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8 FOREWORD

This document presents the theoretical results of a study designed to devive teche
niques for constructing experimental mathematical models of linear, time-invariaur,
: network-like control systems. The study, which is addressed fundanicntally to the

K identification problem in control-system theory, covers two principzl areas (1) time-
domain techniques for determining system and system input matrices and (2) the ex-
traction of parameter submatrices from system input and system matrices. The report
discusses the basic philosophical approaches taken by others in this field toward solving
the identification problem, including the model adaptive approach, the black box
approach, computational techuiques, quasilinearization, the differential approximation,
- 3 the algebraic realization, the instrumental variable technique, and the algebraic model
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Notation

LIST OF NOTATIONS

vector quantity

matrix
time, matrix transpose

n-dimensional real vector space
n-dimensional complex vector space

range of a matrix A
null space of a matrix A

domain of a matrix A

i-th column of matrix A

1-th row of a matrix A

rank of a matrix A

n-dimensional vector space with elements
from a field F

determinant of a matrix ( )

trace of a matrix ( )
differentiation

Kronecker (direct) product of matrices

direct sum of matrices

inverse of a matrix { )

generalized inverse of a matrix ( )
s an element of
closed intorval

open 1interval
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Notation

<, > - inner product

( )=* - complex conjugate transpose of a
matrix ( )

( v ) - partition of a matrix A

() - mxn matrix ( )

ol - vector or matrix norm




CHAPTER I

INTRODUCTION AND BACKGROUND

INTRODUCTION

The general topic of the thesis deals with what hus
come to be known in the control system literature as the
"identification” problem. Given a physical system which
is excited with an input function u(t), te{0,T], the cor-
responding output function y(t), te[C,T] is measured. One
is lnterested in using the input-output data to construct
a mathematical model which will produce an output which is
sufficiently close to the measured output when the model
is excited with the measured input.

There are, of course, many variations of the above
viewpolnt. A broad classification is 1nto stochastic and
deterministic identification problems.

in the stochastic identification problem, one allows
that the measurements ove nolse superimposed on the Lrue
Iaput=-ouiput functions., NO nolse 18 assumed present an
the deterministic case.  Further, within cach of the sto-
chastic and deterministic vlassifications, “here “re sub-
ciassafications 1nto lincar and nonlincar identification

problems. These subclassifications refer to Lie general

properties of the model., L[Lach lincar or nonlincear

T e e




identification problem alsc may be categorized into model
types such as static, differential eguation, difference
equation, transfer function, and pulse transfer function
types.

Differential, static and difference equation models
may be calied either multi-input or multi output models if
there are more than one input and output. Transfer function
and pulse transfer function models are generally single
input-single output models. Additionally, differential
eguation and transfer function types have a continuous in-
dependent variable, generally, time. Difference equation
and pulse transfer function types have a discrete independ-
ent variable.

From the above discussion, there exists a complex
system of classifying the types of models which may be used
to try to match a given set of input-output functions. No
guarantee exists that a given model can match a given input-
output function, hence, considerable insight and knowledge
of the tested system may be necessary to choose a model
which will match the measured input-output data within the

desired erxrror.
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BACKGROUND

A coenvenient method of discussing solutions to the
identification proklem is to classify some basic philosophi-
cal approaches, and then to discuss the various computational

techniques applicable to each approach.

The Model Adaptive Approach. - In the model adaptive

approach, (ne assumes a model for the system of known struc-
ture. By the term, known structure, it is meant that every-
thing is assumed known but the parameters of the model.

That is, if there are system nonlinearities, the general
“>ri. of the nonlinearity is known but any multiplier or
additive values are unknown. Also, the form of the matri-
ces which describe the system are known. A typical example
would be a companion matrix where at most n of the nz pos-
sible matrix elements are unknown. After the assumption

of a model, the identification problem then becomes one of
adjusting the model parameters in such a fashion that the
error between the model response and system response to the
same input is sufficiently small in some sense. All avail-
able knowledge and physical principles pertinent to the
tested system are useful in the model adaptive approach.
Such knowledge includes constraints on the parameter values,

types of ncnlinearities, and system order.
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The Black Box Approach. - In the black box approach,

one assumes as little as possible about the tested system.
The usual expectation is that the system is linear, but
test signals of varying amplitude are used to confirm the
linear expectation. Most commonly, the test signal used is
a sinusoidal function and the results are typically dis-
played as a frequency response curve of amplitude and phase
as a function of input frequency. The single input-single
output type of system is the most common target of the

black box approach.

Computational Techniques. - Many and varied types of

computational technigues have been developed primarily for
the model adaptive approach. A brief discussion of the

dominant techniques is presented.

Quasilinearization. - Quasilinearization is a compu-

tational technique developed primarily by Bellman aad his
coworkers [IT-1]. Extensions of the technique have been
made by Lee [IT 4} and Sage [CT-4]. It is an iterative
procedure based on a generalization of the Newton-Raphson
technique for finding the roots of a nonlinear equation.
Both linear and nonlinear systems are modelled using gquasi-
linearization. If the technique converges, the convergence
is quadratic in nature. There is, of course, no a priori

guarantee of convergence. Also, the region of coavergence




may be large or small. Measurements required are the system

input-output measurements.

Differential Approximation. - Differential approxima-
tion is a computational technique where knowledge of the
system inputs, states and state derivates is required.
Bellman (IT-1] and his coworkers were instrumental in de-
veloping this technigue. It is basically a gradient tech-
nigue where an integral of a suitable norm of the differ-
:nce between the known state derivative and the analytical
expressinn (dependent upon known states and unknown parame -
ters) for tne ctate derivative is minimized. Minimization
07 the integral yields a set of nonlinear algebraic equa-
tions in the parameters. It is often used as a starting
routine for other —wre sophisticated techniques. Linear

ard nonlinear wystems may be modeled by this technique.

Algebraic Realizaton. - Identification using alge-

braic rcalization theosy was developed by one of Kalman's
students at Stanfcrd University (IT-3]}. The technique is
hased on the concept of deteniining the Markov parameters
of the system. The Markov parameters are an infirice se-
quence of matvices which are related to the system parame-
ters. It is assumed that the system is linear and time

invariant. Based on the above assumption, the identifica-

tion problem is composed cf two sub-problems. The first

Do e LS ML S kﬂ-ﬁm
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sub-problem is concerned with linear algebraic operations
on the data to determine a finite number of the Markov
parameters. Secondly, linear algebraic operations on the
Markov parameters are used to determine output, system and
input matrices of the system. There is a certain amount

of arbitrariness in the second part of the problem. Conse-
guently, the results are not unique, but, vary within a
similarity transformation. The required measurements are

input and output data.

Instrumental Variable Technique. - Young [IT-1l0,

IT-11}] and Wong {IT-12} have developed computational pro-
cedures using instrumental variables. The technique is de-
signed primarily for single input-single output lineax,
time-invariant systems. Noisy input-.output data is meas-
ured and used in recursive algorithms for real time parame-
ter estimation. To bypass the necessity to determine de-
rivatives of the input and output explicitly, the input

and output are passed through a serlies of "state variable"
filters whose outputs constitute the instrumental variables.
By proper choice of the filters, the instrumental variables
and parameters have the same relationship to each other as
do the original system states and parameters. Consequently,
by measuring the instrumental variables, the parameters can

be computed.
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Algebraic Model Adaptive Technique. - Yore[IT-9] pre-

sented a thesis which considered two separate but related
problems. The first problem was determining the system and
input matrices of a lin=ar time-invariant system where the
entire state and input vectors were measured. An iterative
procedure based on linear algebraic techniques was used to
cause a model state to converge to the measured state. The
second problem was to assume that the system generating the
data was a network-like system, and to devise methods of
determining the values of the components contained in the
system and input matrices. For example, if aj; = o is
an clement of the system matrix, what is the value of rrcl?
Yore's work was apparently the first to address the so-
called “component parameter" identification for network -
like systems. The "“component parameter” identification is

the second part of the preaesent thesis.
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PROBLEM STATEMENT AND ASSUMPTIONS

Yore's [1IT-9] work formed the motivation for the
present thesis. It was felt that his techniques were use -

ful but could be improved.

Basic Assumptions. - The following assumptions were

made:

1. The measured data is noiseless and generated by a net-
work-like system.

2. System topology is known, i.e., it is known what types
of components are present aad how ilney are interconnected.
3. Actual parameter values are unknoun.

4. The system is linear and time invariant over the meas-

uremenc interval.

Problem Statemciai.. - Determine techniques and condi-

tions to identify the parameters of the system described

in the above assumptions.
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CHAPTER II

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

INTRODUCTION

A summary of results and comparisons with some cor-
responding results of Yore is presented. Also included in
the chapter are conclusions based on the results and recom-

mendations for further research.

SUMMARY OF RESULTS

A chapter-by-chapter summary of the research results

1s given.

Chapter III, Model Adaptive Identification. - The

algorithm which adapts the model to fit the measured state
is based on linear algebraic computations., Both input and
system matrices can be identified using measurements of the
state and normal operaeting inputs., The algorithm 1s itera-
tive and proceeds [from iteration-to-iteration by the fol-

lowing relations.

n+l n n
A = + A
(1) A Am AARA
(2) Bn*l - 3“ . R hn
m m )

¢ s et

et ta



The matrices A; ' Bg are the model system and input matrices

at the n~th iteration, respectively. Computation of the

updating matrices is accomplished by the following discrete

time equivalent of the continuous time error differential

equation.
n
AT T -A
(3) G = e ™ {Pme( e )(AA )& )
o
The error, g?é X - 5;, is defined by the measured state, x,

and the computed model state 53. In (3) u is the input
and T is the sampling interval. By taking a sufficient
number of samples, AAn, ABn are computed using matrices
whose columns are defined by (3).

A problem which could occur is that the model has been
chosen of incorrect order. Two possible effects of incor-
rect order are that, (1) the algorithm does not converge,
and (2) the algorithm converges to erroneous A,B. The
important consideration here is which of the states are
neglected. By neglecting strongly excited states, poor
results can be achieved.

Another problem which could occur is that the state
and input could be measured with some error. If measure-
ment. error occurs, then the algorithm will converge to
erroheous A,B matrices, if it converges at all, The magni-

tudes of these errors depend on the A,B,u, and of course,

10




the measurement error. The sample interval and norm of the
system matrix are related to the error in identification at
the first iteration. Nearly one step convergence can be
achieved under certain conditions. Some numerical experi-
ments for the first order free case indicate that converg-
ence is guaranteed for a; 4 0 if the following conditions

exist:
(4) |aT| - arbitrary a< 0
(5) aT < 2.5 a >0

Example 3 showed that under certain conditions, the
requirement to measure the entire state vector could be
relaxed by identifying a model whose state could be re -

lated to the measured output.

Chapter IV, Parameter Estimation Using Nonlinear

Observers. - Adopting the viewpoint that the system parame-
ter could be collected into a vector, p, with differential
equation, él= o, the original linear system could be aug-
mented to form a nonlinear system. Using the Kronecker

product, (6} through (9) show the form of the augmented

system.

(6) %= 1mx‘a + 18u’b
(7 a=g¢o

8 b=go

11
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(9 y=cx

The vectors a, b are formed by collecting the rows of
the system matrix A and the input matrix B into the vectors
a,b, respectively. Not all of the states are measured. The
output matrix C is of order mxn, and the input, system
matrices are of order nxp, nxn, respectively.

A nonlinear observer of dimension n+n2+np is cnn-
structed whose state vector asymptotically approaches the
vector (5L3,g)t under certain conditions. Success of the
scheme depends on one's ability to stabilize the observer.
Since the observer is noanlinear and, generally, time-varying,
stabilization may be difficult. A procedure for stabiliza-

tion was developed.

Chapt~w Vv - Estimation of Parameter Sub-Matrices.

Chapter v assumed that the system to be identified was a
network-~like system. Therefore, the A,B matrices have a
special structure. Assumption of the network-like system
constrains the elements of A,B. The constraints appear by
forcing certain elements of 2,B to be either zero or onc.
Other elements are related by algebraic equations to each
other. Thus, information about A,B can be determined prior

to actual testing of the system.

12
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Knowledge of the state, input vectors, and A,B matri-
ces may not be sufficient to determine the parameter matri-
ces uniquely. Some results are given which show where ad-
ditional measurements should be taken to give unique results.
Both linear and nonlinear techniques for determining the
system parameters are given. It is shown that for a special
class of networks, all parameters may be determined from

the A,B matrices.

COMPARISON WITH YORE'S RESULTS

The notation in Chapter I is used to compare the re-
sults achieved here with those by Yore. Table 1 shows the
difference in the algorithms.

It is the author's opinion that Yore unnecessarily
restricted his technique by requiring the sample interval
be sufficiently small that A I+AT.

If Yore's time reguirement is used for the suthor's
algorithm, then one step convergence is achieved. One step
convergence ig not achieved for the same sample time using
Yore's algorithm.

Two restrictions on the sample time are given by Yore.
For the first order autonomous case, 1t ig necessary and
sufficient that {aT| < Ln2 for convergence of the algorithm.

For higher order, non diagonal, av*tonomous case, it is

13
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sufficient that n max Iaijl < Ln2 for the identification
i,]

to converge. The results ol Chapter I1I show that, at
least for the first order case, the sampling time require-
ments are much less restrictive than Yore presents.

Comparing Yore's results with those in Chapter V on
determination of the parameters in the A,B matrices is dif-
ficult because the approaches are fundamentally different.

Yore's main effort was characterization of a suffi-
cient number of measurements in terms of his concepts of
statically and dynamically independent variables. His re--
sults are phrased in terms of the existence of such sets of
variables. No procedures or techniques are given to de-
termine which network currents and voltages constitute
statically and dynamically independent sets of variables.
No direct use of system topology was made.

In contrast, the effort in Chapter V was based ex-
clusively on detailed knowledge of system topology. The
main effort was to use the topology, A,B matrices, state,
and input vectors to determine the parameter submatrices,

As a byproduct of the computatiuns, the need for
additional measurements other than state and input is de-
termined. Direct application of linear algebraic tech-
niques, principally, determination of ranks of various

matrices, is required.

15
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CONCLIISIONS

The basic algorithm in Chapter III is effective and
works well for the cases in which it is applicable. 1Its
capability of providing nearly cne step convergence should
prove useful. The two principle effects of measuremnent
noise anu/or incorreci model order are, {l1) non-uniqueness
of results, and {(2) unique but erroneous results.

Measurement noise can be significant if the states
are weakly excited. The data matrix which must be in-
verted beccmes ill-conditioned. A consequence of the ill-
con fitioning is that small errors in the data matrix ele-
ments cause large errors in the updating matrices. The
errors can cause the iterations to oscillate about the
correct values of A,B matrices. A filter can be cascaded
with the basic algorithm to smooth the fluctuations.

Knowledge of the svstem structure can be used te de-
velop a nonlinear observer which has on~line potential for
combined state and parameter estimation. fThe observer is
best suited for analog or hybrid mechanization bicause a
large number of first order differential equations with
relatively widely separated time constants need to be
integrated.

The critical problem is insuring that the observer is

stable. A complicating factor is the requirement for the

16
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‘ feedback for wach parameter equation ¢o decrease to zerc %

while keeping the overzll system stable. A technique wags é

developed o stabilize the observer. §

Knowledge £ tha system topclogy is necessary for %

unique parameter determination for the network-like case. é

Straightforward results and technigues have been demon- é

strated for parameter determination. .
f; 1 17 é
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RECOMMENDATIONS FOR FUTURE WORK

future research effort should be directed to answer

the fecllowing questions. Most work should be directed to

the computational aspects of the problem.

1.

oy Nyt e S San Crasar,

How can the effects of widely spread eigenvalues be

handled computationally?

If the measurements are corrupted with noise, how
can the results of statistical estimation theory be
applied to give "good" estimates of A,B using the

algorithm of Chapter 3?

How can the effects of incorrect model order be mini-

mized?

How can the sample interval for the basic algorithm
be chosen for most rapid convergence? Should it be

modified from iteration to iteration?

How can the model adaptive algorithm be used where
only a subvector of the state vector is measured?
That is, when can additional operations on output
data such as integration be used to identify another
model whose parameters are related to the original

parameters by known relations?

18
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CHAPTER III
MODEL ADAPTIVE IDENTIFICATION §

INTRODUCTION

A model adaptive algorithm is derived under the usual
assumption that the pair [A,B] is completely controllable
(Kalman, CT-2]. Further, it is assumed that the state
vector and input vector are measured perfectly. After the
algorithm is developed, the effects of measurement error
and incorrect model order are considered. Some unigqueness
results and computational rules of thumb are presented.

The physical system is assumed to be governed by the
constant coefficient, vector-matrix differential equation
(10).

(10) x(t) = ax + Bu(t), x, = x(0) te(0,t]
and that x(t) and u(t) are n and p vectors measured per-
fectly on the interval [O,tf]. A, B are not known.

A model of the system is assumed to have the constant

coefficient vector-matrix differential eguation (11).

(11) gm = A X+ Bmg, xm(O)Q X,

The chart records of x(t), u(t) are divided into n+p+l

samples which are used to determine the A, B matrices.

19




By assuming a pair [Am,Bm], integrating (11) and com-

paring the measured and model states at the sampling instants
ti,i = 0,1,2,...,0+4p+1l, the model is forced to converge to

the system represented by (10). The updating scheme is

algebraic.
DERIVATION OF ALGORITHM

The method cf forcing the model data to converge to
the measured data is to define the following quantities.
AA, AB are the updating matrices.

4

(12) A Am + AA

>

(13) B Bm + AB
In terms of the defined variables in (12) and (13),

equation (10) is rewritten.

(14) x = A X + MAX + Bu + ABu

Let e(t) = x —Em(t) denote the difference between the
measured data and the model data, then by subtracting (11)
from (14) the error differential equation is (15).

. A
(15) e = A e+ AAX + ABu, €(0) =0

Since e, %, U are known, AA, AB can be computed. 1In
order to compute AA, AB (15) is converted to the equivalent

discrete time system (18).

20
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T
R {g_(k) « f e d")(AAAB) ﬁ?ﬁ >}

(16)  e(k+l) 0

fl

where T = t, ,-t., i=20,1.2,...,ntp and is the sampling

i+l
interval.
The error and input-output vectors are formed into

the following matrices.

(17) o = {u(o),..., uln+p-1)
(18) %0 = (%(0),...s }_(ni—p-l»
(19)  EO = (_ga__(o),..., g(m-p-l)
(200 El = (e(1),..., eln+p))

Using (16), the matrices defined by (17) - (20) are

related as follows:
AT

 m e Lo e () i C))

. . . X0
Assuming the existence of the inverse of <UO)' then,

the updating equations to improve the model in an iterative

4 fashion are:

3
k] k+1 k
TR (22) A=A+ o
3 L.
2 3 k+1 k
1 ; = +
R (23) B B < + b
_‘ - v‘\
k 21
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(24) (AAAB) = ( .; e dT> E1-£0J \vo

O

EFFECTS OF MEASUREMENT ERROR

The effects of measurement error on the A,B matrix
errors are formulated in the present section.

Assume that the actual state and input vectors are
measured with errors e, and ey and define the errors by

(25) - (28).

A

(25) xX=%x+e

(25) Q = u + =
A

(27) A=A + EA
A

(28) B =B + EB

EA, EB are identification errors induced by e . &,
The identification algorithm operates on the apparent

system given by (29).
A ANA A
(29) x=2ax+Bu x(0) = x

Subtracting the actual system equation g.= Ax + Bu, x(o) =

X from (29) yields the equation relating the measurenment

error to the induced identification errors EA, EB in (30).

. A A
(30) e, = Ag, + Be, + (EA)x + (EBJu
22
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Estimating EA, EB using the discrete time equivalent
of (30) yields (31) which is the relationship of tae

measurement error and the A,B error.

T
-AT
_ AT d
(31) gx(k+l) = e Ex(k) + (OJ e T)(Bgu(k) + (EA EB)
L)
B0
thus, the errors are given by (32).
- Ao
[ IS ey I T
= T - - -
(32) (EA EB) LO e e™VE1 -E0, J -BEO| | |

\
Elx, on. %D, 65 are defined as in the section on

the basic algoxithm.

EFFECT OF SYSTEM ORDER ERRORS

The present section provides the formulation of the
effect of errors in selecting the model system order.

Assume the system is pracisely modeled by the state

equation,
* e " ! \
X A1 M2 X By

(330 %] = la, A Y le, s 2
X2 | f21 P22 X, | 2

where x, is a r-vector of the assumed model order and Xy is
an n-xr vector of the ignored variables. Now letting e

= 51 ‘ém and, Bl a Bm + AB, All = Am + A&ll as in the

23




basic algorithm, (33) is transformed into a vector matrix
differential equation in the error variable and the sub-

vector of the ignored variables and is given in (34).

. ‘ / 1 '
e A A e AA, .| AB

(34) ;;E)— 0 AL {x o PV '81\3
(% | T (0 Ap) |z 21 | B2 |

The effect of the ignored variables is that of an
additional input and can be considered as an unknown dis-
turbance.

Analysis of (34) indicates that the eigenvalues of
the error plus ignored variable system matrix are those
of the model system matrix A, and those of the ignored

systom matrix Agge

An estimate of the effect of the error in system
order on the identification can be obtained by the discrete
time equivalent of (34).

Decomposing (34) into two equations,

A : -A / \
(35)  x,(k+l)=e 22" r (k)‘{ 23::){“21 x) (k) +B,u (k)

< = . v > -
(36} e(k+l)=e o dGr ﬁhllhl(k)+69}2(k)

RiaX, (k),

t

24
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and writing the matrix equation,

T

EC + ( j e“Am

o

AmT

X0
(37) El = e )

. 1
d -r)(AAnABl) (uol

Ky
AT ( -A
+e ™ j mT

o' € d« X

2)
and solving for (AAllABl), the induced error matrices, for

the case where El = EO0 = (0), i.e., b 4,51

T

(38) (4A;0B)) = [U e_AmJ)-l(‘Alzxz)] (}tjgi)_l

and the matrix X, is the n-r xn+p matrix formed from n+p
samples of the solution of (35).

By examining (38), one sees that if the data matrix
21 ~ denti ficatd
UOl s non-singular, then the identification converges
to some (unique) matrices A Bm which, in general, are not
the same as the submatrices Ay,+ By If the data matrix
is singular, then, the identification diverges or at best
yields some arbitrary Am’ Bm depending on whether or not
one desires to specify the dependent elements of A Bm'
The important result is that incorrect model order is
not too critical to convergence of the identification.
Additicnally, identification using different inputs can

cause different eorror matrices AAll'AB‘ The difference is

25
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';,3 | caused by the interaction of measured states, ignored
3 ng states and input. For example, if the input did not excite
if. . % the ignored variables strongly, then, §Q(t) ~0o and dif- |
Exa Kig ferent (nearly null) AAll' AB, matrices will result than if !
| -% the ignored states are strongly excited. A method of check-
vé ing for correct system order of the model could be exciting
'i the system with different inpuis and comparison of the re-
) ;é sults. No change in AL Bm with different inputs would
' ? mean correct order. A change in A, B, with different in-
puts would mean incorrect order. A change in A Bm with
ii¥v;} different inputs could mean wrong order, but it could also
‘;1f€ be the result of another problem.
~: f§;{ It is possible that the model could be the correct

order but some weakly excited states and numerical diffi-

L.\‘ culties cause some changes in Am' B, using different in-
i 3 puts. The problem lies primarily with the computational
;; aspects of the identification. Ill-conditioned data
‘cjz matrices caused by weakly excited states are difficclt to
; 'E handle. None of the example problems worked presented any
a _€ difficulties of this nature.
N ;

26
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INVERSION OF DATA MATRICES

A series of results concerning the conditions for the
inversion of the data matrices in the basic algorithm are
given under the assumption that the data are measured with-
out error.

The following notation is used:

o (X)) =

xl XZ}

Uy, Uy

[XON . .
where \UO) 1s an n+px n+p matrix and xl, U2 are nxn and

pxp matrices.

Theorem #l. Necessary and sufficient conditions for
the inverse of (39) to exist are,

(1) det (x* xl + U ) #0

(2} det (x;xz + U;*uz) £ 0

Proof: Since the inverse of Kég) exists if and only
if det \ ) # 0, if a bound on the determinant of (39) can
ba established, then, the theorem 1s proved., Let A =

(hya) = (51 )

t
Ul Uz) , then, 1“1 xtx + viul and AZA, =

2 272
th + U Uz' By Wegner's theorem (Bodewig, N-1, p. 71},

det A = (det AfA;) + (det RSA,). Therefore, det A # 0 if

and only if the thecrem is true.

27

O G R T T C R S I S o i S T N TR T T .

T R R T R R R T

B e S EI SOPIP o

SNV = T e R e T e DT TSN



Theorem #2. Sufficient conditions for (39) to have
an inverse are,
(1) det Xl # 0
(2) det 02 # 0
-1
(3) det (xl—x202 Ul) # 0

-1
(4) det (Uz‘lel xz) # 0

Proof:

(% xgu,7roy ) ‘xilxz(uz‘ulxilxz)-lf

Let D = 2
[ -1 -1 -1, y~-1
i~U2 vy (%, %,05 ', ) (vp-v,%7 7%, ) !

1

. ~1
and by multiplication Dkgg) a (§g>13 = I, hence, D= gg)

28
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CONVERGENCE AND UNIQUENESS

Theorem #3. Sufficient conditions for the unique-
ness of the identification are:

(1) 2(t) 40 ¢t ¢ [0,t]

(2) that there exist n+p linearly independent
x(t)

vectors %E(t)) in the open interval te(O,tf).

Proof: The error equation (15) is éjt) = A e(t)
+ (A—Am)ﬁjt) + (B—Bm)g}t), 2(0) 4 0 and if e(t) 4 0 on the
closed interval te[O.tf], then<é(t) = 0 in the open inter-
val te(O.tf). Couusequently, the error equation takes the
- - . ix(t) -
form 0 = (A-AIB-B ) Mi(t)) te(0,ty) under the hypothesis

of the theorem.

Let Y be the matrix of the linearly independent
samples, then, the matrix equation below is valid:

(0) = (A-AmEB-Bm)Y

Since Y is non-singular, then, its multiplier must

be the null matrix, i.e., A = Am and B = Bm'

Some insight into the selection of the time inter-
val for the basic identification algorithm can be obtained
for the free response case. The more general case is con-

siderably more complex and has not yielded to analysis.
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Theorem #4. Let the updating algorithm (21) have

the initial value A, = (0) and consequently the first itera-

tion, Ay, be given by A, = %-(El—no)xo‘l, then,

Lim (a.-a) = (0)

T+0 1

Proof: The proof proceeds by direct computation.
Substituting for El, EO, since AOQ(O), the expression for

Al is ,

(40) A 1

1/ N =
= = -X0 - - )
1 T \Xl XOm (x0 XOm) / X0
. s AT , .
Also, by definition, X1 = e "X0 and substituting

into (40) it follows that A, is givea in {41).

1

_ 1
(41) Al-A =7
Performing the power series expansion and rearrang-

ing A,-A is given in (42).

2 n,,n-1
(’;2) Al“A &%‘T'* «e +"'A_-";§"'~"" + ...

Now taking the limit as T -+ 0 yields the ‘hecrem.

As a remark, (<l) shows precisely why one step con-
vergence is not obtained, but also shows that for T suf-
ficiently small, that Al can be very close te A. A bound
en the difiurence A -A can be obtained, however, the bound

will be conservative.
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Theorem #7. Let A, = %-(eAT

1 -I), then, the error Al—A

is given by,

allr _

(43) |a,-all < Iz e e T, €0
2

AT it fol-

Proof: Using the series expansion for e

lows that ([Pipes, M-7, p.133],

2T2 + A3T3 + ...)_ AT AT
31

1 (A S AT AT, % <o <1

To get an upper bound, let 6 = 1, and take the norm

of (44).
2 2
(45)  [ay-all < BN Ty o Al Al
Equatior (45) can ke used as a guide for choosing T
to get within a specified error on the first iteration.
Let ¢/|jall be the desired fraction error, then, solving (46)

for the number |AllT and estimating |Al] to get an estimate

of T which will achieve the desired maximum error fraction

¢/llall.

(a6) [allr PP o 2e/pmy

Figure (/) shows |[Allr vs ¢/lall

31
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‘" FOR DESIRED FIRST STEP ITERATION ERROR
Ia,-all / lall - %
FIGURE 1
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A proof that a specific value of aT which guarantees
convergence for the first order case (the simple one) has
not been achieved. Figures 2 to 4 show the results of
some numerical experiments for various values of aT. Fig-
ure 2 indicates monotone convergence if aT<0 and the possi-

7

bility of sustained oscillation if a?>2.5. Figures 3 and 4

E'{': : verify that the convergence is monotone if aT<0 and oscil-
<8 latory convergence for aT>0. Based on the numerical re-
:}=ﬁ g sults, one should use the following gquide for selection of
e the sampling interval.

Rule 1. a<0

T can be arbitrary but should be small to yield to

rapid convergence.

Rule 2. a>0

g T<2.5/a but should also be small to yield rapid con-

1 vergence.

The following expression for the errors can be de-

rived by simple manipulation of the basic algorithm,

‘ a. T
- -3 a -a, al n
(47) _n+l n ea ';e , n >0
1 4 e‘n -1
o ap 2T (e3T_1)
n+l aT e -g
a anT( aT 1)
n e e -
33
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CONVERGENCE QOF FIRST,

SECOND ITERATIONS OF FIRST

ORDER FREZ SYSTEM x = ax, x(0) = x_,a (0)4 0
aT
pa_ = &=L $ .8
(o} T
at aT (6*%-1)
ba. = & -1l e "-e {
1 T (eaT~1) P |
(e ~1) i "
° AaoT/lo
Q -+ 4
~
-4
y 3 | .4
Aal Aao -+ E—:
. .,-]
L .2
3]
mo '
" 2 4 0 i e
"3-0 ""2.0 -—1.0 .0 2-0 300
aT -
L—t4
AalT -+
p-.6
AaOT -+ s *AalT/IO
-1 na /a4
FIGURE 2
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CONVERGENCE PROPERTIES FOR i
FIRST ORDER SYSTEM |

X=ax, a >0

60

PERCENT ERROR

FIGURE 4
-100

36




ey ARy

PO Yom e ot o o = e o e

NUMERICAL EXAMPLES

Two numerical examples are presented to illustrate
the technique. 1In each case, the initial assumption was
that Am = (0), Bm = (0). Both single input and multi-input

systems were identified.

Example #1 - Second order 1 input case: The first

example problem attempted was an oscillatory system de-

scribed by the phase variable model.

(49) A

il
—
i ©
>
LI
| V]
~—~

o 2 (2)

A step input of 2 was used with initial condition
xl(O) = ,278, xz(O) = .536. Runs were made first assuming
b was known and then assuming b unknown. Convergence to

the correct A,b was rapid in both cases. A sampling time

of .l second was used.
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;!- Example #2 - Sixth order, 2 input complete circuit: A %
ﬁi TT;E ; complete circuit in the sensc of Brayton and Moser [FE-3] ;
?ﬁ;::;g | was chosen for the second example. The network schematic is |
%Ei;;iw» shown in Figure 5. Inputs to the system were u, = 20.0, g
;:fsjf;j u, = 10.0 + 5 sin .08 t and the initial conditions were zerc.
{?ﬁff;{f The sampling interval was 0.1 sec.

Again, it was assumed that the A,B matrices were null

ﬁg initially. The numerical results show rapid convergence to
R '; the correct values. A general structure for the A,Bmatri-
ces is shown below.
—~
' (-1 0 1/c 0 o
§ RlCl 1 i
, o = o 0 1/c, 0
) (51) | 572
-0 0 0 -l/c3 -1/¢, -1/c3:
Aw' :
i l/Ll 0 l/Ll -Rl/Ll 0] 0
0 -1/L, -l/L, 0 -R,/L, 0
s {
\ 0 1/L, 1/L, 0 0 -R3/L3
(s2) 9 ©
0 0
B= 1t 0 0
\
0 0
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A COMPLEYE CIRCUIT
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Table 4. Identification of Sixth Order, Two Input
Complete Circuit

et et e ¢,

ITERATION NUMBER

PARAMETER 0 1 4 10 CORRECT
VALUE
All 0.0 -6015 “'504? -5001 ‘5‘0
A, 0.0 -2.30 .92 + .03 G.Q
ng 0.0 10.49 ~4.11 - .11 0.0
Ayy 0.0 5.03 19.93 10.02 10.0
Als 0.0 .31 -'.04 -OOO 0-0
A 0.0 -1.30 .96 .02 0.0
A,y 0.0 -.00 .00 .C0 .0
Ay, 0.0 -2.18 ~2.00 -2.00 -2.0
Ayg 0.0 -~ .38 .02 .00 0.9
Aoy 0.0 .012 -.01 -.00 0.0
A, 0.0 1.40 2.006 2.00 2.0
R26 0.0 .01 -.01 -.00 0.0
A3y 0.0 .27 -.03 .00 0.G
Ay, 0.0 -.05 -4 ~.0C 0.0
Asg Q.0 -1.53 .28 .01 .G
Rig 0.0 ~.686 ~1.07 -1.00 -1.%
Ayg 0.0 .72 1.00 1.00 1.6
A36 0.0 -.48 -1.04 -1.Q0 -1.0
A 0.0 -3.23 -11.16 ~-10.02 -1C¢.0
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Table 4.

(continued)

PARAMETER

0

ITERATION NUMBER

10

CORRECT
VALUE

R o
3 K] -3
e 4 e
N v Ey
2 o« BN
b 13','9‘ -
=N .. 3
¢ 3
3 4
3 @ 3
k . 3
3 .4
3
3§ 3
¥, N N . R
£ v
E -« 3
E S
R ., o
k. RS
3 ?‘i R
IR £
o ' i
P 3
& '
F ‘ = §
E Tyt el
3 € - . ‘o '
« § 4
ST
E. [AARIIENGE
. LI
e .. -
3 R
o i
o
3
w
= s,
e

- R - -

Aeo
11
12
21

22

0.0
0.0
0.0
0.0

¢.C
000

0.0

-7.21
29.37

-7.32

-4.44

.13

1.84
1.95
-.09

.29

000
.39

1.38
6.64
-3.67
~-.26
.49
.05
-5.08
~4.83
~.03
-5.00
~.02

-.04

3.19

q2

.00

-12.00
-.00
.00
.00

N‘.0’0

.0
(0.0
-4.0
0.0
0.0
0.0
~5.0
-5.90
0.0
-5.0
0.0
0.0
3.34
3.34
0.0
0.0
-10.0
0.0
0.0
0.0
c.0
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Table 4. (continued)
ITERATION NUMBER
PARAMETER 0 1 4 10 CORRECT
VALUE

831 0.0 _'736 007 000 000
B32 O'O .24 “.02 .00 O-O
841 0.0 5.85 10.82 10.02 10.0
842 0.0 -.94 .21 .C0 0.0
BSl 0.0 .06 -.02 -.00 0.0
852 0.0 3.87 5.00 5.00 5.0
861 Q.0 -.03 .03 .00 0.0
862 0.0 .06 ~.02 -.00 0.0
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Example #3 - Generalization of Algorithm: A possible

generalization to alleow identification when the entire state
is not measured is indicated by an example. The procedure
”g is to define a new state space in which the model parameters
may be computed Iy using output data and the output data
integral.

3 Consider the second order phase variable system in

equations (53) - (55).

il

(53) X, = X,

[

a,1%X) + ag Xy + bu

(55) Yy = %
] _ . t . t t
3 Now define new variables wliJ xl(¢)d~,w2=£ XZ(T)dT'vzi u(r)dr.

By integrating (53) - (54) and substituting Wie Wou the fol-

lowing state eguations in tke new states arise.

]

(56) wy = wy + x,(0) =y

(57) Wy

L}

Ay Wy T oWy F b.v + x2(0)

21 2272 2

The unknown quantities are 2y1¢ 8nge bz, x2(0).

For the special case x2(0) = 0, the model is,
(%1 x, (0)
(v, v

1 o

w
1
o bl

’O 1
iy

+

B (58)(

lag; 23

The state variakles of the above system are known
t

f since y'oI y(r)dr, x,(0) are known. Application of the

.3 basic algorithm is now done straightforwardly.

o . N
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Example Problem #4: BEffects of Model Order Error.

The robustness of the model adaptive algorithm to model
order errors is indicated by the present example. A sec-
ond order model is fitted to data generated by a third
order system using a slight modification of the basic
algorithm. The modification is that the identification
is not stopped when an A,B matrix is determined. That is,
the basic algorithm is apolied to &z data matrix (XO, UO)
using n+p measured state and input vectors and an A,B is
determined which fits the data. Every vector is then dis-
placed to the left, and a new data vectcr replaces the
last column of the matrices X0, UO. The algorithm is
appiied to the new data mairix. Previously determined
wodel matrices A,B are used as starting points.

The third order system chosen is a model of a gqun
turret for use on ships. It is described by the transfer

function shown below.

o _ 12.1
V T 5 (5+18X5+3.5)

(59}

© is the turret position and V is the voltage applied to
the turret drive. A step of three volts was used as the

drive input.
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Table 5 shows that the basic algorithm is robust
in the sense that it converges to a unigque answer when a
lower order model is fitted to data generated by a higher
order system. For the example chosen, the coefficients
are close to those obtained by neglecting the most heavily

damped pole.

Table §, Second Order Model Fitted to Third Order Data

Iterations
Fit to
No. Convergence 211 212 a1 3, b Dby
1 3 -.001 l1.006 -1.182 -2.61 ~,000 .532
2 3 -.002 .994 -.151 -3.243 .001 .575
Coefficients obtained
by disregarding pecle
at -18
0.0 1.000 0.0 -3.5 0.0 .535
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SUMMARY

A model adaptive identification scheme was developed
which yields the system and input matrices of linear, time
invariant multi-input systems. Measurements of the state
and inputs to the system were assumed.

Solution of linear equations, generation of the
model transition matrix and its integral, and integration
of the model equations were the primary numerical tech-
niques reguired.

The primary requirement for unique convergence was
the non-singularity of the data matrices.

Some rules of thumb on choice of sampling interval
were given.

Several example problems showed that the algorithm

is rapidly convergent.
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CHAPTER %v

PARAMETER ESTIMATION BY NON-LINEAR OBSERVERS

INTRODUCTION

The previous chapter assumed that all states were
measured and developed a model adaptive identification
scheme which worked very well for that case. In many cases
of engineering interest, it may indeed be possible to meas-
ure all these states. However, 1f the states are not all
measured, then a technique is desired for parameter estima-
tion which will work using the measured states which are a
subset of the system states. The present chapter discusses
parameter estimation using a generalization of linear ob-
servers. Preliminary background material is developed for
linear observers and the effects of unknown parameters are
discussed. Following the background discussion, the theory
of non-linear observers/parameter estimators is developed.

Finally, a numerical example 1is presented.

LINEAR OBSERVERS

At the present time, linear observer techniques used
for estimating the states of linear systems are well known,
principally through the work of Luenberger ([SE-2}. In gen-
eral, observers estimate states with an error which asymp-

totically approaches zero. The design of these observers
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is predicated upon the assumption that one knows the system
and the input matrices for the system to be observed. Some
things about linear observers which are not well known, how-
ever, are the effects of system and input matrix changes on
the state estimate. The following brief development shows
the effects of parametric changes in the observed system on
the observer states. The result of the development shows
that the error in a state estimate is dependent not only on
the observed system's state and input to the system, but
also on the variations in the system and input matrix. It
is assumed that the observed system is described by equa-

tions (60) and (61) where C is the known output matrix.

]

(60) X = A x + Bu, x(0) not known

1l

{6l) y =0Cx
Further, assume that the system is erroneously thought
to be modeled by equations (62) and (63). Consequently, the

observer will be designed using the erroneous system matrix

R and the erroneous inpub matrix Bm.
t

{62) X = AR+ Bmg, Em(O) not known
(63) y = Cx

Eguation (64) describes the observer.

(64) ﬁ = Fw + Gy + Hu
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ﬂ’ﬁVE The desired objective is to have the observer state
‘ w = Tx + e where e goes to zero at some satisfactory rate.
-,é For the case at hand, T is a non-singular transformation

"g and we would like to take g_s T-ng) as the state estimate.
-' If the observer is designed properly, the error will in fact
approach zero asymptotically. By performing some algebraic

marnipulations and subtracting equation (60) from equation

{64) the expression for the error in the state estimate is

given by equation (65).

-1

(65) T la = o7t

1

e + (T-'l

1

FT T FT + T GC-A_-0A) X

+ (T*lH—B -AB)u
n u

If the state estimate is to asymptotically decay to
zerc, we need to eliminate the forcing terms and further,
ensure that the observer is stable. Since it 1is thought
that equation (62) models the system, we cnouse the matrices

T, F, G, H to satisfy equations (66} and (67).
(66) TA_ - FT = GC
67) H-TB =0
Choosing the observer to satisfy those equations,

yields the error in the state estimate shown by equation (66

68) T la = (a_-T7l6c) T7le - dax -amu
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It is obvious that the state estimate error is com-

posed of two parts. The first part is the free response

resulting from the unknown initial condition x(0) since, if
it were known, we could set e(0) = x(0) -T"¥E(O) = 0 and

have no free response term. The second is the forced response

caused by the unknown parameter variations AA and AB. These ]
. parameter variations enter in a multiplicative fashion, and :
their effect on the state estimate depends entirely on how {
; .' :'; the system is excited and what these parameter variations g
E are. Utilization of the observer to provide the state esti-

. mate for the model adaptive identification scheme of the

previous chapter will provide a state estimate which is in

error by the amount shown in equation (68)- Consequently,

the linear observer has not been found to be useful for
identification. Modification of the way in which the system

o 3 egquation is written and considered yields a non-linear ob-

E server whose state vector is the original system state and

the parameter vector.

NON-LINEAR OBSERVERS

The last section developed the expression for the
error in the state estimate of an observer improperly de-
signed. If the observer for a linear system is designed
based on erroneous system and input matrix information, the

observer estimates the state of the observed syst . wit* an
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exror which is defined by linear differential equation. This
error is uncorrectable since it depends on knowledge of the
unknown matrices AA, AB, and the state which is also unknown.
A method of circumventing the difficulty of unknown system
parameters and system states has been developed using non-
linear observers. Essentially, what is done is to rewrite
the linear system of equations in non-linear form with an
augmented state vector. This new non-linear system has as
its states the original state x plus a vector of parameters
for the system matrix A and for the input matrix B. The
parameter vector for the system matrix is called a and it

is formed Ly stacking the rows of the system matrix A into

a vertical vector. 1In similar fashion, the parameter vec-
tor b for the input matrix B is formed by stacking the rows
of the B matrix into a vector. Using the Kronecker product
the non-linear system then is described by equations (69)

through (72). Notice that constraints on the parameters

are also included. The constraints are the e.., d.,, kié.
i3 ij J

h,., terms,

1]

(69) f=1@x%a+18uDp

{ = ) . 1,9 =

(70) a =20 Llj<aij i 1,) 1,2,...,n

(71) b =0 kij<bij<hij i =1,2,...,n

(72) y = cx )7 bedieeeep
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Given the non-linear augmented system we construct an
observer which will yield the entire augmented state, that
is, the original system's state plus the parameter vectors
a, b. To construct the observer, we build in a structure
similar to that in the augmented system and include parame-
ter constraints if they are known. The general form of the

observer is shown in equations (73) through (75).

. t t
(73) w chll(t)_\il + I8w) Wy, + I8u W, + G, (t)y

1 2

(74 y_stzz(t)gz + Py (R)wy + Gy(t)y

3

It is desired that the observer state vector corres-
pond to the augmented state vector of the original system
within some error. The notation involved is shown in equa-

tion (76) through (78).

(78) wy) = x + g,

)
.
—

(77) Wy =

As in the last section, it is desired to develop the
erroxr equations for the non-linear observer. After some
algebraic manipulation and subtraction of egquations (69)

through (72) from eguations (73), (74) and (75), it is seen
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that the error equation is given by equations (%g) through

(81) .

_ t t t
(79) &) = (Fyy + A)_gl + IQe; e, + I@8x e, + IQU e, +

(pll+ GlC)_)_g

(80) g, = Fo8, + Fpie) + Fyod + (FZJ_. + G,0)x
(Bl} £3 = Fy38;3 + Fy)&) + Fy3b + (Fy; + Fyllx

Examining equations (79) through (81) it is seen that
the error equations are driven by the state which is unknown.
To eliminate the state from the error equations, we intro-
duce the constraints shown by (82) through (g84).

82) Fr,, = -G,C

11
83)

7
1
o

84) F,, = -G,C
The fine&l form of the error equation is shown in
eqguations (B5) through 87).

: t t
(85) g = (A -G (t)Clg) + I@w, e, + IQu'e

2 J

(86) g, = Fy,(tle, -G,(t)Ce, + Fy,{tla

(87) &5 = Fyy(tle; -Gy(t)Cey + Fy3(t)b
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4
In general, it may be highly desirable to let the gain

matrices Gl’ G2' G, be time varying. Therefore, the feed-

3

back matrices F F will also be time varying. If

11° Fa1r Fa1
the observer is to act as a successful state estimator and
parameter estimator, the error equation must eventually go
to zero. In general, this means that the error equation
must be stable and the matrices Fzz(t), F33(t) must go to
2zero in such a fashion that the stability of the error equa-
F

tioas is preserved. The matrices F must go to zero

22’ 733

because inspection of (86) aad (87) indicates that e,, e

2' =3
are forced by some linear combination of the parameter vec-
tors a, b. These forcing terms must eventually be elimi-
nated, and since a, b are ccnstant, the forcing terms can
only be eliminated by letting F22' F33 eventually approach
zero as the state and parameter estimates converge to their
correct values. In general, the observer is non-linear and
time varying, hence, its stability properties can be criti-
cally dependent on the input u and the state of the observed
system (El = X + e,) thus, the scheme may work for some
selection of inputs and not for others. As is common for
other identification schemes, all state variables must be
excited. Another consideration is that the stability of

the observer cannot be assessed prior to the computation.

The cause of the problem is that the error equations contain

Y
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the unknown matrices A, B, as well as the unknown state.

Selection of the gain matrices G,, G2, 63 nust be

done with some care. In contrast to the linear obserxver,

”;if where elements of the gain matrix would be non-negative,
'.L ; the gain matrix elements are either positive or negative.
. A study of the model structure of the identified system is
; required to determine the proper sign on the gain elements
for the parameter vector estimate. For example, suprcse a
first order system with two parameters a, b is to be identi-

;f:':7g fied. The system and observer are described in (88)-(93).

88) :
89) a

1l

-ax + bu a, b >0

U

b =0
80) y = x

;, 'E 91) Ql = WoWy Wil 4+ gl(y~wl) Wy Wy >0
(82) wy = g, {y~w)

E%". :; (93) QJ = gB(y-wl)

The gain 9, should be positive to insure that wy has
. ;E negative feedback. Gain 9, should be negative. The recason
O for this is that if y-w, is positive, then, x is greater

than w, . Now assume, tomporarily, that W, Bn. 1f x> wy

then Wy is too large and should be decreased, i.c.,w2 < 0,
- k. or g, < 0. I{yw <0, then, x <w,. When x < w , then
for W 2 b, w., 1is too small and should b« ingreas ', L.o.,

o tS

. w, > or, again, g, < 0.
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By similar reasoning, it is clear that 9, should be

positive.

The determination of the gain sign for higher order
systems is a generalization of the above example. Each
term is considered by itsclf, i.e., all parameters but one
are assumed correct in order to determine the relationship
of the sign of ¥-wy and the parameter gain sign to achieve

the required sign on the parameter estimator rate.

OBSERVER STABILIZATION

Stabilization of the observer is difficult because
constant feedback tends to make the parameter estimates
diverge from their true values., Such divergence causes
observer output error which in turn causes the parameter
cstimates to be in error and the cycle tends to repeat. To
illustrate the point, the error equations associated with
the previons example are given below. A paramoter fecdback

term 15 added in (92), (93).

[

{94) ey = -(gl + wz)el + QX + e3u

(88} o,

»
Ia
"
(N)
[
L8]
-+
0

3y : b3 ~F £y
(96) e, Ejey + gge; + f3b
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Analysis of (9%2) and (96) indicates that e, and =
tend to approach a and b if f2 and f3 are positive constants.
LE f2 = f3 = 0, then, a equ.librium solution tc (94) - (96)
is e, = e, = ey = 0. The difficulty is the solution is not

stable, A choice of f2 and f3 must be made such that f2

and £, tend to zero while maintaining the system stability.

3

A stabilization technigue which has worked is to medi-
fy the parameter eguation so that the parameter rate is zero
at the end of some time interval during which the observer
has provided acceptably accurate parameter estimates. The:
parameters are denoced by Py i=1,2,...,n where n is the
total number of parameters. One possible parameter equa-
tion is (97).

~t/T

(97) éi = - e pyr Pyl0) =p;o 1=1,2,...,n

Thie time solution for Py is (98)

©8) p. = Bxe(a r (8P (-t/r -1)) ) i=1,2,...,n

i Pio

There are two adjustable parameters which relate the
steady-state value, pi(m) to the initial value Pio' The
parameter primarily controls the rate at which éi approaches
zero, and the o parameter primarily controls the ratio

pi(m)/pio. The =xact expression for pi(m)/pio is (99).
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p; {=) _
(39) 5{»——-— = EXP(-0r7) i=1,2, «o. , n
10

Let Pio be the correct value of the parameter, then,

pi(m) is the approximate value of the parameter.
p; (=)
If ar = .02, then, 3 = .98, and the parameters

P.
1

of the approximate model are only two percentage points dif-
ferent from the parameters of the exact model. Application
of the approximate parameter approach to the previous

example leads to (100) - (10l1) as estimators for the a,b

parameters,
. -t
. -t
(101) Wy = -oe /TW3 + 93 (Y“wl)

The estimators are stable for a > 0 during the time
period for which the feedback is effective. By proper de-
sign choice of r, 9yr 9y Y3 the observer can be made to

give a stable, accurate estimate of the system parameters.
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NUMERICAL EXAMPLE

A numerical example to illustrate the technique was
worked. Equations (102) - (114) describe the second order

system and its fifth order state and parameter estimator.

(102) x

—
i
e

[\8)

(103) Xy = 851%) = 8y,X, + bu
(104) y = x
(105) a,, =

(L06) a,

1]
S

(107)

1
[ S]

(108) b = 1
(109) Wy = W, + 9, (y~wl)

(110) w, = ~wowy Wow, + weu + g, (y-w,)

(111) wy = fw, - 400 (y-wy)
(112) W, = P 1000 (y—wl)
(113) w_ =

5 = -Sws + 50 (y~wl)
(118) ¢ = .4 EXP(-20t)

The state-parameter estimator to system correspondence

WAS Wy, Wy, Waa, ), WA, wsﬂb. Table 6 shows the

numerical resulss,
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Table 6 . Observer Identification Example.

Time

{sec)

Correct value

YW,
-4,22x10"
-5.43x10"
~7.14x10"
-7.31x10"
-4.86x10"
-2.02x10"
~1.85x10"
-6.16x10"

7.28x10°
~1.31x10"
~-2.83x10"

3.35x10
~-1.20x10”
-1.58x10"

1.76x10"
-9.93x10"

3
4
4
4
4
5
5
5

5
4
5
5
4
5
5
5

2.50
2.36
2.15
2.14
2.13
2.11
2.12
2.11
2.09
2.08
2.08
2.06
2.06
2.06
2,05
2.04

2.00

3.50
4.10
3.96
4.01
4.06
4.05
4.06
4.07
4.01
4.01
4.02
4.00
3.99
3.99
3.95
3.96

4.00

1.50
1.19
1.09
1.06
1.03
1.02
1.02
l1.01
1.01
1.0l
1.00
1.00
1.00
1.00
1.00

.99

1.00




The estimator converged to the correct values rapidly
for the choice of initial conditions and parameter stabili-
zation technique. It is felt that the estimation scheme

is well suited to an analog mechanization.

SUMMARY

A combined state-parameter estimation technigue was
developed. The scheme is based on a generalization of the
linear observer concept and was shown to converge well for
a specific example.

The estimator is multi-linear and can be unstable un-
less a time varying feedback on the parameter estimation
portion is used. A method of stabilizing the observer was
presented.

Computationally, the estimator is good because it can
be implemented é&raightforwardly on an analog computer.
Feedback gain adjuétment is relatively easy. Since no ana-
log-to-digital converters are required, on-line simulation

should be a potential use of the technique.
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CHAPTER V

ESTIMATION OF PARAMETER SUBMATRICES

INTRODUCTION

The present chapter is concerned with determining the
parameter submatrices of network-like physical systems.
These parameter submatrices are contained in the system and
input matrices of the system which are assumed to be known.
A further consideration is determining if enough measure-
ments have been taken to uniquely define the parameter ele-
ment matrices.

As is well known [Koenig, FE-8] if there are e-ele-
ments in the system and if two e-measurements, i.e.,
e-current measurements and e-voltage measurements in the
case of electrical networks, are made, then each pair of
measurements defines a parametexr such as a resistor or a
capacitor. By using the generalization of Kirchoff's volt-
age laws systematically through the theory of linear graphs,
a sufficient number of measurements to estimate the values
of the e-parameters is e. The techniques of the present
chapter allow further reductions in the number of measure-
ments by making full use of the known topological informa-
tion concerning the system and the results from the identi-

fication methods previously presented.
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The state equations are assumed to be in the form as
given in the Appendix and it is further assumed that the
network does not have excess dynamic elements, e.g., capaci-
tors in parallel and inductors in series. Mutual inductance
is allowed under the last assumption. It is also assumed
that the A,B matrices have been determined by some identi-
fication technique and that there are no non-state connected

sources, i.e., Krd’ K are null matrices.

gd
Under the above assumptions, the known information is

summarized in the following equations.

(115) x = Ax + Bu

Where x(t), u(t), te[0,T] are known, and A,B are

known,
J.i 0 \ (A, A F,, F
e M J 11 12) =( 11 T2
0 Jay \R21 Rap) (Fa1 Fap
g ©\ By o= [H
(117) ) )
0 J22 BZ = H2

(118)  (3q;) = (cy)

(119)  (3,,) = (L)

_ t -1, ,-1 .t
(120) Fy; = =T, (R+T, G T,) 7" T,

A Rt



t -1 -1 .t -1

(121) Fy, = TH(R*T/ G "t,) " T, G T, + Ty

(122) 7y, = -1f - 15(e+r,r7irh) 7L o el |
(123) F,, = § (G+'r4 4) T, é
(124) By = K_4
(125) Hy = K_4

The unknowns in (116) - (125) are Cs, LS. R, G, but it
is known that Cgr R, G are diagonal, and Lg is symmetric and

positive definite.

SOME BASIC RESULTS

The first results concern the independence of the
matrix equations (120) - (123).

Result #1 qu - Fth = 2'1‘l

&

To see this, use the matrix identity ABt(C+BABt)-l

+ Btc™ B)"l bl and rewrite (122) as,

i

(a~t

G“lT th G lT

. _ t
(126) F = -Tl - Tz(R+T4 4) 4 3

and subtracting Fgl from F,,, the result follows.
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1 1t -1

t -
G T4) T,G

Result #2 F_.+F t . 2T2(R+T4

12 721
The result follows from above.
The next results are concerned with the relatiounship
of the number of resistive and dynamic elements to the
singularity of the topology matrices and may be established

by simple dimension analysis of these matrices.

Result #3 det T, # 0 only if n, = n;

Result #4 det T, # 0 only if n, =0,
Result #5 det T, # 0 only if n; = ng
Result #6 det T, # 0 only if o= ng

Since the matrices R,G, are diagonal, the results

akove imply the following results,

Result #7 T, is non-singular cnly if the number of
tree capacitors is equal to the number of chord resistors.

Hesult #8 T3 is non-singular only if the number of
tree ccaductors is equal to the number of chord inductors.




’ “"l‘r«‘

8

DETERMINATION OF CS, LS

In general, the dynamic element matrices will not be
determined by state and input measurements only. Some ad-
ditional measurements may be required, hence, the purpose
of the present section is to develop a technique for using
the information available from the state and input measure-
ments to full advantage and to show how to select the addi-

tional measurements required to uniquely define Cs, LS.

The off diagonal blocks Al A22 of the system
matrix A, and the input matrices By, 82 are used to de-

termine as many elements of C,o L as possible, and the

s

remaining elements must be specified by a combination of

topological information and additional measurements.

Using the constraint between Flz‘ sz and noting
that Flz = CSAl2 and FZl = LSAZl' the three matrix equa-
tions available for determining CS . L8 aLe,

(127) . L= 27

Cohia ~Aoilg 1

(128) CSB = H

1 1

(129) LB, = H

2
Two sets of equations may be derived from (130) -

\131) by considering either L, or C_ as independent.
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_ t
(130) c (Al2 2 Bl) = (2'1'l 2 A21H2.H )

t

{131) L (AZIB ) = (2Tl l 12 l.

‘H 2)

Now drawing on the diagonal structure of CB and

letting X = (A;,B,; Bl). = (2748, + A21H2~Hl). (130) can
be written as (132).
(132) Ci-)-(.i* = _y_i‘ i = 132' * e ’ nc

By adding the components of Xy .’ yi ,» the C 's can

be found from (133).

L
(133) L ¥y =% Y9 1=1.2, ... .0m

j=1 j=1
Let r be the number of non-zero row sums of X, then,

n, +p
C .
' i= 1,2, ... ., r

X
j=1 )
The number of elements of Cg which must be specified

by additional measurements is n-r.

o8




Since L, may be non-diagonal, the determination of the

)
e P AN b, Hoda T TN TN A A

'ﬁ. elements of its elements is more difficult.
The Kronecker product can be used to advantage, how-
. . t
ever, by post-multiplying (130) by (Alelsz) to convert to

a system of square matrix equations.

t

L d L4 t —— - t L d
Let W = (AZlBl:BZ)(AZlBlZBZ) and Z = ( 2Tl Bl + AlZHl:

Hz)(AZlBl:BZ)t. then, (129) is written in the Kronecker pro-

duct notation as (135).
. wt o
(135) I&W L =2 = |5 -ut 4
where W is a nzxn and &S is an ni - dimensional vector com-

posed of the transposed rows of Ls’

If wt has rank n 4 then the problem is solved, and the

elements of L, are given by,
(136) 4 = W erz
=g =

The more usual case 1s that rank w = r < nt and since

rank A%B = rank A™ rank B, rank (I~w) = rank (Iawt) = n,.r

and ni2 - ren components of 4, must be specified by topo-
logical information and additional measurements,

Now drawing on the symmetric structure of L, there
are “ﬁ (“£2+ L)

the reduced matrix and vector D, Lgo 2 Of order nzz xn

possible different elements of Ly- Define

nﬁ(n_+l)

(n£+l) and J; x 1 respectively obtained from Ith.
2




g by deleting redundant «ntries caused by the symmietry of
L by (137).

(137)  (D)g, = z

The equation can be further reduced in order by per-
muting rows, columns, and components of D, is’ to z to

yield the following equation.

(138) (Dr*r*:Dr*2) ‘_-:L_‘ = Zl
£, 1
22 !
nz(nz+l)
where r* = rank D and D is an r*x<——~§——~— matrix. Solving

(138) for _&lo
(139) 4 = 2 = Dpapu” (Dpap) &g

hence, the vector 52 must be specified either by topologi-
cal information or additional measurements in order to de-
fine the complete vactor uniquely. The number of these

. n {n +1
measurements 1is g(‘g ) -X.

DETERMINATION OF R, G SPECIAL ChSE 4 = {0)

For the special case where there is no tree to cotree
resistive coupling, the determination of R, G is greatly
simplified.

It is assumed that Cs' Ly have been determined,hence,
from that knowledge and knowledge of the system matrix A,
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the submatrices Fll = CsAll' Fz2 = LSAZZ may be determined.
Then using the topological knowledge of the system, R, G

are defined in (140) and (141).

- -1, t
{140) Fll = —TZR T2

(141) F.. = -7 % ip

22 3 3

Converting (140) and (141) to ni and n; dimensional

vector equations by the Kronecker product after pre and

post-multiplying by Tt. T, as appropriate,

(142)  -1,°1 e, "1 x = £y

SRS N

where X, y are composed of vectors of the rows of R“l, G—l,

respoectively, and g*ll. 2‘22 are vectors of the rows of
t |

v 3 - Al & t . e e y
12 Fi17ye IJEZZTj . respectively.
The number of components of x, y which must be speci-

C e , . 2 2 2 2
fied to define X, y uniquely is Ny =T, ng - ‘g where

£y, £y are the ranks of TZ‘ T3 respectively.

APPROXIMATE SOLUTIONS

It may happen that one is interested in the approximate

values of R, G, Cgs Ly to serve as either a starting point

for more exasi solutions. s3 in the case of successive
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approximations, or becausc approximate values are gufficient.
The generalized inserse may be used to great advantasa be-
cause of the special structure nf the topology matxices,
i.e., their elements are 0, = 1 and the construction of che
generalized inverse is much easier than for thc general
case.

By using the matrix identity (C&-BtA"lB)-l = clgovigt

(A+BC*lBt)-lBC"l, {120, (123) may be rewritten as,

= mopigpt -1t R R N S -
(144) Fll = —‘ZR TZ + TZR T4(G+T4R T4 ) 44R ¥y
- t.-1 t.~1 L~k (-1, t. -1
(.45) F22 = mT3 G T3 + T3 G ‘I‘4(R-§-‘1“"lr G T4) T4 G T3
- =
Let ﬁlz = 312 + F2l
A -1, t -1, ,~-1
(146) F,, = -2T2R T, (G + T,R T4) T,
Therefore, using the generalized inverse,
-1, I _ A I I, I £, 1
(147) (G )" = =(1I + T, §£2T3 T4) T, Fll(T2 )
2
-1, I _ LI . t I
(148) (R 7)™ = (I+12F.L3_T3 TZLll(TZ )
2
Using the diagonal structure of R, G, the i-th
diagonal elements of (146), (147) are % ’ % » respectively.
i i
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MAIN SOLUTLON TECHNIQUE FOR R,G

Since the identification technique provides more in-
formation than the A,B matrices, this information is used
to help determine R,G. The outline of the scheme is toc de-
termine Cyr Ly by the techniques presented, and then use
the state equactions plus knowledge uf the system topology
to determine'RpG. The remaining information used is the
state derivative which is easily computed from g = AX + Bu
where A, x, P, u are known. A prime benefit of this tech-
nique is that linear algebraic solutions are required in-
stead of non-linear solutions.

The technique is formulated for the case where the
independent variables are the state variables and the tree
conductor voltages. The corresponding equations are,

) =uwi - c oy, +E

1 -1 t
(149)  (T,R™) (~Tovg - T, its Yy cdicd

£ t
(150)  ~T37vg = Lodg - T) Vg * Kyaghg

The unknowns in {(144), (150) are Xg' R~l. If r, =

rank T., then ng - I, additional measurements of components
of zg are required to define gg(t) te(0,T] uniquely. Assume
then that gg has been defined and from the chart records
and computation >f x, form the following matrices.

{151) Vs = (v (to)’ cee o xs(tk)>

-8
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{152) I

o = (igleg)e von v ()

(153) y, = (\\_}s(to), cee is(tk))
(154) Uy = (ieqlty)s -oe o ioglty) )
(155) v, = {zg(to). cee o gl

Using (153) - {155), equation (148) can be expanded

to yield the matrix equation (156).

(156) T R"l(—T tvs -7

t
2 2 4 Vg) = Ty lg = Cg¥g * HogUg

. T .
The matrix T2 VS~T4th is nrxk. The number of
samples k 1s chosen such that (—thvs~T4th) = W has rank

n. and in general,

) -1 -1 _
(157) TZR = (TlVS—CSYS + HCdUS)W = 2

Again, using the diagonal structure of R, (157) can

be rewritten as,

i
{158 r t
158) ( £

ke

a1e oo e Toton) = 2y e s 2)

(158) is solved for the Xie i1=1, 2, ..., n, by

forming the column sum,
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n n

Lyt Czes 3= 1,2

=3 j = I%jI1=1L2, ..., n

(159) rjk___l2k3 k=13 . r

and if there are p non-zerc column sums in 2z,
nc
oo 2k
(160) L, = =—m——

T 2.
k=1 ™

i=1l 2, «.. , P<n

The remaining n.-p diagonal elements of r must be
defined by additional measurements. A similar technique

may be used if i

v is taken as one of the irndependent vari-

bles instead of v_.
able s Yy

ALTERNATIVE SOLUTION TECHNIQUE FOR R, G

An alternative technique to solve for the diagcnal
elements of R,G is to write {(120), (121), (122) as a non-
linear set of algebraic equations in the form,

2

— '_- 2
(161) fi(rl; . .;rnr;glp- . .'gng)"hi—o 1_102' -oopn +n£

+n n
c ¢
and solve using the technique of successive approximations

[Rall, M-7}. The algorithm is an iterative one given by,

(162) == 0 (£ -n)

and x is the vector with components of (l6l), £(X), h are

the vector equivalents of (16l) and J(;F) is the Jacobian
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matrix of (161l) evaluated at the k-th iteration. The tech-
nigue of successive approximations works well for the non-
linear eguations considered because the types of non-line-
arities are product and sqguare law types.

The initial starting value is obtained from the ap-
proximate solution technique presented earlier. The major
difficulty is the algebra involved in writing out the equa-
tions, writing out the form of the Jacobian matrix, and

eliminating the redundant eguations so that J-l exists.

DETERMINATION OF R,G ~ SPECIAL CASE (COMPLETE CIRCUITS)

For the case where the network-like system is com-
plete in the sense of Brayton and Moser [FE-3] all of the
matrices Cgs Lgs Ry G may be determined without additional
measurements.

A complete circuit is a network which has special
properties. The reader is referred to Brayton and Moser
[FE-3, p. 4 and 13] for a thorough discussion of complete
circuits. The essence of the completeness property is that
the state equations can be defined in terms of a potential
function. A procedure similar to that for formulating
dynamical equations from the Hamiltonian function in clas-
sical dynamics can be employed to write the state eqguations.

For a complete circuit, the state equations have the

form,
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di. 3p
(163) Lj d"]‘t = 'a“i" J = 1;2, cea g nz
dv.
K L_2® .
(164) -—aE' - - av k - 1.23 s e g nc

k
For the linear, constant coefficient case P has the

form,

1 S 2 Py . 1 9 2 Py £
= ., 3 - = - v i
(165) P =2 §=1j iy 1§=§klk + 3 E:ghvh nz:ln nti TV

:" j Where ij, j = 112' ) 'nr 5n,%' h = 1'2' es e g ng S l‘lc
R M
N are components of the state vector(vi), the ek's and j °'s
SN s n
3 E are the sources, and the rj's and g, 's are the resistors
'?f}:f ] and conductors.
E Applying (163), (164) to (165), the parameter sub-
e ._'_"_‘f matrices have the forms,
—_— g
L la O \\
‘_‘. .> | ; - ‘g !
S (166) CiBy, ng,
& ? 0 ‘0
i (167) CA, =Ty
';r',' 4
1 K
. f




1
‘r
- nr
(168) LSA22 = 0.
0 ‘0
_ t
(1e9) LSA21 = -—Tl

where All is ncxnc and A is n xn.  and CS, LS are both

22 £g
diagonal.
(170) CSBl = Hl
(171) LSB2 = H,

The simplicity of the above formulation allows the

determination of Cqr L,o R, G by inspection.

NUMERICAL EXAMPLE

Several example problems are presented illustrating
the techniques discussed. Both complete and other tvpes of
circuits are considered.

Example Problem #l, Second Order Bridge Circuit

A bridge circuit has some features which make it a
good vehicle for illustration. The most important feature
for parameter estimation is that there is extensive tree-
cotree resistive coupling. An immediate effect of the tree-

cotree resistive coupling is that knowledge of che system

78




AN
ke

states and topology is not sufficient to determine all

parameters uniguely.

Figure 6 shows the circuit schematic and its associ-

ated graph. The state variables are the inductor current,

i6' and the capacitor voltage, ec. Equations (172) to

(182) define the circuit model and parameter matrices.

The main solution technique using linear equations

and the non-linear technique using Newton-Raphson iteration

are illustrated.

- R Ry |

Ry T\ 4388 .056)

A S T
Ce |Ry*+ R, +R J Cg |R +R
(172) a = 31172 3774 1772
1R R3 u_l_iﬂle_
Lg IRpPR, ~ ForRy| ™ L |R¥R,
0 lo \
\L—l .400;
6
(174) T, = 0
(175) T, = ( -1 1)
-
(176) Ty = |
o)
(177) Ty = |4 3
79
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(178) IR, o) (2.000 0 )
R = | =

\o R, 9 3.000
1
[g— © /1.600 0
e e = | L ) = K
v\ 0 = 0 1.000
R
3
(180) ¢, = Cc = 1.500
(181) L_ = Lg = 2.500
(182) K4 =1

There are five equations and six unknowns, therefore,
one of the parameters must be specified. If a unique solu-
tion is desired then additional measurements are necessary
for unique specification of parameters.

Alternatively, an arbitrary (positive) value may be
assigned. If the latter course is followed then the others
will be determined by that specification.

The equations to be solved are (183) to (187).

1
(183) Lg = b, = 2.50
i .Rl R, e
(184) | Ro*R) R TR, 5 12

8l




R,;R R,R
172 34
(185) + = L.a
R1+R2 R2+R4 6 22
! 1
(186) _— = = = Cc.a
R1+R2 R2+R4 5711
R R
1 3
(187) - = L.a
Rl+R2 R3+R4 6 21

Since the off-diagonal terms are related, it follows

that ¢, may be computed from A, b alone.

(188)

For determining the resistive values there are three
equations and four unknowns, thus, a resistive value must
be measured or specified.

For the purpose of the example, it was assumed that
R4 was known and the technique of successive approximations
used to solve the resulting equations. By wmanipulation,

the non-linear equations to be solved are,

R.R 3R
172 3
(189) = = 1.42
Rl+R2 R2+3
1 )
(190) = .58
Rl+R2 R3+R4

82

sl bt Dbt




¥_§ X T f s s o i i e ~
;:". v (3 K R
- ; 1 3
. 3 (191) - = .08
5_ Rl+R2 R3+3
; To solve the above equations, a parameter vector
Ef “j p = fgl was defined and used in the Newton-Raphson scheme
o o 2
_v¢j \R3
below.
(192) P AR ey (S BT
. 3 The Jacobian matrix was,
k k X X Kk \
’ R2 (l~Rl) Ry (l-Rz) (l—R3)
v k. .k k k k., .k k .k k
(193] (R1+R2) (Rl+ Rz) R)*R, R +Rj R3+3 \
= R.+3
3 S
4 - 1 ~ 1 -1 |
Jlp k. 2 %k, 2 % 2 /
(R;+R,) (R{+R,) (R3+3) j
K . & /
: 1 (1-71) 1 2 1 (1-73) /
K, .k k. Kk k _k k K
RI+R, Ry +R, (Rl+R2) Ry+3 (R3+3/

An initial guess which was 50 percent in error was
used to start the Newton-Raphson iteration. The results

are shown in Table 7.
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Table 7. Newton-Raphson Iterative Solution for
Parameter Values

PARAMETERS
ITERATION NUMBER Rl R2 R3
0 1.5 1.0 1.5
1 1.62 1.35 0.76
2 .96 2.23 0.68
3 0.61 2.16 1.29
; 4 0.82 2.11 1.13
s 0.96 2.03 1.0l
& 0.99 2.01 1.01
7 1.00 2.00 1.00
Correct Values 1.00 2.00 1.00

To illustrate the main solution technique it was as-
sumed that an identification scheme had ylelded the A, b
matrices and the state trajectories. The state derivative
was computed by ﬁ = AX + b u. An additional voltage measure-
ment was required because the rank of the matrix T3 was 1.

To determine the vector gg = (Zl) uniquely, the relation
3

(150) 1is,
t M
(194) —’I‘3 gg = les + u
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Substituting for T3, gg, ' LS, gives the branch volt-

i
--s
age relation below.

(195) -(e1 + e3) = -L616 + e

1
1

e 6'

By measurement of e 3 can be computed since L

1’ 6’

e, are known.
Zguation (156) was used to determine the chord resis-
tors Iys T4e

osy (L Ly [ Ssttiimerltides (e (€]

r2 ;':; -es(tl)“e3(tl)-es(tl)"e3(t2)
= CS(éS(tl)éS(tz)

Samples ware taken at tl = 1.0 sec, t2 = 3.2 sec.

Table 8 shows the sampled values and the results for Eoo

ré.
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Table 8. Computational Results for Chord Resistors

TIME
.VARIABLE t = 1.0 sec. t = 3.2 sec,

C5é5 ~ Amps -.208 -.235

eg - V.1lts -.082 -.444

e - Volts 10 10

e - Volts -2,.059 ~-4.063

ey - Volts -2.266 -4.293

r, - 2 ohms - -

Iy - 3.01 ohms

Correct Values

= 2 ohms
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Once the chord resistors were known, the branch resis-

tors were easily determined by,

(197)  ry = e (t)) (i) (£)))

il

(198) r e3(tl) (i3(tl))

3

The branch currents were given by the chord currents

where,

(199) i, = —16+ i, = =i  + ez/v2 = ig + (es—el)

1
r2
Cy s o o i (-e.-~-e.)
{200) i, ig v iy =i+ e4/’v4 S 575
r
4
AL L = 1.0 sec, the values of il' i3 were computed
below,

(201) 11(1.0) = 1.0
{202) i3(l.0) = 1.0
The result of the example is that given two state

measuremcnts, an additional branch voltage measureoment,

and the input, that all six of the network parameters can

be computed.
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Example Problem #2 - Sixth Order, Two-input Complete

Example problem #2 illustrates the parameter determina-
tion technique for the special case of a complete circuit.
The system is the complete circuit for Example #2. Table
9 shows the results of the numerical computaticon and the

corresponding parameters.

Some of the parameters are over-determined, that is,
there are more than one equation for some parameters. A
useful benefit of the above fact is that computational
"noise" can be smoothed out by averaging results. A check

on the consistency of the identification is also provided.

Tshle 10 shows the results of the camputation for
each parameter when the average is used for the over-de-

termined eguations.

Example problem 2 shows that measurement of six states
and two inputs allows the computation of ll parameters.
The computaticn involves simple algebraic techniques. Ex-
ample problem #l contrasts with problem #2 in the relatively
complex technigque of computation plus the need for additioral

measurements other than state and input.
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Table 9. Numerical Results for Complete Circuit.

COMPUTED VALUES FROM

PARAMETERS IDENTIFICATION
L/R,Cy 5.01
1/cy 10.00
l/R5C2 2.00
1/c, 2.00
l/c3 1.00
1/¢C, 1.00
1/c3 1.00
l/Ll 10.02
l/lLl 9.96
/Ly 10.02
Ry /Ly 4.00
1/L, 5.00
/L, 5 i
1/L, 5.00
Rz/Lz 5.00
1/L, 3.34
1/%y 3.34
Ry/L4 10.00

91




Table 10. Comparison of Actual and Computed Parameters
For Complete Circuit.

PARAMETER COMPUTED VALUE ACTUAL VALUE
¢, 0.10 0.0
C,y 0.50 0.50
C,y 1.00 1.00
R,y l.01 1.00
R, 1.00 1.00
Rq 3.00 3.00
R, 1.99 2.00
R 1.00 1.00
Ll 0.10 0.10
L, 0.20 0.20
L, 0.30 0.30
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Example Problem #3 -~ Complete Circuit Model of Second-

Order Bridge Circuit.

A pertinent issue for modeling purposes is the exist-
ance of a model of the system which will give the same
response as that measured but have a different topology
and parameter values., Example #3 shows that a model of the
circuit in Example #l exists,which has a different topology
and different parameter values, yet has the same A-matrix.
The input matrices are different, thus, for the same input,

different state responses will be observed.

A multiplicative scaling of the bridge circuit input,
howeveyr, to provide the input to a complete circuit model
of the incomplete circuit yields the identical state tra-

jectoxvy.

iae net result is that there exists a second-order
complete circuit model of the second-order bridge circuit
which has identical stability properties, i.e., has the
same A-matrix and the two circuits have identical free

responses to identical initial conditions.

Additionally, the forced responses to the same input
differ only by a multiplicative constant. Figure 9 shows

a schematic of each circuit.
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The A, b matrices of the bridge circuit are,

bt 388 -0056
_ . . oy
(203) a = ( 033 ~.570] (Bridge Circuit}
0
{204) b = .4 (Bridge Circuit)

By comparison, the A, b of the complete circuit are,

i -1 -1
R Cy €2
(205) A = ( 1 -R (Complete Circuit)
——— 4
L .
3 L3
f 0
(208) b = L3 (Complete Circuit)
&3

If the A, b matrices were identical, then an incon-
sistency would arise since there are inconsistent require-

ments for L3, i.e., from the 3,y b2 elements.

(207) L, = —= =304

(208) L, = 1/, = 2.5h

By choosing the complete circuit parameters to satisfy

{(consistently),
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(209) C2 = 17.90 farads
(210) R, = 6.95 ohms

(211) L3 = 30 henries

(212) Rg = (30) (.570) ohms

then, the complete circuit has the same A-matrix as the
bridge circuit. Additionally, if the input e(t) is multi-
plied by a constant, k, and used to drive the complete cir-
cuit, then identical state trajectories for arbitrary

initial conditions result. The gain constant must satisfy,

(213) k = .4L

Alternatively, it may be desired to choose L3 (the
only inconsistently specified parameter) to minimize some
error criterion.

Referring to the results of Chapter -~ the state

error equation 1is,

. 1-.388  -.056 . 0 o)
(Blé e =1 1/, —.570) g+ \-033-L 0
I ;
0 \ A
X +.-4‘£_ i u,e (0) =0
VL
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3 F'
. % The A, b matrices of the bridge circuit are,
. -.388  -.056
; (203) A = 033 -.570 (Bridye Circuit)
3 0
5 (204) b = .4 (Bridge Circuit)
B, comparison, the A, b of the complete circuit are,
-1 -1
£ [ RS, 2
S (205) A = \ 1 I (Complete Circuit)
e = 4
3 L3
e
] (206) b= ' _1 {Complete Circuit)

1f the A, b matrices were identical, then an incon-
sistency would arise since there are inconsistent require-

ments for L., i.e., from the a

3 21 b2 elaments.

(207) L, = —= =30 h

(208) Ly = l/b2 = 2.5 h

By choosing the complete circuit parameters to satisfy

(consistently),
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(209) 17.90 farads

O
b

2
{210) Rl = 6,95 ohms
(211) Ly = 30 henries
(212) Rg = (30) (.570) ohms

thenr, the complete circuit has the same A-matrix as the
bridge circuit. Additionally, if the input e(t) is multi-
plied by a constant, k, and used to drive the complete cir-
cuit,; then identical state trajectories for arbitrary

initial conditions result. The gain constant rnust satisfy,

(213} k = .4L3

Alternatively, it may be desired to choose L. (the

3
only inconsistently specified parameter) to minimize some

errpr criterion.

Referring to the results of Chapter 3, the state

error equation is,

. |-.388 m.ose) 0 0
(2le) e ={ 11, 570/ 2% |03l o
L3

04"1

——

0 A
x + \uos(0)=9.
3/
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One criterion which could be used is to minimize the
mean square steady state exror to a step and require L33 o.
Solving for the steady state exrror (u = 10 volts, Xy = -1.0

volts at steady state).

(215) el/ss = '144eZSs

(216) ey, o = (1.024) (L, 3.967-9)

10570L3-.l44

2, .
The mean s’ -ire error (¢°) is the sum of the squares

of the mean exrror components.

3.967-9.0)2
1.570-.144

2 (L

= ol 2 - 3
(217) ¢ = el/Ss + ez/ss = (l.024)L

3

A minimum, €2 = 0 exists for,

(218) L3(3.967) =9 or

3

Figure 10 shows the corresponding error trajectory.

CRTAT . LT

T

VAR



T AT T €

TRy

80" L

40

0T _WNOIA

ﬁ
10130 %

JOIXD JIUD2ITIND I03onpul -

~Ts

{(83TOAQT=D) SHIVLS TEAOW LINDIID
ALATANCD ANY JINDYID TOATYd JO NOSTWYAWOD

ST*

sATqRIIRA I0XAY

98




ey

h b s

SUMMARY

Chupter V has dealt with techniques for extracting
the parameter submatrices from the A, B, matrices. System
toovcloay wlays an important role because its knowledge
enables one to determine a prioxi if knowledge of the state
and input is sufficient to determine all parameters uniquely.

Such knnow'ledge is ‘mpuestant in planning a testing program.

If one tries to deter~ine the parameters from know-
ledge of the A, B, matrices anc¢ system structure on.,, then
a set of nonlinear a.gebraic equations must be solved.

Newton-Raphson iteration is effocrive for this case.

For the case where ad:itional tree %r cotree variables
can be measured, then the parameters c»n be Aetermined by

linear algebraic operations.

Exampie problems illustrating the various techniques

wereg presented.
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APPENDIX

FORMULATION OF NETWORK-EQUATIONS IN STATE FORM

The following development is based on the work by
MacFarlane [FE-9] with modificztions in notation and form
to suit the problem of parameter estimation.

Let To Ye the matrix relating branch and chord vari-
ables for a tree of the network which contains the maximal
number of capacitive elements and such that the cotree con-
tains the maximal number of inductive elements. The only
capacitive elements not in the tree are those which form
capacitor only loops with capacitors in the tree, and the
only inductive elements which are not in the cotree are
those which form inductor only cut sets with inductors in
the cotree. Also, the tree is selected to include all
voltage sources such that all current sources are in the
cotree. If the currents ana voltages are selected as above

then the vector-matrix equations given below follow.

ib \ / 0 T, [ & \
(219 ) o )
e.

I T

where the subscripts b, ¢ denote branch and chord variables

respectively.
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The branch and chord vectors are partitioned into sub-

vectors,
(220) 4, =
(221) g, =

where the second subscripts, ¢, g,

tive

ments, respectively,

Equation (219) takes the partitioned

L B+

&

AP°éP~AP°AH-

o7

gy

e
=)

Spa

where it assumed the sources are ideal.

(222)

LA X

£ G, r, refer to capaci-

sOndustive, inductive, driving, and resistive ele-

form in (222)

e T T g | (B
0 T3 %40 Hya |l

Ts 0 0 Hya i) e

Zod

ST T Ky %
;Tg_ a0 %ea 0 | Zeq.
T 0 Kea, Loy
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The submatrix given by (223) is the matrix for the
case where all voltage sources are ogen-circuited and all

current sources are short circuited.

/ T, T, TG\\
0 T, T, O
| T, 0 0
(223y T = : " tTl
|
%:?% :?,g s
-r; -Tp O 0

o e
\-frs 0o 0 J
The component equations are assumed to be of the form,

»

(224&) i‘-bc: = CS%C

(224b) i = G g

(224c) e, = Ri_,

(2244) [Zct - (I_’E..i _1:1; :i.?..&
(Ebz) .Mi | Le ibz

The state variables are defined to be,
A
(225a) Vo = &6

\ A .
(2250) i L i,
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: The remaining variables are renamed,

; (226a) i &1,
{226b) i, , A i
Sy = e :
{226¢) g 4 gg
(2264) e by
—-Cc = —-e

The subscripts s, r, g, e, denote state, resistive,
conductive and excess dynamic element vector, respectively.

By substituting the renamed variables and component
equations into (219) and rearranging, the :ietwork equations

are in (225).

Ca¥s 0T 0T, TgO\ sy \
H t: t t t
Letet™Milel | -T10 T30 075 \[ i _
Gy, oTy, 0T, 0 O v,
(227) . t t
S i SO | -
Ve -T60 00 0 O Cege
i, 0T, 00 0 0 Leie+Miiﬁ
Hyy O
O K | Aea
Hgd 0 Epa
-g-_ Rra
R
cd
H, O
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where,
C. -+ di=Jonal n_xn matrix of tree capacitors

C_ -+ diagonal nyXny matrix of chord capacitors

L_ -+ symmetric, positive definite n,xn, matrix

of chord inductors.

L -+ symmetric, positive definite, n,xn, matrix
of tree inductors.

G «# diagonal ngxng matrix of tree conductors

R + diagonal n xn, matrix of chord resistors

From the dimension definitions of the component matri-

ces, the topological matrices have dimensions,

T, -+ n Xn

1 cT L

-
TZ ncxnr

T3 -+ ngan

4 -+ ngxnr

TS -+ nzan

T6 4 n xnl

c
The input matrices have dimensions,
sz * R XPe
Krd 0 BeXPe

ch -» nlxpc

Hcd » ncbe
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Hg a- ngxp.)

Hyq @ 7%Py,
By eliminating the excess variables, the eqguation has
the form,

(228) JXx = Fx + Hu

where,
t

C +TeC Te 0 )
Ty

t
0 L3+T§Mi + ToL,

o T o T)/6 T, [0 T
(230) F = . 1\\ + e . .
L {-7y o -T; 0 \-T; R/ |-T; 0

{229) J =(

; -l . 3
(231 L 0| 2 | 4 (Hgd 0):{/Hcd 0 ):
= t t . :
L&“Ts o -1 ®r 0 Kpg/il0  Kyyf:
(o 0 )(TG o}gce 0 (o xch
t t):
-Mi Hch 0 -TSI: 0 I.:3 th 0
v,
(232) X = i
-—s
/ ia
(233) p_=:__%§§:_
\ *
L deq /
\-“%bd
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In summary of subscript notation, s + state, g + con-

ductive, r + resistive, e <4 excess dynamic, cd -+ chord

e e e

driver (current source), and bd -+ branch driver (voltage

Ot by 2ot

source) . :
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