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1. Introduction

The class of problems involving stochastic systems can be classified
broadly into three categories

i) Uveterministic System - Stochastic Input
ii) Stochastic System - Deterministic Input

iii) Stochastic System - Stochastic Input.
Of these three classes, the most highly developed analytical techniques
are available for i, A discussion of this topic was recently given by
Ames [1]). Most of the techniques for ii and iii are approximate, and are
valid for systems with small stochastic parameters. The methods described
herein are applicable to the eigenvalue problem, and the inhomogeneous
boundary value problem for weakly stochastic systems. Although this may seem
restrictive, it does nevertheless encompass a large spectrum of meaningful
problems such as free vibration or buckling or a structure whose average
properties are known (such as mass produced structures), vibration of
stochastic structures forced by either random or deterministic loading,
static response of stochastic structures to either random or deterministic
loading, stochastic control systems and many others,
2. The Eigenvalue Problem

Instead of discussing the general problem immediately, let us consider
the tollowing problem, We have a taut string of length L, and tension T,
The density of this string is

p(x) = p_ [1+ e(x)]
where e€{x) is a random variable which is bounded by a small numbe:r.
PL]e(x)|>a) = 0

and a << 1,




The equation which governs the small amplitude free motion of this string

is

32 2?
T=L-p L1+ €)1 =% = 0
ax ° at

where y(x,t) is the displacement of the string from its neutral position.

An eigenvalue problem arises when y(x,t) = Y(x)e"”t, and y(0,t) = y(L,t) = 0.

Namely,
2
LAl + eIY =0
dx
P
where A= 'l'g w2.

We restrict our attention to the fundamental mode (although the same
technique can be applied to any mode), and realize that for each function
£{x) there is a corresponding A. That is, A is a functional of e(x) on
the interval [0,L]. It can be shown that A is a continuous functional,
and therefore can be represented as follows

L

A=A+ 5
(o]

(]
L L

+...jo...so Kn(cl,r,z...,cn)e(cl)...e(sn)dgn)dt;l...dgn

L L
Kl(C)e(t:)dC + ‘S‘ J Kz(éln)c(ﬁ)e(n )d&dn
(V] (V]

+ L LN N N} * (l)
. f. Volterra [2]).
We recall that |e(x)| is uniformly bounded by a small number and, as

an approximation, truncate the above expression after the first integral,

SO L

A= A * I K, (€)e(g)de. (2)
0




Ao is the eigenvalue corresponding to e(x) £ 0, Kl (¢) is evaluated by
taking the functional derivative (c. f. [2])., For this problem

2

.25 . 2 mg
Kl(F.) = Ls Sin -I:— .
Hence, ) ) L
N sin® & ¢(£)dg (3)
L2 L3 L

0

Since €(¢) is a random variable, so is A, The problem is completed when
the statistical properties of A are reiated to those of e(:). For the
remainder or this report the expected value of a random variable u is
denoted by{u) .

It follows immediately from (3) that
L

2
2,2 2% . 2 %E .
Oy A J sin® 2= {e(6)P de. (4)
Q
In the particular case that

<c(£)) £ 0, we have

< A) = w2/j..2 v
and, !

2 uw“ Lot 2 n€.. 2 mn
(-2 = sin® [28in” % {e(g)e(n)) dedn. (5)
L
o Yo

The quantity <(c(£)c(n):> is the autocorrelation of e(x) and so we related 'k
the mean value and standard deviation of A to the mean value and autocorre- i
lation ot €{x).

This illustrative problem sugyests the following general approach.

Suppose

Mle(x)] y(a; + A y(x) = 0




A

o

where Mle(x)]) is a linear differential operator which involves the small
random variable e(x). The boundary conditions are homogenedus at x = 0
and x s L, We further suppose the eigenvalue problem has solutions in
the neighborhood of &(x) = 0. Denote the smallest eigenvalue A, and

the corresponding value for e(x) = 0.A . Then by the same reasoning

as before we can approximate A as follows

L
A2 A+ S K(E) ¢(g)de.
0
From this it follows that
L
AP =t K(E) e(g) de (6)
0
and if {e(g)P =0
L pL
(A- {AD)? = X K(g) K(n) { e(&)e(n)D dedn.

0 %Yo

The successful application of this method requires calculation of K(£),
but this is not too difficult [2].
3. Ilnhomogeneous Boundary Value Problem
Consider the following class of problems

Mle(x)] y(x) = £(x) (8)
where Mle(x)] is a linear differential operator depending on the uniformly
small function e(x). Furthermore we assume homogeneous boundary conditions
at x = 0, x = L. Such problems are easily solved if one knows the Green's
function for the problem. The Green's function is, however, dependent on
the function e(x). Let Gc(x.C) be the Green's function corresponding to

a particular e(x). Then the solution to (1) for that e(x) is




L
Y(X) = J‘ GE(X.E) f(c) dEo (9)
0

but Ge(x,e) is a functional of e(n), and in the case of uniformly small

e(n) can be approximated

L
Ge(x.:’.) 2 Go(x.e:) + S K(x,&,n) e(n) dn.
0

Hence the approximate solution to (1) is

L
y(x) = 5 G (x,6) £(£)dg
0

L L
+ S J K(x,&yn) €(n) £(£) dndf. v10)
0 o

Where Go(x,i) is the Green's function corresponding to e(n) = 0,
and K(x,£,n) is the functional derivative of the Green's function with
respect to €(n) evaluated at €(n) = 0. The above formulation is applicable

for random f({) as well, and taking averages we obtain

L
vy = f 6 (x,6) L £EID e
0
L pL
’S j‘ K(x,E,n) (c(n)f(£)> dndg (11)
0“0

£(¢) and (e(n)> =0

and, in case <f(£)>

we obtain

Cyx)D ) =

L pL L L
S j j‘ S K(x,E,n) K(x,s8,1) £(£) t(s) <c(n)c(t)> d¢dedndy (12)
o¥o (] 0

(y(x)




As an example, consider the following problem

2

A

+ [1+e(x)ly = 6(x-L/2)

(13)

&

Y(o) = y(L) = 0.
Physically, this corresponds to a harmonic point load applied at the
center of a taut string whose density is constant plus a small random

variation., We further assume that

{e(x)7 =0 (1u4)

and {etx) ey)D = aePlxyl, (15)

For equation (13) and the boundary conditions, one obtains

f’ Sinx Sin (L-E) .
3SinL LCot(L-g)=Cot L] x<€<n
- Sinx Sin (L-£)
7SinL Cot L x<n<g
Si Si Li=
4 mx2S:iL.:L( £) [Cotx=-CotL) n<x<g
K(XQC .n) (lb)
Sinf Sin (L-x)
_§§fnL {Cot(L-x)=CotL] E<y<n
- 8ing Sin(L-x)
2S1nL Cot L f<n<x
$ing sin (L-x) |, .
\ T30 [CotE=CotL] n<i<y

From eqs. (11), (1), (12), (15) we obtain

{ y(x)? = 0,




{
{

(y(x) - Lyx)? )?
A

Sinx Sm

—yrmr— [Cot 7 = Cotl

Sinx Sin 5 } 2 )

e ———— CotL

]} s-[x -§-+%e

. L
20G-x -§+ L b -x)

-hx]

]

* 2SInL P’ %

+ f::-;';;‘;[Cotx-CotL]} ? %[-12:--;-+%e-b%]
2 b—- bx bx Sinx Sir% Sinx Sin% L

+ b (e ) (e - 1) TS ) A CotL } {—W—JCOPQ- - CotL)}
2 -bL -b-I-"- bx Sinx Sin%‘- ( Sinx Sin-;;

- -;2 (e -e 2) (e =-1) { TSTIL CotL‘ -m——(Cotx - Cotl)
) 5L <bE bl px. | Sinx sm% Sinx Siny

+ ;2 (e - l"2‘) (e72 -e ){W CotL.} {—m-(Cotx - CotL)}
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