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RESPONSE OF A STRAND TO AXIAL AND 
TORSIONAL DISPUCEMENTS 

by 

S. Machida and A. J. Durelli 

INTRODUCTION 

The Importance of cables In almost all fields of technology from 

electric power transmission to ship towing and dentistry, cannot be 

overemphasized. Two extensive surveys of publications have been pre- 

pared, one by Laura and Casarella   and the other by Parsons and 

(2) 
Casarella  . Surprisingly, few scientific investigations have been 

conducted so far to determine the load transfer and stress and strain 

distribution in strands and cables. Simultaneously with the preparation 

of this paper, Chi  '   prepared two reports in which he extends the 

previous work of Hruska   '  '   and compares elongations and strains 

obtained thioretically, with some of those obtained experimentally by 

the present authors in a steel strand. The subject also deserved the 

attention of Leissa   and of Starkey and Cress ' . They, following 

Drucker and Tachau   , emphasized the importance of the contact loads 

between wires. 

The present paper is part of a series in which the authors will 

attempt to study the problem of load transfer and stress and strain dis- 

tribution in strands, both theoretically and experimentally from several 

points of view and with the main purpose of increasing the knowledge that 

may, in the future, help designers to manufacture better cables. In one 

of the papers consideration will be given to the stress and strain dis- 

tribution in a single helix, the elementary component o . the strand. In 

other papers experimental stress analysis results on steel strands will 

be reported. It is believed that these experimental analyses are the 

first ones to be conducted on helices and strands. In another paper 

an attempt will be made at the study of vibrations in submerged cables. 
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In the experimental work measurements are taken not only on steel 

strands (as received from a manufacturer) but also op. plastic oversized 

models of strands. This permits a better understanding of the differences 

between the results of theoretical analyses, and the results of experi- 

ments In strands and cables. An attempt Is made In the theoretical as 

well as in the experimental papers to present the problem with graphical 

representations for clearer understanding of its complexity, and to 

emphasize the frequently erratic behavior of actual cables. 

The theoretical developments to be presented in this paper intro- 

duce simplifications that make the equations linear and therefore easier 

to handle by designers. These equatiors are applied to the case when 

the deformations of the strand are small, but the reasoning behind them 

will also permit the application to the case of large deformations. 

These equations could also be applied to the analysis of wire-ropes 

made of strands, considering each strand in the wire-rope analogously to the 

situation of a helical wire, in the strand. 

GEOMETRY AND LOADING OF THE STRAND 

Consider a simple strand geometry as the one shown in Fig. 1 where 

a straight core wire is wrapped around by a layer of helical wires. The 

number of helical wires is six for the most typical and simple strand, 

which is the one considered in this paper, but the equations to be given 

in the later part of the paper can be extended to the case where a strand 

has an arbitrary number of helical wires. Each helical wire is assuir^d 

to have a circular cross section in a plane normal to its axis (a helix) 

(Fig. 1), the diameter of which is small in comparison with the pitch of 

the helix. It is also assumed that each helical wire is in contact with 

- 2 - 
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the two adjacent wires, with the core, or with beta core and adjacent 

wires. 

A strand can be loaded by three principal static types of loadings: 

1) pulling (or axial loading of the strand), 2) torsion, and 3) bending, 

riesldes these three principal types of loadings, a strand could be 

subjected to thermal loadings. If there are temperature gradients In 

Its environment, Impact and vibrations. In the analysis, torsion 

and pulling are conveniently associated and will be treated together. 

Bending, (as produced when the strand is wrapped around a drum) may 

develop when the strand is subjected to different levels of prestres- 

sing (by pulling). It may also develop when the strand Is used as a 

component of a wire-rope, and the wire-rope is subjected to axial 

loading or torsional loading. 

The loadings considered in this paper are axial tension, torsion 

and combined torsion with tension. These loadings cause elongation 

and rotation in the strand. Because of geometric restrictions the state 

of stress and strain associated with these loadings is constant all the 

way along the axial line of each helical wire. Therefore, stresses 

and loads in the strand can be described by the stresses and loads on 

a single transverse cross section of a helical wire and core. 

In case of bending of the strand, the stresses and loads on the 

transverse cross section change along its axial line. This makes the 

analysis more complicated. This problem is out of the scope of this 

paper and would be dealt with somewhere else. 

In the present analysis the radial dimensions of the cross section 

in the unloaded strana and its position with respect to the core are 
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assumed to remain constant under load; the Interwlre contact deforma- 

tion and Polsson's effect due to axial strain are neglected, in other 

words, the axial lines of helical wire after deformation In the strand 

are assumed to remain on the cylindrical surface (Fig. 1) on which 

they were before deformation (This cylinder will be called "reference 

cylinder" and Its radius will be called R.). This assumption Is 

reasonable because each helical wire Is restrained by the core and 

by Its neighbors. This restriction makes the main difference In the 

deformation characteristic between a free helical wire and a helical 

wire In a strand. 

The deformation of a helical wire In a strand will be better 

understood with the following statement: Consider material line 

segments, say AB and CD in a helical wire which are the principal 

normal and binormal to the axial line (helix) at point 0, respectively 

(Fig. 2). After deformation these material line segments are assumed 

to displace in such a way that they still are the principal normal and 

binormal to the deformed axial line (A'B* and CD' in Fig. 2). 

The following is the nomenclature used in the analysis: 

A: cross sectional area of wire (used with c or h subscript) 

A to D:  coefficients functions of geometry and material properties 

c: subscript used to identify the core 

d: wire diameter (used with c or h subscript) 

E: Young's modulus 

G:  shear modulus 

 —. u _^ ™.  .^J,.    •— ^.,.,.-^■■,....,- ...„„.. 
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M: 

Nh! 

P: 

p: 

R: 

s: 

T; 

subscript used to Identify the helical wire 

moment of Inertia of the cross section of helical wire 

polar moment of Inertia of the cross section of wire (used with 

c or h superscript) 

bending moment acting on the helical wire In a plane containing 

the axis of helical wire and the principal normal (positive M is 

shown in Fig. 7) 

axial tensile load applied to the strand 

axial force acting in the core 

axial force acting in the helical wire 

resultant contact force acting on a helical wire (per unit length) 

contact force acting between core and a helical wire (per unit length) 

contact force acting between two adjacent helical wires (per unit length) 

pitch of helical wire 

radius of strand measured from the center of strand to the center of 

helical wire (radius of reference cylinder shown in Fig, 1) 

distance on the transverse cross section of a wire from the centroid (Fig. 7) 

arc length of helical wire 

torsional load applied to the strand 

twisting moment acting on the helical wire (positive T is shown in 

Fig. 7) 

twisting moment acting on the core (positive T is shown in Fig. 7) 

ht-lical wire lay angle (Fig. 1) 

normalized rotation per original one pitch length of the strand and 

defined by y = A/2T: 

- 5 
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tc 
Y „: shear strain on the transverse cross section of core associated with 

twisting moment T acting on the core 

Y 0: shear strain on the transverse cross section of helical wire 
So 

associated with twisting moment T. acting on the helical wire 

A: rotation per original pitch length applied to the strand (positive 

In winding rotation) (In radians) 

6: axial displacement per original pitch length applied to the strand 

(positive In elongation) (In Inches) 

c: axial displacement of the strand per unit length and defined by 

e - 6/p 

ac 
£  ! 
z 

ah 
s 

bh 
's 

C: 

n: 

p 

.ac 
z 
ah 
s 
tc 

[
Z6

: 

th w 

(1 

o 

axial strain In the core associated with the axial force N acting 

In the core 

axial strain In the helical wire associated with the axial force 

N. acting In the helical wire 

axial strain In the helical wire associated with bending moment M 

acting on the helical wire 

radius of twist of the axis of helical wire 

distance on the transverse cross section of helical wire from Its 

neutral axis for bending (Fig. 7) 

Poisson's ratio 

radius of curvature of the axis of helle«! wire 

ac 
normal stress corresponding to e 

normal stress corresponding to e 

shear stress corresponding to Y 

shear stress corresponding to Y 

ah 
s 

tc 
ze 
th 
SB 

Quantities after deformarion are Identified by prime symbols (e.g. s', p'. etc..) 

- 6 - 
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FORCES IN A HELICAL WIRE ASSOCIATED WITH AXIAL ASP TORSIONAL 
DISPLACEMENTS APPLIED TO THE STRAND 

Consider a segment of strand (length 1, which can be taken arbi- 

trary) as shown In Fig. 3. It Is assumed that, because of geometric 

constraints, whether the strand Is pulled axlally, or Is twisted about 

Its axis, ehe core can only displace axlally, and the wire can displace 

axlally as well as rotate In contact with the core.  The deformed state 

is shown by heavier lines In the figure. The axial line of helical 

wire EF (undeformed helix) moves to another helix EF1 (defomed helix). 

This deformation consists of two components: one is a displacement In 

the axial direction of strand. Call ö this displacement per pitch 

(positive in elongation). The other component is a rotation around the 

axis of the strand. Call A in radians this rotation per pitch (positive 

in winding direction). The forces in the helical wire associated with 

the above mentioned deformation can be categorized into four types: 

(1) axial force, (2) bending in the plane containing the axial line of 

the helical wire and the principal normal of the helix, (3) twisting 

around axis of helical wire and (4) contact force, the resultant force 

of which lies on the plane containing the axial line of helical wire. 

Strains and .^trasses acting on the cross section of the helical 

wire and associated with each of the above four types of forces will be 

expressed as functions of 6 and A. The strains and stresses will be de- 

s.:ibed in terms of their components In the plane normal to the axial line 

of the helix. Cylindrical coordinates (r, B, s) will be used (Fig. 1). 

- 7 - 
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Axial Force In the Wire 

The displacement of the axial line segment from EF to EF' 

(Fig. 3) requires a change in the arc length. This is associated 

with an axial strain and with an axial stress and axial force 

(unlaxial state of stress in the wire is assumed). 

The axial stiain can be expressed in terms of 6 and A as 

follows: Call 1 the length of undeformed strand. The initial 

length s of the axial line of a helical wire is given by 

s - - /pz + (2TrR)^ 
P 

(1) 

The final length s' is jiven by 

s' - -    /ftJ+ST2 + {(2TH-A)RH (2) 

If it is assumed that the helical wire is subjected to uniform 

axial stress distribution,  the axial strain of helical wire is 

ah     s' - s 

I f,^ M ..   /2TTRN
2
/1L A ,2 

/FMW /^V ^ ^rt'1 

■ cosS    ^(l+e)^+(l+Y)2tan2ß - 1 (3) 

where e ■ 6/p, y ■ A/2TT 

Assuming small deformation,   I.e.  (   & y <<1, and neglecting higher 

order small quantities: 

eah « e cos23 + Y8in2e (4) s 

8 - 
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Thus the quantities related to axial force acting in a helical 

wire become: 

.' e*11 ■ eco82S + Y8in23 

> 
o*h - E (ecos2S + Y8in2ß) (5) 

Nh - AjjE (eco823 + Y8in26) 

Bending Moment in the Wire 

The deformation of the axial line of the helical wire (Fig. 3) 

causes a change in the radius of curvature and this is associated 

with a bending moment in the plane containing the helix and the 

principal normal. 

Using the Cartesian coordinates (X, Y, Z), the parametric 

expression of the helix EF is given by 

X ■ Rcosf 

Y ■ Rsiny 

The radius of curvature p can be computed from 

(6) 

2Y 2 A'TL 2v 2 ,d'Y 27 2 ,dzZ 2„ 2 .d^s das 

where ds is a line Increment of the helix defined as 

ds2 - (dX)2 + (dY)2 + (dZ)2 

Using Eq. (7) the radius of curvature of the undeformed helix EF is 

The radius of curvature after deformation Is given by 

(7) 

(8) 

R+(f)4 (9) 

- 9 - 
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The deformed pitch p' can be expressed In terms of the original 

pitch p.  the axial and rotational deformations of the strand 

>' ■ ^+ 6> ^ ■ p frr 
In the case  >f the strand analyzed experimentally (7-wlre), the 

radius of curvature Is large compared with the diameter of the helical 

wire.    The angle 3 = 8.5° and p  = 50 d. .    Therefore, the shift of the 

neutral axis from the centroid of the cross section is negligible and 

tbr elementary theory of bending can be used. 

Using Eqs. (8), (9) and (10), the following quantities related 

to bending of the helical wire can be determined for a given defor- 

mation of the strand (6 and A, or c and y). 

(10) 

bh      /PV-Px 
E    x (—r~)n 

8 PP' 

bh     _, /P'-Pv 
ös   " E (-^T-)ri 

M   - El (^) 
PP 

When strains are small e, y <<1, then: 

p' ■ p (1 + e - y) 

and Eq.   (11) becomes: 

e
bh - lit - Y) ;- cos2esin2e 
S K 

obh = 2E (e - Y) 5- C08238in?ß 
S K 

M ■ 2E1 (c - y) C082ß8ln2e/R 

The positive direction of the bending moment is shown in Figs. 7 and 8. 

(11) 

(12) 

(13) 

- 10 - 
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Twisting Moment in the Wire 

The line segments AB and CO embedded in «-he helical wire (Fig. 2) 

can be considered as lines of geometric reference. When moving along 

the axial line of the helical wire, these lines rotate around the axial 

line. Call At/» the angle of rotation resulting from travelling through 

distance As along the axial line. Then the quantity 

1 _ lim  A^ 
C  A ->t) As 

is the angle of twist, per unit length of the plane of geometric reference 

containing a line segment such as AB or CD (Fig. 4). It should be noted 

that this has nothing to do with twisting strain, x,  in Eq. (14) is 

called   the radius of twist (or the second radius of cutvature) of 

a spatial line. 

Denoting the original and final values of the radius of twist as 

C and C  respectively, a segment of helical wire s undergoes twisting 

deformation around its axis through an angle which Is given by 

Ar - Aij, - rr - T- 

Thus ehe angle of twist per unit length due to the deformation is 

given by 

(14) 

11m  Aip'-Aij; 
As-*o    As IT 

Further computations can be made by assuming that the elementary theory 

of twist of circular bar can be applied tc this problem. The radius 

of twist £ of any spatial line is given by 

(15) 

(16) 

(17) 

- 11 - 
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where X, y and \ are the direction cosines of the blnormal at the point 

considered.    In case of helix ; Is constant and Is expressed as follows 

Before deformation:    c    - (£-) + R2/  (^-) 

After deformation :    ?• - (^-) + R2/  (£-) 

Using Eqs.  (10),   (16),  (18), the following quantities related to twisting 

of the helical wire can be determined for a given deformation of the 

strand. 

th      /?-C\ 
Yse " (-^-)r 

(18) 

^ - o Wu s6 (19) 

Th = GIp  ^ 

Assuming again small strain (e, Y<<1), Eq.   (19)  becomes: 

th      (y - e)r    .  /0 
Ys6 "     4R 8in4ß 

th      G(Y - e)r    .   ,. 
Tse =     4R 8in4B (20) 

GI    (Y-e) 
T    = —°—  

h 4R slnA3 

The positive direction of the twisting moment is shown in Figs.  7  and 8. 

Contact Forces between Wires 

Contact problem is by its nature non linear.    The stress distribution 

is complex at  the points of contact.     But  the effect is considered  local 

and the details of the stress distribution could be determined theoretically 

using the Hertz solution. 

- 12 
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If the strand is well lubricated, the frictional force can be 

neglected and the resultant force due to contact Is a force directed 

outward normally to the axial line of the helical wire as shown In 

Fig. 5. 

The resultant contact force per unit length, P, is 

P = 2P.   cos6o0 + P   - Pu + P 
h c       h        c 

From the consideration of equilib/ium for a short segment of 

helical wire (Fig. 6), on which all of the forces discussed in the 

preceding sections are acting, the following relation can be ob- 

tained with regard to contact force 

p-4s — 

(21) 

(22) 

FORCES IN A CORE ASSOCIATED WITH AXIAL OR TORSIONAL DISPLACEMENT OF 
THE STRAND 

If the core of a strand is connected with the surrounding helical 

wires at both ends of the strand the quantities representing the defor- 

mation applied to the strand, 6 and A, also represent the deformation 

of the core.    Since a core is a straight circular rod, estimation of 

strains, stresses and forces can be made easily. 

When there is  contact between core and helical wires the cere 

will act as a simple bar in tension and torsion with the addition of 

some loading due to 6 lines of spiral contact  from helical wires.    This 

suggests that the deformed cross section of the core may not remain 

plane, but may be warpt.    This effect could be neglected for the first 

approximation since it is considered that  the localized radial forces 

13 - 
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due to contact would have small contribution to overall deformation of 

the core. 

The axial deformation 6 of the strand produces an average axial 

strain   — (-e)  in the core.    The rotational deformation   A   of the 
P 

A      Iny 
strand results in a twisting deformation per unit length   — (■—L) of 

the core.    Therefore the core is subjected to axial force and twisting 

moment. 

Strains, stresses and forces expressed in terms of e and y   are: 

ac 

öac 

z 
■ E£ 

N 
c 

■ A Ee 
c 

tc 
Yze - 

P 

tc 
T 

7. 
3 

2TTGTrr 

P 

„TC    2ITY 

(23) 

FORCES ACTING ON THE STRAND CORRESPONDING TO THE APPLIED DISPLACEMENTS 

From the preceding considerations, it follows that each helical 

wire is subjected to 1) axial load, 2) bending moment in a plane con- 

taining the axial line and principal normal, 3) twisting moment around 

'he axial line. The core is subjected to 1) axial load and 2) twisting 

mordant. The stress and strain distribution associated with these types 

•f loading can be obtained approximately by the theory of strength of 

materials. Main results are summarized in Fig. 7. 

- 1A 
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Resultant forces on the strand cross section can easily be expressed 

In terms of forces acting on the cress sections of each of the seven 

wires. This Is done In Fig. 8 and the following relations between In- 

ternal forces and external forces are obtained from consideration on 

equlllbtlum: 

N External axial force 
of the strand 

External torque 
of the strand 

N « N + 6N. cosS' 
■' c   h 

(24) 

T - T + 6 (T. cosß' - M sinß' + N.R sing1) (25) en n 

where 6* Is lay angle of helical wire after deformation and Is expressed 

In terms of e and y as follows: 

ß» - tan *1 (~J tanß) (26) 

From the assumption of small deformation, we can put 

The approximation of Eq. (27) reduces Eqs. (24) and (25) to much more 

simple forms which are linear functions of e and y. 

Using Eqs. (5), (13), (20), (23) ant'     Eqs. (24) and (25) can 

be expressed in terms of e and  ' as fo^ 

W - A e + B Y 

T • C e + D Y 

where A, B, C and D are constants determined by the geometry of the 

strand and the elastic constants of the strand material, and are given 

by 

(27) 

(28) 

(29) 

15 - 
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A - A E + ÖA^E cos3^ 

B - 6A.E sin^e cos^ß 

C - 6AURE 8lnß C08
2ß - 3GIP sln4e C08e . 12EI co82g 8ln33     (30) 

^ 2R R  

n  .. n» . 30 .  3GIp 8ln4e CO83  12EI cosa8 8ln36 ^ 2^1« 
D - 6A.RE sin^ß +  ^g  + g—e ^ + -^—^ 

From Eq. (28) and (29), we have 

e __L_N._J_T 
AD-CB    AD-CB 

—9.— N 4. _A_ T 
AD-CB "  AD-CB 

Substituting Eq. (31) into (5), (13), (20), (23) and (24), strains, 

stresses, forces and moments acting in the helical wires and the core 

can be expressed in terms of the external axial force N and torque T 

which can be treated as applied force and applied torque for the 

strand. 

APPLICATIONS 

Using the equations developed in the preceding sections, the re- 

sponse of the strand to an applied load will be given in what follows, 

as a function of that load. Since the equations in the previous chapter 

are all expressed in linear and explicit form, the procedure of computa- 

tions is easy. 

(31) 
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Axial Loading with Unrestricted Ends (Simple Tension of Strand) 

In this case since no torque Is applied to the strand, 

T - 0 

Then, recalling Eq.  (29) 

(32) 

(33) 

Since approximately It can be stated that for the 7-wire strand: 

d    = d    and R - •=■ d.   + ■=■ d he 2   h     2   c 
(34) 

Then C/D from Eq.  (30)  Is given by 

C        48  (l+v)  cos2ii Sinti (8-8ln2g)  - 3 sln4ß cosg 
D '    4 tan ß + 3 sln4ß cosg    + 48(l+v) sln^ßUos^ß +8)  (35) 

Equation (33) determines   y or unwinding motion of strand for a given 

value of e or elongation of strand. 

Forces and moments can be expressed In terms of  the applied force 

N as follows: 

Axial force In the core 

N    - A E c        c     AD-C3 N (36) 

Twisting moment In the core 

2*Gll     C X 1 — N 
c     p  AD-CB (37) 

Axial force in the helical wire 

N    . A E    Dco62ß    - Csln23 
Nh      V AD-CB N (38) 

Bending moment in  the helical wire 

„  2EI cos2ß8in2ß C+D „ M 1 ^-^N (39) 

Twisting moment In the helical wire 

T    . GIp Sln4ß   J*^ 
h 4R AB-CB 
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The effective tensile rigidity of the strand defined by N/e 

Is given by 

N m AD-BC 
e -  D 

From Eq. (33), the unwinding motion of the strand due to the applied 

N Is given by 

AD-CB " 

Torsional Loading 

In this case, since no axial force Is applied: 

N - 0 

From Eq. (28) 

B 

If the same approximations of Eq. (34) are made, B/A Is given by 

B m  6 sln2eco83 
A " 1+6 cos^ß 

Equation (44) means that the strand should contract when winding 

torque is applied. 

The torsional loading considered here refers to "winding" of the 

strand only. Unwinding causes separation between wires and thus change 

in radial dimensions of the cross section of the strand. 

Forces and moments in the core and the helical wires associated . 

with winding torque T applied to the strand are: 

Axial force in the core 

Nc--AcE ÄD?CBT 

Twisting moment in the core 

2ITGI
C 

T -  ^ --^—T 
c   p   AD-CB 

(41) 

(42) 

(-3) 

(44) 

(45) 

(46) 

(47) 
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Axial force In the helical wire 

N, A E A 8ln2ß- gcoa2& T 
h  Ti      AD-CB 

Bending moment In the helical wire 

m     2EI coa26sin2g A + B _ 
R       AD-CB 

Twisting moment in the helical wire 

GlJ; sin4ß 
T . _E  AJJJ T 
h   4R      AD-CB 

The effective torsional rigidity of the strand defined by 

T/—, is given by 

T/A . AD-BC p 
p    A   2IT 

Axial Loading with Restricted Ends (Tension combined with 
Restricting Torque) 

In this case since unwinding motion is restricted. 

A = o  or Y ^ o 

For a given elongation of strand E, the axial tensile load N and 

torque T required from the support to restrict unwinding of strand 

are from Eqs. (28) and (29) 

N = A £ 

T - C e - T N A 

In this case the applied torque is linearly related to the applied 

tension. 

Forces and moments in the core and the helical wires expressed 

in terms of applied axial load N are 

- 19 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 
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Axial force In the core 

N - A E v N c   c A 

Twisting moment In the core 

T   - o c 

Axial force In the helical wire 

Nh-V 
C082ß 

Bending moment In the helical wire 

M  2EI cos
2gain28 1 M M _  _N 

Twisting moment in the helical wire 

GIh din4ß . 
T - -2- ^N 
c    4R    A 

The effective tensile rigidity of the strand with the ends 

restrained is given by 

N/e    - A 

Combined torsion with tension 

The point of Interest in this case is whether the axial tensile 

load has an effect on the effective torsional rigidity. This can be 

discussed on the basis of foregoing considerations. 

For a given axial load N, we have from Eq.  (28) 

N - Ae + BY 

Then (29) can be written as 

A A 

C.N       ,AD-BCv  A_ 
"    A        Q    A    ' 2Tr 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

- 20 - 
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The angle A la the twist per pitch to be measured with no applied 

tensile loads. The strand will unwind when N Is applied. The unwinding 

deformation due to N is obtained from Eqs. (28) and (29) by putting 

N ■ N and T ■ o. The computed unwinding angle of twist per pitch A is 

C.N 
2ir 

u  AD-CB 

Let the angle of twist per pitch caused by applied torque T be 

measured with the strand under load N as the original state and let it 

be denoted as A,  then 

A «• A + A u 

Substituting (63)  and (64)  into  (62) we have 

m   AD^BC   Ä_ 
v    A   ;  2Tr 

Thus the effective torslonal rigidity Is given by 

Ä/p        ^    A    ;  27r 

which Is the same as the case of torsion without axial load Eq.   (51) 

In other words, the axial load has no effect on the effective 

torslonal rigidity of strand when the deformation of strand remains 

small. 

EXPERIMENTAL ANALYSIS 

An oversized epoxy model of a 7-wire strand was prepared and 

measurements of displacements were taken in the four cases of loading 

described in the previous section. 

- 21 - 
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The dimensions of the model were: diameter of the core: d "0.53 In., 
c 

diameter of the helical wire: d. - 0.53 in. ( - d ), pitch: p - 22 in., 

lay angle: 3 « 8° 36', length of the strand (between sockets): 24.5 in., 

overall length of the model (including sockets): 33.5 in. 

The material properties of the model were: E - 5.1 x 10 psi 

v - 0.35 

The set-up for the axial tensile loading Is shown In Fig. 9, Elonga- 

tions and rotations between sockets were measured with dial gages and 

protractors. The figure shows also a Huggenberger extensometer used to 

determine strains. Results obtained from the extensometer, as well as 

those obtained from brittle coatings, electrical strain gages and three- 

dimensional photoelastlclty will be reported In another paper. 

Measured elongation and rotations associated with axial loading 

are shown In Figs. 10 and 11. They compared well with those computed 

from Eqs. (41), (42) and (60). The maximum deviation is about 6%. 

Figure 11 shows N vs. T for the case of restricted ends. The 

torque was estimated from the measured unwinding angle In the case of 

simple tension with free ends and the measured torque vs. angle of 

twist In the case of corslonal loading. The results compare well with 

those of Eq. (54). 

Figure 12 show? the measured angle of twist per unit length of 

strand subjected to axial load when torque is applied to the strand. 

All the measurements fall with small scatter on the theoretical predic- 

tion of Eq. (51) and (66) proving the validity of the conclusions obtained 

theoretically. 
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FIG.  I   GEOMETRY OF A HELICAL WIRE WRAPPED AROUND A CORE 
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FIG. 2   DEFORMATION OF A CROSS-SECTION OF A HELICAL WIRE 
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FIG. 3  ELONGATION AND ROTATION IN A HELICAL WIRE 
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FIG. 4   PLANE OF GEOMETRIC REFERENCE IN HELICAL WIRE FOR 

CONSIDERATION OF1WISTING DEFORMATION 
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Helical wire 

P«2P.cos60 +?, 
n c 

"Ph + Pr h    c 

P.:  Contact force! per unit length ) 
due to contact between two 
adjacent helical wires 

P :  Contact force! per unit length ) 
'    due to contact between helical 

wire and core 
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FIG. 5  RESULTANT CONTACT FORCE IN THE TRANSVERSE CROSS-SECTION 
OF HELICAL WIRE 
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P  Wulff 

N.:   Axial force acting on the 
cross section of helical 
wire 

N, 

dy 

Equilibrium 

2Nh^=P.ds-P^ 

.-. P/> = N h 

3006 
FIG. 6  EQUILIBRIUM OF FORCE IN AN ELfMENT OF A HELICAL WIRE 
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FIG. 7   FORCES, MOMENTS, STRAINS, AND STRESSES DEVELOPED IN THE 

HELICAL WIRES AND THE CORE ASSOCIATED WITH EXTENSIONAL 
AND ROTATIONAL DEFORMATIONS APPLIED TO A STRAND 
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FIG. 9   EPOXY MODEL OF A 7 WIRE STRAND SET UP IN A TESTING 
MACHINE TO MEASURE ELONGATIONS, ROTATIONS AND 
DETERMINE STRAINS 
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