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RESPONSE OF A STRAND TO AXIAL AND
TORSIONAL DISPLACEMENTS

by
S. Machida and A. J. Durelli
INTRODUCTION
The importance of cables in almost all fields of technology from
electric power transmission to ship towing and dentistry, cannot be
overemphasized. Two extensive surveys of publications have been pre-

(1)

pared, one by Laura and Casarella

(2)

Casarella ™', Surprisingly, few scientific investigations have been

and the other by Parsons and

conducted so far to determine the load transfer and stress and strain
distribution in strands and cables, Simultaneously with the preparation

Chi(3)’(4) prepared two reports in which he extends the
(5),(6),(7)

of this paper,
previous work of Hruska and compares elongations and strains
obtained th:oretically, with some of those obtained experimentally by
the present authors in a steel strand. The subject also deserved the

(8) (9

attention of Leissa and of Starkey and Cress . They, following

(10)

Drucker and Tachau , emphasized the importance of the corntact loads
between wires.

The present paper is part of a series in which the authors will
attempt to study the problem of load transfer and stress and strain dis-
tribution in strands, both theoretically and experimentally from several
points of view and with the main purpose of increasing the knowledge that
may, in the future, help desiéners to manufacture beiter cables. In one
of the papers consideration will be given to the stress and strain dis-
tribution in a single helix, the elementary component o:. the strand. In
other papers experimental stress analysis results on steel strands will
be reported. It is believed that these experimental analyses are the

first ones to be conducted on helices and strands. In another paper

an attempt will be made at the study of vibrations in submerged cables.
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In the experimental work measurements are taken not only on steel
strands (as received from a manufacturer) but also on plastic oversized
models of strands, This permits a better understanding of the differences
between the results of theoretical analyses, and the results of experi-
ments in strands and cables. An attempt is made in the theoretical as
well as in the experimental papers to present the problem with graphical
representations for clearer understanding of its complexity, and to
emphasize the frequently erratic bchavior of actual cables.

The theoretical developments to be presented in this paper intro-
duce simplifications that make the equations linear and therefore easier
to handle by designers. These equatiors are applied to the case when
the deformations of the strand are small, but the reasoniig behind them
will also permit the application to the case of large deformations,

Thesz equations could also be applied to the analysis of wire-ropes

made of strands, considering each strand in the wire-rope analogously to the
situation of a helical wire, in the strand.

GEOMETRY AND LOADING OF THE STRAND

Consider a simple strand geometry as the one shown in Fig. 1 where
a straight core wire 1s wrapped around by a layer of helical wires. The
number of helical wires is six for the most typical and simple strand,
which is the one considered in this paper, but the equations to be given
in the later part of the paper can be extended to the case where a strand
has an arbitrary number of helical wires. Each helical wire is assumzd
to have a circular cross section in a plane normal to its axis (a helix)
(Fig. 1), the diameter of which is small in comparison with the pitch of

the helix. It is also assumed that each helical wire is in contact with
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the two adjacent wires, with the core, or with botin core and adjacent
wires,

A strand can be loaded by three priucipal static types of loadings:
1) pulling (or axial loading of the strand), 2) torsion, and 3) bending.
sesides these three principal types of loadings, a strand could be
subjected to thermal loadings, if there are temperature gradients in
its environment, lmpact and vibrations, In the analysis, torsion
and pulling are conveniently associated and will be treated together,
Bending, (as produced when the strand is wrapped around a drum) may
develop when the strand is subjected to different levels of prestres-
sing (by pulling). It may also develop when the strand is used as a
component of a wire-rope, and the wire-rope is subjected to axial
loading or torsional loading.

The loadings considered in this paper are axial tension, torsion
and combined torsion with tension. These loadings cause elongation
and rotation in the strand. Because of geometric restrictions the state
of stress and strain associated with these loadings i1s constant all the
way along the axial line of each helical wire. Ther:fore, stresses
and loads in the strand can be described by the stresses and loads on
a single transverse cross section of a helical wire and core.

In case of bending of the strand, the stresses and loads on the
transverse cross section change along its axial line. This makes the
analysis more complicated. This problem is out of the scope of this
paper and would be dealt with somewhere else.

In the present analysis the radial dimensions of the cross section

in the unloaded strand and its position with respect to the core are
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assumed to remain constant under load; the interwire contact deforma-

| tion and Poisson's effect due to axial strain are neglected. In other

3 . words, the axial lines of helical wire after deformation in the strand

are assumed to remain on the cylindrical surface (Fig. 1) on which

i they were before deformation (This cylinder will be called 'reference
cylinder" and its radius will be called R.). This assumption is
reasonable because each helical wire 1s restrained by the core and

by its neighbors. This restriction makes the main difference in the
E‘ deformation characteristic beiween a free helical wire and a helical
wire in a strand,

4 The deformation of a helical wire in a strand will be better

understood with the following statement: Consider material line

segments, say AB and CD in a helical wire which are the principal
normal and binormal to the axial line (helix) at point 0, respectively
(Fig. 2). After deformation these material line segments are assumed
to displace in such a way that they still are the principal normal and
binormal to the deformed axial line (A'B' and C'D' in Fig. 2).

The following is the nomenclature used in the analysis:
A: cross sectional area of wire (used with ¢ or h subscript)
A to D: coefficients functions of geometry and material properties
¢: subscript used to identify the core
d: wire diameter (used with ¢ or h subscript)
E: Young's modulus

y G: shear modulus
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}
subscript used to identify the helical wire ;

moment of inertia of the cross section of helical wire i

polar moment of inertia of the cross section of wire (used with ;

¢ or h superscript) !

bending moment acting on the helical wire in a plane containing ?
the axis of helical wire and the principal normal (positive M is

shown in Fig. 7) ;

axial tensile load applied to the strand f

axial force acting in the core i
axial force acting in the helical wire %

resultant contact force acting on a helical wire (per unit length)

contact force acting between core and a helical wire (per unit length) f'
contact force acting between two adjacent lelical wires (per unit length) ;
pitch of helical wire |
radius of strand measured from the center of strand to the center of ?
helical wire (radius of reference cylinder shown in Fig. 1) ]
distance on the transverse cross section of a wire from the centroid (Fig. 7) é
arc length of helical wire ;

torsional load applied to the strand

twisting moment acting on the helical wire (positive Th is shown in
Fig. 7)

twisting moment acting on the core (positive Tc is shown in Fig. 7)
helical wire lay angle (Fig. 1)

normalized rotation per original one pitch length of the strand and

defined by y = A/2%




Y .+ shear strain on the transverse cross section of core associated with
twisting moment Tc acting on the core
Y .¢ shear strain on the transverse cross section of helical wire

associated with twisting moment T, acting on the helical wire

h

A: rotation per original pitch length applied to the strand (positive
in winding rotation) (in radians)

6: axial displacement per original pitch length applied to the strand
(positive in elongation) (in inches)

€: axial displacement of the strand per unit length and defined by

e =§/p

ac
€

axial strain in the core associated with the axial force Nc acting
in the core

Eah: axial strain in the helical wire associated with the axial force
Nh acting in the helical wire

eoh, axial strain in the helical wire associated with bending moment M

acting on the helical wire

g: radius of twist of the axis of heiical wire

n: distance on the transverse cross section of helical wire from its
neutral axis for bending (Fig. 7)

v: Poisson's ratio

p+ radius of curvature of the axis of helical wire

ﬂ:c: normal stress corresponding to e:c
:h: normal stress corresponding to e:h
:g: shear stress corresponding to y;;

r::: shear stress corresponding to y;:

Quantities after deformacion are identified by prime symbols (e.g. s', p'. B', etc...,)




1 FORCES IN A HELICAL WIRE ASSOCIATED WITH AXIAL AND TORSIONAL
£ DISPLACEMENTS APPLIED TO THE STRAND

Consider a segment of strand (length 1, which can be taken arbi-

trary) as shown in Fig. 3. It is assumed that, because of geometric

constraints, whether the strand is pulled axially, or is twisted about

its axis, che core can only displace axially, and the wire can displace
axially as well as rotate in contact with the core. The deformed state

is shown by heavier lines in the figure. The axial line of helical

el il utina e e e el A Gt

wire EF (undeformed helix) moves to another helix EF' (deformed helix).
This deformation consists of two components: one is a displacement in
the axial direction of strand. Call § this displacement per pitch
(positive in elongation). The other component is a rotation around the
axis of the strand. Call A in radians this rotation per pitch (positive

ﬁ In winding direction). The forces in the helical wire associated with

the above mentioned deformation can be categorized into four types:

(1) axial force, (2) bending in the plane containing the axial line of

the helical wire and the principal normal of the helix, (3) twisting

around axis of helical wire and (4) contact force, the resultant force

of which lies on the plane containing the axial line of helical wire.
Strains and stresses acting on the cross section cf the helical

wire and associated with each of the above four types of forces will be

expressed as functions of § and A. The strains and stresses will be de-

si.ibed in terms of their components in the plane normal to the axial line

of the helix. Cylindrical coordinates (r, 0, s) will be used (Fig. 1).
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Axial Force in the Wire

The displacement of the axial line segment from EF to EF'
(Fig. 3) requires a change in the arc length., This is associated
with an axial strain and with an axial stress and axial force
(uniaxial state of stress in the wire is assumed).

The axial stiain can be expressed in terms of 6 and A as
follows: Call 1 the length of undeformed strand. The initial

length s of the axial line of a helical wire is given by

S1s % /oL ¥ (27R)2 (1)

The final length s' is ziven by

g =% /(p¥8)Z ¥ {(2r#D)RT? (2)

If it 1s assumed that the helical wire is subjected to uniform

axial stress distribution, the axial strain of helical wire is

ah s' -8
E =

S A Ji 5.2 27R. 2 A 2
l/pz_,_ (ZTIR)Z / (1+ ;) + (-p—) (1+ '2—") -1

= cosB V(I+e)“4(1+y)%tan?p =~ 1
where € = §/p, vy = 4&/27
Assuming small deformation, i.¢. ¢ & y <<l, and neglecting higher

order small quantities:

e:h = ¢ cos?s + ysinZB

g~

A S

(3)

(4)
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Thus the quantities related to axial force acting in a helical

wire become:

e:h = ccos?B + ysin2B
oih o E (ecos?B + ysin?B) (5)
= AE (ecos2B + ysin?B)

Bending Moment in the Wire

The deformation of the axial line of the helical wire (Fig. 3)

i s R Lk A

| causes a change in the radius of curvature and this is associated
3 with a bending moment in the plane containing the helix and the
3 principal normal.

Using the Cartesian coordinates (X, Y, Z), the parametric

expression of the helix EF is given by
| X = Reos @

Y= Rsiny | (6)
Zn= %?

The radius of curvature p can be computed from
[(—7)+( )+( ) é )]/( ¢))
- Al )
vhere d8 is a line increment of the helix defined as

ds = (@02 + @)% + (a2)? : ,

Using Eq. (7) the radius of curvature of the undeformed helix EF is

p =R+ B2 ®

The radius of curvature after deformation is given by

o' = R + (12>_')2 % 9 ‘
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The deformed pitch p' can be expressed in terms of the original

pitch p, the axial and rotational deformations of the strand

2n l+e¢
' u / ———) = D a—
Pt G TP Ty

In the case »f the strand analyzed experimentally (7-wire), the
radius of curvatur: is large compared with the diameter of the helical
wire. The angle B = 8.5° and p = 50 d . Therefore, the shift of the

neutral axis from the centroid of the cross section is negligible and
the clementary theory of bending can bé used,

Using Eqs. (8), (9) and (10), the following quantities related
to bending of the helical wire can be determined for a given defor-

mation of the strand (6 and A, or ¢ and y).

bh _ p' -p
€ ( o n
bh

c =E
-] (OD

p' -
.p)n

p' -p
M =EI
e pp' )

When strains are small €, y <<1, then:
p'=p(L+e-Y)
and Eq. (11) becomes:

bh - v 1 eoe285{n2
e, = 2(e Y) R cos Bsin<B

bh = S et
os 2E (¢ - Y) R cos<Bsin“B
M = 2E1 (¢ - y) cos2Bsin?B/R

The positive direction of the bending moment is shown in Figs. 7 and 8.

(10)

(11)

(12)

(13)

P T
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Twisting Moment in the Wire

The line segments AB and CD embedded in rhe helical wire (Fig. 2)
can be considered as lines of geometric reference. When moving along
the axial line of the helical wire, these lines rotate around the axial
line., Call Ay the angle of rotation resulting from travelling through

distance As along the axial line, Then the quantity

lm Ay

A+ As (14)

l.
3

is the angle of twist, per unit length of the plane of geometric reference
containing a line segment such as AB or CD (Fig. 4). It should be noted
that this has nothing to do with twisting strain. ¢ in Eq. (14) is
called the radius of twist (or the second radius of curvature) of
a spatial line.

Denoting the original and final values of the radius of twist as
¢ and ;' respectively, a segment of helical wire s undergoes twisting
deformution around its axis through an angle which is given by

bt - ay e oo (15)

Thus the angle of twist per unit length due to the deformation is

given by

lim  ay'-ay _ z-t'
As+o As rg!

(16)

Further computations can be made by assuming that the elementary theory
of twist of circular bar can be applied tc tkis problem., The radius

of twist £ of any spatial line is given by

1 a2 . dp,? . ,dv,?
72 " (a) + (a;) + (d—s') (17)




where A, ¢ and )\ are the direction cosines of the binormal at the point
congidered. In case of helix { is constant and is expressed as follows

Before deformation: f = (g;) + R?/ (g;)
(18)
] '
After deformation : g' = (2—) + R?/ (2—0
27 27
Using Eqs. (10), (16), (18), the following quantities related to twisting
of the helical wire can be determined for a given deformation of the
strand.
th -t
( T )r

th _ r -t
Tag ™ 6 ( o )r (19)

h -2
T, = 6I. (Z—7—
h p(cc )

Assuming again small strain (e, y<<1), Eq. (19) becomes:

th _(y -¢€)

r
Yeg R sin4R

Tth _ Gy - ©)r

o0 iR sin4pB (20)

GIh (y=-¢)

R
Th iR sin4B

The positive direction of the twisting moment is shown in Figs. 7 and 8.

Contact Forces between Wires

Contact problem is by its nature non linear. The stress distribution
is complex at the points of contact. But the effect is considered local

and the details of the stress distribution could be determined theoretically

using the Hertz solution.




If the strand is well lubricated,.the frictional force can be
neglected and the resultant force due to contact is a force directed
outward normally to the axial line of the helical wire as shown in
Fig. 5. |

The resultant contact force per unit length, P, is

P = 2P, cosbo® + Pc = P

h + Pc

h

From the consideration of equilib.-ium for a short segment of
helical wire (Fig. 6), on which all of the forces discussed in the
preceding sections are acting, the following relation can be ~b-

tained with regard to contact force

T =
|

P=

'O-Ip_z
R”

FORCES IN A CORE ASSOCIATED WITH AXIAL OR TORSIONAL DISPLACEMENT OF
THE STRAND

If the core of a strand is connected with the surrounding helical
wires at both ends of the strand the quantities representing the defor-
mation applied to the strand, § and A, also represent the deformation
of the core. Since a core is a straight circular rod, estimation of
strains, stresses and forces can be mada easily.

When there is contact between core and helical wires the core
will act as a simple bar in tension and torsion with the addition of
some loading due to 6 lines of spiral contact from helical wires. This
suggests that the deformed cross section of the core may not remain

plane, but may be warpt. This effect could be neglected for the first

approximation since it is considered that the localized radial forces

(21)

(22)




due to contact would have small contribution to overall deformation of

the core.

The axial deformation § of the strand produces an average axial

strain -% (=c) in the core, The rotational deformation A of the
strand results in a twisting deformation per unit length % (-3%1) of
the core. Therefore the core is subjected to axial force and twisting
moment,

Strains, stresses and forces expressed in terms of ¢ and y are:

ac
€ = ¢
z
oac = Ee
z
N = A Ee
c c
(23)
te _ 2myr
z0 p
th 2nGnr
2 P
c 2n
T =Gl —
c P P

FORCES ACTING ON THE STRAND CORRESPONDING TO THE APPLIED DISPLACEMENTS

From the preceding considerations, it follows that each helical
wire is subjected to 1) axial load, 2) bending moment in a plane con;
taining the axial line and principal normal, 3) twisting moment around
*hWe axial line, The core is subjected to 1) axial load and 2) twisting
morent. The stress and strain distribution associated with these types
~f loading cau be cbtained approximately by the thecry of strength of

materials. Main results are summarized in Fig. 7.

- 14 -




Resultant forces on the strand cross section can easily be expressed
in terms of forces acting on the crcss sections of each of the seven
wires, This is done in Fig, 8 and the following relations between in-

ternal forces and external forces are obtained from consideration on

equilibtium:
External axial force 0
i of the strand N= Nc + 6Nh cosh

External torque

of the strand

- . ' '
T Tc + 6 (fh cosfB M sinB' + Nh

where B' is lay angle of helical wire after deformation and is expressed
in terms of ¢ and vy as follows:

-1 My

! =

B tan (1+€ tang)

From the assumption of small deformation, we can put
B' =8B

The approximation of Eq. (27) reduces Eqs. (24) and (25) to much more
simple forms which are linear functions of ¢ and Y.
Using Eqs. (5), (13), {20), (23) and Eqs. (24) and (25) can

be expressed in terms of ¢ and - as fo

N=Ae+By

T=Ce+Dy

where A, B, C and D are constants determined by the geometry of the
strand and the elastic constants of the strand material, and are given

by

{24)

R sing') (25)

(26)

(27)

(28)

(29)




- 3
A ACE + 6AhE cos”’B

B = 6AE sin’B cos4B

h
C = 6A RE sinf cos?8 - 3GIp sinlg cosg _ 12E1 cos?8 sinds (30)
2R R
h :
3GIp, sin4g cosg  12EI 2g sindg | 2,GIE
D = 6A RE sin®g + —LEp——F + 22EL c05°p sln'g , ByGlp
p
From Eq. (28) and (29), we have
D B
€ = AD-cB N ~ AD-cB ©

} (31)

C A
Y= - %-c8 Nt aD-cs T

Substituting Eq. (31) into (5), (13), (20), (23) and (24), strains,
stresses, forces and moments acting in the helical wires and the core
can be expressed in terms of the external axial force N and torque T
which can be treated as applied force and applied torque for the
strand.
APPLICATIONS

Using the equations developed in the preceding sections, the re-
sponse of the strand to an applied load will be given in what follows,
as a function of that load. Since the equations in the previous chapter

are all expressed in linear and explicit form, the procedure of computa-

tions is easy.
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Axial Loading with Unrestricted Ends (Simple Tension of Strand)

In this case since no torque is applied to the strand,
T=0
Then, recalling Eq. (29)

DE

Since approximately it can be stated that for the 7-wire strand:

= dc and R = = d + 1 d

dh 2°h " 2%

Then C/D from Eq. (30) is given by

48 (14v) cos2f sinp (8-sin?B) - 3 sin4B cosB
4 tan B + 3 sin"B cosB + 48(1+v) sin’B(cos‘B +8)

g
D

Equation (33) determines Y or unwinding motion of strand for a given
value of € or elongation of strand.

Forces and moments can be expressed in terms of the applied force

N as follows:

Axial force in the core

_D_
AD-C3

N =AE N
[ c

Twisting moment in the core

2161°¢
T =-- &
c p AD-CB

N

Axial force in the helical wire

Dcos?f - Csin?B
Ny = AR T iD=cE A

Bending moment In the helical wire

- 2EI cos?Bsin?B C+D

= R AD-CB

N

Twisting moment in the helical wire

h
- GIP sin4B C4+D "
h 4R AB-CB

.

-17 =

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)




The effective tensile rigidity of the strand defined by N/e

is given by

D

. From Eq. (33), the unwinding motion of the strand due to the applied

N is given by

x e
bm- SN (42)

Torsional Loading

In this case, since no axial force is applied:

N=20 (43)

From Eq. (28)

£ ™ - — (44)

If the same approximationsof Eq. (34) are made, B/A is given by

B _ 6 sin®Bcosp :
A 1+ 6 cos3B : (45) i

Equation (44) means that the strand should contract when winding
torque is applied.

The torsional loading considered here refers to "winding" of the
strand only. Unwinding causes separation between wires and thus change
in radial dimensions of the cross section of the strand.

Forces and moments in the core and the helical wires associated .

with winding torque T applied to the strand are: H

Axial torce in the core

— LR
ADCB

Nc = - ACE T (46)

Twisting moment in the core

2161°

-—P A
T.= 5 Wb’ (47




Axial force in the helical wire

- A sin?B- Bcos?p
N, = AE A-CB

Bending moment in the helical wire

_ 2EI cos?Bsin’8 A+ B
R AD-CB

Mw T

Twisting moment in the helical wire

h
. GIp sin4B A+B .
h 4R AD-CB

The effective torsional rigidity of the strand defined by

T/%3 is given by

AD-BC »p
A 27

T/A =
p

Arial Loading with Restricted Ends (Tension combined with
Restricting Torque)

In this case since unwindiang motion is restricted.
A=o0 or Yy =0
For a given elongation of strand €, the axial tensile load N and
torque T required from the support to restrict unwinding of strand
are from Eqs., (28) and (29)
N=Ac¢

C
T=2Cce A N

In this case the applied torque is linearly related to the applied
tension.
Forces and moments in the core and the helical wires expressed

in terms of applied axial load N are

- 19 -

(48)

(49) -

(50)

(51)

(52)

(53)

(54)




k

i e i e

=)

Axial force in the core

1
Nc = AcE Y N (55)

Twisting moment in the core

Tc =0 (56)

Axial force in the helical wire

2
- cos“B
Nh AhE A N (57)

Bending moment in the helical wire

- 2EI cos?Bsin?p

1
M R i N (58)

Twisting moment in the helical wire

h

Gl sin4B 1
Tc " 4R T A (59)

The effective tensile rigidity of the strand with the ends
restrained 1is giver; by
N/e = A (60)

Combined torsion with tension

The point of interest in this case is whether the axial tensile
load has an effect on the effective torsional rigidity., This can be
discussed on the basis of foregoing considerations.
For a given axial load N, we have from Eq. (28)
N = Ae + By (61)

Then (29) can be written as

(62)




e A

T

The angle A is the twist per pitch to be measured with no applied
tensile loads., The strand will unéind when N is applied. The unwinding
deformation due to N is obtained from Eqs. (28) and (29) by putting
N=Nand T = o. The computed unwinding angle of twist per pitch Au is

C.N :

Au = AD—-CB- 2n (63)

Let the angle of twist per pitch caused by applied torque T be ' | 3
measured with the strand under load N as the original state and let it
be denoted as K, then
Amddtd (64)
Substituting (63) and (64) into (62) we have

r- (25 & (65)

Thus the effective torsional rigidity is given by

I - (522299 P
Tp A 2 _ (66)

which is the same as the case of torsion without axial load Eq. (51)

In other words, the axial load has no effect on the effective
torsional rigidity of strand when the deformation of strand remains
small,

EXPERIMENTAL ANALYSIS

An oversized epoxy model of a 7-wire strand was prepared and

measurements of displacements were taken in the four cases of loading

described in the previous section. |3
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The dimensions of the model'werez diameter of the core: d = 0.53 in.,
c

“diameter of the helical wire: dh = 0,53 in, (= dc), pitch: p = 22 in.,

lay angle: B = 8° 36', length of tne strand (between sockets): 24.5 in.,
overall iength of the model (inciuding sockets): 33.5 in.
The material properties of the model were: E = 5.1 x 105 psi
v =035
The set-up for the axial tensile loading is shown in Fig., 9, Elonga-

tions and rotations between sockets were measured with dial gages and

protractors, The figure shows also a ﬁuggenberger extensometer uged to
determine strains, Results obtained from the extensometer, as well as
those obtained from brittle ccatings, electrical strain gages and three-
dimensional photoelasticity will be reported in another paper.

Measured elongation and rotations associated with axial loading
are shown in Figs., 10 and 11. They compared well with those computed
from Eqs. (41), (42) and (60). The maximdm deviation is about 6%.

Figure 1l shows N vs. T for the case of restricted ends. The
torque was estimated from the measured unwinding angle in the case of
simple tension with free ends and the measured torque vs. angle of
twist in the case of torsional loading. The results compare well with
those of Eq. (54).

Figure 12 shows the measured angle of twist per unit length of

strand subjected to axial load when torque is applied to the strand.

All the measurements fall with small scatter on the theoretical predic-

tion of Eq. (51) and (66) proving the validity of the conclusions obtained

theoretically.
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FIG. 6 EQUILIBRIUM OF FORCE IN AN ELEMENT OF A HELICAL WIRE
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