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1. Introduction

The class of problems involving stochastic systems can be classified

broadly into three categories

i) Determ.inistic System - Stochastic Input

ii) Stochastic System - Deterministic Input

iii) Stochastic System - Stochastic Input.

Of these three classes, the most highly developed analytical techniques

are available for i. A discussion of this topic was recently given by

Ames LI. Most of the techniques for ii and iii are approximate, and are

valid for systems with small stochastic parameters. The methods described

herein are applicable to the eigenvalue problem, and the inhomogeneous

boundary value problem for weakly stochastic systems. Although this may seem

restrictive, it does nevertheless encompass a large spectrum of meaningful

problems such as free vibration or buckling or a structure whose average

properties are known (such as mass produced structures), vibration of

stochastic structures forced by either random or deterministic loading,

static response of stochastic structures to either random or deterministic

loading, stochastic control systems and many others.

2. The Eigenvalue Problem

Instead of discussing the general problem immediately, let us consider

the rollowing problem. We have a taut string of length L, and tension T.

The density of this string is

p(x) -0 UL + CW(x)J

where e(x) is a random variable which is bounded by a small number.

PLjE(X)I'J = 0

and a << 1.
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The equation which governs the small amplitude free motion of this string

is

T L- +° [1÷(x)] 2y=0

ax2  0 at 2

where y(x,t) is the displacement of the string from its neutral position.

An eigenvalue problem arises when y(x,t) = Y(x)e it, and y(O,t) = y(L,t) 0.

Namely,

a2y
7-2 +L1 + tW(x)]Y = 0
dx

where P O w 2
'F-W

We restrict our attention to the fundamental mode (although the same

technique can be applied to any mode), and realize that for each function

(x) there is a corresponding A. That is, A is a functional of E(x) on

the interval [O,L]. It can be shown that A is a continuous functional,

and therefore can be represented as follows

A=Ai + 1(0 e )d& + L f 2 (r~(hidd
0u

L . L

-=jo÷ ..S Kl(n)(E 'd ÷,2-*C )I0C C0 n2 •)()dC (n M .d4dn

+ ..... . (.)

(a . f. Volterra L2J).

We recall that IE(x)I is uniformly bounded by a small number and, as

an approximation, truncate the above expression after the first integral,

so L
A= 1 Kl(O)c(•)dE{. (2)

0
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A is the eigenvalue corresponding to c(x) 3 0, X (% ) is evaluated by0

taking the functional derivative (c. f. E2]). For this problem

2
K ( ) - - Sin

L 3  17

Hence,

- T2 T 3 Sin -- C(4)d4. (3)

Since c(4) is a random variable, so is A. The problem is completed when

the statistical properties of A are related to those of c(&j. For the

remainder of this report the expected value of a random variable u is

denoted by<u>.

It follows immediately from (3) that

2A 2 2w2 2~ n4

<X 7/ L. 3 Tsin2 & d& (4

In the particular case that

<C(O)> 1- 0, we have

< A> 2 ,2

and,

<(X-*X ) 2 4W L jLa Sin 2 7r&in2 In~ /c(&0cn>ýdn. 5

The quantity 4(EC)E(n)> is the autocorrelation of c(x) and so we related

the mean value and standard Oeviation of A to the mean value and autocorre-

lation or clx).

This illustrative problem suggests the following general .pproach.

Suppose

MLc(x)J y(x; + A y(x) = 0



where HLc(x)J is a linear differential operator which involves the small

random variable c(x). The boundary conditions are homogeneous at x = 0

and x a L. We further suppose the eigenvalue problem has solutions in

the neighborhood of c(x) : 0. Denote the smallest eigenvalue A, and

the corresponding value for c(x) -" M.AOO Then by the same reasoning

as before we can approximate A as follows

A -A 0  + j K ( ) ;( E) d 4.

0

From this it follows that

<AP A 0 + K(&) e(t) d& (6)

0

and if <C(&), - 0

(A- <A>)2 K(Q) K(n) <'c(&)e(n)> d~dn. (7)

0 0

The successful application of this method requires calculation of K(&),

but this is not too difficult 12].

3. Inhomogeneous Boundary Value Problem

Consider the following class of problems

MLc(x)i y(x) = f(x) (8)

where MLc(x)] is a linear differential operator depending on the uniformly

small function c(x). Furthermore we assume homogeneous boundary conditions

at x = U, x = L. Such problems are easily solved if one knows the Green's

function for the problem. The Green's function is, however, dependent on

the function c(x). Let G (x.4) be the Green's function corresponding to

a particular £(x). Then the solution to (1) for that c(x) is



JL
ylx) G G (x,0; f(Q) d&;. (9)

0

nut G (x,&) is a functional of e(n), and in the case of uniformly small

c(n) can be approximated

G(xE) G Lo(X,4) + X K(x,E•,n) e(n) dn.
00

Hence the approximate solution to (1) is
1.

y(x) Go(x,0 ) f(C)dt
0

+K(X,&,n) c(n) f(&) dndF.. ýlO)

0 0

Where G (x,E) is the Green's function corresponding to e(n) u,0

and K(x,&,n) is the functional derivative of the Green's function with

respect to c(n) evaluated at £(n) 0. The above formulation is applicable

for random f(O) as well, and taking averages we obtain

<y(x)> = Go0(x,) <f(&); dC

0

+ L f K(x,E,n) 4c(n)f(&) > dndt ll

0 0

and, in case <f(&)> = f(C) and <c(n)> 2 0

we obtain

(y(x) = < y(X)> )2 =

s~ Lj K(xm,n.r) K(x,S,,T) f(C) f(s.) <C(n)¢(T)> dtdodnd. (1ý,)

0 0 0 0



As an example, consider the following problem

d2

+ [l+c(x)Jy = 6(x-L/2)
dx (13)

y(O) = y(L) = 0.

Physically, this corresponds to a harmonic point load applied at the

center of a taut string whose density is constant plus a small random

variation. We further assume that

%EX = 0 (14)

and <c(x) c(y)> = Ae-bIx-yI. (15)

For equation (13) and the boundary conditions, one obtains

Sinx Sin (L-0) LCot(L-&)-Cot LI x<&<n
2SinL

- Sinx Sin (L-, Cot L xn<2SinL

Sinx Sin (L-&) [Cotx-CotL) n<xq
2S inL

K(x,C,n) (16)

Sin& Sin (L-x) ICot(L-x)-CotL-] k<X<n
2SinL

- Sin& Sin(L-x) Cot L .<Y1-x
2SinL

Sin& iin (L-x) LCot&--CotL]
2SinL

From eqs. (11), (14), (12), (15) we obtain

y(X)> 0,



(y(x) -<ywx> 2

(Sin Sin L L~22[ 11
2 [Co Cot x-1, -x

C'Mot 2 j~

Sinx Sin 7  1 2 L 1 2
2SinL b 2 bd )-+ebL. X

2r i'L 2 L

(Sinx Sin- L 1 L -

2SnL2 Cotx -CotL3j -N2-

L L

2 b xSinx SiTSinx Sin-.

(3e -1) 2SinL ( CotLj 14~I~LCOt CotL)I
LL

2 bL L L ISinx Siny Sinx Sin--

.- (e- _-e4 '2) (eb'27 _eb2 CotL L)
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