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ABSTRACT

A set of formulas proposed b_y Moritz and constituting a second order solution
of Molodensky's problem has been iransformed in a way that the resulting formulas
are numerically tractable. The difficulty in the original formulas arose from the
occurence of singular integrals. Their regularization introduces derivatives of
gravity anomalies and terrain heights and necessitates a numerical differentiation
procedure, Spline function interpolation has been chosen to deal with this, The
existing truncation theory has been extended to cover more sophisticated truncation

procedures as well as a succession of heavier and heavicr smoothed versions of the

integrand.
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FOREWORD

This report has been prepared by Peter Meissl, Visiting Research Associate,
Department of Geodetic Science, at the Ohio State University, under Air Force Contract
No. F19628-C-69-0127, OSURF Project No. 2758, Project Supervisor, Urho A. Uotila,
Professor, Department of Geodetic Science. The contract covering this rese ..ch
is administered by the Air Force Cambridge Research Laboratories, Office of Aero-
space Research, Laurence G. Hanscom Field, Bedford, Massachusetts, with Mr.

Owen W. Williaras and Mr. Bela Szabo, Project Scientists.
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Introduction

Preparations for the Numerical Evaluation of
Second Order Molodensky-Type Formulas

by

Peter Meissl
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INTRODUCTION

Moritz (1969) proposed a set of formulas which, under certain assumptions,

constitute a second order solution for Molodensky's problem.

These formulas are numerically not tractable because singular integrals and
even iterated singular integrals occur. The occurence of the singular integrals implies
that the formulas are integro-differential formulas in disguise. The singularities can

readily be removed by allowing derivatives to show up openly. Green's second formula

for surfaces is the essential tool to regularize the integrals, and regularization should
take place only within a small cap centered at the point of interest. For the outer Zones

the original form of the integrals is moreadvantageous since, in many cases the kernel

tapers off quickly with increasing distance.

For remote areas a smoothed version of the involved functions like gravity
anomalies and terrain heights can be used. The existing truncation theory has been
reviewed and somewhat extended to cover more sophisticated truncation procedures
as well as a succession of heavier and heavier smoothed versions of the involved
functons. Appendix B, which is concerned with truncation, is expected to be of some

interest beyond the immediate applicatons in this report.

The occurence of derivatives in the modified formulas introduces the necessity

of numerical differentiation. Assuming that the functions are only given at discrete

locations or in block average form the spline interpolation approach has been chosen.
This interpolation method has so.ne advantages over the classical methods of poly-

nomial or trigonometric interpolaton. The bi-cubic spline interpolation procedure

assumes that the functions are given at discrete locations forming a rectangular grid.
These can be accomplished by prediction methods applied to an originally irregular
pattern of sample points. In the case of block averages the most points of the blocks

can be used to form the rec®@ngular grid.

This work has been carried out under some time pressure. Therefore extensive
numerical tests could not be performed. Some tests have been made with bi-cubic spline

interpolation and also with one of the singular integrals.
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The proposed methods are certainly time consuming. However a second order

approach will be employed if in a limited area a good accuracy is needed. In this case

the chosen approach appears to be computationally feasible.




1. THE ORIGINAL FORMULAS

We shall deal with equ. (8. 1) to (8.3) in Moritz (1969). In somewhat different

notation these formulas read as follows:

a(®) = 72 [ St(E M) (Ag(n) + Gy(n) +Gyln) ) AT =
r

R - h
mc; Mﬂﬁg—é‘%’— Ag (m)dT(n) (1.1)

W8 = - g J GradSE 1) (Ag(n) +G; (n) + Gy (m)) aT(n) +
r

+;,,—Rr [ - h(’s’)) Gradg'S'_' Ag(p)dT(n) -
r

2°(g
SO OND L2
RG s (1.
where
Gy(8) = ﬁ Ih )= B(E) Ag(n)dr(n) (1.3)
(8- n)
1 h h
G = o | —Qzl(——(s-‘Gl(n)dF(n) +
r
1 2
+ RZAg(E) Grad h(g) (1.4)
Explanation of notaton:
r = unit sphere
N = unit vectors, denoting points on I. They play the role

of spherical coordinates:

= (sin 8 cos A, sin © sin X, cus 9)
abtronomxcal coordinates are obtained by putting

— ” - e
=T
E°n = inner product of £, n: frequently denoted by cos ¥




2z -n) distance between g and n:

2(€'n) = L(cos ) = 2sin %—

Syg-n) = Stokes' function
St(g-m) = St(cos p) = —L— + .
sin Zi'
(See Appendix B, equ.(B.2%))

R = mean earth radius

G = mean gravity value

Ag(e) = gravity anomaly referring to a point on the earth's
surface with astronomical coordinates implied by €.

h(%) = height above sea level in €.

a(g) = height anomaly at € in the sense of Molodensky et ai
(1962); in the literature usually denoted by . Also
the undulation of the quasi-geoid.

v(%) = deflection of the vertical; viewed as a surface tan-
gential vector o I'. In the literature usually de-
noted by its components 3,  ina localized coord-
inate system.

Grad f(¢) = denotes the surface gradient of a function f(€) de-

fined on I. The surface gradient is a vector tan-
gential to I' in E and pointing into the direction
of maximal increase of f(€). The length of the
vector equals the rate of the increase.

A derivation and discussion of the physical meaning of these formulas will not
be given here. They will be used as a starting point for this study except for one
thing: During the derivation of the formulas "planar approximaton” has been used.
This means that in deriving a formula for a certain quantity a relative error of the

order h/R has been tolerated. We shall do the same whenever there will be a need

for modifying some of the formulas.

The accuracy which shall be aimed at is about three digits in the quantities
a(%) and v(£). This does not necessarily mean that this accuracy can be guaranteed
throughout. It means, rather, that we do not worry about approximations which

create errors of Tess than three digits in a(€) and v(§).




2. THE INTEGRO-DIFFERENTIAL CHARACTER OF THE FORMULAS

The formulas (1.1) o (1.4) are frequently referred to as integral formulas.
Though it is recognized that some of the involved integrals are singular, the evaluation

of the formulas is usually viewed as a problem of numerical integration.

Let us first have a look at the integral (l.3) serving the evaluation of G(§).

This integral is in an abbreviated way written as

= L B-h zz4r
G, 21rRI 3 Agd 2.1)
r

Although we shall use for the actual evaluation of this integral another transformation;

we write (2.1) now as

__l .hag-hag 1 -
Gy = 21rRI-!. 23 ar = %R hjég}-ségdr 2.2)
r

Here we have two integrals of the type

_1 s x-x
Yy =3 [ =—g—dr 2.3)
r /]

The spherical harmonics equivalent of this is

Yom = "0 Xpm (2.4)

This shows an amplification of the higher harmonics of the same type as it occurs in
a differentiation. As outlined in Meiss!l (1971) a transformation of the type (2.4) can

be viewed as a transformation from.a space Hk"'1 into a space Hk where the menr
bers of Hk+1 possess certain generalized derivative3 up to order k + 1 whereas

those of Hk possess only such derivatives up to order k.

Thus (2.3) acts similar to a differentiation procedure which always makes things

more rough than they have been before.




During the evaluation of G, such a roughing effect occurs twice. Stokes'
formula has an opposite effect. It transforms from Hk into Hk+1. It, so to
speak, decreases the roughing procedure by one step. Nevertheless in summary it
turns out that a(g) depends in some way on derivatives of h and Ag. Whereas the
mean contribution o a(g); namely,:

R =
— | St dar,
4G '[ 28
r
is smooth (one step smoother than Ag), the correctional terms are rougher . This
has serious consequences on any thecretical discussion of the Molodensky approach

which will, however, not be undertaken here.

The consequences which have to be dealt with here are that there willbe a
need to evaluate in a2 consistent way derivatives of funcdons which originally are |
given only in disciete locations. We shall briefly outline now what we mean by con-

sistent. Take for example Green's second identity

[(flapg - glapf)dl = [f(Grad g, v) - g(Grad f, v)d3B
B aB LI (2-5)

Lap denotes the surface Laplacean operator with respectto I'. B is a sub-area of
I' with boundary 3B. The unit vector v is tangential to [ and normal to 3B.

(v is directed vutward of B).

If now the functions f and g are given only at certain discrete locations then
no integral in (2.5) can be evaluated. If the involved derivatves are computed by
some crude and inaccurate numerical interpolation and differentiation procedure
then (2.5) could possibly not be verified. We shall, however, use transformations of
our integrals which are based on (2.5). Therefore what is clearly needed is a pro-
cedure to evaluate the derivatives of the functions in a way that (2.5) holds o a sat-
1sfactory degree of accuracy. We have to interpolate the discrete values in a way
that the functon is continuously differentiable up to the second order. There are

many ways o do this and the result is, of course, not unique. We reject trigonometric




or polynomial interpolation in the classical sense and choose instead the spline
function approach. The latter yields generally a smoother surface because local
disturbances have hardly any influences on distant areas. This is more fully
explained in Appendix A. The way data are assumed to be given, i.e. what the
locations of the discrete arguments are, is explained in section 4. For the immed-
iately following sections, it suffices to know that the functions and their derivatives

up to second order are defined everywhere on TI'.

— ‘
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3. REGULARIZATION OF THE INTEGRALS

A singular integral can be transformed into a regular one if the integrand is
sufficiently smooth. This may for the first be illustrated by the following simple

example.
3.1. A one-dimensional example
Take: +1
gx) = iﬁ_t%z dy 3.1

We assume that ¢(x, y) is twice continuously differentiable and that

o(x, x) =0 3.2)

The integral (3.1) does not exist if the integiand is replaced by its absolute value.

The integral is therefore singular. Writing instead of (3.1)

X-€ 1 +1
gex) = [ + [ = (&) [. say,
-1 x+e -1

the singular integral g(x) is defined by lim g < (x).
€—0

Applying partial integration toward g.(x) yields

X=€ 1 +1¢ (X,Y)
g((x) = M + w—(f—’i) - (G)J -L—-—_dy
x°y X~y X-y
-1 x +e -1

Applying partial integraticn a second tme gives

(x,y) e (x,y) 1
X, 2 (X,

g (x) = ﬂ___!. + (‘___Y_

€ X7y 1, X-y X+

....(con't)




X-€ 1
+ ¢y(x,y) fnix -yl + @y(x,y) Lnfx -yl
-1 xte
1 .
- (0 [ epy(xiy)anix -yl gy
-1

If we now let ¢— o then the various poles cancel out neatly and we obtain

- . e(x-) | eo(x1) | R -
g(x) Lt x T (py(x, 1) nfl + x| +¢y(x,1)£n|1 x|
+1
- [ oyy(x,y) tm)x -yl dy 3.3)
-1

The integral is now completely regular, which means that it exists even if the integrand

is replaced by its absolute value.

3.2 Regularization of M-type integrals

Let's go now to the unit sphere I'. Assume an integral of the form

g(® = [ £(5n) dT(n) ' (3.4)
(&n)
r
with
o(E, €) =0 (3.5)

and @(€-n) at least twice continuously differentiable. We call this a type M-inte-
gral since the first order correction term in Molodensky's formula is of this type, e.g.
equation (1. 3). The singular integral is defined after excluding a very small circular

cap of half opening argle ¢ around E and then letting € - 0.

The equivalent of the above two-fold partial integration is in the two (or more)

dimensional case, nothing but Green's second formula (2.5).

We transform the integral not over the whole sphere [’ but only over a certain




spherical cap C surrounding € and having half-opening angle 'po'

It is shown in Appendix C that

gc( g) =

1 1
- La , r -
g{ﬂ(%n) £2(cos ¢0)} " #(5,m)dT (n)

Yo
- —-—I— § @(5,m) d3C(n)

0% (cos ) ac

- -i- CS fz%;;l)ldr(n) (3.6)
The formula becomeé simpler if the cap is extended over the whole sphere;

in that case the line integral vanishes. However it is not advisable to do so. The
term 1/23(5-17) in (3.4) !apérs off quickly for larger distances. This is not so in
~ (3.6) where only ferms like 1/8(g-m) occur. Therefore for distant areas (3.4)
offers greater advantage. The term Lapncp(g-n) in (3. 6) cerminly tends to fluctuate.
If the integral is extended over too large a cap then the positive and negative contri-
butions of I.ap ¢(€-n) certainly cancel to some extent. Thérefore the cap should
not be too large allowing only a few positive and negative extremes of Lapn @(E-n)

within its domain.

In all numerical approaches toward the singular integrals of Physical Geodesy
which are known to me the integration according to (3.4) is carried out very close to
the point € of singularitv. For a very small remaining cap some rather cxrude pro= ’
cedure is used which involves some kind of numerical differentdation. This does not
seem to be a very efficient procedure. A singular intepral yields infinity if the inte-
grand is replaced by its absolute value. Therefore if only a very small cap around
the singularity is excluded, there are necessarily large positive and negative contri-

butions which nearly cancel. This is mimerically disadvantageous even if a precise

10




analytical expression for the integrand is available. An analytical representation for

the integrand appears to be a necessity in any case. I one is available then derivatives
may be formed. Formula (3.6) can then be evaluated withe..t any numerical trouble
resulting from mutual contributions of large quantities of opposite sign. The cap
shall not be too small but also not tco large as we have pointed out earlier.

M-type integrals appear in our formulas of section 1 multiplied by a factor
%. In that case the last integral in (3.6) is a quantity which is negligible in planar

approximation. (Moritz, 1969).

In most cases, the cap size will be sufficiently small to replace (3.6) by a

plane integral.

In that case we proceed in two steps. We assume that -lﬁgc(g) has to be
evaluated. In doing this we replace the integration over the unit sphere by one over

a sphere with radius R. (3.6) becomes then after neglecting the last integral

2

(& n)
éf IRE- RylS R dl(n)

1 _ i 1 La , )def
i { IRE - Ryl R £(cos '»bo)} RZ Pe(Sm m

cos ¥2
- )2§<p(€.n)RdaC(n) 3.7
dC

(R £(cos yg)

Now we make the transition to the plane replacing RE by x = ¢xg, X3 )T,
Rn by y=(yppy2 )T and denoting by ¢ the radius of the cap. The expression -I-:-z
Lapnw(g-n) goes over into the ordinary plane Laplacian lapyqa(x,y) = 9y v, + <py2y2.

Hence:

11
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J‘ .S"_Q‘_LY_Ldy=

1
=8n(x)

lyl <p

J {-';-1—}7 - 11 nany o0xy) dy

p
lyl<p
27
-1 'f o(x,x +p {cos a} ) da (3.8)
P sin o
o=0

It will be clear from later sections, that we shall have a polynomial re-
presentation for the function ¢(x,y). However, this polynomial representation will
vary from mesh to mesh of a rectangular grid. It may therefore be desirable to have
a cap boundary which is not circular but rectangular. Call this rectangular area Q.
Then (3.8) becomes:

Pxy) gy =

1
=gn(x)

= [ —1— lape(x,y) dy

Q Ix -yl

+ § o(uy) (grady s—T—=r v(y) )daQ(y)
Q y

- . (grady o(x,y), v(y))daQ(y) (3.9
3Q Ix-yl

These formulas could also be verified by Green's second formula for the plane corsider-

ing that

1 = 1
lap = (3.10)
ER Ix - yI®

v is the outer normal to the boundary of Q and grad denotes the ordinary grad-

icnt in the plane. Thus the second equal sign in (3.8) and (3.9) is exact. Only the

12




equality with the integral over the portions of the sphere is approximate.

3.3 Reg 'arization of Vening-Meinesz' formula

Vening Meinesz’ formula

v(g) = - 2‘;‘6 {cradgsug-nmg(n)dr(m (3.11)

constitutes also a singular integral since it does not exist after replacing the integrand
by its absolute value. Regularization may take place in a similar way. Again, only
the contribution vC( €) of a circular cap C centered at € and having spherical rad-
ius Y, is considered. Farther outside the original form (7. 11) is quite suitable.

The regularization procedure is outlined in Appendix D. It results in:

vel®) o(§,n) Lap &g(n) dT'(n) -

1
e
C
77c § o(5m) (Grad &g (m), v(n))d3C(n) +

dC

3¢

1 1 = cos
n

L z i
7r6 | oz o™ st dr(n)

- 77G ] GradeR(zn Ag () dT(n) 3.12)
C

Thereby we have split:

Sy(ep) = 12(2%-11) + R(En) (3.13)

The unit vector o(€, n) is tangental to ' in the point € 2nd lies in the same

plane as ¢ and n. R(E-n) causes, even after differentiation, no singularity. The
singularity in Vening Meinesz' formula comes in through the term 2/¢(gE.n) in (3.13)
and has been removed in the above formula. In Appe:dix D there is also a listing of

the above formula in the usual notation which is based on a localized coordinate system

13




(in which o (£ -7n) carries over into ( g?: g). Equation (D. 9a).

Again, formula (3.12) would become simpler if C would be replaced by I'. The
line integrals would vanish. The numerical Usefulness, however, would decrease for

reasons similar to those given in section 3. 2.

3.4. Some further manipulations

Therz is still a singular integral in the deflection formula (1.2). It is

: 1
aé) - ‘r (h(n)-h(E)zGrad —13—7;)" Ag(n) dl' (n)

anr%c £ 27

This term is combined with a certain other contribution toward (1. 2) and regularized
as outlined in Appendix E. A summary of all regularizations is given in the following

subsection.

14




3.5 Summary of regularization
3.5.1 The Quantity Gl(i).

For the area outside the cap C use the original formula (1.3). For the cap-

interior use:

G, (g) = L 1__ - 1 Lap, [(h(n)-h(£)) Ag(n) 1 dT(n)
e 27R g {2(547) 2(cos a[b)} ™ " 7

1 cos %0
- = ——=2— § (hn)-h(8))ag(n)dd Cln) (3.18)
TR g%(cos Pg) 5C

This formula follows from (3.6) after neglection of the last integral (planar approximation).

3.5.2 The quantty G,(9.

Split =
Sy = hn) “B(E) G (n)drm (3.20)
mR v}
r 27 (gn)
E__] 1
Ga(8) = 72 48(9) |Grad n(g)| * (3.21)

For CZC use (3. 18) with Ag(n) replaced by Gi(n ). The evaluation of 62(5) is

immediate.

3.5.3 Formula (1.1) For The Height Anomaly a(g).

No further regularization is necessary.




3.5.4. The Deflection - Formula.

For the area outisde the cap C the original formula (1.2) will be used.
For the cap interior the following will be used (cf. (3.13)):

vo(®) = 52z J o(8,n) Laplagtn) +G () +Ty(m)l T () -

C

- 5_1%—5 § o(5,7m) (Gradlag(n) +G,(n) +Ta(n)], vin))dac(y) +
2C

Lo 30
i Ccus 3

+'2—1;'"é ({-m—U(gtﬂ)[Ag(ﬂ)+G1(n)+62(ﬂ)] dr' (n) -

A
47 G

J Gradg R(E-n) [ag(n) +G (m) +Ty(n) +Tp(n)) T (m) +

C
' ,«_';Tlm [ == o(,0) { 1ap, Ln(p)-6(5))2Ak(p)]
i ¢

sin"y

- 2|Grad h(q))zAg.(rz)} a M (n)

N 1- oo’ & (§,9) lorad n(n)12 Ag(y) ar (n)
SWRG sin’y ! ! Q ’

i § st Comag o) ae),
» v () ) a2l(n)

-t nin)h 2 A cos ¥y ’ )

3(1 - cms5 :g)
sinI\y

-t J. [(h(q)-h(g))gAg('))]{
C

- —-2-7—} s(f,n) al’(n)

sin '\y
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4. ANALYTIC REPRESENTATION OF FUNCTIONS

It has been stated repeatedly that our regularization procedures are based
on the availability of an analytical representation of the various involved functious
like terrain heights, gravity anomalies, and other functions derived from them. Data
libraries contain information about these functions either in discrete form oxr in block
average form. Neither of these representations is suited for our purposes. Block aver-
ages produce step functions with constant values within each block and jumps at the
block boundary. Such a function is not analytical nor can it be reconstructed from its
first and second derivatives which are zero almost everywhere. For our regulari-
zadon procedure it is, however, essential that the functions can be reconstructed
from these derivatives (plus some additional information like the function values on

a boundary line).

If gravity anomalies and terrain heights are given at discrete values, an inter-
polation procedure has to be used. For an irregular pattern of sample points in two
dimensions this can be a quite laborous task. Usually a linear procedure is used

leading to an expression

=z

P(x,y) = I zipi(x,y) 4.1
i=1
zj are the values of the functions for the arguments xj, yj» P(x,y) is the interpolat-
ing function. The functdons p l-(x,y) depend on cnly the arguments x;, Yi and,

of course, on the chosen interpolation procedure. They do not depend on the z i

Examples are: polynomial interpolation trigonometric interpolation, linear
prediction. If the function p;(x,y) is differentable, then p(x,y) is differentiable.
This generally solves our problem. The question is how to choose a computationally

feasible interpolation procedure.

For an irregular pattern of points there is hardly a chance to get simple ex-
pressions for p(x,y). Therefore a rectangular grid of points (xi,yj) points ‘must
be achieved. This can be done for example by a prediction procedure. The interpola-

tion within the rectangular grid is according to the author 's opinion, in the best way

17




accomplished by spline interpolation. Spline interpolation yields a polynomial expres-
sion for the function within cach mesh x; = x <x, LY SY SV of the grid. The
polynomial expression varies from mesh to mesh. However, continuily and continuous
differentiability up to any desired order can be mainfained at the mesh boundaries.
Advantages of spline interpolation over other methods are outlined in Appendix A.
Loosely speaking, spline interpolation keeps the derivatives of the interpolating func-
ton as small as possible, thus avoiding fluctuations and oscillations as they are fre-
quently cncountered in other methods. Another advantage is that the polynomial repre-
scentation within a certain mesh depends to a large extent only on the function values

% in the ncar neighborhood of the mesh. The dependency on values farther outside
is neglipibly small, This is also not the case with other methods where a change of

one value z; j may causc changes in the interpolating function over a wide area.

In Appendix A computational procedures are outlined to obtain the interpolat-
ing bicubic spline functions. Asymptotic formulas have been used which are simple

and quite appropriate for our purposes.

Spline interpolation can also be applied toward the block averages. Itis

only necessary to view the block averages in a different way. They should not be

vicwed as step functions. Instead a block average shall be representative only for

its midpoint. For any other point the appropriate value would be an average over a
block centered at that point, In other words we imagine a smoothed version of our
function which is obtained by moving averages over blocks. Unfortunately we have
values of this smoothed version only at discrete values, i.e. the midpoints of the
original blocks. For the other points, an interpolation procedure has w be used.
This can ccriainly be spline interpolation since the midpoints already form a rectang-

ular grid.

Speaking of a rectangular grid does not mean that the lines must be equidistant
on the unit spherc I, The grid lines can certainly be represented by lines of constant
latitude and longimde. In evaluating the various differential operators like Grad and

Lap the appropriate formulas have to be used.




Spline interpolation will, of course, only be used for the small cap areas in
which regularization takes place. IFor the outer zones the original averages or
even cruder representations will be sufficient. Here one benefit of spline interpolation
becomes effective. The polynomial representations for a mesh is practically depend-
ent only on the functicn values in a rather small neighborhood of the mesh. This

avoids the necessity of performing an a priori interpolation for larger areas where

continuity problems arise at the connecting boundaries.
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5. TRUMCATION

The procedure for evaluating the various integrals will be the following. For
a very small cap with half opening angle ZO the regularized formulas will be used
in casc the integral is singular. The radius of this cap will be a few kilometers or
even less. This corresponds to a JO of about 1. Outside this cap essentially the
original form of the integrals will be used. It is, however, certainly not necessary to
carry out the integration with the same accuracy all over the sphere. Some integrals
can be completely truncated at a certain distance. Some have to be extended over
all of 1. However, going farther out more smoothed versions of the functons h,

Ag, ... canbe used. This reduces the computation time.

There exists a theory on truncation which goes back to Molodensky. See
Molodensky et al. (1962). De Witte and others have done further work. In Appendix B

I have reviewed and, as I think, somewhat extended this theory.

New insight has been gained into the nature of the truncation error. Take for
cxample Stokes' formula. De Witte's work suggests that truncation is most favorable
at the zcros of Stokes' function. However a zero can be placed anywhere by simply
adding a constant to Stokes’ function. Deing this and truncating at such an enforced
zero produces a genuine truncation error which is comparable in size to that after

truncation at a zero of the unmodified Stokes' function. The only difference is that

the new truncation error is superimposed by a constant which is the same for all points
of the sphere. Such a constant does not matter in Stokes' farmula. The geoid has to

be scaled later on anyway .

We have also investigated the effect of replacing the abrupt truncation at a
certain angle §, bya smoother procedure. It consists of le.*ing the kernel taper
off to zero over a certain interval | <y < Yo - This brings along a very beneficial
effcet in dampening the higher harmonics of the truncation error. The situation is
similar to filier design theory. Filter functionswith discontinuities tend to cause
¢rrors with considerable high frequent portions.  Smoothing out the discontinuities re=

moves these high frequent errors to some extent,
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In the following we discuss truncation procedures for the various integrals.

Alternatives to the proposed strategies can be obtained from Appendix B.

5.1 The integrals of the correctional type

G1 is a correction of Ag as it is seen from (1.1) and (1.2). Therefore a
contribution toward G ] can be neglected if it amounts to less than the measuring ac-
curacy of Ag. This accuracy may be assumed as one part in 1000. Due to this and
also due to the fact that the function 1/¢ 3(§- n) tapers off quickly truncation can
take place at a short distance. Bursa (1965S) proposes truncation beyond a distance of
about 80 km. This corresponds to wozo. 7°. A global statement is difficult to make
bui some rough estimates based on the truncation theory of Appendix B indicate that
even in the case of our second order approach not much more is needed. = 20,

should be sufficient in all cases.

The same can be said about all other integrals of this correctional type.

These are: The integral in Gy» the second integral in either of (1.1) and (1.2). '

5.2  Stokes' integral

Whereas nothing new nas been said in section 5. 1, it is hoped that the following

discussions on Stokes' and Vening Meinesz integral bear some interest.

We propose the following. Split off the spherical harmonic components up to

and including degree 12 from Stokes' kernel:

12
- v 2n+l1
Sweem) = ¥, = Pp(gem) + Sto(sem) 6.1

The contribution of the first nart will not be discussed further. It could be taken from
satellite solutions. The residual kernel St lz(cos Y) has at least 13 zeros in

0y < 180. ( Meissl (1971) ). The zeros are approximately given by

b = 5.02°, 17.99°, 31.58°, 45.29°, 59.06°, 72.85°, 86.65°, 100.5°,

114.3°, 128.1°, 141.9°, 155.7°, 169.4°.
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These zeros are good locations for truncation, or better for a transition to a heavier

smoothed version of Ag in the residual Stokes' formula:

= R
Nj,(8) = e 1J: Styo(En) Bgln)dln) (5.2)

In (1. 1) Ag is replaced by .g +Gl +G, . However for the sake of simplicity we dis-
cuss the (residual) Stokes formula in the form (5.2).

Now we integrate only up to U = 5.02 with full accuracy. Beyond 3 =5.02
we replace Ag(g) by a smoothed version Ag( 1)(5) which is obtained by averaging
Ag(E) over a circular disk of half openiny angle ao centered at £. The spherical
harmonic expansion of the resulting error AN(lg )(g) in N 12(§,) is given by (B.82)

and (B.45) Q (0)
(0) _ R =n _ (0)
(AN12 )nm "G 2 (1-8; ") O8nm (5.3)

Ql(lo) are the Molodensky coefficients referring to the residual Stokes' kernel

St 12( €-y») and a truncadon angle equal to *bo . ‘The QI(IO) can be computed from

(B.46) if St(g.n) is replaced by St 12( E-m) and the summation over m is extended
to N=12. The ,31(10) are the eigen values of the smoothing operator over the % -
disks. The 31(10) are given by (B.83) or, for not too iarge n, approximately 'y
(B.86).

Let us use the smoothed version Ag( 1) only up to 3, = 17.99. Outside the
¥, cap a sdll heavier smoothed version Ag(z )( g) will be employed. Ag(z) is
ohwined by averaging Ag over disks of half opening angle ay, o) > 0y The total
error would then be given by

(1)
Py R B GO e, 6

(1)
(AN'y C

)nm

Q(nl ) Molodensky coefficients for truncating Styp(cos P) at @ =y 1

)

pt 7t cigen values of the averaging operator over the o - disks.
n

This procedure is immediately generalized to a succession of zones. If ¢>i
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is the last truncation angle then the associated error in Ny, is AN(llz) The following

recursion holds:

(1)
)y = A R Qo G-1)_ ()
@ON' ) o =@ON v 5 —— (B B o (5.5)
The general form of the error is
(i) _ R (1)
(AN 12 )nm G T A%nm (5-6)
If 02(Ag) are the degree variances of Ag then the mean square error cz(AN(llz))
is given by
2 (i), R’ ()2 2
AN =5 = (@ ) dl(ag) 6-7)
G n>1z @

See for example Meissl (1971) chapter 4, esp. equ. (4. 1l) there.

We adopt the following degree variances for Ag (they are taken from
Gaposchkin-Lambeck (1970). ).

n oZ(ag) in mg”
2 7.4
3 33.0
4 20.0
S 17.8
6 15.7
7 15.5
8 6.7
9 12.7
10 12.9
11 12,2
12 5.1

Occasionally we shall need higher degree variances too. Since we need them only for

rough cstimates we adopt the following model for the oﬁ(Ag), n> 12:
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(5.8)

Summing all degree variances should give a value close to 1201 mgz. (Kaula (1959).
We have from the above table

12 2
L o (Ag) = 159 (5.9)
n
n=2
and from (5.8)
L olag) = 1042 (5.10)
n
n>12

2
which gives together 1201. Besides that we have for n=13,a value oiQ(Ag) ~ 7 mg

which fits into the picture of the above table.

The variance of the geoidal undulations is then
2 2 =

sy = B g y

G2 p=2 (n-1)

oX(ag) = (30.2m )2 6.11)

This is the total variance. The variance of the residual part N 12 is

2
RS o 1

2
o"(N,,) =
12 © G2 Ty me1? P

(Ag) (6. 3m) (5.12)

i
In Table 5~1 we have listed qfl ) quantities under various assumptions con-

cerning the underlying a;'s.

Take for example an exact representation of Ag within apo =5.02 and moving

averages over circular disks with half opening angle oy = 0.56 outside. This corres-
(0)

ponds roughly o 1° x 1° blocks outside. The q, are seen not to exceed 00,0001
for n > 12, This enables us to compute an error bound which is independent of the
hypothesis (5.8). From (§.7) follows:

) . R

G2

5 <‘n’”(Ag>s“ooom  ole)

n>12 G n> 12

. 2(AN(1(; ) =
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From (5. 10) follows now

G(AN(IOZ)) s R 0.0001 Vi0sZ ~ 0.02m 6.13)

Under the hypothesis (5.8) evea a smaller error can be estimated: o(AN(lg)z 0.006 m.

Truncating further ac Y = 17.99 and using moving averages based on o = 1.4
outsiae (roughly 2.5° x 2.5 - blocks ) produces an error not larger than .11 m. This
again independent of hypothesis (5.8). This error would be obtained if all the power
of Ag above degree 12 was concentrated at n = 13: o?s(Ag) = 1042. This is certainly
unrealisdc. Under hypothesis (5.8) the estimate

o(AN(llz)) ~ 0.02m . 14)

holds.

Truncating further at wz = 31.58 and using o, = 2.8 moving averages out-

side (roughly S° x5° - block averages) gives a total errer

2
O(AN(IZ)) ~ 0.30m (5.15)

Hypothesis (5.8) has been used thereby,

5.3 Vening Meinesz's integral

Again we split according to (5. 1) and assume that the contribution due to the
harmonics up to and including n = 12 can be taken care of otherwise. If truncation
takes place at the zeros of Stlz(cos ¢}, then the theory of Appendix B, section B, 0,

tells us that the variance of the resulting error in

=y - 1 .
vip(8) = S i Grad, St »(5+m) Ag(n) AT (n) (5.16)
is given by
2 i 1 (1), 2 -
SHavih= Zr T a2 sRe) 5.17)
7 n>12
(i : ‘
See equ. (B.67a). The q, are those of the previous scction.
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Table 5-1
The qéi) below are
i | oy given in units of 1070,
If the n-column shows
0 2,02 0.56 an interval rather than
L 17.99 1.4 a number,then the
2 51.58 2.8 extremum values within
this interval are listed.
n a(©) o (1 o
13 91 523 1905
14 90 446 1314
15 86 361 739
16 85 274 251
17 82 189 -100
18 79 110 =290
19 75 42 -328 1
20 70 =13 -250 ‘
21 66 =52 -108
22 60 =75 42
23 55 -82 151
24 49 =75 193
25 44 ~57 165
26 38 -30 85
27 32 1 -15
28 26 32 -98
29 20 60 -138 i
30 14 82 =120
31— 35 -13 100 226
36~ 40 -33 -91 -218
41~ 50 -44 =118 -254
51- 75 -4? 74 -142
76-100 34 64 98
101-150 -28 -55 -64
151-200 24 44 44
201-300 18 20 20
301-500 12 26 11 11
_ . d
e AR S A =




The overall variance of the deflection of the vertical is given by

2w) = L x @) 2ag) (5. 18)

G2 32 @-1)2 ®

under the hypothesis (5.8) this leads to

o(v) = 7.9"

(5.19)

The residual deflections v, have standard deviation obtainable by summing in

(5.18) only over n> 12. This gives

c(vlz) = 6.9

(5.20)

The truncation procedures outlined in the previous section pro.iuce errors which can

be estimated in the following way.

b, 7502, ay=0.56

17.99, o, = 1.4
31.58, a, =2.8

45.29, ag = 5.6

(0)

12) < 0.03

o(Av

~ 0.013"
l "
G(Av(lz)) ~ 0.02

o (Av(é ) ~ 0.03"

o@av'® s 0.07"

12

27

(without hypothesis (5.8))

(under hypothesis (5.8) )
(under hypothesis (5.8) )

(under hypothesis (5.8) )

(under hypothesis (5.8) )
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6. A COMPUTATIONAL TEST

I am fully aware that any proposed numerical approach toward a mathematical
problem should be thoroughly checked by test calculations. Unfortunately, time did
not permit to do this on a large scale for the present study. In order to give some

idea how the proposed methods can be converted into computer programs I shall deal

in the following with bicubic spline interpolation and with the G l-integral. We assume

a plane grid which is quadratic and where the spacing between the lines is unity. We
do not bother about a realistic scaling of the model. Let the grid consist of Nz points.

Assume the functions hij and Agij be defined for the grid points by

N 1 ik jka
v e = e — i N — i 6‘1
Py = B Trnaam oney) s ©.H
Ag.. = ,z*I,\J 1 sin( 1K) gin(1kT) (6.2)
o 2 i+t2.5)5+4k N N

After this data generation we proceed to the bicubic spline interpnlation, Let us out-

line this for hij . The procedure for Ag ij is completely analogous. Compute ac-

cording (A.7) .
o=-Q2-V3) ~ -.268

Now according (A.16) to (A.19) compute with g8 =6

6
= k s =

m.. = - 3 Z g . . 1 = 7,‘." N-6

! k=1 Piki- oy ) (6.3)
6 j = 1,--0, N )
Illj = = 3 z oj(hi.)+a-hi,j-£) 1 = 1'... N

2=1 ’ (6.4)

j = 7”'.’ N-6

6 /]

p. ==-3 ¥ o (mi,j+ﬁ -mi,j'ﬂ) i=7..., N-6 (6.5)

Ly =1
¢ i =7, .., N6

A check could be made by using
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6
k .
p.. = = 3 kz_lO' (n1+k,_] "ni-k’j) 1 = 7""’ N-6 (6 6)
B j =7, ..., N=6

If the agreement with (6.5) should not he satisfactory, thena g larger than 6 has
to be chosen. Inour test B =6 was sufficient. Now hij can be interpolated for any
one of the meshes i < x <i+l, j <y < j+1 within the subgrid i = 7, ...., N-7,
j=7, «..., N-7. The formulas are
3 ..
hix,y) = & a tyx =1y -

k,.Q =0 k’
(6'7)

The a(ki’g ) are computed with the aid of (A.13) to (A.15). One can pre-compute the

alB3) for as many meshes as storage allows. They can always be computed from the

’

h.., m.., which do not require that much storage (one-fourth).

ijr Mij» My Pi,j
Turning now toward the G- integral take a plane approximation to formulas

(1.3) and (3. 18):
GI(X,Y)=—1—- J‘ [h(f,')—h(x, )] G(‘p_) dx d? (6-8)
2w ) s D)+ (y5)71%2
(xx) " +(y-y)” =R

, { Vs + (y5)2 °

1
G (x, =
lC y) 7 I

(x-i')2 + (y-'37)2 <p

- lapg & (O(xX,§)-h(x,y) ag(x,¥)]dx dy -

1 1
3 52 § (ETIRGLYI) AET A CET) (6.9)
3C

Converting everything to polar coordinates centered at x,y gives:
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-1 . -
Gl(x’y) = = J‘ J‘ (h(x +r cosq, y +r sing) - h(x,y)]
r=0 =0
.Ag(x +r cosa, y+ r sing) 952 da (6.10)
r
p 27
=1 _r = =\ - =
GIC(X,Y) - -Z; J. I [1 p ]lapi’s; [(h(xo}’) h(xoY) Ag(xny)]"‘=x + r cosox
r=0 o=0 y=y +r sing
. dr do
1 ) 27
Ty [h(x + r cosa, y +r sing) - h(x,y) ]
o=0
Ag(x +r cosa, y +r sina) do (6.11)

I have used the following procedure for the evaluation of the integrals. In (6. 10) the
integration with respect to o has been carried out first using the trapezoidal rule.
(The trapezoidal rule is advantageous for periodic functions.) Integration takes place
for a certain set of discrete r-values. Afterwards the trapezoidal rule has been
applied *o integrate over r. Values for h and Ag have been computed from spline
formulas throughout. (This has only been done for checking purposes. Later on we
will use a less complicated procedure for the more distant areas.) The first integral
in (6. 11) has been treated similarly. The expression involving the Laplacian has been

expanded as:

lapy < [(h(X,¥)-h(x,y) ) Ag(x, )] = [h(X,¥ )-h(x,y)] lap Ag(X,¥)
+ Ag(X,¥) lap h(X,¥) + 2 (grad h(X,Y), grad &g(X,Y) (6.12)
The various derivatives have been computed from the spline interpolation formulas.

(Note that the bicubic spline has contimuous second derivatives.) The second integral

in (6. 11) has also been approximated with the aid of the trapezoidal rule.

For N=21 we took x=11, y=11, p=.8, R=3.9. The result was
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1
11,11) = - — 0.
Gl( 1,11) T 0. 1525

For checking purposes we also took p=.5 . The result was then

1
.11 = e e .
G(11.11) S 0.1510

The various stepsizes for the numerical integration were

forrsp:Ar=_p_,Aa=_£”_
8 4 r/Ar
- ‘ R -
for r 2 p: Ar = const. 1.3k 1,k=1,...,8, const = —-—-8~—e—
k 1.3%- 1
0.3

A = 21/32
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APPENDIX A: Some Aspects of Spline Interpolation

It is not our intention to give a systematic account of spline interpolation. Books
like Ahlberg et al. (1967) may be consulted for a thorough discussion. The idea be~
hind spline interpolation and some of its advantages shall be outlined. Formulas and

methods used in the main portion of this report shall be documented.

A.1  The Cubic Spline

Let us start with a sequence of n equidistant abscissa’s x;, i=l,...,n on
the x-axis of a two~dimensional coordinate system. Let the distance X 175 be
denoted by h. Let function values y; be prescribed for each x;. The old problem
of interpolating these discrete function values can be solved in many ways. One way
is interpolation by fitting a polynomial of degree n-1 through the n points. This
can be done e.g. using a polynomial pi(x) of degree n-1 having the properties
pi(xj) = 1 for i=j and pi(xj) = 0 otherwise. Analytical expression‘for these
polynomials are found vader "Lagrange interpolation” in any relevant textbook. The
interpolating polynom.’ .1 is then given by

n
p(x) = X lyipi(X) A.1)
1:

An advantage is the analyticity of the resulting expression which is infinitely
differentiable. A disadvantage is the following. A change (an error) in one of the y's
causes considerable changes (errors) over most of the whole range. This is immed-
iately seen from equation (A.1). A change Ayio in yio causes a change in p(x)
which is given by

Ap(x) = Ayio pio(x) (A.2)

This may not be too bad as far as only function values are concerned. The
changes may be much larger for the derivatives. An extremely opposite approach

would be piecewisc linear interpolation. The interpolated function is then between

x, and x. +1 given by the straight line.
1
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o(x) =y, XXitl X - %

y. A.3)
DX Xitl e

A change in y; causes now only changes in xj-) < x < Xxj4+] and no further
reverberations. A disadvantage is evident from the fact that the function is not con~-

tinuously differentiable over the entire range.

Spline interpolation tries to compromise between these two extremes. The
interpolating functiou is assumed to be a polynomial of odd degree k in each of the
intervals Xj £ X < Xj49- However, these polynomials vary froir interval to inter-
val. The continuity of the function as well as of its first k-1 derivatives is required
throughout, i.e. also for the abscisses x;, i=l,...,n. Certain boundary conditions
for x|, x,, may be prescribed in order to inake the problem unique. This interpolat-
ing function s(x) is then (k-1) times continuously differentiable and, as we shall
see later, a change in one of the y; causes changes in s(x) which are heavily damp-
ened for larger distances x - e

We discuss here only the case k=3 which is known under the label “cubic
spline ". (Sec Ahlberg et al section 2.1). We have to choose some parameters which
characterize the polynomials in each interval. Let these parameters be s(x;) =y;
and s'(x;) =my, say. This is a meaningful choice since s(x) and s'(x;) are
the same for the two intervals x;.; < x <x; and x; <x < X; 4+ 1- Besides that,
the four quantities y;, mj, ¥; , 1, m; 4 1 determine the four parameters of a cubic polynomial
in X, € x s X;4; completely. The continuity requirement fox +he second derivative

1
at points Xos XgyeowsXp o leads to the following set of equations.

1 _ 3 i _ L :
m;_, +2mi + §‘mi+l = ~2—l-](yle yi_1)1—2,...,n 1 (A.4)

N —

A detailed derivation of this equation is given in the above stated refernce.
However, the principle of how these equations are derived should be clear. The two

polynomials in x SX 7 X and X; S x S Xx;4; are linearly expressed in terms

i-1 i

. \r i i = >
of Yi-p Yio Yi+ 1 ™ My m; 4 and then the second derivatives at x X; are

cquated.




Since there are in (A.4) n-2 independent equations for n unknowas, two more
independent conditions are needed. They are chosen involving only the "boundary

values”" m 1» mgandm _,, m,_ . However we shall not elaborate on this.

Having chosen these additional conditions in some way the quantities m; can
be solved for which leads o expressions like
n

(n)
ZL ) @

=3

my = 2

' h

It is now important that, as it is rigorously proved in Ahlberg et al (1967) ,

section 2.4, for n— » and i—~« n-i » «, (i.e. for a large number of points and i

(n)

far enough from the boundary) the coefficients « ij tend toward a limit o4 which
depends only on j-i and equals
' -git for j~i>0
o = 0 for j=i=0 (A.6)
o +ol”l for j~i<0
where
o= (2~ V3) ~ -0.268 (A.7)

Since ¢ < 1 we see that only values y‘i at xj in the neighborhood of X;
contribute significantly toward m;, m; ; and therefore to the polynomial the

i < < . .
interval X, = X Xi+1

(A.5), (A.6), (A.7) may be comprised

3 B .
m =g 2 oJ(yi+j " iep) A.8)

J

The summation limit g is chosen in a way that of is sufficiently small. In the pract-
ical applicatdons of cubic splines within this report we found that in view of the limited

accuracy of the data (i.c. heights, gravity anomalies) a value of 8 =6 was sufficient.
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A.2  The Bi-Cubic Spline

For a function depending ontwo variablesa generalization is necessary. A use-
ful approach is to assume that function values Zi; are prescribed for each point
(xi, yJ- ) of a rectangular grid. For simplicity we assume in the discussion here that

the spacings x;  1-X; and yj+1-yj are equal and equal to h.

One can proceed in the following way. Cubic splines sj(x) are computed

interpolating the given z.. for fixed j. Then for a fixed x a cubic spline s(x,y)

1
viewed as a function of yJ is computed interpolating the Sj (x) values. fu that way
for each x,y an interpolated value, namely, s(x,y) is obtained. In this procedure
the role of x and y (or i and j) may be interchanged and, surprisingly, the re-
sult is the same, at least for a certain class of boundary conditions. The resulting
function s(x,y) is a bi-cubic polynomial in eachquadrangle x; <X < Xj4,, §; <

y Syi'*'l’ i.e.:

3 . X, €X <X,
, i i+l
stay) = T ajed) xex Ky (4.9)
k,2=0 . YJ sy SYj+1

s{x,y) is together with its first and second derivatives continuous over the entire
range. One way to compute the ozl((la’] ) is the following. Perform an ordinary spline
interpolation along the lines y =V X =X, . Obtain from that according to secticn

A. 2 the values

= BS(XDYI) (A.lO)

1.’ dx X =X

3s (xj,y)
Ny = ) (A.11)
y Y"yi

Perform an ordinary spline interpolation of mij for fixed i and obtain from that
82 s(x,y) 1

Py T oaa @.12) |

dX3y X=Xj, ¥ =Yj i
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The same result would be obtained if a spline interpolation on nij for fixed j was

performed. Now compute the matrix al) from the formulas

ot o ATy k) Ay (.13) 31
with
(1 0 -3m? 2m3 )
2
A(h) = 0 1 -2Ah 1A A.14)
o 0o 3m® -2pmd
Lo 0 -im  1m? |
and

(%5 Mg Fge P )

'R M PLj o MLt Pyjn
k) - (A.15)
Zi+l,j M+1,j Zitl, i+l D+l j+1

M1, Pitl,j Mitl, j+1 Pitl, j+1

A

These formulas are found in DeBoor (1962) and have also been used in Davis

and Kontis (1970).

Itis Qear that boundary conditions influence the values mji, By Pjj and
therefore al(:z) . However, this influence is nearly zero if from now on we assume
that the grid is very large and the quadrangle is at a sufficient distance from the
boundary. In that case the quantitives mij' nij’ pij can be in agreement with sec~

tion (A. 1) and can be computed frcm

B
3
o= - 3 -z . A.l
Y h kil ck(zi*'k.j zl'kal) (A.16)
B
.. 3 2 B
VR S (2, 427 %, j-0) - @
B
- 3 -
Py =" R gil oﬂ(mi’m m; 5_g) (A.18)
36




N T R

or alternatively

B
z

=-3
h

k -
pij . o (ni+k,j ni-k,j) , (A.19)

1

This, together with (A. 13) to (A. 15) was the set of formulas used in this
report. Generalizations to grids with unequal spacings are possible. However, one
can use the equal spacing formulas also for an originally unequally spaced grid, or
even for a curvi-linear grid applying to some curved surface. The derived interpola-
tion polynomial (A.9) has only to be interpreted properly. We illustrate tnis in the
case of the unit sphere witha 8, X coordinate system. Let the grid be formed of
8, X lines at distances of, let's say, 1°. This grid is not plane nor is it equally

spaced. Let z.. nevertheless refer to the grid points and derive the polynomial

ij
(A.9) by using the set of formulas (A.10) - (A.15) with h equal to /180 (arc
length of one degree at the equator). Let s(8,)) be this polynomial where @A (axc

lengths) replace formally x,y:

3 3 N 8, <8< 8,
i k i+l

s(,A) =% % a(k"z)(&ei) (A= vt (A.20)
k=0 L =0 ’ ' )-J < k “ Xj+1

There is nothing against evaluating s(6,)\) for any §X value not coinciding with a grid
point from this formula. Also derivatives with respect to 6\ can be evaluated by
formally differentiating (A.20). These derivatives can be used in various vector

analytical expressions like e.g.

2 2
Lap s(8,\) =_aa_~°'g_%«.&_ + .a_sé%}.Lcote + -a—ia%\%u-;ﬁﬁ

(A.21)
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APFENDIX B: Isotropic Integral-Operators With Truncated Kernel Functions

B.1 Introduction

Let I'be the unit sphere andlet the unit vectors £,n be points on T. A function

K(g€,n) is called a kernel function since it may occur in an integral transformation

g(g) = [K(gn)i(n)dl(n) ®.1)
r

If K(§,m) depends only on the distance between §£,n or, equivalently, only
on the inner product

cos y = E.n (B.2).

then K(g,7n) will be writtenas K(En) or K(cos y) and will be called an isotropic
kernel. It is known that the spherical harmonics Snm( E) are the eigen functions of

such integral transformations:

IR(E-m s (M dAT(m) = XS (8) ®.3)
r
with +1
Ay = 2m [ K(t)P (t)dt ®.4)
-1

P, (1) is the Legendre polynomial. (B. 3) together with (B. 4) is called

Funk-Hecke formula in Miiller (1966). If the spherical harmonics expansions of
f(€) and g(£) are

f( g) = n,zm fnmsnm‘ g) » g(g) = n?mgnmsnm(g)

Then (B. 1) can be replaced by

8m = >‘n fnm (B.4a)
This follows immediately from (B. 1), (B.3). Truncation of an integral transforma-

tion (B.3) means that in the formula

g(&) = [K(E-n) f(n)dT(n) (B.5)
r
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the integration is carried out only over some (usually circular) cap around §. Let
C =C(g, 'bO) denote a circular cap centered at € and having spherical radius ;.

Then instead of (B.S) we have

He) = [KE-min)dT (n) (®.6)
C

Introducing the truncated kernel

~ K(g:np) for €9 2 cos P
K(gm) = { 0

®.7)
0 for g&m < cos ;bo

the equation (B.7) can also be writter as

g9 = [K (5n)f(n)dT (n)
r
This shows that 1'5(5- 7n) is also an isotropic operator, hence according to the Funk-

liecke formula

[ K(En) Sy (m)dT(m) = Xy Sym(E) ®.8)
r
~ tl o
Xp = 27 [ K(t)Py(t)dt (®.9)
-1
The error function
2g(g) = g(g) - g(§) (8. 10)

is then given by

ag(8) = [ K(Emim)dT(n) = [ AK(EN)f(n)dT(n)  B.11)
r-c r

with ~
AK(E-n) = K(Em) - K(gn) B.12)

Its cigen values are

Ahp = Ay - A
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with

+1 coSs
A, =21 [ AK(t)P(t)dt = 2 [ TK(t)P (t)dt ®.13)
-1 -1

I case of Stokes' operator, i.e.
K(€n) = L st(g-n)
4

with Stokes' function defined by

® +
St(e-n) = nz=2 Znn- 11

P (£:7) ®.14)

the Akn are given by % Q, where Q. are the Molodensky coefficients

cos P
Q, = [ sur)py(v)dt ®.15)
-1

The usual method to evaluate these coefficients is based on Moloden:cly et al
(1962) and is designed to yield Qp = Qn(wo) for fixed n and alll abo . In section B3-3
we shall give a recursion formula which will yield Q (¢,) for fixed y, and theoret-
ically all n.

We shall also deal with the following question: Is there a way to decrease the
truncation error by truncating not abruptly at *"0 but continuously over an integral

O, s = ‘bO . In that case we would put

1

lz(cos P) = K(cos ) 0 <9 < ¢,

K(cos @) 0 Yo SYsm

n

and we would choose K (cos ) somehow in the interval | < < by So that
E (cos P ) or, equivalently, AK(cos y)) has some desirable properties like continuity

or contimous differentiability.

It is known that generally the Legendre coefficients decrease more rapidly
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to zero as n goes to infinity if the relevant functior is smooth. Therefore Axn, the

eigen values of the error kernel 4

AK(cos P) = K(cos ) - Iz(cos ¥) (B. 16)
i
can be expected to taper off more quickly. This is for example seen from
+1
X, = 2n [ AK() Py )de = [ AK(E.p) By(f.q) dT(n)
- ]_ 1-.

by Green's theorem (2.5) for n 21:

-1
= fLapnAK(E-n) Lap = By(gm) dT (n) =
r

R jupnAm-n)Pn(g-n) dT (n)
n{(n+1) r

If AK is two times differentiable so that the surface-laplacean Lap AK

exists and is squared integrable, then it follows from the Schwarz inequality that

o /e 2 . 2 '
Brp S FTCESY) \/ j‘(LapnAK(g-n)) dl‘(n)\/;(l’n(g'n» dT'(n)
T

Thus, since the integral involving P, is 0(_nL):

- 1
Ax, = 0 112v_ﬁ) ®.17)

In section (8.4) we shall deal with this questioir more systematically. One of
thc necessary preparations will be to compute the surface Laplacean for certin fre-

quently used kernel functions K(&: 7).

B.2 The Surface Laplacean of Some Kernel Functions l

If K(%-n) is an isotropic kernel function, we are interested in the quantity
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Lap, K(£-9)
which denotes the surface Laplacean with respect to 7. (Because of the complete sym-~
metry of the problem the Laplacean with respect to € would give the same result.)

If we put

n = (sin @ cos X, sin 9 sin A, cos A)T

and if F(6,\) denotes a function on I, depending now on polar distance angle 8

and longitude A, then the Laplacean may be computed from

- —1 B.18
Lap F(8, \)=Fgq + Fycot 8 + F, —5 (B.18)
In our application we assume the north pole of the @\ systemin §. K(&- n) may
then be written as K(cos 6) and is independent of A. Thus

+ Ke cot © (B.19)

Lap,K(g-n) = Lap K(cos 8) = Ky

B.2-1 The Kernel 1/0(€-p). Let £(£-n) denote the distance between €.y,

i.e. with E.n = cos ¢
2(Em) = €-y = 2sin '21’_ (®.20)

Straight forward differentiation according to (B. 19) and (B.20) with ) = 0 yields

the result

1 1 1
La i, PO (B.21)
’n Wem ~ Bem) 40(8-n)

B.2-2 The Kernel ¢(€-7y). Inan analogous manner we obtain

1 3 e(e.
- .22
T s ®.22)

Lap 0(F.-m) =
Dn(.n)
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B.2-3 The Kerpel 20n(2/2(€-n)). The result for this kernel is simply

l..ap,,7 (20n )= 1 (B.23)

2
£(Em)

B.2-4 Stokes' Function. The Laplacean of Stokes' function

1

St(cos P) = -6sin%+1-5cos¢;

sin
2

- 3cos ¥ On(sin 12’— + sinz(.%)) B.24)

could also be obtained by direct differentiation. It is more elegant perhaps fo use an

alternative method which utilizes the spherical harmonics expansion (B.14). Since
Lap, Pp(S:m) = = n(n+1) Py(S.) (B.25)

it is tempting to perform the Laplacean termwise in 8. 14). This is, however, not
feasibie since the resulting series does not even converge. We proceed therefore in the

following way. Call temporarily

1
f(€- = em—— = P . - P . = ) | . (B.26
(g 71) Q( ) 0(§ n) l(g 7') 2 n(g ") )

and ( Meissl (1971b, equ. (6.50) ),

2 3 o 2n+1
(En) = 2in - 5 Py(En) = L B.27)
g 2(E-m) 2 "1eh n=2 n(n+l)
Now form the function
Sug-n) - 26(5m - 5 g(Em) =
9 2ntl - 2n + 1
LA P(Em) + 3¢ P.(Em)
4 p=2 (n+.é.)n(n+l) nt>" n=2 (n-l)(n+%)n(n+l) n(5°1

.e.. (B.28)
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which may be verified taking into account the spherical harmonics expansions of the
involved functions. The idea behind (B.28) is that the Laplacean can be applied term-~
wise on the right-hand side while the left-hand side causes no problems in view of

(B.21) and (B.23). Performing the necessary elementary manipulations one arrives

finally at
Lzp St(g-n) = —3-—2--— - 25t(gn) + 2P0(§-11) + 9P1(§'n) (B.29)
n 2°(5n)

Remark: The procedure can easily be extended to residual Stokes' kernel functions
which are obtained after eliminating from St(g-7n) spherical harmonics up to and in-
cluding degree N. Call

N ®
Sty(eom = Sugm - £ R p(eeps = ZRLLP(€m 630
n=2 1 n=N+1

Then @B.29) generalizes to

N
I N
Lap Sty(5:m) = —p—— - 28tn(Een) + T

@0 +50+2) P(E) (B.3])
2 (§n) n=0

B.3  Truncation at a Certain Angle 3 o

In this section we conceﬁtrate on the error kernel AK(E.m) defined in (B. 16)

having eigen values A\ according to (B. 13):

+1 cos
A =21 [ AK(t)P (t)dr = 2m [ 7 K(t) P (t)dt ®.32)
-1

-1

If the truncated kernel is applied o a function f(§) ~ fnm (fnm - spherical

harmonics coefficients) then the resulting error Ag(€) ~Agnm is given by

ag(g) = [AK(EDE(n)dT (n) (8.33)
r
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or in view of (B.4a) by

Ag =Ax_f (B.34)

nm n nm

We shall now compute the AXn'S for some kernels:

B.3-1. The Kernel 1/¢(E.n): From (B.20)and (B.32) we get with cos (abo) = t0

becau_se of sin _.‘g_ =H 1- <2:os )

Ax, =\Zr [ —2— P (ddt ®.35)

Write t
0 1 _
b. .= —-—__—Pn (t)dt (B.36)

n VTI-t

-1

Then
Ax, =V27 by (B.36a)

We derive now a recursion formu!a for bn' First, for n =0, 1 one computes

in an elementary way

by = -2\/1-t0 + 2\ 2
- (B-37) i

2 \/(1-p? 2 V3 |
- 2\/1-t0+ |

b =

1 3 3
For n =2 we replace Pn(t) by I
_ 2n-1 - _21
Pn(t) = =5t Pn_ l(t) o Pn - 2(t)

cf. Abramowitz-Stegun (1964), formula (8.5.3). Inserting into (B.36) yields
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- 2n- _ _n-1
By «r \/* Fn-(thde = —=2= b, _,
-1
- - 2n-1 _n-l
l-t P _;@® dt + =—= =—b_, b, .o
n
Applying partial integration and using
+1
!Pn(t)dt = et @yt - By (1))
(cf. Lense (1954), p. 17) we get
P (tn) = P (t,) -
_ n=2 10 n 0 /7. o1 - 2n-1
b, = n Vi % 2n (Pp " Pyp) n Ppoy
. n-=1
n bn-2
solving for b, yields
1 3
P __(t) - P (t) n- - n -5
b, = P2 n 1 -t + 2—2p . -b (B.38)
1 0 n+ 4 ol 1 02

This is the desired recurrence relation. b, could be replaced by A), using (B.36a)

B.3-2 The Kernel l/'£3(§-n). For this kernel we have

t
0
1
A)\n = Vlr_-z_- 'f -——\/_(l_—:'T)-B Pn(t) dt B.39)
Writing
B, = T oy (B.40)
with
to ]
= P (t)d 41
e Y T L ®.41)
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(B.42)

¢ - Tndtp) - Bytg)

. Wy tZe e, (.43)

B.3-3 Stokes' Kernel,
(8.32) in the form

Ve take a slightly different approach and write the equation

Adg = [ St(5.7m) P(5-m)dT (n)

-C

I'-C is the complementary area after removal of a cap with spherical radius

qbo from
the unit sphers

I'. Next we apply Green's second formula and obtain for n >}

-1
ax_ = f Lap, St(zn) Lap, P (g-n)ar(y)
r-C

* §suEn) Grad (Lap LB (1), v (1)) ap (n)
g

-1
" § Lap, " By(5em) Grad, Se(s-m), onNdp (n)

£ is the boundary of T-C and p is the unit normal to the boundary, tangen-

C (inward C). Choosing a 8, \ coordinate sy
pole in -, substituting in the line integrals ¢ =

tial to I' and outward of [+ stem with

cos 8, noting Lap'an(g'n) = ~(1/(a@+1))
Pn(g- 7, introducing t,=cos P and veritying

—
(Gradn F(2m), v(n)) = - 4 F(g’%os 9 -4 Ed.F_t_(_Q 1-¢2
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leads to
1
Ay = - TEEn § Lapy StEm By(sem) dT(n)

n
r-C

27 d |, (1) I
St(t,
TEEST R T t=t,

-

(1-t2)

27 dSy(E-m)

2.
n(n+1) dt t=t, P(ty)-ty) (B. 44a)

Denoting the derivatives with respcct to t by dashes using (B.29) for Lap St

gives
B n(n+1) ey ® n m T A(n+1) n(EMdT(n
F-C . I‘_C
2 L]
T n+l) [ P(&mdTm - a;?rf;rfc P (S-m)P (E-n) GT (n)
r-C -

- 27 | ! ) 2q A
n(n+1)St(t0)Pn(t0)(l ty * e +1)St (to)P(tO)(l t) (B.44)

Using the results of section B.3-2 and equation (B.44) leads t»

1T
= - + A - P t dt
AK . ( ) Cn nzn+|> An ) l ( )

- 18w . _2m a _.2
EERY ,f tPE) dt - i SHtg) P (tg) (1-ty)
t=-1

27
n(n+1)

St (to) P (to) (1- to)

Replacing AXx by the Molodensky coefficients Qn according to
n

A, = 21rQn (B.45)
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and solving for Qn gives finally

= . 1 1
Qn V2 n(n+1)-2 “n
9
1 . 2 Yo
i n(n+l) -2 Z  (2m” +5m +2) Ipm(t) Pp(t) de (B.46)
m=0 -1
! 1

- St(t ) P (1) (1- t(z)) +

! )
n(n+1) - 2 St (to)Pn(to)(l to)

n(n+1)=- 2
This is the desired formula. (It holds also for StN(g-n) instead of St(€-n)
if the summation over m is extendedto N.) See (B,30), (B.31). Formula (B.46)

is recuzsive insofar as the ¢, are the result of the recursion (B.42) - (B.43). The

two integrals involving P (t) may be computed from the general formula

to Po(t) P (t ) = P (¢t )P (t.)
[P )R tdf = — 0 B0 m 0”0 0" g ngm ®.47)
-1 n{n+1) - m(m-+1)

This formmla follows f‘rom
+1 !
JBL® P(t)de = —— [P (5:n) P (E-ndT(n)
-1 r %

after application of Green's second formula. It holds for m #n, i.e. it may be used

for n>2 in (B.46) for n =0, 1 elementary integrations are performed. The deriva-

. | . .
tive Pn(to) is obtained from

! - . N .
P (t) = 1_tz(t P (t) - P _,(t)) (B.48)

(Lense (1954), p. 16) or a similar formula, The derivative of Stokes' function is in a

direct way computed from (B.24) observing

d St(cos ) . -1

st'(t) = ,
t() dy sin P

(B.49)

cos Y

n
-

49




B.4 Modified Truncation Procedures. Repeating formula (B.44a) for a general

kemel K(E-n) we get:

Ay = - n(nl+1) J. Lap K(gﬂP(g N dT (n) -
r-c
- n(n2+1) (1-t )K(tO)P (t ) + ntn +1)(1-t0)1( (to)p (t)  (B.50)

One sees that the first and also the third term on the right-hand side taper off like an
0(;12_) as n — o, whereas the second term which contaius Pn(to) does not necessarily
in view of (B.48). Itis, therefore, natural to try to modify the kernel K(cos ¢) in
a way that K( tO) vanishes. This can be accomplished by simply subtracting

= K(ty) ®.51)

The effect on the original integral

g(s) = [K(Em)(n)dT (n) | (®8.52)
r

is independent of € and therefore constant. For

B© = [(K(Em - kfmdT(n) =@ -y B.53
r

with
% = kg IJ:f(n)dI"(n) = ank T (®B.54)

f denotes the mean value of f(n) over T.

In most applications a constant error in g(£) does not matter at all. In Stokes'
formula for cxample the harmonic of degree zero is eliminated. The scale of the com-
putcd geoid has to be obtained from other sources. Therefore a constant error is with-
out concern. It is, however. important that the truncation angle wo is the same

everywhere.
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If K(t) happens to have a zero at t= to, then no subtraction is necessary.
DeWitte (1966) found small truncation errors at the zeros of Stokes' functiou. The
theoretical reason for this is clear by now. It is, however, also clear that the error
at any other truncation angle is to a large extent a constant over all of I' if kg is

subtxacted prior to truncation.

One can, of course, also try to .nodify the kernel K(cos ) in a way that also
the derivative at the angle of truncdtion vanishes. Let this angle be again denoted by
wO' Then K(cos y) will be modified in 3 <y < ;bo so that

ﬁcos P) = K(cos ), ¢ < "bl
Iz(coszp) = 0, apz;bo

In y, =9 < Yy K(cos y) will be chosen in a way that K(cos y) is twice

differentiable in 0 < ¢ < m. The error kernel is then

AK(cos ) 0 , ¥v= ¥

AK(cos i) K(cosy), 2 ¥ 0

and AK(cos ¢) twice differentiable in 0< @ < 7.

The question is now, how to choose K or AK within the interval, Since the

eigen values of the error kernel are now by (3.50):

_ 1 =
Mg = mon d 1Py AK(S W) B(Em) d T ()
r B.55)
) +1
- . m
= eED) J‘ LapnAK(t)Pn(t )dt,
-1

it will be beneficial if the Laplacian of AK is as small as possible. Since the
Laplacian depends on the second and first derivative it may be good strategy to try

to make these derivatives small.
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We view the kernel AK as a function of t = cos y. With tg =cos ¢q, t; =cos ¢,

wc take a piecewise quadratic polynomial AIZ(t) int, <t < t1 such that

0
AK(ty) = K(tg) , AK'(y) = K'(zy)
(B.56)
aK(e) = 0, aklep = 0

and AK(t) is a polynomial of degree 2 in each of the intervals tg st s t*

ot i* will be chosen so that AK! is of equal modulus (but opposite

R
sign) in the two intervals. Of course AK(t) and AK'(t) shall be continuous at

[

We do not write down the explicit set of formulas which is completely elementary.
It may only be mentioned that t* may coincide with t:1 which appears desirable since
then one of the discontinuities of the second derivative of AK(t) disappears. This
1 be obtained by adding a constant to AK(t). Adding

a constant to AK(t ) amounts to adding one to K(t) which is of not much concern as

special case may for given tg, t

we have seen earlier.

More sophisticated kernel - modifications can be conceived. For example the
sceond and third derivatives of the truncated kernel (or, equivalently, of the error

kernel) could also be made continuous. This, however, will not be done here.




B.5  Truncation of Vening-Meinesz - Type Integrals . We perform the surface

gradient of B.1), i.e. of

g(g) = [K(gn)f(n)dT () (B.59)
r

and obtain by differentiating under the integral sign

w(r) = Gradg(e) = J GradeK(E-mi(n) d T (n) (8.60)
r

K K(cos ) has a pole of order less than two with respect to y (as for example
Stokes’ kernel) then (B.60) is still valid. The integral.is, however, singular if the order
of the pole is greater or equal to 1.

There are two ways of truncating (8.60). Let C_ denote a spherical cap around

g
€ with half opening angle . One can truncate (B.59):

&e) = [ K(emEmdT (n) ®.61)

Ce

and then differentiate

Grad §(€) =

w(E)

i}

i) GradgK(‘é'n) f(n)dT (n) +
Ce

+ [ K(gn) o (E.1) ) da Cn (B.62)

sz
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where o(g,n) denotes a unit vector, tangential to ' in the point € and being in the
plane spanned by € and 7. Formula (B.62) is the result of the differentiation of a

parameter integral where the parameter £ occurs also in the domain.

Let in denote the eigen values of the truncated kernel. Cf. (B.8-9). Then
(B.61) may be written

(& =% £ S (=253 X f S (g) (B.64)

From (B.60) follows then

w(g) = an gnm Grad Snm(g) = an Anfnm Grad Snm(g) (B.65)

This means that gnm = ln’fnm are the coefficients of W(E) with respect to the system
Grad S__(). This system is orthogonal. Cf. Meissl (1971), section 2. It is, how-
ever, not normalized, even if the Snm are. If the Snm are normalized in the usual

way, then the mean square norm of g(g) is given by

1812 = [ g%9)ar(e =4n 5 §2 =4nzx (’infnm)2 (B.66)
T n,m om n,m
and that of W(€) is given by
. ~ 2
1512 = [ (#(2), M) dT(D) = 48 T a@+1) X_£ ) (B.67)

r n,m

This is more fully explained in the stated reference.

Because of the linearity structure the above discusscion carries immediately

over to the truncation errors.

Ag(3) = g(8) -g(8) , Aw(E) = w(g) - w(E)

Let A), denote the eigen-values of the error lernel as in (B. 13). Then
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Ag(E) = T Ag Sm(® = = AN S (%) (B.64a)

n nm nm
n,m nom n,m

aw(E) = T 8g  Ored S () = T Ak Ly, Orad Sy (3) B-65)
logh 2= [ agX®)dr(s) = 41 £ ag2 =41 3 @rgf ) (B.66a)
r n,m n,m

haw] 2 = [ (aw(E), AW(E))dT (E) = 47 % n(n+1)(Aannm)2 ®.67a)

n,m
1-\ 4

The relationship (B.65) is quite simple and offers an easy dicussion of the trun-
cation errors. The usual truncation of the Vening-Meinesz integral is, however, not

based on (B.62), but rather on

N\

w(g) = [ GradK(z.n)f(n)dT (n) (B.68)
Ce
De Witte (1966) has noted this difference. He used associated Legendre-functions

to deal with formula (B.68). In our treatment here a qQuite simple analytical expression

for the difference between (B.68) and (B.62) is at hand:

W(g) =We) - [ K(gn) o(E,mim da Cm) (.69)

acgl

This shows for the first that the difference vanishes if K(cos ) happens to have
zero at Y ;zbo . ‘This is quite apparent from the graphs in De Witte (1966), though he
was seemingly unaware of the simple relationship between the two different truncation

procedures.

We c.n, of course, enforce a zero of the kernel at ‘bO by simply subtracting
the constant kO = K(cos Jb) as in the discussion around (B.51). The effect of this is
a constant in (B.53) and zero in (B.60). A beneficial effect is noted if the formulas

are truncated. As we have shown, the A),i.e. the eigen values of the error kernel
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taper off more quickly. Moreover, the two quantities ’v?( g€) and WE) coincide. This
shows that the truncation W can be considered as favorable too, at least for the higher
harmonics. Equation (B.67a) shows that the higher harmonic contribution to AW =

Aw is in the same dampened by the factor A\ as in the case of Ag.

u we deal with Stokes and Vening-Meinesz formulas then some constant factors

enter the discussion. For we have

Smkes:  N(§) = = [ SUE-mAEM) AT () (8.70)
r
Vening -Meinesz:
v(§) = - o= [ GradgSt(gn) agn) AT (n) ®.71)
r

These factors are easily taken care of.

Summarizing we may say the following: Adding the constant - St(cos e;)O) to
Stokes' kernel causes a constant added to the undulation N(E) which is of no concern
since the geoid has to be scaled later on anyway. The added constant drops out completely
in the Vening-Meinesz formula. If the formulas are truncated at gbo, then the higher
harmonics of the truncation error are favorably dampened. Moreover the usual trunca-
tion of the Vening-Meinesz formula yields exactly the slope of the geoid computed from

the truncated kernel St(€-n) - St(cos ch).

If the Stokes' kernel is truncated over an interval §, <§ < ¥, so that the
derivative at y = VO also vanishes, then the same can be said. The dampening effect
may be a little more favorable. The error discussion of the Vening-Meinesz formula

can be based on the various quantities A)Ln as they are discussed in sections B.4, B.S.

B.6é Smoothing the Integrand in the Outer Zones. Up to now we have been treating

the case where the integrand is completely neglected outside a certain area. In this
scction we discuss a refinement in the sense that the integrand is not replaced by zero

but rather by a smoothed version like a moving average over a certain area,
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Let us start with formula (B. 1) which we write now as

e9: = (kO iO@arm ®.72)
r
- ©)

Assume truncation (in some way) at an angle zbo-. Denote by K~ “(§-n) the truncated
kernel and by AK(O)(g.n) the error-or residual kernel. Then:

kKOe-n = KOC¢.p + akOz-p ®.73)
The error is then
2 = [ akOen Omyarm o ®.74)
r

or according to section B. 1:

©)
with
0
o= [ akemp (emerm ®.76)

r

The shape of the error kernel depends on the philosophy of the truncation

procedure. Confer sections B.3 to B.4.

Let us account for the truncation error by computing the correction term (B.74).

If we do this by using f(o) (€) in its original form then of course no truncation error
remains. We could have uscd the non-truncated kernel in the first place. The point
is, however, that in the correction formula (B.74) a simplified version of f(o)( £) may

be used. Let us use f(l)( g) instead of f(o)( £) in (B.74) and call

ar®e) = 1) - Mg) ®.77)
then a residual exrror of
(1]
2eM® = [ axPema®myar () ®.78)
r
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remains. The spherical harmonics of this error can be computed by

0
2 = MA@ (B.79)
nm nm

Assume that f(l)( €) is the result of the application of an isotropic smoothing
operator toward f(O)(g ). K B(r?) are the eigen values of this smoothing operator,
then we have

1L _ 0 .0
f nm ﬁn fnm (B. 80}

and cons2quently

© X

ar® = (1- D)
nm n

= 25© (B.81)
nm 2 nmm
so that (B.79) becomes
agl = a? 269 @ ®.82)
nm n n nm

The A )\(g) generally taper off with increasing n (though they may oscillate
while doing this). From a certain n on they will be negligible under any circum-
stances. It is therefore desirable to have small Aﬁ(g) for moderatelylargen, This
means one should have B(O) close w 1! for moderatelylargen., One way is to put

- ()
n

ﬁ(o) = 1 for certain n<ny and g ° = 0 for n>n,. This amounts to a replacement

ofnf © (£) by its spherical harmonic expansion f(l) ( go ) truncated at n = n,-

More common is another smoothed version; namely, averages over certain block
areas. A theoretical discussion of this is somewhat complicated since this smoothing
operator is; 1) not isotropic ard 2)applied only at discrete locations (which may be
taken at the mid points of the blocks). Easier is a discussion based on moving averages
over circular caps of half opening angle ao. Por error consideration it is justifiable

to replace the block averages by moving averages over circular caps of comparable

size,

The eigen values ﬁ(g) of these operators are found in Meissl (1971), equ. (3. 14a),

(3.14b).  Sce also Pellinen (1266), We use the above cited formula (3. 14a):
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-]

1

© . __!
8 =TT % J P(v)drt (B8.83)

cosS aO

For moderate large oy and n we may replace Pn( t) by its Taylor-linearization at
t=1
P(1)=1- @ (-0 + 0((1-t)®) B.84)

This leads in a straight-forward way to

B(g)= 1-1_19_1:_1) (1= cos a) + O((1 - cos ao)z) (B.85)

Neglecting the O-term we have
80 < 1- ﬂ-“lll-) (1-cos ) ®.86)
For the purpose of error estimates this formula may be used as long as
B(O) = 0.80, say.
n

Formula (B.72) is now replaced by

1}

eP¢) = [ kO iOmarm =

r

KO Omarm +
r

+ [akOn) (Dmyarm + agB) 8.87) |
r
with
2gM(5) = [ akO(e.m) afOn) a r () (8.88)
r

The following nota*’ons have been adopted




K(O)( En) .... original kernel

PR truncated kernel

2AKO ey ... residual kernel: K (g.n) - RO(g.m)
1O¢g) e original function

1(z) e smoothed version of function

N TS residual £0(g) - {P(e)

It is considered that the first two terms on the right-hand side in (B.87) are
computed. The third term Ag(l)( €) recpresents the error term (B.88) which in spher-

ical harmonics representation is given by (B.82).

One can, however, go a step further and try to truncate AK(O) (€-n) again further

outside
2k = a8 + akD(z.n) ®.89)

The contribution of AK(I)(g-n) could be taken into account but only after replacing

f(l)(g) by a still heavier smoothed version f(z)( £).

There is no need for a detailed discussion of the further procedure which could go
on .nd on, replacing f(o)( €) by smoother and smoother versions in a succession of

concentric zones. We shall restrict us here the following remarks:

(1): If truncation over an interval is used, then there is an overlapping of

neighboring zones. This does not matter if it is properly taken care of.

(2): One should avoid adding constants toward the AKG) kernels before trun-
cation as it has in some cases been done for the original kernel Ko(g- n). This would
make the kernels non-zero also in zones farther inside. If AKGU) happens to have a
zero at a location which is suitable for truncation then truncation is advantageous in
the same way as it was for a zero of K(cos ). Kernels from which the harmonic
components up to degree N have been removed have at least N+ 1 zeros. (Meissl .
(1971) ). These zeros are natural locations for truncation, or for a transition to a

heavier smoothed version 0+ l)( £) of f(j)(g ), respectively,
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APPENDIX C: Regularization of a Type M-Integral

What we call a type M-integral looks like

gg) = | %ﬁﬁidr(n)
r 2% (&)

It is singular and we require that

o(€,€) = 0
and also that ¢(g, n) is twice continuously differentiable throughout.

Lxamples arc

ge) = [ M IQ) r(p
2o (z-n
or
g(e) = J HRLIE) n(n)arm)
r £ (g

(C.1)

(C.2)

(C.3)

(C.4)

The latter is the correction term in the first order solution of Molodensky's problem.

Therefore the name "type-M'" has been chosen.

The regularization procedure will be based on Green's second formula.

Only

a cap C will be considered since for larger distances the integral tapers off quickly.

There the original form may be used. Complete truncation at a certain distance is

also feasible in most applications.

The contribution of a spherical cap C centered at £ and having half-opening

angle z.’)o to a type-M integral is

g(® = § 25 g1 )
c rEm

Formula (B.21) allows us to rewrite this as
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1
Lap, —— ,mdr
Pp e o(E,n)dT'(n)

1 1
B ®(E,n) dT'(n) (C.6)
1§ Tapeemare
C
The second integral, i.e. that one for g 2( E) is already regular. In some ap-
plications it may even be omitted since after multiplication by RL itis negligible

in the so-called planar approximation. See Moritz (1969).

Before we apply Green's second formula toward gz(g) we exclude a small cap

C,; around £ of half opening angle 1’ We have then

~ _ 1 _
g() = [ lap T (&, mMdT(n =
€-¢
= [ Lap, ¢(8,m) dT (n) +
C_le(g-n)

+ § o(&m (Grad, » v(n))dacC(n -

dC

1
2(g-n

- 4 1 (Gradn(p(i,n),l/(n))dac(’?) -

3 C 2(5-n)
14 1 .
- $ e (Grad, e’ () )dac(n) +
3¢,
a:f; ey (Cmad, (&, win)) a2 C () €.7)

v{n) is (outward) normal to the boundary of C and so is vl(n) to the boundary
of € I we let C] contract toward the point € then it may be shown that the last
1wo integrals vanish because of the assumptions regarding ¢(€,n). The third integral

on the right-hand side may be combined with the first one. This is possible gince
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£(€-n) is constant and equal to £(cos O) in the third integral, so that Gauss' inte~
gral theorem may be applied. We get then

(£) = 1. __1 } Lap, o(E, ) dT (n)
o1 g {ug.n) i(os gy | [ omarln
cos %bzg 1
- 55— § e(&n)dd " 7 (C.8)

# (cos yy JC

Use has also been made of "

cos
-—L—— - -
(Gradn T vin)) m (C.9)

In a local ), a system, the formula for g; would read
Vg 27

= 1 _ l } '
SRR {f(cos b)) - L(cos by Lap ¢(4, o) sin ¢ dy da
w:o oa=0

{ 1 £(cos ig) } 2m

- [ ey, @) da (C.10)
2(cos bo) 4 0 =0

This completes the regularization of the M~type integral for a spherical cap.
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APPENDIX D: Regularization of the Vening-Meinesz Formula

We transform the Vening~Meinesz formula in a way that the resulting
integrals are no longer singular. We deal thereby only with the contribution of a cir-
cular cap C around the point £ in which the deflection is to be computed. The hali-
opening angle of this cap shall be 0" For the more remote zones the original form
of Vening-Meinesz formula is of greater advantage since the kernel tapers off quickly

with increasing distance.

The contribution of this cap to the Vening~Meinesz formula is

— 1
ve(®) = - T E{‘ Gradg St(5- 1) Ag(n?dl"(n) (D.1)

¥

The singularity in the Vening-Meinesz formula stems from the term 1/sin > in

Stokes' kernel (B.24). This term a'so equals 2/£(€-n). If we split therefore

2
(F. D.2
o) + R(f.n) (D.2)

St(e:n)=

then the contribution of R(£-n) leads to a reguiar integral

vy(E) = - Z"—G J Grad R(g-m) Ag(n) d T (n) (D.3)

The contribution of 2/2(£.n) has to be dealt with further:

1 1
T o e— Grad dr D.4
v,(8) Py rad, T Ag(n)dT (n) (D.4)
C
If this is done in a satisfactory way, then
V(8 = vi(8) + v, () (D.5)

We need now some vector analytical preparations. Call o(%,n) a unit vector

which is tangential to [ in the point £ and is contained in the plane spanned by £
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and n. Inother words, o(§,n) is orthogonal to € and coplanar with € and n.
Call 7 (g, n) the vector §X o(g,n). We view o(E,7n) as a vector which is im~
bedded in 3-space. Then the operators Grad,n and Lapn can be applied to each cf

the three components. The following can be verified (cos § = g.n)

. 1 T
Gradno(g.‘r/) = m—‘r(gon)‘f(g:ﬂ) (D.6)
Lap, o(5,m) = - —3— o(&,n) (D.7)
sin“

We do not give a detailed derivation of these formulas. Chapter 6 in Meissl

(1971a)deals more extensively with the underlying concepts.
Performing the differentiation in (D.4) gives
3
1 J‘ cos %
2

vi(E) = -

o(€, ) Ag(n)d T (n)

Hence by (D.7)

V(%) = 52— [ Lap o(5,m) dgmdT(n) +
C
1 - cos3
vy L [ T2 (e, m)agm)dT ()
21G ¢ in?
= v, (8) + vp(D), say. (D.8)

v,9(%) is already regular. The integrand is even bounded. We apply Green's

second formula (component-wise) toward v,(€) and obtain:




= 1
v1® = 5—— [ ol m LapsgmdT (m) -

C

- —— & (5. m) (Grad ag(m), v(n))dacC(n) +
21 G

3C

1
21 G

+

§ ogln) (Grad o(g,m), v(m )d3C (n)
3C

The last integral vanishes because of (D.6) and the orthogonality of T7(§,n) and v(n).

Summarizing we have the following:

ve(®) = | o(g,m) Lap ag(n)dT(n) -

C

27 G

§ o(€,m) (Grad Ag(n), v(n))d3cC(n) +
3C

27 G

1l- cos3 —Q

+ 1 . , dar -
- { — o(E,7m) 2g(n)dT (n)

C

1
471G

[ Gradg R(g+n) ag(n) d T (n) (D.9)
C

In the literature, the Vening-Meinesz formula is usually written in a local

¥, o coordinate system. In this notation (D.9) reads as:

’bo 27
= _d cos a .
' ZnG I J (sma) Lap Ag(Y, o) sin § dy da -
=0 a=0
27
- L singy [ (%) 208@.a o+
27 G o=0 sin o X ) ¥=v,




) 2n ! 3
=~ CO8
i [ & ("f’s “) 2g(h ) d p de -
T w—_(’) o=0 sin lb ‘Sln o
¥, 2w 05 w
¢ 1 J J‘ 3 R(cos 3) (c_ ) Ag(Pp,a) sin y dy da
41G $=0 0=0 W sin o

sess (D.9a)

In the main portion of this report the Vening-Meinesz formula occurs in (1.2)
Ag(n) has then to be replaced by Ag(nm) plus some correction terms.
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APPENDIY E : Regularizing a Correction Term in the
Deflection - Formula.

wWwe shall be concerned with tre following *term contrituting
toward the deflecticn formula (1.2) :

) = —— [ (a()-n(§)7 Grasg Zf’é_}? Bg(n) al ()
J :

es e (Eol)
Using
5Y
Grad —3—1— = 3——-0—0;-—_2:- c’(j,q) . (E.2)
§ £(f.) sin”y
and

1 .
Lapi{-f—jr- 6(§,Q)} = {—721— - —fg?— } G(foQ) (E.3)

sin“y sin’y sin”y

we may write the cap contribution of (E.1l) as :

j [(n(q3-n(§))? Ag(q)] tngf=te oy o} ar)

sin

(§) = 4 TRG

3(1l- cos5 ;)

- j [(n(p)-h(f)) Ag(q)]{

41rRG sin41y

-2 : r
m} o () AT ()

= q;(f) + ay(f) » say. (E.4)

q2(§) is already regular. Toward ql(f) Greens second

formula will be applied yielding




1 3 2
a; () = Py : -s';m s (§f.1) Lan[(h('z)-ﬂ(f)) Ag(n)] dr(q).

1 r
ypun.ss bjc) -S—l-;z-;, s(fsn) ( Grad,l[(h('z)-h(§)) Ne(n),

» V(n)) a3c(q)

- i {; L(n(p)-n(§))% Ag(n)] -—;"— G (§,7) a3c(n)

sin \]I

eer (E.5)

For the last term (D.5) has been used. The applicability
of Greens second rformula has to be justified in the usual
way (letting another small cap contract toward § ).

The first term in (E.5) contains still a singular integral.
Je have:

Tap, [(h(7)-n(§))? Ag(p)] = 2 | Grad n(p)|?As(p) plus

terms containing (h(7)~h(j)) as a factor. (E.6)

The terms containing (h(q)-h(f)) as a factor cause no
singularity problem. However the term 2|Grad h(q)l does.
There is, however, no need for further regularization.The
term

m j ;?—6(§ ) | Grad h(rl)l Ag(q) dr'(q) (E.T)

can be combined with

- L j Grad R-E—TZT | Grad h(rl)leg(iz) ar(n) (E.B)

ARG

in a way that the singularity cancels. (E.8) is contributing

69




L T T Sy i iy v

to the first term of the deflection formula (1.2). To see
this consider the cap contribution of (1.2), split St(§)
acccrding to (D.2) and note the definition of G,(f) in (1.4).

The result of combining (E.7) and (E.8) is

1 5 l-cos3§ 2.
= _?EF;_— g(fw)IMathH Ag(n) ar ()

oo (Eog)
which is now regular.

The result of this somewhat involved regularization procedure

is summarized in section 3%.5.4.
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