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ABSTRACT

4 This report is a contimiadon of a previous OSU report, "Kinematical Geodesy "
b (1967). Part A gives basic principles and the theoretical foundations for the separation
' of gravitation and inertia by a combined accelerometer-gradiometer system, with
applications to aerial gravimetry and to inertial navigation. In Part B, proposed
methods for the geodetic use of second-order gradients are briefly described and
evaluated. The new technique of least-squares collocatinn avoids the shortcomings of
those methods. The application of this technique to the use of gradients for the deter-
mination of the gravity field and of spherical harmonics is investigated. ]
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KINEMATICAL GEODESY II
Introduction

In an earlier report (Moritz, 1967) we h-ve investigated theoretical questions
related to the use of moving instruments for the measurement of elements of the
gravitational field, such as airborne gravimeters or gradiometers. The main problem
is the separation of gravitation and inertia, the extraction of the gravitational "signal”
form the inertial “noise”. We have seen that such a separation is rigorously possible
for the second and higher derivatives of the potential, but not ior the gravity vector
itself. In the latter case, in aerial gravimetry, one is, therefore, obliged to reduce
the effect of inertial noise as much as possible by using somne statistical filtering. The
fact that a statistical separation of gravitation and inertia can never be perfect, is
mainly responsible for the fact that the accuracy of aerial gravimetry is considerably
inferior to the sensitivity of the instruments themselves.

In Part A of the present report we shall describe the principles of a rigcrous
separation of gravitation and inertia for the gravity vector itself. This can be done
by simultaneously measuring the first and second derivatives, that is, by combinitg
a gravimeter, or accelerometer, with a gradiometer.

In (Moritz, 1967) we have also studied how measured second-order gradients
can be used in geodesy. We have seen that geodetically important quantities, such as
deflections of the vertical or geoidal heights, can be derived from these measurements
either by line integration (somewhat similar as in astrogeodetic leveling) or by global
integration, using formulas analogous to Stokes' integral.

Unfortunately, such integral formulas have severe shortcomings, which make
their practical application harcly feasible:

1. Second-order gradients are much more irregular than gravity anomalies,
so that interpolation is difficult.

2. For a Stokes'-type formula global coverage would be necessary.
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3. The available information is very incompletely used, because only one
of the five independent components of the second-order gradient tensor enters into
a Stokes'-type integral formula.

4. It is impossible to combine second-order gradients with other data such

o e T A pr s S s

as first-order gradients or gravity anomalies, in a simple and well defined way, and
to adjust for measuring errors.

Since the first report on Kinematical Geodesy was written, however, a least-
squares method for estimating the terrestrial gravity field (least-squares collocation) __.':
was developed (Krarup, 1968, 1969; Moritz, 1970a), which avoids these shortcomings

and permits the optimal use of heterogeneous data for the determinuiion of the earth's

e Ao s,

figure and its gravity field.

In Part B of the present report we shall first discuss proposed methods for : z
the geodetic use of gradients and then apply least-squares collocation to the determina-
tion of the gravitational field from measured gradients. This includes also the

determination of spherical harmonics by satellite gradiometry.
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PART A
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SEPARATION OF GFAVITATION AND INERTIA ¢ @

1. Firstand Second Order Gradients

PPSTRTELTY SV PN SRS Y

! Let the gravitational potential of the earth be denoted by V. Then th=: first

; partial derivatives, or first-order gradients, Vx =3V/dx etc. form a vector

\ 1-1
: v,
: which is the vector of gravitational force on a unit mass.

: Adding to V the potential of centrifugal force of the earth's rotation, we get
{ the gravity potential W. The vector

Wx Ve
Wy = g = Vy + centrifugal force (1-2)
i Wz v,

is the gravity vector. Since the centrifugal force is given by a simple analytical expres-
sion and can be considered as known, the determination of gravitation (1-1) is equivalent

to the determination of gravity (1-2).

?
4
]
We have 3
i
W, = gcosa, i
& i‘
Wy = gcos B, (1-3) i
” |
Wz gcos vy, %
]
wherxe i
g = \/w2+w2+w2 (1-4)
X y -

[T R

et
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is gravity and cos a, cos 8, cos ¥ are the direction cosines defining the direction of the
vertical or plumb line.

The measurement of the vector (1-2) thus consists in the determination of g
and of the direction of the plumb line. Gravity g is measured by gravimetry. The
terrestrial technique for determining the direction of the vertical is to define it by
means of a spirit level and to refer it to a global rectangular coordinate system by

means of astronomical observations (latitude and longitude).

If the z-axis is made to coincide with the normal to the reference ellipsoid and

if the x and y axes are suitably oriented, then, obviously,

E=-~—=,n=- —& (1-5)

are nothing else than the components of the deflection of the ve ctical. Such an orientation
of the coordinate system can always be achieved by a coordinate transformation so that

deflections of the vertical can be computed from first-order gradients.

In aerial measurements, the direction of the coordinate axes is maintained by
gyroscopic stabilization, and the three components of the gravity vector can be measured
by three accelerometers. The accelerometer output will be affected by inertial disturb-

ances, which must be removed as much as possible by statistical filtering.

The best-known techaique falling under this general principle is aerial gravi-
metry, where the vertical component of the gravity vector is measured by a gravimeter
or a vertical accelerometer, which is basically the same; cf. (Szabo and Anthony, 1971).

For a suggestion for determining deflections of the vertical by a similar principle cf.
(Bradley, 1970).

'The second-order derivatives, or second-order gradients, Ve = aZV/ ax &

etc. form a symmetric matrix or tensor

Ve Ve Vo
Voix Yy Vyz : (2-6)
V. Vv \

zx zy zz
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This tensor contains five independent quantities: because of symmetry we have

Vox = Ve Vg I Wi Vool =Y os (1-7)

and in free space, Laplace's equation

(1-8)

<
+
<
+
<
]
[

XX yy zz

holds, so thatthe 9 components of the tensor (1-6) must satisfy 4 conditions.

Instruments measuring second-order gradients are called gradiometers. A
stationary instrument of this kind is the well-known torsion balance, cf. (Mueller, 1964);
for recent developments in airborne and satellite-borne instruments cf. (Anthony, 1971),

(Forward, 1971), (Savet, 1970), (Trageser, 1970).

One of the most interesting features of gradiometer measurements is that sec-
ond-order gradients measured by moving instruments are purely gravitational, inertial
disturbances having no effect on them provided the coordinate axes are gyroscopically
stabilized. For an investigation of this problem, covering also the general-relativistic

aspects, see (Moritz, 1967).

Anomalous Gradients. - It is convenient to approximate the gravity potential

W by a given simple function U, called normal gravity potential and representing the
gravity potental of an equipotential ellipsoid (Heiskanen and Moritz, 1967, sec. 2-13).
The difference

T=W-U (1-9)

is called disturbing potential, or anomalous potertial. It is a harmonic function out=
side the earth, since the centrifugal partin W and U are equal and, therefore, cancel

in (1-9). For the same reason we may also write

T=V-V , (1-10)

oats s




denoting by V .he earth's gravitational potential and by V the normal gravitational
potential, which is the normal gravity potential U minus the potential of the centrif-
ugal force.

We may form first and second order gradients of the normal potential U
(or V, respectively), and subtract them from the measured gradients. In this way

we obtain the anomalous gradients

r — P -
Tx Thex Txy Txz
T and T Ty Tzl - (1-11)
T T T,
z zx zy ‘2z
| i ]

If the position Px,y,z) of the measuring instrument is determined with res-
pect to the center of the earth, then U and its derivatives can be determined at the
observation point F itself, so that the quantities (1-11) can be directly formed. This
is, at least approximately, the case in satellite gradiometry where the satellite position
is determined by tracking, and in aerial gradiometry if position is determined by inertial

navigation connected to points whose geocentric position is known.

If, on the other hand, the vertical position of the aircraft is determined by
measuring the height above ground, then it is more appropriate to consider the normal
gradients as referring to a point Q which is situated on the plumb line of P and whose
normal potential U is the same as the actual potential W of P, that is, UQ = WP .
See (Heiskanen and Moritz, 1967, pp. 245-246, figure 6-3). Consider, for instance,
the second vertcal gradient W, _ , letting the z-axis coincide with the vertical through
P. Then

T, =W,,(P) = U,(P), (1-12)

whereas now we rather compute a quantity

Tz'z = WZZ(P) - Uzz(Q) . (1-13)
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The difference between the two quantities is

Ty~ Tpy = Upp(®) - Upp(Q) = Uy Np (4}

where

is the vertical separation of geop and spherop at P; cf. Fig. 6-3, loc. cit.

For an estimate, assume a spherical normal earth. Then

kM = . XM . . bkM
Us r Ur - 2 Upyr = 4

where k is the gravitational constant, M is mass of the earth, and r is the radius

vector. Near the surface of the earth we have approximately

r=R = 6371 km,

kM
‘ur\ = =5 =G = 90gals,

R

|Um| = ,Urn.l = %G— < 1.5x10"7 mgal/m?,

so that, for NP = 100 m ,

] - =°__ ..5 = N
|'rzz 'rzz| 1.5 x 10" mgal/m = 0.15 Ettv¥s.

Since 100 m is 2 maximum value for N_, this difference is well below the expected

P!
aerial measuring accuracy of about 1 Eltvls. Differences in other second-orde: grad-
ients are even much less because of the near-spherical symmetry.

Thus we may probably safely put

s o D (1-15)

LRI meeRey-
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in most cases.

As for the first-order gradients, the fact just mentioned affects vertical grad-
ients and is responsible for the distinction between gravity anomaly and gravity disturb-
ance and for the use of the former in aerial gravimetry. This, however, is well known

and need not be discussed here, cf. (Heiskanen and Moritz, 1967, pp. 245-246).

Transformation of Gradients.~ Let an orthogonal coordinate transformation be-

tween two rectangula: coordinate systems xyz and én be given by

p 3 ¢ (4 X

. 3 AT
y|] = Aln] , |n] = A y| » (1-16)
z r ’ -sz

where A is an orthogonal matrix and AT is its transpose. Then the first-order grad-
ients transform like

T, T,
T, | = he T,| . (1-17)
Ty T |

and the second-ozder gradients transform like

7 [~ n
Tee Ten Ty o N
= T -
Te Tm Toe |=8 | T, Ty| A (1-18)
TC £ T’:n TC g LTZX sz Tzz

For a derivation cf. (Moritz, 1967 , sec. 1.5).

Let us now consider spherical polar coordinates r(radius vector), 6 (polar dis-
tance), and A (longitude). They are related to rectangular coordinates xyz by




v
i
]

SUp——

rsin 9 cos ),

rsin 6 sin A, (1-19)

e
]

rcos 6.

Here the z-axis is the axis of rotation of the earth, and the x-axis passes through the

Greenwich meridian; the origin is at the earth’s center of mass.

i Together with this global system xyz, let us introduce a local rectangular
; coordinate system £n{ as follows. The origin is at the peint P whose coordinates
i arex, y, zor r, 6,\. The {-axis coincides with the radius vector, the § -axis

points north, the 7 -axis points east.
The first-order gradients in this system are given by

3T 1

Te = "¢ =7 Tev

Tn ™ Tsimedr rsime W\ ° (1-20)
. aT

TC T 3r L

The relation between the derivatives with respect to x,y,z and to r,9,\ is

found as follows. By the usual rules of partial differentiation we have
T =T x_ + Ty +T. 2z
r x'r A - z'r

and similar for Te and TX . 'The derivatives xr etc. are obtained from (1-19), for

instance

sin ® cos X .

X
X

T A ey e, <oy
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In this way we find

T =T sin6cosA + T sin6sin)A + T cos 9,
r X y z
Te = _l‘xrcosecosxi' Tyrcosesinx- Tzrsme, (1-21)

T, =-T rsin@sin\ + T rsin6cosi .
A X y

Substitution into (1-20) gives

- . P~ -
TE Tx
T =AT|T

n y
| T T, ]

with

= c0s 6 cosA - cos 8sinA sin6
A = - sin ) cos )\ 0 p (1-22)

sin® cos A sin® sin )\ cos 8

which determines the transformation matrix A.

The first derivatives with respect to r, 8, A are expressed in terms of
rectangular gradients by

Tr = TC .
Te = -rTE . (1-23)
TA = rsinb Tﬂ

10
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For the second derivatives we have

Ter = T

Tre = -r'I‘ec-Te ’

Trx = rsin® T"DC+ 8in® Tﬂ ’

Tee = r2 TEE' - rT,: ’ Ai=24)
Te)t = -r2 sin© TE‘n+ rcoseTn ’

T)Q = rzsin2 eT"M+ r sin® cos 0 Tg -rsinzeTc .

These equations are readily derived by differentiating equations (1-21) with regard
tor, 6, \, using

Txr = Txxxr + Txyyr + szzr » €tc.,

and expressing the derivatives with respect to x, y, z by the derivatives with respect to
£, n, £ by means of (1-17) and (1-18) with (1-22).

Conversely we Lave

! '

ng'?Tee"'r T

1 cos 9
T = - T.. + T ,
£n 2sin8 OA ' r2ginfe A

1 1
Tee = "7 Teo? 2 Te

1 ) ) (1-25)
T_= 55— T, +— T + cotT
mM  rlsin®e A p r 2 o’
T, = —2—=T - >—T
nl rsin®@ ‘rX  r°ine A’ .
ch =T .

11
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These relations are found by solving (1-24) with respect to T€ £ etc. and substituting
(1-20).

The dominant terms in (1-24) and (1-25) are the first terms on the right-hand
side. The following terms, representing eff >cts of first-order gradients, are usually
below 1 E8tv0s. For instance, take the second term on the right-hand side of the
first equation of (1-25). For r =6371 km and Tr = 100 mgals it amounts to

1. _ _100mgal .
" Tr 6371 km 0.016 mgal/km

0.16 Ebwos .

We have given these formulas for later reference. The meaning of the

coordinate systems introduced is as follows. The system xy2z is customarily used
as global coordinate system in geodesy. The gradients referred to this system can

be measured if the inertial platform carrying the accelerometer or gradiometer is

b i s ARk

made to main’ain a fixed orientation in inerudal space, the direction of the instrument

axes coinciding with the directions of the xyz axes. [

Usually, however, the instrument axes are made to slowly rotate in such a
way as to always coincide with the normal to the reference ellipsoid, the tangent
to the ellipsoidal parallel, respectively. For the quantities of the anomalous gravity
field, such as the disturbing potential, gravity anomalies, deflections of the vertical,
or anomalous gradients, the spherical approximation may be used, which consists in
neglecting the flattening in ellipsoidal formulas so that formally spherical formulas
are obtained. Loosely speaking we may say that the reference ellipsoid is formally
replaced by a sphere (Heiskanen and Moritz, 1967, sec. 2-14). Then spherical
coordinates r, 9, \ may be conveniently used; and the instrument axes coincide with
the axes ¢, n, { as deiined above.

For a summary of relevant aspects of inertial navigation cf. (Schultz and
Winokur, 1969, pp. 4892-5).

12
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Relatdons Between First and Second Order Gradients. = From the second
derivatives it is possible to obtain the first derivatives by an integration along the
flight path. For instance,

v = (Vx)o + f (Vxxdx+ nydy+ szdz). (1-26)

Po
Here (Vx )0 refers to an initial point along the flight path, and Vx refers to a current

point P. ¥ the flight path is given as a function of the time t:
x=x0, y=y®, z= z¢), (1-27)
then

dx = xdt, etc.,

the dot denoting differentiation with respect to time, and we obtain

P
= * ,‘ L3 *
Vx (Vx)o * f(vxxx+ ',xyy+ szz)dt,
o
V. = (V +fpvi+v'+ z)de , 1-28
y T Ot [ogde v vt (1-28)
o

<
[}

P
z (Vz)o * f (szx * szy T Vp? IREE
Po

In order to apply these formulss, it is necessary to know the flight path as a

function of time. In the next section we shall see how this can be achieved using a

combined accelerometer-gradiometer system.

itk
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2. Separation of Gravitation and Inertia by

il
ool o 2

Using a Combined Accelerometer-Gradiometer System 5

Assume that all first-order and all second-order gradients are simultanously ;

measured in an airplane, the inztrument axes, now denoted by x 1» X2 X3, being inert-

ially stabilized in such a wey as to maintair a fixed orientation in space.

In this case, the second-order gradient tensor measured is purely gravitational,
the inertial part being zero (Moritz, 1967, p. 28); itis, therefore, given by (1~6). The
measured first-order gradient vector, however, is not {1-1) because it is affected by

inertial disturbances.

TR T TR T

By equation (67) of (Moritz, 1967) we }.~ve

33;‘;' = f; - (W Wy + v&ij)xj + i;i . (2-1)

Here all subscripts i,j,k assume values 1,2, 3; the Einstein summation convention is used.
The vector f; is the votal measured force; b1 is the inertial disturbance, the second

time derivative of the position vector b; of the origin of the local frame. In the present
case, the vector bi consists of the three coordinates of the aircraft (more precisely,

of the center of mass of the measuring instrument) ia a fixed coordinate system. The
tensor wij describes the rotation of the local frame with respect to the fixed coordinate

system; since we have assumed inertial stabilization, w;. is zero.

1)
Thus (2-1) reduces to
3 av % o3
3x; = fi + bi ' (2-2) 3

3 Let us put for the gravitational gradients

av 2

P

14
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and for the measured force,

% B N o &6 e g o st e o]

S N ey Caian = iz

B B v A':.nn‘mm_&ﬂlu-—dw"J

£* = F . (2-4)
i i ;
'i
i
Furthermore, let us introduce the velocity components ;
by = (&79)
;; Then (2-2) becomes
Vl =F +uy (2-6) |
On the other hand, Vi may be cbtined by integration of vij . In cur new no~ %
tation, (1-28)is written concisely as
B,
V=), + [ VBt 2-7)
P
o b
since the coordinates of the aircraft, bi’ have been denoted by x,y,z in section 1. ‘
On introducing the velocity components (2-5) and denoting the times correspond- .
ing to positions P, and P by t, and t, eq. (2-7) becomes i
t
Vi = V), + [ vyugde 2-8)
t0
Eliminating V; between (2-6) and (2-8) we have
t 3
R+ = (v + [ vy udt 2-9)
%
and differentiation with respect to t results in |
i - Vyy tF =0 (2-10)
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which is a second-order linear differential equation, or rather a system of linear

differential equations, for the velocity Y-

To get a clear picture of the basic equation (2-10), we shall write it explicitly:

U - (Vy,u, + nyuy + szuz) + Fy 0, :

i e o

uy = (vyxux + Vyyuy + vyz"z) + Fy = 0, (2-11)
uy ~ (Vyu, + szuy + szuz) + Fz = 0,

where u,, uy, u, are the velocity components and Fx, Fy, Fz are the components of

the measured force. i :

; The quantites Fi and Vij being given by measurement, eq. (2-10) may be sclved
F by the usual numerical methods, for instance by a Runge-Kutta procedure, to get u .
: i

4 This integration may be performed in real time.

In this way we have indeed effected a separation between gravitation and
inertia:

The gravitmational first-order gradient Vi’ free from inertial noise, is obtained
from (2-6) or, alternatively, from (2-8).

The inertial acceleration, free from gravitational disturbances, is obtained
by =y . (2-12)

It may be twice integrated with respect to ime to give the position vector bi in a global
Cartesian coordinate system. Alternatively we have simply

T ——L T S

t
b, = &) + tj udt . (2-13)
0
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Thus our combined accelerometer-gradiometer system acts at the same time

as a purely gravitational gravimeter and a true inertial navigation system that is not

affected by the gravitational field.

Additional Remarks.- In oxrder to make the basic concepts transparent, we

have introduced two simplifications which can, however, easily be taken into account.

First, with current gravimeter (or accelerometer) and gradiometer systems,

E the force F; or the quantities Vj; are not the direct output when they are functions of 3
time. In fact, the instruments may be considered as linear oscillating systems, for
i g which the output is obtained as a linear operation on the input (Fj or Vijj):

¥ = Lo, (2-14)

EreNs

where 3 is the output and ¢ is the force Fj or gradient Vjj to be measured. If the linear

il b s G
ST A

operator can be inverted, then ¢ is obtained as
=L ¥ . (2-15)

-1
The form of the operators L and L = is characteristic of the measuring system under

consideration.

Secondly, we have already mentioned in sec. 1 that the directions of the
instrument axes, instead of being kept fixed, may be rotated in a prescribed way such
that, for instance, one axis always coincides with the normal to the reference ellipsoid.
Then the rotation tensor Wijj» instead of being zero, will be given, so that its effect
can be fully taken into account using formulas such as (2-1). For a special case cf.
(Hansen, 1971).

i 3 Finally we remark briefly on the relation of the present separation of
» gravitation and inertia to the principle of equivalence of these forces. As we have seen

in (Moritz, 1967, p. 56), itis in féct impossible to separate gravitation and inerta as

o long as the force acting at a point only is considered. As soon as we have a region in

" space, even an arbitrarily small one, however, such a separation becomes feasible.
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In the present case, we are given the force along a line. This fact by itself

is not yet sufficient for a sepaa ‘tion, which becomes only possible through the additional

o Smks bt

measurement of the second-oider gradients.

Here we nave restricted ourselves to an approach through classical mechanics
because analyses such as that in (Moritz, 1967) show that, to an extremely high accuracy,
it gives the same result as the more rigorous but also more complicated approach Co

through the General Theory of Relativity.

The Observational Data. - The measuring system under consideration gives as

output the second-order gradient tensor

A v Vv
XX Xy Xz
\ ' \" , (2-16)
yx yy yz
- Vv \'/ \'/ 3
zX zy zz o
the first-order gradient vector ;
v
X
: vy . (2-17)
Vv
z
and even the potential V: by integrating ;
dv = V.dx + V dy + V dz
X y z
we get _
» t g
V=V, + f Vyu + Vou + Vou )z (2-18)
t0
since the velocity components dx/dt = uy etc. are known.

i8
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This presupposes, of course, that initial values (Vx), » (Vy),,» (Vz), and

Vo at some initial point P are given.

Likewise we obtain the position of the aircraft,

y = b, , z=b>,, (2-19)

as a function of the time t, again presupposing suitable initial values that were required

for the integration.

As we have seen in sec. 1, it is convenient to subtract from the quantities ;

Vij » Vi and V their normal values, corresponding to a normal gravity potential U, :

to obtain anomalous gradients and the anomalous potential: ;
? § ] [ |
g. T T T T ¢
: XX xy Xz x ;
] T T T , T 5 T. (2-20)

yx vy yz y

4 T T T :
1 zx zy zZ z i
E_: . - L -

B L Y]

We remark that, since position is determined by inertial navigation, the normal
values will refer to the same point P as the measured values, so (hat (Tx’ Ty’ Tz)
represents the gravity disturbance vector; see sec. 1 and (Heiskanen and Moritz, 1967,
pp. 227 and 245-6).

5 Which of the quantities (2-2C) are used, will depend on the geodetic computation

P

method chosen. For instance, we might use ('I‘x , Ty , Tz) to compute deflections of

the vertical, to be used for astronomical leveling.

s

This would, however, be uneconomical because the available information is
not fully used. In fact there are 5 independent quantities (2-20) since the second-order
gradient tensor contains 5 independent quantities (see sec. 1) and the gradient vector

and T are obtained by integration of this tensor.
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Thus we might use five independent components of the gradient tensor, e.g.

T , T ¢ , T 5 T

xx’' “xy' ‘yy' “xz ! @-21)

or the thiree components of the gradient vector plus two independent components of the

gradient tensor, e.g.

Lo g Ay 0 W, (2-22)

or the potential plus four other independent quantities, e.g.

T, Tx' 'ly, Txx' Txy' (2-23)

It would, however, be uneconomical to use only Tx , Ty . Tz or , a fortori,
only T.

This fact imposes a strong requirement on the geodetic computation method
using thesedata: in order to take into account all available information, it should be
able to use simultaneously five independent quantities, ard it should use them in such
a way that the result is the same regardless of which system of five independent quantities,
e.g. (2-21) or (2-22) or (2-23) is taken as input.

In sec. 4 we shall present 2 method that satisfies these requirements.
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PART B

GEODETIC USE OF MEASURED GRADIENTS

3. Review of Proposed Methods

First-order gradients are equivalent to gravity anomalies (or gravity disturbances)
and deflections of the vertical, as we have remarked in sec. 1, so that their geodetic

use may, in general, be reduced to problems familiar in physical geodesy .

Still, this is not the optimal procedure, especially if all first-order gradients are
measured simultaneously. The main reason is that the familiar methods of physical
geodesy use either the gravity anomaly or the deflection of the vertical, a combination of
the two types of data not being directly possible. The simultaneous use of all three com-

ponents raises new problems.

Such novel features are particularly prominent in the geodetic use of second-order
gradients, which is also rather more difficult. We shall, therefore, limit ourselves to

considering second-order gradients.

Various methods for their geodetic use have been proposed and discussed, e.g.

in (Moritz, 1967). We shall now try to give a brief evaluation of proposed methods.

a) Line Integration. - We may integrate second-order gradients along the flight

path to obtain first-order gradients. The basic formula is (1-28) or, written in a more
gradient :ensor are measured and if the velocity components u; are known, either by
external measurements of the flight path or by the method described in sec. 2. The first-
erder gradients so obtained are converted to gravity anomalies (or gravity disturbances)
and deflections of the vertical, which are used in the conventional way (it is e2sy to de-
rive an integral formula analogous to Stokes’ integral but using gravity disturbances in-

stead of gravity anomalies).

The advantage of this method is the reduction of the problem to problems familiar
in physical geodesy. A disadvantage is that the available information is not completely
used: The three components of the gradient vector are computed from the five independent
components of the gradient wensor, so that two independent elements are not used.
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Furthermore, as we have seen above, a combination of the data furnished by the gradient

vector is not easily possible.

b) Torsion-Balance Type Computations. - The torsion balance invented by

Ebtvs, historically the first and still the only instrument in actual geodetic use, is
measuring, not all components of the gradient tensor, but only the quantities

ny and vyy = vxx (3-1)
(with, possibly, sz and Vyz in addition), the xy-plane being horizontal. The quant-

ities (3-1) may be used to calculate deflections of the vertical by an integration method
whose mathematical structure is clarified in (Moritz, 1967, sec. 1.2).

This method, classical and relatively widely applied, is appropriate to the
torsion balance. For instruments that measure all components, the available informa-
tion is only partially used. Furthermore, in this method the lines of integration do not
coincide with the flight path, so that problems of interpolation and vertical reduction oc-

cur similar to those to be discussed for the next method.

c) Global Integration. - This was investigated in (Moritz, 1967, sec. 1.3).

The relevant formula is equation (32) of that report:

2
_ R
L f T, S, (¥)do . (3-2)
(o)

This integral formula is completely analogous to the well-known Stokes formula: it

expresses the anomalous potendal T in terms of the second-order vertical (radial)
gradient T, . justas Stokes' formula expresses T in terms of the gravity anomaly
Ag . The function §,($) is a known functon, R is a mean radius of the earth, do
is the element of solid angle, and the integration is to be extended over the full solid

angle o, thatis, over the whole earth’s surface.

This condition, that the integration be extended over the whole earth, is the

more stringent as the effect of the remote zones on the integration decreases even less

22
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than in Stokes' or Vening Meinesz' formulas.

Since the gradients are measured only at discrete points or along certain profiles,
they must be interpolated in between. Unfortunately, second-order gradients fluctuate
much more rapidly and are more irregular than gravity anomalies or deflections of the
vertical, so that interpolation becomes more difficult and more problematic. The best
that can be done to reduce interpolation errors is to use least-squares prediction which

will give as accurate results as the data permit.

Another problem arises in this context. In (3-2), all the quantities Trr should
refer to the same level surface. Since it will hardly be feasible to perform all the meas-
ureinents at the same level, they might be made at different levels and reduced to the
same level. But because of the greater irregularity of second-order gradients, this re-

duction is even more problematic and less reliable than for gravity.

The main objection, however, is that most information remains unused: five

quantities are measured and only one quantity, T is used.

rr’

d) Determination of Spherical Harmonics. = The anomalous potential T can be

expressed as a series of spherical harmonics:

® n

T=% % (i) n+l (Opp cOSmA + By sinmA)P_(cos®),  (3-3)
n=2m=0 \T

where r(radius vector), 6(polar distance) and A(longitude) are the spherical coordinates

already used in sec. 1, a is the semi-major axis of the earth, an (cos 6) are

Legendre's functions, and o, and B = are coefficients to be determined.

The use of spherical harmonics is most appropriate with satellite gradiometry
because the convergence of the series (3-3) is satisfactory at satellite altitudes but is
not so at flight elevations and a forteriori at the earth's surface, so that an excessive
number of coefficients would be required to get a good approximation to the fine structure

of the gravity field.

By differentiation we may find the corresponding series for the derivadves T,

Te, T ;Tn_, T

Y o Tr)t’ Tee, Te.x' TXX and then the series for T€€' TE?')' etc. by
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(1-25) or, alternatively, the series for Txx » T, etc. by (1-25) and

Xy

) - A ]

Tax Txv Txz TEF. T&n Tnn

Te Moo 0o =A T, T T A, @)
Lsz Ty Tz LTcs Ten e

which follows from (1-18), the matrix A being given by (1-22). In this way we may i
express all measured second-order gradients as series which coniin the coefficients

o and B8 _ , for insiance,
nm nm

T = f(r,0,a .8 ), "
= LEe e LB, (3-5)

Thus, every measurement gives one linear equation for the oq, and fpy in
the form of an infinite series; note that r, 6, A refer w the particular point at which the

measurement is performed and are assumed to be known.

To determine the infinitely many oy, and By, , a finite number of measure-
ments and, therefore, of linear equations is certainly not sufficient. The conventional
procedure in this case is to truncate the series at some n =ng, such that the number
of retained parameters ohy, and Bpy is smaller than the number of observations and

these parameters can be determined by an adiustment.

Such a truncation is, however, a highly arbitrary procedure. In the present
case this is even more problematic than in the nsual determination of spherical
harmonics from orbital analysis, since the magnitude of the terms in the series (3-5)
decreases considerably less than, e.g., in the series (. -3), namely by a factor of order
n2, Truncation thus introduces “aliasing errors" and increases the mutual dependence

of the resulting values.




e

5

Also the statistical meaning of the formal adjustment procedure is questionable. ;
The o and Bnm may be almost as irregular as the effect of the measuring errors, ?
and almost as small. It would, therefore, be more satisfactcry to have a method that

takes this fact into account in a statistically well-founded manner.

Satellite gradiometry wiil probably be able to give harmonics of higher degrees
than does orbital analysis; it seems, therefore, proper to combine these two techniques,

possibly with other techniques such as satellite altimetry and satellite-to-satellite
tracking.

This brief discussion of different methods §hows some features that arise
particularly in the geodetic use of second-order gradients:

1. A large amount of information is obtained simultaneously at the same
point: the five independent components of the gradient tensor.

2. There are difficulties in the application of conventional horizontal inter-
polation and vertical reduction techniques owing to the irregular and fluctuating
nature of higher gradients. To better overcome these difficulties, the additional
information just mentioned should be used in an appropriate way.

3. By its very nature, gradiometer data are better suited to give fine details
than to pcrovide the large features. They are, therefore, best combined with other
data. This directly calls for a method that is able to combine heterogeneous data in
a natural way.

The classical methods of physical geodesy--astrogeodetic, gravimetric,
dynamic satellite techniques--are always based on data of a single type. Attempts at
combining them are more or less ad hoc. This is also true for methods using gradio-
meter data as discussed above, since they are modeled after those classical methods.

4. Statistical estimation and adjustment techniques have never penetrated
very profoundly into classical physical geodesy. Adjustment techniques and methods
of error theory have not been incorporated there in an entirely satisfactory and
natural way. The same holds for the above-mentioned methods, which is particularly
serious here because random errors may be comparable in magnitude to the quantity
to be measured, and systematic effects have to be carefully eliminated.
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4. Application of Least-Squares Collocation

The analysis of the preceding section has shown that none of the methods described
there is fully satisfactory for the geodetic application of gradiometer measurements. We

have also recognized some desiderata whicha better method would have to satisfy:

1. It should be able to handle all occurring data -- first and second order grad-

ients and any other data -- and combine them in a natural, objective and optimal way.

2. It should be able to handle discrete or profile data at different elevations directly,

without interpolation or vertical reduction.

3. Methods described in the preceding section should be suitable limiting cases
of it. For instance, if we assume that only Trr has been measured, but that it is given
without errors at very many points of a level surface, then the new method should give a
result for T that tends, as a limit for infinitely dense coverage, to the result of eq.
(3-2).

4. It should give the same results whether second-order gradients or quantities

derived therefrom are used; cf. end of sec. 2.

5. It should, in a natiral way, incorporate least-squares adjustment and give
statistically meaningful accuracy estimates. It should be able o make optimal use even

of "noisy" data.

Recently a new method of least-squares estimation of the gravitational field (least~
squares collocation) has been developed which satisfies these requirements (Krarup, 1968,
1969; Moritz, 1970a, b). It may be described as follows.

Let n quantities of the anomalous gravity field be measured; the measurements
will be denoted by xj, X5, ..., X;. They might be anomalous gravity gradients but also,
; e.g., conventional gravity anomalies, astrogeodetic deflections of the vertical or geoidal

heights derived from satellite alimetry. Denote by sp (the “signal”) the quantity of

the anomalous gravity field that we wish to compute, for instance a geoid height or a

component of the deflection of the vertical. Then Sp is given by the matrix equation

26
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= — - 1 . -
62 1 622 ) C2 n x2
sp =[Cp, Cpy -+ Cpyl . (4-1)
Cn 1 En 2 LY Cn£] ..xn-
Here Eij is the covariance between the observations x; and x,, and Cp; is the

covariance betwzen the signal sp and the ohservation x; (i,j =1,2,...,u). These co-
variances are basic; they carry, so to speak, the burden of the mathematical structure

of the gravity field. Therefore, much will have to be said in the sequel, especially in the
following section.

The above formula presupposes that the (suitably defined) average values of s P
and x; are all zero:

M(SP) = 0, M(xi) = 0, (4-2)

which means that both s, and x; must be quantities of the anomalous gravity field
(the systematic, "average" part of the gravity field being removed by subtracting the

normal gravity field) and that, in addition, X; must not be affected by systematic errors.

The measurements Xx; can, however, contain the effect of random errors; eq.

(4-1) is valid in this case as well as in the case of errorless observations.

The formula (4-1) is optimal in the sense that it determines Sp in such a way
that the value so obtained is compatitle with the given observations x; and the mean
square error of estimation is a mipimum. This has the following meaning. The n
given observations do not determine the gravitational field completely since this field
depends on infinitely meny parameters (e.g., the full infinite set of spherical harmonics).
Therefore, there are infinitely many possible gravitational fields that are compatible
with the given measurements. To each of these possible solutions there corresponds

a mean square error of estimation, mp, and eq. (4-1) singles out that solution for
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which mp is a minimum.

The formulas for this mean square error of estimation, mp, and for the error

covarianr=s of any computed values Sp and sQ » denoted by °PQ , axe as follows:

— s _ -1 ’1
€1 €13 s Sy Cp1
C21 C22 oo o C2n CP2
2 ] . L d .
mp = Cpp{Cpy Cpp --- CppJ |, , : y  @°3)
F Cnl an CRCIY Cnn-‘ _CPn n
3 _ B = e _
opq= CrqLCp1 Cpy « -+ CpyJ o . . . (4-9)
B Cnl Cn2 eo e Cnn L-CQn

These quantities are analogous to the mean square error after aajustment and the (error)

covariance of adjusted values in least-squares acjustment.

Not: that in adjustment computations, "variance” and "covariance" always mean
error variance and error covariance, whereas in the present method we have both field

covariances (e.g., CPI) and error covariaaces (e.g., UPQ)‘ More about this will be

said in the next section.

For the derivation of all these formulas see (Moritz, 1970a, sec. 2). K the
x; are specialized to be errorless gravity anomalies, the well-known formulas for
A gravity precdiction result; note the formal identity of the present equations (4~1), (4;3),
' and (4-4) with equations (7-63), (7-64), and (7-65) of (Heiskanen and Moritz, 1967, sec.

7-6).
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Systematic Effects. - Especially in moving-base measurements, systematic

trends such as instrumental drifts or systematic navigation errors, are likely to occur.
They can also be easily incorporated in the present model by a method developed in
(Moritz, 1969 sec. 10) for the case of aerial gravimetry.

If the measurements x; are affected by systematic errors, they are split up
into a purely random quantity gi (comprising both signal and random error) and a sys-
tematic part, also called trend:

m

Xp =&+ I A Xy -5)
a=1

where the Xa are m Systematic parameters and (Ai J denotes a given matrix.

Thus the functional dependence on Xa is assumed to be linear; if it i5 originally

non-linear, itis to be linearized in the usual way by means of Taylor's theorem.

The parameters xa are determined by a least-squares adjustment with the

result
x=@aTc oAy, #-6)
where
X=(X), x=(x),
- - 4-7)
A=), T=G

J

are vectors or matrices, respectively.

Then the trend is subtracted from the data x; to get the “centered data"

Ej=% - E Aia Xa' 4-8)
and these gi may now be used in (4-1), in the place of X;» o get again an optimal esti-

mate.

A derivation of (4-6) by least-squares adjustment by parameters may be found in
(Moritz, 1969, sec. 10). A more satisfactory simultaneous deduction of (4-1) and (4-6)
from a unified minimum principle has been given in (Moritz, 1970b).
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field is called least-squares collocation.
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% As we have already mentioned, the quantities x 1 Xgs o0s X

The basic equations (4-1), (4-3), and (4-4) need only be slightly modified when
systematic errors are present. In (4-1) we must replace X; by 5‘ as given by (4-8)
as we have just seen. In (4-3) and (4-4), the matrix

=1

’ #-9)

where 1 is the n x n unit matrix, and A and C are given by (4-7).
A derivaton of (4-9) will be found in the Appendix.

Properties of the Solutdon, - As we have remarked above, the present solution
is characterized by the fact that the mean square error of estimation is a minimum.
This is reminiscent of an analogous property of least-squares adjustment. In fact,
the present method is a generalization of least-squares adjustment for the case that
there is not only a random "noise” (measuring errors)but also a random "signal’
(elements of the anomalous gravity field). Cf. (Krarup, 1969) and (Moritz, 1970b).

To distinguish it from ordinary adjustment, the least-squares estimation of the gravity

n

can be any elements of the anomalous gravity field, affected or not by random errors.
Thus, eq. (4-1) is able to handle and to combine any measurements of gravitational
field elements, not only first and second order gradicnis. Applied to gravimetrically
observed deflections of the vertical £, 7 it would, eg., give an optimally combined
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astrogeodetic and gravimetric geoid; cf. (Moritz, 1970a, sec. 9).

Eq. (4-1) could also be used with third-order gradients. The reason why third-
order gradients are not dealt with explicitly in this report, is that thev are probably of
less geodetic usefulness. But the considerations of sec. 1and the techniques of secs.
4, 6, and 7 could be readily applied to third and higher order gradients as well.

Also the signal sp can be any desired element of the anomalous gravity fieid.
The different quantities computed in this way are consistent with each other in the

sense that they belong to one aud the same gravity field.

In fact, the second and third factor in (4-1), depending only on the observations
xj and their covariances, are the same for all elements Sp to be computed. Thus the
individual nature of the quantity Sp is expressed solely by the first factor, the vector
(CPi ), and the quantities Sp will be consistent if and only if the covariances CPi are
compatible. The compatibility of these covariances is assured by computing them ac-

cording to the law of propagation of covariances to be discussed below.

For instance, letall x; be errorless measurements of the second vertical grad-
ient Trr at various points of a level surface, and use formula (4-1) to compute Trr
at every point of this level surface; this is, then, a pure case of least-squares interpola-
tion in the usual sense. From the continuous global T -field obtained in this way, com-
pute T at some pointof the same level suriace by (3-2). Alternatively, compute T
directly from the measured values X; using again (4-1). The resulting value for T
will be the same in both cases because the covariances entering in (4-1) are chosen

so as to ensure this.

In this way we understand why conventional methods described in sec. 3 can, in
fact, be considered as limiting cases of least-squares collocat.on for idealized data

distributions.

As another example, consider the “problem of Bjerhammar": gravity anomalies
are given at discrete points of the telluroid; for a definition of the telluroid cf. (Heiskanen
and Moritz, 1967, p. 292). As a limiting case, for continuous coverage of the whole
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telluroid by gravity anomalies, this problem reduces to the “problem of Molodensky ",
the well-known boundary-value problem of physical geodesy @ibid, p. 291). The ‘
Bjerhammar problem may again be solved by (4-1) (Moritz, 1970a, sec. 5); if the

gravity coverage becomes denser and denser, this solution tends to a solution of
Molodensky's problem. As, under certain assumptions, the solution of Molodensky’s
problem is unique, this liimiting solution will coincide with the usual solution of

Molodensky's problem by integral formulas.

At first sight it may be difficult to believe that the simple matrix formula (4-1)
is equivalent to complicated pror .{ures such as the solution of Molodensky's problem.
The reason is that all covariances Cp; are based on the same covariance function ;
K(P,Q) (see next section), and that this covariance function may be selected t have a 3

relatively simple analytical expression. Hence, all necessary operations may be per-

formed analytically instead of numerically. Furthermore, starting from the covariance
function of the potential, the covariances of all relevant quantities such as gravity anomalies, :
deflections of the vertical, or higher gradients are derived by differentiations. These
are much simpler to perform than the integral operations necesrary when going inthe

opposite direction as in the classical procedures of physica! geodesy.

By taking for the covariance function a function that can be analytically continued
down to sea level, all difficulties of analytical downward continuation are automatically ;

avoided; such difficulties beset conventional reduction procedures.

These considerations help to understand why (4-1) is at the same time a generali-
F‘ zation of classical procedures, so to speak with built-in interpolation and vertical reduct-

ion, and an essential simplification.

There remains to be discussed why the present method gives the same results
with any of the data sets (2-21), (2-22) or (2-23) or with similar sets. The underlying

fact is that least-squares collocation shares with least-squaresadjustment the property

B S P wah e TR P e a5

of invariance with respect to linear transformations both of the signal s p and of the data i

X;e Invariance with respect to linear operations on field elements s P is the reason why \
the method determines a consistent gravity field, as we have seen above; and invariance

with respect to linear operations on the data x; is the reason for oviaining the same

results with the different data sets mentoned, since (1-28) and (2-18) are linear integral
32
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operatons. Cf. also (Moritz, 1970a, pp. 12-13).

The equations of least-squares collocation are directly suited for high-speed
computation. The biggest computational problem involved is the inversion of the
matrix C fora great number of observations. For a given setof data x;, however,
such an inversion is to be performed only once for all quantities to be computed and

for all accuracy evaluations, as formulas such as (4-1) and (4-3) show.

5. Covariances

As we have just seen, the covariances have o carry the whole burden of the

mathernatical structure of the problems under consideration. They need, therefore, ke

investigated more closely. This has been done in (Moritz, 1970a, sec. 4); we shall
summarize the relevant results andapply them to the present problem of the use of

gradients.

To ensure that all our computed quantities belong to one and the same gravity
field, all covariances that enter into our computations must be derived from a single
covariance functioa, for which we may take the covariance function of the anomalous
potential T,

K(p,Q) = cov(TP, TQ) = M(TPTQ) 3 (5-1)
defined as the average product of the T-values at two points P and Q, the average

1 ‘ng understwod in a suitable way.

The covariance [unction (5~1) and the quantities derived therefrom are field

covariances: they express the statistical behavior of the anomalous gravity field and

should be carefully distinguished from error covariances, which express the statistical

behavior of observational errors; onlv the latter are considered in adjustment compu-
tations. Cf. the remarks concerning the covariance function of the gravity anomalies
in (Heiskanen and Moritz, 1967, pp. 267-8).
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The results of the computations do not depend strongly on the choice of the
basic covariance function(5-1) (s long as it is used consistently throughoutl), in the
same way as toe results in adjustment computations do not depend strongly on the
weights chosen. It is, therefore, possible to take for K(P,Q) an analytically simple
function.

K is a function of two points P and Q defined on and outside of some sphere of
radius R (which we may take to represent sea level) that must be harmonic both as a
function of P and as a function of Q:

AK(PQ) = 0 = AQK(P.Q). (5-2)

where Ap means the Laplace operator applied at the point P. This follows immediately
from the definition (5-1). Furthermore, the function K is assumed to be rotationally
symmetric: on the sea-level sphere of radius R, it depends only on the spherical
distance § of P and Q. Thus

K(PaQ) = K(rPo rQo ‘b) ’ (5‘3)

itis a function of the radius vectors, rp and rqQ, of P and Q, and of the spherical
distance ) between P and Q.

Such a function has a spherical-harmonic expression of the form

n=0 n\ r, r

- R2 n+1
K(P,Q) = T k P (cos p), (5-4)
P'Q 2

where the kn are coefficients.

For example, we may take k;, = k,= k, = 0 and

2
P o= A
h T (@-1)n-2) for ng 3. (5-5)




With these coefficients, the series (5-4) may be summed so that a closed expression
is obtained:

2 3
K@,Q) = A(I_l:;Q ) [P(cos $)(1+2n 2 ) + 4~ sinp] -
(22 \ ? \
- A(rprQ> cos d)!n-ﬁ +
roz N roz
+ A<rPIQ> 5 [3 (rPrQ) cosy - 1 ] (5-6)

where
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Mk = ;0:___ cosy ,

and A and I are suitable oonstantls. According to (Lauritzen, 1971), to whom this
function is due, it fits excellently global gravity and satellite data, with

I, = 0.9945R,
(5-8)
A = 7.84888,
R being again the mean radius of the earth.
A simpler function which might also be useful in appropriate cases is
1
Ipr 2 Tpr 2
K®,Q = B |{_PQ - PPQ cosy+1 5-9
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given by Krarup (1969), with suitable constants B and Ty

The equivalent, for the plane, of the spherical expression (5-9), is the function
1
_ _ o2 _ 2 2 -9 E
KP,Q = Cly-xp) + Gg-vp + Gptzg+D)" T % (-10)

with constants C and b. It is readily verified that this function is harmonic with
respect to P and Q.

Propagation of Covariances.- The law of propagation of covariances states

“how the covariances between any two elements of the anomalous gravity field are
derived from the basic covariance function (5-1). Perhaps the easiest way to express

itis verbally as follows:
Let u and v be two quantities derived from T by linear operations. Then the

covariance between u and v,

cev (u,v) » _ (5-11)

is obtained as follows. Apply to the covariance functdon K(P,Q), considered as a
function of Q, the operation that dc¢ermines the quantity v from T. To the result,
considered as a function of P, apply the operation that determines the quantity u

from T. The resultis cov(u, v).

An example will clarify this rule. Let

u=T |, v=T . (5-12)

Then u is determined by successive partial differentiation with respectto x and y,

and v is derived from T by partial differentiation with respectto z.

Then, by the verbal rule just given, cov(T,, , T, ) is found as follows. Apply
to the covariance function K(P,Q), considered as a function of Q, the operation that

determines v from T, that is, partial differentiation with respectto z, obtaining
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32K(P,Q)
BZQ

To this result, considered as a function of P, apply successive partial differentiation

with respect to x and y, obtaining

2 (x\. Fxeo
axp ayP BZQ a(P ayP BZQ

B

Thus the desired covariance is given by

33k@,Q)

L. 3. S 5-13
3xp 375 92 (5-13)

cov(Txy, Tz) =

Putting x =Xy Y TXg Z=Xg and Jetting i, j, k, 1 take the values 1, 2, 3,

we obviously have

—AKEP,Q) (5-14)

) - PK(P,Q)
3%, p 3Xj,pdxy Q

N a ’
%i, P %%§,Q%%k,Q

N (¢ X o) M
&xy 30X ) oX;, p 3%;, p 8Xy Q¥X1,Q




T Ty =

T ity

Here we have used X, to denote cvordinates x,y,z, as we did in sec. 2. Otherwise
throughout Part B of the present report x;(i =1,2,...,n) always denotes measure-

ments, so that no confusion should arise.

These formulas give the covariances between T and its first and second partial

derivatives. Extensions to higher derivatives are obvious.
Sometimes linear combinations occur. For instance, the gravity anomaly is a

linear combination of T and 3T/ar:

=.-3T . 2 -
Ag - 2T (5-15)

(Heiskanen and Moritz, 1967, p. 89). Another example is represented by {1-25).

Thus let us, for instance, find

cov(Ag, TEE )p

T€ ¢ being given by (1-25):

| 1 -
We shall use the rcule for the propagation of covariances as given above. Apply

to the covariance function K(P,Q), considered as a function of Q, the operatiun that
from T by (5-16), obtaining

determines TE_ ¢
2
1 K 1 K
rQ 36 Q IQ arQ

To this result, considered as a function of P, apply the operation that determines .\g
from T by (5-15). Thus we obtain
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1
=T
rq oy TRy 2%
_1 & . _2 k. -
l'Q arParQ rP"Q arQ
= cov(Ag, ng) . (5-17)

In this way < are in a position to express all covariances that occur in the
geodetic use of gradients, in terms of partial derivatives of the basic covariance func-

tion K@,Q).

Finally we c.nsider briefly how these partial derivatives are evaluated. If
K is given as a function of rectangular coordinates x,y,z, then the evaluation is
straightforward. A fully worked out example will be found in sec. 7; for another example
see (Moritz, 1970a, sec. 7).

If K is given as a function of three variables Ip rq, Y as in (5-3), then the

differentiations must be performed as

3xXp - 3rp p # arQ 3xp g a¢ xp (5-18)
Now
l'P XP yP ZP ’
2 e o2 2 2
r = x2 + + z 5 5-19
Q e g e =19

Xp xQ+yP yQ +szQ

v x% +y2 +z‘ \/Q c22+zQ‘ ’

so that, by straightforward differentiation,

cos Y

Eil: = il_, arQ = 0
axp r_ ax ’
P P
(5-20)
2 = . = cos Y- 2
3xp  sin P rg TpTg
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In this way, all occurring differentiations may be performed without any mathe-
matical difficulties, although the analytical work may be laborious.

Observational Errors. - If the observations x; are errorless, then all covar-

= B
iances CPi and Cij entering into the basic collocation formulas (4-1), (4-3) and (4-4)

should be field covariances as we have just considered.

If the observations x; are affected by random errors, then the covariances

Cp; remain field covariances, whereas the covariances Eij are now given by

where Cij are the field covariances corresponding to the observed elements, and Dij
are the error covariances of the observational errors. In the terminology of adjustment

computations, the matrix (Dij) is the variance~covariance matrix of the observations.

The simple relation (5-21) presupposes that the exrrors are uncorrelated to the
anomalous gravity field. This will be true if the observations have not yet been sub-
jected to a preliminary collocation, for instance, a least-squares filtering. Iu the
latter case, the covariance matrix ((_Iij) is to be taken from this preliminary collocation;

cf. (Moritz, 1969, sec. 9). This is in complete analogy to least-squares adjustment.

6. Determination of Spherical Harmonics

The collocation method described in sec. 4 may also be used to determine

spherical harmonics from gradiometer measurements.

Let the spherical harmonic expansion of the anomalous potential T again be
given in the form (3-2), which we shall write in terms of fully normalized spherical

harmonics (Heiskanen and Moritz, 1967, sec. 1-14):

n:

w4 i a\ n+l}_ - - = )
T(r, 9,)) = 2:2 n§=0 (;) [“nm Rom (8,A) + pnmsnm(e,k)]. 6-1)

Then the "signal” sp in (4-1) is any coefficient & a B

i let us assume
24,
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sp = anm . (6-2)

Then E
Cpy = cov (&nm’ X; ), (6-3)
C = i» X5/ -4
Clj cov (xj x]) (6-4)

x; being again any measured second-order gradient (or any other measured field element). *

The computation of the covariances (_:ij has already been considered in the pre-

ceding section; it remains to study the covariances (6-3).

The spatial covariance function of T may again be expressed in the form (5-4):

? COS S -

Then we have by (Moritz, 1970a, p. 45)

k
- = - = _ _“n
cov(@pm » Opm) = V(B By ) T ThEd

cov (@i » Oy ) = COV(Enm-qu) =0
if p#n or q #m or both, (6-6)

cov(&nm,ﬁpq) = 0 always.

In the report just quoted, these formulas have been derived for the covariance
function of the gravity anomaly. Itis, however, obvious that they are valid for the

covariance function of the potential as well.

Any gradient is obtained by single or multiple differentiation of T (or by a
linear combination of such derivatives), to be symbolized by DT. Thus from (6-1)

we get
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Let DT denote the gradient the measurement of which is x;. Then

"
M8
[y =)

DT

O
[

o cov(anm, DT)

_ = P pﬂ[_ (qu> _ (Em]
+
cov{oznm,pz2 qz;oa aqu 1 ﬂqu 571 }

pt1l T = R
[cov (anm,apq) D (_m_) + y

(|
o ™M
2 ™M

w

izl
~——
| IS |

Pq
rm * fpq) D (;5:1

n+l - Rm
a cov(anm, &nm)D<rT+-1> ’

since all covariances between coefficients are zero except one, by (6-6). Thus we have

an+1 R (8,))
CPj_ = Em kn D rlmn"'l . (6"8)
Since
R__(8Xx) - =
E‘L@m_ = r (““)an(e) cos m)\
r

is a simple function of r, 6, A, any differentiations with respect to r, 6 X\ are easily

carried out, e.g.,

2 R L =
.:;7 (R_:l?%’g_) = @+1)(a+2)r "I cosma,

. mr-(n+1) dPpm
8

sinm) ,

32 'ﬁnm(e.k)
399\ A+l
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and the components in rectangular coordinates follow from equatiors such as (1-25).

For the determination of the coefficient an we need cov(Flml , DT), which
is again given by (6-8), with R(0,)) replaced by S(6, )).

After these preparations we are ready for the application of the collocation formulas
such as (4-1), (4-3) and (4-4) for the derivation of spherical harmonics from gradiometer

measurements.

Random measuring errors are automatically taken into account if the covariance
matrix (6-4) is properly computed, in the way outlined at the end of the preceding

section.

Systematic effects can also be incorporated into our computaticas as discussed

in sec. 4.

The advantages of the collocation method over the conventional procedure described

in sec. 3 (Item C) are as follows.

1. Every harmonic is determined independently, without aliasing errors, since
the infinite series (6-1) is not directly ~sed and, consequently, no truncation occurs.

Convergence problems do not affect the present solution.

2. The statistical meaning of the new procedure is transparent: it is an optimal
procedure in the sense that it gives the most accurate results obtainable on the basis of
the given data. The statistical behavior of the anomalous gravity field is properly taken

into account.

It is said to be a disadvantage of spherical harmonics in satellite geodesy that
their orthogonality properties cannot be used as efficiently as it would be desirable .
The collocation method takes full advantage of these orthogonality properties, in the form
(6-6), to separate the individual coefficients.

Combination with any other observations--from classical techniques such as direct-
ion, range and range-rate observations or from new techniques such as satellite altimetry
or satellite-to-satellite ranging--are straightforward because (4-1) can be used with
heterogenous observations as well, systematic parts being eliminated as discussed in sec. 4.

43




7. Use of Profile Measurements

In (Moritz, 1969, sec. 6) we have discussed at length the use of aerial gravity
measurements along parallel profiles. Since the least-squares estimation formulas hold
for any type of measurements, also of different kinds, the formulas given there are also
valid for measurements of first and second order gradients along parallel profiles.

To keep our problem simple we assume, as we did in the case of aerial gravi-
metry, that the profiles are parallel straight lines; they need not be equally spaced, and
they may be at different elevations, Let t be the distance counted along the direction of
the profiles, such that the lines t = const. are straight lines perpendicular to this
direction; cf. Figure 2 in (Moritz, 1969, p. 26). Denote by xi(t) the measurement of
some field -element (in our case, of some first or second order gradient), recorded
along a profile as a function of t. In (Moritz, 1969, sec. 6), subscripts such as ior
jd,j=1,2,...,n) have labeled the profiles; now they label the different quantities meas-
ured. All n measurements xi(t) might, in principle, be performed along the same
profile; or they might be performed along different parallel profiles: the formulas are

the same.

The comnutational formulas derived in the previous report just mentioned may

be summarized as follows.

Denote by
cij(t) = cov(x, xj) (7-1)

the autocovariance function of the measurements. More precisely, Eij(t) is the
covariance between the value of x; for the argument u +t and the value of X for

the argument u, u being any real number. Similarly,
ij(t) = cov(sP, xj) (7-2)

denotes the cross-covariance function between signal and measurement; more precisely,

CPj(t) is the covariance between sP(u +t) and xj(u ).
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The assumption that these covariance functions do not depend on u but only on
the argument difference (u +t) - u =t means that our measurements x;(t) are

considered as "stationary stochastic processes"; cf. (Meissl, 1970).

Now we form the Fourierx transforms of the covariances, the spectra

= _ = -iwt :
5, = { €, 0" de,
. (7-3)
. ~iwt
Spy@) = _£ Cpe "t
Next we compute the “system functions"
B 15 6D
Hpj(w) = 'El SPi(w) Sij W), (7-4)
i=

where -S-ij(- b (w) are the elements of the matrix inverse to the n X n matrix with elements

511 (w). Applying the inverse Fourier transformation we obtain the "weighting functions"
_ 1 F iwt |
he® = 3 f Hp @) € o , (7-5)

and the optimum estimate of the signal sP(t) is finally given by

n [ -]
sP(t) = jz=;1 _-[ hpj(t -a)xj(a)doz . (7-6)

For the validity of this method it is essential that the covariances be appropriately
computed. If the measurements can be considered as errorless, then all covariances
are directly given by the law of propagation of covariances as discussed in sec. 5. If
the measurements are affected by random errors, ij (t) is again a pure field covariance,

whereas now

Cij(t) = Cij(t)+ Dij(t) (7-7)

45

MR f deinm e n e e




b
o
P

consists of the field covariance Cij(t) and the error covariance Dij ®).

The exrror covariances for second-order gradients and for first-order gradients
obtained by the method of sec. 2 should be very much smaller than in the cise of aerial
gravimetry, because there Dij(t) also includes the inertial noise which is now absent.

An Example. - This method will be illustrated by a simple example. We assume
two parallel profiles 1 and 2, the firstat elevation 2z, the second at elevetion z3.
Along profile 1, the second-order gradient Txy is measured, along profile 2, the
first-order gradient T, is measured; these measurements are errorless.

This example differs from Example 2 in (Moritz, 1969, pp. 35-36) only by

different observational data; the geometrical configuration (Fig. 1) and the

y

]

o
P>

Figure 1
mathematical structure are the same. The solution is represented by equations (7-12)
and (7-13) on p. 36 of that report. Only the covariance functions are different because
of the different observational data; they will be computed now.

As the basic covariance function, let us take the funcuon (3-10), with C = I:

1

K@A,B) = 5y (7-8)
with

2 2 2 2

D -(xB- xA) +(yB-yA) +(ZA+ zB+b). (7-9)
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Both the example and the covariance function have been chosen for simplicity; they are
obviously not very realistic.

By differentiation we find:

3 K 3
= = £ - - -
cov(T, Txy) Xg3Vp BS-\XB ""A)WB YA) s (7-10a)
3K _ 1 1
cov(T, T.) = 3z D3 (zA+ zB+ b), (7-10Db)
4
3°K
cov(T_, = =
xy Txy) 3x), 37, 3%V

3 .15 2_15 2
= - D) Fg oyt
B 7T 9

105 2 2
+ D9 (xB xA) (yB yA) ’ (7-10c)
aaK 15
cov(Txy’Tz) = W = ;T(J(B'XA)G'B'YA)(ZA"' ZB+ b) ] (7'10d)
321( 1 3 2
cov(T_ ,T) = ———= - + z,+z+ b)" . (7-10e)
z' 'z azA azB 33- _05- A zB
Substituting
A = P1 . B=P;
Xg~ Xp "ty YpT Y, T A
2 . 2 2 2
D1 =t +a1+(zP+zl+b)
we obtain from (7-10a)
. L
Cp ) = == (7-11a)
b
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XB'XA= t’ yB-yA= -az;

=)
1)
n

2 2 2

we find from (7-10b)

1
sz(t) o (ZP + z

+ b) ;
03

2 (7-11b)

substtuting

we have from (7-10c)

Cn® = " ; (7-11c)
11 D ) 7

substituting

XpT AT T YgT YT TR

2 _ 2y 2 2
Dlz-t+a +(..1+z + b)

2
we find from (7-10d)

. _1oat )
Clz(t)" — (zl+ z, + b) ; (7-11d)
D12
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and substituting
Xn - X =t - =0 s

2
D,; = 2+ (22, +b)?

we finally obtain from (7-10e)

Cop(t) = - 3+ 2o (225 + 1), (7-1le)
Dzz Do

For the notations cf. Figure 1; note that a, a;, a9, being measured in the xy-plane,
are shown in true size, whereas the spatial distances Dl’ Dz, D 12 are shown as

projected onto the xy-plane.

Now we can form the Fourier transforms of these covariance functions to get the
p1() 204 Hpp®)
by eq. (7-13) of (Moritz, 1969, p. 36), which are nothing else than our present eq. (7-4)

specialized for the example under consideration, and hPl(t) and th(t) by (7-5). Finally,

spectra SPl(w), SPz(w), S“(w), Slz(w), and Szz(w). Then we find H

(7-6) gives T as the signal to be computed.
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APPENDIX

Error Variances and Covariances

in the Presence of Systematic Effects

We shall derive the modification of the formulas (4-3) and (4-4) for error variances
and covariances of the result when systematic effects are present, arriving at (4-9).

Equation (4- 1) may be written

yp= hgx (A-1)
with
pC (A-2)
we are using a2 matrix notation similar to the notation in (Moritz, 1969, p. 11), writing
yp for the estimated value of Sp to distinguish it from the true value Sp-

If systematic effects are present, then in (A-1) the observation X is w be re-

placed by the centered observation

E=x-AX, a-3)

so that
Yp = h&k-4X), (A-2)
with llP again given by (A-2).
The error of estimation is then the difference true minus estimated value:
¢ Sp” Yp o
and by (A-4),
€p= Sp~ hp(x - AX) . (A-5)

Let us now introduce the true values of the parameters, X', and the corresponding
true values of the centered observations, ¢’, for which we have

4

£ =x-AX’, (4-6)
S0
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in analogy to (A-3). Substituting

x=§+AX A-7)
in (A-5) we find
Sy ’_ 7 (A-8)
€p=8p~ hpf -hpA(X" - X).

The estimated values of the parameters are given by (4-6), which may be abbrev-

iated as
X = Hx, (A-9)
with
H=@Tc'atalct, (A-10)
Thus by (A-7),
X=Hx =Hg'  +HAX',
and by (A-10),

HA =] (A-11)

(1 denotes again the unit matrix), so that

'

X'-x=-H¢', (A-12)

which is substituted into (A-8) to give

e =Sp-hp(1 - AHE" . (A-13)
With the abbreviation
hp = h,(L-AH) (A-14)

we may write this as
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Sp - Ep_ﬁ_'. (A-15)

Thus

€peq = SpSq - Sphgt’ - hpf

and on forming the mean value:

= Con - Cobiy - BuCl + 0 EHT (A-16)
°p ¥ “PQ =plqQ T Ir&q TipxlqQ-
Now
_— = e Tzel,,-1,T="1
Ep = hp(-Al) = ¢, [1-aaTE Ay 1aTT ]

is substituted into (A-16) to give, after some straightforward manipulations,
%o =Crq - CpC [L-a@TCT A ATT ] 7, @A-17)

which is (4-4) with C -1 replaced by (4-9); and setting Q =P gives the corresponding
2

result for the error variance mp.
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