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Abstract 

Numerical methods are used to study the growth of waves  of 

finite amplitude on a pair of parallel infinite vortices.     The vortices 

are treated as  lines except in so far as the detailed structure of the 

core is  needed to remove consistently the singularity in the line 

integrals  for the  velocities  of the vortices.     It is  shown that the 

vortices  eventually touch and the  shape of the wave at this  instant 

is calculated.     The wave is quite distorted at this instant,   but it is 

shown that its  gross properties are  given  roughly by linear theory. 
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§1.    Introduction 

The trailing vortex system behind a large aircraft contains a 

considerable amount of energy and presents a hazard to other,  particularly 

smaller,  aircraft.     The recognition of this  problem has lead to attempts, 

both theoretical and experimental,   to estimate the life-time of the 

trailing vortex system. 

To do this theoretically one must isolate the mechanism which is 

responsible for destroying the vortex trail.     Turbulent diffusion of the 

vorticity is  too gradual to matter and only two processes seem able to 

cause  rapid disintegration of the vortex tystem,   vortex bursting  (Bisgood 

et al    1971) and the  growth of waves  of large amplitude.^       This  latter 

effect can often be  observed when the vortex system of a high-flying 

aircraft is   rendered visible by condensation.     Wavy disturbances   grow 

on both trailing vortices and  rapidly reach an amplitude such that the 

two vortices  touch at the points  of maximum inward displacement.     The 

trail then breaks  up into a sequence of distinct  rings and soon ceases to 

be visible.     Several systematic  observational studies  of this   "looping" 

process have  recently been made  (Rose and  Dee 1963,   Crow and Murman 

1970,   Olsen 1971,   Widnall,   Bliss and Zalay 1971). 

It is   worth emphasizing that the mechanism by which the original 

vortices break and  rejoin to form rings  is  not understood.     Nor is  it 

clear why the vortex rings,  which are  stable on classical theory,   should 

disappear  so rapidly (if indeed they do,   since care must be taken in 

^At high altitudes large stable density gradients can occur, and Scorer 

and Davenport (1970) have suggested that buoyancy effects can then lead 

to rapid disintegration. 



1.2 

interpreting observations which depend on the retention by the vortex 

of smoke particles or water droplets).     However,  the present paper is 

concerned only with the motion of the vortices up to the instant at which 

they touch. 

Theoretical work on the growth of waves was initiated by Crow 

(1970).     Crow represented the trailing vortex system as a pair of infinite 

parallel vortex filaments of circulation +   F having circular cross  sections 

of radii a small compared to their separation b.     Small perturbations  in 

the form of plane waves were shown to be unstable, provided only that the 

waves were  sufficiently long,   the time of growth being of order b2/F. 

In the mode  of most  rapid growth the disturbances  lie in planes  inclined 

at about 45s to the vertical which are oriented so as to meet below the 

undisturbed positions  of the vortices and the waves themselves  are 

symmetric  in the  sense that the crests  of the wave on the  left-hand vortex 

are directly opposite the crests  of the  waves  on the  right-hand  vortex. 

The wavelength of this mode of maximum growth rate depends   weakly 

on a/b and, for the  value taken from the  simplified theory of Spreiter 

and Sacks  (1951),     Crow showed that \/b  = 8.5. 

According to linear theory the troughs of the waves  will descend 

in their  respective  planes until they meet,   so that an explanation of the 

first stage of the looping process  ie  to hand.     However the waves  are of 

amplitude comparable to their length when they touch,   so that it is  clearly 

desirable    to examine non-linear effects. 

A first attempt has been reported by Hackett and Theisen (1971) 

and it was  shown that while the wave is modified by non-linear effects, 

the troughs do eventually meet in the manner suggested by linear theory. 



1.3 

However their numerical method did not permit the effect of axial flow 

in the vortex filaments or differing filament radii to be studied and it 

was thought worthwhile to present a numerical method in which these 

effects could be allowed for. 

The assumptions made are precisely those of Crow's theory.     The 

fluid is  regarded as inviscid and incompressible and has uniform density, 

while the vortex system is modelled as described above.     To simplify the 

calculation still further,   the vortices are treated as being of zero cross 

section and the velocity field due to either vortex is  calculated from the 

Biot-Savart line integral.     The neglect of viscous  effects means  that 

these vortex lines  move with the fluid,   and this  leads  to a pair of coupled 

integro-differential equations for the equations  of the vortex lines. 

A difficulty occurs  because the  Biot-Savart integrals diverge on 

the vortex lines  themselves,   but this  can be dealt with by means  of a 

"cut-off. "     The choice of this  cut-off depends  on the  detailed structure 

of the vortex filament,   particularly its   radius  and the  radial distribution 

of vorticity and axial flow.     It is only through the cut-off that these 

details influence the calculation. 

These matters are described more fully in §2 and in §3 some 

transformations  required before efficient numerical integration is possible 

are described. 

In §4 tne  results  of numerical integration are described for the 

case already discussed on linear theory by Crow.     There is no axial 

flow and the vorticity is uniform inside the filament,   which has the 

radius  given by the Spreiter and Sacks theory.     Initial plane waves  of 

small amplitude and wavelength and orientation corresponding to Crow's 
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most unstable mode are prescribed.     The subsequent growth of the 

disturbance is then followed by step-wise integration of the integro- 

differential equations. 

The wave remains almost plane,  but is  somewhat distorted from 

a sinusoidal form by the time the troughs meet. 

In view of the lack of reliable information about the distribution 

of vorticity and axial velocity in the filament in the real case it was not 

thought to be worthwhile to carry out further calculations at present, 

though the program can deal with the general case. 



2.1 

§2.    The equationa of motion 

Rectangular axes moving with the undisturbed vortices are employed, 

Oz being parallel to the vortices and midway between them and Ox being 

perpendicular to the plane defined by the undisturbed positions of the 

vortices.     For an aircraft flying horizontally Oz will be in the direction 

of flight and Ox will be vertically upwards. 

The vortices will be  represented parametrically as  x. (v,t) and 

Xj^v.t) where v is a parameter chosen so that v« const,   represents 

always the same fluid particle.     Then,  bearing in mind that the fluid 

at large distances has  a velocity -r^-r-  1   relative to the moving axes,  the 

equation of motion of the left-hand vortex iß 

V8W     ~  Air   r      8v    A     |      /    .       . ,| v0 -oo ixL(v0)-xIjv)| 

dv 

3 

4ir    J       9v    A      i     ,„ .       /  u' 2Tb    * [6'l} 
|xL(v0)-xR(v)i 

and that of the  right-hand vortex is 

Ä\     .Xf00^    feR(v')"^L(v))dv 

\ Qt  )     ' 4ir J       8v   A  |      .    ,        ,  ,•, 

r   **> 8«R     (sR(v.)-2SR(v))dv      Pi 

-« I»R(VI)-JSR(V)I 

The notation  ^   implies that some artifice is used to make the integrals 

representing the self induction finite at v=v0  or v«Vj. 
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Two methods of dealing with the divergence of the integral for 

the self-induced velocity have been employed.    The simplest method 

and that used by Crow himself is to remove an interval (v0- c,  v0-€) 

from the range of integration,  where the small quantity €   is chosen 

so that the arc length of the portion of the vortex corresponding to 

v0-€< v < v0 + €   bears a fixed ratio 26    to the core radius a(v0) at 

the point in question.     The quantity 6    is chosen so that the velocity 

given by the "cut-off" integral agrees with that given by the exact solution 

for a circular vortex.     Remarkably this choice of 5    can be shown to 

give the correct self-induced velocity for a vortex of any shape provided 

that terms of 0( —) are neglected,  where p is the radius of curvature of 

the vortex (Widnall,   Bliss and Zalay 1971,   Moore and Saffman 1971). 
| 
I This method of cut-off is  not flexible enough for numerical work, 
I 

because it would be awkward to remove an interval from the line integral 

which was not terminated by grid^points  of the finite  difference scheme. 

It may be remarked at this point that dealing with the infinity by simply 
I 

omitting the grid point at which the integral is infinite,  as was done by 

Hackett and Theisen (1971),   is  equivalent to a choice  of core  radius 
: 

dictated by the mesh-size of the finite difference scheme. 

A suitable method of cut-off is that suggested by Rosenhead (1930), 

and consists of replacing the denominator in the integral for the self 

induced velocity in (2.1) by    (?SL(
V

O)"JSL(
V

))   
+ H2 where the small length 

|i bears a fixed ratio 26R to the core radius a(v0) and similarly for (2. 2). 

Rosenhead merely remarked that ^ is 0(a) but by comparing the solution 

using a cut-off integral with the exact solution for a ring,   as  generalized 

by Widnall et al (1971),   it can be shown that 
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log26R s -i  -  ^ / r«(.) f-  + ^   /* 8W«ds   . (2.3) 
0 0 

where r(s) is the circulation and W(s) the axial velocity at a distance 

a from the centre of the vortex filament.     For W = 0 and r(8) = 8l/a2   „ 

so that there is  no axial flow and uniform vorticity inside the filament 

(2. 3) reduces to 

log 26R = - I (2. 4) 

For the  reasons  described in §1 this is  the only case considered in detail. 

However one is  now faced by a more difficult problem,   which is how the 

core radius  itself is to be determined,   since until a(v0) is known |JL cannot 

be determined.     The  vortex filaments will stretch as the waves   grow so 

that,   since their volume is conserved,   their cross-sectional area will 

certainly have to change. 

I* This question has been studied elsewhere  (Moore and Saffman 

1971) and it has  been shown that a is   sensibly uniform along the  vortex, 
I 

being just that function of time only which conserves the volume of the 
i: 

filament.     Essentially this is due to the fact that changes  of cross- 
t r 

sectional area propagate along the  vortex with speed 0(—)  ,  whereas 

changes  of curvature or torsion travel with speed o(r log -). 

Thus variations of cross-sectional area are  smooth d ct in a time 
I 

short compared to the times of interest here. 
I 
V 
il, 

I This is a great simplification and means that the radius of 

the filament is  easily determined from the instantaneous length of the 

filament. 
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2.4 

It is now a simple matter in principle to determine the evalution of any 

initial disturbance £.(v,0) , &>(v> 0) to the vortex pair,  by integrating 

(2.1) and (2.2) forward in time,  the length of the filaments being 

calculated at each time step in order to obtain the appropriate value 

of \i.     However some transformations of (2.1) and (2.2) which take 

account of the periodic nature of the disturbance greatly decrease the 

amount of computing necessary and these are described in the next 

section. 
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§3.  Reduction to a form suitable for numerical integration 

Only symmetric disturbances are to be considered so that 

X^V.t)   =   Xj^V.t)    , 

yL(v,t) =  -yR(v,t) ,        } (3.1) 

zljv,t) S  ZR^V,t)  * 

Hence only (2.1) need be integrated and (2.2) is   replaced by the symmetry 

conditions embodied in (3.1). 

Next advantage is  taken of the fact the disturbances are periodic, 

which means that the parameter v can be chosen so that for any integer n 

3SL(v+ n,t) = k n\ + x^v.t)  . (3.2) 

Here,   X is the wavelength of the disturbance,   which does  not change as 

the wave grows,   and v has been chosen so that 0 < v < 1 corresponds 

to one wavelength. 

Thus one need only follow,   say,   the portion -| < v < | to 

obtain Xjjv,!) and hence,  by (3.1)  ,   Xp  .     But the integrals in (2.1) 

converge rather slowly and have large integrands,   so that further steps 

are needed to make accurate numerical integration feasible. 

The first integral in (2.1) can be decomposed into the  form 

,+'   *ZL     Uiiv°)-;£liv>)dv "v"'   /* 8xL     feL(vo)^L(v)-2m^)dv 

9   "er A 'T" 
+ L    $ inr A . 77 (3*3) 
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where the second term arises from summing over successive portions of the 

dsturbance of length 2\.   If v0 is restricted to lie in the interval <-| , |) , 

all the integrands in the second term are bounded ^ and no cut-off is 

required.     Thus the integral can be written as 

+i  8xT       A(v,v0)dv        +i   8x.       / . 
#     itr*~ s+f      -57" A(A(v.v0)P(A)-kQ(A))dv (3.4) 
^i      8v        |A(v,Vo)|        J-i      dv       ^ -     -     -/ 

where 

and 

Mv.vo)   -   xT(vo) - xT(v) (3.5) 

ma+oo 3 
{ u2 -4m u • k + 4m2| 

m = -oo 

m = +oo - -I 
Q(u)   =   V  '    2m{u2-4mu-k + 4m2}    2 

(3.6) 

m = -x J 

The sums of the infinite series in (3.6) do not seem to be expressible in terms 

of elementary functions,   but they can be computed numerically.     In 

practice a table of values  over a discrete set of u2  and u • k was 

computed and stored before time  integrations were started,   the values 

of P and Q being calculated for the actual u arising in the time integration 

by bi-variate interpolation. 

^This is why the summation is  over two waves at a time.     I am 

indebted to Professor P.   G.  Saffman for this step. 
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This use of the periodicity,  which was  suggested by Rosenheads 

(1930) treatment of the two-dimensional vortex sheet,   means that the 

range of integration is reduced from (-«,00) to (-1,1) so that high 

accuracy can be achieved in the numerical integration with a tractable 

number of grid points. 

The second integral in (2.1) can be similarly transformed and 

the same functions  P and Q arise. 

However the integral in the first term in (3.4), though every- 

where finite, is large near v0 and this would cause loss of accuracy in 

evaluating the integral.     It is  easy to show that,   when v ~ v0, 

2y8xTv      i,8
zxTV 

so that if the first term in (3. 4) is written in the form 

8xT.      .e'x 

(3.7) 

+./8^ A Uiivo)-*L(v)) 2(v"Vo)Uv ;0
AUv 

M8v   i(^o)-xL(v))z+,n^ 'T^pT^ 
dv 

2 
^x..       /8

2xTV        +» (v-v0) 

{('-v.l (-5^ W} 

then the integrand in the first integral is 0(1) everywhere,   while the second 

integral is elementary. 

Finally it may be  remarked that,  in view of the uniformity of 

the cross section and the conservation of volume. 
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^26Ra0{i/^^|dv}'l/'. (3.9) 

-l/2 

where a0 is the uniform radius of the vortex filaments in the undisturbed 

state. 

It is now a straightforward matter to follow numerically the 

evolution of a prescribed initial disturbance.   The interval (-1,1) was 

divided into 2N portions by 2N+1 equally spaced grid points.     The  spatial 

derivatives were calculated using four-point centered differences and 

Simpson's  rule was used to evaluate the integrals. 

The integration forward in time was effected by the fourth-order 

Runge-Kutta formula,   this method being used because of its  stability. 

Clearly dimensionless  variables are preferable in the numerical 

work and variables 

x'   =   xt/\ 

and (3.10) 

f   = t^r/4ff\2) 

were found to be most convenient. 

The results of a typical calculation are described in §4. 
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§4.    Numerical Results 

Crow (1970) has shown that the natural time scale for the growth 

of waves is  2irb2/r ,  which is just the time taken for the undisturbed 

vortices to descend a distance equal to their separation.     Thus to present 
* 

the  results a dimensionless time t    defined by 

,* = zfe e <4-1' 

will be employed. 

The trailing vortices  are assumed to have the radius  given by 

Spreiter and Sacks  (1951) so that 

a/b =  .098 (4.2) 

It must be stressed that it is  far from certain that this is   realistic  for 

real trailing vortices  (see,   for example McCormick,   Tangier and Sherrieb 

1968) but as  no firm value has  emerged from experiment it seemed best 

to adhere to (4.2).     In any case the  results  are not very sensitively 

dependent on a/b. 

Crow's  linear theory shows that for this  value of a/b  ,   the most 
e 

unstable mode has wavelength 8.5b and lies  in a plane inclined at 47.5 

to the horizontal.     It was  decided to study the evolution of this mode 

from an initial semi-amplitude of 0. 05b. 

♦ 
Trial and error showed that a time step At   = 0.1 gave adequate 

accuracy and the value N a 40  (that is  40 points per wave) was used. 
* 

However at t   a 2.4 numerical instability sets in at the troughs of the waves, 
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presumably because the distance between the grid points was not small 

compared to the separation of the vortices and because the curvature 

of the wave is largest here.     To cure this and to cater for the more 

rapid changes  consequent on the p^ximity of the troughs the calculation 

was  stopped at t   »2.2 and restarted with N = 80 and At   = 0.25.     This 

removed the instability. 

At t   s 2.475 the troughs  of the vortices were only .1876 apart, 

which implies that the two vortices  are touching.     Clearly the results of 

a calculation which treats the separation of the vortices as large compared 

to their  radii must be viewed with  skepticism at this  stage.     However,   a 

separate numerical study of the motion of cylindrical vortices  in two 

dimensions  in which core size was  allowed for  showed that the Biot-Savart 

formula  gives   roughly the correct velocity even when the cores are 

touching.     Thus,   while the  cores  are  very distorted,   which  would affect 

the internal structure and thus  change the  cut-off,   it is  possible that the 

approximations  on which the  present paper is based are adequate  even 

when the cores  are close. 

In any case,   there is   no point in integrating beyond the approximate 

instant of touching so the calculation was  terminated at t   a 2.475. 

Figure 1 shows log 10   B(t )/B(0)   as  a function of t    ,   where 

r» / max      /min .A  ,v B   =  7 +   y   • (4,2) 7 max 'nun 

is  a convenient measure^ (introduced by Crow and Murman    1970) of the 

^This quantity can be directly measured from photographs  taken from 
vertically below the trail. 
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growth of the waves.   According to Crow's linear theory 

logjo [B(t*)/B(0)l = . 3681* (4. 3) 

and this straight line is shown for comparison.    The agreement is excellent 

for small times and indeed linear theory is adequate over nearly the whole 

range of values of t . 

Figure 2 shows a plan view of the centre-lines of the vortices at 

the approximate instant of touching t  » 2.475,  while Figure 3 shows a side 

elevation at that time.     For the reasons  given,   it is hard to assess the 

relevance to the actual situation of these  results,   but there is  some 

similarity to observed large amplitude waves  in that the curvature is longer 

at the trough than at the crest.     The development of large curvature in the 

trough suggests that even more grid points would have been desirable 

the final stages of the calculation,   but in view of the dubious relevance of 
f 

this part of the calculation such a  refinement was  not attempted. 

The end elevation is  shown in Figure 4 and reveals that the wave 
I 

remains  practically plane,  though the plane is not quite the original one. 

The increase of length of the wave was found to be only 5% at t   s 2.475. 

The vortex stretches most at the trough where the distance between two 

fluid particles initially a distance 6z apart increases to 1.6 6z at the instant 

of touching.     The vortex contracts at the crest where the distance between 

two fluid particles initially a distance  6z about decreases to 0. 9 6z.     The 

differences  reflect the marked asymmetry between trough and crest. 

Acknowledgements.      The author has benefited greatly from discussing this 

work with Professor P.   G.   Saffman. 
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Figure Captions 

Figure 1.    The function log10   B(t )/B(0)   as a function of t   obtained from 

linear theory and from the numerical solution (circled points). 

Figure 2.    The plan view of the wave at t  =    2.475,  the approximate instant 

of touching.     The initial core diameter is  shown on the same scale. 

Figure 3.    The side elevation of the wave at t   s 2.475. 

Figure 4.    The end elevation of the wave at t   = 2.475. 
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Flgure 4.   The end elevation of the wave at t*« 2.475. 


