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MAXIMUM DIAMETER OF ABSTRACT POLYTOPES
by
Ilan Adler and George B. Dantzig

1. Abstract polytope-=definition and notation.

Given a finite et T of symbols, a family P of subsets of T

(called vertices) forms a d-dimensional abstract polytope if the following

three axioms are satisfied:
(1) Every vertex of P has cardinality d.

(11) Any subset of d-1 symbols of T 1s either contained in no
vertices of P or in exactly two (called neighbors or
adjacent).

(111) Given any palr of vertices v, Ve P, there exists a sequence
of vertices v = vo, veo vk =y such that
(a) Vy» V4, 8re neighbors (1 =0, .., k-1)

(v) {.vrn-r]cvi (1 =0, oov , k).

| It 1s convenient 130 delete from T all symbols that are not used
to define vértices. Hence we denote UP = [lev € P).
Let u be a subset of P such that |u| =k (|u] denotes the
cardinality of u). If P' = {ve Plv> u} 1is nonempty we say that P'
is the face of P which is generated by u and denote it by FP(u) or simply
F(u) 1f the sbstract polytope P is clear. It iJ not difficult to verify
that the family {v-ulv e Fp(u))  of ‘subsets obtained by deleting u from

‘each vertex bf such a face is a (d-k)-dimensional abstract polytope. In

- the sequel we shall use this property of faces extensively. Whenever we

mention a face as an abstract polytope, it 1s to be understood that the deleting
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of common symbols has been performed. Since ,FP{“) corresponds to & {(d-k)-

' dimensional abstract polytope we say that it 1s & (d-k)-dimensional face of P.

‘Zero, one and d-1 dimensional faces are called, respectively, vertices, edges,

and facets.
A d-dimensional abstract polytope with n facets is called an (n,d)-

abstract polytope. {Note that a = JUP|.) We denote by .P (n,d) the class

of all (n,d)-abstract polytopes.

The graph G(P) of an abstract polytope P 1s the graph whose vertices
and edges correspond 1-1 to the vertices and edges of P, respectively,

Note that axiom (iii) is satisﬁed by P if, and only if, the graph
of every face of P 48 connected, and that if we augment P by including all
s'ubsets of the vertices of P, then axioms (1)-(1i1)(a) define a (d-1)~dimensional

pseudo-manifold (with no boundary).

2. Relation between abstract and simple polytopes.

Abstract polytopes are (combinatorially) closely related to simple poly-
topes. A simple polytope can be expressed as the set of solutions of a bounded
and non-degenerate linear program {l4]. Suppose the latter comnsists of m
equations, in n non-negative variables whose cnefficient matrix is of
rank m. One can assoclate n symbols with the index set of the n columns
of the coefficient matrix. Then the family of subsets of symbols which

correspond to the non-basic columns of all the basic feasible solutions (i.e.,

'vertices) of the linear program forms an (n,d)-abstract polytope where d = n-m.
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This 18 true because any feasible solution is defined uniquely by the subset

of d= n-m non-basic variables set to zero (axiom (1)). Given a basic

feasible solution, a new basic solution can be obtained b}: .dropping any one

of the d non-basic variables. Exactly one of the basic va.riables can be

set equal to zero in its place (under non-degeneracy and boundness). This
genera.teé & neighboring vertex (axiom (11)). Given any two verti;:es v

and w-r, then bsr restricting ourselves to the lowest dimensional face common

to v and v (1.e.','holding at zero value the subset of non-basic varisbles
common to the two vertices), a path of neighboring vertices from. v to v

can be found (e.g., by using the simplex method and a suitably chosen objective
function) (axiom (1i1).

Although the class of abstract polytopes includes (combinatorially)
that of simple polytopes the converse is not true. Indeed by & theorem of
Steinitz (see [2]) the graph of every 3-dimensional abstiract polytope is
planar. However, the graph of the 3-dimensional abstract polytope displayed

in Figure 2 1s easlily shown to be non-planar. Hence no simple polytope can

. have the graph structure of this particular abstract polytope.

%, Paths and diameters.

Let P be an abstract polytope and let v, veP. A path of length k

from v to v in P 1is a sequence of vertices v = Vs eee sy V= v suth

are neighbors (1 = 0, ... , k-1). (Note that vertices of the

that v,, Vv

1’ i1

path are not required to be in F (v N v).) The diameter &(P) of P is

P
the smallest integer k such that any two vertices of P can be joined by
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a path of length less than or equal to k. We denote by Aa(p,d) the meximum

~of 8(P) over all (n,d)-sbstract polytopes. This corresponds to Klee and

Wa.lkgp's ‘ Ab(n,d) for ordinary simple polytopes [1]. In general, of course,
Aa(n,d) > Ab(n,d). '

Our main objective is to establish values and bounds for Aa(n,d).
We shall show in particular that the unsolved d-step (or Hirsch)'condecture
(that 4 (n,d) <n-d) holds for n-d <5 thus parelleling results of Klee and
Walkup [1']. for ordinary polytoﬁes. Our arguments, however, are based on feyer

axioms and imply theirs as a speclal case.

L. Some preliminary results.

We shall make frequent use of the following theorem:

Theorem 1. (Adler, Dantzig, Murty [3]) Given an abstract polytope P, if
two \}ertices vy v in P 4o not have a symbol (say A) in common then there
exists an "A—avoiding path" joining them; i.e., there exists a path from
v to v such that no vertex along the path contalns A. |

The next Theorem is the analog of a result of Klee and Walkup in [1].

The proof here is similar.

Theorem 2. For k=0, 1, 2, ...
(1) 2,(n,2) < A (ntk, d+k)

(11) 4,(n;a) < A (n¥k,d)

(111) 4 (n,a) < Aa(mek, d+k) - k.

(1v) Aa(zd,d) = Aa(d+k, k), k > a,



~n

5.

| Proof. We shall prove (1)-(1i1) for k = 1, the extension to k > 1
¥ 18 trivial. | | |
Let P be an (n,d)-abstract polytope such that 8(P) -'A‘(n,d).
(1) Let AeUP and let A' UP be a'new symbol, &eﬁne P’
as an abstract polytope identical with P except the symbol A' replaces A.
Define P as & new abstract polytope with vertices v UA' sod v'U A for
all veP andall v' e P'.
It 1s easy to verify that P is an (n+l,d+l)-abstract polytope with

e diameter at least as big as 8(P), thus
8,(n,a) = 8(P) < 8(F) < 4, (nt1, a41)

(11) Let A' dUP be a new symbol and v' ¢ P, Let Vs eee avd be

the d subsets of v' with cardinality d-1., Define P = (P-v')U U (vy UA').
i=l

Tt is obvious that P e _P(n+1,d) (1.e., P 1s an (n+l,d)-abstract polytope)

and that 8(P) > 8(P), hence
Aa(n+1, d) >8(F) > 8(p) = Aa(n,d).

(111) Let A;_ dUP (1 = 1,2) be distinct new symbols. Define
P, = ((vUA}|ver),1=1,2 e P uUB,e P(n#e, a+1) ana

a(Plu Pa) =8(P) +1. So

Aa(n+2, d+1) - 1> G(Pl U P2) -1=8(P) = A‘a(n,d) .
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(4v) Let P “P(aﬂ;, k) (x >d) where &(P) = A.'f(\dﬁt, X). Choose
. W, ¥ € P g0 that the shortest path from ¥ to ¥ has length 8(P). Con-
sider the face P' = :r];(av nNw) aof P wh:l.ch'comip'onds 1-1 %o a (a4, k"')-
abstract polytope (vhere k' =k - 'lvn V| < d). Bince P' C P, the length
of the shortest path from v to v in. P' is at least as large as 8(P).

Hence

4 (6", k') 2 8(P') 2 8(P) = 4 (a4, X) .

However by (1) (since d+k 2 24 > d+k")

A (a+x, k) > A (24,d) > A (a+", k')
Hence '

Aa(dd-k, k) = Aa(ad,d.) for k > d. 0

We shall make frequent use of the notion of a "shell" bordering a set
of vertices of an abstract polytope. ILet P bde an abstract polytope and
let Z CP. Avertex v of P belongs to the i-th shell X(2z) of Z o
P 1if, and 'only if 1 is the minimum length of all of the paths in P
Joining v to the various vertices of Z. The o-shell of Z is Z {itself,
The l-shell of Z is the set of vertices which are adjacent to but not in Z.

In general

i-1
Z) = N J(z)) .
K(2) ?(Jtil w3(2))

‘For simplicity, the l-shell of Z in P will also be demoted by Ny(2)

or simply N(Z) 1f P 1s clear.
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Theorem 3 below will be used (in section 5) to establish the values
. of Aa(n,‘a) ‘and the values of Aa(n,d) for all n, d such that

n'd_<_ 50 .

Theorem 3. Given P e f(Ed,d) (1.e., P 18 a (2d,d)-abstract polytope)and

Vgr Vo € P such that v, V. pertition UP. Let (vo, Vs eee s vk) and

(?ro, :'1’ s+ 5 V_) be two paths in P with the property |vin \'rd| = 1+],
k

then such paths exist for

(1) a>1, k=0, k=1 vhere ;1 is any given vertex in NP(;O)’

(1) d>2, k=1, k =1 vhere \-rl is any given vertex in NP(fro).

(111) d>3, k=2, k =1 where ;l 1s any glven vertex in NP(W-IO).
(iv) a>k4, x =2,k =2,

Proof. (Except part (iv) for d > 5.)

Let v, = (A > Agds \-ro = {‘E‘l’ cer f&d] partition P. The

l, LI N}
symbols v, V j vhere used below satisfy |vin v JI = 1+] or will be shown

to do so.
(1) Obvious by the second axiom of abstract polytopes.
(11) By (1), :’l € N(;ro) implies that |vo m-rll = 1. Relable so that

;’l = (4, ‘K‘l’ «e. 5 A .}, Note that fidq {vo 1) \-rl]. By Theorem 1 there

d-1

-avolding path between v, and ;]. in F(von frl) (1.e., all

nvl=A

exists an ‘K‘d

the vertices of that path contein v but do not contain A& d).

0] 1

1 be the neighbor of vO in this path. Since Ad ¢ vl, vl must

.contain, for d > 2, one symbol different from those in Yo U i.d. Hence,

let v

since A;c vy, |vy nvy| =2,
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(111) Let ¥, € N(Y,) then by (11) there exists a vertex v, ¢ Mvy)
_gu’ch that |v; n vl = 2. By relabeling let v, = (A}; «.0 Ad_l, i), :
v " L v. ) ™ J -
¥y =AAp Ay vee y K J)e Define P '=F(v; V) and W .“('o)“ Pl
Note that W 1s the set of all vertices of N(vo) ‘which contain both

A, eand ll.

1
By Theorem 1 there exists an Kd— avoiding path from v1. to ;1 in .

P'. Let A be & vertex of this path vhich belongs to NP.(V) (such

vertex exists because v, € W while v, ¢ W for d>3). But v, contains

[Al.’ Kl) and one symbol out of K, ... , & ;2 hence |v2 n ;ll = }.

d-
(4v) (d = 4) By (1i1) there exists ;l € N(;O) and v, € Na(vo)
such that |v, N ¥, |=3. Bince d =k, the second axiom of abstract
polytopes implies that A\ is a neighbor of ;’1' Thus letting ;2 =V,
completes the proof for this case. D
Part (iv) for d = 5 will be established in stages via Theorems 4

and 5and for d > 6 via Thr:orems 6 and 7.

Theorem 4. .Given P ¢ ?(2d,d) (vhere d > 4) end vertices Vor Vyr ;0 eP

= -y =u - -y _=n

satisfying |v1 n vdl 14) end V), V) € Nz(vo) satisfying |v1n vy N v2| = 3
g » = - - -.
then there exist v, ¢ Na(vo) such *hat |x2 n v2| = 4 vhere either v, =V,

= =n
or V2 = V2-




e

" Proof; By relabeling for d > 4 ve are a.u\ming

B(A,...,A];vlt[x,no,l]}V"tA:---’ l}xllj

N

va-(Al,Ae,Rl, ...,R]-IA )

Fg = (A5 Ay Ay ooy A‘?} -(K, &, . (2<14, TR R a)
vhere 1, J, k, £ are all distinct or 1 =k and 4, J, # are distinct.
-t bl | N
Note that vy N7, 75 = (Ayy Ay, Kyl
=1
Y to v,
in P' .r(vlnw':') Let 2 =N(v ) nP'. Since v, € £, vhile v {2z,

By Theorem 1 there exists an Ki-'- avoiding path from

. this path 1ntersects N, (2), say at Vpe FNote that v, € N .(Z) & Iﬁ(v .

By deﬁnition, all the vertices of P! = F(v n v ') contain the

symbols Aj, A, and K and v, contains also some A’ € [Atlt €2, ..., 4],

1 2
t #1). But, either ;2' or frg must contain Kq. Hence either ;2 = 1'!2' or
;2 = ;tg satisfies |v nv. | _ ' . 0

/

heoren 5. Let P ¢ P(10,5) and let (vy, vy, v); (7, ¥;) be paths
in P satisfylng |v, n GJI = 1+). Define P'=F(v; N¥), W = Kv)) nP’
end W= N(:ro) N P'. Then either there exists & path of length 3 connecting
a vertex in W to a vertex in W or:

(a) F(v2 n i'rl) is (by relabeling) the 7-vertex 2-dimensional abstract

polytope given in Figure 1.




e

2" “1"2"5’11"2] - (AAyphseky Rp) - (Aphy 1"2'13;1\
ulyllylg;l};xh]ﬂ
RTSTIS W SRR ¥ DT 0 S
Figure 1
(v) F(vlln 1?1) 1s (vy relaben:.xg) the 3—d1mensiona.1 abstract polytope yveh
in Figure 2 (note that the greph of F(v, N ;1) s non-planar).

I.’foéf: Assume (by relaveling if neceua.ry)' that

- [Al, ess A ], V = [Al’ see Ad 1’ Al), V2 = (A]., see o d-2’ I’l’ Kalp
- [Al, MR 1 }l = [Al’ l, DODRY) Ad‘l] :

(a) Since |v2 n w'rll =3 P"=F(vyn ;'rl) corresponls 1-1 to an (n,2)=abstract
polytope with 3 <n< 7. It is essy to show that every (n,2)-sbstract
polytope Q bhas exactly n vertices and that every symbol of UQ 1s
contained by two adjacent vertices of Q. Furihermore, the graph of Q
forms a simple cycle. We shall consider three cases.

(al) IP"I 5_. 5. Obviously there exists a path of length less than or equal to

. 3 joining v; in W to ;1 in W.

(a2) |P"| = 6. In this case P" has the form

e / 3—;"**\
v = [Al"‘z'“)f“l"a)\ 7 (AR Roihg k) = ¥y
\vj
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(a3)

(v)

12,

1

Since A,, Kl and I.e are contained by all the vertices of P,

aad ‘v, U ;'1 = (Al,Aé,A ,ll,ﬂe,xj,ﬂu], one of the remsining symbols

. Ay Ag or Ks 1s contained by the tvo sdjacent vertices vg, v, end

another by v3

then vj' (or v") is neighﬁor of v,. If Is is contained by

vS, i (or . vj, v,:) then vl; .(or vl';) is & member of #. 1In both

cases there exists a path of length 3 from a member of W to a

p vl';. But 1f A, 1s contained by vj, 'h (or v , vh)

member of W.

|P"| = 7. Here P" has the form:

-—vﬁ-—v'

v! 5

/’
’AB’Al’AQ] \ / (Al’xl’l? L} xu] = V
—vh

' Using the seme arguments as in (a2) we see that if every path from a

member of W to a member of W has a length of at least Ui then

v'

3

must contain A

5 vll must contain Ks, Vl’;’ vg must contain A, and VB, vg
5° Thus P" has the form of Figure 1 except for
possible interchange of symbols A, with Ay end 13 vith Rh‘
Suppose very path in P' joining & member of W to & member of W
has & length larger than 3. So P" has the form given in Figure 1,
Let us denote v [Al’Al;’A A ,A3] we can apply nov the above

analysis to the face I‘(vl n va) vhere ve replace the symbols
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[Al,Ae,AB,Ah,Asl above by [I\l,xj,la,x ,55), and [AI,RE,AB,K,‘,Ls)
by -[Al,Ah,Ae,AB,AS] respectively. Thus F(vl n 172) has the following

- form (with the possible interchanging of A2;~'A3 and 7\2, .5.5):

/ (Mg A5t K K= (A AR Ao R0 - (A AR R RS = .

Vl = [Al,Aa’AB,Ah,Al]

[Al,Ae,Ah,f\.l,Kh]-[Al,Ah,As,.T\l,ﬁh]-[Al,Ah,As,Kl,KB}

Note that interchanging A2,_A3 is not possible since [Al'Ah’Al’A?AS]
is forced as a neighbor of ;2 because it already exists as a vertex

of F(v,N vl)

s e
We now let v, = {Al’Aa’Ah’Al’Ah} and apply the argument of (a)
» 1 - - - - - - -

on F(v, N vl). Since [Al,As,Al,Ae,Ah] € F(v2 n vl) and {Al,Ah,As,Al,Ah]

€ F(v_lﬁ ‘72) ve get a unique form for F(vz' n ;rl) as follovs:

va' = {Al’AQ’Ah’Al’Ah]- (Al’Ah’Aﬁ’Al’Ah} o (Al’AS’Al’A2’Ah}

(Al,Al’Aa,AB,Ah}zv

[

(8y 58,8158 ,A5)-(A)85,A1,8) ,Ac)=(R),A5,A,,A5,4) )

If ve would have interchange A, with A, in F(v, N \72) then we would

3 1
have [Al,AQ,Kl,Kh,KS] e F(vy n w'rl) and (Al’Az’Ah’Kl’z‘s] € F(vynvy)c P
but {Al,Aa',Kl,K?,ﬁ5] € F(von vy)c Po 8o axiom (11) of sbstract polytopes

would have been violated since [Al,Ae,l.\l,.Rsl is contained by 3 vertices of P.
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Hence, we can conclude that Az is not interchangable with A3

4n F(vl n'w'ra) (;l.e., the structure of this face vhich is given above

is the only structure which is compatible vith F(v, N ¥,) given in (a) .
and the ﬁssumption that no path of length less than 4 joined ;. member of
W to B member of W). _

Finally, . letting x'ré = “1’“3’51’55’5!;]’ considering 1'r(v1 n ;2')
and applying (a) (notice that (Al’Aj’AS’Al’Az]’ [Al’Aa’A}’Al’Keh
[Al,A),Ai‘_;Ei,KS] and ul”‘}"i‘l’i‘h’is} belong to .F(vl_ n ;2:)) ve get that

the form of F(v1 n \'re') 18 necessarily as follows:

[Al’AB’Ah’Il,LSJ- [Al’AB,Al’Ah’Asl - [Al,AB’Al’AB,Au] =
Vl L (AliAzlAB)A)*IAl]

FA]_:AQ:A}:RPRQ] - {APA};Asyxl:ig) - {Al’A}’AS’KPKB

Collecting all the vertices of the four 2-dimensional faces considered

above it is not difficult to verify that they form a 3-dimensional abstract

a

Remark. Klee and Walkup [1] name the property that every path from g member
- 3

rolytope vhich has the structure described in Figure 2.

of W to e member of W has a length of at most 3, as "Property A". They

show that every 3-dimensional simple polytope with 8 facets satisfies
property A. We have shown that all 3-dimensional abstract polytopes with

8 facets also satisfy property A except one, namely the ore with structure

. given in Figure 2.

'
2
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Proof of Theorem 3, Part (iv) for 4 = 5: It is obvious that (iv)

~holds if and only if there exists a path of length 5 from Yo to ;0’ i.e.,
if, and qnly if, there exists a path of length 3 from & neighbor of o to

& neighbor of ?ro.

Suppose (iv) does not hold, then by Theorem 5-b every 3-dimensional
face of P vhich is generated by a member of N(vo) and & member of N(;ro)
has the structure of Figure 2 after relabeling. In particular let
v, = [Alj,Aa;A},Ah,Kl], v, = (Al,Ae,Aj,El,ﬁa}, vy = (AR ALK oA} and
P' = F(vy N ¥)) has the form of Figure 2. Comsider v, = (Al’A2’A3’Ah’A5]
and its incident edge generated by (Al’Aj’Ah’AS}'. The other vertex
ipcident to this edge cannot be {Al,AB,Ah,AS,Ki] vhere 1 =1,2,3,4 since
this would imply thet there 1s a path of length 5 from v, to w'ro via that

edge and one of the following four vertices of P';

Hence (Al’A}’Ah’AS’AS} is a vertex adjacent to /S

Similar arguments lead to the conclusion that either
[Al,Aa,Ah,As,f\s] or [Al,Ag,Ah,AS,KQ] is the other vertex (beside vo)
which is incident to the edge generated by [Al’Aa’Ah’AS] .

The same argument with respect to ;0’ the edge generated by
{Kl,ie,ﬂh,ﬁs} and vertices {Al’Ah’Kl’KT‘KB]; [Al’A:’p’Rl’Kh’RS]’ {Al,Aa,ﬂl,Ka,KS];
[Al,Aa,ﬁl,Kh,f\s} in P' dimplies that {As,ﬁl,ﬁa,ih,lsl € NP(\-ro). Consider
‘now vertices (Al,A ,Ah,As,LS} and [AS’Kl"K‘e’Eh’RS]’ by Theorem 5 in order

3
not to have a path of length 3 joluing these two vertices the face of their
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intersection must have the structure of Figure 2. But note in Figure 2

tliat the three neighbors of \{1 have the property that no two are neighbors.

This rules out the possibility that [Al,Aa,Au,AS,K'S) 18 & vertex as it
would lie in the face and would be a neighbor of (_Al,A},Ah,'A:S,%] . Hence
1f (iv) does not hold, “1*‘2"‘&"*5»32] € N(vo_).
Let us now consider the face F( (Al,A,‘,,Ah,AS,Kg] n {Al;ll,lz;'ﬁ},lh])
= F( [Al,i.al). Tt contains the non-empty 3-dimensional face
F( (Al,Ae-,Aj-,Kl,Ké] n (AR A0A5,4,3) = F((A,A ,A5)). By Theoren 5,
under the assumption that (iv) does not hold, K( [Al,lel) must have the
structure of Figure 2. Note that F( [Al,ﬂl,ﬂ,e}) also les in F(v) N w'rl)
and has 7 vertices (shown connected by heavy a.rcs. in Figure 2). But all
f.wo dimensional faces with seven vertices of the abstract polytope given
in Figure 2 have the property that one of its vertices is adjacent to vy
in P' and thus analogously to [Al,Az,Ah,AS,KQJ in ¥ [Al,ial) , but
in fact none are,a ccutradiction. So (iv) must hold. 0
The last part of Theorem 3-(iv), for 4 > 6, will be proved

via Theorems 6 and 7.

Theorem 6. let P € J)(ad,d) and let [vo,vl,val, ﬁo’:'l) be two paths
in P such that |v, N w'rJI = 1+). Let W =K(v,)n F(v; n w'rl); then 1if
d>6 and W>2 there exists v, ¢ N2(vo) and V) e Nz(w'ro) such that

|v2', n ;ra'l = b,
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Proof. By relabeling let v, = [A1’°"’Ad) 3V = (Al,...,Aa_l,lll ;

' 72 = {Al’uo-,Ad_z’Ll'lzlj ;o = {31,...,1‘1], and ;’1 = [Alyii’::o-ogld_llo
Define P' = F(v, N ?ri). (Thus W = n(vo) nP')P"= F(vy n “-’1')’ T "ﬁo) nP"

and ﬁi = (v € NP"(Z)IAi c V]. (i - 2,...,6.)0 The Proof Of 'Iheorem 6 A
obviously is a result of the following Lemma [part (b4)].

Lema.
(a) fra,--.’.-. . fJ;i partitions NP.(Z).
(v) Either there exist v, e N2(v0) ‘end \'ra' € NE(;O) such that
|v2' n ;rél =L or:
(b1) lﬁil =0 for i=2,,..,4-2
(v2) 1T, ] =1 |
(v3) U] > a-b

(b4) JW| =1 for a> 6.

Proof of the Lemmsa.

(a) Since every vertex of P" contains A, and since every

vertex of NP-.(Z) contains exactly two non-barred symbols, obviously:

d
NPn(z) = U

ﬁ and I-Jnf, =¢ for 1’3'2, ooo,d,i*.’o
12 J

i i

(bl) Assume ﬁio,@¢ end V) € U, for some 1 251, < d-2,

2 io 0

then [Al,Aio,Kl,Ke}C;é. Hence |v, n V| = b Moreover, vy € NP..(Z) c 112(-';0).

TG B
i J;Q~
S
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(t2) By Theorem 1 there exists an A,—avolding path joining v,

to v, in P Bince v, €Z and v, fZ this path must intersect

1 1
nP..(i). Thus, there exists a vertex w're' € xr..(i) c lz(;o) vhich dces not
contain 'Ad implying at least one Iﬁil {.0 for 1 -.2, ...., d-1. Bo
by (bl) either there exists ;2', € Bi(?o) such that Iwr2 n ;Z'I =k or
18,41 > 0.
- "

Asswme nov that |Uy1| 22 and let ¥}, 73 €T, .. Bince

on

o phn AT , ..,
¥ .and -V, both contaln Aj, Ay, and K wedave [v,n ¥, nv| =3

Furthermore 2', vieN ..(2) 1!2(; ), 80 by Theorem 4 there exists |
v, € Na(yo) such that either |v) n¥, | =k or |v mr"I -4,
Thus we conclude that either | =1 or there exists

€“2(V) and v eNa(v) such that Iv nv,,|.h

(b3) Suppose |Z| = k. Note that k > 1 because ;1 ¢ Z,
The vertices of Z have the form {Al’j‘l"" ,Rd] - (ﬂil, 1 € R, vhere
R 1s a subset of k d4ndices of (3, ... , d).

By the second axiom of abstract polytopes the suhset
(AA), .00k - [Ri,idl, (1eR Je (3 ...,d), J ¢ R) .1s contained
by two vertices of P". 'Thus every vertex of Z gives rise to d-2-k
distinct vertices in NPN(Z). Therefore INPn(ﬁ)l = k(d-2-k). Hence by
(a), (bl) and (12), either there exists va' € Nz(vo), ;ré € lz(\-ro) such

that |vy n V3| = bor

|Npu(Z)| = | Uyl +1 = k(a-2-k) .

The last expression implies that
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0<k<d2 ed |G| 2ab.

(bk) Finally let us essume that d>6 amd || 22 and

let v €W be distinct from v,. Tus (A,A K} €vi. By (b3)

elther there extsts v € K(v)) and ¥) ¢« ¥(7,) such that ‘[vin ¥)] =4

or |U,] >a-k>2 for a>6. Accordingly let V2 ;5 € ﬁd' Since

gl > " ' -! °n

both v,‘; and A contain. [Al,Ad,Kll ve have |v1 nva N 72| =3 vhich
by Theorem 4 implies either v, N va'l =4 or "2- n ;é'| = 4, vhich

completes the proof of the Lemma,

Theorem 7: 4 >6, k =2, k = 2 holds for Theorem 3, if there exist

R < = AV D =2,
vy vy € N(vo) and v, C N(vo) such that |vln "o v1| 2

Proof. Without loss of generality we can assume that

. . -
Vo = (A;i.,...,Ad}} Vl = [Al’.."Ad'l,Lll, Vl = [Al’ooo,Ad-z’Ad’Al};

Vl = {Al,Al,..,"Aa"l}; 0 = {Al'oco,Ad}o

We wish to show that if 4 > 6 then there exist v, € ng(vo)

ot - ! 'l =

and v, € Nf,(vo) such that |vy n¥j| = k. |

By Theorem 1 there exists an ﬂd— avolding path from v to ;1
in P'= F(vl N '-vl). This path intersects HP.(H) at, cay, A% In this
case vy, Vi, Vo, 1'/0, 31 satisfy the conditions of Theorem 6. Moreover,
|W| >2 since v),v; SV and d>6 so that by Theorem 6 there exist

1 o! bur ' 'l =

V3 € sz(vo). and V) ¢ Ng(vo) such that |v2 n v2| b,

a
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-~

Proof of Theorem 3 Part (iv) for 4 36; By Theorem 3 (111)
“'yie ‘can sgsume the existence of paths (vo,vl,ve) 3 (;0,;1) such that
-lvi nv JI ‘= 1+]. Without loss of generality we can assuse that

Vo= (Apeenshg)s vy = (Al;;:’.'ud_l,xll 5 V= (Ayeeeshy ook Ay} and
AN TYP S S IR SO B |

Let us define P', P", W, Z and 1'11 (4 =2,.0054) as in the
precediné.Le'mm' . Bince we assume that d > 6 we have, by the Lemma
5 - = .
that [Ty] >2. Let ¥, ¥) eT,.
- It |Z| >2 then (considering the two vertices in Z and v,)
(1v) holds by Theorem 7. If |Z| = 1, then, necessarily Vo) Vy have the

form:
Vo = Uphphyyecihy ) = Ryds 3 = (Apshgshysennidy ) = (Ry)

for some 1, J 13<1, J<d1 and 14 .

Thus by Theorem k4 either (iv) holds or every vertex of
W o= NP(vo) n F(vo n 91) (except vl) contains one aymbol out of |
Ry Ay end Ky But stnce 326, [W'| =d-1>5. Tus, at least two
vertices of W', say vj, v; are adjacent. But then |vjn v] NV | =2

ahd (iv) holds by Theorem 7.

a




21,

(1) 8 (2a+, a) < Ad(2d+k-1, a-1) + 1, k=0, 1

(11) 5,(2,8) < A (2dk, d-k) +k, k = 1, 2, 3, k.
Proof:
(1) follows from Theorem 3-(1), (11).

(11) follows from Theorem 3. _ D

_ Note that since every simple polytope satisfies the axioms of
an abstract polytope, Theorem 3 holds for simple polytopes snd Corollary 1
holds if one replaces 44(n,d) by &y(n,d) (the maximm diameter of

ordinary polytopes over all d-dimensional polytopes with n facets).

5. Maximum diemeters of sbstract polytopes and the Hirsch conjecture.

Hirsch conjecture. Corresponding to the Hirsch conjecture of polytopes,

Dantzig [4], 1s the conjecture for abstract polytopes that

Aa(n,d) < n-d (@21, n>a4) .

Theorem 8 below is the analog of the results of Klee and Walkup [1]
for abstract polytopes (except for Aa(n,j), n > 9) and is mainly based on

Theorem 3.




Theorem 8. The values of Ah(n,d) for d<2 and for n-d<5 are given
in the following table:

213|415

P "l212(3 |3 ...Aa"(n,z)-[n/al
3 AL
b “1"1"|4 |5
dZ5 ""_" n.5

Table 1: Values of Aa(n,d)

(The double quote mark indicates that each column is constant from the main
diagonal downwards.)

Proof: Ae was pointed out in Section 3, A.(n,d) > Ab(n,d). Thus
since Table 1 holds for %(n,d) (Klee and Walkup [1]), it is sufficient
to show that the values in Teble 1 are upper bounds for Aa(n,d). .

let Pe P(n,d).

(a) 24 > n: By Theorem 2-(iv) each column of Table 1 is constant from the
main diagonal downwards.

(b) d=2,n>k4; Since P isa 2-dimensional abstract polytope, ihe mumber
of vertices of P 1s equal to the number of its edges, therefore the graph

of P forms a simple cycle vith n vertices. Hence A‘(n,a) = [nf2].




(¢} m-a = 3: By (b) end Corollary 1, A(6,3) = 3.

“(d) n-4 = h:. _
(Al)n =T7: If vnv§§ for every pair of vertices v, v € P then

| v n v) is an (n',a')-abstract polytope vith n' <6 and a'<a,
Thus, by (b) and (c), 8(P) < 3.
sﬁppose now, that there exist v, ¥ €P such that vn v = §.
. Let UP - {v U V) =A then by Theorem 1 there exists an A avolding path -
* between v .and v. . This path intersects ¥ (v), say at Vo Bince
every vertex in’ ¥ (v) contains two symbols of UP - v, vV, 1is necessarily

adjacent to V. Hence 4(T7,3) < 3.

(.dé) n = 8: By (dl) and Corollary 1, Aa(S,h) < b,
(e) n-c =5:
" (el)n=8: If vavig for allv, ve P then P'=F(vn ¥) is

4'-dimensional face of P where d' <2 and |UP - {vn ;)l <7

thus by (a) and (b), 8(P) < 3.
i Suppose there exists v, v € P such that vnv =@, Let
UP = {Al,Az,As,Ah’As,A6,A7'A8}, vV = [Al’Az,AB] Bnd ; = [Au’As’A6}l

If 8(P) >4 then every vertex in N(v) end N(V) contains

elther A, or Ag (otherwise a vertex in N(v) (or in N(¥)) and
v (or v), both contein the same symbol which, by (11i) implies that
8(P) < 4).

Without loss of generality we can assume that



ok,

Kv) = “‘1"2’"’(” {A’IA):A-,.]) [52)13’*3” e

- and -either, - i
X(v) = (uhyAyA?)} .'(A,‘.AS,A_.,‘);_[AV%_,{AB))
o ,, S

B(¥) = ((Mhgh)s (Ashigls (Aghgig))e

. I:‘x.the'ﬁrl‘t case the graph of ¥( (A,,)) forms a simple cycle with
at most 7 vertices vhile in the second case it forms a simple cycle with
at most 6 vertices. (Since in the second case !((A6l) = |
((ApAssAg), (Ayshgirg), (Asshghg)) which implies that K((A,)) N F((Ag)) = 4.)
In both cases B(P) < k. Hence, Aa(B,B) < b,

(e2) n =9: By (el) and Corollary 1, A‘(Q,h) < 5.

(e3) n=10: If vAvg#g@ forall v, veP them KvNy) is an
(n',a')-abstract polytope vith n'< 9 and 4'< k. Therefore,

by (e2), 8(P) < 5. Buppose, now, that there exist v in P

o’ Yo

such that v, NV, = §. Without loss of gemerality ve can assume

that vy = (AjAp0A0R Ac), Vo = (A),A00A5A A ) Then by Thecrem 3-(1v)
B(P) = 5.

a
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