof depends on the assump-

tion that 3I of the forces acting on the cable are unaffected by changes

in the geometry of the cable. Thus, their work should be viewed with some

caution, particularly for cases of high ocean currents where the geometry

* dependent fluid drag forces become significant.

The results of Reference 3 do suggest, however, that the convergence

of the present scheme may be improved by restricting the cable shape to

lie between certain bounds. An auxiliary scheme has been incorporated into

the program which changes UD by small amounts whenever the angle exceeds

or becomes less than certain prescribed bounds. This auxiliary scheme has

been found to improve the convergence of the main scheme. It should be

noted that the bounds on * can neither be too close nor too far apart. If

the buounds on * are too far apart, then it is clear that the scheme loses
its effectiveness. On the other hand, excessively close bounds may mean

many changes of UD, thus increasing computer time requirements. Also, the

| iS
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equilibrium cable configuration may lie outside the bounds if they are too

restrictive. It has been found that the optimum lower and upper bounds for

are approximately 0 degrees and 125 degrees, respectively.

As mentioned previously, this scheme does not converge for all cases.
The limits of convergence seem to depend most strongly on the current dif-
ferential between the top and bottom of the cable system, and on the length

of the cable. Based on many hundreds of runs already made with the program,

it seems that the scheme converges for the large majority of cases where

the current differential is less than 3.0 knots. In these cases, less than

approximately twenty iterations are usually required to obtain values of

H and UD which yield values of the resultant error E less than, say, 0.05

pounds. For some cases of high current differentials, the scheme cannot

minimize E beyond a certain amount, ranging from a few tenths of a pound
to several pounds. In these cases, the computer program switches to the

staggered binary scheme. I
STAGGERED BINARY SM1EME

Description of Scheme

The preliminary scheme constitutes the first cycle of the staggered

binary scheme. Basically, the scheme changes H and UD one at a time, thus

avoiding the interaction effects mentioned above. The changes in H and
Uare made in accordance with the signs indicated in Equations (29) and

(28), respectively. First, an initial value of H is chosen to be the

value required to support the weight of the entire system in water, in the

absence of any current. Then, keeping the value of H constant, the scheme

searches for a value of U D which gives a value of eH less than e V The

procedure for doing this has already been discussed in the section dealing

with the preliminary scheme.

When a value of UD has been found which gives rise to eH < e,, the

iteration for U D stops. The scheme calculates a new value for H based on

the value af evo, the value of eV associated with eH < el, as follows

Iq
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-i V evo (30) 1

where 6 is a positive number and M is defined in Equation (25).

It may be noted that Equation (30) di;fferF from Equation (29) in

that the quantities levi/E and 6 which occur in Equation (29) have been

replaced by 1 and , respectively. For the case of eVO, where eH < el,

the ratio leVI/E is nearly equal to 1. The quantity 6 is initially chosen
V

to be 0.6. Should the convergence to the equilibrium value of H be

excessively slow, 6V is increased. .5imilarly, 6 V is decreased if the

changes in H cause excessively large changes in e 0 . It should be noted

that H is also restricted to be between successively clos-r barriers. For

r evo greater (less) than zero, the new value of H is restricted to be

greater (less) than the last preceding value of H which gives rise to an

error evo less (greater) than zero. Should the value of Si calculated in R

Equation (30) lead to a new value of H which goes beyond the preceding

barrier, the new value of H is adjusted so that it lies between the pre- i
sent value of H which gives rise to the given value of evo and the barrier.

Keeping this new value of I' constant, the scheme again searches for a value j
of UD which gives rise tc eH < e1 . The s.aeme proceeds in the above xanner

until the error quantities eH and eV are .,mall enough to satisfy the given

error criterion

Discussion of Convergence

This scheme converges over a wider range of cable and current param-

eters than the simultaneous binary schime. It is, however, slower, usually

requiring at least sixty iterations to arrive at suitably small values of

eH and eV . Based on many hundreds of computer runs made thus far: it seems

that the scheme converges for nearly all cases where the surface current

is less than approximately S.0 knots. It should be noted that surface

currents seldom exceed S knots (see, for example, Reference 10).

For some cases of long cables. floating in the presence of surface

currents in excess of S knots, the scheme may fail to converge. In these

cases, where the geometry dependent. fluid drag forces dominate, the scheme

cannot minimize the error E beyond a certain amount ranging fror a few .

17
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tenths of a pound to several pounds. The computer results for these cases

show that the cable configuration and the error quantities eH and eV are

very sensitive to changes in H and UD, As an example, zonsider the partic-

ular case of a 2,000-ft cable fl.:ating in the presence of a surface current

of 8 knots. For this case, the computer results showed that at H = 0.86318

ft, a change in H in the sixth or higher decimal place produced a change in

e from -6.2 lb to 1.1 lb. This large change of ev0 from regative to

positive values is typical of the behavior of the scheme when it fails to

converge.

The preceding results were obtained for the case when the differ-

ential Equations (13)-(17) were integrated to an accuracy of 0.01 percent.

In view of the extreme sensitivit, of eo to changes in H, it was decided

to investigate this particular case further by increasing the accuracy of

the integration of the differential equations. With accuracies up to and

including 0.0001 percent, the large changes of eVO with changes in H in

the sixth or higher decimal place around eVO = 0 continued to occur. The

values of H giving rise to these large changes in evo changed somewhat with

the accuracies. For example, with accuracies of 0.001 percent and 0.0001

percent, the large changes in evo from negative to positive values occurred

respectively at H = 0.86199 ft and H = 0.86066 ft. 71e investigation had

to be terminated when an attempt was made to integrate the differential

equations with an accuracy of 0.00001 percent. Computer time requirements

became prohibitively large.

The preceding discussion shows the nature of the physical and/or

numerical instability for cases oZ unusually severe current profiles and

sufficiently long cables where the cable geometry dependent fluid drag

forces dominate. In order to thoroughly investigate the nature of this

instability, and to determine the solution, computer time requirements

beyond the scope of this study would be required. The preceding results

do tentatively indicate that the equilibrium value of H is localized to

a small neighborhood by the scheme. In most cases where the scheme: fails

to converge, the minimum resultant error does not exceed a f-w pounds. It

is expected that in most engineering applications involving ibles a f-w

thousand feet or longer, an error of one or two pounds can be tolerated.
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DISCUSSION OF UNIQUENESS

The uniqueness of the numerical solutions has not been investigated 2

in the present study. One way to study this question is to incorporate a

grid scheme into the computer program whereby H and Uare each assigned auD
given number of values over prescribed intervals. The configuration of the

cable and the resultant error E are then calculated for each possible pair

of values of H and U If E is equal to zero for two or more different

pairs of values, then the solutions are nonunique. Based on the sensitiv-

ity of E to changes in H and UD, observed from the many runs using program

FF2E, it seems that in most cases a minimim of 50 to 100 values must be

prescribed for both H and UD, around their respective equilibrium values

predicted by program FF2E, in order to discover the existence of any addi-

tional solutions which may exist. This means that for a given case, the

configuration of the cable must be calculated 2,500 to 10,000 times. The

execution time on the CDC 6700 for a single calculation of the configuration

of the cable is of the order of one second. Thus, several hours of computer

time probably would be required in order to investigate uniqueness for one

case. A systematic investigation would require the consideration of a large

number of cases. The computer times required were beyond the scope of the

present study.

FORTRAN TV COMPUTER PROGRAM

Based on the preceding analysis, a FORTRAN IV computer progrm,

FF2E, has been written for the system shown in Figure 1. The program is

compatible with the CDC 6700 computer currently being used at NSRDC. The

program consists of a main program and four subroutines. The main program

reads in the parameters for the surface buoy, cable segments, intermediate

bodies, and bottom weight, as well as the wind speed dnd current profile.

The main program also prints out the input data.

It is worthwhile to make several comments about the data which are

reaid in. The program reads in data for a cylindrical surface buoy. How-

ever, by reading in suitable values for the length, diameter, and drag

coefficient, other surface buoy shapes may be approximated. Also, as

previously mentioned, the program assumes that the cable is linearly
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elastic by reading in, for aach. cable segment, the constant quantity KI,

given in Eqxation (1la). It is felt that this approximation is sufficiently

accurate for the large majority of engineering applications. If one j
wishes to accurately model nonlinear tension-strain behavior, the subroutine

ELAS which is present in program MR3E2 may be conveniently incorporated into

the present program. It should be noted that in the above program the

differential equations are integrated only once. As pointed out earlier in

the section on iteration schemes, the differential equations may have to be

integrated 100 times or more in the present program before a solution is

achieved. Thus, the incorporation of the subroutine ELAS will increase

computer time requirements for the presert program. Finally, it should be

noted that in some free-floating cable systems, the lower intermediate

bodies form an array of hydrophones. In this case, the reader simply reads

in the number of lower intermediate bodies, exclusive of the bottom weight,

which form the array. As pointed out later in the present section, the

computer program prints out additional information about the configuration

of the array.

After reading in the input data, the program searches for the

equilibrium values of UD and H. This is done by the iteration schemes,

described previously, contained in the subroutine STEADY. For given

values of H and UD, the differential Equations (13)-(17) are integrated

down the cable. The differential equations are defined in the subroutine

DAUX and integrated by the subroutine KUTMER, which uses the Kutta-Merson

method for solving systems of first-order differential equations. The

differential equations are integrated to an accuracy of 0.01 percent. By

simply changing one or two statements in the program, any accuracy may be

prescribed. As mentioned earlier, computer time requirements increase with

increasing accuracy. The proper value of the current is given by the sub-

routine CUR which linearly interpolates the input current profile points.

The calculation of Equations (20a)-(21) in the case of intermediate bodies

is performed by the subroutine STEADY.

When the bottom of the cable is reached, the errors e and eM are

calculated and are tested to see if they satisfy the inequalities given

in Equations (4a) and (4b). If both inequaliti.es are not simultaneously

satisfied, new values must be found for H and/or UD. Before doing so,
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the subroutine STEADY prints out the iteration number, the values of UD,

H, eV, el, DB, 6 (used in Equations (28) and (29)), and the tensions in

the cable just below the surface bucy and just above the bottom weight.

If both of the inequalities (4a) and (4b) are simultaneously satis-

fied, the program stops iterating for further values of H and UD and goes

on to print the following information:

1. System drift velocity UD and buoy draft H.

2. Vertical and horizontal components of the tension in the cable

just below the surface buoy.

3. Variables at points along the cable, as functions of the refer-

ence cable scope so measured from the surface buoy:

s, stretched cable scope,
x, horizontal displacement relative to buoy bottom,

y, vertical displacement relative to ocean surface,
T, tension in the cable,

angle measured from the horizontal, and

*V' angle measured from the vertical.

4. Fluid and gravity forces DB and WB acting on the bottom unit.

5. Vertical and horizontal components of the tension just above

the bottom unit.

In the event that there are two or more lower hydrophones, exclusive

of the bottom weight, the program prints out 0, the angle with the vertical

of a chord connecting the top of the array with the bottom weight, and k,

the maximum perpendicular distance between the chord and array. The quan-

dinate system (x , y ) shown in Pigure 3 is defined such that the bottom
r r

weight is the origin of the coordinate system.

After printing out the above information, the program goes on to a

new case.
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