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ABSTRACT 

This report is a continuation of a previous OSU report, "Kinematical Geodesy" 

(1967).  Part A gives basic principles and the theoretical foundations for the separation 

of gravitation and inertia by a combined accelerometer-gradiometer system, with 

applications to aerial gravimetry and to inertial navigation.  In Fart B, proposed 

methods for the geodetic use of second-order gradients are briefly described and 

evaluated.  The new technique of least-squares collocation avoids the shortcomings of 

those methods.   The application of this technique to the use of gradients for the deter- 

mination of the gravity field and of spherical harmonics is investigated. 
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FOREWORD 

This report was prepared by Helmut Moritz, Professor, Technische Hochschule 

Graz, and Adjunct Professor, Department of Geodetic Science of The Ohio State 

University, under Air Force Contract No. F19628-69-C-0127, OSURF Project No. 2758, 

Project Supervisor, UrhoA. Uotila, Professor, Department of Geodetic Science.   The 

contract covering this research is administered by the Air Force Cambridge Research 

Laboratories, Air Force Systems Command, Laurence G. Hanscom Field, Bedford, 

Massachusetts, with Mr. Owen W. Williams and Mr. Bela Szabo, Project Scientists. 
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KINEMATICAL GEODESY II 

Introduction 

In an earlier report (Morite, 1967) we h_ve investigated theoretical questions 

related to the use of moving instruments for the measurement of elements of the 

gravitational field, such as airborne gravimeters or gradiometers.  The main problem 

is the separation of gravitation and inertia, the extraction of the gravitational "signal" 

form the inertial "noise".  We have seen that such a separation is rigorously possible 

for the second and higher derivatives of the potential, but not ior the gravity vector 

itself.  In the latter case, in aerial gravimetry, one is, therefore, obliged to reduce 

the effect of inertial noise as much as possible by using some statistical filtering.   The 

fact that a statistical separation of gravitation and inertia can never be perfect, is 

mainly responsible for the fact that the accuracy of aerial gravimetry is considerably 

inferior to the sensitivity of the instruments themselves. 

In Part A of the present report we shall describe the principles of a rigorous 

separation of gravitation and inertia for the gravity vector itself.   This can be done 

by simultaneous!}' measuring the first and second derivatives, that is, by combinhig 

a gravimeter, or accelerometer, with a gradiometer. 

In (Moritz, 1967) we have also studied how measured second-order gradients 

can be used in geodesy.   We have seen that geodetically important quantities, such as 

deflections of the vertical or geoidal heights, can be derived from these measurements 

either by line integration (somewhat similar as in astrogeodetic leveling) or by global 

integration, using formulas analogous to Stokes' integral. 

Unfortunately, such integral formulas have severe shortcomings, which make 

their practical application hardly feasible: 

1. Second-order gradients are much more irregular than gravity anomalies, 

so that interpolation is difficult. 

2. For a Stokes'-type formula global coverage would be necessary. 
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3. The available information is very incompletely used, because only one 

of the five independent components of the second-order gradient tensor enters into 

a Stokes'-type integral formula. 

4. It is impossible to combine second-order gradients with other data such 

as first-order gradients or gravity anomalies, in a simple and well defined way, and 

to adjust for measuring errors. 

Since the first report on Kinematical Geodesy was written, however, a least- 

squares method for estimating the terrestrial gravity field (least-squares collocation) 

was developed (Krarup, 1968, 1969; Moritz, 1970a), which avoids these shortcomings 

and permits the optimal use of heterogeneous data for the determination of the earth's 

figure and its gravity field. 

In Part B of the present report we shall first discuss proposed methods for 

the geodetic use of gradients and then apply least-squares collocation to the determina- 

tion of the gravitational field from measured gradients.   This includes also the 

determination of spherical harmonics by satellite gradiometry. 
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PART   A 

SEPARATION OF GRAVITATION AND INERTIA. 

1.   First and Second Order Gradients 

Let the gravitational potential of the earth be denoted by V.   Then tb; first 

partial derivatives, or first-order gradients,   V   = dV/bx etc.  form a vector 

(1-1) 

which is the vector of gravitational force on a unit mass. 

Adding to V the potential of centrifugal force of the earth's rotation, we get 

the gravity potential W.  The vector 

g    = + centrifugal force (1-2) 

is the gravity vector. Since the centrifugal force is given by a simple analytical expres- 

sion and can be considered as known, the determination of gravitation (1-1) is equivalent 

to the determination of gravity (1-2). 

We have 

Wv    =   g cos a, 

Wy   »   g cos ß , 

Wz   =   g cos y , 

(1-3) 

where 

g =     ^/w^+W 2 2 1 + W (1-4) 
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is gravity and  cos oe, cos /?, cos y are the direction cosines defining the direction of the 

vertical or plumb line. 

The measurement of the vector (1-2) thus consists in the determination of g 

and of the direction of the plumb line.  Gravity g is measured by gravimetry.   The 

terrestrial technique for determining the direction of the vertical is to define it by 

means of a spirit level and to refer it to a global rectangular coordinate system by 

means of astronomical observations (latitude and longitude). 

If the z-axis is made to coincide with the normal to the reference ellipsoid and 

if the x and y axes are suitably oriented, then, obviously, 

* g 
(1-5) 

are nothing else than the components of me deflection oi the vt Meal.   Such an orientation 

of the coordinate system can always be achieved by a coordinate transformation so that 

deflections of the vertical can be computed from first-order gradients. 

In aerial measurements, the direction of the coordinate axes is maintained by 

gyroscopic stabilization, and the three components of the gravity vector can be measured 

by three accelerometers.   The accelerometer output will be affected by inertial disturb- 

ances, which must be removed as much as possible by statistical filtering. 

The best-known technique falling under this general principle is aerial gravi- 

metry, where the vertical component of the gravity vector is measured by a gravimeter 

ox a vertical accelerometer, which is basically the same; cf. (Szabo and Anthony, 1971). 

For a suggestion for determining deflections of the vertical by a similar principle cf. 

(Bradley, 1970). 

9 9 The second-order derivatives, or second-order gradients,   V     =3 V/5xJ 

etc. form a symmetric matrix or tensor 

V V xx      xy 

V V yx       yy 

V V 
zx       zy 

xz 

yz 

zz 

(1-6) 
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This tensor contains five independent quantities: because of symmetry we have 

Vyx    "    V V*x   =   Vxz'       Vzy   =   Vyz' (W) 

and in free space, Laplace's equation 

V       +   V       +   V       =0 (1-8) 
xx yy zz 

holds, so mat the  9 components of the tensor (1-6) must satisfy 4 conditions. 

Instruments measuring second-order gradients are called gradiometers.  A 

stationary instrument of this kind is the well-known torsion balance, cf. (Mueller, 1964); 

for recent developments in airborne and satellite-borne instruments cf. (Anthony, 1971), 

(Forward, 1971), (Savet, 1970), (Trageser, 1970). 

One of the most interesting features of gradiometer measurements is that sec- 

ond-order gradients measured by moving instruments are purely gravitational, inerüal 

disturbances having no effect on them provided the coordinate axes are gyroscopically 

stabilized.   For an investigation of this problem, covering also the general-relativistic 

aspects, see (Moritz, 1967). 

Anomalous Gradients. - It is convenient to approximate the gravity potential 

W by a given simple function U, called normal gravity potential and representing the 

gravity potential of an equipotential ellipsoid (Heiskanen and Moritz, 1967, sec. 2-13). 

The difference 

T = W - U (1-9) 

is called disturbing potential, or anomalous potential.    It is a harmonic function out- 

side the earth, since the centrifugal part in W and U   are equal and, therefore, cancel 

in (1-9).   For the same reason we may also write 

T = V - V   , (1-10) 
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denoting by V Jie earth's gravitational potential and by V the normal gravitational 

potential, which is the normal gravity potential U minus the potential of the centrif- 

ugal force. 

We may form first and second order gradients of the normal potential U 

(or \T, respectively), and subtract them from the measured gradients.  In this way 

we obtain the anomalous gradients 

and 

lxx 

yx 

zx 

T *xy T 

T 
yy 

T yz 

T 
zy 

T zz 
« 

(1-11) 

If the position P(x,y,z) of the measuring instrument is determined with res- 

pect to the center of the earth, then U and its derivatives can be determined at the 

observation point F itself, so that the quantities (1-11) can be directly formed.   This 

is, at least approximately, the case in satellite gradiometry where die satellite position 

is determined by tracking, and in aerial gradiometry if position is determined by inertial 

navigation connected to points whose geocentric position is known. 

If, on the other hand, the vertical position of the aircraft is determined by 

measuring the height above ground, then it is more appropriate to consider the normal 

gradients as referring to a point Q which is situated on the plumb line of P and whose 

normal potential U is the same as the actual potential W of P, that is,   UL = Wp . 

See (Heiskanen and Moritz, 1967, pp. 245-246, figure 6-3).   Consider, for instance, 

the second vertical gradient W     , letting the z-axis coincide with the vertical through 

P.  Then 

TzZ
=Wzz<P> - Uzz<P>» (1-12) 

whereas now we rather compute a quantity 

T'   - W„„(P) zz zz* Uz*«> (1-13) 
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The difference between the two quantities is 

Tzz " Tzz  - Uzz<P> ' Uzz<Q> 'm Mszz Np   . d"14) 

where 

Np = PQ 

is the vertical separation of geop and spherop at P; cf. Fig. 6-3, loc. cit. 

For an estimate, assume a spherical normal earth.  Then 

kM ..    _       kM „ 6kM 
r U=  _   ,      Ur « -      -   •      Urrr ~ A     ' 

where k is the gravitational constant,   M is mass of the earth, and r is the radius 

vector.   Near the surface of the earth we have approximately 

r = R = 6371 km, 

• kM      _        _,„..     , 
U      =  —r ■ G =   980 gals , 

I R 

6G     . 
|Uzzz| = |Urrr|   =   ^   =   1.5 x Hf7 mgal/m2 , 

so that, for N_ =  100 m , 

T*     -T    I   =   1.5 x 10"5mgal/m  = 0.15Eötvös. zz        zz ■ ö 

Since   100 m is a maximum value for N_, this difference is well below the expected 

aerial measuring accuracy of about  1 Eötvös .   Differences in other second-order grad- 

ients are even much less because of the near-spherical symmetry. 

| Thus we may probably safely put 

T     = T   , . . . , T      = T (1-15) *XX XX* '    zz       ~zz 



in most cases. 

As for the first-order gradients, the fact just mentioned affects vertical grad- 

ients and is responsible for the distinction between gravity anomaly and gravity disturb- 

ance and for the use of the former in aerial gravimetry.  This, however, is well known 

and need not be discussed here, cf. (Heiskanen and Moritz, 1967, pp. 245-246). 

Transformation of Gradients. - Let an orthogonal coordinate transformation be- 

tween two rectangular coordinate systems xyz and £T£ be given by 

"x" Y X 

y *   A V 9 ri 

z r r 

=    AJ (1-16) 

LZJ 

where A is an orthogonal matrix and A    is its transpose.  Then the first-order grad- 

ients transform like 

L'cJ 

=    A 0-17) 

and the second-order gradients transform like 

hi lin '« 
Tn6 Tm Trt 
Ta  T!to   Tcc 

= A 

*xx 

zx 

For a derivation cf. (Moritz, 1967, sec. 1.5). 

xy 

VX yy 

zy 

xz 

yz 

zz 

(1-18) 

Let us now consider spherical polar coordinates  r(radius vector), 9 (polar dis- 

tance), and X (longitude).   They are related to rectangular coordinates xyz by 
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x = r sin Q cos \ , 

y = r sin 9 sin X , 

z  = r cos 9 . 

(1-19) 

Here the z-axis is the axis of rotation of the earth, and the x-axis passes through the 

Greenwich meridian; the origin is at the earth's center of mass. 

Together with this global system xyz, let us introduce a local rectangular 

coordinate system £*?C as follows.   The origin is at the point P whose coordinates 

are x, y, z or r, 6, X .   The £ -axis coincides with the radius vector, the £ -axis 

points north, the r\-axis points east. 

The first-order gradients in this system are given by 

dT 
rae =   -—   T r   *e ' 

T    =      bT        =-i—  T 
r}       r sin 0dX     r sin 8    X  ' 

(1-20) 

T     = 
dr =   T 

The relation between the derivatives with respect to x,y,z and to r, 9,X is 

found as follows.  By the usual rules of partial differentiation we have 

T    =Tx    +Ty    +Tz 
r        x   r        y 'r        z   r 

and similar for T   and T  .   The derivatives x   etc. are obtained from (1-19), for 
9 A r 

instance 

x    =   sin 9 cos X . 
r 
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In this way we find 

T    = T  sin 9 cos X + T sin 9 sin X + T cos 9, r        x y z 

TA - T rcos9co8X+ T rcos9sinX-   T rsin9, 
9        x y z 

Tx   = -Trsin9sinX + Trsin9cosX  . X        x y 

(1-21) 

Substitution into (1-20) gives 

L'CJ 

= A 

with 

AT = 

- cos 9 cosX 

- sinX 

- cos 9 sinX 

cosX 

sin 9 

0 

sin 9 cos X sin 9 sin X cos 9 

(1-22) 

which determines the transformation matrix A. 

The first derivatives with respect to r, 9, X are expressed in terms of 

rectangular gradients by 

T„   = r sin 9 T 

(1-23) 
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For the second derivatives we have 

Trr =   TK • 

=   rsin0T „ + sine T   , 

2 
=   r   T.» - rTr   , 

2 
=   - r  sin 6 TV    + r cos 0 T   , 

2     2 2 
=   r sin   0T     + r sine cos 9 TV - r sin   8T„ 

r9 

r\ 

lee 
lex 
lxx 

(1-24) 

These equations are readily derived by differentiating equations (1-21) with regard 

to r, 6, X, using 

T      =Tx+Ty+Tz,   etc., xr xx r xy'r xz r ' ' 

and expressing the derivatives with respect to x, y, z by the derivatives with respect to 

i, r\t £ by means of (1-17) and (1-18) with (1-22). 

Conversely we have 

TU = ? Tee + T Tr 

l*n 

V€C 

r sin e    *ex 
.     cos 9       „, 

7"   Tr9 +72 T9 ' 

T      =   __ _  T     +   T    + -4- cot9T 
VI       r^sin29       XX        r      r       ^9 

(1-25) 

1 
T\ . TiC        rsin9    *rX       rzsin9   *X 

CC rr 
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These relations are found by solving (1-24) with respect to Tf    etc. and substituting 

(1-20). 

The dominant terms in (1-24) and (1-25) are the first terms on the right-hand 

side.  The following terms, representing effects of first-order gradients, are usually 

below   1 Eö'tvös.   For instance, take the second term on the right-hand side of the 

first equation of (1-25).   For r = 6371 km and T   = 100 mgals it amounts to 

~T    =    *0° "*al       = 0.016 mgal/km 
r    r       6371 km * 

=   0.16 Eötvös . 

We have given these formulas for later reference.   The meaning of the 

coordinate systems introduced is as follows.   The system xyz is customarily used 

as global coordinate system in geodesy.   The gradients referred to this system can 

be measured if the inertial platform carrying the accelerometer or gradiometer is 

made to maintain a fixed orientation in inertial space, the direction of the instrument 

axes coinciding with the directions of the xyz axes. 

Usually, however, the instrument axes are made to slowly rotate in such a 

way as to always coincide with the normal to the reference ellipsoid, the tangent 

to the ellipsoidal parallel, respectively.   For the quantities of the anomalous gravity 

field, such as the disturbing potential, gravity anomalies, deflections of the vertical, 

or anomalous gradients, the spherical approximation may be used, which consists in 

neglecting the flattening in ellipsoidal formulas so that formally spherical formulas 

are obtained.   Loosely speaking we may say that the reference ellipsoid is formally 

replaced by a sphere (Heiskanen and Moritz, 1967, sec. 2-14).   Then spherical 

coordinates  r, 8, \ may be conveniently used; and the instrument axes coincide with 

the axes £, T?, C as defined above. 

For a summary of relevant aspects of inertial navigation cf. (Schultz and 

Winokur, 1969, pp. 4892-5). 
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Relations Between First and Second Order Gradients. - From the second 

derivatives it is possible to obtain the first derivatives by an integration along the 

flight path.   For instance, 

+     /   (V    dx + V   dy + V 
J XX XV    ' X V    =   (V ) J    ,■     - .       ■  „ x x o J       xx xy xz 

Po 

dz) (1-26) 

Here (V )    refers to an initial point along the flight path, and V   refers to a current 
X o X 

point P.   K the flight path is given as a function of the time t: 

x =   x(t),      y =   y(t),      z  =   z(t), (1-27) 

then 

dx  =   idt,   etc., 

the dot denoting differentiation with respect to time, and we obtain 

P 
(V   x + \ 

xy 

r 
V    =   (V )    +     f  (V    x + V    y +  V    z)dt, 

x x o J       xx xy xz 

V    = (V ) y'- +    / (V   x + V   y  + V    z)dt , o J       yx yy' yz   ' (1-28) 

V    =   (V )    +    f   (V    x + V   y + V    z )dt  . z        *  z'o        J    y  zx zy7 zz   ' 
Po 

In order to apply these formulas, it is necessary to know the flight path as a 

function of time.   In the next section we shall see how this can be achieved using a 

combined accelerometer-gradiometer system. 
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2.  Separation of Gravitation and Inertia by 

Using a Combined Accelerometer-Gradiometer System 

Assume that all first-order and all second-order gradients are simultanously 

measured in an airplane, the instrument axes, now denoted by Xj, x2» Xg, being inert- 

ially stabilized in such a way as to maintain a fixed orientation in space. 

In this case, the second-order gradient tensor measured is purely gravitational, 

the inertial part being zero (Moritz, 1967, p. 28); it is, therefore, given by (1-6).   The 

measured first-order gradient vector, however, is not (1-1) because it is affected by 

inertial disturbances. 

By equation (67) of (Moritz, 1967) we L^^e 

3V   ^   f* 
ox; i (wik"jk + Vxj +V (2-1) 

Here all subscripts i,j,k assume values   1,2,3; the Einstein summation convention is used. 

The vector f.    is the total measured force; b^ is the inertial disturbance, the second 

time derivative of the position vector b*  of the origin of the local frame,   hi the present 

case, the vector b,  consists of the three coordinates of the aircraft (more precisely, 

of the center of mass of the measuring instrument) in a fixed coordinate system.   The 

tensor w., describes the rotation of the local frame with respect to the fixed coordinate 

system; since we have assumed inertial stabilization,  w^ is zero. 

Thus (2-1) reduces to 

av 
sq ■ fr+ (2-2) 

Let us put for the gravitational gradients 

axj * Vj, a2v 
axjaxj 

= v, 
ij 

(2-3) 
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and for the measured force, 

f     =   F.   . 
i l 

(2-4) 

Furthermore, let us introduce the velocity components 

b.  =u. (2-5) 

Then (2-2) becomes 

v. = Fi + m (2-6) 

On the other hand,  V. may be obtained by integration of V.. .  In our new no- 

tation, (1-28) is written concisely as 

P 
Vi=<Vo+/  Vjdt      , (2-7) 

since the coordinates of the aircraft,  b^,  have been denoted by x,y,z in section 1. 

On introducing the velocity components (2-5) and denoting the times correspond- 

ing to positions  P0 and P by t   and t, eq. (2-7) becomes 

V,   = '•   = (V.)    +   f V.. udt i       l  i'o       J    ij   j        * (2-8) 

Eliminating Vj between (2-6) and (2-8) we have 

t 
Fi +"i  = <Vo +  /Vijujdt' (2-9) 

and differentiation with respect to t results in 

ii.   - V.u.  + F.    =   0, (2-10) 
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which is a second-order linear differential equation, or rather a system of linear 

differential equations, for the velocity u.. 

To get a clear picture of the basic equation (2-10), we shall write it explicitly: 

«X   "    <VXXUX+  W   +VXZU2>+PX     "    °. 

\ " <Vx + Vy + V«) + ^y = °» <2"n) 

"2  "  (Vzx^x + V^Uy + V22uz) + Fz   =0, 

where uv, u , u_   are the velocity components and F , F,, F     are the components of 
A     y     z x     y     z 

the measured force. 

The quantities F.  and V.. being given by measurement, eq. (2-10) may be solved 

by the usual numerical methods, for instance by a Runge-Kutta procedure, to get u.. 

This integration may be performed in real time. 

In this way we have indeed effected a separation between gravitation and 

inertia: 

The gravitational first-order gradient V., free from inertial noise, is obtained 

from (2-6) or, alternatively, from (2-8). 

The inertial acceleration, free from gravitational disturbances, is obtained 

as 

bj  = u4 . (2-12) 

It may be twice integrated with respect to time to give the position vector b.  in a global 

Cartesian coordinate system. Alternatively we have simply 

t 
bi = tyo +   / Uidt * (2"13) 
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Thus our combined accelerometer-gradiometer system acts at the same time 

as a purely gravitational gravimeter and a true inertial navigation system mat is not 

affected by the gravitational field. 

Additional Remarks. - In order to make the basic concepts transparent, we 

have introduced two simplifications which can, however, easily be taken into account. 

First, with current gravimeter (or accelerometer) and gradiometer systems, 

the force Fj or the quantities Vji are not the direct output when they are functions of 

time.   In fact, the instruments may be considered as linear oscillating systems, for 

which the output is obtained as a linear operation on the input (Fj or Vij): 

0  =   L0 , (2-14) 

where $ is the output and (p is the force Fj or gradient Vjj to be measured.   If the linear 

operator can be inverted, then <p is obtained as 

<p = L*   0   . (2-15) 

The form of the operators L and L     is characteristic of the measuring system under 

consideration. 

Secondly, we have already mentioned in sec. 1 that the directions of the 

instrument axes, instead of being kept fixed, may be rotated in a prescribed way such 

that, for instance, one axis always coincides with the normal to the reference ellipsoid. 

Then the rotation tensor Wjj, instead of being zero, will be given, so that its effect 

can be fully taken into account using formulas such as (2-1).   For a special case cf. 

(Hansen, 1971). 

Finally we remark briefly on the relation of the present separation of 

gravitation and inertia to the principle of equivalence of these forces.  As we have seen 

in (Moritz, 1967, p. 56), it is in fact impossible to separate gravitation and inertia as 

long as the force acting at a point only is considered.  As soon as we have a region in 

space, even an arbitrarily small one, however, such a separation becomes feasible. 
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In the present case, we are given the force along a line.  This fact by itself 

is not yet sufficient for a sepai 'tion, which becomes only possible through the additional 

measurement of the second-oider gradients. 

Here we have restricted ourselves to an approach through classical mechanics 

because analyses such as that in (Moritz, 1967) show that, to an extremely high accuracy, 

it gives the same result as the more rigorous but also more complicated approach 

through the General Theory of Relativity. 

The Observational Data. -  The measuring system under consideration gives as 

output the second-order gradient tensor 

"1 

xx 

yx 

zx 

xy 

yy 

zy 

xz 

yz 

zz 

(2-16) 

the first-order gradient vector 

y 

V J 

(2-17) 

and even the potential V: by integrating 

dV =   V dx +   V dy +   V dz 
x y z 

we get 

=   V0+    /"(Vu+Vu+Vujdz, 
°        J       x x       yy        zz (2-18) 

since the velocity components dx/dt = % etc. are known. 
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IMs presupposes, of course, that initial values (Vx)0 , (Vy)0 , (Vz)0 and 

V0 at some initial point PQ are given. 

Likewise we obtain the position of the aircraft, 

x  =  bj , y  =  b2  ,        z  =  b3  , (2-19) 

as a function of the  time t, again presupposing suitable initial values that were required 

for the integration. 

As we have seen in sec. 1, it is convenient to subtract from the quantities 

Vji , Vj and V their normal values, corresponding to a normal gravity potential U, 

to obtain anomalous gradients and the anomalous potential: 

xx 

yx 

zx 

xy 

yy 

zy 

- 

xz 
T 

X 

yz 1 T 
y 

zz 
T z 

_ 

(2-20) 

We remark that, since position is determined by inertial navigation, the normal 

values will refer to the same point P as the measured values, so that (T , T , T ) r x x     y     z 
represents the gravity disturbance vector; see sec. 1 and (Heiskanen and Moritz, 1967, 

pp. 227 and 245-6). 

Which of the quantities (2- 20) are used, will depend on the geodetic computation 

method chosen.   For instance, we might use (T , T , T ) tt> compute deflections of 

the vertical, to be used for astronomical leveling. 

This would, however, be uneconomical because the available information is 

not fully used,   to fact there are 5 independent quantities (2-20) since the second-order 

gradient tensor contains 5 independent quantities (see sec. 1) and the gradient vector 

and T are obtained by integration of this tensor. 
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Thus we might use five independent components of the gradient tensor, e.g. 

T    ,   T    ,   T    ,   T    ,   T    , (2-21) xx      xy      yy      xz      yz 

or the üiree components of the gradient vector plus two independent components of the 

gradient tensor, e.g. 

T  ,   T ,   T  ,   T    ,   T    , (2-22) 
x       y       z      xx       xy 

or die potential plus four other independent quantities, e.g. 

T,   T  ,   T ,   T    ,   T    . (2-23) 
x      y      xx      xy 

only T. 

It would, however, be uneconomical to use only T , T , T   or , a fortiori, *    x     y     z ' 

This fact imposes a strong requirement on the geodetic computation method 

using these data: in order to take into account all available information, it should be 

able to use simultaneously five independent quantities, and it should use them in such 

a way that the result is the same regardless of which system of five independent quantities, 

e.g. (2-21) or (2-22)or (2-23)is taken as input. 

In sec. 4 we shall present a method that satisfies these requirements. 
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PART   B 

GEODETIC USE OF MEASURED GRADIENTS 

3.   Review of Proposed Methods 

First-order gradients are equivalent to gravity anomalies (or gravity disturbances) 

and deflections of the vertical, as we have remarked in sec. 1, so that their geodetic 

use may, in general, be reduced to problems familiar in physical geodesy. 

Still, this is not the optimal procedure, especially if all first-order gradients are 

measured simultaneously.   The main reason is that the familiar methods of physical 

geodesy use either the gravity anomaly or the deflection of the vertical, a combination of 

the two types of data not being directly possible.   The simultaneous use of all three com- 

ponents raises new problems. 

Such novel features are particularly prominent in the geodetic use of second-order 

gradients, which is also rather more difficult.   We shall, therefore, limit ourselves to 

considering second-order gradients. 

Various methods for their geodetic use have been proposed and discussed, e.g. 

in (Moritz, 1967).   We shall now try to give a brief evaluation of proposed methods. 

a) line Integration. -  We may integrate second-order gradients along the flight 

path to obtain first-order gradients.  The basic formula is (1-28) or, written in a more 

gradient -*ensor are measured and if the velocity components Uj are known, either by 

external measurements of the flight path or by the method described in sec. 2.   The first- 

crder gradients so obtained are converted to gravity anomalies (or gravity disturbances) 

and deflections of the vertical, which are used in the conventional way (it is e?.sy to de- 

rive an integral formula analogous to Stokes' integral but using gravity disturbances in- 

stead of gravity anomalies). 

The advantage of this method is the reduction of the problem to problems familiar 

in physical geodesy.   A disadvantage is that the available information is not completely 

used:  The three components of the gradient vector are computed from the five independent 

components of the gradient tensor,   so that two independent elements are not used. 
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Furthermore, as we have seen above, a combination of the data furnished by the gradient 

vector is not easily possible. 

b) Torsion-Balance Type Computations. - The torsion balance invented by 

Eötvös, historically the first and still the only instrument in actual geodetic use, is 

measuring, not all components of the gradient tensor, but only the quantities 

V       and   V      - V (3-1) xy yy        xx 

(with, possibly,   V      and   V      in addition), the xy-plane being horizontal.   The quant- xz yz 
ities (3-1) may be used to calculate deflections of the vertical by an integration method 

whose mathematical structure is clarified in (Moritz, 1967, sec. 1.2). 

This method, classical and relatively widely applied, is appropriate to the 

torsion balance.   For instruments that measure all components, the available informa- 

tion is only partially used.   Furthermore, in this method the lines of integration do not 

coincide with the flight path, so that problems of interpolation and vertical reduction oc- 

cur similar to those to be discussed for the next method. 

c) Global Integration. -  This was investigated in (Moritz, 1967, sec. 1.3). 

The relevant formula is equation (32) of that report: 

■ § //• T^Sj^dc   . (3-2) 

This integral formula is completely analogous to the well-known Stokes formula: it 

expresses the anomalous potential T in terms of the second-order vertical (radial) 

gradient T     just as Stokes' formula expresses  T in terms of the gravity anomaly 

Ag .   The function S,($) is a known function,   R is a mean radius of the earth,   da 

is the element of solid angle, and the integration is to be extended over the full solid 

angle o, that is, over the whole earth's surface. 

This condition, that the integration be extended over the whole earth, is the 

more stringent as the effect of the remote zones on the integration decreases even less 
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than in Stokes' or Veiling Meinesz' formulas. 

Since the gradients are measured only at discrete points or along certain profiles, 

they must be interpolated in between.  Unfortunately, second-order gradients fluctuate 

much more rapidly and are more irregular man gravity anomalies or deflections of the 

vertical, so that interpolation becomes more difficult and more problematic.   The best 

that can be done to reduce interpolation errors is to use least-squares prediction which 

will give as accurate results as the data permit. 

Another problem arises in this context.   In (3-2), all the quantities  Trr should 

refer to the same level surface.  Since it will hardly be feasible to perform all the meas- 

urements at the same level, they might be made at different levels and reduced to the 

same level.  But because of the greater irregularity of second-order gradients, this re- 

duction is even more problematic and less reliable than for gravity. 

The main objection, however, is that most information remains unused: five 

quantities are measured and only one quantity,   T   ,   is used. rr' 

d) Determination of Spherical Harmonics, 

expressed as a series of spherical harmonics: 

The anomalous potential T can be 

OB      n 

T = E      S 
n = 2 m L, (*) 

n+1 
<°hm cos "^ + Pnm sinm\)P     (cos 0) ,      (3-3) 

where r(radius vector),   9(polar distance) and X(longitude) are the spherical coordinates 

already used in sec. 1,   a is the semi-major axis of the earth,   P     (cos 9) are 

Legendre's functions, and OL     and ß       are coefficients to be determined. 

The use of spherical harmonics is most appropriate with satellite gradiometry 

because the convergence of the series (3-3) is satisfactory at satellite altitudes but is 

not so at flight elevations and a forteriori at the earth's surface, so that an excessive 

number of coefficients would be required to get a good approximation to the fine structure 

of the gravity field. 

By differentiation we may find the corresponding series for the derivatives  Tr, 

TQ, Tx; T^, TrQ, TrX, TQff TQV T^x   and then the series for T^, T* , etc. by 
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(1-25) or, alternatively, me series for T    , T    , etc. by (1-25) and 

xx xy 

T T 
yx yy 

T T zx zy 

xz 

yz 

zz 

= A 

VV 

t?C       »7»?       »?C 

r       T        T 
CC     Cv      CC 

AT, (3-4) 

which follows from (1-18), the matrix A being given by (1-22).   In this way we may 

express all measured second-order gradients as series which contain the coefficients 

a      and 8     , for instance, 
nm rnm 

T     = f,(r, 9, X;»     , ß     ), xx 1                Tun   Knm 

T     = f0(r,e, \;a    , ß     ), xy 2     •  »    -»  nm' ''nm (3-5) 

Thus, every measurement gives one linear equation for the o^m and ßnm in 

the form of an infinite series; note that r, 8, X refer to the particular point at which the 

measurement is performed and are assumed to be known. 

To determine the infinitely many aam and ßnm, a finite number of measure- 

ments and, therefore, of linear equations is certainly not sufficient. The conventional 

procedure in this case is to truncate the series at some n = ng, such that the number 

of retained parameters ahm and ßnm is smaller than the number of observations and 

these parameters can be determined by an adjustment. 

Such a truncation is, however, a highly arbitrary procedure.   In the present 

case this is even more problematic than in the usual determination of spherical 

harmonics from orbital analysis, since the magnitude of the terms in the series (3-5) 

decreases considerably less than, e.g., in the series (J 3), namely by a factor of order 
2 n .  Truncation thus introduces "aliasing errors " and increases the mutual dependence 

of the resulting values. 
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Also the statistical meaning of the formal adjustment procedure is questionable. 

The a     and B     may be almost as irregular as the effect of the measuring errors, 
am "run 

and almost as small.   It would, therefore, be more satisfactory to have a method that 

takes this fact into account in a statistically well-founded manner. 

Satellite gradiometry will probably be able to give harmonics of higher degrees 

than does orbital analysis; it seems, therefore, proper to combine these two techniques, 

possibly with other techniques such as satellite altimetry and satellite-to-satellite 

tracking. 

This brief discussion of different methods shows some features that arise 

particularly in the geodetic use of second-order gradients: 

1. A large amount of information is obtained simultaneously at the same 

point:  the five independent components of the gradient tensor. 

2. There are difficulties in the application of conventional horizontal inter- 

polation and vertical reduction techniques owing to the irregular and fluctuating 

nature of higher gradients.   To better overcome these difficulties, the additional 

information just mentioned should be used in an appropriate way. 

3. By its very nature, gradiometer data are better suited to give fine details 

than to provide the large features.   They are, therefore, best combined with other 

data.   This directly calls for a method that is able to combine heterogeneous data in 

a natural way. 

The classical methods of physical geodesy—astrogeodetic, gravimetric, 

dynamic satellite techniques--are always based on data of a single type.  Attempts at 

combining them are more or less ad hoc.   This is also true for methods using gradio- 

meter data as discussed above, since they are modeled after those classical methods. 

4. Statistical estimation and adjustment techniques have never penetrated 

very profoundly into classical physical geodesy.   Adjustment techniques and methods 

of error theory have not been incorporated there in an entirely satisfactory and 

natural way.  The same holds for the above-mentioned methods, which is particularly 

serious here because random errors may be comparable in magnitude to the quantity 

to be measured, and systematic effects have to be carefully eliminated. 
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4. Application of Least-Squares Collocation 

The analysis of die preceding section has shown that none of the methods described 

there is fully satisfactory for the geodetic application of gradiometer measurements.  We 

have also recognized some desiderata which a better method would have to satisfy: 

1. It should be able to handle all occurring data — first and second order grad- 

ients and any other data — and combine them in a natural, objective and optimal way. 

2. It should be able to handle discrete or profile data at different elevations directly, 

without interpolation or vertical reduction. 

3. Methods described in the preceding section should be suitable limiting cases 

of it.  For instance, if we assume that only T     has been measured, but that it is given 

without errors at very many points of a level surface, then the new method should give a 

result for T that tends, as a limit for infinitely dense coverage, to the result of eq. 

(3-2). 

4. It should give the same results whether second-order gradients or quantities 

derived therefrom are used; cf. end of sec. 2. 

5. It should, in a natural way, incorporate least-squares adjustment and give 

statistically meaningful accuracy estimates.   It should be able to make optimal use even 

of "noisy" ciata. 

Recently a new method of least-squares estimation of the gravitational field (Least- 

squares collocation) has been developed which satisfies these requirements (Krarup, 1968, 

1969; Moritz, 1970a, b).   It may be described as follows. 

Let n quantities of the anomalous gravity field be measured; the measurements 

will be denoted by xj, X2» ...» xn.   They might be anomalous gravity gradients but also, 

e.g., conventional gravity anomalies, astrogeodetic deflections of the vertical or geoidal 

heights derived from satellite altimetry.   Denote by Sp (the "signal") the quantity of 

the anomalous gravity field that we wish to compute, for instance a geoid height or a 

component of die deflection of the vertical.   Then sp is given by the matrix equation 
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SP = [CPlCP2,,,CPn] 

Cll   ^12 

-21   c22 

ünl   Cn2 

Clnl 

'2n 

nn 

(4-D 

Here cL is tiie covariance between the observations x^ and x- ,  and Cpj is the 

covariance between the signal Sp and the observation xA (i, j = 1,2,.. ,,u).  These co- 

variances are basic; they carry, so to speak, the burden of the mathematical structure 

of the gravity field.  Therefore, much will have to be said in the sequel, especially in the 

following section. 

The above formula presupposes that the (suitably defined) average values of Sp 

and x. are all zero: 

M(sp) = 0,    M(x.) = 0, (4-2) 

which means that both sp and x.  must be quantities of the anomalous gravity field 

(the systematic, "average" part of the gravity field being removed by subtracting the 

normal gravity field) and that, in addition,  x^ must not be affected by systematic errors. 

The measurements x,  can, however, contain the effect of random errors; eq. 

(4-1) is valid in this case as well as in the case of errorless observations. 

The formula (4-1) is optimal in the sense that it determines  sp in such a way 

that the value so obtained is compatible with the given observations x,  and the mean 

square error of estimation is a minimum.   This has the following meaning.   The n 

given observations do not determine the gravitational field completely since this field 

depends on infinitely many parameters (e.g., the full infinite set of spherical harmonics). 

Therefore, there are infinitely many possible gravitational fields that are compatible 

with the given measurements.   To each of these possible solutions there corresponds 

a mean square error of estimation,   nip,   and eq. (4-1) singles out that solution for 
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which mp is a minimum. 

The formulas for this mean square error of estimation, mp  and for the error 

covarianrss of any computed values sp and s~ ,  denoted by  OQ , are as follows: 

mP = cPP"Ecpi cp2 * *' Cph^ 

Cll   C12 

C21   C22 

Cnl   Cn2 

-1 "               * 

In CP1 

2n CP2 
• 

:nn_ 

• 

(4-3) 

CTPQ= CFQ"£CP1 CP2 * •' CPn^ 

CH   C12 • • •       v*< 

^21   ^22    *••    C 

mm -1 — 

In % 

2n CQ2 
• 

• 

nn_ 

• 

_CQn _ 

(4-4) 

Cnl   Cn2 

These quantities are analogous to the mean square error after adjustment and the (error) 

covariance of adjusted values in least-squares adjustment. 

Note that in adjustment computations, "variance" and "covariance" always mean 

error variance and error covariance, whereas in the present method we have both field 

covariances (e.g., Cp.) and error covariances (e.g., cr,^). More about this will be 

said in the next section. 
'PQ> 

For the derivation of all these formulas see (Moritz, 1970a, sec. 2).   If the 

Xj are specialized to be errorless gravity anomalies, the well-known formulas for 

gravity prediction result; note the formal identity of me present equations (4-1), (4-3), 

and (4-4) with equations (7-63), (7-64), and (7-65) of (Heiskanen and Moritz, 1967, sec. 

7-6). 
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Systematic Effects. - Especially in moving-base measurements, systematic 

trends such as instrumental drifts or systematic navigation errors, are likely to occur. 

They can also be easily incorporated in the present model by a method developed in 

(Moritz, 196$sec. 10) for the case of aerial gravimetry. 

Jf the measurements x$ are affected by systematic errors, they are split up 

into a purely random quantity £•  (comprising both signal and random error) and a sys- 

tematic part, also called trend: 

m 
(4-5) *i Mi +  =   A.axa , 

a=i 

where the X   are m systematic parameters and (A.) denotes a given matrix. 

Thus the functional dependence on X   is assumed to be linear; if it is originally 

non'linear, it is to be linearized in the usual way by means of Taylor's theorem. 

The parameters X     are determined by a least-squares adjustment with the 

result 

X = (ATC"1A)"1ATC"1X   , (4-6) 

where 

A=(Aia),     CMC.) 

are vectors or matrices, respectively. 

Then the trend is subtracted from the data Xj  to get the "centered data" 

(4-7) 

£i =Xj -  E A.a Xa, 
a 

(4-8) 

and these §   may now be used in (4-1), in the place of x., to get again an optimal esti- 

mate. 

A derivation of (4-6) by least-squares adjustment by parameters may be found in 

(Moritz, 1969, sec. 10).  A more satisfactory simultaneous deduction of (4-1) and (4-6) 

from a unified minimum principle has been given in (Moritz, 1970b). 
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Hie basic equations (4-1), (4-3), and (4-4) need only be slightly modified when 

systematic errors are present. In (4-1) we must replace x4 by ^ as given by (4-8) 

as we have just seen.  la (4-3) and (4-4), the matrix 

11 

'21 

is to be replaced by 

^12 

^22 

In 

'2n 

Cnl    Cn2     ••'     cnn 

--1 
= C 

c'lii - A^C^A^ATC"
1
]   , (4-9) 

where 1 is the n x n unit matrix, and A and C are given by (4-7). 

A derivation of (4-9) will be found in the Appendix. 

Properties of the Solution. - As we have remarked above, the present solution 

is characterized by the fact that the mean square error of estimation is a minimum. 

This is reminiscent of an analogous property of least-squares adjustment.   In fact, 

the present method is a generalization of least-squares adjustment for the case that 

there is not only a random "noise" (measuring errors) but also a random "signal' 

(elements of the anomalous graviiy field). Cf. (Krarup, 1969) and (Moritz, 1970b). 

To distinguish it from ordinary adjustment, the least-squares estimation of the gravity 

field is called least-squares collocation. 

As we have already mentioned, the quantities x,, x2, • •., x    entering in (4-1) 

can be any elements of the anomalous gravity field, affected or not by random errors. 

Thus, eq. (4-1) is able to handle and to combine any measurements of gravitational 

field elements, not only first and second order gradients.  Applied to gravimetrically 

observed deflections of the vertical £, TJ  it would, eg., give an optimally combined 
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astrogeodetic and gravimetric geoid; cf. (Moritz, 1970a, sec. 9). 

Eq. (4-1)  could also be used with third-order gradients.   The reason why third- 

order gradients are not dealt with explicitly in this report, is that they are probably of 

less geodetic usefulness. But the considerations of sec. 1 and the techniques of sees. 

4, 6, and 7 could be readily applied to third and higher order gradients as well. 

Also the signal sp can be any desired element of the anomalous gravity fieid. 

The different quantities computed in this way are consistent with each other in the 

sense that they belong to one and the same gravity field. 

In fact, the second and third factor in (4-1), depending only on the observations 

X| and their covariances, are the same for all elements s„ to be computed.  Thus the 

individual nature of the quantity sp is expressed solely by the first factor, the vector 

(Cp.), and the quantities Sp will be consistent if and only if the covariances C—   are 

compatible.  The compatibility of these covariances is assured by computing them ac- 

cording to the law of propagation of covariances to be discussed below. 

For instance, let all xA be errorless measurements of the second vertical grad- 

ient T     at various points of a level surface, and use formula (4-1) to compute T 

at every point of this level surface; this is, then, a pure case of least-squares interpola- 

tion in the usual sense.   From the continuous global T   -field obtained in this way, com- 

pute T at some point of the same level surface by (3-2).  Alternatively, compute T 

directly from the measured values x.  using again (4-1).  The resulting value for T 

will be the same in both cases because the covariances entering in (4-1) are chosen 

so as to ensure this. 

In mi? way we understand why conventional methods described in sec. 3 can, in 

fact, be considered as limiting cases of least-squares collocation for idealized data 

I distributions. 
I' 

As another example, consider the "problem of Bjerhammar": gravity anomalies 

are given at discrete points of the telluroid; for a definition of the telluroid cf. (Heiskanen 

and Moritz, 1967, p. 292).  As a limiting case, for continuous coverage of the whole 
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telluroid by gravity anomalies, this problem reduces to the "problem of Molodensky ", 

the well-known boundary-value problem of physical geodesy (ibid, p. 291).   The 

Bjerhammar problem may again be solved by (4-1) (Moritz, 1970a, sec. 5); if the 

gravity coverage becomes denser and denser, this solution tends to a solution of 

Molodensky's problem.  As, under certain assumptions, the solution of Molodensky's 

problem is unique, this limiting solution will coincide with the usual solution of 

Molodensky's problem by integral formulas. 

At first sight it may be difficult to believe that the simple matrix formula (4-1) 

is equivalent to complicated pror lures such as the solution of Molodensky 's problem. 

The reason is that all covariances Cp.  are based on the same covariance function 

K(P,Q) (see next section), and that this covariance function may be selected to have a 

relatively simple analytical expression.  Hence, all necessary operations may be per- 

formed analytically instead of numerically.   Furthermore, starting from the covariance 

function of the potential, the covariances of all relevant quantities such as gravity anomalies, 

deflections of the vertical, or higher gradients are derived by differentiations.   These 

are much simpler to perform than the integral operations necessary when going in the 

opposite direction as in the classical procedures of physical geodesy. 

By taking for the covariance function a function that can be analytically continued 

down to sea level, all difficulties of analytical downward continuation are automatically 

avoided; such difficulties beset conventional reduction procedures. 

These considerations help to understand why (4-1) is at the same time a generali- 

zation of classical procedures, so to speak with built-in interpolation and vertical reduct- 

ion, and an essential simplification. 

There remains to be discussed why the present method gives the same results 

with any of the data sets (2-21), (2-22) or (2-23) or with similar sets.   The underlying 

fact is that least-squares collocation shares with least-squares adjustment the property 

of invariance with respect to linear transformations both of the signal sp and of the data 

Xj.   Invariance with respect to linear operations on field elements  sp is the-reason why 

the method determines a consistent gravity field, as we have seen above; and invariance 

with respect to linear operations on the data x,  is the reason for obtaining the same 

results with the different data sets mentioned, since (1-28) and (2-18) are linear integral 
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operations.   Cf. also (Moritz, 1970a, pp. 12-13). 

The equations of least-squares collocation are directly suited for high-speed 

computation.  The biggest computational problem involved is the inversion of the 

matrix C for a great number of observations.  For a given set of data xit however, 

such an inversion is to be performed only once for all quantities to be computed and 

for all accuracy evaluations, as formulas such as (4-1) and (4-3) show. 

5.  Covariances 

As we have just seen, the covariances have to carry the whole burden of the 

mathematical structure of the problems under consideration.   They need, therefore, be 

investigated more closely.   This has been done in (Moritz, 1970a, sec. 4); we shall 

summarize the relevant results and apply them to the present problem of the use of 

gradients. 

To ensure that all our computed quantities belong to one and the same gravity 

field, all covariances that enter into our computations must be derived from a single 

covariance function, for which we may take the covariance function of the anomalous 

potential T, 

K(P,Q) =   cov(Tp, TQ)  =   M(TpTQ)  , (5-1) 

defined as the average product of the T-values at two points P and Q, the average 

L Ing understood in a suitable way. 

The covariance function (5-1) and the quantities derived therefrom are field 

covariances: they express the statistical behavior of the anomalous gravity field and 

should be carefully distinguished from error covariances, which express the statistical 

behavior of observational errors; only the latter are considered in adjustment compu- 

tations.  Cf. the remarks concerning the covariance function of the gravity anomalies 

in (Heiskanen and Moritz, 1967, pp. 267-8). 
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Hie results of die computations do not depend strongly on the choice of the 

basic covariance function(5-l) (as long as it is used consistently throughout!), in the 

same way as the results in adjustment computations do not depend strongly on the 

weights chosen.  It is, therefore, possible to take for K(P,Q) an analytically simple 

function. 

K is a function of two points P and Q defined on and outside of some sphere of 

radius R (which we may take to represent sea level) that must be harmonic both as a 

function of P and as a function of Q: 

ApK(P,Q) =  0 =  AQK(P,Q), (5-2) 

where Ap means the Laplace operator applied at the point P.  This follows immediately 

from the definition (5-1).   Furthermore, the function K is assumed to be rotationally 

symmetric: on the sea-level sphere of radius R, it depends only on the spherical 

distance 0 of P and Q.   Thus 

K(P,Q) =  K(rp, rQ,4,) , (5-3) 

it is a function of the radius vectors, rp and rq, of P and Q, and of the spherical 

distance $ between P and Q. 

Such a function has a spherical-harmonic expression of the form 

K(p-Q) = Jo k°(^) " +1 P-<C08 *'' <5'4) 

where the k  are coefficients. n 

For example, we may take k0 = k.=  k   =  0 and 

kn =   <n-l)(n-2)      for n * 3 ' <5"5> 
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With these coefficients, the series (5-4) may be summed so that a closed expression 

is obtained: 
2       3 

K(P,Q) = A 
rPrQ 

[P2(cos0)(l+jen-~) + ~ sin2*.]- 

A|—r—I     cos0£n-r:    + 
_2_ 
M 

(5-6) 

where 
2 \  2   i_ 

rn    \     -. 2 

-Hfe)-'*($5) J 
M   =   1 -  L -  (     0   1   costf    , 

VW; 
(5-7) 

N   =    1 +  L 0    j     cos 0  , 

and A and TQ are suitable constants.  According to (Lauritzen, 1971), tt> whom this 

function is due, it fits excellently global gravity and satellite data, with 

rQ =   0.9945 R, 

A    =    7.84888, 
(5-8) 

R being again the mean radius of the earth. 

A simpler function which might also be useful in appropriate cases is 
_     1 

K(P,Q) = B V£\2 rPri 

r0' 

p Q       COS Jfa +   1 

vT 
(5-9) 
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given by Kramp (1969), with suitable constants B and r„. 

The equivalent, for the plane, of the spherical expression (5-9), is the function 

1 
K(P,Q)   ■   C[(xQ-Xp)2+   6rQ-Vp)2+ (Zp+ZQ+b)2]""^       (5-10) 

with constants C and b.   It is readily verified that this function is harmonic with 

respect to P and Q. 

Propagation of Covariances. -  The law of propagation of covariances states 

how the covariances between any two elements of the anomalous gravity field are 

derived from the basic covariance function (5-1).   Perhaps the easiest way to express 

it is verbally as follows: 

Let u and v be two quantities derived from T by linear operations.   Then the 

covariance between u and v, 

cov (u,v)   , (5-11) 

is obtained as follows.  Apply to the covariance function K(P,Q), considered as a 

function of Q, the operation that determines the quantity v from T.   To the result, 

considered as a function of P, apply the operation that determines the quantity u 

from T.   The result is cov(u, v). 

An example will clarify this rule.   Let 

u  =   T      , v  =   T     . (5-12) xy z v       ' 

Then u is determined by successive partial differentiation with respect to x and y, 

and v is derived from T by partial differentiation with respect to z. 

Then, by the verbal rule just given,   cov(Txy, Tz) is found as follows.  Apply 

to the covariance function K(P,Q), considered as a function of Q, the operation that 

determines v from T, that is, partial differentiation with respect to z, obtaining 
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a2K(p,Q) 
azQ 

To this result, considered as a function of P, apply successive partial differentiation 

with respect to x and y, obtaining 

.2 
*L \ =       ä*K(P,Q) 

axpdyp    I dZQ /        axpaypazQ 

Thus the desired covariance is given by 

,„      „. x a3K(P,Q) 
C0V<V Tz> "    axp ay? azQ  • <5"13> 

Putting x =Xp  y =x2,  z =x3 and letting i, j, k, 1 take the values 1, 2, 3, 

we obviously have 

C0V(T. tx\ . *BL21 , 

/oT   T\  _    aK(P.Q) 

/   a2T     T\-   ^K(PtQ) 
Vax^' /   axifPaxj|P • 

far    £L\ =     a2K(P,Q) ,5_14) l^T' 5J7      ax.fPaxj(Q   ' (5 14) 

/_afj__     ax\ -       a3K(P,Q) 
^ax.axj '   axj      ^i.p^j.p^k.Q • 

/aj_      a2T   \ =       a3K(P,Q) 
\axj '   axjaxj^y      axi,p3xj,Qaxk,Q  ' 

f A        a?j \ =  a4K(P.Q) . 
\äx7äx-'   Sx^;     ^i,Pax

j,p^k,QaxifQ 

covi 

cov 

cov 

.  ,>2 
cov 
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Here we have used x.  to denote coordinates x,y,z, as we did in sec. 2.  Otherwise 

throughout Part B of die present report   Xj( i = 1,2,..., n ) always denotes measure- 

ments, so that no confusion should arise. 

These formulas give the covariances between T and its first and second partial 

derivatives.  Extensions to higher derivatives are obvious. 

Sometimes linear combinations occur.  For instance, the gravity anomaly is a 

linear combination of T and 3T/dr: 

Ag  = - |1  -   -L T (5-15) 
3r r 

(Heiskanen and Moritz, 1967, p. 89).  Another example is represented by (1-25). 

Thus let us, for instance, find 

cov(Ag, T^). 

T      being given by (1-25): 

T?4 =jzTee + fT-   • <5"16> r 

We shall use the rule for the propagation of covariances as given above.  Apply 

to the covariance function K(P,Q),   considered as a function of Q, the operation that 

determines  T^ from T by (5-16), obtaining 

.2. .        ^ 4  -£f + JL    * 
rt    3 6A rO   ar( 

To this result, considered as a function of P, apply the operation that determines  <ig 

from T by  (5-15).   Thus we obtain 
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l      a3K 2       a?K 
rPr2    5e§ 

- 1         fr 
rQ     ^rp^Q 

= cov(^g, T;*) 

2        3J£_    = 
rp i^     arQ 

(5-17) 

In this way we are in a position to express all covariances that occur in the 

geodetic use of gradients, in terms of partial derivatives of the basic covariance func- 

tion K(P,Q). 

Finally we consider briefly how these partial derivatives are evaluated.   If 

K is given as a function of rectangular coordinates x,y,z, then the evaluation is 

straightforward.  A fully worked out example will be found in sec. 7; for another example 

see (Moritz, 1970a, sec. 7). 

If K is given as a function of three variables  rp, rQ, ty  as in (5-3X then the 

differentiations must be performed as 

axp "  arp   *p T arq   axp 
T a^   axP   • <D"10' 

Now 

4 = x| + y2  + 22   , 

rQ = XQ + yQ + ZQ   ' (5"19) 

cos^, =      *P*Q + ypyo+zP2o      t 

so that, by straightforward differentiation, 

23*. = o, 
(5-20) 
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In this way, all occurring differentiations may be performed without any mathe- 

matical difficulties, although the analytical work may be laborious. 

Observational Errors. - If the observations Xj are errorless, then all covar- 

iances Cp. and C^ entering into the basic collocation formulas (4-1), (4-3) and (4-4) 

should be field covariances as we have just considered. 

If the observations Xj are affected by random errors, then the covariances 

Cpj remain field covariances, whereas the covariances C^ are now given by 

V      Cy      +     V (5_21) 

where C. are the field covariances corresponding to the observed elements, and D« 

are the error covariances of the observational errors.   In the terminology of adjustment 

computations, the matrix (£>„) is the variance-covariance matrix of the observations. 

The simple relation (5-21) presupposes that the errors are uncorrelated to the 

anomalous gravity field.  This will be true if the observations have not yet been sub- 

jected to a preliminary collocation, for instance, a least-squares filtering,   lu the 

latter case, the covariance matrix (C ■) is to be taken from this preliminary collocation; 

cf. (Moritz, 1969, sec. 9).   This is in complete analogy to least-squares adjustment. 

6.   Determination of Spherical Harmonics 

The collocation method described in sec. 4 may also be used to determine 

spherical harmonics from gradiometer measurements. 

Let the spherical harmonic expansion of the anomalous potential T again be 

given in the form (3-?), which we shall write in terms of fully normalized spherical 

harmonics (Heiskanen and Moritz, 1967, sec. 1-14): 

T<r* 9'X) V=2 J-0    (?) n + 1 [5ffln *** (9'X) + ^nm We'*>}      ^ 

Then the "signal" sp in (4-1) is any coefficient <*__, or ß      ; lee us assume 

40 



I SP - % • <6"2> 
I Then 

CH  =cov(änm,x.), (6-3) 
f 

C..    = cov (xi , Xj) , (6-4) 

xj being again any measured second-order gradient (or any other measured field element). 

The computation of the covariances (L   has already been considered in the pre- 

ceding section; it remains to study the (»variances (6-3). 

The spatial covariance function of T may again be expressed in the form (5-4): 

.2    \   n + 1 
K(P,Q) =   2   kn   (-2—) Pn(cos0) . (6-5) 

n=2 \rPrQ/ 

Then we have by (Moritz, 1970a, p. 45) 

k 
) =   -. nm cov^.o^) = cov(^m,^nm) =   -^ 

cov<anm'apq >  = cov<0nm'V  =   ° 

if p^n or q^m or both, (6-6) 

cov*5nm'*W =   °    always' 

In the report just quoted, these formulas have been derived for the covariance 

function of the gravity anomaly.   It is, however, obvious that they are valid for the 

covariance function of the potential as well. 

Any gradient is obtained by single or multiple differentiation of T (or by a 

linear combination of such derivatives), to be symbolized by DT.  Thus from (6-1) 

we get 
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DT =   E 
n=2 m ̂ ■"MW^^i- <-> 

Let DT denote the gradient the measurement of which is xi#  Then 

CPi  = cov<«nm'DT> 

{wJ,'+1M£K»(W]> 
= E E aP+1 Fcovta^.älD (—ESL) 

p q L nm   w        VrP+1/ 

+ C0V(«nm^pq>D(^l)] 

11+1        '1        ä     )D| -Hftl 'nm' %,u    JÖT1       ' = a       cov (a     , a„_) D 

since all covariances between coefficients are zero except one, by (6-6).   Thus we have 

an+l /R    (6,X)\ 

Since _ 
_mn      =   r (n+l)p     (9) cos mX 

rn+l nmN ' 

is a simple function of r, 8, X, any differentiations with respect to  r, 8, X are easily 

carried out, e.g., 

a2       /^<%X>\   -    mr-(n+l)   «.«■   .      , 
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and the components in rectangular coordinates follow from equations such as (1-25). 

For the determination of the coefficient B„m   we need cov(ß„^, DT), which "nm nm 
is again given by (6-8), with S(9, X) replaced by S"(6, X). 

After these preparations we are ready for the application of the collocation formulas 

such as (4-1), (4-3) and (4-4) for the derivation of spherical harmonics from gradiometer 

measurements. 

Random measuring errors are automatically taken into account if the covariance 

matrix (6-4) is properly computed, in the way outlined at the end of the preceding 

section. 

Systematic effects can also be incorporated into our computations as discussed 

in sec. 4. 

The advantages of the collocation method over the conventional procedure described 

in sec. 3 (Item C) are as follows. 

1. Every harmonic is determined independently, without aliasing errors, since 

the infinite series (6-1) is not directly .sed and, consequently, no truncation occurs. 

Convergence problems do not affect the present solution. 

2. The statistical meaning of the new procedure is transparent: it is an optimal 

procedure in the sense that it gives the most accurate results obtainable on the basis of 

the given data.  The statistical behavior of the anomalous gravity field is properly taken 

into account. 

It is said to be a disadvantage of spherical harmonics in satellite geodesy that 

their orthogonality properties cannot be used as efficiently as it would be desirable . 

The collocation method takes full advantage of these orthogonality properties, in the form 

(6-6), to separate die individual coefficients. 

Combination with any other observations--from classical techniques such as direct- 

ion, range and range-rate observations or from new techniques such as satellite altimetry 

or satellite-to-satellite ranging--are straightforward because (4-1) can be used with 

heterogenous observations as well, systematic parts being eliminated as discussed in sec. 4. 
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7.  Use of Profile Measurements 

ID (Moritz, 1969, sec. 6) we have discussed at length the use of aerial gravity 

measurements along parallel profiles. Since the least-squares estimation formulas hold 

for any type of measurements, also of different kinds, the formulas given there are also 

valid for measurements of first and second order gradients along parallel profiles. 

To keep our problem simple we assume, as we did in the case of aerial gravi- 

metry, that the profiles are parallel straight lines; they need not be equally spaced, and 

they may be at different elevations,  Let t be the distance counted along the direction of 

the profiles, such that the lines t = const, are straight lines perpendicular to this 

direction; cf. Figure 2 in (Moritz, 1969, p. 26).  Denote by Xj(t) the measurement of 

some field element (in our case, of some first or second order gradient), recorded 

along a profile as a function of t.   In (Moritz, 1969, sec. 6), subscripts such as i or 

j (i, j = 1,2,.. ,,n) have labeled the profiles; now they label the different quantities meas- 

ured.  AU n measurements x(t) might, in principle, be performed along the same 

profile; or they might be performed along different parallel profiles: the formulas are 

the same. 

The computational formulas derived in the previous report just mentioned may 

be summarized as follows. 

Denote by 

ry<t) = covfxj, Xj) (7-1) 

the autocovariance function of the measurements. More precisely, C..(t) is the 

covariance between the value of Xj for the argument u +1 and the value of x, for 

the argument u,  u being any real number.  Similarly, 

Cp.(t) = cov(sp, Xj) (7-2) 

denotes the cross-covariance function between signal and measurement; more precisely, 

Cpj(t) is the covariance between sp(u+t) and Xj(u). 
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1 

The assumption that diese covariance functions do not depend on u but only on 

the argument difference (u +t) - u = t means that our measurements Xj(t) are 

considered as "stationary stochastic processes"; cf. (Meissl, 1970). 

Now we form the Fourier transforms of the covariances, the spectra 

op 

S..fr») =    / C..(t)e"lut dt, 

(7-3) 

Sp.(U)=    / Cp.(t)e"lutdt. 

Next we compute the "system functions" 

Hp.(u) »   £  S   (U)S..("\), (7-4) 

where Sjj      (u) are the elements of the matrix inverse so the n x n matrix with elements 

Sjj(u).  Applying the inverse Fourier transformation we obtain the "weighting functions" 

hPj(t>  = 27    /Hpj(«)e1UtdU, (7-5) 
- GO 

and the optimum estimate of the signal sp(t) is finally given by 

n       T sp(t) =  s    / h  (t - a)x (a)da . (7-6) 
v       j = l   .„ rj J 

For the validity of this method it is essential that the covariances be appropriately 

computed.   If the measurements can be considered as errorless, then all covariances 

are directly given by the law of propagation of covariances as discussed in sec. 5.   If 

the measurements are affected by random errors, Cpj(t) is again a pure field covariance, 

whereas now 

Cy<t)  = Cj.W+Dj.W (7-7) 
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consists of the field covaxiance C^(t) and the error covariance E^j(t). 

The error covariances for second-order gradients and for first-order gradients 

obtained by tbe method of sec. 2 should be very much smaller than in the eise of aerial 

gravimetry, because there Dyft) also includes the inertial noise which is now absent. 

An Example. - This method will be illustrated by a simple example.  We assume 

two parallel profiles 1 and 2, the first at elevation zj, the second at elevation Z2. 

Along profile 1, the second-order gradient Tvv is measured, along profile 2, the 

first-order gradient Tz is measured; these measurements are errorless. 

This example differs from Example 2 in (Moritz, 1969, pp. 35-36) only by 

different observational data; the geometrical configuration (Fig. 1) and the 

Figure 1 
mathematical structure are the same. The solution is represented by equations (7-12) 

and (7-13) on p. 36 of that report. Only the covariance functions are different because 

of the different observational data; they will be computed now. 

As the basic covariance function, let us take the function (5-10), with C = 1: 

K(A,B)  = — (7-8) 

with 

°2=<V   XA)2+<yB-
yA)2+^A+2B+b)2' (7-9) 
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Both the example and the covariance function have been chosen for simplicity; they are 

obviously not very realistic. 

By differentiation we find: 

2 

C0V<T'V   =|^="^<2A+2B+b)' (7"10b) 

cov(T   ,T   ) *-*      - * xy   xy axAayA9xBayB 

3        15 , .2     15   , .2   . 

3 
cov(W = ^fe = 7V*WVb) •   <7"10d> 

52K      _        1,3 cov<VTz> • *-*-• • -y+ y <V Vb) • "A^B 

Substituting 

A  =   P1  ,        B =  P  ; 

xB-xA=t« V*A-
ä

I
; 

2 2       2 2 Dj  =   t   + ax +(zp+ zx + bf 

we obtain from (7- 10a) 

(7-10e) 

Cpi(t) = -All ; (7-lla) 
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substituting 

A =  P2 ,      B =  P ; 

XB_ XA=  <»  yB'yA= "V 

D2 =   t2+a2+(Zp+22+b)2 

we find from (7-10b) 

CP2<t>s-^r<ZP+Z2+b)    • (7-llb) 

substituting 

*B "   XA = l'    yB "   yA = ° ; 

2 2 2 
Dn =   t    +(22^ b) 

we have from (7-10c) 

cii(t)=TT 
151 

D 11 

(7-llc) 

substituting 

A  =  P2 ,     B -   Px  ; 

XB" XA= l>  yB" yA= _a; 

2       2       2 2 
D12 = t  + a   +<?1+ z2+ b) 

we find from (7- lOd) 

lSaf 
C12(t)^        7    ^l+Z2 + b)  ; 

D12 

(7-lld) 
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and substituting 

XB " XA = ü »     yB " yA = ° ; 

D22 = t2 + (2z2+b)2 

we finally obtain from (7- 10e) 

c22<t) = -rr + rr<222+1>)2. o^) 
u22 "22 

For the notations cf. Figure 1; note that a, aj, a2, being measured in the xy-plane, 

are shown in true size, whereas the spatial distances D,, D2, Dj2 are shown as 

projected onto the xy-plane. 

Now we can form the Fourier transforms of these covariance functions to get the 

spectra Spi(w), S^u), Sn(o), S12(u),and S22(u).   Then we find H and Hp2(w) 

by eq. (7-13) of (Moritz, 1969, p. 36), which are nothing else than our present eq. (7-4) 

specialized for the example under consideration, and h.  (t)and h   (t) by (7-5). Finally 

(7-6) gives  T as the signal to be computed. 
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APPENDIX 

Error Variances and Co variances 

in the Presence of Systematic Effects 

We shall derive the modification of the formulas (4-3) and (4-4) for error variances 

and covariances of the result when systematic effects are present, arriving at (4-9). 

Equation (4-1) may be written 

yp= hpx (A-l) 

with 

*LP =  Cpc"    ; (A-2) 

we are using a matrix notation similar to the notation in (Moritz, 1969, p. 11), writing 

yp for the estimated value of Sp to distinguish it from the true value So. 

If systematic effects are present, then in (A-l) the observation x is to be re- 

placed by the centered observation 

£ = £ " A X , (A-3) 

so that 

yp 
=  Jlpte.-AX)  , (A-4) 

with hp again given by (A.-2). 

The error of estimation is then the difference true minus estimated value: 

CP= V yp ' 
and by (A.-4), 

(p=  S
P"  !ip(x_ - AX)   . (A-5) 

Let us now introduce the true values of the parameters, X', and the corresponding 
true values of the centered observations, £', for which we have 

£' *   x -  AX'  , (A_6) 
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in analogy to (A-3).  Substituting 

x »X' + AX* (A-7) 

in (A-5) we find 

Cp=sp- hp*'-hpA(X'-X). (A"») 

The estimated values of die parameters are given by (4-6), which may be abbrev- 

iated as 

X = Hx , (A-9) 

*ith T —1     -1   T—1 H = (ATC     A)    A   C      . (A-10) 

Thus by (A-7), 

X = Hx  = H£/ +HAX', 

and by (A-10), 

H A = 1 (A-ll) 

(I_denotes again the unit matrix), so that 

X'-X = -Hj', (A-12) 

which is substituted into (A-8) to give 

€p = sp-hp(I - AH) £'    . (A-13) 

With the abbreviation 

Ep = iLpd'AH) (A-14) 

we may write this as 
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€p  = Sp  -  hpC'. (A-15) 

Thus 

€P€Q 
S
P
S

Q ■ S
PIQ£' ■ £pi'sQ+ ^pi'i' ^Q, 

and on forming the mean value: 

Now 

_T      _     T -T 
CTPQ  = CPQ"^P-Q  " k-P^Q +^p^h-Q 

lip   =llp(I-AH)  = CpC'1[l-A(ATc"1A)"1ATc"1] 

is substituted into (A.-16) to give, after some straightforward manipulations, 

(A-16) 

(A-17) 

which is (4-4) with C      replaced by (4-9); and setting Q = P gives the corresponding 
2 

result for the error variance   nip. 
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