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ABSTRACT

A set of formulas proposed by Moritz and constituting a second order solution

of Molodensky's problem has been transformed in a way that the resulting formulas

are nlimerically tractable. The difficulty in the original formulas arose from the

occurence of singular integrals. Their regularization introduces derivatives of

gravity anomalies and terrain heights and necessitates a numerical differentiation

procedure. Spline function interpolation has been chosen to deal with this. The

existing truncation theory has been extended to cover more sophisticated truncation

procedures as well as a succession of heavier and heavicr smoothed ver.Aons of the

integrand.
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INTRODUCTION

Moritz (1969) proposed a set of formulas which, under certain assumptions,

constitute a second order solution for Molodensky's problem.

These formulas are numerically not tractable because singular integrals and

even iterated singular integrals occur. The occurence of the singular integrals implies

that the formulas are integro-differential formulas in disguise. The singularities can

readily be removed by allowing derivatives to show up openly. Green's second formula

for surfaces is the essential tool to regularize the integrals, and regularization should

take place only within a small cap centered at the point of interest. For the outer zones

the original form of the integrals is more advantageous since, in many cases the kernel

tapers off quickly with increasing distance.

For remote areas a smoothed version of the involved functions like gravity

anomalies and terrain heights can be used. The existing truncation theory has been

reviewed and somewhat extended to cover more sophisticated truncation procedures

as well as a succession of heavier and heavier smoothed versions of the involved

functions. Appendix B, which is concerned with truncation, is expected to be of some

interest beyond the immediate applications in this report.

The occurence of derivatives in the modified formulas introduces the necessity

of numerical differentiation. Assuming that the functions are only given at discrete

locations or in block average form the spline interpolation approach has been chosen.

This interpolation method has so.ne advantages over the classical methods of poly-

nomial or trigonometric interpolation. The bi-cubic spline interpolation procedure

assumes that the functions are given at discrete locations forming a rectangular grid.

These can be accomplished by prediction methods applied to an originally irregular

pattern of sample points. In the case of block averages the most points of the blocks

can be used to form the rectangular grid.

This work has been carried out under some time pressure. Therefore extensive

numerical tests could not be performed. Some tests have been made with bi-cubic spline

interpolation and also with one of the singular integrals.

, • = = I i • I I /n ll l i i ll ll ll l i nlm l . .. ,Hlm . .... .. ... . .. ..1i



The proposed methods are certainly time consuming. However a second order

approach will be employed if in a limited area a good accuracy is needed. In this case

the chosen approach appears to be computationally feasible.
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1. THE ORIGINAL FORMULAS

We shall deal with equ. (8. 1) to (8.3) in Moritz (1969). In somewhat different

notation these formulas read as follows:

R

a(t) = • • St(t'n) (4g(77) + Gl(n) +G 2 ()) dr(77) "

2I (h(77) - h(t)) g"()dn (.)

v() = - 4V J' Grad St(§. ) (Ag(n7) + G (17) + G2 (7) dr(,7) +

1 2 1F
+Taf (h (t7)h_ )) Grad - Ag (7) d r (77

= Grad h(t) (1.2)
RG

where

G f h(=n) - h(ý) (1.3)
1 ( 1) = ___ 9(F-7)_dr

G1 h(7))- h) G1(,n)dr( 7 ) +

2 2

+ R-2Ag(Q) Grad h(ý) (1.4)

Explanation of notation:

F = unit sphere

unit vectors, denoting points on r. They play the role

of spherical coordinates:

S= (sin 0 cos X, sin 0 sin X , cos 9)

astronomical coordinates are obtained by putting

(P=7- - 0

F-" = inner product of F, n7: frequently denoted by cos 1
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( • ) = distance between • and 7:

(7) = k(cos 4,) 2 sin -

St( 77) = Stokes' function

St(•. 1r) = St(cos +,) = _ ..
sin

.42

(See Appendix B, equ. (B. 24))

R mean earth radius

G mean gravity value

z2g(_ ) gravity anomaly referring to a point on the earth's
surface with astronomical coordinates implied y '.

h(1) = height above sea level in !.

a(s) height anomaly at ý in the sense of Molodensky et ai
(1962); in the literature usually denoted by •. Also
the undulation of the quasi-geoid.

v(Q) deflection of the vertical; viewed as a surface tan-
gential vector to F. In the literature usually de-
noted by its components 1, 7 in a localized coord-
inate system.

Gradf(•) denotes the surface gradient of a function f(.) de-
fined on F. The surface gradient is a vector tan-
gential to F in ý and pointing into the direction
of maximal increase of f( ). The length of the
vector equals the rate of the increase.

A derivation and discussion of the physical meaning of these formulas will not

be given here. They will be used as a starting point for this study except for one

thing: During the derivation of the formulas "planar approximation" has been used.

This means that in deriving a formula for a certain quantity a relative error of the

order h/R has been tolerated. We shall do the same whenever there will be a need

for modifying some of the formulas.

The accuracy which shall be aimed at is about three digits in the quantities

i (¶) and v(9¶). This does not necessarily mean that this accuracy can be guaranteed

lirougliout. It ncans, rather, that we do not worry about approximations which

('rcat('c (rrors of less thla three digits in a(ý) and v(t).
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2. THE INTEGRO-DIFFERENTIAL CHARACTER OF THE FORMULAS

The formulas (1.1) to (1.4) are freque.tly referred to as integral formulas.

Though it is recognized that some of the involved integrals are singular, the evaluation

of the formulas is usually viewed as a problem of numerical integration.

Let us first have a look at the integral (1.3) serving the evaluation of G l( t).

This integral is in an abbreviated way written as

_1  13 Agcir (2.1)

Although we shall use for the actual evaluation of this integral another transformation;

we write (2.1) now as

I h A-h dF ddF (2.2)
21RR3 21TR h . dR3

Here we have two integrals of the type

x - 2
- 3 -- dFr (2.3)

The spherical harmonics equivalent of this is

Ynm =- n Xnm (2.4)

This shows an amplification of the higher harmonics of the same type as it occurs in

a differentiation. As outlined in Meissl (1971) a transformation of the type (2.4) can

be viewed as a transformation from,a space H k+ into a space Hk where. the melkr

bers of Hk+1 possess certain generalized derivativr, up to order k + I whereas

those of Hk possess only such derivatives up to order k.

Thus (2.3) acts similar to a differentiation procedure which always makes things

more rough than they have been before.
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During the evaluation of G2 such a roughing effect occurs twice. Stokes'
k k+l

formula has an opposite effect. It transforms from H into H . It, so to

speak, decreases the roughing procedure by one step. Nevertheless in summary it

turns out that a(Q) depends in some way on derivatives of h and dg. Whereas the

mean contribution to a(t); namely,:

R St Zg d1',
i r_

is smooth (one step smoother than Ag), the correctional terms are rougher. This

has serious consequences on any theoretical discussion of the Molodensky approach

which will, however, not be undertaken here.

The consequences which have to be dealt with here are that there will be a

need to evaluate in a consistent way derivatives of functions which originally are

given only in disciete locations. We shall briefly outline now what we mean by con-

sistent. Take for example Green's second identity

If(f Lapg - g Lapf)d7 = f f (Grad g, v) - g(Grad f, -)d B

B B ... (2.5)

Lap denotes the surface Laplacean operator with respect to r. B is a sub-area of

F with boundary IB. The unit vector v is tangential to F and normal to a B.

(v is directed outward of B).

If now the functions f and g are given only at certain discrete locations then

no integral in (2.5) can be evaluated. If the involved derivatives are computed by

some crude and inaccurate numerical interpolation and differentiation procedure

then (2.5) cou'i possibly not be verified. We shall, however, use transformations of

our integrals which are based ui (2.5). Therefore what is clearly needed is a pro-

cedure to evaluate the derivatives of the functions in a way that (2.5) holds wn a sat-

isfactory degree of accuracy. We have to interpolate the discrete values in a way

that the function is continuously differentiable up to the second order. There are

many ways to do this and the result is, of course, not unique. We reject trigonometric
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or polynomial interpolation in the classical sense and choose instead the spline

function approach. The latter yields generally a smoother surface because local

disturbances have hardly any influences on distant areas. This is more fully

explained in Appendix A. The way data are assumed to be given, i.e. what the

locations of the discrete arguments are, is explained in section 4. For the immed-

iately folowing sections, it suffices tD know that the functions and Cheir derivatives

up to second order are defined everywhere on r.
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3. REGULARIZATION OF THE INTEGRALS

A singular integral can be transformed into a regular one if the integrand is

sufitientiy smooth. This may for the first be illustrated by the following simple

example.

3.1. A one-dimensional example

Take: +1

g(x) = " 2(y) dy (3.1)
(x - y)2

-1

We assume that qp(x, y) is twice continuously differentiable and that

4p(x, x) = 0 (3.2)

The integral (3. 1) does not exist if the integ.and is replaced by its absolute value.

The integral is therefore singular. Writing instead of (3.1)

x-C 1 +1

gc(x) = 3' + f = (c) S', say,
-1 x-I• - 1

the singular integral g(x) is defined by lim g (x).

Applying partial integration toward gC (x) yields

x' +1

g.(x) - + ,(x'y) + I' IP(x,y)
gCX)= -C dy

x -y -1x-y -l x- y-I x+Y -- X-

Applying partial integraticn a second time gives

g (x) = ap(x,y) + ,(x,y)
x-y -1 x-y x+C

.... (con't)
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+ (Py(x, y) 2nlx - yI f + py(X, y) Infx - y1I

I

- (0) pyy(x,y)InIx -yl dy

-1

If we now let C-. o then the various poles cancel out neatly and we obtain

g(x) = - __ _ - (q(X, 1 - q' (x,-I)Rnll+xl +. V(xl)fnhl-x.
1+x 1-x y y

+1
- 5p y(x,y) injx -yI dy (3.3)

-1

The integral is now completely regular, which means that it exists even if the integrand

is replaced by its absolute value.

3.2 Regularization of M- integrals

Let's go now to the unit sphere F. Assume an integral of the form

g(O) = , 7  Ldr(77 (3.4)

F

with

,p(Q, 0) = 0 (3.5)

and p( *- 17) at least twice continuously differentiable. We call this a type M-inte-

gral since the first order correction term in Molodensky's formula is of this type, e.g.

equation (1. 3). The singular integral is defined after excluding a very small circular

cap of half opening angle c around t and then letting c -• o.

The equivalent of the above two-fold partial integration is in the two (or more)

dimensional case, nothing but Green's second formula (2.5).

We transform the integral not over the whole sphere F but only over a certain

9



spherical cap C surrounding ý and having half-opening angle 00.

It is shown in Appendix C that

09 f d dr(??)
C

" 2() •(cos bo)1 Lap pQ(,' 7 )dr(77 )

C

00Cos

2(cot; 0o) BC

(tz 77) d r(7n) (3.6)
4 C I_7

The formula becomes simpler if the cap is extended over the whole sphere;

in that case the line integral vanishes. However it is not advisable to do so. The

term I/A3(-.e7) in (3.4) tapers off quickly for larger distances. This is not so in

(3.6) where only terms like l/P(Q. ) occur. Therefore for distant areas (3.4)

offers greater advantage. The term Lap ýp(t-i7) in (3.6) certainly tends to fluctuate.
77

If the integral is extended over too large a cap then the positive and negative contri-

butions of lape/(q.t) certainly cancel to some extent. Therefore the cap should

not be too large allowing only a few positive and negative extremes of Iap,7 (( g. 77)

within its domain.

In all numerical approaches toward the singular integrals of Physical Geodesy

which are known to me the integration according to (3.4) is carried out very close to

the point ý of singularity. For a very small remaining cap some rather crude pro-

cedure is used which involves some kind of numerical differentiation. This does not

seem to be a very efficient procedure. A singular integral yields infinity if the inte-

grand is replaced by its absolute value. Therefore if only a very small cap around

the singularity is excluded, there are necessarily large positive and negative contri-

butions which nearly cancel. This is numerically disadvantageou)s even if a precise

10



analytical expression for the integrand is available. An analytical representation for

the integrand appears to be a necessity in any case. If one is available then derivatives

may be formed. Formula (3.6) can then be evaluated witho,,t any numerical trouble

resulting from mutual contributions of large quantities of opposite sign. The cap

shall not be too small but also not teo large as we have pointed out earlier.

M-type integrals appear in our formulas of section 1 multiplied by a factor

R . In that case the last integral in (3.6) is a quantity which is negligible in planar

approximation. (Moritz, 1969).

In most cases, the cap size will be sufficiently small to replace (3.6) by a

plane integral.

In that case we proceed in two steps. We assume that I gc(() has to be

evaluated. In doing this we replace the integration over the unit sphere by one over

a sphere with radius R. (3.6) becomes then after neglecting the last integral

I (=, .1q) 2

Ro IRt- Rtjl3 dP(n)

j• l .. 1 1Latyp(§.j)R R2 d F(77)jR 1 R f(cos I0) 1 2

eOs
Z 00 2 j •(p{' 7) R d 6 C(77) (3.7)

(R R(cos )(

Now we make the transition to the-plane replacing R•by x = (x 1 , x2 )
(y 1  ___y x1 x 2

R77 by y = (YI, Y2)T and denoting by p the radius of the cap. The expression

Lap ýQ( -7) goes over into the ordinary plane Laplacian lapyp(X,y) =pylyI y

Hence:

111



4 ~g~() = .~ILX.Ldy
Ix -yl 3

lyt <-p

j 1 - 1 " .a.py ap(x.y) dy

iyl <p
21
S . ,,p(xx+p {cosaj ) dot (3.8)

p sin a
a- 0

It will be clear from later sections, that we shall have a polynomial re-

presentation for the function q,(x,y). However, this polynomial representation will

vary from mesh to mesh of a rectangular grid. It may therefore be desirable to have

a cap boundary which is not circular but rectangular. Call this rectangular area Q.

Then (3.8) becomes:

gQ(x(xy) dy

Q Ix-yI1

I lapyg(x,y) dy
Ix -yI

+ j V(x,y) (grady Ix yl v(y))d•Q(y)
,)Q

"- Ix- (grady p(x,y), v(y) )dQ (y) (3.9)
21Q

These formulas could also be verified by Green's second formula for the plane con.sider-

ing that

lapy Ix-yI Ix y13 (3.10)

v is the outer normal to the boundary of Q and grad denotes the ordinary grad-

icnt in the plane. Thus the second equal sign in (3.8) and (3.9) is exact. Only the

12



equality with the integral over the portions of the sphere is approximate.

3.3 Reg ,.,rization of Vening-Meinesz' formula

Vening Meinesz' formula

v(_) - .. CGrad St(Qi)Ag(7,)dr(X?) (3.11)
4 wG 8r

constitutes also a singular integral since it does not exist after replacing the integrand

by its absolute value. Regularization may take place in a similar way. Again, only

the contribution Vc(Q) of a circular cap C centered at g and having spherical rad-

ius io is considered. Farther outside the original form (i. 11) is quite suitable.

The regularization procedure is outlined in Appendix D. It results in:

vIC(g) = -1 1 aQg,7/) Lap g(7/) dr(7n) -
vC(~) 21TG -

C

_ L Fa(g, 17) (Grad Ag (77), v(77) ) dýC(77) +

34
+ 1-cos -.

21r Gsin 4C

4I-G J GradER( g "n) Ag (17) d F (T) (3.12)

C

Thereby we have split:

St(.-7) - 2 + R(g. 77) (3.13)

The unit vector o(, 77) is tangential to r in the point a end lies in the same

plane as r and 77. R(g-.7) causes, even after differentiation, no singularity. The

singularity in Vening Meinesz' formula comes in through the term 2/1(Q.77) in (3.13)

and has been removed in the above formula. In Appe.adix D there is also a listing of

the abh•ve formula in the usual notation which is based on a localized coordinate system

13



(in which a (7. 7) carries over into (Co s )• Equation (D. 9a).

Again, formula (3.12) would become simpler if C would be replaced by r. The

line integrals would vanish. The numerical Usefulness, however, would decrease for

reasons similar to those given in section 3.2.

3.4. Some further manipulations

Thcr, is still a singular integral in the deflection formula (1.2). It is

(h r7)-h() 2Grad, Ag(tp 7d(ti)q() -- 4ffR2G ,n)
C

This term is combined with a certain other contribution t'ward (1. 2) and regularized

as outlined in Appendix E. A summary of all regularizations is given in the following

subsection.

14



3.5 Summary of regularization

3.5.1 The Quantity G1 (t).

For the area outside the cap C use the original formula (1.3). For the cap-

interior use:

G 1 (o) = 1 { }Lap, C(h(77)-h(Q)) g()I dr(77)
C 21RC1R-7 (cos 4b)

Cos
_§ , 2_cos *o) (h(7)-h(t))Ag(7)db C(77) (3.18)2vrR f2(cos 00) ýC

This formula follows from (3.6) after neglection of the last integral (planar approximation).

3.5.2 The uanit G2 .

Split
G2() = C2(t) + G2 (Q) (3.19)

1 1 h(77) - h( ) G1(77) dr(77) (3.20)

r

= RAg(Q) IGrad h(Q)1 2 (3.21)

For Z2 C use (3.18) with Ag(77) replaced by G 1(77 ). The evaluation of G2 (•) is

immediate.

3.5.3 Formula (1.1) For The Height Anomaly a(Q).

No further regularization is necessary.

15



3. 5. 4. The Deflection - Formula.

For the area outisde the cap C the original formula (1. 2) will be used.

For the cap interior the following will be used (cf. (3.13)):.

v I Ic~.7LP~~7+C 2ITfG ~ (,)Lpig~ 1 (7) +Z 2(?1 )) dfl(,)-

C

2v G

ZC

I- Cos 3
+ a~g 57 2 A (,7) [Grad7 (U)2003dg(17) dr- 7

27 CT sin2

+ Lap.-- [(h(q)-h(,lYg~3-~ ~~r) )2A g cr
ZiCJ si si1

-2Sra Lhhjr?)-h(()) I d(r)]q

C08
+ in12 ( .Ga 2q 12 dP(7) (3.22( )

C 16



4. ANALYTIC REPRESENTATION OF FUNCTIONS

It has been stated repeatedly that our regularization procedures are based

on the availability of an analytical representation of the various involved functions

like terrain heights, gravity anomalies, and other functions derived from them. Data

libraries contain information about these functions either in discrete form or in block

average form. Neither of these representations is suited for our purposes. Block aver-

ages produce step functions with constant values within each block and jumps at the

block boundary. Such a function is not analytical nor can it be reconstructed from its

first and second derivatives which are zero almost everywhere. For our regulari-

zation procedure it is, however, essential that the functions can be reconstructed

from these derivatives (plus some additional information like the function values on

a boundary line).

If gravity anomalies and terrain heights are given at discrete values, an inter-

polation procedure has to be used. For an irregular pattern of sample points in two

dimensions this can be a quite laborous task. Usually a linear procedure is used

leading to an expression
N

p(x,y) =E zi pi (x,y) (4.1)
i1l

zi are the values of the functions for the arguments xi, yis p(x,y) is the interpolat-

ing function. The functions pi(x,y) depend on only the arguments xi, yi and,

of course, on the chosen interpolation procedure. They do not depend on the zi.

Examples are: polynomial interpolation~trigonometric interpolation, linear

prediction. If the function pi(x,y) is differentiable, then p(x,y) is differentiable.

Thi3 generally solves our problem. The question is how to choose a computationally

feasible interpolation procedure.

For an irregular pattern of points there is hardly a chance to get simple ex-

pressions for p(x,y ). Therefore a rectangular grid of points (xi,yj ) points 'must

be aclueved. This can be done for example by a prediction procedure. The interpola-

tion within the rectangulalr grid is according to the author's opinion, in the best way

17



accomplished by spline interpolation. Spline interpolation yields a polynomial expres-

sion for the function within each mesh xi 5 x ! xi+ 1, y1 , y ,Y 1j+1 of the grid. The

polynomial expression varies from mesh to mesh. However, continuity and continuous

differentiability up to any desired order can be maintained at the mesh boundaries.

Advantages of spline interpolation over other methods are outlined in Appendix A.

Loosely speaking, spline interpolation keeps the derivatives of the interpolating func-

Lion as small as possible, thus avoiding fluctuations and oscillations as they are fre-

quently encountered in other methods. Another advantage is that the polynomial repre-

sfnlation within a certain mesh depends to a large extent only on the function values

zij in the near neighborhood of the mesh. The dependency on values farther outside

is neg!igibly small. This is also not the case with other methods where a change of

one value zij may cause changes in the interpolating function over a wide area.

In Appendix A computational procedures are outlined to obtain the interpolat-

ing bicubic spline functions. Asymptotic formulas have been used which are simple

and quite appropriate for our purposes.

Spline interpolation can also be applied toward the block averages. It is

only necessary to view the block averages in a different way. They should not be

%'icwcd as step functions. Instead a block average shall be representative only for

its midpoint. For any other point the appropriate value would be an average over a

block c•ntcred at that point. In other words we imagine a smoothed version of our

function which is obtained by moving averages over blocks. Unfortunately we have

values of this smoothed version only at discrete values, i.e. the midpoints of the

original blocks. For the other points, an interpolation procedure has to be used.

This can certainly be spline interpolation since the midpoints already form a rectang-

tilar grid.

Speaking of a rectangular grid does not mean that the lines must be equidistant

on the unit sphere F. The grid lines can certainly be represented by lines of constant

I;Ititutde andc longitude. In evaluating the various differential operators like Grad and

Lap IhN appropriate formulas have to be used.

18



Spline interpolation will, of course, only be used for the small cap areas in

which regularization takes place. For the outer zones the original averages or

even cruder representations will be sufficient. Here one benefit of spline interpolation

becomes effective. The polynomial representations for a mesh i.s practically depend-

ent only on the function values in a rather small neighborhood of the mesh. Tbis

avoids the necessity of performing an a priori interpolation for larger areas where

continuity problems arise at the connecting boundaries.
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5. TRUNCATION

The procedure for evaluating the various integrals will be the following. For

a very small cap with half opening angle •0 the regularized formulas will be used

in cast, the integral is singular. The radius of this cap will be a few kilometers or

even less. This corresponds to a 00 of about 1'. Outside this cap essentially the

original form of the integrals will be used. It is, however, certainly not necessary to

carry out the integration with the same accuracy all over the sphere. Some integrals

can bc completely truncated at a certain distance. Some have to be extended over

all of 1'. 1lowever, going farther out more smoothed versions of the functions h,

1g... can be used. This reduces the computation time.

There exists a theory on truncation which goes back to Molodensky. See

Molodensky et al. (1962). De Witte and others have done further work. In Appendix B

I have reviewed and, as I think, somewhat extended this theory.

New insight has been gained into the nature of the truncation error. Take for

example Stokes' formula. De Witte's work suggests that truncation is most favorable

at the zeros of Stokes' function. However a zero can be placed anywhere by simply

adding a constant to Stokes' function. Doing this and truncating at such an enforced

zero produces a genuine truncation error which is comparable in size to that after

truncation at a zero of the unmodified Stokes' function. The only difference is that

the new truncation error is superimposed by a constant which is the same for all points

of the sphere. Such a constant does not matter in Stokes' formula. The geoid has to

be scaled later on anyway.

We have also investigated the effect of replacing the abrupt truncation at a

certain angle ý0 by a smoother procedure. It consists of leling the kernel taper

off to zero over a certain interval 01 - 0 !5 40 . This brings along a very beneficial

effect in dampening the higher harmonics of the truncation error. The situation is

similar to filter design theory. Filter functionswith discontinuities tend to cause

e-rror01S with con.sidlhrahl, high frequent portions. Smoothing out the discontinuities re-

mnoves thie-se high fre'quent errors to some extent.
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In the following we discuss truncation procedures for the various integrals.

Alternatives to the proposed strategies can be obtained from Appendix B.

5. 1 The integrals of the correctional type

GI is a correction of Ag as it is seen from (1. 1) and (1.2). Therefore a

contribution toward G can be neglected if it amounts to less than the measuring ac-

curacy of Ag. This accuracy may be assumed as one part in 1000. Due tD this and

also due to the fact that the function I/2 3 ( F. _7) tapers off quickly truncation can

take place at a short distance. Bursa (1965) proposes truncation beyond a distance of

about 80 km. This corresponds to •0•0.70. A global statement is difficult to make

bw. 6ome rough estimates based on the truncation theory of Appendix B indicate that

even in the case of our second order approach not much more is needed. ib0 % 20,

should be sufficient in all cases.

The same can be said about all other integrals of this correctional type.

These are: The integral in G2 , the second integral in either of (1. 1) and (1.2).

5.2 Stokes' integral

Whereas nothing new nas been said in section 5. 1, it is hoped that the following

discussions on Stokes' and Vening Meinesz integral bear some interest.

We propose the following. Split off the spherical harmonic components up It

and including degree 12 from Stokes' kernel:

12

St(=2"7) =T'- p n(ý"•7) + St 1 2 (Q.) (5.1)
n=2 n-i I

The contribution of the first part will not be discussed further. It could be taken from

satellite solutions. The residual kernel St 12 (cos 0b) has at least 13 zeros in

0 e) 180. ( Meissl (1971) ) . The zeros are approximately given by

= 5.020, 17.990, 31.580, 45.290, 59.069, 72.850, 86.650, 100.50,
0o

114.30, 128.1 , 141.9 , 155.70, 169.40.
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These zeros are good locations for truncation, or better for a transition to a heavier

smoothed version of Ag in the residual Stokes' formula:

NI2(t) = R I St 12 (t.'n) ag(q)dr(q) (5.2)4ITG

In (1. 1) Ag is replaced by Ag +G 1 + . However for the sake of simplicity we dis-

cuss the (residual) Stokes formula in the form (5.2).

Now we integrate only up to 40 = 5.02 with full accuracy. Beyond 4 = 5.02

we replace Ag(t) by a smoothed version AgM()() which is obtained by averaging

Ag(t) over a circular disk of half opening angle a centered at t. The spherical
harmonic expansion of the resulting error AN(O)(§) in NI 2 ([) is given by (B.82)

and (B.45) (0)
(0) R (0) (5.3)

(AN12 )nm = (1- Pn )2gnm

Q(0) are the Molodensky coefficients referring to the residual Stokes' kernel

Stand a runcation angle equal to 0 0 . The Q(n0) can be computed from

(B.46) if St(Q.?7) is replaced by St 12 (Q.77) and the summation over m is extended

to N = 12. The P(n0) are the eigen values of the smoothing operator over the "

disks. The pn are given by (B.83) or, for not too large n, approximately L.y

(B .86).

Let us use the smoothed version Ag( 1 ) only up to = 17.99. Outside the

ZbI cap a still heavier smoothed version Ag(2 )(t) will be employed. Ag( 2 ) is

o¾•ained by averaging Ag over disks of half opening angle oil, oil > eoL. The total

error would then be given by

(AN(I))m ( 0~))n + R In"1) (P (nO)_ A 1) An(54

nm 2nm G 2 n nm)Ag (5.4)

Q(1 ): Molodensky coefficients for truncating St 1 2(cos 4) at b =

(;I cigen values of the averaging operator over the a 1 - disks.

This procedure is immediately generalized to a succession of zones. If
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is the last truncation angle then the associated error in N12 is AN 12 The following

recursion holds:
"0 ) (i-n +•n_-I).•i))An (5.5)"(AN(i))n = (AN(il))n+m ~

(A 2 )nm =(N12 )nm G 2 On Pn (55)n

The general form of the error is0) R (i)
(AN12))nm G qn Agnm (5.6)

If a2(Ag) are the degree variances of Ag then the mean square error a2 (AN1)

is given by

2 2 (q )2 a 2(Ag) (5.7)12 G2 n> 12 n n

See for example Meissl (1971) chapter 4, esp. equ. (4. 11) there,

We adopt the following degree variances for Ag (they are taken from

Gaposchkin-Lambeck (1970).).

2 2n a2(Ag) in mg

2 7.4

3 33.0

4 20.0

5 17.8

6 15.7

7 15.5

8 6.7

9 12.7

10 12.9

11 12.2

12 5.1

Occasionally we shall need higher degree variances too. Since we need them only for

rough estimates we adopt the following model for the a2(Ag), n > 12:
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a2(6g)_ 3.1011 (5.8)
(n + 445)4

2
Summing all degree variances should give a value close to 1201 mg2. (Kaula (1959).

We have from the above table

12 2
E a (Ag) = 159 (5.9)

n=2

and from (5.8)

T o2(Ag) = 1042 (5.10)
n> 12 n

which gives together 1201. Besides that we have for n =13, a value a2 (Ag) % 7 mg2

which fits into the picture of the above table.

The variancc of the geoidal undulations is then

u2(N) 2 Ii E(g) = (30.2m) 2  (511)

G2 n=2 (n-0) 2

This is the total variance. The variance of the residual part N1 2 is

a ) = n>12 I ) 2(4g) = (6.3m)2  (5.12)•2(N21 1G n>12 (n -1)2

(i)
In Table 5-1 we have listed q quantities under various assumptions con-

n

cerning the underlying as's.

Take for example an exact representation of bg within 00 = 5.02 and moving

averages over circular disks with half opening angle a. = 0.56 outside. This corres-
(0)

ponds roughly to V x V blocks outside. The q are seen not to exceed 0.0001

for n > 12. This enables us to compute an error bound which is independent of the

hylxuthcsis (5.8). From (5. 7) follows:
(0 R2 (0)22 R22

2(AN(1) )= R "2 Z (q ) 2 (Ag) 5" O.•001 E a 2(Ag)n>12 n G 2 n> 12 n
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From (5. 10) follows now

a(N(0)) R 0.0001 O .2m (5.13)
12 G

Under the hypothesis (5.8) evea a smaller error can be estimated: a(AN 1(0) 0.006 m.

Truncating further ac 17.99 and using moving averages based on 0l1 = 1.4

outsicý- (roughly 2.5P X 2.5° - blocks) produces an error not larger than .11 m. This

again independent of hypothesis (5.8). This error would be obtained if all the power

of Ag above degree 12 was concentrated at n = 13: a2 (Ag) = 1042. This is certainly
13

unrealistic. Under hypothesis (5.8) the estimate

cFA(12)=: 0. 0 2 m (5.14)
holds.

Truncating further at 0 2 = 31.58 and using a2 = 2.8 moving averages out-

side (roughly 50 x 50 - block averages) gives a total error

(2) (.5
o(AN12) -- C. 05m (5.15)

Hypothesis (5.8) has been used thereby.

5.3 Vening Meinesz's integral

Again we split according to (5. 1) and assume that the contribution due to the

harmonics up to and including n = 12 can be taken care of otherwise. If truncation

takes place at the zeros of St 1 2 (cos $), then the thcory of Appendix B, section B. 6,

tells us that the variance of the resulting error in

v () - radSt (5.16)

is given by
2 (i) 0 n(n+l) (qi) 2  (5.17)

a(v12) 2 n>1 n~+)(~) 2~G n 12

(i)
See equ. (1T 671). The q n are those of the previous section.
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Table 5-1

The i) below are
ic i given in units of 10"6.

If the n-ooluma shows0 5.02 0.56 an interval rather than1 17.99 1.4 a numberthen the
2 31.58 2.8 extremum values within

this interval are listed.

n q(O) q(l) q(2)

13 91 523 1905
14 90 446 1314

15 88 361 739

16 85 274 251

17 82 189 -100
18 79 110 -290
19 75 42 -328

20 70 -13 -250

21 66 -52 -108
22 60 -75 42

23 55 -82 151

24 49 -75 193

25 44 -57 165
26 38 -30 85

27 32 1 -15

28 26 32 -98
29 20 60 -138

30 14 82 -120

31- 35 -13 100 226

36- 40 -33 -91 -218

41- 50 -44 -118 -254

51-- 79 -4? 74 -142
76-100 34 64 98

101-150 -28 -59 -64

151-200 24 44 44
201-300 18 20 20

3n1-%00 12 11 1126



The overall variance of the deflection of the vertical is given by

2 (v) = -_ E n(n+l) a 2 (Ag) (5.18)
G 2 n--2 (n- I) 2  n

under the hypothesis (5.8) this leads to

0(v) = 7.9" (5.19)

The residual deflections v 12 have standard deviation obtainable by summing in

(5. 18) only over n > 12. This gives

a (v 1 2 ) = 6.9" (5.20)

The truncation procedures outlined in the previous section pron.uce errors which can

be estimated in the following way.

a 0 =0.56(0)

40 - 5.02, a0 0.56 U(Av 12O < 0.03" (without hypothesis (5.8))

0.013" (under hypothesis (5.8))

17.99, o1 = 1.4 Cr(AV1l )) 0.02" (under hypothesis (5.8))

31.58, av2 =2.8 :T(Av(2) 0.03" (under hypothesis (5.8))ý2 1

83 45.29, q3 = 5.6 u(Av(3)- 0.07" (under hypothesis (5.8))
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6. A COMPUTATIONAL TEST

I am fully aware that any proposea numerical approach toward a mathematical

problem should be thoroughly checked by test calculations. Unfortunately, time did

not permit to do this on a large scale for the present study. In order to give some

idea how the proposed methods can be converted into computer programs I shall deal

in the following with bicubic spline interpolation and with the G -integral. We assume

a plane grid which is quadratic and where the spacing between the lines is unity. We

do not bother about a realistic scaling of the model. Let the grid consist of N2 points.

Assume the functions hij and Ag,, be defined for the grid points by

N I ikl .) sin(jk_ )6
hij k=I i+ 2 j + 3k N N

N IC sn Ik . k rgN si Z sin(- sin( 'i 2) (6.2)
k=1 kl + 2 .5j+ 4k N N

After this data generation we proceed to the bicubic spline interpolation. Let us out-

line this for hij. The procedure for 6gij is completely analogous. Compute ac-

cording (A. 7)

S= - (2-V3) • -. 268

Now according (A. 16) to (A. 19) compute with P = 6

6
mE (hi+k,j. hi-k,j) i = 7,..., N-6k=l -j N (6.3)

nij= - 3E a (hi -j+k hi, j-R) i= ,..., NS= 1 (6 .4 )

= 7,..., N-6

6 f
-ij 3 Z oy(m j+R m j) i 7,..., N-6

C = I j 7,j - (6.5)
j= 7, ... , N-6

A check could be made by using
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6 kPj 3 F- 3y k(ni +k, j - ni -k,) i =7,., N-6(6)
k = i = 7,..., N-6 (6.6)

If the agreement with (6.5) should not he satisfactory, then a P larger than 6 has

to be chosen. In our test p = 6 was sufficient. Now h i can be interpolated for any

one of the meshes i < x < i+1, j < y s j+l within thesubgrid i 7, N - 7,

j=7 ..... , N-7. The formulas are

3 0(i,j)
h(x,y) Z a (X -k,

(6.7)
i x < i+1
i <y <j+I

Th (i,j )
Thea k, t are computed with the aid of (A. 13) to (A. 15). One can pre-compute the

a(i'j) for as many meshes as storage allows. They can always be computed from thek, C

hij' mij, nij , pi1 j which do not require that much storage (one-fourth).

Turning now toward the Gl- integral take a plane approximation to formulas

(1.3) and (3.18):

G 1 (X,y) S [h((,y)-h(xy)]j(xy) di5 dV (6.8)
21' 2 2 2 [(x.R)2 + (y_ý)213/2

(x-3Y) +(y-7) • R

GiI~)=1 1

2 2 2

(x - .)2 + (y - )2 P 2

lap-~.,- (h(7,3F)-h(x,y ) Ag(Rj )] dy" -

- --21T [h(3F,7)-h(x,y)] Ag(3F,T)dC(•',7') (6.9)

C(tverting twcrything to polar coordinates centered at x,y gives:

29



R 2wT

Gt(xy)=A f t(x+r cosa, y+r sina)-h(x,y)]

r=0 a=O

.Ag(x + r cosa, y + r sinj) k'd dot (6.10)

r 2

P 2fr
G1 (xy) 2" [ ] ,

r=O a=O 
y + r sina

dr da

2 i
S"L ~Eh(x + r coso, y + r sinot) - h(x,y)]

a 0

Ag(x+r cosa, y+r sinct)id (6.11)

I have used the following procedure for the evaluation of the integrals. In (6. 10) the

integration with respect to ax has been carried out first using the trapezoidal rule.

(The trapezoidal rule is advantageous for periodic functions.) Integration takes place

for a certain set of discrete r-values. Afterwards the trapezoidal rule has been

applied to integrate over r. Values for h and ig have been computed from spline

formulas throughout. (TMs has only been done for checking purposes. Later on we

will use a less complicated procedure for the more distant areas .) The first integral

in (6. 11) has been treated similarly. The expression involving the Laplacian has been

expanded as:

laPx.V [(h(5',37)-h(x,y) ) Ag(-,y--)]- = [h(3',T)-h(x,y)] lap Ag(Vi)

+ Ag(7,7) lap h(7,7) + 2 (grad h(7,7), grad Ag(Yy) (6.12)

The various derivatives have been computed from the spline interpolation formulas.

(Note that the bicubic spline has continuous second derivatives.) The second integral

in (6. 11) has also been approximated with the aid of the trapezoidal rule.

For N=21 we took x=ll, y=1l, o=.8, R=3.9. The result was
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G (11,) 0.1525

For checking purposes we also took p=. 5 . The result was then

G 101.11) -L 0.1510

The various stepsizes for the numerical integration were

for r!p : Ar= - a 2 i=
84 r/Ar

k- R - p

for r >p: zk =const. 1 .3 k" k 1,...,8, const t 1.3 8- 1

0.3

= 2 1T/32
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APPENDIX A: Some Aspects of Spline Interpolation

It is not our intention to give a systematic account of spline interpolation. Books

like Ahlberg et al. (1967) may be consulted for a thorough discussion. The idea be-

hind spline interpolation and some of its advantages shall be outlined. Formulas and

methods used in the main portion of this report shall be documented.

A. 1 The Cubic Spline

Let us start with a sequence of n equidistant abscissa's xi, i=1, ... ,n on

the x-axis of a two-dimensional coordinate system. Let the distance x i+ 1 -xi be

denoted by h. Let function values yi be prescribed for each xi . The old problem

of interpolating these discrete function values can be solved in many ways. One way

is interpolation by fitting a polynomial of degree n- 1 through the n points. This

can be done e.g. using a polynomial pi(x) of degree n-1 having the properties

ik(xj) = 1 for i=j and pi(xj) = 0 otherwise. Analytical expression for these

polynomials are found tn-ider "Lagrange interpolation" in any relevant textbook. The

interpolating polynomn. .1 is then given by

n
pWx YiPi(X) (A.I1)

i--1

An advantage is the analyticity of the resulting expression which is infinitely

differentiable. A disadvantage is the following. A chapge (an error) in one of the y's

causes considerable changes (errors) over most of the whole range. This is immed-

iately seen from equation (A. 1). A change Ayi0 in yi. causes a change in p(x)

which is given by

Ap(x) = Ayi pio (x) (A.2)

This may not be too bad as far as only function values are concerned. The

dcanges may be much larger for the derivatives. An extremely opposite approach

would be piecewise linear interpolation. The interpolated function is then between

and x given by the straight line.
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(x) x - xi +1 +x xi (A. 3)
-xi+l Xi+l. Xi

A change in Y, causes now only changes in xi. x < x i + I and no further

reverberations. A disadvantage is evident from the fact that the function is not con-

tinuousiy differentiable over the entire range.

Spline interpolation tries to compromise between these two extremes. The

interpolating functioi; is assumed to be a polynomial of odd degree k in each of the

intervals xi <- x <- xi + 1 . However, these polynomials vary froir: interval to inter-

val. The continuity of the function as well as of its first k-I derivatives is required

throughout, i.e. also for the abscisses xj, i=l, .. .,n. Certain boundary conditions

for x I, x. may be prescribed in order to make the problem unique. This interpolat-

ing function s(x ) is then (k- I) times continuously differentiable and, as we shall

see later, a change in one of the yi causes changes in s(x) which are heavily damp-

ened for larger distances x - :i"

We discuss here only the case k=3 which is kiown under the label "cubic

spline ". (See Ahlberg et al section 2. 1). We have to choose some parameters which

characterize the polynomials in each interval. Let these parameters be s(xi) =yi

and s'(xi) =mi, say. This is a meaningful choice since s(x) and s'(xi) are

the same for the two intervals xi -1 _ x _ xi and xi s x • xi+ 1 . Besides that,

the four quantities yi, mi, yi + 1, mi + 1 determine the fourparanteters of a cubic polynomial

in x I x < xi + I completely. The continuity requirement fo-r *he second derivative

at points x 2 , x 3 , ... X n- I leads to the following set of equations.

+ mi-I + + (yi+ I - yi_ 1) i=2,...,n-I (A.4)
- m_.. +' 2m1  2h1

A detailed derivation of this equation is given in the above stated refer,-nce.

However, the principle of now these equations are derived should be clear. The two

polynomials in xi_I < x - xi and xi _ x • xi+, are linearly expressed in terms

of Yi-l Yi' Yi+l; mi- 1 ' mi, mi+l and then the second derivatives at x xi are

equated.
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Since there are in (A. 4) n-2 independent equations for n unknowns, two more

independent conditions are needed. They are chosen involving only the 'boundary

values" i I and rn m .mn• However we shall not elaborate on this.

Having chosen these additional conditions in some way the quantities mi can

be solved for which leads tn expressions like

n ýnn ( n0)yj (A.5)

h i= 1

It is now important that, as it is rigorously proved in Ahlberg et al (1967),

section 2.4, for n - - and i -. % n-i - -, (i.e. for a large number of points and i

far enough from the boundary) the coefficients aý- tend toward a limit otj-i which

depends only on j-i and equals

-fiJi for j-i>0

j = 0 for j-i=0 (A.6)
j + ai-j for j-i < 0

where

a = -(2- T'3) % -0.268 (A.7)

Since a < 1 we see that only values y. at x. in the neighborhood of xi

contribute significantly toward mi, mi +1 and therefore to the polynomial the

interval xi - x ! xi+l-

(A.5), (A.6), (A.7) may be comprised w

= - E a j (Yi +j " Yi-j )(A. 8)

j=1

The summation limit P is chosen in a way that a0  is sufficiently small. In the pract-

ical applications of cubic splines within this report we found that in view of the limited

accuracy of the data (i.e. heights, gravity anomalies) a value of p = 6 was sufficient.
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A. 2 The Bi-Cubic Sp1ne

For a function depending on two variables a generalization is necessary. A use-

ful approach is to assume that function values zij are prescribed for each point

(x., y. ) of a rectangular grid. For simplicity we assume in the discussion here that

the spacings xi + 1-xI and y + I'Yj are equal and equal to h.

One can proceed in the following way. Cubic splines sj(x) are computed

interpolating the given z1 j for fixed j. Then for a fixed x a cubic spline s(x,y)

viewed as a function of y is computed interpolating the sj(x ) values. lu that way

for each x,y an interpolated value, namely, s(x,y ) is obtained. In this procedure

the role of x and y (or i and j ) may be interchanged and, surprisingly, the re-

sult is the same, at least for a certain class of boundary conditions. The resulting

function s(x,y) is a bi-cubic polynomial in each quadrangle xi : x • xi+,, Yi :

Y !ý Yi+1, ie.

s3x0y) k X x(')xx )9 x. x i
S(XY 7, ak, R(- Y-j(.9

k,k =0 Yj :5Y !g Yj

s(x,y ) is together with its first and second derivatives continuous over the entire

range. One way to compute the at(i,j) is the following. Perform an ordinary spline

interpolation along the lines y = yj, x =x.. Obtain from that according to section

A. 2 the values

m a s -x j (A. 10)
ij b X x =xi

n j s (xiy) (A. 11)
n ij - Y I Y =yi

Perform an ordinary spline interpolation of mij for fixed i and obtain from that

Ss(x'Y)
Pij -(A. 12)

S x 3y f x=xi, y=yi (
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The same result would be obtained if a spline interpolation on nij for fixed j was

performed. Now compute the matrix aij from the formulas

a A = T(h) K(i.j) A(h) (A.13)

witl

1 0 -3/h 2  2/h3
o 1 -2/h 1/h2

A(h) = (A. 14)

0 0 3/h2 -2/h0

0 0 -1/h 1/02

and

zi,j nj i,j+l ni, j+ "

K 41j) m i, j Pi, j mi, j+i Pi, j +i A 5
K' = (A.15s)

zi+l, j n i+il Zi+l,j+l n+,,,j+,

mi+~i Pi+i,j m i+l,j+i Pi+l,j+l

These formulas are found in DeBoor (1962) and have also been used in Davis

and Kontis (1970).

It is clear that boundary conditions influence the values mij, nij, Pij and
(ij)therefore a U . However, this influence is nearly zero if from now on we assume

that the grid is very large and the quadrangle is at a sufficient distance from the

boundary. In that case the quantitives mii, nIi, PiU can be in agreement with sec-

tion (A. 1) and can be computed from

- 3 ak(zi+k, z (A.16)
mi = h k=1 i-k,j

3 9 1
ni- h - a (z zi'- ") (A. 17)

3 P
Pi j = " 2 a, (mipi-q- mi-j-) (A. 18)
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or alternatively

3 a (ni+k, j-n ik, jPij h k=1 A 9

This, together with (A. 13) to (A. 15) was the set of formulas used in this

report. Generalizations to grids with unequal spacings are possible. However, one

can use the equal spacing formulas also for an originally unequally spaced grid, or

even for a curvi-linear grid applying to some curved surface. The derived interpola-

tion polynomial (A. 9) has only to be interpreted properly. We illustrate ttis in the

case of the unit sphere with a 0, X coordinate system. Let the grid be formed of

0, X lines at distances of, let's say, 10. This grid is not plane nor is it equally

spaced. Let zij nevertheless refer to the grid points and derive the polynomial

(A. 9) by using the set of formulas (A. 10) - (A. 15) with h equal to it/180 (arc

length of one degree at the equator). Let s(9,X) be this polynomial where %,X (arc

lengths) replace formally x,y:

0ii) k .2 0i+1
s(8,a) = R a )(0"i)k(X-0d (A.20)

k=0 R =0 Xj X. Xj+1

There is nothing against evaluating s(0,X) for any 4X value not coinciding with a grid

point from this formula. Also derivatives with respect to e,X can be evaluated by

formally differentiating (A.20). These derivatives can be used in various vector

analytical expressions like e.g.

1) 1
Lap s(O,X) = "s( + 6s(O,X) cot e + sin26

- 6 0 2 ;O 2 sin219

(A.21)
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APFENDIX B: Isotropic Integral-Operators With Truncated Kernel Functions

B. I Introduction

Let r be the unit sphere andlet the unit vectors t,1 be points on r. A function

K( tn ) is called a kernel function since it may occur in an integral transformation

g(O = SK(Q,7?)f(n)dr(n) (8.1)

r

If K(ý,n7) depends only on the distance between tn or, equivalently, only

on the inner product

cos = - (8.2)

then K(Q, 77) will be written as K(Qn) or K(cos 0) and will be called an isotropic

kernel. It is known that the spherical harmonics SnmQ() are the eigen functions of

such integral transformations:

JK(Q'tj) Snm(77) dF(7) = XnSnm(C) (8.3)

F
with +1

Xn = 2i7ft K(t)Pn(t)dt (B.4)
-1

Pn(t) is the Legendre polynomial. (B. 3) together with (B. 4) is called

Funk-Hecke formula in MUller (1966). If the spherical harmonics expansions of

f(O) and g(ý) are

f(n) = I fmSn(•) g(t) = E gnmSnm
n, mm nm

Then (B. 1) can be replaced by

gnm = X n fJm (.4a)

This follows immediately from (B. 1), (B.3). Truncation of an integral transforma-

tion (B. 3) means that in the formula

g() = fK(t.n)f(?)dr(n) (8.5)
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the integration is carried out only over some (usually circular) cap around g. Let

C = C(t, 00O) denote a circular cap centered at t and having spherical radius 0"

Then instead of (B. 5) we have

-= SK(")f(,n)dr(7?) (3.6)

C

Introducing the truncated kernel

K(ý.jj) for cos 0
S(.) = (B.7)

0 for . < cos 0

the equation (B.7) can also be written as

= K (g-77) f(7) d r (7)

r

This shows that K7 7-ri) is also an isotropic operator, hence according to the Funk-

H'ecke formula

S K•-(7')Snm(77)dr(j7) = XnSnm(t) (B.8)
F

#1_ --

Xn = 21 K(t)Pn(t)dt (B.9)
-L.

The error function

Ag(Q) = g(O) - ((B) 1.0)

is then given by

AgQg)= 5 K(Q. 1)f(7)dF(77) = AK. 17))f(17)dF(7) (8.11)

r-C r

with
whAK(.)= K(Q-1) - K(t.77) (B3.12)

Its cigen values are

A)-n = >-n in
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with
+1 COS #b

AX), = 21 AK(t)Pn(t)dt = 2, t f K(t) %(t)dt (B. 13)
-1 -1

In case of Stokes' operator, i.e.

K( = 1... StQ(-*)
4it

with Stokes' function defined by

St( ) = 2n+l
n-Q77 E PnQ-77) (B. 14)

n=2 n- nB14

the A•X are given by Qn where Q n are the Molodensky coefficients

Cos •0

Qn= St(t) Pn(t) dt (B.15)
-I

The usual method to evaluate these coefficients is based on Molodei!..y et al

(1962) and is designed to yield Q n = Q n(O% ) for fixed n and all 0 0. In section B3-3

we shall give a recursion formula which will yield Q n('O0) for fixed 00 and theoret-

ically all n.

We shall also deal with the following question: Is there a way to decrease the

truncation error by truncating not abruptly at @0 but continuously over an integral

4b I lb !!< 0 . In that case we would put

I(cos 0) = K(cos @) 0 g <

K(cos 4) = 0 @0 < s<

and we would choose K (cos @) somehow in the interval @ 1 s -r. •0 so that

K (cos 0 ) or, equivalently, AK(cos @) has some desirable properties like continuity

or continuous differentiability.

It is known that generally the Legendre coefficients decrease more rapidly
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to zero as n goes to infinity if the relevant function is smooth. Therefore ,XnP the

eigen values of the error kernel

A K(cos 0) = K(cos4,) - K(cos*) (B.16)

can be expected to taper off more quickly. This is for example seen from

+1
AXn = 2vf S AK(t) Pn(t ) dt = AK(t.77) P,, dr(q)

-l r

by Green's theorem (2.5) for n Ž1:

-1

Lap AK(F "7) Lap Pn(Q-.) dr (ri) =
7? 77

r

1 5Lap AK(ý.?1) Pn(.-77) dF (71)
n(n+l) F

If AK is two times differentiable so that the surface-Laplacean Lap AK

exists and is squared integrable, then it follows from the Schwarz inequality that

AXn n(n+ 1) (Lap 7AK(Q' 77))2 d2(r) \ (Pn d"r(17

'~ r

Thus, since the integral involving Pn is 0(_,_-)

AX = 0( ^1 ) (B.17)

In section (1.4) we shall deal with this questioi. more systematically. One of

the necessary preparations will be m compute the surface Laplacean for certain fre-

quently used kernel functions K(. 17 ).

B.2 The Surface Laplacean of Some Kernel Functions

If K(Q. 77) is an isotropic kernel function, we are interested in the quantity
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which denotes the surface Laplacepn with respect to 77. (Because of the complete sym-

metry of the problem the Laplacean with respect to ý would give the same result.)

If we put

?= (sin e cos X, sin 0 sin X, cos X)T

and if F(e,X) denotes a function on r, depending now on polar distance angle e

and longitude X, then the Laplacean may be computed from

1 (3.18)
Lap F(e, X) = Fee + Fe cot 0 + FA sin12 (B.

In our application we assume the north pole of the 9,X system in P. K(P .- 1) may

then be written as K(cos 0) and is independent of X. Thus

LapK(Q.7) = Lap K(cos 0) = Ke + Ke cot 0 (B.19)

B.2-1 The Kernel I/I(Q-n). Let I(Q.Ž7) denote the distance between E.7,

i.e. with .77 = cos qp

= 2sin (B. 20)

Straight forward differentiation according WD (B. 19) and (B. 20) with e = B yields

the result

Lap 1 1 + 1 (B..21)

B. 2-2 The Kernel 1( -. 7). In an analogous manner we obtain

1 3 f (,,.-) (8. 22)
Lap7 Q(F.7) C I -7) 4

424
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B.2-3 The Kernel 20n(2/1(Q.y7)). The result for this kernel is simply

Lap17 (20n 2 ) (B.23)

B. 2-4 Stokes' Function. The Laplacean of Stokes' function

St(cos 0) ) 1 6sin -L + I-bcos
sin -2

2

- 3 cos ib On(sin At + sin2 (.L)) (B.24)2 2

could also be obtained by direct differentiation. It is more elegant perhaps to use an

alternative method which utilizes the spherical harmonics expansion (B. 14). Since

Lap 7 Pn(•.*1) = -n(n+l) Pn(Q.i) (B.25)

it is tempting to perform the Laplacean termwise in (3. 14). This is, however, not

feasible since the resulting series does not even converge. We proceed therefore in the

following way. Call temporarily

M10 P0 (,'- 7 ) " PI('- 77) = OED P 7) (B.26)
9Q( q7 ) n=2

and ( Meissl (197 1b, equ. (6.50)),

)= 2 3 = 2n+lg~7 22n" PI(Q" 7) = E" (B.27)

1(Q.7) n=2 n(n+l)

Now form the function

St(9- 7 - 2f(t. 77 ) - 3g(t.•1)

9 2n+1 2n +1n=4 1 n977 Pn(t'17)

n= 2 (n+I)n(n+l) Pn( ' Z4n + n=2 (n-1)(n+)n(n+l)

.... (8.28)
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which may be verified taking into account the spherical harmonics expansions of the

involved functions. The idea behind (B.28) is that the Laplacean can be applied term-

wise on the right-hand side while the left-hand side causes no problems in view of

(B. 2 1) and (B. 23). Performing the necessary elementary manipulations one arrives

finally at

2
L-Pp St(§- 77) 3(2.- 2 St(g'77) + 2 PO(0.Q7) + 9 P1 ('7) (B.29)

Remark: The procedure can easily be extended to residual Stokes' kernel functions

which are obtained after eliminating from St( §. 17) spherical harmonics up to and in-

cluding degree N. Call

N 2n+l co 2 n+ 1
StN(?77) = St(", 7) - - Pn(tr7) = E Pn-1 P (t1) (8.30)

n=2 n-I n=N+1 n- 1

Then (B. 29) generalizes to

2 N 2
Lap StN(§-77)= - 2 StN(t.r + Z (2n +5n+ 2 )Pn(t'?# (B.31)S• (g.?1) n=0

B. 3 Truncation at a Certain Angl €0"

In this section we concentrate on the error kernel AK(§. 17) defined in (B. 16)

having eigen values AX n according to (B. 13):

+X1 Cos 00
An = 21r AK(t) P (t) dt = 2v f K(t) Pn(t)dt (8.32)

-1 -l

If the truncated kernel is applied to a function f(P ) ( fnm (fnm - spherical

harmonics coefficients) then the resulting error Ag(ý) -Agnm is given by

Ag(t) = f AK(Q-if(n)d " (i7) (B.33)
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or in view of (B.4a) by

1nm =AX f (B. 34)

We shall now compute the AX 's for some kernels:

B.3-1. The Kerne l/2(•.1): From (B.20)and (B.32) wegetwith cos (00) to

because of sin 2== - COs ?2
2 2

Axn =f~.T Pý(t) dt (.3 5)

Write t0

bn Pn (t)d t (B.36)

Then
AXn 7• =• bn (B.36a)

We derive now a recursion formula for bn. First, for n = 0, 1 one computes

in an elementary way

b0 - 2 V1 - to + 2\,F2

2 ~(B. 37)2 /I-to) 3_ . 2 V B.7
bl- = 2 \/t•-tO + V

1 3 3

For n>2 we replace Pn(t) by

2n-1 n-iPnt)-nt P l(t) - "--P 2t
n-I n n-2t

cf. Abramowitz-Stegun (1964), formula (8.5.3). Inserting into (B.36) yields
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to

_ 2n- t P,._ (t)dt nI b
bn n • t- n bn.-2

-l

to
2n-ln V t Pn_,(t) dt + 2 n-Ib b.2

n - n n

Applying partial integration and using

+1

SP(t) dt 2n+ (Pn+l(t 0 ) - Pn l(t0))
-1

(cf. Lense (1954), p. 17) we get

Pn-2 (to) -Pn (to) --•. . b n)b

b=n\/I7 t- (b -b) + 2 n-ln n 0 2n n n-2n nI
1 2n-1b

n n 2

solving for bn yields

1 3P (t) - P(t) n- n--T
nn V I to + 2 bn- -n bn. 2  (B.38)

2l+ 2 2
2

This is the desired recurrence relation. bn could be replaced by AXn using (B.36a)

B.3-2 ThbeKernel I/23(q.¢). For this kernel we have

to I
AX = L x 3 P1n(t) dt (B.39)

-1

Writing
AX' = • -4~ Cn (B.40)

n V2

wi th to

,'11 7 P n ( t ) d t (B. 441)
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One derives in an analogous way the recurrence relations

Co 2 V2

2 (B.42)
c 2 TI 2'V to - 3V\[

c Pn'2t0 PPn (to) + 2c -c (8.43)
(n - n-i n-2

2 VT-to

B. 3-3 Stokes' Kernel. V e take a slightly different approach and write the equation
(B.32) in the form

AXn = r st(7.7t) PQ(.t/) dr (7/)

F-C

F- C is the complementary area after removal of a cap with spherical radiu,- 0b from
the unit sphere F. Next we apply Green's second formula and obtain for n 1 0

I-- C
AX La •tst(Pr.n) LapnV('/d t/

r- c

+ St(Q.1t)(Grad (Lap n()-), u-(77)dO (t/

u- apI Pn(Q'7)(Grad/ St(.- 77), tI))dp (77)

/ is the boundary of r-C and v is the unit normal to the boundary, tangen-tial to F and outward of r- C (inward C). Choosing a 0, X coordinate system with
pole in ., substituting in the line integrals t =-cos 6, noting LaplP ( Q'77)=
P(n ?"), introducing to.- cos •0' and veri-ying

(Grad F(F.y,), v(77)) =- - dcoss2 + AZ dF V I 2)
dt
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leads to
1

Axn - n(n+l) S Lap, 7St(§-n) Pn( - ) dr(n)

P-C

2 t dln(t) I ()t2
n(n+l) dt t=t0

S2 1 d St(d '7) 2 (t (1 B244a)
+ 0(n +- dt tt(. n4 0 )0

Denoting the derivatives with respect to t by dashes using 0(.29) for Lap St

gives

2 1 2

n n(n+1) 3(,.? Pn(')dr() n(n+l) s St(g'*P(/)dr(l)
r-c F-C

n(n+l) 1 P (ý-n)dr(n)- 9 P (§.(7)P+(1) dr+(7)
r-c F-C

2wr St(t) PI (t) 2) + 2LT) St I(t 2) (B.44)
n(n+l) 0 )(1 P o) )

Using the results of section B.3-2 and equation 0(.44) leads t,)

V-ir 2 4w to
Axn. n(n+l) + nZn+l)(n+l) I- Pn(t)dt

tot=

18ir f 0 ~ )d 27r_ St(to pi~O 1 2 •

n(n+l) fl n(n+ 1) 0 n 0
t=- I

2w I 2

-Sn(n+l) (t 0 ) Pn(t 0 )(0 - to)

Icplaciiig AX by the Molodensky coefficients Qn according to

AXn = 2 7rQn 0(.45)
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and solving for Qn gives finally

1 1
n -72 n(n+l)- 2 'n

1 1 (2mo1
nrl -12m2+ Sm +2) Pm(t) Pn(t) dt (B.46)

m=O -

I St(t 0 ) P (to) (1- t2) + 1  St t) Pn (I - t 2 )n(n+l) -2 n t)(1-t n(n+l)- 2 (0 .(o

This is the desired formula. (It holds also for StN(g-*1) instead of St(C.p$

if the summation over m is extended to N.) See (B. 30) , (B.31). Formula (B.46)

is recuisive insofar as the cn are the result of the recursion (B.42) - 0(.43). The

two integrals involving Pn(t) may be computed from the general formula

t•t p(t 0 ) P(t 0 ) - P (t 0 ) P, (to)n for n m 0.47)
n(n+l) - m(m+l)

This formila follows from

+1
Pm(t) Pn(t)dt P ( -77)Pn(• r#dr(17)

after application of Green's second formula. It holds for m # n, i.e. it may be used

for n > 2 in 03.46) for n = 0, 1 elementary integrations are performed. The deriva-

tive P%(to) is obtained from

p'(t n -t p (t)

(tn -nt 2 (nt "n_ (t )0.48)

(Lense (1954), p. 16) or a similar formula. The derivative of Stokes' function is in a

direct way computed from 0(.24) observing

St'(t) = d St(cos ,)) -1 cos4¢ = t 0(.49)

dzk sin i
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B. 4 Modified Truncation Procedures. Repeating formula (B.44a) for a general

kernel K(.77) we get:

Z ln - n(n+l) £ Lap K('-?PPn(t'7))dr(77) "

P-C

2 2 22 I
2)(1- t 0 )K(t 0 )P (t ) + (1-t0) K-(t0) P(to) (B.I50)n(n+1) 0n 0 n(n+l)

One sees that the first and also the third term on the right-hand side taper off like an

0(--) as n -- -, whereas the second term which contains Pn(t0 ) does not necessarily
nn

in view of (B.48). It is, therefore, natural to try to modify the kernel K(cos () in

a way that K(t 0 ) vanishes. This can be accomplished by simply subtracting

k 0 = K(to) (B.51)

The effect on the original integral

g(99 = SKQ47)f(77) d r (17) (B. 52)

r

is independent of ý and therefore constant. For

g() = f (K(Q.nt) - k 0 )f(1 7) d r(,7) = g() - y 0  (B3.53)
r

with

= ko I f(•q)d r(q) = 4wrk0T (0.54)

f denotes the mean value of f(f) over r.

In most applications a constant error in g(t) does not matter at all. In Stokes'

formula for example the harmonic of degree zero is eliminated. The scale of the com-

putcd geoid has to be obtained from other sources. Therefore a constant error is with-

out concern. It is, however, important that the truncation angle 40 is the same

everywhere.
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If K(t) happens to have a zero at t = t 0 , then no subtraction is necessary.

DeWitte (1966) found small truncation errors at the zeros of Stokes' functiou. The

theoretical reason for this is clear by now. It is, however, also clear that the error

at any other truncation angle is to a large extent a constant over all of r if k0 is

subtxacted prior to truncation.

One can, of course, also try to modify the kernel K(cos 0 in a way that also

the derivative at the angle of truncation vanishes. Let this angle be again denoted by

0" Then K(cos 4,) will be modified in 1 0 0 so that

Kqcos 4) = K(cos 4), 4 01

K(cos 0) = 0, 0 200

In 01 t5, 0 <O K(cos 4,) will be chosen in a way that K(cos.4) is twice

differentiable in 0 p !• ir. The error kernel is then

AK(cos 4)= 0 , 4,• ! I

AK(cos 0 = K(cos 0), 4, > Ž0

and AK(cos (p) twice differentiable in 0 < 4, f f.

The question is now, how to choose K or AK within the interval. Since the

eigen values of the error kernel are now by (.3 SO) .

Ax = ni1) f Lap 77AK ( F-t) P n (gt))d r'?7

r ~(B. 55)
+ 1_ 2 r

nnl ' Lap AK(t)Pn(t )dt,
n (n +l7)

-I

it will be beneficial if the Laplacian of AK is as small as possible. Since the

Laplacian depends on the second and first derivative it may be good strategy to try

to make these derivatives small.
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We view the kernel AK as a function of t = cos •. With to = cos ( tO = cos (PI#

we take a piecewise quadratic polynomial AK(t) in t 0  t < t1 such that

AK(to) = K(to) , AK 1(to) = K (t 0 )

(B.56)

AK(t1 ) = 0 , AKI(td) = 0

miid AK (t) is a polynomial of degree 2 in each of the intervals to ! t < t*,
1* t -- t 1" '* will be chosen so that AK11 is of equal modulus (but opposite

sign) in the two intervals. Of course AK(t ) and AK (t) shall be continuous at

t =t*.

We do not write down the explicit set of formulas which is completely elementary.

It may only be mentioned that t* may coincide with t 1 which appears desirable since

then one of the discontinuities of the second derivative of AK(t) disappears. This

special case may for given to, tI be obtained by adding a constant to AK(t). Adding

a constant to AK(t ) amounts to adding one tD K(t ) which is of not much concern as

we have seen earlier.

More sophisticated kernel - modifications can be cýnceived. For example the

second and third derivatives of the truncated kernel (or, equivalently, of the error

kernel) could also be made continuous. This, however, will not be done here.
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B.-5 Truncation of Vening-Memnesz - Typ Integrals . We perform the surface

gradient of (13. 1), i.e. of

g(9) = SK(Q.7) f(7) dr (7) (B.59)

r

and obtain by differentiating under the integral sign

w(ý) = Grade(g) = J'GradK(t.n)f(n) d r (r) (B.60)

If K(cos 4)) has a pole of order less than two with respect to 4) (as for example

Stokes' kernel) then (B.60) is still valid. The integralis, however, singular if the order

of the pole is greater or equal to 1.

There are two ways of truncating (B. 60). Let C denote a spherical cap around

Swith half opening angle 4b0 One can truncate (B. 59):

= f K(t.T7)f(7l)dr(n) (B.61)

and then differentiate

ýv()= Grad.•(g) =

SGrad tK( 9-7) f(77)d r(77) +

+ If K(ý 'r7) a (ý,7) f(77) d • C (7) (B.62)
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where a(g, Ti) denotes a unit vector, tangential to r in the point t and being in the

plane spanned by t and 7. Formula (B.62) is the result of the differentiation of a

parameter integral where the parameter g occurs also in the domain.

Let Xn denote the eigen values of the truncated kernel. Cf. (B.8-9). Then

(B. 61) may be written

M = i snmn(t)= E. X f s M) (B.64)
npm n, ml n nrn nm

From (B. 60) follows then

'(D) = E gnmGrad Snr,() n f(nif Grad S n(Q) (B.65)
n, m n, m

This means that m = X f are the coefficients of %(g) with respect to the system
inm n nm

Grad S nm(). This system is orthogonal. Cf. Meissl (1971), section 2. It is, how-

ever, not normalized, even if the Snm are. If the Snm are normalized in the usual

way, then the mean square norm of j(t) is given by

fkail 2 = 2 (•)dF(r ) = 414 E j2 = 4v E ( nfnm)2  (B.66)

r n,m n,m

and that of VvQ) is given by

2V = ((), f(iv )))dr() = 4w E n(n+l)(n f n)2 (B.67)

r n, m

This is more fully explained in the stated reference.

Because of the linearity structure the above discusrion carries immediately

over to the truncation errors.

Let AXX denote the eigen-values of the error kernel as in (3. 13). Then
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Ag(Q) Ag s (Z = X nf SS () (B.64a)
n,m n nm n,m

Aw(t) = E Ag Grad Snm(.) = Z AXn fnm Grad Snm(t) (B.65a)
nm, m i n, m

116g11 2 =' Y 2 (ý) d r' (o) = 4i1' E Z =41T; E (A~f ) (B. 66a)

r n,m nm n,m n

n, m n I m
r11 AWN 2 = f (Aw(t), Aw(t))d r(o) = 4• 9E n(n +1) (AXn fn.) 2 (B. 67a)

r n, m

The relationship (B. 65) is quite simple and offers an easy dicussion of the trun-

cation errors. The usual truncation of the Vening-Meinesz integral is, however, not

based on (B.62), but rather on

w(Q) = GradeK(.nf) d r(?) (B. 68)

De Witte (1966) has noted this difference. He used associated Legendre-functions

to deal with formula (B.68). In our treatment here a quite simple analytical expression

for the difference between (B. 68) and (B. 62) is at hand:

^Q() ==•) - j KQ-7) a(t,t)f(7)da Cg() (7.69)

This shows for the first that the difference vanishes if K(cos 4) happens to have

zero at :-=. 4 . This is quite apparent from the graphs in De Witte (1966), though he
0

was seemingly unaware of the simple relationship between the two different truncation

procedures.

We ,,i, of course, enforce a zero of the kernel at 00 by simply subtracting

the constant k0 = K(cos 40) as in the discussion around (B.51). The effect of this is

a constant in (B. 59) and zero in 03.60). A beneficial effect is noted if the formulas

are truncated. As we have shown, the AnXi.e. the eigen values of the error kernel
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taper off more quickly. Moreover, the two quantities ^( §) and %(C) coincide. This

shows that the truncation ; can be considered as favorable too, at least for the higher

harmonics. Equation (B. 67a) shows that the higher harmonic contribution to b=

Aw is in the same dampened by the factor A X as in the case of Ag.

LI we deal with Stokes and Vening-Meinesz formulas then some constant factors

enter the discussion. For we have

Stokes: N(P) 4-&G f St(§ "-)Ag(,q) d r (I) (B.70)
4w G

Vening-Meinesz:

v(Q) = - " Grad St(§.¢/) Ag(?7) d P(,j) (B.71)

These factors are easily taken care of.

Summarizing we may say the following: Adding the constant - St(cos 0 ) to

Stokes' kernel causes a constant added to the undulation N() which is of no concern

since the geoid has to be scaled later on anyway. The added constant drops out completely

in the Vening-Meinesz formula. If the formulas are truncated at 00 , then the higher

harmonics of the truncation error are favorably dampened. Moreover the usual trunca-

tion of the Vening-Meinesz formula yields exactly the slope of the geoid computed from

the truncated kernel St(Q. 77) - St(cos p0).

If the Stokes' kernel is truncated over an interval 0 1 !5 yo so that the

derivative at y = V0 also vanishes, then the same can be said. The dampening effect

may be a little more favorable. The error discussion of the Vening-Meinesz formula

can be based on the various quantities A )n as they are discussed in sections B.4, B.5.

B. 6 SmoothinKA the Integrand in the Outer Zones. Up to now we have been treating

the case where the integrand is completely neglected outside a certain area. In this

scction wc discuss a refinement in the sense that the integrand is not replaced by zero

Niti rather hy a smoothed version like a moving average over a certain area.
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Let us start with formula (B. 1) which we write now as

g(O)(F) = SK( 0)(-.7 f(0)(?))d r(t) (B. 72)

r

Assume truncation (in some way) at an angle 40" Denote by K i()(.7) the truncated

kernel and by AK(O(.Q)'" the error-or residual kernel. Then:

K(O)(t-i)= K(O)(Q.7) + AK(O)(9.n) (B.73)

The error is then

Ag = ( AK(0)( f(O)(1)d r(n) (B.74)

or according to section B. 1:

g n0 mu f(0 (8.75)

with
(0) (0)

= AK(t).7 ) Pn ( '?1 ) de (77) (B.76)
r

The shape of the error kernel depends on the philosophy of the truncation

procedure. Confer sections B. 3 to B.4.

Let us account for the truncation error by computing the correction term (B. 74).

If we do this by using f(O)(t) in its original form then of course no truncation error

remains. We could have used the non-truncated kernel in the first place. The point

is, however, that in the correction formula (B.74) a simplified version of f(O)(Q) may

be used. Let us use f(l)(t) instead of f(O)(t) in (B. 74) and call

Af(O)(-) = f(O)(0) - f(l)(9) (B.77)

then a residual error of

Ag))= 'AK (0)(7) Af(0)(7) d F (17) (B.78)

r
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remains. The spherical harmonics of this error can be computed by

Ag(1) = AX(0) Af(0) (B.79)
nm nm

Assume that f(l)(0) is the result of the application of an isotropic smoothing

operator toward f()). If p (0) are the eigen values of this smoothing operator,

then we have

f (0) f (0) (O3.80)nm -n n

and cons--uently

Axf(°) =(1z-# f(0)) f (0) = '4P(o) f (0) (8.81)
nm n nm n nm

so that (B.79) becomes

g() X (0) (0) f(O))Ag -A A•(o (B.(o
nm n n nm

The A X(0) generally taper off with increasing n (though they may oscillate
n

while doing this). From a certain n on they will be negligible under any circum-

stances. It is therefore desirable to have small AP(0) for moderatelylargen. This
n

means one should have P (0) close w I for moderately large n. One way is to put

P(O) = 1 for certain n •nn, and P"" = 0 for n >no. This amounts to a replacement
n n 0

of f (0 ) by its spherical harmonic expansion f(1)) truncated at n = nO.

More common is another smoothed version; namely, averages over certain block

areas. A theoretical discussion of this is somewhat complicated since this smoothing

operator is; 1) not isotropic ar~d 2) applied only at discrete locations (which may be

taken at the mid points of the blocks). Easier is a discussion based on moving averages

over circular caps of half opening angle &O. FBr error consideration it is justifiable

to replace the block averages by moving averages over circular caps of comparable

size,

The cigen values g(O) of these operators are found in Meissl (1971), equ. (3.14a),
n

(3. 14b), See a!so Pellinen (1966). We use the above cited formula (3. 14a):
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~(O) 1
0 (t)d t (B.83)

cos a0

For moderate large a. and n we may replace P (t) by its Taylor-linearization at
n

t =1:
P M = I _ n(n+l) + o((1-t)2)
n- 2

This leads in a straight-forward way to

0)= 1- ) (n (+1 cos o) + 0((1 - cos k:)2) (B.85)

n 4

Neglecting the 0-term we have

•(0) • -n(n+l)(I - Cos O) (B3. 86)
n 4 a0

For the purpose of error estimates this formula may be used as long as
16(o) - 0.80, say.

n

Formula (B. 72) is now replaced by

g (0() =Z 0 K()(ý'77) f (0)(77) d r' (t7)=

- £K( 0o)(77) f(°)(7) d r (n) +

F

+ f AK (0) . t) f(l)(7 ) d F (77) + QgO)( ) (B .87)

F

withl

( = SAK( 0)( .,) Af(0 )(n) d r (t) (B.88)

The following notaf:ons have been adopted
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0 () .... original kernel

R)(•.7) .... truncated kernel

AK(°)( •. ) .... residual kernel: K(O)( .) 00)(-.7)

f(O)(Q) .... original function

f(l)(>) .... smoothed version of function

Af (0) ( Fý ) .... residual f(O)( ) - f(1)( )

It is considered that the first two terms on the right-hand side in (B. 87) are

computed. The third term g(g I() iepresents the error term (B.88) which in spher-

ical harmonics representation is given by (B.82).

One can, however, go a step further and try to truncate AKM(0)t7) again further
outside outsideAK(0)(7) =AR(0) 7) + AKlI)(g77) 

(B.89)

The contribution of AK( 1 )().- 7 ) could be taken into account but only after replacing

f ) by a still heavier smoothed version f(2)( ).

There is no need for a detailed discussion of the further procedure which could go

on '.nd on, replacing f(O)(" ) by smoother and smoother versions in a succession of

concentric zones. We shall restrict us here the following remarks:

(1): If truncation over an interval is used, then there is an overlapping of

neighboring zones. This does not matter if it is properly taken care of.

(2): One should avoid adding constants toward the AK() kernels before trun-

cation as it has in some cases been done for the original kernel K 0(. t7). This would

make the kernels non-zero also in zones farther inside. If AK(J) happens to have a

zcro at a location which is suitable for truncation then truncation is advantageous in

the same way as it was for a zero of K(cos 0). Kernels from which the harmonic

components up to degree N have been removed have at least N + I zeros. (Meissl

(1971)). These zeros are natural locations for truncation, or for a transition to a

heavier smoothed version fO + 1)( F) of fM(J)), respectively.
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APPENDIX C: Regularization of a Type M-lntegral

What we call a type M-integral looks like

g(W) = 3 _(1,4 d r (7) (C. 1)

It is singular and we require that

ýOM 0 = 0 (C.2)

and also that ý(Q, 77) is twice continuously differentiable throughout.

Examples arc

g(•) = " dr(n) (C.3)

or

g(Q) = f() - A( h(77) d F(7 7 ) (C.4)

The latter is the correction term in the first order solution of Molodensky's problem.

Therefore the name "tvpe-M" has been chosen.

The regularization procedure will be based on Green's second formula. Only

a cap C will be considered since for larger distances the integral tapers off quickly.

There the original form may be used. Complete truncation at a certain distance is

also feasible in most applications.

The contribution of a spherical cap C centered at • and having half-opening

angle 0 0 to a type-M integral is

= (P("'7) d r (7) (C.5)gc( = '3 (gn

C 7

Fo rmula (B.2 1) alhkws us to rewrite this as
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g cQ)=g l (O)+g 2(g) = t Lap77  R( 1)p

C

- p 7(7) d(dF( 77) (C.6)
C4 R-77)

The second integral, i.e. that one for g2 (Q) is already regular. In some ap-

plications it may even be omitted since after multiplication by R" 1 it is negligible

in the so-called planar approximation. See Moritz (1969).

Before we apply Green's second formula toward g2 ( Q) we exclude a small cap

C1 around ý of half opening angle 4'1. We have then

SQ~) Lap, 1 7p(g,77)d r( 7 )I1g = S a.•gn

C -C 1

j Lap 7(t, 7) d r (7) +

C-C1

I

+ f (,n) (Grad -, v( 77))diC(7 ) -

77 R(Q.7
2)C

- I (Grad17 q(p 77), v(77) )d21C (77)

3 Cf Q77)_ • 1

-p 77 qi(G rad.7 i(ý.77), v1( 7 7))d~iCl(j7) +

+ (Grad4,(ý,77 ), v (7) ) Cd C( 7 7) (C.7)

C 7

CI

v(ti) is (outward) normal to the boundary of C and so is v,1(7) to the boundary
of C. If we let C I contract toward the point ý then it may be shown that the last

iwo integrals vanish because of the assumptions regarding V(Q, 77). The third integral

on the right-hand side may be combined with the first one. This is possible since
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f (ý.1) is constant and equal to R (cos 0) in the third integral, so that Gauss' inte-

gral theorem may be applied. We get then

9~ ~ (F = I - ILap,/ ýp(, 7) dFr(17)

SCff Q '.7) 2(cos o0)c

os T - f (p 7?) d a 1- .17) (C.-8)
2 (cos c

Use has also been made of

(Grad . , 2 (c.9)

In a local 0, ot system, the formula for g, would read

0 2 { I c-- - I Lap •o(, 0 sin 0 do dot

0~=0 a=O

= 2"cos(cos - _ _ (Cos 2)

R (cos 00) 4 f '(o•O, a) dot (C. 10)

This completes the regularization of the M-type integral for a cpherical cap.
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APPENDIX D: Regularization of the Vening-Meinesz Formula

We transform the Vening-Meinesz formula in a way that the resulting

integrals are no longer singular. We deal thereby only with the contribution of a cir-

cular cap C around the point ý in which the deflection is t be computed. The hali-

opening angle of this cap shall be 00. For the more remote zones the original form

of Vening-Meinesz formula is of greater advantage since the kernel tapers off quickly

with increasing distance.

The contribution of this cap to the Vening-Meinesz formula is

- 1 j GradýSt(-?) Ag(7) d r (17) (D. l)Vc(• 4 i" G
C

The singularity in the Vening-Meinesz formula stems from the term 1/sin in

Stokes' kernel (B.24). This term a'so equals 2/(Q.77). If we split therefore

2 + R(F.77 ) (D.2)

then the contribution of R( -•7) leads to a regular integral

v 2 ý Grad t R( -. 17) Axg(i ) d r (77) (D. 3)v2 (E:) = 4 j•GD3
C

The contribution of 2/f(Q.7) has w be dealt with further:

vl(•) 21 -Q.£ Grad 1 g() d r (17) (D.4)

C

If this is done in a satisfactory way, then

v c() = v I ) + v2Q) (D. 5)

WM need now some vector analytical preparations. Call o(F,, J) a unit vector

which is tangential to F in the point F and is contained in the plane spanned by g
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and 77. In other words, o(F ,77) is orthogonal to t and coplanar with g and 77.

Call r (ý, 77) the vector t x aQ(, 7). We view a(Q, l) as a vector which is im-

bedded in 3-space. Then the operators Grad% and Lap77 can be applied to each cf

the three components. The following can be verified (cos ip = §.77)

Grad 17( ,r/) = sin T (P , 7 ) r(, 77 )T (D.6)

77 sin 2

We do not give a detailed derivation of these formulas. Chapter 6 in Meissl

(1971a)deals more extensively with the underlying concepts.

Performing the differentiation in (D. 4) gives

vC(a) = o . ( A, )zAg(11) d r (7 )
2 rr) G Jsin2

C

Hence by (D. 7)

vl() -2-GI • jLap77 a(, 7 7 )Ag( 7 7)dF( 77 ) +
C

S 1 - cos 3+ lcs3-•a(,77)Ag',n)dr(r7)

2rCG sin2 b

= vii(I ) + V12 (ý) , say. (D.8)

v l2(F) is already regular. The intE-grand is even bounded. We apply Green's

second formula (component-wise) toward vll(Q) and obtain:
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= 11M a(•, )Lap6g(i 7)dr(77 ) -
2rG

C

G oa(, 1) (Grad Ag(17), v(1) ) d bC(17 ) +21r G
73C

+ f Ag(t7) (Grad cy,7) v.(17) )d ýC (7)
2ffG 77

a C

The last integral vanishes because of (D.6) and the orthogonality of 7(9, 77) and V(77).

Summarizing we have the following:

Vc(g) 0 1 j a(g,,T7 )LapAg(i7 )dr( 7 7 ) -
27TG

C

1 Y__ c(g, 77) (Grad &g(77), P?(7) ))daC(77) +
2rG

2C

- I'1 -rd cos )Ag77d( 7 )(D

+--I I - 23 ag 7 g1)dr(7
24G S sGn2

C

1 Grad RQ-1rl) Ag(77) d r(77) (D. 9)

C

In the literature, the Vening-Meinesz formula is usually written in a local

6, a coordinate system. In this notation (D.9) reads as:
ý0 2 ir

V 2ffGc cos Lap Ag(o, ot)sin 0 do dot
_=o r=0

2ff
sin 04 r Cos O gO9 dot +

2ITG \sin / 0
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+o 2 1-cos 3  
C ( )a

2-- I S sinsin o t 9g(0,a) s d * dot•-0 =0 or- 0b\i

+ 5 2 ,R(cos Ot) cos
4 TG aC=0 90,sin a

S.... (D. 9a)

In the main portion of trhs report the Vening-Meinesz formula occurs in (1.2)
Ag(67) has then to be replaced by Ag(t) plus some correction terms.

67



APPENDIX E : Regularizing a Correction Term in the

Deflection - Formula.

We shall be concerned with the following term contributing

toward the deflection formula (1.2) :

q(ý) =4 2 (h(q)-h(j)) 2 Grad 1 Ag(q) d r(q)

Grad T(E.2)Using
d 1=- 3 00oer o (•,•1 (E.2)

sin •(• • sin4siand

we may write the cap contribution of (E.1) as :

q ) 12 f[(h(q'-h(S)) 2 Agj) Lp j. a(pI7)J dr(q)
4R TRG Csiy

S3(il- Cos 5 V)
C

I 1, ,• [(h(q)-h(•)) 2 / 3(1-)]

- = 2 5 (f 0 ) d()
sin42jin

= ql(j) + q2 (A) , say. (E.4)

q 2(9) is already regular. Toward ql(j) Greens second

formula will be applied yielding
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q1R2 q f L(aq Ip,[(h(q)-h(f))2ZAg(q)] dr(q)

4-T •G sinC

Grad, [(()-() 2 gq

~~~7~~ d, CruLuI q)~uSJA(

2irR G CsinCO fr K¶t)d ()

.. 4 (E.5)

For the last term (D.6) has been used. The applicability

of Greens second formula has to be justified in the usual

way (letting another small cap contract toward I ).

The first term in (E.5) contains still a singular integral.

WVe have:

Lap,[(h(q)-h(g)) 2 Ag(?)] = 2 IGrad h() 12Ag(q) plus

terms containing (h(q)-h(S)) as a factor. (E.6)

The terms containing (h(q)-h(J)) as a factor cause no

singularity problem. However the term 21Grad h(q)1 2 does.

There is, however, no need for further regularization.The

term

• 1 Grad h(r 12 Ag(v) dr(r) (E.7)
2ri- G sin 4

can be combined with

I- _ j Grad (Grad h(q)12Ag(q) dr(q) (E.8)

C

in a way that the singularity cancels. (E.8) is contributing
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to the first term of the deflection formula (1.2). To see

this consider the cap contribution of (1.2), split St(j)

acccrding to (D.2) and note the definition of G2 (A) in (1.4).

The result of combining (E.7) and (E.8) is

, 1 J• i - co3 a ( 1,•) iGrad h(q) 12Ag(q) dr(q)2 1R 2G S Simi Y
C

•.. (E.9)

which is now regular.

The result of this somewhat involved regularizaeion procedure

is summarized in section 3.5.4.
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