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CHAPTER I

INTRODUCTION AND BACKGROUND

INTRODUCTION

The general topic of the thesis deals with what h3is

come to be known in the control system literature as the

"identification" problem. Given a physical system which

is excited with an input function u(t), t[(O.Tj, the cor-

responding output function y(t), te[C,T] is measured. One

is interested in using the input-output data to construct

a mathematical model which will produce an output which is

sufficiently close to the measured output when the model

is excited with the measured input.

There are, of course, many variations of the above

viewpoint. A broad classification is into stochA-Lic and

dc.tceiiinistic identification problems.

inr Uth stochastic identif-'cation problem, one allows

that the mcaurena"its iw-,ic noise superimposed on the L-ue

input-output iunctions. No noise is asisumed pi'esent in

the deterministi-.. case. Further, within each of the sto-

Tha .ic and ;tcrministic 11iýc;Z io , Thirc 'rc sub-

classifications into linear and nonlinear identiiication

problems. These s.ibclassilications rc(:r to thi c ntra1

properties of the model. Vach linear or nonlinear



identification problem also may be categorized into model

types such as static, differential equation, difference

equation, transfer function, and pulse transfer function

types.

Differential,static and difference equation models

may be called either multi-input or multi output models if

there are more than one input and output. Transfer function

and pulse transfer function models are generally single

input-single output models. Additionally, differential

equation and transfer function types have a continuous in-

dependent variable, generally, time. Difference equation

and pulse transfer function types have a discrete independ-

ent variable.

From the above discussion, there exists a complex

system of classifying the types of models which may be used

to try to match a given set of input-output functions. No

guarantee exists that a given model can match a given input-

output function, hence, considerable insight and knowledge

of the tested system may be necessary to choose a model

which will match the measured input-output data within thy

desired error.
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BACKGRDUND

A convenient method of discussing solutions to the

identification problem is to cliAssify some basic philosophi-

cal approaches, and then to discuss the various computational

techniques applicable to each approach.

The Model Adaptive Approach. - In the model adaptive

approach, one assumes a model for the system of known struc-

ture. By the term, known structure, it is meant that every-

thing is assumed knogwn but the parameters of the model.

That is, if there are system nonlinearities, the general

:_r.. of the nonlinearity is known but any multiplier or

additive values are unknown. Also, the form of the matri-

ces which describe the system are known. A typical example

would be a companion matrix where at most n of the n2 pos-

sible matrix elements are unknown. After the assumption

of a model, the identification problem then becomes one of

adjusting the model parameters in such a fashion that the

error between the model response and system response to the

same input is sufficiently small in some sense. All avail-

able knowledge and physical principles pertinent to the

tested system are useful in the model adaptive approach.

Such knowledge includes constraints on the parameter values,

types of nonlinearities, and system order.

3



The Black Box Approach. - In the black box approach,

one assumes as little as possible about the tested system.

The usual expectation is that the system is linear, but

test signals of varying amplitude are used to confirm the

linear expectation. Most commonly, the test signal used is

a sinusoidal function and the results are typically dis-

played as a frequency response curve of amplitude and phase

as a function of input frequency. The single input-single

output type of system is the most common target of the

black box approach.

Computational Techniques. - Many and varied types of

computational techniques have been developed primarily for

the model adaptive approach. A brief discussion of the

dominant techniques is presented.

Quasilinearization. - Quasilinearization is a compu-

tational technique developed primarily by Bellman and his

coworkers [IT-l]. Extensions of the technique have been

made by Lee [IT 41 and Sage [CT-4]. It is an iterative

procedure based on a generalization of the Newton-Raphson

technique for finding the roots of a nonlinear equation.

Both linear and nonlinear systems are modelled using quasi-

linearization. If the technique converges, the convergence

is quadratic in nature. There is, of course, no a priori

guarantee of convergcnce. Also, the region of convergence

4



may be large or small. Measurements required are the system

input-output measurements.

Differential Approximation. - Differential approxima-

tion is a computational technique where knowledge of the

system inputs, states and state derivates is required.

Bellman lIT-l] and his coworkers were instrumental in de--

veloping this technique. It is basically a gradient tech-

nique where an integral of a suitable norm of the differ-

,nce between the known state derivative and the analytical

expression (dependent upon known states and unknown parame.

ters) for tht- state derivative is minimized. Minimization

o' the integral yields a set of nonlinear algebraic equa-

tions in the parameters. It is often used as a starting

routine for other -iore sophisticated techniques. Linear

and nonlinear Listems may be modeled by this technique.

Algebraic R-ealizat~on. - Identification using alge-

braic ralization theory was develope,6 by one of Kalman's

students at Stanfcrd University [IT-3). The technique is

based on the concept of deteri~ining the Markov pariteters

of the system. The Markov parameters are an infir.ixce se-

quence of mratrices which are related to the system parame-

ters. It is assumed that the system is li0iedr and time

invariant. Based on the above assimption, the identifica-

tion problem is composed cf two sub-problems. The first

5



sub-problem is concerned with linear algebraic operations

on the data to determine a finite number of the Markov

parameters. Secondly, linear algebraic operations on the

Markov parameters are used to determine output, system and

inout matrices of the system. There is a certain amount

of arbitrariness in the second part of the problem. Conse-

quently, the results are not unique, but, vary within a

similarity transformation. The required measurements are

input and output data.

Instrumental Variable Technique. - Young [IT-10,

IT-Il] and Wong [IT-12] have developcd computational pro-

cedures using instrumental variables. The technique is de-

signed primarily for single input-single output linear,

time-invariant systems. Noisy input-output data is meas-

ured and used in recursive algorithms for real time parame-

ter estimation. To bypass the necessity to determine de-

rivatives of the input and output explicitly, the input

and output are passed through a series of "state variable"

filters whose outputs constitute the instrumental variables.

By proper choice of the filters, the instrumental variables

and parameters have the same relationship to each other as

do the original system states and parameters. Consequently,

by measuring the instrumental variables, the parameters can

be computed.

6



Algebraic Model Adaptive Technique. - Yore[IT-9] pre-

sented a thesis which considered two separate but related

problems. The first problem was determining the system and

input matrices of a line-ar time-invariant system where the

entire state and input vectors were measured. An iterative

procedure based on linear algebraic techniques was used to

cause a model state to converge to the measured state. The

second problem was to assume that the system generating the

data was a network-like system, and to devise methods of

determining the values of the components contained in the

system and input matrices. For example, if a1 = r c1 is

an element of the system matrix, what is the value of r cI?

Yore's work was apparently the first to address the so-

called "component parameter" identification for network-

like systems. The "component parameter" identification is

the second part of the present thesis.

7



PROBLEM STATEMENT AND ASSUMPTIONS

Yore's [IT-9] work formed the motivation for the

present thesis. It was felt that his techniques were use

ful but could be improved.

Basic Assumptions. - The following assumptions were

made:

1. The measured data is noiseless and generated by a net-

work-like system.

2. System topology is known, i.e., it i& known what types

of components are present and how they are interconnected.

3. Actual parameter values are unýfnlen.

4. The system is linear and time invariant over the meas-

urement interval.

Problem Statern'1c. - Determine techniques and condi-

tions to identify the parameters of the system described

in the above assumptions.

8
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CHAPTER II

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

INTRDDUCTION

A summary of results and comparisons with some cor-

responding results of Yore is presented. Also included in

the chapter are conclusions based on the results and recom-

mendations for further research.

SUMMARY OF RESULTS

A chapter-by-chapter summary of the research results

is given.

Chapter Ill, Model Adaptive Identification. - The

algorithm which adapts the model to fit the measured state

is based on linear algebraic computations. Both input and

system matrices can be identified using measurements of the

state and normal operating inputs. The algorithm is itera-

tive and proceeds from iteration-to-iteration by the fol-

loi ng rclations.

(i) An+l An + A An
S m

(2) Bn+l 1 Bn + t bn
S m

9



The matrices Am Bn are the model system and input matricesm 'm

at the n-th iteration, respectively. Computation of the

updating matrices is accomplished by the following discrete

time equivalent of the continuous time error differential

equation.

(3)_ ('n• ) = eAmT !en(kt)+( j e_ dT)(AnAA )(L uk)J

The error, e n- x - n, is defined by the measured state, x,

and the computed model state xn. In (3) u is the input

and T is the sampling interval. By taking a sufficient

number of samples, AA n, ABn are computed using matrices

whose columns are defined by (3).

A problem which could occur is that the model has been

chosen of incorrect order. Two possible effects of incor-

rect order are that, (1) the algorithm does not converge,

and (2) the algorithm converges to erroneous A,B. The

important consideration here is which of the states are

neglected. By neglecting strongly excited states, poor

results can be achieved.

Another problem which could occur is that the state

and input could be measured with some error. If measure-

ment error occurs, then the algorithm will converge to

erroneous A,B matrices, if it converges at all. The magni-

tudes of these errors depend on the A,B,u, and of course,

10



the measurement error. The sample interval and norm of the

system matrix are related to the error in identification at

the first iteration. Nearly one step convergence can be

achieved under certain conditions. Some numerical experi-

ments for the first order free case indicate that converg-

ence is guaranteed for amo .6 0 if the following conditions

exist:

(4) aT arbitrary a,.< 0

(5) aT < 2.5 a > 0

Example 3 showed that under certain conditions, the

requirement to measure the entire state vector could be

relaxed by identifying a model whose state could be re-

lated to the measured output.

ChapterIV, Parameter Estimation Using Nonlinear

Observers. - Adopting the viewpoint that the system parame-

ter could be collected into a vector, p, with differential

equation, ý = o, the original linear system could be aug-

mented to form a nonlinear system. Using the Kronecker

product, (6) through (9) show the form of the augmented

system.

(6) IMYta + Ioiut-b

(7) o

(8) o



(9) - Cx

The vectors a, b are formed by collecting the rows of

the system matrix A and the input matrix B into the vectors

a,b, respectively, Not all of the states are measured. The

output matrix C is of order mxn, and the input, system

matrices are of order nxp, nxn, respectively.

A nonlinear observer of dimension n+n 2 +np is con-

structed whose state vector asymptotically approaches the
t

vector (x,a,b) under certain conditions. Success of the

scheme depends on one's ability to stabilize the observer.

Since the observer is nonlinear and, generally, time-varying,

stabilization may be difficult. A procedure for stabiliza-

tion was developed.

C£haptL V - Estimation of Parameter Sub-Metrices.

Chapter V assumed that the system to be identified was a

network-like system. Therefore, the AB matrices have a

special structure. Assumption of the network-like system

constrains the elements of A,B. The constraints appear by

forcing certain elements of A,B to be either zero or one.

Other elements are related by algebraic equations to each

other. Thus, information about A,B can be determined prior

to actual testing of the system.

12
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Knowledge of the state, input vectors, and A,B matri-

ces may not be sufficient to determine the parameter matri-

ces uniquely. Some results are given which show where ad-

ditional measurements should be taken to give unique results.

Both linear and nonlinear techniques for determining the

system parameters are given. It is shown that for a special

class of networks, all parameters may be determined from

the AB matrices.

COMPARISON WITH YORE'S RESULTS

The notation in Chapter M is used to compare the re-

sults achieved here with those by Yore. Table 1 shows the

difference in the algorithms.

it is the author's opinion that Yore unnecessarily

restricted his technique by requiring the sample interval

be sufficiently small that C AT

If Yore's time requirement is used for the author's

algorithm, then one step convergence is achieved. One step

convergence is not achieved for the same sample time using

Yore's algorithm.

TrO restrictions on the sample time are given by Yore.

For the first order autonomous case. it is necessary and

sufficient that faTi < Ln2 for convergence of the algorithm.

For higher order, non diagonal. avtonomous case, it is

13
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sufficient that n max laiaj < Ln2 for the identification

i,j

to converge. The results of Chapter III show that, at

least for the first order case, the sampling time require-

ments are much less restrictive than Yore presents.

Comparing Yore's results with those in Chapter V on

determination of the parameters in the AB matrices is dif-

ficult because the approaches are fundamentally different.

Yore's main effort was characterization of a suffi-

cient number of measurements in terms of his concepts of

statically and dynamically independent variables. His re--

sults are phrased in terms of the existence of such sets of

variables. No procedures or techniques are given to de-

termine which network currents and voltages constitute

statically and dynamically independent sets of variables.

No direct use of system topology was made.

In contrast, the effort in Chapter V was based ex-

clusively on detailed knowledge of system topology. The

main effort was to use the topology, A.B matrices. astate,

and input vectors to determine the parameter submatrices.

As a byproduct of the computations, the need for

additional measurements other than state and input is de-

termined. Direct application of linear algebraic tech-

niques, principally, determination of ranks of various

matrices, is required.

15



CONCLUSIONS

The basic algorithm in Chapter III is effective and

works well for the cases in which it is applicable. Its

capability of providing nearly ene step convergence should

prove useful. The two principle effects of measurement

noise anu/or incorrect, model order are, (1) non-uniqueness

of results, and (2) unique but erroneous results.

Measurement noise can be significant if the states

are weakly excited. The data matrix which must be in-

verted oeccmes ill-conditioned. A consequence of the ill-

cort,•itioning is that small errors in the data matrix ele-

ments cause large errors in the updating matrices. The

errors can cause the iterations to oscillate about the

correct values of A,B matrices. A filter can be cascaded

with the basic algorithm to smooth the fluctuations.

Knowledge of the system structure can be used to de-

velop a nonlinear observer which has on-line potential for

combined state and parameter estimation. The observer is

best suited for analog or hybrid mechanization bccause a

large number of first order differential equations with

relatively widely separated time constants need to be

integrated.

The critical problem is insuring that the observer is

stable. A complicating factor is the requirement for the

16



feeCback for cach parameter equation to decrease to zero

while keeping the overall system stable. A technique wfl

developed to stabilize the observer.

Knowledge zf the system topology is necessary for

unique parameter determination tor the network-like case.

Straightforward results and techniques have been demon-

strated for parameter determination.

17



RECOMMENDATIONS FOR FUTURE WORK

Fuiture research effort should be directed to answer

the following questions. Most work should be directed to

the computational aspects of the problem.

1. How can the effects of widely spread eigenvalues be

handled computationally?

2. If the measurements are corrupted with noise, how

can the results of statistical estimation theory be

applied to give "good" estimates of AB using the

algorithm of Chapter 3?

3. How can the effects of incorrect model order be mini-

mized?

4. How can the sample interval for the basic algorithm

be chosen for most rapid convergence? Should it be

modified from iteration to iteration?

5. How can the model adaptive algorithm be used where

only a subvector of the state vector is measured?
That is, when can additional operations on output

data such as integration be used to identify another

model whose parameters are related to the original

parameters by known relations?

18
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CHAPTER III

MODEL ADAPTIVE IDENTIFICATION

INTRODUCTION

A model adaptive algorithm is derived under the usual

assumption that the pair [A,BI is completely controllable

(Kalman, CT-21. Further, it is assumed that the state

vector and input vector are measured perfectly. After the

algorithm is developed, the effects of measurement error

and incorrect model order are considered. Some uniqueness

results and computational rules of thumb are presented.

The physical system is assumed to be governed by the

constant coefficient, vector-matrix differential equation

(10).

(10) ,(t) = Ax + Bu(t), x = x(0) tc(0,tf]

and that x(t) and u(t) are n and p vectors measured per-

fectly on the interval [0,tf]. A, B are not known.

A model of the system is assumed to have the constant

coefficient vector-matrix differential equation (11).

(11) A-m = Amm + B mu, Xm(0)-A ?0

The chart records of x(t),. u(t) are divided into n+p+l

samples which are used to determine the A, B matrices.

19



By assuming a pair [A, Bm, integrating (1i) and com-

paring the measured and model states at the sampling instants

tii = l0,1,2,...,n+p+l, the model is forced to converge to

the system represented by (10). The updating scheme is

algebraic.

DERIVATION OF ALGORITHM

The method of forcing the model data to converge to

the measured data is to define the following quantities.

A•A, AB are the updating matrices.

(12) A = Am + ýA

A
(13) B = B + AB

In terms of the defined variables in (12) and (13),

equation (10) is rewritten.

(14) x = Aý + Ax + B u + ABunur-

Let e(t) = x -x (t) denote the difference between the

measured data and the model data, then by subtracting (11)

from (14) the error differential equation is (15).
A

(15) e Ae + AAx+ A~u, e(0) =0

Since e, x, u are known, AA, AB can be computed. In

order to compute MA, AB (15) is converted to the equivalent

discrete time system (16).
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ST _AmT Qx(k) )
(16) e(k+l) eAmT te(k) + (0S eA dr)(AAB)(u (k)1

0

where T = ti-tit i = 0,1.2,...,n+p and is the sampling

interval.

The error and input-output vectors are formed into

the following matrices.

(17) UO = (u(o),..., u(n+p-l))

(18) XO = (x(o),... x(n+p-j

(19) EO (e(o)=...,_e(n+p-1=

(20) El = (e(l),..., e(n+p))

Using (16), the matrices defined by (17) - (20) are

related as follows:

AmT Am I E+XOVx
(21) El = m EQ + (0iJ e d d) (AALB) WO)J

Assuming the existence of the inverse of ,then,

the updating equations to improve the model in an iterative

fashion are:

(2 Ak+l k
(22) Am = Am + AA

(23) k+l = B k + AB
1m m
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(24) (AAAB) 0 (oje { T)me} (U7'

EFFECTS OF MEASUREMENT ERROR

The effects of measurement error on the AB matrix

errors are formulated in the present section.

Assume that the actual state and input vectors are

measured with errors e and e and define the errors by

(25) - (28).

A
(25) x = x + e

A
(26) u = u + e

A
(27) A = A + EA

A
(28) B = B + EB

EA, EB are identification errors induced by ex, e
--U

The identification algorithm operates on the apparent

system given by (29).

A A A AA A A
(29) x = A x + B u, x(0) = x

Subtracting the actual system equation x = Ax + Bu. x(o) =

x from (29) yields the equation relating the measurement
--o

error to the induced identification errors EA, EB in (30).

*A A(30) x Ae + Be + (EA)xA_ + (EB)u
(32x 2
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Estimating EA, EB using the discrete time equivalent

of (30) yields (31) which is the relationship of tuie

measurement error and the A,B error.

,T
(31) e (k+l) = eAT ex(k) + (j e d,) (k) + (EA EB)

x (k)

thus, the errors are given by (32).

(32) (EA EB) = oe dd e-g EAlx-EOx -BE0 AO1

Elx, EO, 0o, & are defined as in the section on

the basic algorithm.

EFFECT OF SYSTEM ORDER ERRORS

The present section provides the formulation of the

effect of errors in selecting the model systez, order.

Assume the system is pr#cisely modeled by the state

equation,

(aa I-2 Aa 22] -x21 2'

where xi is a r-vector of the assumed model order and x is

an n-r vector of the ignored variables. Now letting e

=xI -% and, B1  B + AD, AlllAm+ LA as in the
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basic algorithm, (33) is transformed into a vector matrix

differential equation in the error variable and the sub-

vector of the ignored variables and is given in (34).

e IA I 2A 1A(34) I xA2 0m A2 2E2 A + B 1

S A22} 2 21  2

The effect of the ignored variables is that of an

additional input and can be considered as an unknown dis-

turbance.

Analysis of (34) indicates that the eigenvalues of

the error plus ignored variable system matrix are those

of the model system matrix Am and those of the ignored

system matrix A2 2 .

An estimate of the effect of the error in system

order on the identification can be obtained by the discrete

time equivalent of (34).

Decomposing (34) into two equations,

A22T -A2 "
(35) x 2 (k+l)=eL • 2 (k) o e d)A 2 1xl(k)+B2 u(kj

(36) T(k+l)iem xe(k)+ (k) + (k)

+ 2 + 22 (k)'
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and writing the matrix equation,

T

(37) El = e EO + (o eM (AAI ABI)UOl)

AmT (o(X
0 d, ( 2)

and solving for (AAIIAB 1 ), the induced error matrices, for

the case where El = EO = (0), i.e., x 4 x1

F T Am -Il

(38) (AAIIABI) L(OSe- md )lAI 2X2 )i (Ul)-I

and the matrix X2 is the n-r xn+p matrix formed from n+p

samples of the solution of (35).

By examining (38), one sees that if the data matrix

lX01 ) is non-singular, then the identification converges

U01

to some (unique) matrices Am, Bm which, in general, are not

the same as the submatrices All, Bl. If the data matrix

is singular, then, the identification diverges or at best

yields some arbitrary Am, Bm depending on whether or not

one desires to specify the dependent elements of Am, B .m

The important result is that incorrect model order is

not too critical to convergence of the identification.

Additionally, identification using different inputs can

cause different error matrices A1 1I•AB. The difference is
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caused by the interaction of measured states, ignored

states and input. For example, if the input did not excite

the ignored variables strongly, then, x2 (t) : o and dif-

ferent (nearly null) AAill AB, matrices will result than if

the ignored states are strongly excited. A method of check-

ing for correct system order of the model could be exciting

the system with different inputs and comparison of the re-

suits. No change in Am, Bm with different inputs would

mean correct order. A change in Am, B with different in-

puts would mean incorrect order. A change in Am, Bm wiLh

different inputs could mean wrong order, but it could also

be the result of another problem.

It is possible that the model could be the correct

order but some weakly excited states and numerical diffi-

culties cause some changes in Am, Bm using different in-

puts. The problem lies primarily with the computational

aspects of the identification. Ill-conditioned data

matrices caused by weakly excited states are difficv:It to

handle. None of the example problems worked presented any

difficulties of this nature.
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INVERSION OF DATA MATRICES

A series of results concerning the conditions for the

inversion of the data matrices in the basic algorithm are

given under the assumption that the data are measured with-

out error.

The following notation is used:

I 21

where \UO) is an n+px n+p matrix and X,, U2 are nxn andUQ)

pxp matrices.

Theorem #1. Necessary and sufficient conditions for

the inverse of (39) to exist are,

(1) dot (x~tx1 + U U ) 0

(2) d-t (X.tX + and 02 2 2 2

Proof: Since the inverse of Oexits if and only

if det tUO) r 0, if a bound on the determinant of (39) can

be established, then, the theorem is proved. Let A

(A A (Ui I2) , then, A A1  X.X + A and 4AA

X 2 + A2. By Wegner's theorem (Bodewig, M-l. p. 711,

d eot (do t(d ,t 4A (dot iAs ). Therefore. det A Y 0 if

and only if the theorem is true.
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Theorem #2. Sufficient conditions for (39) to have

an inverse are,

(1) det X1 1 0

(2) det U2 i 0

(3) det (XI-X 2 U22 U1 ) • 0

(4) det (U2 -U1XI-1X') ' 0

Proof:

Let D=
,-u-lU (x -x uu-1u --

S2 i1 1 2 2 1) ( 2- 1IX '27 !

and by multiplication D ) ()D I. hence
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CONVERGENCE AND UNIQUENESS

Theorem #3. Sufficient conditions for the unique-

ness of the identification are:

(1) e(t) A 0 t C (0,tf]

(2) that there exist n+p linearly independent

vectors (2xM) in the open interval tc(0. tf)_(t)f

Proof: The error equation (15) is e(t) = Ae(t)

+ (A-Am )x(t) + (B-Bm)U(t), e(0) = 0 and if e(t) A 0 on the

closed interval tc[0,tf), then e(t) = 0 in the open inter-

val tc(0,tf). Co:,sequentlv, the error equation takes the

form 0 = (A-AmB-B) • (.t)) tC(O.tf) under the hypothesis

of the theorem,

Let Y be the matrix of the linearly independent

samples, then, the matrix equation below is valid:

(0) = (A-Am:'-Bn)Y

Since Y is non-singular, then, its multiplier must

be the null matrix, i.e., A = Am and B = B

Some insight into the selection of the time inter-

val for the basic identification algorithm can be obtained
for the free response case. The nore general case is con-

siderably more complex and has not yielded to analysis.
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Theorem #4. Let the updating algorithm (21) have

the initial value AO = (0) and consequently the first itera-

tion, AI, be given by A1 = T (Ei-EO)XO , then,

Lim (AI-A) = (0)
T4 0

Proof: The proof p*oceeds by direct computation.

Substituting for El, EO, since Ao_(0), the expression for

A1 is ,

1/(lXm (XXm 0-1
(40) A1 = 1Xl-XQ-(X0-X0 XO

Also, by definition, Xl = eATXo and substituting

into (40) it follows that A1 is given in (41).

(41) A -A = 1(e Al

Performing the power series expansion and rearrang-

ing AI-A is given in (42).

A2  AnT 1.
(42) A1 -A T + ... + n +

Now taking the limit as T 4 0 yields the ý-hecrem.

As a remark, (41) shows piecisely why one step con-

vergence is not obtained, but also shows that for T suf-

ficiently small, that A1 can be very close to A. A bound

on the difk~rence AI-A can be obtained, however, the bound

will be conservative.

30
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1(eAT_I), then, the error A1-ATheorem #7. Let A1 =

is given by,

(43) 2 IIA IIT
(43) IIA1-AII < lAIIA2. e = e, T, e>O

2

Proof: Using the series expansion for eAT, it fol-

lows that (Pipes, M-7, p.133],

22 33 2T
(4)1 (A2T2 +AT +...) AT eAT 0(44) AI-A = y e 0 < 9 < 1- - -

A1 A-j. 2 3~ 2 _

To get an upper bound, let 9 = 1, and take the norm

of (44).

(45) 11AI-AII < IWlII Ile AT,, < 2LA1 2 T ,IA=IT

Equation (45) can be used as a guide for choosing T

to get within a specified error on the first iteration.

Let e/IIA!l be the desired fraction error, then, solving (46)

for the number IIAIIT and estimating lJAIl to get an estimate

of T which will achieve the desired maximum error fraction

c/UJAI.

(46) !IA!IT eIIAIIT = 2/ll -l

Figure (1) shows UAIIT vs c/IIAII
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A proof that a specific value of aT which guarantees

convergence for the first order case (the simple one) has

not been achieved. Figures 2 to 4 show the results of

some numerical experiments for various values of aT. Fig-

ure 2 indicates monotone convergence if aT<O and the possi-

bility of sustained oscillation if aT>2.5. Figures 3 and 4

verify that the convergence is monotone if aT<O and oscil-

latory convergence for aT>O. Based on the numerical re-

sults, one should use the following guide for selection of

the sampling interval.

Rule 1. a<O

T can be arbitrary but should be small to yield to

rapid convergence.

Rule 2. a>O

T<2.5/a but should also be small to yield rapid con-

vergence.

The following expression for the errors can be de-

rived by simple manipulation of the basic algorithm.

aTaT
a n+l -an e -e

an _ e a-e~
(47) an eanT

anTe(aT-l

(48) an+l (eaT-l) eaT a T (e -1)= T e-e n>
(4) a - a aT (eaT_
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CONVERGENCE OF FTRST, SECOND ITERATIONS OF FIRST

ORDER FREE SYSTEM x = ax, x(o) = xo,am(o)4 0

aTl
S= T .8

aT- aT-(eaT -l)
eAT l eaTI

I T (e aT) 
.6

f 0 &a T/1o
S .4

Aal/AaO 4

3-4

-3 .0 -2.0- -a. .0 2.0 3.0-I Ta/aO-

FIGUn-< 2
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CONVERGENCE PROPERTIES FOR
FIRST ORDER SYSTEM

x=ax, a > 0

60

aT =1.2

* 40

20 aT

aT--.4

1 2 46

Iteration Number
o -20

014

-40

-60

-80

FIGURE 4
-100

36



NUMERICAL EXAMPLES

Two numerical examples are presented to illustrate

the technique. In each case, the initial assumption was

that A = (0), Bm = (0). Both single input and multi-input

systems were identified.

Example #1 - Second order 1 input case: The first

example problem attempted was an oscillatory system de-

scribed by the phase variable model.

(49) A = 0 1-2)

S~(0)
(50) b =

A step input of 2 was used with initial condition

x 1 (0) = .278, x2 (0) = .536. Runs were made first assuming

b was known and then assuming b unknown. Convergence to

the correct A,b was rapid in both cases. A sampling time

of .1 second was used.
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Example #2 - Sixth order, 2 input complete circuit: A

complete circuit in the sense of Brayton and Moser [FE-31

was chosen for the second example. The network schematic is

shown in Figure 5. Inputs to the system were uI = 20.0,

u2 = 10.0 + 5 sin .08 t and the initial conditions were zero.

The sampling interval was 0.1 sec.

Again, it was assumed that the A,B matrices were null

initially. The numerical results show rapid convergence to

the correct values. A general structure for the A,Bmatri-

ces is shown below.

0 0 1/C 1  0 0

(51) R5C2

0 0 0 -1/C3  -I/C3  -1/C3
A- _1/L 0 /L1 L 0 0

.i/L 1  i/- 1 I/L1

0 -1/L 2 -I/L 2  0 -R 2 /L 2  0

0 /L 3  /LL3  0 0 -R 3 /L 3

"0 0

B= 0 0

0 0

39

~.- .-- ~ .. ~tV .&~til~Ž'S A2K -- ~ ~ ..~. . . . ... ~. . ...



A CO•?•EETE CIRCUIT

El I
;•L3 R 3

2 R

K 2 2

FIGURE 5

40



Table 4. Identification of Sixth Order, Two Input
----. • Complete Circuit

ITERATION NUMBER

PARAMETER 0 1 4 10 CORRECT
VALUE

A 0.0 -6.15 -5.27 -5.01 -5.011

A12 0.0 -2.30 .92 + .03 0.0

k 0.0 10.49 -4.11 .ii 0.0

AI4 0.0 5.03 10.93 10.02 10.0

A1 5  0.0 .31 -. 04 -. 00 0.0

A 0.0 -1.30 .96 .02 0.016

A21 0.0 -. 00 .00 .00 0.0

A22 0.0 -2.18 -2.00 -2.00 -2.0

A2 3  0.0 - .38 .02 .00 0.0

A2 4  0.0 .012 -. 01 -. 00 0.0

A2 5  0.0 1.40 2.00 2.00 2.0

A26 0.0 .01 -.01 -. 00 0.0

A3 1  0.0 .27 -. 03 .00 0.0

A3 2  0.0 -. 05 -. 34 -.00

A3 3  0.0 -1.53 .24 .01 .

A3 4  0.0 -. 66 -1.07 -1.00

A3 5  0.0 .72 1.00 1ý00 1.0

A3 6  0.0 -. 48 -1.04 -1.00 -1.0

A4 1  0.0 -3.23 -11.16 -10.02 -10.0

41



I

Table 4. (continued)

ITERATION NUM.BER
PARAMETER 0 1 4 10 CORRECT

VALUE

A4 2  0.0 -7.21 1.38 .02 0.0

A 0.0 29.37 6.64 9.96 10.0
43

A044 .0 -7.32 -3.67 -4,00 -4.0

A45 0.0 .97 -. 26 -. 00 0.0

AO46 0. -4.10 .49 .00 0.0

A5 1  0.0 -. 05 .05 .00 0.0

A52 0.0 -3.46 -5.08 -5.00 -5.0

A5 3  0.0 -3.66 -4.83 -5.00 -5.0

A5 4  0.0 .16 -. 03 -. 00 0.0

A55 0.0 -4.44 -5.00 -5.00 -5.0

SA 6 0.0 .13 -. 02 -4()^ 0.

A61 0.0 .03 -. 04 -. 00 0.0

A62 0.0 1.84 3.30 3.34 3.34

A63 0.0 1.95 3.19 3.34 3.34

A64 0.0 -. 09 .01 -. 00 0.0

A65 0.0 .29 .04 .00 0.0

A66 0.0 I -('.40 -9.75 -10.00 -10.0

3 1 .0 3.07 -. 40 -. 00 0.0

812 C0.0 -. 31 .24 .00 0.0

B21 0.0 .00 .00 .00 0.0

B2 2  0.0 .39 .00 -. 00 0.0
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Table 4. (continued)

ITERATION NUMBER

PARAMETER 0 1 4 10 CORRECT
VALUP

B31 0.0 -. 36 .07 .00 0.0

B32 0.0 .24 -. 02 .00 0.0

B4 1 0.0 5.85 10.82 10.02 10.0

B42 0.0 -. 94 .21 .00 0.0

B 5 0.0 .06 -. 02 -. 00 0.0

B5 2  0.0 3.87 5.00 5.00 5.0

B61 0.0 -. 03 .03 .00 0.0

B62 0.0 .06 -. 02 -. 00 0.0

43
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Ex__ple #@3 - Generalization of Algorithm-. A possible

generalization to allow identification when the entire state

is not measured is indicated by an example. The procedure

is to define a new state space in which the model parameters

may be computed Ly using output data and the output data

integral.

Consider the second order phase variable system in

equations (53) - (55).

(53) X =x

(54) x2 = a21 x1 + a 2 2x2 + bu

(55) y =x 1
t t t

Now define new variables wl=o xl(T)d.-,'w2 =o x2 (r)dT,v=F u(T)dT.

By integrating (53) - (54) and substituting wI, w2 , the fol-

lowing state equations in the new states arise.

(56) wI = w2 + x1 (0) = y

(57) w2 = a2l w 1' *V 22 + 2v bV+ x (0)

The unknown quantities are a21' a22# b2' x2(0)2

For the special case x 2 (O) = 0, the model is,

a 0ob (0),

The state variables of the above system are known
tSsince Y'oJ y(T)d'r, Xl(Q) are known. Application of the

basic algorithm is now done straightforwardly.
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Example Problem #4: Effects of Model Order Error.

The robustness of the model adaptive algorithm to model

order errors is indicated by the present example. A sec-

ond order model is fitted to data generated by a third

order system using a slight modification of the basic

algorithm. The modification is that the identification

is not stopped when an A,B matrix is determined. That is,

the basic algorithm is aL.2lied to z. data matrix (XO, UO)

using n+p measured state and input vectors and an AB is

determined which fits thI data. Every vector is then dis-

placed to the left, and a new data vector replaces the

last column of the matrices XO, UO. The algorithm is

applied to the new data maLrix. Previously determined

model matrices A,B are used as starting points.

The third order system chosen is a model of a gun

turret for use on ships. It is described by the transfer

function shown below.

( 12.1
V S(S+18XS+3.5)

0 is the turret position and V is the voltage applied to

the turret drive. A step of three volts was used as the

drive input.
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Table 5 shows that the basic algorithm is robust

in the sense that it converges to a unique answer when a

lower order model is fitted to data generated by a higher

order system. For the example chosen, the coefficients

are close to those obtained by neglecting the most heavily

damped pole.

Table 5, Second Order Model Fitted to Third Order Data

Iterations
Fit to b b
No. Convergence a11  12 21 a22 1

1 3 -. 001 1.006 -1.182 -2.61 -. 000 .532

2 3 -. 002 .994 -. 151 -3.243 .001 .575

Coefficients obtained
by disregarding pole
at -18

0.0 1.000 0.0 -3.5 0.0 .535
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SUMMARY

A model adaptive identification scheme was developed

.. which yields the system and input matrices of linear, time

invariant multi-input systems. Measurements of the state

and inputs to the system were assumed.

Solution of linear equations, generation of the

model transition matrix and its integral, and integration

of the model equations were the primary numerical tech-

niques required.

The primary requirement for unique convergence was

the non-singularity of the data matrices.

Some rules of thumb on choice of sampling interval

were given.

Several example problems showed that the algorithm

is rapidly convergent.
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CHAPTER IV

PARAMETER ESTIMATION BY NON-LINEAR OBSERVERS

INTRODUCTION

The previous chapter assumed that all states were

measured and developed a model adaptive identification

scheme which worked very well for that case. In many cases

of engineering interest, it may indeed be possible to meas-

ure all these states. However, if the states are not all

measured, then a technique is desired for parameter estima-

tion which will work using the measured states which are a

subset of the system states. The present chapter discusses

parameter estimation using a generalization of linear ob-

servers. Preliminary background material is developed for

linear obseývers and the effects of unknown parameters are

discussed. Following the background discussion, the theory

of non-linear observers/parameter estimators is developed.

Finally, a numerical example is presented.

LINEAR OBSERVERS

At the present time, linear observer techniques used

for estimating the states of linear systems are well known,

principally through the work of Luenberger (SE-2]. In gen-

eral, observers estimate states with an error which asymp-

totically approaches zero. The design of these observers
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is predicated upon the assumption that one knows the system

and the input matrices for the system to be observed. Some

things about linear observers which are not well known, how-

ever, are the effects of system and input matrix changes on

the state estimate. The foilowing brief development shows

the effects of parametric changes in the observed system on

the observer states. The result of the development shows

that the error in a state estimate is dependent not only on

the observed system's state and input to the system, but

also on the variations in the system and input matrix. It

is assumed that the observed system is described by equa-

tions (60) and (61) where C is the known output matrix.

(60) x = A x + Bu, x(0) not known

(61) y = C x

Further, assume that the system is erroneously thought

to be modeled by equations (62) and (63). Consequently, the

observer will be designed using the erroneous system matrix

A and the erroneous input matrix Bm

(62) x - A x + B u, x (0) not known
M-Mrn ff- _n

(63) y Cx

Equation (64) describes the observer.

(64) w =1 F, + Gy + Hu
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The desired objective is to have the observer state

w = Tx + e where e goes to zero at some satisfactory rate.

For the case at hand, T is a non-singular transformation

and we would like to take x = T -(w) as the state estimate.

If the observer is designed properly, the error will in fact

approach zero asymptotically. By performing some algebraic

manipulations and subtracting equation (60) from equation

(64) the expression for the error in the state estimate is

given by equation (65).

(65) Te = T-IFT T-le + (T-IFT + T-IGC-A-MAA) x

+ (T IH-B -&B)um

If the state estimate is to asymptotically decay to

zero, we need to eliminate the forcing terms and further,

ensure that the observer is stable. Since it is thought

that equation (62) mocels the systcm, w% cnoose the matrices

T, F. G, H to satisfy equations (661 and (67).

(66) TA - FT - GCm

(67) H- TBm 0

Choosing the observer to satisfy those equations,

yields the error in the state estimate shown by equation (68

(68) T e (A_-T-GC) T-c -
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It is obvious that the state estimate error is com-

posed of two parts. The first part is the free response

resulting from the unknown initial condition x(O) since, if

it were known, we could set e(O) = x(O) -T- 1 w(O) = 0 and

have no free response term. The second is the forced response

caused by the unknown parameter variations AA and AB. These

parameter variations enter in a multiplicative fashion, and

their effect on the state estimate depends entirely on how

the system is excited and what these parameter variations

are. Utilization of the observer to provide the state esti-

mate for the model adaptive identification scheme of the

previous chapter will provide a state estimate which is in

error by the amount shown in equation (68). Consequently,

the linear observer has not been found to be useful for

identification. Modification of the way in which the system

equation is written and considered yields a non-linear ob-

server whose state vector is the original system state and

the parameter vector.

ON-LINEAR OBSERVERS

The last section developed the expression for the

error in the state estimate of an observer improperly de-

* signed. If the observer for a linear system is designed

based on erroneous system and input matrix information, the

observer estimates the state of the observed syst wit' an
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error which is defined by linear differential equation. This

error is uncorrectable since it depends on knowledge of the

unknown matrices AA, AB, and the state which is also unknown.

A method of circumventing the difficulty of unknown system

parameters and system states has been developed using non-

linear observers. Essentially, what is done is to rewrite

the linear system of equations in non-linear form with an

augmented state vector. This new non-linear system has as

its states the original state x plus a vector of parameters

for the system matrix A and for the input matrix B. The

parameter vector for the system matrix is called a and it

is formed by stacking the rows of the system matrix A into

a vertical vector. In similar fashion, the parameter vec-

tor b for the input matrix B is formed by stacking the rows

of the B matrix into a vector. Using the Kronecker product

the non-linear system then is described by equations (69)

through (72). Notice that constraints on the parameters

are also included. The constraints are the e.:, d., kil,

h h., terms.

(69) x=I xta + I u

(70) a = 0 c. <ai <d. ij

(71) = 0 ki. <bi j<hij i = 1,2,...,n

(72) y = Cx j 1,2, ... ,p
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Given the non-linear augmented system we construct an

observer which will yield the entire augmented state, that

is, the original system's state plus the parameter vectors

a, b. To construct the observer, we build in a structure

similar to that in the augmented system and include parame-

ter constraints if they are known. The general form of the

observer is shown in equations (73) through (75).

tt
(73) _ 11 (t)wL-1 + IGwH1 w2 + Ilutw3 + G (t)Y

(74 •2= F2 2 (t)w 2 + F21 (t)wI + G2 (t)y

(75) w3 F33(t)3 + F31(t)_l + G3(t)y

It is desired that the observer state vector corres-

pond to the augmented state vector of the original system

within some error. The notation involved is shown in equa-

tion (76) through (78).

(76) w, = x + e 1

(77) w2 = z + -e2

(78) '4 = b_ .- c 3

As in the last section, it is desired to develop the

error equations for the non-linear observer. After some

algebraic manipulation and subtraction of equations (69)

through 172) from equations (73), (74) and (75), it iE seen
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that the error equation is given by equations (79) through

(81).

(79) 1e = (F1 1 + A)e 1 + 1 el-2 + I~xte -- + Id-ue 3 +

(F11+ G1 C)x

* (80) - = F2 2e 2 + F 2 1el + F2 2 a + (F21 + 2C)2

(81 e"3 = F3 3e 3 + F 3 1el + F3 3 + (F 3 1 + FPCý

Examining equations (79) through (81) it is seen that

the error equations are driven by the state which is unknown.

To eliminate the state from the error equations, we intro-

duce the constraints shown by (82) through (84).

(82) FI1 =-GIC

(83) F21 I G2C

(84-) F3 1  _-G3 C

The fin.1 form of the error equation is shown in

equations (85.) through (7).

(85) (A -G 1 (t)C)e1 + I W Ie__2 + IOUue

(86) -2 = F2 2 (t)e 2 -G 2 (t)Cel + F2 2 (t)a

(87) e 3 = F3 3 (t)e 3 -G 3 (t)CeI + F 3 3 (t)b

54

'-- - -\ A%1 *\~4 . ~ - -~



In general, it may be highly desirable to let the gain

matrices Gi, G2 , G3 be time varying. Therefore, the feed-

back matrices FiI, F2 1 , F 3 1 will also be time varying. If

the observer is to act as a successful state estimator and

parameter estimator, the error equation must eventually go

to zero. In general, this means that the error equation

must be stable and the matrices F 2 2 (t), F3 3 (t) must go to

zero in such a fashion that the stability of the error equa-

tioas is preserved. The matrices F 2 2 , F 3 3 must go to zero

because inspection of (86) and (87) indicates that e2 ' e3

are forced by some linear combination of the parameter vec-

tors a, b. These forcing terms must eventually be elimi-

nated, and since a, b are constant, the forcing terms can

only be eliminated by letting F2 2, F 3 3 eventually approach

zero as the state and parameter estimates converge to their

correct values. In general, the observer is non-linear and

time varying, hence, its stability properties can be criti-

cally dependent on the input u and the state of the observed

system (wl = + .i) thus, the scheme may work for some

selection of inputs and not for others. As is common for

other identification schemes, all state variables must be

excited. Another consideration is that the stability of

the observer cannot be assessed prior to the computation.

The cause of the problem is that the error equations contain
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*1

the unknown matrices A, B, as well as the unknown state.

Selection of the gain matrices G., G2 , G3 must be

done with some care. In contrast to the linear observer,

where elements of the gain matrix would be non-negative,

the gain matrix elements are either positive or negative.

A study of the model structure of the identified system is

required to determine the proper sign on the gain elements

for the parameter vector estimate. For example, suprce a

first order system with two parameters a, b is to be identi-

fied. The system and ob3erver are described in (88)-(93).

(88) -= +ax + bu a, b > 0

(89) = 0

(90) y=x

(91) wi =W2WI + w3 u + gl(Y-wl) w2 .w3 > 0

(92; W 2 (Y-Wl

(93) t.'3 = 3 (Y -W )

The gain gl should be positive to insure that w1 has

ncqative feedback. Gain g2 should be negative. The reason

for this iG that if y-w 1 is j~ositive, then, x is; greater

than w Now assume, temporarily, that w. k b. If x > w

then w2 is too large and should be decreased, i.L.,w2 < 0,

org) < 0. 1 C Y ,, < 0, then, x < w. When x <w ,.-then

for w - b, w., is too small and should 1-* iTXc'cas .;, I. .. ,

W.2 > 0 or, again, g2 < 0.
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By similar reasoning, it is clear that g 3 should be

positive.

The determination of the gain sign for higher order

systems is a generalization of the above example. Each

term is considered by itself, i.e., all parameters but one

are assumed correct in order to determine the relationship

of the sign of y-w1 and the parameter gain sign to achieve

the required sign on the parameter estimator rate.

OBSERVER STABILIZATION

Stabilization of the observer is difficult because

constant feedback tends to make the parameter estimates

diverge from their true values. Such divergence causes

ob!(crver output error which in turn causes the parameter

estimates to be in error and the cycle tends to repeat. To

illu-strate the Point, the error equations associated with

the previo,.s example are given below. A parameter feedback

term is added in (92), (93)-

(94) c1  O(gI + "22 )v i + 42 2 X+ e 3 u

(95) 2 f 2 0 2  +  a2el +

(96) e3 -f 3c 3 + g 3el + f,b
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* Analysis of (95) and (96) indicates that e and e,

tend to approach a and b if f 2 and f 3 are positive constants.

If f2 = f3 = 0, then, a equ.'librium solution to (94) -. (96)

is e, = e2 = e 3 = 0. The difficulty is the solution is not

stable. A choice of f and f., must be made such that f
22

and f3 tend to zero while maintaining the system stability.

A stabilization technique which has worked is to modi-

fy the parameter equation so that the parameter rate is zero

at the end of some time interval during which the observer

has provicled acceptably accurate parameter estimates. The,

parameters are denoaed by pi, i = 1,2,...,n where n is the

total numfber of parameters. One possible parameter equa-

tion is (97).

(97) pi = - a e-t/p Pi(o) = pio i

The time solutior, for pi is (98)
A/

(98) pi = pio T (EXP(-t/i -1))) i =1,2,...,n

There are two adjustable parameters which relate the

steady-state value, pi(-) to the initial value Pio. The T

parameter primarily controls the rate at which Pi approaches

zero, and the a. parameter primarily controls the ratio

SPi(-) /Pio" The exact expression for pi(a)/Pio is (99).
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p el

(99) ---- = EXP(-aT) i = 1,2, ... , n
"Pio

Let Pio be the correct value of the parameter, then,

pi(-) is the approximate value of the parameter.
Pi (o•)

If aT = .02, then, = .98, and the parameters

of the approximate model are only two percentage points dif-

ferent from the parameters of the exact model. Application

of the approximate parameter approach to the previous

example leads to (100) - (101) as estimators for the a,b

parameters.

(100) w2 =-e-t/i + g2(y-w)

(101) w3 = -ae-t/ w3 + g 3 (Y-W1 )

The estimators are stable for a > 0 during the time

period for which the feedback is effective. By proper de-

sign choice of '., g1 ' g 2 ' g 3 ' the observer can be made to

give a stable, accurate estimate of the system parameters.
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NUMERICAL EXAMPLE

A numerical example to illustrate the technique was

worked. Equations (102) - (114) describe the second order

system and its fifth order state and parameter estimator.

(102) i = x2

(103) x 2 = a2 1x1 - a 2 2 x 2 + bu

(104) y = x,

(105) a21 'a 2 2 = 0

(106) a 2 1 = 4

(107) a 2 2 ' 2

(108) b 1 I

(109) 1 w2 + g, (Y-Wl)

(110) w 2 = 3WI-w4w2 + w5 u + g2 (Y-WI)

(111) W 3 - 61W 3 400 (y-w,)

(112) w4 - :w4  1000 (y-wI)

(113) t = 5 w5 + 50 (y-w1)

(114) P .4 EXP(-20t)

"The state-.parameter estimator to system correspondence

_as W -4XI, W2  32-3a w -4a22 Ws-b Table 6 shows the

numerical result~s.

60

Ž% ~ C'*~r



Table 6 . Observer Identification Example.

Time
Tmec) -1 3 W4 W5

-3
0 -4.22xi0 2.50 3.50 1.50
.4 -5.43xi0-4 2.36 4.10 1.19
.8 -7.14x10-4 2.15 3.96 1.09

1.2 -7.31x10-4 2.14 4.01 1.06
1.6 -4.86xi0- 4  2.13 4.06 1.03
2.0 -2.02xi0-5 2.11 4.05 1.02
2.4 -1.85xi0-5 2.12 4.06 1.02
2.8 -6.16xi0- 5  2.11 4.07 1.01
3.2 7.28xi0- 5  2.09 4.01 1.01
3.6 -i.31xl1-x4 2.08 4.01 1.01
4.0 -2.83xi0- 5  2.08 4.02 1.00
4.4 3.35xi0•'5 2.06 4.00 1.00
4.8 -l.20x10- 4  2.06 3.99 1.00
5.2 ' -1.58xi0- 5  2.06 3.99 1.00
5.6 1.76xi0 5  2.05 3.95 1.00
5.8 -9.93xi0- 5  2.04 3.96 .99

Correct Value 0 2.00 4.00 1.00
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The estimator converged to the correct values rapidly

for the choice of initial conditions and parameter stabili-

zation technique. It is felt that the estimation scheme

is well suited to an analog mechanization.

SUMMARY

A combined state-parameter estimation technique was

developed. The scheme is based on a generalization of the

linear observer concept and was shown to converge well for

a specific example.

The estimator is multi-linear and can be unstable un-

less a time varying feedback on the parameter estimation

portion is used. A method of stabilizing the observer was

presented.

Computationally, the estimator is good because it can

be implemented straightforwardly on an analog computer.

Feedback gain adjustment is relatively easy. Since no ana-

log-to-digital converters are required, on-line simulation

should be a potential use of the technique.
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CHAPTER V

ESTIMATION OF PARAMETER SUBMATRICES

INTRODUCTION

The present chapter is concerned with determining the

parameter submatrices of network-like physical systems.

These parameter submatrices are contained in the system and

input matrices of the system which are assumed to be known.

A further consideration is determining if enough measure-

ments have been taken to uniquely define the parameter ele-

ment matrices.

As is well known [Koenig, FE-8] if there are e-ele-

ments in the system and if two e-measurements, i.e.,

e-current measurements and e-voltage measurements in the

case of electrical networks, are made, then each pair of

measurements defines a parameter such as a resistor or a

capacitor. By using the generalization of Kirchoff's volt-

age laws systematically through the theory of linear graphs,

a sufficient number of measurements to estimate the values

of the e-parameters is e. The techniques of the present

chapter allow further reductions in the number of measure-

ments by making full use of the known topological informa-

tion concerning the system and the results from the identi-

fication methods previously presented.
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ASSUMPTIONS AND FORMULATION OF EOUATIONS

The state equations are assumed to be in the form as

given in the Appendix and it is further assumed that the

network does not have excess dynamic elements, e.g., capaci-

tors in parallel and inductors in series. Mutual inductance

is allowed under the last assumption. It is also assumed

that the A,B matrices have been determined by some identi-

fication technique and that there are no non-state connected

sources, i.e., K K . are null matrices.
rd' ga

Under the above assumptions, the known information is

summarized in the following equations.

(115) Ax + Bu

Where x(t), u(t), te[O,T] are known, and A,B are

known,

(116) (Jl 0 A11 A 12  (Fl1  F12 '
J 2 , A2 1 A2 21  \F 2 1 F 2 2

(117) (1Zi°) (:B - (z)
0 J 22 B 2 = H2

(118) (J1l) = (Cs)

(119) (J 2 2 ) = (Ls)

(120) F11= -T 2 (R+T4 G_ T4)-I T2 t
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t -1 -1 t -1j(121) F1 2 = T2 (R+T4 G t 4 ) T4 G T3 + T

(12 F2 1 -t -1 T13

t T 1(G+ TR-Iti -1
(123) F2 2 = -T3 (G+TRT T-

(124) H1  K

(125) H2 Kcd

The unknowns in (116) - (125) are Cs, Ls, R, G, but it

is known that Cs, R, G are diagonal, and Ls is symmetric and

positive definite.

SOME BASIC RESULTS

The first results concern the independence of the

matrix equations (120) - (123).
t

Result #1 F12 - F2 1  = 2T 1

To see this, use the matrix identity AB t(C+BABt-I

I1 t -1 -1 t -1(A + B C B) B C and rewrite (122) as,

(126) 21= -TI - T2 (R+TG- IT 4 )- T4t G- T3

and subtracting F2t from F1 2 , the result follows.

65



Result #2 F +F t 2T(+T G_1T 1TtG1
12+21 = 2T2 (R 4 T4 ) T4 G

The result follows from above.

The next results are concerned with the relationship

of the number of resistive and dynamic elements to the

singularity of the topology matrices and may be established

by simple dimension analysis of these matrices.

Result #3 det T1 , 0 only if n. = n,

Result #4 det T2  0 only if nc = nr

Result #5 det T3 • 0 only if ný = ng

Result #6 det T4  0 only if nr = n

Since the matrices R,G, are diagonal, the results

above imply the following results.

Result #7 T is non-singular only if the number of2

true capacitors is equal to the number of chord resistors.

Aesult 48 T3 is non-singular only if the number of

tree ccaductors is equal to the number of chord inductors.
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DETERMINATION OF Cs' Ls

In general, the dynamic element matrices will not be

determined by state and input measurements only. Some ad-

ditional measurements may be required, hence, the purpose

of the present section is to develop a technique for using

the information available from the state and input measure-

ments to full advantage and to show how to select the addi-

tional measurements required to uniquely define Cs, Ls.

The off diagonal blocks A1 2 , A2 2 of the system

matrix A, and the input matrices Bit B2 are used to de-

termine as many elements of Cs, Ls as possible, and the

remaining elements must be specified by a combination of

topological information and additional measurements.
t

Using tie constraint between F12, F21 and noting

that F1 2 = C1sA2 and F21 = LsA21' the three matrix equa-

tions available for determining C. , a a.e,

tS

(127) C sA12 -A21L s = 2T 1

(128) CsB1  HI

(129) LsB2  H2

Two sets of equations may be derived from (130) -

'131) by considering either L or Cs as independent.
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t il
(130) Cs(A 1 2 B2 B1 ) = (2T 1 B2 + A21H2

2 t1 H2 )

(131) Ls(A2 1 B1fB 2 ) (2T 1 B1 + A1 2H1 H2 )

Now drawing on the diagonal structure of C5  and

letting X = (A 2B 2 B ), Y = (2T 2 + A2 1H 2 HI), (130) can

be written as (132).

(132) cixii = i= 1,2, n c

By adding the components of _i,' Xi the Ci 's can

be found from (133).

n f + P c nt + p c
(133) Ci Yi 1,2, n c

jl j.1

Let r be the number of non-zero row sums of X, then,

n + p-
C i =1,2, ... ,r

(134) r Yi
C. f jl L c

jrl X _
j1~

The number of elements of Cs which must be specified

by additional measureawnts is n-r.



II

Since L may be non-diagonal, the determination of the

elements of its elements is more difficult.

The Kronecker product can be used to advantage, how-

t
ever, by post-multiplying (130) by (A2 1 B :B2 ) to convert to

a system of square matrix equations.

ttLet~ 2 1 ' 2A21BB2 (A1. i2)t 1n Z -Tt1 + 12H1.

* ~ (A2 1 BI:B2 )t, then, (129) is written in the Kronecker pro-

duct notation as (135).

(135) -1 ti z w 0

where W is a n xn and is an n 2 dimensional vector com-

posed of the transposed rows of Ls.

If Wt has rank n,, then the problem is solved, and the

elements of L. are given by,

(136) • = 0- z

The more usual case is that rank w = r < nI and since

rank AM28 = rank A" rank B, rank (Iow) = rank (Iwt) = n .r
2

and n2 - r n components of 1 must be specified by topo-

logical information and additional measurements.

Now drawing on the symmetric structure of L there

n (n + 1)
arc A. possible different elements of Define

2 2
the reduced matrix and vector D, !. z of order n x in

(n +1) and n (n 1+1) x 1 respectively obtained from Iot
2
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ks by deleting redundant .tries caused by the syrametry of

L by (137).

(137) (D) = z

The equation can be further reduced in order by per-

muting rows, columns, and components of D, }s, to z to

yield the following equation.

(138) (Dr*r:Dr 2 ) *-r* =

where r* = rank D and D is an r*x matrix. Solving

(138) for

(139) !i D zI - -l (Dr*2) -z

hence, the vector I2 must be specified either by topologi-

cal information or additional measurement's in order to de-

fine the complete vector uniquely. The number of these

n (n + 1)
ijaaurements is -r.2

DETERMINATION OF R, G SPECIAL CASF T4 i (0)

For the special case where there is no tree to cotree

resistive coupling, the determination of R, G is greatly

simplified.

It is asswned that Cs, Ls have been determined,hence,

from that knowledge and knowledge of the system matrix A,
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the submatrices FII Cs Al, F2 2 = LsA2 2 may be determined.

Then using the topological knowledge of the system, R, G

are defined in (140) and (141).

(140) F 11  -T 2 R- T 2 t

(141) F 22; -T 3 t-- T-

2 an 2diesoa
Converting (140) and (141) to nr and n2 dimensional

vector equations by the Kronecker product after pre and
t

post-multiplying by T2 , T3 as appropriate,

t1 J

(142) -T 2 T2 T tT 2 x T

(143) -T T tw Q 3 TTy f

where i, y are composed of vectors of the rows of R c-

respcztively, and f* 1 1 , f* 2 2 are vectors of the rows of

TL2tF1T 2T F 2 2 T• t respectively.

The number of components of x, y which must be speci-
2 2 2 *2

fled to define x, y uniquely is nr r2 . ng - rg2 where

r2' r 3 are the ranks of T2., T3  respectively.

APPROXIMATE SOLUTIONS

It may happen that one is interested in the appronimate

values of R, G, C6* La to serve as either a itarting point

for more exa.iv solutio1, 4ss in the case of successive
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approximations, or because approximate values are sufficient.

The generalized irn erse may be used to great advanta;e be-

cause of the special structure of the topology matrices,

Si.e., their elements are 0, ± 1 and the construction of uhe

generalized inverse is much easier than for thcL general

case.

By using the matrix identity (C+ntA-B) C '-C B

(A+BC-lBt)-IBc-1, (120, (123) may be rewritten as,

T2-1 T -1 t _ -T t Fl-1T4-2

(144) F = T + T2 R T(G+T 4 R T4 ) R
11. 2Tt-T T2tA -4 4 -4 -4t 2T

(..45) F2 2 =T 3t GT + TtG1T(R+T4 G T4)1TtG IT

Let P12 = F12 + F21

A R-1iTt -.1 -1
(146) F1 2 = -2T 2 R-T 4 t(G + T4 RT 4 ) T3

Therefore, using the generalized inverse,

(1-41 IA I 2IF t I
(147) ( ) -(I + T2 F 1 2 T3 T4) T2 F11 (T )2

'- 2
-I I A I I t I(148) (R-) = (I+T2F 1 2 T3 T2F 1 1 (T2

Using the diagonal structure of R, G, the i-th

diagonal elements of (146), (147) are 1 g 1 , respectively.
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MAIN SOLUTiON TECHNIQUE FOR R,G

Since the identification technique provides more in-

formation than the A,B matrices, this information is used

to help determine R,G. The outline of the scheme is to de-
termine Cs, L by the techniques presented, and then use

the state equations plus knowledge if the system topology

to determine RG. The remaining information used is the

state derivative which is easily computed from x = Ax + Bu

where A, X, P, u are known. A prime benefit of this tech-

nique is that linear algebraic solutions are required in-

stead of non-linear solutions.

The technique is formulated for the case where the

independent variables are the state variables and the tree

conductor voltages. The corresponding equations are,

(149) (T2 R- 1 (-T t - T4 t) = yi -c Cv + H2 X 9 i-'S S--8 Hcdicd

(150) -T3 tv Li-T vS +
-- I

The unknowns 4n (149), (150) are v R-. If r 3 =

rank T3 , then nfg - r 3 additional measurements of components

of v are required to define v (t) tc[O,T] uniquely. Assume

then that v has been defined and from the chart records

and computation Df x, form the following matrices.

(151) v =(v ( t), ... v(



(152) Is ( s( O)f ... 0 --si (tk)

(153) Ys = \(-sd(tO)' " - (k)

(155) Vg = (t o), ... , ()

Using (153) - (155), equation (148) can be expanded

to yield the matrix equation (156).

(156) T 2 R'I (T 2-T 2 - T4 tVg) = T1s - Cs Ys + HcdUs

The matrix T2tVs-T 4 tV is n rxk. The number of

samples k is chosen such that (-T-tV -T4 ) = W has rank

nr and in general,

(157) TR 1  (TVs-CsYs-

Again, using the diagonal structure of R, (157) can

be rewritten as,

1 1

(158) ( rlt2 1 , ... rnrxt2nr) = (z, .. ,nr)

(158) is solved for the ri, i 1, 2, ... nr by

forming the column sum,
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n n
c c1C

(159) r= Z Zkj j 1,2, ... , nr
jk=1 k=1

and if there are p non-zero column sums in z,
nc

St2k
k=l 2kj

(160) r = j =1, 2, p nj n c

E Zkj
k=1

The remaining nr - p diagonal elements of r must be

defined by additional measurements. A similar technique

may be used if ir is taken as one of the independent vari-

ables instead of v .-g

ALTERNATIVE SOLUTION TECHNIQUE FOR R, G

An alternative technique to solve for the diagonal

elements of R,G is to write (120), (121), (122) as a non-

linear set of algebraic equations in the form,

2 2
(161) fi (rl,..., rnr"gl,.. gng )-hi=0 i=l, 2 ,.... n2+nI+ncnL

and solve using the technique of successive approximations

[Rall, M-7]. The algorithm is an iterative one given by,

(162) xkxl i (2j) (f(Xk..h

arid x is the vector with components of (161), f(Žj, h are

the vector equivalents of (161) and J(xk) is the Jacobian

75



matrix of (161) evaluated at the k-th iteration. The tech-

nique of successive approximations works well for the non-

linear eqgations considered because the types of non-line-

arities are product and square law types.

The initial starting value is obtained from the ap-

proximate solution technique presented earlier. The major

difficulty is the algebra involved in writing out the equa-

tions, writing out the form of the Jacobian matrix, and

eliminating the redundant equations so that J- 1 exists.

DETERMINATION OF R,G - SPECIAL CASE (COMPLETE CIRCUITS)

For the case where the network-like system is com-

plete in the sense of Brayton and Moser (FE-3] all of the

matrices Cs, Ls, R, G may be determined without additional

measurements.

A complete circuit is a network which has special

properties. The reader is referred to Brayton and Moser

[FE-3, p. 4 and 13] for a thorough discussion of complete

circuits. The essence of the completeness property is that

the state equations can be defined in terms of a potential

function. A procedure similar to that for formulating

dynamical equations from the Hamiltonian function in clas-

sical dynamics can be employed to write the state equations.

For a complete circuit, the state equations have the

form,
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di
(163) 1,2,)j dt 71 = 1 '"

dvk ap
(164) Ck7-d -k k = 1,2, nc

For the linear, constant coefficient case P has the

form,

1 nr .2 ng 2 Pb

j =l h=l n=l' *-s--

where io, j 1,2, ... ,nr <n,v, h = 1,2, ... , n < nr -- g- c

are components of the state vector(.--), the ek's and in'
-s

are the sources, and the rj 's and gh's are the resistors

and conductors.

Applying (163), (164) to (165), the parameter sub-

matrices have the forms,

/gl 
0

(166) CsAII -

0 "0

(167) CsA1 2 T 1
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"rnr0

(168) LsA2 2 =r0

(0 0)

(169) LsA -T11
s 21 a

where A11 is ncxnc and A2 2 is n xn, and Cs, Ls are both

diagonal.

(170) CsB1 = H1

(171) LsB2  H2

The simplicity of the above formulation allows the

determination of Cs, Ls, R, G by inspection.

NUMERICAL EXAMPLE

Several example problems are presented illustrating

the techniques discussed. Both complete and other types of

circuits are considered.

Example Problem #1, Second Order Bridge Circuit

A bridge circuit has some features which make it a

good vehicle for illustration. The most important feature

for parameter estimation is that there is extensive tree-

cotree resistive coupling. An immediate effect of the tree-

cotree resistive coupling is that knowledge of che system
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states and topology is not sufficient to determine all

parameters uniquely.

Figure 6 shows the circuit schematic and its associ-

ated graph. The state variables are the inductor current,

i 6 , and the capacitor voltage, e5 . Equations (172) to

(182) define the circuit model and parameter matrices.

The main solution technique using linear equations

and the non-linear technique using Newton-Raphson iteration

are illustrated.

/+ 1 1 (388 .056
1 +(l

(172) A = d 1R2
F3 __+ 3 033 -.570

L6\R 1 +R2 R3 4 6 /7K R3+R4

0 /
(173) b I 1

L - ý.4o0,

(174) T = 0

(175) T2 = ( -l 1)

(176) T3 =

(177) T4 = 0 1
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(178) =R 2  o\ /2.000 0\

0 R4) 0 3.000)

R1 0/1.000 0

(179) G = 1

0 0 1.000
3

(180) Cs = C5 = 1.500

(181.) Ls = L6 = 2.500

(182) KId 1

There are five equations and six unknowns, therefore,

one of the parameters must be specified. If a unique solu-

tion is desired then additional measurements are necessary

for unique specification of parameters.

Alternatively, an arbitrary (positive) value may be

assigned. If the latter course is followed then the others

will be determined by that specification.

The equations to be solved are (183) to (187).

1
(183) L6 = b 2  2.50

R R

(184) - R2+R 3 +R4  -c 5  a 12
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I

RIR2  R3R
(185) 1-2 + 3-4 L a

R I +R2 R2 +R4  6 22

(186) C5a1

R1 R3

(187) La+R2 R3+R4 6a 2 1

Since the off-diagonal terms are related, it follows

that c 5 may be computed from A, b alone.

a2 1  =15

(188) c .- " L 1.505 a 12  6

For determining the resistive values there are three

equations and four unknowns, thus, a resistive value must

be measured or specified.

For the purpose of the example, it was assumed that

R4 was known and the technique of successive approximations

used to solve the resulting equations. By manipulation,

the non-linear equations to be solved are,

RIR 3R
1 3(189) 1.42R1 +R2 R 1.+2

(190) + 1 .58R1 +R 2  R 3+R4
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R R
1 3(191) R R+3 = .08

1 2 3

To solve the above equations, a parameter vector

R R = 1) was defined and used in the Newton-Raphson scheme
R3

below.

(9)K-I- k 1- k k

The Jacobian matrix was,

Rk 1- k Rk URk ( ý

(Rk+R 2 ) ( Rk +R R+R kk k

kk k R 34- +3
(Li3) R3 +3

k-1 -1I
-P -2 2 -R 2
I-- k 2

(R'-+R 2 ) (R1 +R2 ) ( 3 +3)

/
Rk Rk- R(~~22 ~ (1- 3) '

Rk+R k R k+R2 (R+~ R k+3 (Rk 3 /3)

An initial guess which was 50 percent in error was

used to start the Newton-Raphson iteration. The results

are shown in Table 7.
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Table 7. Newton-Raphson Iterative Solution for
Parameter Values

PARAMETERS

ITERATION NUMBER RI R2 R3

0 1.5 1.0 1.5

1 1.62 1.35 0.76

2 0.96 2.23 0.68

3 0.61 2.16 1.20

4 0.82 2.11 1.13

5 0.96 2.03 1.01

6 0.99 2.01 1.01

7 1.00 2.00 1.00

Correct Values 1.00 2.00 1.00

To illustrate the main solution technique it was as-

sumed that an identification scheme had yielded the A, b

matrices and the state trajectories. The state derivative

was computed by x_ - Ax + b u. An additional voltage measure-

ment was required because the rank of the matrix T3 was 1.

To determine the vector-V = (eI) uniquely, the relation
9 e3

(150) is,

t
(194) -T 3 ¾ v =L i + u
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Substituting for T3 , i4, L, gives the branch volt-

age relation below.

(195) -(eI + e3) -L 6 i 6 + e

By measurement of el, e 3 can be computed since L6 , 16*

e, are known.

Equation (156) was used to determine the chord resis-

tors r 2 , r 4 .

(196) _e5(tl)-el(tl)e5(t2ý-el(t2)
(19r2 ( 4 e5 t )_3 (tl)_e5 1t _3 t2)

= c5 (5 (t1 )5 (tQ2)

Samples were taken at t1  1.0 sec, t2 3.2 sec.

Table 8 shows the sampled values and the results for r2.

r 4 •

85



co k0 C%4

H Irk

E-U,

+

wE-q
Irk

E-4H

U040
U) 0

E-911 E-4 '

4J C

to W

04 0 0

V S

08



00

906VTOA ~uvl

BY+



Table 8. Computational Results for Chord Resistors

TIME

VARILBLE t 1.0 sec. t = 3.2 sec.

ce5 - Amps -. 208 -. 235

e5 - V,ýlts -. 082 -. 444

e - Volts 10 10

e - Volts -2.059 -4.063

e 3 - Volts -2.266 -4.293

r2 - 2 ohms

r4 - 3.01 ohms

Correct Values

r 2 = 2 ohms

r4 = 3 ohms
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Once the chord resistors were known,the branch resis-

tors were easily determined by,

(197) r e =e )(il(tI)

(198) r 3  (t Hi3(t

The branch currents were given by the chord currents

where,

(199) iI = -i6+ i2 -6 + e 2/v 2 ' i 6 + (e 5 -e 1 )
r 2

(200) i3 = -i 6 + i4  i6 + e4/v 4 = 6 +(-e -e
r 4

AL 1.0 sec, the values of i1, i 3 were computed

below,

(201) i 1 (1.0) = 1.0

(202) i 3 (l.0) - 1.0

The result of the example is that given two state

measuremcnts, an additional branch voltage measurament,

and the input, that all six of the network parameters can

be computed.
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Example Problem #2 - Sixth Order, Two-input Complete
Circuit.

Example problem #2 illustrates the parameter determina-

tion technique for the special case of a complete circuit.

The system is the complete circuit for Example #2. Table

9 shows the results of the numerical computation and the

corresponding parameters.

Some of the parameters are over-determined, that is,

there are more than one equation for some parameters. A

useful benefit of the above fact is that computational

"noise" can be smoothed out by averaging results. A check

on the consistency of the identification is also provided.

Table 10 shows the results of the configutation for

each parameter when the average is used for the over-de-

termined equations.

Example problem 2 shows that measurement of six states

and two inputs allows the computation of Ii parameters.

The computatien involves simple algebraic techniques. Ex-

ample problem #1 contrasts with problem #2 in the relatively

complex technique of computation plus the need for additional

measurements other than state and input.
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Table 9. Numerical Results for Complete Circuit.

COMPUTED VALUES FROM
PARAMETERS IDENTIFICATION

I/R 4CI 5.01

1/c1  10.00

1/R 5 C2  2.00

I/C 2  2.00

I/C 3  1.00

I/C 3  1.00

1/c3 1.00

1/L 1  10.02

I/l 1  9.96

I/L 1  10.02

RI/L1 4.00

I/L 2  5.00

I/L 2  5 ,'i"

]I/L2 5.00

R /L2 5.00

I/L 3  3.34

1/b 3  3.34

R3 /L 3  10.00
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Table 10. Comparison of Actual and Computed Parameters

For Complete Circuit.

PARAMETER COMPUTED VALUE ACTUAL VALUE

C1  0.10 0.10

C2  0.50 0.50

C3  1.00 1.00

R1 1.01 1.00

R2 1.00 1.00

R 3.00 3.00

R14 1.99 2.00

R15 1.00 1.00

L1 0.10 0.10

L 0.20 0.20

L3  0.30 0.30
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Example Problem #3 - Complete Circuit Model of Second-

Order Bridge Circuit.

A pertinent issue for modeling purposes is the exist-

ance of a model of the system which will give the same

response as that measured but have a different topology

and parameter values. Example #3 shows that a model of the

circuit in Example #1 exists,which has a different topology

and different parameter values, yet has the same A-matrix.

The input matrices are different, thus, for the same input,

different state responses will be observed.

A multiplicative scaling of the bridge circuit input,

however, to provide the input to a complete circuit model

of the incomplete circuit yields the identical state tra-

jectoly.

Tae net rcsult is that there exists a second-order

complete circuit model of the second-order bridge circuit

which has identical stability properties, i.e., has the

same A-matrix and the two circuits have identical free

responses to identical initial conditions.

Additionally, the forced responses to the same input

differ only by a multiplicative constant. Figure 9 shows

a schematic of each circuit.
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The A, b matrices of the bridge circuit are,

(-.388 -. 0561
(203) A = .0 56 (Bridge Circuit)

.033 -.5701

(204) b (.4) (Bridge Circuit)

By comparison, the A, b of the complete circuit are,

-i_ -1

(205) A= 1 2 (Complete Circuit)
L I -R 4

L 3  L3

(206) b ) (Complete Circuit)L 3

If the A, b matrices were identical, then an incon-

sistency would arise since there are inconsistent require-

ments for L 3 , i.e., from the a21, b 2 elements.

(207) L3 = a =30 h- 21

(208) L3 = l/b = 2.5 h

By choosing the complete circuit parameters to satisfy

(consistently),
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(209) C2 = 17.90 farads

(210) R1 = 6.95 ohms

(211) L 3 = 30 henries

(212) R5 = (30) (.570) ohms

then, the complete circuit has the same A-matrix as the

bridge circuit. Additionally, if the input e(t) is multi-

plied by a constant, k, and used to drive the complete cir-

cuit, then identical state trajectories for arbitrary

initial conditions result. The gain constant must satisfy,

(213) k = .4L 3

Alternatively, it may be desired to choose L3 (the

only inconsistently specified parameter) to minimize some

error criterion.

Referring to the results of Chapter the state

error equation is,

(114388 -. 056 00

8/L3  -. 570 - 0.033-1 0
S3

°0 !A
x + u.c (0) = 0

L 3
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The A, b matrices of the bridge circuit are,

-388 -.056
(203) A = .033 5701 (Bridge Circuit)

(204) b = .4 (Bridge Circuit)

BY comparison, the A, b of the complete circuit are,

-i -1

R C C
1/Ri2 c2

(205) A = 2 2 (Complete Circuit)

3 3

(206) - 1 (Complete Circuit)
0L 3

If the A, b matrjies were identical, then an incon-

sistency would arise since there are inconsistent require-

ments for L3 , i._., from the a 2 1, b 2 elements.

(207) L3  a- 30 1
21

(208) L3  I/b 2 = 2.5 h

By choosing the complete circuit parameters to satisfy

(consistently),
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(209) C2  17.90 farads

* (210) , = 6.95 ohms

(211) L3 = 30 henries

(212) R5 = (30) (.570) ohms

then, the complete circuit has the same A-matrix as the

bridge circuit. Additionally, if the input e(t) is multi-

plied by a constant, k, and used to drive the complete cir-

cuite then identical state trajectories for arbitrary

initial conditions result. The gain constant must satisfy,

(213) k = AL 3

Alternatively, it may be desired to choose L3 (the

only inconsistently specified parameter) to minimize some

error criterion.

Referring to the results of Chapter 3, the state

error equation is,

)388 -.0562 + [ 0

1 3  -570 .33-
L 3

U A
_ 4-1 u,e (0) - 0

\ L3
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One criterion which could be used is to minimize the

mean square steady state error to a step and require L3 Z 0.

Solving for the steady state error (u 10 volts, x= -1.0

volts at steady state).

(215) el/ss = . 144e2ss

(216) e2/ss = (1.024) (L3 3.967-9)

1. 570L3 -. 14,4

The mean sq, -r error (E2) is the sum of the squares

of the mean error components.

2 2 2 (L3 3.967-9.0)2
(217) (1e1/ += l/ss + e2/ss = 104L150.144

A minimum, 2 = 0 exists for,

(218) L3 (3.967) = 9 or

L = 2.27

Figure 10 shows the corresponding error trajectory.
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S UIMARY

Cha-pter V has dealt with techniques for extracting

the parameter submatrices from the A, B, matrices. System

toooloqy plays in important role because 4.ts knowledge

enables one to determine a priori if knowledge of the state

and input is sufficient to determine all parameters uniquely.

Such ):nnwl.edge is mp(..tant in planning a testing program.

If one tries to deter-ine the parameters from know-

ledge of the A, B, matrices ant system structure on.,, then

a set of nonl.near a&gebraic equations must be solved.

Newton-Raphson iteration is eff2crivu for this case.

For the case where additional tree or cotree variables

can be measured, then the' parameters c~n be -etermined by

linear algebraic operations.

Example problems illustrating the various techniques

were presented.
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APPENDIX

FORMULATION OF NETWORK-EQUATIONS IN STATE FORM

The following development is based on the work by

MacFarlane [FE-9] with modificzions in notation and form

to suit the problem of parameter estimation.

Let T be the matrix relating branch and chord vari-

ables for a tree of the network which contains the maximal

number of capacitive elements and such that the cotree con-

tains the maximal number of inductive elements. The only

capacitive elements not in the tree are those which form

capacitor only loops with capacitors in the tree, and the

only inductive elements which are not in the cotree are

those which form inductor only cut sets with inductors in

the cotree. Also, the tree is selected to include all

voltage sources such that all current sources are in the

cotree. If the currents ana voltages are selected as above

then the vector-matrix equations given below follow.

(0 T
(219) kt - / K
where the subscripts b, c denote branch and chord variables

respectively.
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The branch and chord vectors are partitioned into sub-

vectors,

4c --cd

(2201) 4;: ) Ic -c

ecc

where the second subscripts, c, g, L, d, r, refer to capaci-

tive notwuctive, inductive, driving, and resistive ele-

ments, respectively.

Equation (219) t-akcs the partitioned form in (222)

where it assumed the sources are ideal.

IT T-.T H
-ýc1 A. 6 cd -

IT T3 T4 0 H d r

iIT 00 H e.A• •5 A _ -c

(222) _ _-._ _ _-% d
e -T, _t Tt -Tt•:.•' -9c 1 -3 -T5 K • -cce

- -_- K_:5

-i•r_ 2 4 rd 0 C2

-c Kcd
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The submatrix given by (223) is the matrix for the

case where all voltage sources are o-pen-circuited and all

current sources are short circuited.

T1  T2  T6

0 IT 3  T4  0
T 5 0 0

(223) T ----------------- -- ------
I t -t t I
-T1  -T 3  5

-T -Ti 02 0

-T 6 0 0

The component equations are assumed to be of the form,

(224a) 4c = CSOc

(224b) 4g = G

(224c) ecr = R •r

I ti
-e Ls M. i CA

(224d) c--i-
* M. I LJ

The state variables are defined to be,

A
(225a) vs = e

(225b) i
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The remaining variables are renamed,

(226a) A
'br 1.

(226b) k A

(226c) • =

(226d) cc A ve

The subscripts s, r, g, e, denote state, resistive,

conductive and excess dynamic element vector, respectively.

By substituting the renamed variables and component

equations into (219) and rearranging, the ietwork equations

are in (225).

C 5 4L 0 TI 0T 2  T 6 0\ v

Ls~+M 1. e -TO1 -T 3 0 -5-i
0T 3  0T 4  0 0 o

(227) r -Tt0 -T 4 0 0 0 _

T -T 0 00 0 0 C ev

0 0T 0 0 0 0 L I+MI5 ~e-e i--i3

Hcd 0

0 Ki i d

Hg 0 -%dgd )
0 Krd

Hit 0 cd
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where,
Cs 4 di-onal ncxn matrix of tree capacitors

SCe 4 diagonal n1xn1  matrix of chord capacitors

L 84 symmetric, positive definite n AxnI matrix
of chord inductors.

Le 4 symmetric, positive definite, n 2xn2 matrix

of tree inductors.

G 4 diagonal n xn matrix of tree conductorsg g

R 4 diagonal nrxn matrix of chord resistorsr

From the dimension definitions of the component matri-

ces, the topological matrices have dimensions,

T1 ncxnI

T 2 ncxnr

T 3 n xn IT3 g~n

T 4 n xn4 g r

T5 4 n 2 xn L

T 6 n xn1

The input matrices have dimensions,
KId * ntxpc

Rrd r nrxpc

Kcd ' n1xPc

Hcd ' ncXPb
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Hgd 4 ngXPj

HId + n 2xPb

By eliminating the excess variables, the equation has

the form,

(228) Jx Fx + Hu

where,
t0

(229) J (LsTi TTe
0 LT+TtM +4 T .eT

s 5i 5e

(230) F 0 -T + 0 ( T2) (G r4) (0 T

(231) = 1 'Hgd 0 cd

caa

(233) u = ,-----

11 -Tt0 ýT R0112

L "dý
0- T e0 0 c



In si~mmary of subscript notation, s 4 state, g 4 con-

ductive, r 4 resistive, e 4 excess dynamic, cd 4 chord

driver (current source), and bd 4 branch driver (voltage

source).
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