
 ■ ■ J:^^!^

Computer Science
ftaseaioh R3/iew !
1970-71

Sprinafltld, y«. 221 Jl

' ■ , ■

Security Clnssificalion

DOCUMENT CONTROL DATA -R&D
(Socrliy claitlfleallon ol Uli«, body ol «hslrccl im.l Indexing tmnolation mm-l be cnlerod when Ihr oveioll report Is eln**l(lpd}_

\: ORIGINATING ACTIVITY (Corpora,o''«ZoZo I *>• REBORT SECURITY CLASSIFICATION

Carnegie-Mellon University
Dept of Computer Science
Pittsburgh, Penn 15213

UNCLASSIFIED
■STtiROUP

3. REPORT TITLE

COMPUTER SCIENCE RESEARCH REVIEW 1970-71

4. DESCRIPTIVE NOTES (Typo ol roporl and Jnc/us/vo dales)

Scientific JLo-tsxiin.
5. AUTHORlSl (First name, middle initial, last numo)

T*.;i Moran

6. REPORT DATE

1970-71
5a. CONTRACT OR GRANT NO.

F44620-70-C-0107
b. PROJECT NO.

A0827-5

d.

61102F
681304

la. TOTAL NO. OF PAGES

67

7b. NO. OF REFS

0
9o. ORIGINATOR'S REPORT NUMOERtS)

96. OTHER REPORT NO(SI (Any oiliei nimibor« thai may be aaalQned
thin report)

AFQSR"TB-79-0 4fi2'
10. DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

11. SUPPLEMENTARY NOTES

TECH, OTHER

12. SPONSDRIMG MILITARY ACTIVITY ,. . „ . />T,,i
Air Force Office of Scientific Research (KM I
1400 Wilson Blvd
Arlington, Virginia 22209

U. ABSTRACT

This is the annual report published by the Dept of Computer Science, Carnegie-
Mellon University, Pittsburgh, Penn. The reporting period is from 1970-1971-.
The series of papers includes A brief primer on Resolution Proof Procedures by
Donald W. Loveland, Control Structures by David A. Fisher, Bliss: A Language for
Programming Systems by William A. Wulf and the Kernal Approach to Building Software
Systems by Allen Newell, Peter Freeman, Donald McCracken, and George Robertson. j

DD.FrJ473

/) ■■ ■ ",;:-; ■ -msmi mw'.srsxsmmsmsaxum'imn*.

im -TR-,r2-0462

Computer Science Research Review
1970-71

An Annual Report
published by the
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

m » m | \

Approved for public releaa«!
distribution unlimited.

Edited by Tom Moran

' «ffwW^^^wviwtMwtpMwnwuMHtrf« 0OTÄK«TST-a:>f.vi~r;w!«aS!3SSäai '

The work reported here was largely supported by the
Advanced Research Projects Agency
of the Office of the Senretary of Defer-je
(Contract number F-44620-70-C-0107)
and is monitored by the

Air Force Office of Scientific Research.
This work was also supported in part by the following:
the National Institute of Health (MH-077722-02),
the National Science Foundation (GP-7064), and
the Mellon family and the Richard King Mellon Foundation.

Pittsburgh, Pennsylvania
September, 1971

iT^maiiaimmmmmmmHimiJismsiemnKc, :r^»igSW^«y;^;i»»;M!ma!^8TO^

Contents

Annual Review Introduction
Allen Newell 5

A Brief Primer on Resolution Prool Procedures
Donald W. Loveland 7

Control Structures
David A. Fisher 21

Bliss: A Language for Programming Systems
William A. Wulf 27

The Kernel Approach to Building Software Systems
Allen Newell
Peter Freeman
Donald McCracken
George Robertson 39

Faculty 53

Departmental Staff 55

Graduate Students 55

Publications 59

Research Reports 62

Colloquia 03

Ph.D. Dissertations 65

S-WSssi SHs-jSKstaßfjaiüasffl > BaMasawiMMiuikMiwawiiwiM««»«»»»»^»«««««!««»«^^

Annual Review Introduction
This year's annual Review provides another

sample of research in computer science at Car-
negie-Mellon. Like our previous samples it is
both revealing and concealing. In terms of con-
tent this issue's emphasis on system building
systems (the paper by Bill Wulf and also by
Newell ef al.) is certainly revealing of a real
emphasis in the CMU environment—an emphasis
that David Fisher's paper on control structures
broadens a bit, but fundamentally reinforces.
Donald Loveland's paper suggests that our re-
search is broader than this, not only by repre-
senting a more mathematical concern, but also
by indicating a connection with artificial intelli-
gence. But this entire sample, taken all together,
still conceals the major growth in activity that has
occurred this last year in the design of computer
hardware systems and in the development of
speech recognition systems.

There are more basic ways in which this annual
Review is both revealing c:-d concealing. When
placed as the latest mamber of a sequence of
such Reviews, it reveals a continued and invariant
commitment to the development of a computer
science. It reveals, thus, an unchanging aspect
of this environment. But it thereby conceals that
we have just undergone our most major organiza-
tional change since we became a Department of
Computer Science in 1965. Alan Perils has left to
become the Higgins Professor of Computer Sci-
ence at Yale University. Much of the outside
world has identified computer science at CMU
with Alan Perils. Still, only those who have been
in this environment can appreciate how thorough-
ly it was saturated with his presence. We wish
him well at Yale. He claims to be finished with
department-heading and such like occupations.
We also wish him well in this resolve.

Joseph Traub has joined us as the new head
of the Department of Computer Science, having
previously been at the University of Washington
in Seattle and before that at Bell Laboratories.
His principle research interest is in numerical
mathematics, an area in which we have not pre-
viously laid much emphasis. We welcome him
and look forward to a continued strengthening

■ - A.N. and broadening of the research that has been
PrfiCßdinfif DäCffi hlflflk 18Aug71 illustrated by these annual Reviews.

A Brief Primer on Resolution
Proof Procedures

Donald W. Loveland

For mechanical theorem proving the decade of
the sixties has been dominated by the develop-
ment of complete proof procedures of first order
logic. Moreover, this approach has itself been
dominated by the off-shoots of one complete
procedure, resolution. A complete proof proced-
ure in first order logic is a mechanical procedure
which can always verify, given sufficient time
and resources, that a given first order theorem
is a theorem. Complete procedures cannot iden-
tify all non-theorems as such. This article con-
tains a summary of the resolution-based complete
procedures (here called resolution strategies).
Special strategies for handling the equality rela-
tion, though important, have been excluded here.

The primary purpose of an article written for
the Computer Science Research Review of CMU
is to portray active areas of faculty research.
Resolution-type proof procedures are of in-
terest to the authori'-'i and to Professor Peter
Andrewsi'-2! of the CMU Mathematics Department.
The author believes that the best way to present
the results of this interest is to present a general
picture into which the results fit.

A second purpose of this article is to fill a
present gap in the survey literature. Until now
there has been no article which a computer scien-
tist (including a student) with a one semester
logic background can read for a brief technical
survey of basic rosolution theory, although the
word "resolution" is in almost every computer
science student's vocabulary. This article is
structured to provide enough information (with-
out proof) to allow a person to design a reason-
able resolution theorem-prover with an awareness
of the several alternate approaches available
to him.

The article is split into sections with the intent
lhat some will be read more closely than others
depending on the reader's background and inter-
est. In particular, section 1 concerning the pre-
paration of a formula for input to a resolution
procedure can be omitted by anyone with some
exposure to the literature of this area. The work
at CMU (related to first order resolution theory)
is contained within section 5. The only references
to the people responsible for the ideas reported
here are in section 7.

Almost all of the papers so far published con-
taining results cited in this paper are referenced
in Meltzer's paper.10 To a lesser extent the
references appear also in the Anderson and
Bledsoe paper.8 Also listed are J. A. Robinson's
basic paper on resolution," two papers of inter-
est not referenced in Meltzer's paper,7'' a basic
logic text" where the logical concepts needed
tor this paper can be found, and the relevant
papers written at CMU.1' For further study, the
Robinson paper followed by the Anderson and
Bledsoe paper is appropriate for those interested
in the completeness aspects of these proof pro-
cedures, while the Meltzer paper is more appro-
priate for those less inclined in this direction.

1. Preparing a Formal Expression

The sentence to be tested for theoremhood is
written in the (first order) predicate calcu'us.
Preparation consists of two parts: formation of a
first order sentence, or closed formula, which
expresses the intuitively conceived theorem and
then conversion of the sentence to proper input
form. Often the first part is partially completed
by drawing on standard knowledge of the field
in question. This part can be quite difficult to
execute successfully for many reasons. The sec-
ond part is a straightforward algorithmic pro-
cedure. A brief discussior. will be given of the
nature of the formation of a first order sentence,
chiefly by example, followed by a procedure fcr
preparation of a sentence for input to a resolu-
tion proof procedure.

A proposed theorem is often presented as a
set of hypotheses about an environment (call
such statements axioms) implying some desired
assertion. The chief difficulty in formulating such
a sentence (we assume hereafter all sentences,
or formulas, are assumed to be in first order
logic) is to describe sufficiently the predicates
introduced by axioms so as to disallow unin-
tended interpretations. This cannot be done in
general, as any student of logic knows, but in
sufficiently simple cases it can be accomplished.
It is usually the case, anyway, that a finite set of
axioms exist which sufficiently describes the en-
vironment with respect to the "crucial properties"
to allow a proof of any given "true" formula. How-
ever, thesp crucial properties are not usually
known in advance of the proof, so one usually
models cie's intuition and tests the results.

Consider first a quite simple-minded real world
example, the question if, in a particular environ-
ment, a monkey can get some bananas suspend-
ed from a ceiling of a room. Although the result-
ing theorem is trivial for most theorem provers,
the process of formation of the statement may be
instructive. Figure 1 lists the chosen constants
and predicates (with their intended interpreta-
tion) plus the axioms in the final input form. The
input form is developed later in this section. How
might a set of formulas which generate the
ax.icms of Figure 1 be nhosen?

Figure 1.
Monkey-banana problem.

Constants:
M = monkey
B = bananas
C = chair
F - floor

Predicates:
reach(x,y)

get(x,y)
andex(x)
close(x,y)

on(x,y)
under(x,y)

tall(x)
inroom(x)

= x can reach y
= x can get y
= x is a dexterous animal
= x is close to y
= x is on y (x can get on y)
= x is under y
= x is tall (x is high)
= x is in the (given) room

move(x,y,z) = x can move y near z
climb(x,y) = x can chmb y

Axioms:
(i) ~ reach(x,y) gel(x,y)

(ii) — andex(x) ~ close(x,y) reach(x,y)
(Hi) ~ on(x,y) ~ under(y,B) ~ tail(y)

close(x,B)
(iv) ~ inroom(x) — inroom(y) ~ inroom(z)

~ tnove(x,y,z) c!ose(z,F) under(y,z)
(v) - climb(x,y) on(x,y)

(vi) andex(M)
(vii) iall(C)
(viii) inroom(M)

(ix) inroom(B)
(x) inroom(C)

(xi) move(M,C,B)
(xii) - - close(B,F)
(xiii) climb(M,C)

Assertion: get (M,B)

v^täimKsx^siisBKFSfmtiStisE&isem

The assertion to be tested is whether or not
the monkey gets the bananas. Suppose the set-
ting is a room with the bananas suspended in a
corner away from both the monkey and a light
chair. The monkey en the chair would be tall
enough to get to the bananas. The goal is
"get(M,3)" which is named as the assertion.
Suppose the word "reach" means physical prox-
imity plus outstretched arm in the proper direc-
tion. Then a natural choice of axiom is:

(1) reach(x,y) D get(x1y)
That is, for all x.y, if x reaches for y, x gets y.
Note ihe implicit universal quantification of x and
y; this is traditional and adopted here. The predi-
cate "reach" has additional strong connotations
which must be sufficiently described by one or
more further axioms:

(2) [andex(x)&close(x,y)] D reachfr.y)
This constrains the predicate "reach" but only by
introducing two unconstrained (or undefined)
predicates. It is reasonable simply to assert
"andex(Mr (see axiom vi). More axioms could
be provided concerning the predicate "andex"
to better specify the situation in hopes that this
would help establish tha assertion. We refrain
from doing so here to keep the example of mod-
est size. By hindsight it is known that such extra
axioms actually are not needed in this case. The
predicate "close" is constrained by the descrip-
tion (definition):

(3) [on(x,y) & under(y,B) & tall(y)] D close(x,B).
Continuing in this manner, "under" and "on" are
themselves constrained:

(4) [inroom(x) & inroom(y) & inroom(z) &
~close(z,F)] D [move(x1y)z) D under(y,z)];

(5) climb(x,y) D on (x,y).
These constraints establish the need for addition-
al predicates, but at this stage it is not unreason-
able to define them by specific identification of
object with property as was done with "andex".
Hence, add axioms (vi) through (xiii) of Figure 1.
As stated before, the assertion about the environ-
ment is

(6) get(M,B).

The candidate theorem is the universal closure
of the conjunction of formulas (1) through (6) and
axioms (vi) through (xiii). By conjunction is
meant connecting the formulas by &'s and by
universal closure is meant adding sufficient uni-
versal quanthiers around the outside of the total
formula to leave no free variables.

As an example of a mathematical system that
is described by a finite number of axioms, a nat-
ural candidate is group theory. Let P(x,y,z) be
interpreted as x • y = z. Then a group is a struc-
ture which satisfies the following axioms (recall
axioms are equivalent to their universal closure)^

(7) 3zP(x,y,z) closure
(8) [P(x,y,u) & P(y,z,v)] D [P(x,v,w) = P(u,z,w)]

associativity
(9) 3x[VyP(x,y,y)&Vy3zP(z,y,x)]

Left identity and
Left inverse

The statement (7=) & (8C) & (9=) D 3x[VyP(x,y,y) &
Vy3zP(y,z,x)], where, e.g., (7^) denotes the univer-
sal closeure of axiom (7), illustrates a reasonable
formula to test for theoremhood. The intended
interpretation is that right inverses exist for each
element of a group. The input form of a theorem
slightly stronger than this one will be given later.

Elementary number theory may be the most
important of all axiomatic mathematical theories,
but its natural axiomization involves an infinite
number of first order axioms. A large portion of
elementary number theory can be handled with-
in a finite, and indeed relatively small, number of
axioms, but in such formulations even the sim-
plest results of number theory seem beyond the
present procedures when reasonable time limits
are imposed. This is one of the reasons why a
different approach to theorem-proving may domi-
nate the next decade. However, this will not
automatically be the case. Heuristics superim-
posed on resolution strategies may outperform
even supposedly preferable systems, just as the
refinements to the internal combustion engine has
to date allowed it to dominate the steam engine
in practice.

L-. iv,-ytvwüiriW»as!!«fl5i*
'^~™a>i»™s^^im^mmm^mmmmmmmvaml

10

^^ra3MÄßS»S)Wff!B55!SHERH!JJHBg

Of course, formulas simply to be tested for
logical valid ty (or unsatlsfiability) are suitable
inputs also. For example, one might wish to
establish that the following formula is valid-

(10) Vx[A(x) D B(x)] D I3xA(x) D 3xB(x)].'
Here quantifiers take the smallest scope con-
sistent with the parenthesizing. This is also true
for negation symbols when used.

The proof procedures under discussion are
capable of indicating that certain formulas are
unsatisfiable. Therefore, the formulas actually
used for input to the resolution procedures are
chosen so that unsatlsfiability is the quality to
be ascertained. Thus, a formula to be tested for
validity is negated to yield a formula to be tested
for unsatlsfiability, the second formula being un-
satisfiable if and only if the original formula is
valid.

Steps 0 through 7 below describe how to con-
vert a closed formula to an appropriate input
form. The input formula is said to be in Skolem
functional form when it is in the format obtained
at the end of step 7.

Assume the formula presented for testing is
closed. If the formula has free variables, and the
test is for validity, add to the left of the formula
a universal quantifier of each free variable. The
order of attachment is unimportant. For ex-
ample, the formula A(x) D A(y) should be re-
placed by VxVy(A(x) D A(y)). If the test is for un-
satlsfiability, add existential quantifiers in like
manner.

Step 0. Obtain unsatisfiable formula. If the given
formula is to be tested for validity, negate the
formula. If the test is for unsatlsfiability, do not
negate.

Example: Test equation MO) for validity. Thus
negate (10) giving:

(11) ~ (Vx[A(x) D B(x)] D [3xA(x) D 3xB(x)]]

Step 1. Eliminate and D. Change each occur-
rence of R S to (~ R V S) & (~ s V R).
Change each occurrence of R D S to ~ R V S

Applying this step to (11) gives:
(12) ~[~Vx[~A(x)VB(x)]V[~3xA(x)V

3xB(x)]].

Step 2. Rename variables. Change names of
bound variable occurrences when necessary so
that each variable appears in one quantifier. Any
change of name, of course, must be uniform
throughout the scope of a quantifier. The re-
naming of variables is necessary to make the
transformations of step 3 acceptable.

Example (cont'd): From (12):
(13) ~ [~ Vx[~A(x) V B(x)] V [~3yA(y) V

3zB(z)]].

Step 3. Place in prenex normal form. Replace
the formula obtained after step 2 by another
having the quantifiers all moved to the left as far
as possible using only the following transforma-
tions (here A and B are arbitrary formulas and
x denotes an arbitrary variable):

(a) ~VxAto3x~A
~ 3xA to Vx ~ A ;

(b) VxAVB to Vx(AVB) , AVVxB to Vx(AVB)
3xAVB to 3x(AVB) , AV3xB to 3x(AVB) ;'

(c) As (b), with & everywhere replacing V.
Notice that Vx(3yAVB) can go to Vx3y(AVB) but
not to 3yVx(AVB), Thus quantifier order is im-
portant. However, 3yA V VzB can go to either
3yVz(A V B) or Vz3y(A V B). Within the range of
permissible moves, it is very desirable to bring
each existential quantifier to the left of as many
universal quantifiers as possible. The reason
will become evident later.

Example (cont'd.): From (13):
(14) 3yVzVx ~[~[~ A(x) V B(x)) V [~ A(y) V

B(2)]]

»^»^««M^MMäTO^^^^
'^msmmmmx'jsKmmamsmjimmsiwtmixvmi

11

Step 4. Eliminate 3. Replace all existentially
quantified variable occurrences by Skolem func-
tions. For each existentially quantified varaible
introduce an expression, called a (Skolem) func-
tion instance, consisting of a new function letter
and, as arguments, all variables which have uni-
versal quantifiers to the left of the pertient exis-
tential quantifier. A new constant, i.e., 0-ary
function, is associated with any existentially
quantified variable whose quantifier precedes all
universal quantifiers. After all appropriate func-
tion instances are formed, drop all quantifiers
and then for every variable occurrence which
has an associated function instance (i.e., any
variable previously existentially quantified) re-
place the variable by its associated function in-
stance. For example, 3xVy3zVwP(x,y,z,w) be-
comes P(a,y,f(y).w) whera P is a quantifier free
formula not containing the constant a or the
function symbol f.

Example (cont'd.): From (14):
(15) ~[^[^A(x) V B(x)] V [~A(a) V B(z)]],

where a is a constant.

Step 5. Place in conjunctive normal form. To de-
fine conjunctive normal form it is convenient to
introduce some useful terminology. An atomic
formula, or atom, is a predicate instance, i.e., a
predicate letter followed by its arguments, which
are terms. A literal is an atom or its negation. A
disjunctive clause, or simply clause, is a disjunc-
tion of literals. For example, ~ P(x) V Q(x,y) V ~
R(y) is a clause of three literals. A quantifier-free
formula (qff) is in conjunctive normal form (cnf)
if it is the conjunction of clauses. Thus P(x) &
~ Q(y) & (R(y) V ~ R(x) is in cnf. A qff is placed
m cnf by appropriate use of the following trans-
formations:

(a) ~ (AVB) to ~ A & ~ B, ~ (A & B) to
~ A V ~ B,

(b) A V (B & C) to (AVB) & (AVC),
(c) A to A.

Recall that V and & are commutative and asso-
ciative.

Example (cont'd.): A sequence of transforma-
tions takes (15) into a for-
mula (16) in cnf.

~ ~ [~A(x) V B(x)] & ~ [~A(a) V B(2)] by (a)
[~A(x) V B(x)] & ~ i~A(a) V B(z)] by (c)
[~A(x) V B(x)] & ~ ~A(a) & ~B(z) by (a)

(16) [~A(x) V B(x)] & A(a) & ~B(z) by (c)

Step 6. Simplify, if a formula from step 5 con-
tains a clause with both an atom and its negation
the clause may be eliminated. A second occur-
rence of a literal in a clause may also be elimi-
nated. If a clause C exists which contains all the
literals of another clause and perhaps more, then
clause C can be eliminated. (Stronger than this
last condition is the rule that any subsumed
clause can be eliminated, but it is desirable to
defer the definition of clause subsumption.) As
an example of simplification,

P(x) & [Q(x) V ~ P(y) V Q(x)] & [R(x) V ~ R(x)]
& [P(x) V Q(y)]

can be simplified to
P(x) & [Q(x) V ~ P(y)].

Example (cont'd.): step 6 introduces no chanqe
on (16).

Sfep 7. Reduce notation. We shift to a set nota-
tion from a formal language notation and take
advantage of the commutivity and associativity of
& and V. Each clause is treated as a set of
literals; the V symbol Is dropped. However, the
standard brace couplet { } denoting the boundary
of the membership list is omitted. Literals of
the same clause are simply listed adjacent to
one another with no separating symbol, it is
convenient to omit parentheses and commas from
atoms also, writing Rf(xy)xy for R(f(x,y),x,y), for
example. Thus, for instance, the clause R(g(x),y)
V Q(a,f(a,y)) is rewritten Rg(x)y Qaf(ay). The
formula itself is altered to read as a set of
clauses. The bracket delimiters are sometimes
used with clauses separated by commas. Often
formulas are presented by displaying one clause
per line with the clauses on successive lines and
the bracket delimiters omitted.

Example (cont'd.): (16) becomes:
(17) -AxBx
(18) Aa
(19) ~Bz

12

«t^nTWK^^^r^^Ä'^avAV^fj^,^

A formula presented as given at step 6 or step
7 is said to be in Skolem functional form The
manipulations of steps 1, 2, 3, and 5 do not alter
unsatisfiability because logical equivalences are
mvo ved The introduction of Skolem functions
at step 4 preserves only the property of having
no mode (unsatisfiability) or at least one model
The Skolem function can be regarded as the
verifying function for the existential quantifier
making the formula true (in an interpretation) if
and only if there exists an individual making it
rue. The individual would clearly depend on

those variables universally quantified within
whose scope the existential quantifier lies

A theorem within a first order theory with a
finite number of axioms is easily converted to
Skolem functional form as each axiom may be
converted individually. Then the resultant clauses
plus the negation of the theorem statement forms
the appropriate formula for input. Thus the list
of thirteen axioms and the negation of the asser-
tion in Figure 1 presents the monkey-banana
prob em in input form. The group axioms (7), (8)
and (9) m Skolem functional form are-

from (7)
from (8)
from (8)
from (9)
from (9)

(20) Pxyf(xy)
(21)~ Pxyu ~ Pyzv ~ Pxvw Puzw
(22) ~ Pxyu ~ Pyzv ~ Puzw Pxvw
(23) Peyy
(24) P9^e rromiM.

It suffices to add the Skolem functional form of
he negation of the assertion of a group theory

theorem (and perhaps special hypotheses as
axioms) to present a group theory problem As
an example consider

(25) ~ Pag(a)e
which arises from the negation of VxPxg(x)e
VxPxg(x)e asserts that the left inverse function g
(introduced as a Skolem function) is also a riqht
inverse function. a

Sometimes a more desirable conversion can
be obtained by introducing Skolem functions be-
fore obtaining a prenex normal form

2. The Basic Operation of Resolution

Resolution can be characterized as the cut
inference rule (or a generalized modus ponens
inference rule) of prepositional logic with an
appropriate substitution rule. Alternately one

^A/^PV6!0.'"110" is based on ,he tautology
AVC & (^ CVB) D AVB). Consider the prepo-

sitional part of resolution first. Two literals are
complementary if one difters from the other only
by possession of a negation sign. Px and ~ Px
are complementary literals. At the prepositional
level the resolution operation takes two parent

c
C'am

U^S A^ •• An and B.B, ... Bm shading a
commentary Pair of literals, the literals re-
solved upon, say B, .-. ^ A,, and yields the re-
solvent clause A2A3 . . . AnB2 .". . B (For formula _„»_.. < ' ""? • • • "m- \rui lormuia
nota ion see section 1, step 7). That is, the literal
resolved upon in each clause is deleted and the
remaining literals comprise the resolvent It is
always assumed that no two literals of a clause
are .denncal. Thus Bk, k > 2, is omitted from ex
phcit appearance if Bt = A, for some i > 2

Substitution is used to form a complementary
parr between two clauses when none exists ex-
plicitly. For example, PxRu and ~ Pf(y)Qu are
two clauses not qualified for resolution as given
above, but by replacing the x by f(y) clauses
Pf(y)Ru and ~ Pf(y)Qu can be re

y
soI^d t0 e

RuQz Note that the variable u in PxRu is not
.dent.f.ed with the u of ~ Pf(y)Qu. A, the b in.
nmg of the resolution operation variables are re-
named so no variable is named in both clauses
The subst.tutions are always made uniformly at

c"u?sCeCUrrenCeS 0f a Variab,e in any claüse' of

Let v/ = A.A, ... An and <B = B.B,.. . B reo-
resent two clauses, with A, and B, two literals
one from each clause. The resolvent of .J and «B

follows.8"601,0 Ai '^ Bk' ' " eXiS,S' iS found a«

13

(1) Check if A, and Bk have the same predicate
letter and precisely one has a negation
sign. Halt, if this is not the case, since no
resolvent clause with respect to A| and Bk
exists. Otherwise, proceed.

(2) Change variable names of "B as necessary
so that no variable name is shared by a4
and "B.

(3) Match JA,! and |B„|, the atoms of A, and Bk,
respectively by appropriate substitutions in
each literal (the matching procedure is out-
lined below). If the matching is unsuccess-
ful, no resolvent exists, so halt. Otherwise,
make the appropriate substitutions through
cA and "B so thatc//' and "B' are substitution
instances of c4 and 'B and A, and Bk are the
complementary literals determined by the
matching procedure.

(4) Form the resolvent by deleting A,' and Bk'
and putting the remaining literals of c/l' and
"B' minus redundancies in a single clause
(as demonstrated above).

The matching procedure between atoms [Ail
and |Bk| finds a substitution instance for each
atom to make them identical if such a substitu-
tion exists. The substitution obtained is in a suit-
able sense the most general substitution possible,
an important property for attaining complete proof
procedures. This can be performed as follows.
Let [A,] and Bk| share no variable names. The
atoms are considered written as on paper in the
notation adopted, all symbols in sequence.

(a) Set a pointed at the predicate letter of |A||
and a pointer at the predicate letter of |Bk|.

(b) Move the pointers in parallel to the right
one symbol at a time (including parenthe-
ses if present). Stop at the first place the
pointers point to different symbols. If the
end is (simultaneously) reached first, the
atoms match; exit. Otherwise, proceed
to (c).

(c) If one pointer points to a parenthesis, or
precisely one pointer has come to the end,
there is a notational error (this shouldn't
occur). If neither pointed points to a vari-
able, match attempt fails; exit. If one
pointer points to a function letter, search
the function's arguments for an occurrence
(at any depth) of the variable indicated by
the other pointer. If an occurrence exists,
match fails; exit. In all other cases, re-
place the variable v at one pointer by the
the term whose first symbol is indicated
by the other pointer. The replacement oc-
curs at all occurrences of v in both literals.
The two pointers now agree. Return to (b).

As an example, consider matching Pxf(y) and
Pg(ww)w. A match exists, the common atom is
P9(f(y)f(y))f(y), whereas Pxf(y) and Pyf(g(x)) do
not match. This latter example serves to empha-
size that the variable renaming that is part of the
resolution operation is not part of the matching
operation.

One other necessary notion is that of a factor
of a clause. A factor of clause c^ is a substitution
instance c//' of c// determined by finding a match
between two atoms of the clause that makes the
two corresponding literals of c// identical. Thus
QaPf(a)a is a factor of QxPf(x)xPya. Note that
here variables are not renamed to make each
literal have distinct variables as substitutions are
always uniform throughout clauses. Thus Pf(a)a
is not a factor of Pf(x)xPxa. A factor of a factor
of o// is defined to be a factor of rj. Clearly a
clause has only a finite number of factors. Ex-
ample 1 below shows factoring is necessary for
completeness. No refutation (see below) exists
without factoring.

14

The basic resolution procedure proceeds as
follows. Start with the set of given clauses as
the "present" set.

Form all possible resolvents of clauses of the
present set and their factors. If the empty
clause □ (the clause with not literals, the
resolvent of two one-literal parent clauses)
is formed, the given set represents an un-
satisfiable formula. Otherwise, delete all
tautologies (clauses with complementary lit-
erals). Define the remaining clauses as the
present set and return to the beginning of
this paragraph.

Each cycle of these instructions generates a new
level of resolvents. The level of a clause is de-
termined by the level of its first appearance. The
calculation of all resolvents and factors of a
given level at once is called a level saturation
search.

The need for factors is seen from applying the
resolution operation alone to the two member
unsatisfiable set S of clauses given by S =
{PuPv, ~ Px - Py}. Although clearly unsatisfi-
able (replace u,v,x,y by a) the resolvents are all
two literal clauses. However, a is derived in the
first cycle of the basic resolution procedure, thus
D "occurs at level 1". See Examp'a 1 below.

The justification for the correctness (sound-
ness) and sufficiency (completeness) of the above
procedure and those that follow come from the
theorem due to Herbrand: If S is a formula in
Skolem functional form then S is unsatisfiable if
and only if there exist clause substitution in-
stances C Cn such that C, & Cj & . . & Cn

is unsatisfiable.

Three examples follow of deductions of D, two
of which are from examples of section 1. A
resolution deduction of clause C is a sequence
of clauses, each a (substitution) instance of a
clause of the given set S, a factor of a preceding
clause, or a resolvent of two preceding clauses
of the deduction and with last clause C. A de-
duction of D is called a refutation.

Example 1: A refutation of {PuPv, ~ Px ~ Py}:
PuPv

~ Px ~ Py
Pu

~ Px
D

given
given
factor of 1
factor of 2
resolvent of 3,4

Example 2: A refutation of (11) of section 1 which
in Skolem functional form appears as
clauses (17), (18), (19):

1. -AxBx (17)
2. Aa (18)
3. ~P^ (19)
4. Ba resolvent of 1,2
5. D resolvent of 3,4

Examples: A refutation of the set
(20) — (25), section 1:

1. Pxyf(xy)
2. ~ Pxyu ~ Pyzv ~ PxvwPuzw
3. ~ Pxyu ~ Py^v ~ PuzwPxvw
4. Peyy
5. Pg(y)ye
6. ~ Pag(a)e
7. ~ Pxya ~ Pyg(a)v - Pxve
8. ~ Pg(v)ya ~ Pyg(a)v
9. ~ Pg(g(a))ea

10. ~ Pg(g(a))yu ~ Pyze ~ Puza
11. - Pg(g(a))ye ~ Pyae
12. ^Pg(Q(a))g(a)e
13. D

of clauses

(20)
(21)
(22)
(23)
(24)
(25)
resolvent of 6,2
resolvent of 7,5
resolvent of 8,4
resolvent of 9,3
resolvent of 10,4
resolvent of 11,5
resolvent of 12,5

The reader can quickly check that axioms (i)
through (xiii) together with the negation of the
assertion for the monkey-banana problem define
a set of clauses which yields a refutation.

15

3. The Unit Preference and Set-of-Support
Strategies

Perhaps the earliest strategy to be applied to
resolution Is the unit preference strategy. The
basic idea is simple: resolve with one-literal
(i.e., unit) clauses more often than called for by
the basic resolution procedure. One can indeed
demand that the only resolution operations al-
lowed will be when at least one clause is a unit
clause. This may prevent finding, even theoreti-
cally, some refutations (i.e., this is not a complete
process) but many sets of clauses can be shown
unsatisfiable in this way with a great gain in
search time over the basic procedure. Complete-
ness is regained if the process intermittently
forms the resolvents of various pairs of non-unit
clauses so that eventually each level of resolv-
ents is completed. Examples 1, 2, and 3 of the
preceding section are "unit" proofs, i.e., have no
resolvents of two non-unit clauses.

The set-of-support strategy sharply limits the
clauses obtained at the first level by the basic
resolution procedure. Let S denote the given set
of clauses (e.g., lines 1-6, example 3) and T be
any satisfiable subset of S (e.g., lines 1-5, ex-
ample 3). The set-of-si'oport strategy states that
two clauses of T are not to be resolved together.
A deduction under such constratint is said to "have
set-of-support S-T". Example 3 is a refutation
with sel-of-supporf S-T where S-T contains only
clause 6. The set-of-support strategy is complete.
It is often used in conjunction with the unit
preference strategy.

A very useful rule is the subsumption principle.
Discard any clause C if there exists a clause D
with a substitution instance D' such that every
literal of D' is a literal of C. For example, Px
subsumes PaQb so the latter should be discarded
in the presence of Px.

Another rule of some usefulness, the purity
rule, states that any clause may be discarded if
it contains a literal with no complement among
the substitution instances of the given set of
clauses. Both rules are applicable to the com-
bined unit preference, set-of-support strategy.

4. Partition Strategies

Let S be a given set of clauses. Let M be a
set of literals such that no two literals have sub-
stitution instances which are complementary. We
call M a setting. Thus {Px, ~ Rf(y)} is a setting
but {Px, ~ Pf(y)} is not. A setting is a partition
M, of S if every literal of (a clause of) S is identi-
cal to, or a complement of, a substitution instance
of a literal of Mv Examples of partitions of S are
(1) the set of all atoms of S and (2) the set of
negations of all atoms of S. A partition strategy
is a resolution procedure where one parent clause
of every resolution operation contains no literal
which is a substitution instance of a literal of M..
Such a clause is called false in M,. Example 3 of
section 2 is a refutation realizable within the
partition strategy where M, is the set of all atoms
of the given set S. Therefore, one parent clause
of each resolution operation contains only ne-
gated atoms in this example. Partition strategies
are complete for any choice of partition. Unit
preference can be combined with partition strate-
gies, often to advantage, with completeness main-
tained. A set-of-support strategy generally does
not combine with a partition strategy to maintain
completeness. However, a partition strategy can
be regarded as a generalized set-of-support itself.

16

Ordering strategies can be superimposed on a
partition strategy. This is highly effective in some
cases and preserves completeness. For example,
if the set S contains many predicate letters (such
as occurs in information retrieval systems), assign
an order to the predicate letters. Order all clauses
that are false in Ms by ordering on predicate
letters with the symbol < (less than), also read
"to the left of;" in every other clause form the
maximal length subclause false in Ms ordered by
the predicate letter ordering. Place any remain-
ing literals of the clause after (to the right of)
the ordered subclause; these literals may be
placed in any desired order among themselves,
if any clause false in Ms has several literals each
of which could be rightmost, the clause is listed
once for each of these "equal" literals with
that literal occurring farthest right. A resolution
operation is performed only if the rightmost literal
of each clause is the literal resolved upon (also,
of course, only if one parent is false in MJ. The
resolvent is ordered as above. An example of a
refutation realizable within this combined strategy
is given below.

Example 4: The given set S of clauses is listed
in lines 1, 3-6. Ms is the set of all
negations of atoms of S. Note that
line 2 gives the same clause as line 1
(clause 1 is false in MJ. The ordering
of predicate letters is A < B.

Aa Ab given clause
Ab Aa clause 1, alternate order
Ax Bx ~ Aa given clause
Ax ~ Aa ~ Bx given clause
Aa ~- Ax given clause

~ Aa ~ Ab given clause
Aa resolvent of 1,5
Ax Bx resolvent of 7,3
Ax ~ Aa resolvent of 8,4
Ax resolvent of 9,7

~ Aa resolvent of 10,6
D resolvent of 11,7

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

5. Linear Resolution Slrategies

The strategies considered in this section differ
essentially from the preceding strategies which
were oriented towards modifying, but not drasti-
cally altering, the level saturation search of basic
resolution. Linear resolution is depth oriented
with little interaction between clauses at a given
level. The definition is best given in terms of a
deduction (defined a? the end of section 2).

A linear (resolution) deduction "D of clause B„
is a resolution deduction B Bn where B,"
1 < i < k is a member, or a factor of a member'
of the given set S and Bkli, 1 < i < n-k, is either
a resolvent with B,,,,., as one parent clause, called
the near parent, or (BM is) a factor of B^,.,. If
Bk+| is a resolvent then thei far parent of BJ must
must be a Bm, or a factor of Bm, for some m<k+i.
The initial sequence B,,. ., Bt of 'D is called the
prefix of 'D. Although the definition of linear
deduction just given allows a far parent to be a
factor not explicitly appearing in the deduction,
it can be shown that completeness is preserved
and little flexibility lost if such an implicit factor-
ing is disallowed. A linear refutation is a linear
deduction of D. Example 3 (section 2) is a linear
refutation and Example 2 would be if lines 1 and
3 were interchanged. It might be instructive for
the reader to find a linear refutation for the given
set of Example 1.

A more restrictive complete resolution strategy
is that of s-linear resolution (so-called because
the added restriction can be expressed in terms
of a subsumpfion condition). An s-linear refuta-
tion 1) is a linear refutation with the following
restriction: the far parent of a resolvent is either
chosen from the prefix of 'D or is chosen from
■D so that a certain modified resolvent is formed.
The modilied resolvent must be a factor of the
usual resolvent and also a substitution instance
of the near parent clause minus its literal re-
solved upon. For example, if the near parent
clause is AxByCz, then the clause Aa ~ Ob is an
acceptable far parent clause even if not in the
prefix of "D for then take AaBy, a factor of
resolvent AxByAa, as the modified resolvent. If
a modified resolvent exists, in general it can be
found by factoring the resolvent on the literals
that arise from the far parent, as done above.

SMWOMWBWMBWMMMBMaMI |

17

The process of finding modified resolvents is
more complex than finding standard resolvents,
but fewer far parents are now acceptable which
prunes the search space of deductions nt any
given depth of search. Example 5 below is an
s-linear refutation where lines 8 and 11 satisfy
the modified resolvent condition. (Line 8 is also
permitted because the far parent is in the prefix
of the deduction.)

A strategy called merging may be superim-
posied on s-linear refutation. A resolvent of two
clauses, neither a tautology, is called a merge
resolvent with merge literals L Lr, n > 1, if
and only if the substitution instances of the two
parents which form the resolvent propositionally
each have L Ln as literals. Thus AaBf(a) is
a merge resolvent of AaByAg(x) and AxBf(x) ~ Ay.
Note that the ordinary resolvent is AaByAxBf(x),
so here a further substitution is necessary to
produce a merge resolvent with merge literals
Aa and Bf(a). The merge condition is added to
s-linear resolution in the following way. If the
far parent is not a member of the prefix of T),
it must be a merge resolvent with a merge literal
as the literal resolved upon (in addition to the
s-linear resolution requirement).

As with the strategies of the preceding sec-
tions, tautologies need not be used. However,
there are some sets S for which there is a clause
C such that if C is the first near parent clause,
then there exists a refutation of S "from C" if
and only if tautologies are permitted. However,
a "set-of-support" condition holds. If S- {C} is
satisfiable and S is unsafisfiable, then there exists
a refutation from clause C in any of the strategies
considered in this section with no tautology
appearing.

There are further conditions which can be im-
posed on s-linear resolution. A deduction is
tight if and only if no clause subsumes (see sec-
tion 3 a later clause in the deduction. An s-linear
deduction is an ordered clause deJuction if all
clauses are ordered (say, left to right when writ-
ten) and every literal resolved on for near parent
clauses and every literal factored is the rightmost
literal of that clause. This last definition omits
some technicalities (and improvements) which do
not seriously alter the nature of the strategy. A
version of merging can be incorporated with
these strategies so that completeness is retained.

Example 3 gives a tight ordered clause deduc-
tion with line 6 as first near parent clause. The
prefix is lines 1-6. Notice all far parents are
members of the prefix. Such a refutation is called
an input refutation. One of the more interesting
results of resolution theory states that S has an
input refutation if and only if it has a unit clause
refutation. In general they are not the same re-
futation.

We give as Example 5 a tight ordered clause
refutation with the merging condition that is not
an input refutation.

Examples: The given set of clauses is that of
Example 4 and appears on lines 1-5.
Lines 1-5 needn't be considered or-
dered clauses as there is no order
condition on the far parent. Line 5
is considered ordered when viewed
as first near parent, however.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

AaAb
~ Aa Ax Bx
~ Bx Aa Ax
~ Ax Aa
~ Aa ~ Ab
~ AaBb
- AaAb
~ Aa

Ab
Aa
□

merge literal.

given
given
given
given
given
resolvent of 5,2
resolvent of 6,3
resolvent of 7,5
resolvent of 8,1
resolvent of 9,4
resolvent of 10,
line 8

18

The far parent condition of s-linear resolution
and the tightness conditions, though strong, are
expensive to check because in general several
matchings need be checked per candidate. This
costly multiple matching can be reduced to single
matching by altering the resolution format of a
tight ordered clause strategy in the following
manner. When performing a resolution operation
instead of deleting the rightmost literal of the
near parent clause, retain it as a distinguished
literal (we shall indicate such literals with bold-
face) and add the far parent minus the literal
resolved upon to the right as before. Any literal
identical to a near parent literal is not added. A
new optional operation (reduction) is added also.
If a distinguished literal can be made complemen-
tary to the rightmost literal in the clause, one
forms the (ordered) clause with the appropriate
substitution but with the rightmost literal deleted.
Finally, one always deletes distinguished literals
to the right of the rightmost ordinary literal as
soon as that condition occurs within any opera-
tion. Example 6 gives the same refutation as
Example 5 in the new notation.

Example 6:
1. AaAb
2. Ax Bx ~ Aa
3. Ax ~ Aa ~ Bx
4. Aa ~ Ax
5. ~ Aa ~ Ab
6. ~ Aa ~ Ab Bb
7. ~ Aa ~ Ab Bb Ab
8. ~Aa
9. ~ AaAb

10. ~ Aa Ab Aa
11. D

given
given
given
given
given
far parent, 2
far parent, 3
reduction
far parent, 1
far parent, 4

This strategy actually is a special type of model
elimination procedure developed independently
of resolution theory. There is more to that pro-
cedure than outlined here, including some tests
for rejection of bad deductions, use of "lemmas,"
etc. This can all be regarded as a refinement of
linear resolution.

6. Implementation

Some variation of each of the strategies men-
tioned here has been realized on the computer.
To the author's knowledge, no strategy of any of
the three categories (sections 3, 4, and 5) has
uniformly dominated the others. For example,
the s-linear resolution strategy (actually in model
elimination format) has given some dramatic re-
sults in search speed In cases where refutation
existed by chance near the beginning of its
search space (actually not too infrequent an
occurrence because of multiple proof paths) but
it can be equally unlucky and get "lost" in a
search of outwardly, the "same size." The modi-
fied level saturation types soem to be more uni-
form in their performance, not reaching either
extreme.

Completeness is not the final criterion of de-
sirability for implementation, it is useful to know
that when one piles the merging condii.on on
top of tightness, plus ordering, on top of s-linear-
ity on top of linearity that the result is a complete
procedure, for at first glance it might seem un-
likely to yield a single refutation. However, per-
formance is the final arbiter. With this mind,
programs exist that allow the superposition of
strategies from two or even all these categories
and some mixes have been quite beneficial for
some sample problems. Also, "classical" heur-
istic procedures can be superimposed. One can
envision a GPS-type difference analysis coupled
to a linear resolution strategy, for example.

Resolution procedures have proved simple
elementary (i.e., formal) group theory and ele-
mentary number theory problems (the latter when
appropriate lemmas were given in the axiom set).
Although these are real mathematical problems,
and beyond the theorem provers of a decade
ago, they are homework exercises for mathe-
matics majors. Resolution procedures occur in
some question-answerer (q-a) systems as the in-
ference device. Such systems apparently are
among the most competent q-a systems in exis-
tence. A system using resolution strategies has
verified recently published results on Boolean
algebras whose proofs were not totally trivial.

19

References

7. Credits

The intent in this section is not to name all
the people who have contributed to aspects of
resolution theory summarized above but to name
some who have their names associated with spe-
cific items highlighted here. J. A. Robinson
(about 1965) introduced basic resolution; also P,
deduction and Hyper-resolution, which were the
earliest and most basic partition strategies. Pra-
witz in 1960 outlined the notion of matching for
proof procedures. Wos, G. Robinson and Carson
introduced unit preference and set-of-support.
Slagle, Luckham, and Meltzer independently
worked with partition strategies. Slagle, and, in-
dependently, Kowalski and Hayes, superimposed
the order strategy on partition resolution. The
author and Luckham independently introduced
linear resolution. S-linear resolution and model
elimination are the author's. Merging is due to
Andrews. Chang discovered the relationship be-
tween unit and prefix resolutions. Anderson,
and independently Yates, Raphael, and Hart
linked merging and s-linear resolution.

CMU Papers
1. Andrews, P., "Resolution with merging," J.ACM 15

(July 1968), 367-381.
2. Andrews, P., "Resolution in type theory," CMU

report, 70-27.
3. Loveland, D., "A simplified format for model elimi-

nation," J.ACM 16 (July 1969), 349-363.
4. Loveland, D., "Theorem-provers combining model

elimination and resolution," Machine Intelligence 4,
(Ed. Meltzer and Michie) Edinburgh University
Press, Edinburgh (1969), 73-68.

5. Loveland, D., "A linear format for resolution," Lec-
ture Notes in Mathematics 125, Springer-Verlag
Berlin (1970), 147-162.

6. Loveland, D., "Some linear Herbrand proof proced-
ures: an analysis," CMU report (Computer Science),
December 1970.

General Papers
7. Allen, J. and Luckham, D., "An interactive theorem-

proving program," Machine Intelligence 5, (Ed.
Meltzer and Michie) American Elsevier Publishing
Co., New York '1970), 321-036.

8. Anderson, R. £ind Bledsoe, W. W., "A linear format
for resolution with merging and a new technique
for establishing completeness," J.ACM 17 (July
1970), 525-534.

9. Chang, C. L, "The unit proof and the input proof
in theorem-proving," to appear in J.ACM.

10. Meltzer, B., "Power amplification for automatic
theorem-provers," Machine Intelligence 5, Ibid.

11. Mendelson, E., Introduction to Mathematical Logic,
Van Nostrand, Princeton, 1964, 300 + pp. (see
chapters 1 and 2).

12. Robinson, J. A., "A machine-oriented logic based
on the resolution principle," J.ACM 12 (January
1965), 23-41.

0
MlMt j^±]Uto

Reproduced from
oesr available copy.

MHri m> m

***' .M»

m

^^^ (WR wß^&

«Mb «MW rtfrltf

tt^i'

t^A •w^7 dMw

.«<*

^»:.4 ■^« Mtfl

MK MM *tt* J*^ Wd» #■«

A^fa JlMu iMMi ^^^^W P^WPi »TF^^ MMi

21

Control Structures

David A. Fisher

Computer science is concerned with automata
which can perform various operations. These
operations differ from the usual functions of
mathematics in that there is a time interval asso-
ciated with each one. Consequently, the com-
puter scientist is concerned with algorithms, i.e.,
with sequences of operations which approximate
functions of logic in a finite time. Any single time
ordered sequence of operations performed in an
execution of an algorithm is called a control path.
Those operations which determine the control
path(s) to be followed through an algorithm are
called control operations. The control operations
of an algorithm together with the interpretation
rules for the non-control operations constitute
the control structure of the algorithm.

Despite the importance of control to computer
science, until recently1 little direct attention has
been given to it. What are the control struc-
tures of current programming languages? Are
there other useful control structures? How can
control be described formally? Can control struc-
tures be composed, say, in the manner of func-
tions? Can the use of control structures better
suited to a task simplify that task or expose the
significant problems of that task?

No attempt will be made to answer all of these
questions here. Instead, a set of primitive control
operations will be defined from which it is
claimed all others can be formed by composition.
A few specialized control structures will then be
defined by composition of these primitives.

A set of primitive control operations should be
large enough to span the space of control struc-
tures but small enough to be manageable. Care
must be exercised with the first requirement. It
might be concluded that sequential processing
and a conditional control, the only control struc-
tures of the Turing machine, are sufficient. There
are, however, useful and interesting properties of
control structures that cannot be described in
terms of just these two controls. If parallel pro-
cessing were described by its simulation using
sequential control primitives and by means of

some scheduling algorithm, then, though one
might come to understand parallel processing as
a particular interleaved execution of sequential
processes, the idea of concurrent execution
would not be conveyed. Concurrency is a con-
cept which cannot be composed purely from
sequential primitives.

Functional notation (e.g., f(X|,x2l.. .xn) where
0 ^ n and the x/s may themselves be functional
forms) will be used to describe the primitive con-
trol operations and their compositions. For a
non-control operation f, ffx,^,... xn) will be
given the following interpretation: evaluate each
of the x/s and apply the operation f to the result-
ing values. This, implies that each of the argu-
ments to a non-control operation must produce
a value.

For control operations the same notation will
be used, but each operation will have a unique
interpretation. For example, the control operation
"if(c,x,y)" might be defined as follows: (1) Evalu-
ate c (assumed to be a boolean expression). (2)
If the resulting value is true, then evaluate x and
take that resulting value as the value of //. (3)
Otherwise evaluate y and take that resulting value
as the value of //. In no case are both x and y
to be evaluated. Note that to describe if as above
the expressions for x and y rather than their
values are treated as arguments to If. Thus the
control operations are those operations which
have expressions as their arguments. In the
definitions below, those formal parameter names
which refer to expressions are in boldface.

The controls to be proposed are primitive in
the sense that each encompasses only a single
idea. This contrasts with many of the specalized
controls (e.g., for statements of Algol-60) of cur-
rent languages. This makes it possible to pro-
vide accurate descriptions of the other control
structures and to guarantee that composition
will be meaningful, (e.g., with for, composition is
restricted to strict imbedding). The proposed
control operations follow.

22

The Primitive Operations

seq(X|,x2l... xn) Sequential processing.
The sequsnlial processing operation seq causes

its arguments to be evaluated in the order given
from left to right in such a way that the evaluation
of an argument will not beoin until the evaluation
of all arguments to its left are complete. Only
that value produced by the evaluation of x„ will
be taken as the value of seq. This means that
the purpose of the evaluations of X|,x2,... xn.|
must have been side effects (i.e., changes they
impose on the environment). Evaluation for side
effects only is usually called execution, although
we will use the terms interchangeably.

par(xl)x2,... xr) Parallel processing.
The parallel processing control operation par

causes its arguments to be evaluated indepen-
dently (i.e., in parallel) as if each had its own
processor. No assumptions are made about the
relative speeds of these processors, so there
are no guarantees concerning the chronogolical
order of their side effects. These effects can,
however, be controlled by the synchronization
of the parallel control paths as described below.
The establishment of parallel paths has no spe-
cial effect on the environmental data structure
of a program. In particular, copies of the en-
vironment are not made for eaoh path, so that
they must share the same global variables and
define their own local variables. The value of x„
is taken as the value of par but is returned only
after the execution of all the x/s is complete.

cond(cl,xl,c2,x2,...) Condition testing.
The conditional operation cond has an even

number of arcjuments. Beginning with the left-
most argument, every other argument will be
evaluated in order from left to right until one
having value true is encountered. The argument
immediately to the right of this argument will
then be evaluated and the result taken as the
va)ue of cond. If none of the odd numbered
arguments evaluates to true, the value of the ex-
pression is undefined and none of the even num-
bered arguments is evaluated.

monitor(c,x) Monitoring.
The monitor operation monitor causes the ex-

pression c to be continuously evaluated until its
value becomes (rue. The value of c can change only
when the value of at least one of the variables of
the expression c is changed as a side effect of a
parallel path. (In practice c might be reevaluated
only when any of its variables changes.) When
the value of c becomes true, the repetitive evalu-
ation of c will be terminated, the expression x
will be evaluated, and the resulting value taken
as the value of monitor. No assumption is made
about the relative speeds of the processors which
change the variables of c and the processor
which evaluates c. Thus, as in parallel process-
ing, synchronization is handled by a separate
control operation as described below.

 ■"■""^■"■^■■■■■l.l-LIIIPIH.aiWWM'M^^

23

synch(d,x,y) Synchronizing.
The operation sync/7 provides a number of

equivalent functions: synchronization of parallel
or interleaved processes, mutual exclusion,2

and indivisibility of operations. The argument d
must be a data structure. The argument x is an
expression which will be evaluated only if no
other sync/? with d as its first argument is simul-
taneously evaluating its second argument. The
argument y is an expression which will be evalu-
ated whenever x cannot be evaluated. Thus, if
several synch operations are executed simulta-
neously on the same datum d then exactly one
will have its second argument evaluated (which
one is, however, undetermined). In no case does
the synch operation cause waiting as with moni-
tor.

The synch operation can be used for mutual
exclusion to guarantee that only one process at
a time executes a critical section of a program
or modifies a datum. Sync/? also provides for the
relative indivisibility of operations because, for
all synch operations on a given datum, the evalu-
ation of their second arguments cannot be simul-
taneous or interleaved (i.e., they are indivisible
with respect to that datum).

cont(x) Continuous processing.
One control path will be called continuous with

respect to another control path if and only if all
non-monitoring operations of the former path oc-
cur between two consecutive steps (i.e., state
changes) of the latter. The control operation
cont causes the evaluation of its argument to be
continuous with respect to all other control paths.
If two conf operations are executed simultaneous-
ly then the evaluation of both their arguments
would be continuous with respect to other paral-
lel control paths, but would be as normal con-
trol paths with respect to each other (e.g., synch
would be required for mutual exclusion). Be-
cause continuous and parallel processing opera-
tions can be embedded within each other to
arbitrary depth, many levels of relative continu-
ity can occur. These roughly approximate the
priority levels found in some operating systems.

return(v,p) Call and return.
The previous operations can be combined

using functional composition to define new con-
trol operations (e.g., f). Whenever such an oper-
ation is called (e.g., f(X|,x2,...)) then the actual
parameters, the Xi's, are associated with the cor-
responding formal parameter names and control
is passed to the expression defining f. The object
which describes the dynamic state of the evalu-
ation for a single activation of an operation will
be called a process. The calling operation is im-
plicit in the use of functional notation and need
not be symbolized separately.

In many cases control is to be returned to the
calling process after the expression defining the
operation has been evaluated. The control opera-
tion return(v,p) causes both control and value v
to be returned to the process p (usually the
caller).

self() and caller()
The operations self and caller although not

control operations will be useful in describing
other operations. The value of self is the process
in which it is executed. The value of caller is the
process which called the current process.

quole(x) and evat(y,e)
The quote operation is used to inhibit the eval-

uation of the expression x. Eval evaijates the
expression y in the context of environment (i.e.,
process e. Thus for any expression x:

x= eval (quote(x),self()).

■r'^3^^'^tMmmmt'smmi^imiimmmesammmmi^0!SSM

24

m

Examples of Control Structure Construction

Consider now some specific control structures
which can be built from the preceding primitives.
One commonly used control is the coroutine.1

A coroutine relation between two processes is
similar to the subroutine in that the initial call
builds a new process and passes control to that
process. The coroutine process, however, may
pass control back to its caller before reaching
its final return. Intermediate coroutine returns
can be defined as follows:

cocall(v,p) = return(v,p).
Here v is the value to be returned and p is the

coprocess (either caller or called). Notice the
symmetry which permits each of the coprocesses
to treat the other as if it were a subroutine (i.e.,
calling the process with the routine coca// and
receiving the return value via the return in the
expression defining coca//.

For the remaining examples additional mne-
monic notation will be used. Infix operators will
be used for noncontrol operations, "x" will be
"sed tor quote(x), ffx^Xj,...] will be used for
f("x,","x2",...), 'x will be used for return
(x,caller()), {c^x,; c2-»x2;...} will be used for
cond("cl","x,","c2","x2"- ■ • •), and xe will be used
to -eference the variable whose name is the value
of x in the context of the environment which is
the value of e.

Another useful control structure is iteration.
This might lake the form while(c,x,e) where the
expression x is repetitively evaluated as long as
the value of c is true and both c and x are to be
evaluated in the context of environment e. To be
more precise, while (c,x,e) first evaluates c in the
context of e. If the resulting value is true, then
first x is evaluated in the context of e and second
(i.e., after the evaluation of x is completed) the
while operation is repeated. If an evaluation of c
does not yield true then control is returned to the
calling process. Note the similarity between the
above English definition of while (the previous
three sentences) and the formal definition as a
composition of primitive control operations below:

while(c,x,e) =* (eval(c,e)-»seq[eval(x,e);
while(c,x,e)]}.

The while operation can be used to define more
specialized iterative control structures. The Al-
gol-60 form for l=A sfep B until C do S has sev-
eral interpretations [4]. A liberal interpretation of
the Algol report (5] would allow the expressions,
I, A, B,and C to be evaluated only once giving the
following definition

for(l,A,B.C,S) =* seq[|.caller() := A; whllefA-c*
. t sign(B) S 0",
Req[eval(S,caller()); l-caller() := A := A+B]",

self())].'
The notation lcaller() is used to indicate the

(unique) I in the environment of the caller existent
at the call.

A strict interpretation, however, would require
that all the arguments be evaluated for each iter-
ation (in fact that B be evaluated twice and the
address of I evaluated three times) as follows:

for(l,A,B,C,S) =* seq|eval(l,caller()).caller() :=
eval(A,caller());

while("eval(l,caller()).caller()
-eval(C,caller())xsign(eval(B,caller())) S 0",
•'seq(eval(S,caller()); eval(l,caller()).caller() :=

eval(l,callor()) ■ callerQ + eval(B,caller())",
self())].

The Algol condition // C then X else Y can be de-
fined as:

if(C,X,Y) =* (C->eval(X,caller());
true-»eval(Ytcaller())}.

25

A more unusual control structure is the side-
track control3 which can be used to describe
breadth first tree search algorithms (e.g., recog-
nizers for context-free grammars). The operation
sidetraek{A,y) causes the expressions x and y to
be evaluated in parallel. The expressions repre-
sent alternative branches of a binary search tree.
When a failure condition is encountered in one
of these branches the associated control path will
be terminated by execution of the operation fer-
minate{). If a branch is successful, control (and
possibly a value) will be returned to the caller of
sidetrack. Because both branches might be suc-
cessful (e.g., an ambiguous string in the case of
a parser), there may be several returns of control
to the same process. To prevent the resulting
conflict of states, all returns will be made using
the multiple parallel return operation mpr which
returns not to the specified process but tc a copy
of it. The operations sidetrack, and mpr are de-
fined below:

sidetrack(x,y,p) = par[mpr(x,p); mpr(y,p)]
mpr(x,p) = return(eval(x,p),copy(p))

A recognizer R for terminal strings of r where
r ::=: A|B r could be written as:

R(string) = sidetrack("{head(string) = 'A' -»
tail(sfring); true -»terminate()}",

"{head(string)= '8'-: R{tail(string)); true -»
terminate()}",self())

UnderstanJing of control is in its infancy. The
above has attempted to isolate and solidify some
of the concepts and indicate the potential for
formal means for defining control. Here the ap-
proach was to define control structures as com-
positions of a given set of primitive control oper-
ations. The choice of primitives was somewhat
arbitrary within the requirements for simplicity of
the individual primitives and that they span one's
intuitive understanding of the space of control
structures. Other choices could have been made
(in fact, a slightly modified set of primitives is
being implemented to satisfy an additional re-
quirement: run time efficiency on existing hard-
ware). Finally, a few examples have been givon
to illustrate some of fhe variety in control struc-
tures and to demonstrate control definition by
composition of the proposed primitives. Addi-
tional examples ore given in reference 3.

References

1. Conwav, M. E., "Design of a Separable Transition-
Dingiam Compiler," Comm. ACM 6 (July 1963) p
3Ü6-408.

2. Habermann, A. N., "On the Harmonious Cooperation
of Abstract Machines," Doctoral Dissertation, Tech-
nische Hogeschool. Eindhoven, The Netherlands,
October 1967.

3. Fisher, David A., "Control Structures for Program-
ming Languages," Doctoral Dissertation, Carnegie-
Mellon University, Pittsburgh, Pa., May 1970.

4. Knuth, Donald E., "The Remaining Trouble Spots in
ALGOL 60," Comm. ACM 10 (October 1967), p 611-
618.

5. Naur, P. (Ed.) "Revised Report on the Algorithmic
Language ALGOL-60," Comm. ACM 6 (January

■ ■ ■ ■

i it I Reproduced from Mm
«:~

| best available ' copy. W§
;—4. ^i» fli 4» 4» 1

■

«'
«&«» i) -fl» €» 4» J? .4» «

«• T-i 'd* m '-' -3 H1 <<fc i
T. m *■ m 4* 4» 1
x'm x » ** «Ü § i]
♦ .<» •I» «» «1 Oi II
4» «f> •«M «9 «■ a a
4» 4» m- "mm i
«*» & *B m *& - "
•» n 1! m m ..*> r^
*: «^ tl m m * ^—k

* If* « K '» -»«>
T-S a?:«!» T-W ü.« *; V-»

T-l rt< «3 ^ Mr m' .X U
t—' •:r. »it n* «i:«K LI>
X H «i *- fli M ir
Iti *i> «» ««§;-'
• » » » * « « i^

T"'' rf* *► • 1 .*• «i « IS
V-f C» «» m U «o * a i ^ ii
r-f * m & 1 iA> «i m v .-<
r-4 ^ m m i m mm i* 1 K

' T-, rt* m m li «. mm. 4» 1 X,
Y~i **♦ i m m it ••► •« « 1 i^

■

r-ä a: t '«*:** M •«• « « .«• 1 K :
TH X i H* » 1 <* «fli «. X
i i - -. :< m & \ 4» at «i w X

i ■-»■■' flBF rr* i <•!» M fli r-*
I *•■ *^ fe*- SB m m

.~t '+■■ m n* «1 m m
X m m H* 1 m m

-*• «* sa «- m m -^
* «w;^.*- 4H Mi ■^-'
•i- •«► #!• •*• fli «1 ^
I ■fr !^ ^. fli «i ü

-«• *»• #» m ID 4« « t^
4* «f* i X? 4fr !■ X
■* E» O/ *» Ä W

st a* ^ ao vm D
v m ** m «ö
*• * fli •

J * li fli fli
m ■ s ^fi». fli:

♦> . 1 m rj)
■** »T r l fli«» <

CD

«MWK««*caaBBSaiISGSUKHBaf^ffKi>TO'Jff8H)B

27

Bliss:
A Language for Programming Systems

William A. Wulf

The development of sophisticated programming
systems, notably programming languages and
operating systems, has largely been responsible
for the increasingly wide application of com-
puters. The primary objective of these systems
is to permit the solution of a problem to be stated
more concisely, and in terms more natural to
the problem, than is possible with the numeric
instruction encoding interpreted by computer
hardware. This paper deals wilh a programming
system, specifically a programming language,
which is designed primarily for writing other pro-
gramming systems.

It is curious, but true, that although great
strides have been made in creating programming
systems to support the programming activities of
application areas, systems programmers them-
selves have been the beneficiary of almost none
of this progress. In particular, the vast majority
of programming systems continue to be written
in assembly language—scarcely one step re-
moved from the hardware numeric encodings.
Why? Why haven't systems programmers chosen
to write their systems using existing programming
systems, particularly a programming language,
and why hasn't their management insisted upon
it? The advantage of using a so-called "higher-
level" language are well known and thoroughly
documented: programmers are most productive,
programs contain fewer errors and are more
easily repaired, programs are more easily under-
stood and modified, etc.

Part of the reason why systems programmers
continue to use archaic tools is simply inertia—
it's always been done that way. A more signifi-
cant reason, however, is the feeling on the part
of practicing systems programmers that existing
programming languages are not appropriate for
the kind of work that they do. In this context the
question of why systems programmers don't use
a higher-level language becomes: "What about
systems programming is different from other pro-
gramming tasks, and how should these differ-
ences manifest themselves in a programming
language specifically designed for this applica-
tion?"

In many ways systems programming is like
other programming applications. Thus, for ex-
ample, algorithms used in the construction of
assemblers, compilers, interpreters, operating
systems, etc., are certainly different from those
which control missile trajectories, simulate the
behavior of a nuclear reactor core, or produce a
corporate payroll. But many of the issues which
arise in the implementation of these algorithms
are similar. Issues such as the order in which
numeric computations are performed in order to
maintain accuracy are as important in a com-
piler's number conversion routines as in reactor
simulations; proper overlapping of input-output
with Komputation is critical to systems programs
as well as to payroll programs; etc. There are
differences in emphasis between these applica-
tions, however, vfrhich give rise to differences in
language features. Some of the more important
differences for systems programs are:

— efficiency
— access to all hardware features
— minimal run-time support
— evolution of the resultant system.

28

Ideally all programs would be maximally effi-
cient—rapid in execution and conservative in their
use of storage. In. many applications, however
economy in programming effort and conciseness
m expression are traded for execution speed and
use of storage. No programmer deliberately
writes a program to be slow or wasteful of stor-
age; however, due to the high frequency of the
use of systems programs the emphasis on effi-
ciency is generally greater than in other applica-
tions.

Most programming systems hide from their
user, for his own protection and convenience
idiosyncracies of particular hardware machines'
To the system programmer, however, these idio-
syncracies are an integral part of the problem
and must not be hidden.

Many features of modern programming sys-
tems are not available directly in the hardware
on which they run. Instead, these features are
implemented with software "run-time support"
programs—of whose existence the user need
not be consciously aware. A simple example is
the trigonometric "sine" function in most scien-
tific programming languages. Few computers
have this function in hardware—rather it is eval-
uated by a subprogram automatically included
m the user's program by the programming system
without any overt action on the user's part. The
systems programmer, whose task if is to create
such support, cannot in turn require it. The sys-
tems programmer must be able to create and
exploit his own support, thus "bootstrapping" to
increasingly sophisticated systems.

A final observation on programming systems
is, perhaps, the most important of all. Program-
ming systems are never finished but are in a
constant state of evolution. New features are
constantly added and old errors repaired The
more heavily a system is used, the more rapid the
rate of evolution and repair. This situation seems
inevitable so long as new application areas, all
with slightly differing requirements, continue to
emerge.

A central problem of devising a language for
systems programming would appear to be that of
providing mechanisms for enabling the program-
mer to cope with this evolution (of programs
written in the language) while satisfying the other
three criteria mentioned earlier: efficiency, ac-
cess to the hardware, and minimal run-time
support.

The present state in programming systems rel-
ative to coping with evolution is summed up in
the programming jargon word: "kludge".

"I just had a neat idea for a new feature
Now, the system wasn't meant 10 do this
but ... in contort this a little, and rebuild
that, and since no one uses thesp bits
Gee, I think it'll work."

That's a kludge with a small "k". Now, repeat
the process fifty, or a hundred, or a thousand
times by many different people at computer in-
stallations scattered across the country and the
system becomes a Kludge. Unfortunately almost
all existing systems are Kiudrjes. The propertv
of systems which results in their evolution toward
Kludges, and which a systems programming lan-
guage must correct, is the ease in making trivial
changes and the difficulty in making fundamental
changes to systems. The consequences of this
property is the introduction of peripheral modifi-
cations which subvert and distort the original
structure of the system and lead ultimately to
inefficient, "dirty" systems.

The remai Jer of this paper is devoted to the
description of a language. Bliss, which is de-
signed to satisfy the goals set out above for a
systems programming language.

HV*! HBHnnmnBWBaxnB
■'■xaeuinssssussxamaemamS"'.

29

The Representation of Data Structures:
A Thesis

The surface structure of the Buss programming
language is a logical, but not especially innova-
tive, evolution from the Algol-60 family of lan-
guages. There is a central aspect of the language,
however, which distinguishes it from other mem-
bers of this family, that of the representation of
data structures. That role of representation fol-
lows from the thesis that: "The central issue in
systems programming is that of the representa-
tion of data structures. This issue is the key to
both efficiency and to the rational evolution of
programming systems." Subsequent sections will
deal with the structure of the Bliss language and
in particular with the manifestation of the concern
with representation expressed by the thesis. In
this section we are concerned only with the
meaning and implications of the thesis.

All programming deals with structured infor-
mation—that is, with atomic information items
which not only have a value, but also bear some
relation to other atomic information items. These
relationships are expressed in programming lan-
guages by "data structures" (such as arrays,
lists, queues, stacks, etc.) which are used to
model the real relations wh'ch exist between
data items. Most programming languages con-
tain a fixed et of such data structures; namely,
those deemed appropriate to an application area
by the designers of the language. Scientific lan-
guages such as Algol and Fortran, for example,
contain only arrays (as models of the mathemati-
cal vector and matrix structures) while string
processing languages such as SNOBOL contain
sequences of characters as intrinsic structures.
These data structures are, in turn, represented,
or modeled, by the implementor of the program-
ming system in terms of the explicit data struc-
tures of a hardware computer.

So long as the data structures required by an
application area are small in number and fairly
uniform over the area, as is largely the case in
scientific applications, this situation is accept-
able. In systems programming, however, this is
decidedly not the case. All of the structures
mentioned above are used, as well as many
others that have no generic name. Furthermore,
in the interest of efficiency, many different repre-
sentations of the same logical structure are used.
To achieve reasonable efficiency it is imperative
that a language to be used for systems program-
ming permit the definition of the representations
to be used.

When a programming system is initially built,
the conscientious systems programmer devises
representations to maximize the efficiency of his
system. As new features are added to a system
and it evolves, the original representations may
no longer be the most appropriate. To the extent
to which new, more natural representations can-
not be provided, the original representations will
be modified, thus circumventing the reorganiza-
tion that evolution requires, ergo a kludge.

In order to achieve the criteria outlined above,
two principles were followed in the design of the
data structure facility of Bliss:

— The user must be able to specify the ac-
cessing algorithm for elements of a struc-
ture (which is equivalent to specifying the
representation) at as low a level as he
deems necessary.

— The structure definition and the algorithms
which operate on the elements of a struc-
ture must be separated in such a way that
either can be modified without affecting
the other.

30

lanLl«8!0'"3^ '!? conventional programming
languages to include a number of implicit data
structures (such as arrays, lists, strings Id so
forth) as an integral part of the language The
-mplementor of these languages choos'es a repre!
sentatlon for these structures and the languages

eTy d^enr^0' ^ them- ^ takes a" ^ tire y different approach. The first of these orin-
c-ples reflects the need for flexibility and ef"
c-ency in systems programming. It also Slec
he c0nviction that the des of B|iss

0 re ^

syStemUn o
no0t~PrediCt WhiCh reP^entations a system prog.ammer will need. Any given set of

primmve structures, with or withouf the abilt to

be toi0 ienar
P,eX f,rUCtUreS fr0m ,hem- wo"S be to al y inappropriate. Instead, representations

of structures are defined in Bliss in terms of the
computational procedure (the algorithm) by which
elements of that structure are accessed Thus
no decisions are made a priori by the Bliss im-
plementation concerning the most aporopriaTe

trurPerseSeannda,i^, eVeni:he m0St elemen^ ^
ohoosin'one ^ haS maXima, f,eXibi,i^ in

The second principle reflects a concern for the
modmcafion of systems written in Bliss. So long

farSor^hrP|reSe^ati0n 01 StrUCtUres is seP^ated
1L a1?

or,,hms which operate on data con-
amed m those structures, and the representa-

tions are easily modifiable, it is possible for sys-
tems to evolve in an orderly fashion. Of course

K'. h"9 ^H'3 faCili,y d0es not guarantee that' WM be used mtelligently-but that is an educa-

stronrib,y mana9eria,•issue and "* a

Most existing languages satisfy one or the other of the a^e criterja but not y or t e

languages allow (indeed, demand) algorithmic
pecificat on of data structures since they have

no Implicit data structures other than those repre
sentabe m the hardware itself. The speciflcafion
of a structure in an assembly language program

;Sh
n??.e ,0CaliZed' h0wever- and '3 suaTy distributed to all places where an element of the

structure is accessed, thus making it difficult to
modify. Algol, Fortran, etc., on the other hand
localize the specification of a structure to the
Place where it is declared but do not allow its
representation to be defined by the programmer

Description of Bliss

Bliss may be characterized as an Algol deriva-
ivein the sense that it has a similar expression

to mat and operator hierarchy, a block structure
with lexically and dynamically local variables
similar conditional and interative consSons'
and (potentially) recursive procedures. The S
lanty stops shortly beyond this surface compari-
son, however. Bliss will be described in terms of
'IT3 °r aSp

f
ects: W the underlying storage con-

Jl L2lC°ntr01' and (3) data structures. A com-
thfR, r.

00 0f the lan9Ua9e maV ^ 'ound Tn the Bliss Reference Manual.'

1. Storage Names and Identifiers

In order to implement the objectives set out
previously concerning the representation of data
structures it is first necessary to adopt precise
and consistenf interpretations of the concepts o*
identifier", "name", and "value-. The distinction

between these concepts is at best fuzzy in most
programming languages. The distinction to be
made is that between an object, a name for the
object, and a name of the name, m English prose

I rt^r ,0 '^ ^^ the s™"e3t im ger larger than five, one writes:
6

The above mark serves as a name for that par-
..cular^nteger, but there are many othe^Xr

.. ., Six IKII vi 5+1
Now if one wishes to talk about one of these
spec, lc names of siXi one enc|oses .t jn thes

ar«nhl. H T aS ,he name 0f a P^icula s:c which'in ,urn'names a SP-

31

-

Bliss makes a similar distinction except that
the objects named are variables, i.e., their value
may change in time, and are represented by some
storage media in the computer. The name of a
variable, also called a pointer to the variable is
encoded as a bit pattern which itself may be
manipulated and in particular may be the value
of another named object. An identifier serves as
the name of a name of (pointer to) a variable.
To complete our analogy, then, a Bliss identifier
serves the role of the quoting device in English,
pointers correspond to simple names, and the
objects ultimately named are variables repre-
sented in storage. The weakness in this analogy
is that English provides few mechanisms for per-
forming operations on names while in Bliss names
are encoded as bit patterns and hence may be
operated upon by any operator in the language
(see below).

A Bliss program operates with and on a num-
ber of storage segments. A storage segment con-
sists of a fixed and finite number of words, each
of which is composed of a fixed and finite num-
ber of bits. A contiguous set of bits within a word
is called a field. A field may be named, the value
of a name is also called a pointer to the field. In
particular, an entire word is a field and may be
named.

In practice a segment generally contains either
program or data, and if the latter, it generally is
an integer number, a floating point number, char-
acters), or a pointer to other data. To a Bliss
program, however, a field merely contains a pat-
tern of bits on which the programmer may place
any interpretation he chooses. Various specific
operations are defined in Bliss and may be ap-
plied to fields and bit patterns, such as; fetching
a bit patterns (value) from a field, storing a bit
pattern iiMo a field, arithmetic, comparison, and
boolean operations on bit patterns, and so on.
These operations are roughly those provided by
the hardware. From these all other programmer-
defined operations must be built. The interpre-
tation placed upon a bit pattern and consequent
transformation performed by an operator is an
intrinsic property of the operator, and not of its
operands. In particular, names (pointers) are bit
patterns and as such are manipulable objects in
the language.

Segments and identifiers are introduced into a
Bliss program by declarations, called 'allocation
declarations'; for example:

global g;
own x,y[5], z;
/oca/p[100];

Each declaration introduces one or more seg-
ments and binds the identifiers mentioned to the
name of the first word of the associated segment.

The segments introduced by declarations con-
tain one or more words; the size of a segment
may be specified (as in "local p[100]") or de-
fauted to one (as in "global g;"). The identifiers
introduced by a declaration are lexically local to
the block in which the declaration is made (that
is, they obey the usual Algol scope rules) with
one exception—namely, global identifiers are
available to other, separately compiled programs.
Segments created by own and global declarations
are created only once and are preserved for the
duration of the execution of a program. Seg-
ments created by local declarations are created
at the time of block entry and are preserved only
for the duration of the execution of that block.
Reentry of a block before it is exited (by recursive
function calls, for example) behaves such that
local segments are dynamically local to each in-
carnation of the block.

32

It is important to reiterate that identifiers are
bound to names by declarations, and that a name
is a pointer (a particular interpretation on a bit
pattern). Thus, the value of an instance of an
identifier, say x, is a name of, or pointer to, x,
not the value of the field named by x. Moreover,
operators may be applied to names to yield new
names. This interpretation requires a "contents
of" or "value of" operator for which the symbol
"." has been chosen. The operator "." may be
applied to any expression—thus placing a "point-
er" interpretation on the bit pattern which results
from evaluating that expression. Thus the ve'ue
of the expression "X" is the name (a pointer) c!
a specific variable, X, ".X" is the bit patten
stored in X and ". .X" is the value of a variable
whose name is stored in X. If we denote the bit
pattern which, when interpreted as a pointer,
names X by X' and use boxes to represent storage
cells, then the situation described above is:

1

i

X (-X')

.X (r^V)

.X (^Z')

There are two additional declarations whose
effect is to bind identifiers to values (possibly
names), but which do not create segments; ex-
amples are:

external s;
bind y2 = y-j 2, pa = p + .a;

An external declaration binds one or more
identifiers to the names represented by the same
identifier declared global in another program.
The bind declaration binds one or more identi-
fiers to the value of an expression at block entry.
Potentially the value of this expression may not
be calculable until run-time, e.g., as in "pa=
p + .a" above.

2. Operations and Control

Bliss is an expression language; that is, every
executable construct, including those which man-
ifest control, is an expression and computes a
value. There are no statements in the sense of
Algol or PL/I. Expressions may be concatenated
with semicolons to form compound expressions,
where the value of a compound expression is
that of its last (rightmost) component expression.
Thus ";" may be thought of as a dyadic operator
whose value is simply that of its righthand
operand. A pair of symbols begin and end, or
left and right parentheses, may be used to em-
brace such a compound expression and convert
it into a simple expression. A block is merely a
special case of this construction which happens
to contain declarations; thus the value of a block
is defined to be the value of its constituent ex-
pression.

The assignment operation, "«-", is a dyadic
operator whose left operand is interpreted as a
pointer and whose right operand is an uninter-
preted bit pattern. The right operand is stored
into the field named by the left operand; the value
of the expression is that of its right operand.
Recalling the interpretation of identifiers and the
"." operator, the expression

x <- .x + 1
causes the value of the field named by x to be
incremented by one. The value of the entire as-
signment expression is that of the incremented
value.

There are five forms of explicit control expres-
sion: conditional, loop, case-select, function, and
escape.

The conditional expression
// £ , then £, else £,

is defined to have the value of the expression £v

just in the case that the rightmost bit of expres-
sion £ , is a 1; it has the value of d otherwise.
The abbreviated form "// £, then £/' is con-
sidered to be identical to "// d, then £ j else 0".

!Sffi»«sm««fS«ä«'i!33ä?äS!lSWiSJ

33

Whereas the conditional expression provides
two-way branching, the case* and select' ex-
pression provide more general n-way branching:

cases of set £0; £,;...; £„.,; £ntes
select e of nset £„:£,; £2: £,;...;

€2n: €2n+l ^SO
The value of a case expression is £•„; that is, the
expression e is evaluated and this value is used
as an index to select one of the expressions
Gi (0 < i < n), which then becomes the value

of the entire case expression.
The select expression is somewhat similar to

the case expression except that the expression
e is not used as a simple index, and hence not
restricted to the range 0 < e < n. Instead,
after e has been evaluated its value is succes-
sively compared with the first element of each
of the pairs e2i:C2i>l in the order of increasing
values of i. For each pair such that e = £7i the
the second element of the pair, £2Ul, is also
executed and the last of these to be executed
defines the value of the entire select expression.

Loop expressions imply repeated execution
(possibly zero limes) of an expression until a
specific condition is satisfied. There are several
forms, of which we shall mention three:

while £, do £
do £ while £,
incr < id > from £ i fo £:by £ 3 do £

'The symbol pairs sel-ies and nset-tesn are some-
what arbitrarily chosen bracketing devices which
delimit the set of choices in case and select expres-
sions.

In the first form the expression £ is repeated so
long as the rightmost bit of £, remains 1. The
second form is similar except that £ is evaluated
before £,, thus guaranteeing at least one execu-
tion of £. The last form is similar to the familiar
"step ... until" construct of Algol, except (1) the
control variable, <id>, is local to £, and (2)
£„£1 and gj are computed only once (before

entry to the loop). Except for the possibility of
an escape expression within £ (see below) the
value of a loop expression is uniformly taken
to be -1.

Invocation of functions (subroutines) is speci-
fied by the usual notation:

<E(€l.€2...€n)
This expression causes activation of the segment
named by £ passing the values £ £n as
parameters. The value of a function call is that
resulting from execution of the body of the named
function.

The familiar "goto... label" form of control
has not been included in Bliss. Unrestricted
goto's require considerable run-time support
(principally due to the possibility of jumping out
of functions and/or blocks). More importantly,
the use of the general goto, because of the
implied violation of program structure, is a major
villain in making programs difficult to understand,
modify and debug. The control mechanisms al-
ready mentioned provide most of the control
needed. In addition a highly structured form of
forward branch, the escape-expression, has been
included. There are eight forms of escape; one
for each control environment:

exitblock £ exitcase £
exitcompound £ exitselect £
exitloop £ exit £
exitset £ return £

Each escape expression causes control to exit
from a specified control environment (a block, a
loop, or a case expression, for example) and
defines a value {£) tor it (exit exits from any
control environment; return exits from a function).

Other control expressions are defined in the
language but will not be discussed here.

34

3. Data Structures

In order to satisfy the objectives sot out earlier
concerning the representation of data structures,
no implicit structures are included in Bliss. In-
stead, mechanisms are provided for defining rep-
resentations algorithmically (that is, specifying
the access method for elements of the structure),
for associating particular representations with
particular identifiers, and for invoking the access
algorithm associated with an identifier. The defi-
nition of a representation scheme is made by a
declaration of the form
structure <scid>[<formal parameter list>] = £
The <scid> in this declaration, called a struc-
ture class identifier, may then be used to asso-
ciate the accessing algorithm, denoted ^ above,
with specific identifiers by another declaration

map <scid> <idchuck>
(where an <idchuk> is a sequence of identifiers,
<id>'s, separated by colons) each of which is
to be associated with <scid>. Once the asso-
ciation between a variable identifier and a struc-
ture representation has been established, the
name-form "<id>[([i. 62 €n]" becomes val-
id, and denotes invocation of the access algorithm
defined in the associated structure declaration
(with an appropriate substitution of actual for
formal parameters). Thus the synlactic device
"<id>[C1, €?. • • • £n]" denotes a name (a point-
er) resulting from the evaluation of a user-de-
fined expression.

Consider the following example:
begin

structure array2[i,j] = (.array2+.l*10+.j);
ownx[100],y[100l,zI100];
map array2 x:y:z;

x[.a,.b]«-.y[.b,.a];

end;
In this example a very simple structure represen-
tation, array2, for two dimensional (10+10) arrays,
is introduced. The structure is to be represented
by storing rows, and row elements, in contiguous
memory locations; we declare three segments
with names "x", "y". and "z" bound to them; and
the structure class "array2" is associated with
these names. The syntactic forms "xl€i.€?]"
and "ylG, €.,]" are valid within this block and
denote names resulting from evaluation of the
accessing algorithm defined by the array2-sffüc-
ture declaration (with an appropriate substitution
of actual for formal parameters).

35

■■,■

r

For purposes of exposition (though it's not im-
plementeJ this way) one may think of the struc-
ure declaration as defining a function which

takes both the name of an instance of a structure
and its accessing parameters as arguments The
structure declaration in the previous example

sfruc/ure array2[i,j] = (.array2+.i*10+.i)- '
is conceptually identical to a function declaration

function array2(f0,fl)f2) = (.f0+.fl*10+ f2)-
The expression "x[.a,.br and "y[.b).a]" corre-
spond to calls on this function, i.e., to "arrav2
(x,.a,.b)" and "array2(y,.b,.a)".

Consider how the combined mechanisms of the
structure declaration, map declaration, and name
form "<id>[...]" achieve the objectives earlier
set for them.

First, the programmer has complete control
over the representational scheme for each of his
data structures. Since names are manipulable
objects in the language, any computation which
is possible in the machine can be used to pro-
duce a name, and hence can be used as the
access algorithm for elements of a structure
Specific properties of specific instances of a
data structure, the size of its elements, the usual
form of their access, etc., may be fully exploited

Second, the specification of a representation
and the algorithms which manipulate elements in
the structure have been separated. The syntactic
form "X[.i,3J" denotes the name of a specific
element of the structure called X, independent of
how that structure is represented; the represen-
tation of that structure may be changed by alter-
ing the structure declaration without changing
the algorithms which operate on elements of the
structure.

Efficiency

Although it has not been explicitly discussed
m the preceding material, a major aspect of the
Bliss effort has been to design the language in
such a way that it is possible for the Bliss com-
piler to produce highly efficient object programs
-comparable to those which a good program-
mer would write in assembly language. There
are two facets to this aspect of the language
design. First, the language had to provide nat-
ural mechanisms through which the user can gain
access to the underlying hardware. In a few
cases this means including specific language
constructs which utilize specific hardware, fea-
tures; in most cases, however, it means choosing
the overall structure of the language so as to
mesh neatly with the underlying hardware struc-
ture Second, the language had to be designed
such that its compiler could reasonably interpret
the programmer's intentions and produce "opti-
mal" code. This aspect of the Bliss design is its
most easily documentable success; examples of
numeric subroutines, for example, written in Bliss
generate one-half to one-third the code produced
by some of the most highly touted optimizinq
compilers (e.g., IBM/360 Fortran H)

36

Experiences Using Bliss

The Bliss language has been In active use for
approximately two years for a wide variety of
systems, including: the Bliss compiler itself, a
WATFOR-like fast Fortran compiler, an implemen-
tation of APL (a conversational programming sys-
tem), a SIMULA-like discrete event simulation
system, an i/o support system, an accounting
system, the kernel of a small operating system,
and many applications programs. Our experience
using the language over the past (wo years, and
in watching others use it on a variety of systems,
gives us some confidence that we can objectively
evaluate it as a tool for systems programming.
For example, along the dimension of programmer
productivity (measured in instructions/program-
mer/ day (i/p/d) of debugged code) we recently
obtained the following data on some projects
at CMU:

Project
Algol
Bliss
APL
TENFOR'
BLIOb

POOMASc

TECHd

Language
Assembly Lang.
Bliss
Bliss
Bliss
Bliss
Bliss
Bliss

Size
12k
31k
30k
12k

7k
7k
3k

Man-
months
SO
62
35

7
2
3

i/p/d
11
23
39
78

159
100

91

" tho WATFOR-like fast Fortran compiler
h the i/o support system
c the SIMULA-like simulation system
cl a chess-playing program

A generally accepted value for i/p/d is five for
systems written in assembly language; thus, we
see a productivity increase of 4 to 30 resulting
from the use of Bliss. So far as we are able to
determine the quality of these systems, measured
by code size and speed, are comparable to (say
withm 10%), or surpass those written in assembly
language. The quality of these systems when
measured by such criteria as readability and mod-
ifyability certainly exceeds that of systems writ-
ten in assembly language, but it is nearly im-
possible to assign quantitative values to these
measures.

Looking more closely at specific features of
the language which were considered "experi-
mental" at the time of the initial design, some
have been a resounding success, others have
failed in one way or another. For example, the
removal of the goto, the structure mechanism,
and the "match" between the logical Bliss ma-
chine and the physical computer on which it is
implemented, are counted as substantial suc-
cesses. One of our notable failures was in not
recognizing the need for incorporating Bliss into
a "total system" including a specialized editor,
debugging support, teaching aids, etc.

One outgrowth of the experience gained from
the use of Bliss merits special mention—the tim-
ing package. Systems such as those written in
Bliss are usually large, and quickly exceed the
implementor's ability to grasp the interaction be-
tween their various parts. Even though a lan-
guage such as Bliss facilitates the modification
of a system to improve its performance ("tuning"
it) it is seldom clear what parts of the system
need such attention. Human intuition about such
things is usually very poor. Therefore, a set of
Bliss routines has been developed which makes
dynamic measures of a system's performance
and displays information such as the space and
time devoted to various portions of the system,
the interaction of its various components, etc.
The design and further development of the timing
package and other similar support tools is cur-
rently one of the major research activities cen-
tered around Bliss.

,HS!!,,inäw»a'«ia«rawisKwsi^^

37

Conclusion

An attempt has been made to present a design
rationale and its manifestation in Bliss. One in-
terpretation of this rationale is an indirect defi-
nition of the systems programming problem area.
In the simplest case this manifests itself in a
break with the traditional interpretation of identi-
fiers in higher-level, languages, and in the conse-
quent demand on the programmer to be con-
sciously aware of the distinction between names
and values. The structure mechanism may be
interpreted as a statement of judgment as to the
extreme importance of the representation, modi-
fication, and allocation issues in systems pro-
gramming—and hence that these issues must be
explicitly within the programmer's attention and
control.

Acknowledgments

I am deeply indebted to Nico Haberman and
Don Russell who participated in the initial design
of the language, and to Chuck Geschke, Dave
Wile, Jerry Apperson, and Ron Brender who are
largely responsible for its implementation.

Reference

1. Wulf, W., et a/.. Bliss Reference Manual, Carnegie-
Mellon University, Computer Science Department,
January 1970.

i
wwwnwwmfjwMhi

39

The Kernel Approach to Building
Software Systems

Allen Newell
Peter Freeman
Donald McCracken
George Robertson

In this short essay we will discuss a possible
approach to building software systems. Our in-
terest in building systems is driven most directly
by involvement in the construction of artificial
intelligence systems. But building large systems
of programs is a fundamental activity throughcut
all of computing and has independent status as a
central problem in computer science. The formid-
able difficulties that have emerged in producing
third generation software systems well illustrate
the problem.

The scheme to be explored for creating soft-
ware systems is based on growth from a small
kernel of code and data. The approach responds
to somewhat different considerations than the
more widely used alternatives of macro-assem-
blers and higher level languages. A full treatment
would require laying out the existing approaches,
as currently understood, and providing a com-
parative analysis. The purpose of this paper,
however, will be served by a characterization of
what is involved in the kernel approach.

We have been experimenting on the PDP-10
for some time with a succession of kernel sys-
tems: L*(A), L*(B) We must emphasize that
the approach is highly experimental and that
substantial issues remain unresolved so that we
focus here on some of the implications of using
the kernel approach to system building. L*(F),
the version which has received the most polish-
ing and use,2 will serve as an example to make
our points concrete. Its specifications are sum-
marized briefly in the Appendix.

The idea of evolving a system from a small be-
ginning is not new. It supplies some of the fas-
cination that computer science has always had
with bootstrapping and recursion. A widespread
variant, for example, is getting compilers to com-
pile more efficient versions of themselves. The
concept of the growing machine, developed by
Carr and his students at Pennsylvania' has some
of the same spirit. Also Nievergelt has built a
minimal list processing system suitable as a basis
for more complex list processors.1- But probably
the most explicit kernel development is an ex-
perimental system called WISP, developed a few
years ago by Maurice Wilkes,5 which stressed
not only bootstrapping, but also starting with a
small initial system. WISP has had some prog-
eny' and possibly should be taken as the spirit-
ual ancestor of kernel software systems. But the
idea is so fundamentally attractive that undoubted-
ly other such systems have been created, not
oil of which have seen the light of publication.

.

40

The Basic Idea of a Software Kernel

A kernel software system is a small nucleus
(i.e., kernel) of code and data that grows to be-
come a larger, more complex system. The kernel
provides a base for an expanding range of sys-
tems, as shown in Figure 1. The arrows in the
figure represent evolution through time. The kernel
evolves into a system with system building capa-
bilities, which then evolves into a particular ap-
plication system (in our case, an artificial inte1'
gence program). We draw a tree to show h ,•-
each use of the kernel system to build a new
program follows a different linear line of evolu-
tion that branches off either earlier or later from
its sibling system. We have shown each system
as containing tile whole of the preceding system
from which it grew. However, nothing prevents
a final application system from being totally
separate from the system that produces it (as a
compiled program is distinct from its compiler)

We will finesse the question of the exact nature
of software systems and of system-building sys-
tems. As a definitional matter, we can take a
software system as a body of code and data that
has the capabilities of producing further pro-
grams; a system-building system thus being one
capable of producing further systems. By enu-
meration, software systems contain facilities for
creating, executing, debugging, filing, editing
and managing programs. Accurate characteriza-
tion of the nature of software systems is ulti-
mately critical to the design of system-building
systems, but is beyond the limits of this essay.

The two fundamental notions that define the
design philosophy of a kernel system are small
initial size and self-sufficiency for growth. Out
of these two must come whatever advantages
the approach has. Let us examine each in turn

Small initial size. Large systems must eventual-
ly be grown. Thus the advantages of small size
directly affect only the initial system. But small
size can insure that the kernel itself can be easily
constructed and completely debugged. It can
insure that the user can fully understand the
kernel and that radical modification is possible.

The advantages just enumerated stem not from
the size of the kernel in absolute terms, but
from size relative to the capabilities of human
programmers. The L*(F) kernel (see Appendix)
appears to be small enough to gain the advan-
tages. For instance, the first implementation,
L*(D), was constructed and debugged by one
man in about five months. Subsequent versions
such as L*(F), have taken on the order of half a
man-month, even though involving substantial
conceptual modifications implicating more than
50% of the code. The L-(F) kernel appears to be
virtually bug free after an additional man-month
of polishing.

The small initial size of the kernel is essentially
a commitment to simplicity as a design philoso-
phy. Size per se does not guarantee simplicity,
of course. It can be thrown away by introducing
complexity and baroqueness at any juncture
Thus, a requirement of simplicity must enter into
each design decision in the development of the
kernel and of the strategies for growth.

Figure 1.

Kernel Kernel System Building Systems Application Systems

■

42

In L*(F) the kernel has the simple structure of
an independent set of subroutines, each typically
5-15 instructions long. The maximum routine is
60 instructions, dictated by the need to deal
with the essentially arbitrary i/o interface of the
PDP-10 monitor. The depth of sub-routine nest-
ing, which indicates the interdependency in a set
of routines, is at most two in almost all cases.
Uniform naming and coding conventions can be
maintained throughout. Thus, the amount of in-
formation needed to comprehend any part of the
kernel is small.

The advantages given above of small size and
simplicity show up primarily in terms of ease of
understanding and modifiability (e.g., another one
is ease of producing complete and comprehensi-
ble documentation). These requirements are de-
sirable in any system, but they are absolutely
central to the kernel system approach. In many
design philosophies, one strives to construct an
interface with the user (consisting primarily of a
higher level programming language) that is suf-
ficiently smooth and self-contained that the user
need never be concerned with the underlying
structure that realizes the interface. Ease of un-
derstanding applies only to the face presented
to the user. With a kernel system, each ultimate
user system is potentially grown from the kernel
itself (though it may initially start off from some
advanced base). All aspects of the kernel must
be understandable to permit the user to grow
the system in ways appropriate to his own needs.

Self-sufticlency for growth. We can contrast a
system that is grown by means of mechanisms
internal to it with a system that is produced as a
passive object by some set of external tools. A
compiler is an example of an external system, as
is a text editor. A kernel system is an example
of a system capable of internal growth. A priori,
neither design philosophy is better; it is doubtful
that any such general approach can emerge as
preferred for all systems building tasks. How-
ever, the two philosophies lead in different
directions.

Growth means adding instructions and data,
debugging them, and providing for their execu-
tion and the use of their output. Growth in this
context must be extended to modification and
contraction of existing structure. Indeed, the
structures provided in early stages of growth
are almost always deficient in some respects,
e.g., efficiency, and require reshaping or replace-
ment later.

For growth to be internal requires that all
mechanisms to effect that growth must be in
the kernel. This requirement can be satisfied in
a highly indirect way, of course. The kernel may
not contain the tools necessary for a given task,
but only the tools necessary to construct these
fools. Bootstrapping as a design philosophy im-
plies the emergence of ultimate results through
an extensive cycle producing tools for tools for
tools.

It is doubtful whether an invariant set of initial
functions must be provided by a kernel. For one
thing, different machine environments will impose
different functional requirements. For another,
there may well be alternative bases. The set of
functions provided by the L*(F) kernel, operating
within the PDP-10 time-sharing monitor, serves
as an example. We state these functions in gen-
eral terms, though they are realized in specific
ways for L'(F), as indicated in parentheses:

43

(1) Creation of internal symbols to designate
data structures (addresses).

(2) Creation, manipulation and interpretation
of a class of arbitrary symbolic expres-
sions (lists).

(3) Input and output to a standard user in-
terface (teletype).

(4) Creation and modification of external
names to be in correspondence with inter-
nal symbols (name table).

(5) Reading and writing to secondary mem-
ory (disk files via monitor).

(6) Access to all of the entities in the kernel
(preassigned external names for all kernel
routines and data).

(7) Creation and recognition of arbitrary bit
patterns (operations to go from lists to
bits and bits to lists).

(8) Saving an existing instance of the system
and restarting a copy of it at a later date
(operators to evoke save and restart
mechanisms in monitor).

(9) Recovery from error and exploration of
the errorful instance of the system (con-
text swapping operation to establish a
viable operating context).

(10) Locus of control at the user interface
top-most level of control reads input from
teletype to be interpreted as program).

(11) Enough resources to avoid sudden death
and access to additional resources (initial
available space and operations to get
more from PDP-10 monitor).

This list of functions differs considerably from
that associated with a programming language,
such as Algol, for the emphasis is on being a
viable self-contained system. Thus, the ability
to save and restart the system and to survive
catastrophic error, functions normally associated
with operating systems, show up as critical initial
functions. The specification of locus of control
at the user interface (item 10) is to be especially
emphasized. This is essentially the direct mode
of execution existing in many conversational pro-
gramming languages (e.g., see the description of
LCC in the 1969 Annual Review). With this con-
trol the user plays the role of the executive
routine, executing operations singly and at will,
shaping the system as required.

Many things are missing from this list that must
ultimately be provided in any system-building
system and some of the functions in the list are
provided only in rudimentary form. For instance,
access to the secondary memory is essential
right at the beginning, but a rather elementary
capability suffices. (In L*(F) it is read and write
from a single fixed file.) Some of the missing
facilities that come immediately to mind are:

(1) Editing
(2) Tracing programs
(3) General communication to monitor
(4) General storage and retrieval of files
(5) Assembly of machine routines
(6) Modification of user interface
(7) Higher level language at user interface
(8) Creation of new data types with their

proper opeiations.
(9) Space management

(10) Error detection with diagnostics
All of these must be grown with the facilities

given initially in the kernel. This involves a boot-
strapping procedure in which elementary tools
are built and from these still other tools are de-
veloped. For instance in the bootstrapping se-
quence developed for L*(F), the first thing that is
done is to create ways of modifying the interpre-
tation given to the input stream, so that some
new notation can be introduced. Later in the
sequence the initially existing limitation on ex-
ternal names to five characters (which permitted
a simple name table) is lifted by replacing the
entire external naming system. This new system
is such that it permits the introduction, one by
one, of the various notations of a higher level
language at the user interface. These later nota-
tions supersede, of course, the original mecha-
nism for achieving various notations.

It might be thought that there is a single boot-
strapping sequence, but that is not the case.
For example, early on an editor and an inter-
preter for stepping through a program under
manual control are introduced. Both are very
much a matter of individual design, and alterna-
tive growths of the system could dictate sub-
stantially variant schemes. Thus, the branching
process indicated in Figure 1 occurs at many
places along the line of development.

44

Consequences of the Main Ideas

The two notions—small initial size (with the
more general commitment to simplicity) and self-
sufficiency for internal Qrowth—constitute the
central design philosophy of a kernel system.
But consequences for additional features of de-
sign philosophy flow from them. Some of these
need not be followed, for in growing a kernel
into a larger system it can be shaped ultimately
to quite divergent strategies. But these addi-
tional characteristics are consonant with the
basic philosophy and serve to exploit it.

Total accessibility. The point of growing a
large system from a small beginning is to permit
all aspects of the system to be shaped by the
ultimate needs. Any aspect of a pre-existing sys-
tem can become a limiting factor on the efficiency
or abilities of a final user system. It has always
been an important consideration in system-build-
ing systems that they have complete access to
the total facilities of the target machine. This at
least provides the potentiality of designing user
systems with maximum efficiency and capability.
The continued popularity of assemblers is due in
part to the transparent way in which they provide
complete access to the machine's facilities.

Total accessibility is a combination of require-
ments, some on ease of understanding of the sys-
tem, some on the available means for construct-
ing new systems. The emphasis earlier on small
initial size and simplicity indicates how a kernel
system deals with requirements on ease of under-
standing. We are concerned here with the means
for constructing new systems. One aspect is
access to the kernel itself. In L*(F) this is pro-
vided by having external names for all the rou-
tines and data structures in the kernel and by
having all of the kernel in the address space
(i.e., internal symbols to designate every cell in
the kernel).

The most important aspect of total accessibil-
ity is being able to make use of all of the ma-
chine's basic facilities. One course is to mirror
each feature of the underlying machine in the
operations of the kernel (in the manner of an
assembler). Give the complexity of current ma-
chines (e.g., many instruction types and hundreds
of individual instructions) this conflicts strongly
with the requirements of simplicity and small
initial size. Attempting to accomplish it in the
initial system anyway forces an impoverished
and minimal scheme. Assemblers show just such
impoverishment in comparison with higher level
language systems. The solution used in l.*(F) is
to delay access to the total machine until later
in the evolution. The provision in the kernel of
a basic bit facility (item 7) yields the logical
capability to lay down arbitrary code and the
provision of the general symbolic manipulation
system (item 2) yields the potential for construct-
ing linguistically suitable schemes for designating
new instructions, routines and data types.

45

Integrated programming environment. Conver-
sational language systems, such as Joss and
LCC, have moved toward providing all computing
functions—program definition, editing, execution,
debugging, storage and retrieval on files, etc.—
with a common language. It is no longer neces-
sary in such systems continually to change be-
tween distinct (and generally non-cooperating)
subsystems, each with their own conventions, to
perform the different tasks associated with build-
ing programs. This is called an integrated pro-
gramming environment and its desirability is
widely recognized.

Integrated environments occur only rarely out-
side of specialized conversational systems. The
design philosophy inherent in most operating
systems encourages a plurality of distinct pro-
cessors and languages, e.g., assemblers, editors,
higher languages, the command language, file
systems, etc. Most system building is accom-
plished in this kind of an environment.

The kernel system leads naturally to an em-
phasis on attaining an integrated programming
environment. It is consonant with the already
established goal of simplicity. Since the eventual
system has roots all the way back to the kernel,
there is less inclination for a layered structure
of system and subsystem to grow up, which is
the genesis of multiple language systems. If a
partially grown system appears to be congealing
into clusters of subsystems with distinct con-
ventions, then the system can be regrown from
an earlier point and shaped to a more homoge-
neous form.

Modest experience with L*(F) indicates that
a unified environment may be rather easily
achieved, mainly because at appropriate stages
of growth the adding of new facilities with di-
verse functions requires only small amounts of
new program. The initial language of L*(F) is a
simple list language called L*L, which is written
horizontally and whose coding density is not un-
like that of LISP. In this language a simple on-
line editor requires a few lines; a monitor for
manually stepping through programs requires
less than a page of code; a system for entering
text requires less than half a page. All these
come along rather early in the bootstrapping
sequence, though not before some other tools
have been constructed. A rudimentary compiler
to transform L*L expressions into machine calls
(thus eliminating the interpreter) requires less
than two pages of code and a primitive assembler
without macro features (unneeded in L* with its
general symbolic capabilities) requires about two
pages. Some of the simplicity of these systems
arises from the design philosophy of creating an
integrated programming environment. Each aug-
mentation relies on the existing mechanisms and
conventions, being just the necessary growth to
provide the additional functions.

46

Multiple use of structure. Using one structurP

o provide the same function throughout a system

lirnTT PraCt,Ce- When V**™ are bum
eJi^s a,o

an„kerne,Jhe P0SSibi,i,y of multiple ue exists along another direction. The structures

y emr0cVanea,s
aofUnCtT in ,he ^em-building system can also provide that function in the ulti

mate application system. For example the syntax

Several effects follow from this multiple use
of structure. It contributes to the mainienanc^
s-mplicity and it undoubtedly provides some Sav
ngs in space. But the main effect is the use of

n^ZZT* and debU99ed C~° m me creation of a new system

frnLhe.habili,y t0 USe struct^es in this way arises
from the commitment of internal am^fh fit
thoroughly blurs the line bSn'Smli'ld

ar? lTnTh
aPP,iCa,i0n System- ^systems'

""r^^rfa9aininai--
L (F) has an additional design feature that

tures
eS

to
0

n
e

e
nwhanC! ,he eXtenSi0n 0f exis'ng struc ures to new contexts. The data structures fand

the nternal symbols which designate them) form
a discrete set of types. Differential acTon de

both StTnd. ,yPe0f da,a being P-cesTed s
omanStion f enient For examP|e' a "atural organization for a print routine is as a set o
.nter^ommunicating print routines, one fortact

tvnTphc
e KT6' COn,ains on|y a sma|l set of initial

ypes, but new types can be added at win in
fact one of the main techniques for groth is the
addit.on of types. Extension encourages itt nn

ZVTlreT TV'6 eXiS,in9 '-mewor" o types, thereby extending existing facilities An
f ration would be the creation of a type LISP

'ttmg into the existing interpretive struck'

ixi2a
,SHb,y tyPe) and ,hus Permitting a, the existing ed.t.ng, debugging, and printing facil

't-es to be immediately used in a ÜSP contex

Personalization. The notion of a system-build

ryste^Tdar;;^68 Pr0dUCin9 a -^ of" systems adapted to special circumstances The
notion of the kernel system enhances this ioihe
point of considering personalized systems to Se
he rule. Personalization is not simplyThe in^i
uhonanzation of the natural tendencies of svs."

tems programmers to be idiosvncratir aJJ
it means that a system should bSSl 'as much

^rirs.servetheindividua'^-dmsus
Rigid standardization of programming systems

ForrJT hi9h '^ 01 deve'0Pment frs™
Fortran) has some important advantages Com
mon systems over large populations offers pet
mit communication of programs and ideas and essens the need of cont.nua **** and

ems. However, for the types of systems built fn
the course of computer science research these
advantages are often outweighed by the need to
shape the system to new demands a'nd concepts
S.milarly, extracting the utmost efficiencyTom
a machine, which implies the complete adaota
t-on of the system to the task at hand also rln"
outweigh the advantages of communality 0 ""

The kernel itself, having been carefully de-
signed once and for all, might seem to be ex-

case VZ Pfrsonaliza,ion- But this is not the
pmrfh w ■ 0f C0Urse' be r"odified as we have
emphasized in discussing accessibility Since»
-s re atively small, however, the final system can
simply be grown away from any of its conven

USPcou^rT/ neW '^-^ "ri
seas I.0,1"'h

be ,1" r0
(
d"ced ,0 COmP|e,e|y s"Per- sede L L, the init.al language provided in the

T-TTiTTmiinii iiiiiimriwwinriviiiyiTTiiw

47

Design iteration. Iteration of a design is gen-
erally considered a laudable goal. In large soft-
ware systems (as in some other areas) it rarely
happens, primarily because of the extensive effort
involved and the inevitable occurrence of un-
anticipated difficulties that stretch out the con-
struction effort beyond all preset deadlines. Typi-
cally, design iteration occurs at the specification
stage, then the design is committed and an initial
version is brought into being. Once in use, modi-
fications and revisions are made (in successive
"releases" of the system) attempting to adapt
the system to the actual environment.

The kernel system approach appears to lead
to a highly iterative design style. Systems are
grown and regrown from early points in the
tree of development (Figure 1), and design be-
comes an experimental activity rather than an
analytic one. Part of the reason for this design
style is certainly the small initial size, which of
course must eventually give way to mature sys-
tems of large size. But part of the reason also
appears to be that the growing system contains
substantial investment in structures that help to
grow the system further. Thus easy regeneration
of the system from early stages becomes an im-
portant subgoal in the design of a system.

Our experience in L*(F) on iterative design of
large application systems through regeneration
is still minimal. We do have experience about
iteration of design for the kernel itself. So far
during the year in which we have devoted sub-
stantial effort to L* we have brought six systems
into full existence: L*(D) through L*(G) on the
PDP-10 and L*11(A) and L*11(B) on the PDP-11.
Each of these has explored basic variations in
the design space of kernel systems. Several
more iterations seem indicated at present before
we will finally know enough about the kernel to
create a final system, all of whose further modi-
fications should arise through internal growth.

Summary. All of these aspects of system de-
sign just discussed are consonant with the idea
of a kernel system building system. However,
they are not essential. It is quite possible that
highly successful lines of development would
shun some of them entirely. One could start with
a kernel, construct a particular application sys-
tem with its own programming language, file
system, etc., discarding all the system-building
scaffolding so that no trace of it remained in the
final application system. But these notions of
personalization, design iteration, multiple use of
structures, etc., appear to be the ideas to be
exploited to make the kernel approach to system
building viable.

n wwmmMHU&mmwm

w*»wj»[rnmgMi«-«B,iiWMWwawiefft-.T;OTpaT.5fi

48

The Essential Problems

So far we have defined the essential nature of
the kerne! system approach to system building
and explored the various directions in which its
advantages might lie. But there are some diffi-
culties, too. A kernel system depends on getting
most of the ultimate facilities for system building
indirectly, providing only the tools for their con-
struction (and sometimes being even more re-
mote). Looking at current schemes for building
systems, four main things have been provided by
one or another system: (1) direct and transparent
access to the underlying machine; (2) higher
level languages; (3) efficient code production and
(4) supporting facilities, predefined and working,
evocable through a command language. None
of these is available directly in the kernel- all
have to be built.

The essential tension (to use a favorite phrase
of Bill Wulfs) is between the effort to be spent
in building up these facilities and the advantages
of the user having shaped them himself to his
own needs. On the effort side must be counted
not only the programming and debugging re-
quired, but also the intellectual investment by the
user in understanding the functions to be built
and the mechanism that will realize them. It may
turn out that users simply will not wish to under-
stand all the subsystems involved in their appli-
cation system. More likely, the use of kernel sys-
tems will be restricted to professional systems
programmers and will not be a tool for the casual
user. Our own intended use, to build artificial
intelligence systems, certainly is of this sort.

Success of the kernel system approach de-
mands that all of the ultimate facilities of a sys-
tem-building system (editors, translators, higher
level languages, etc.) be obtainable without un-
due pain and effort. Otherwise it is surely not
worth anyone's while to work through their con-
struction. Given that kernels start with so little
and given the general experience with how much
work it is to build systems programs, this appears
highly implausible on the face of it. The distance
between the initial point and a fully developed
system simply appears to be too great. We did
note some positive evidence earlier from L*(F)
that subsystems require very little code. But the
evidence is far from conclusive yet. That the
distance really can be covered with ease is un-
doubtedly the most important hypothesis under-
lying the use of kernels for system-building.

umäamnmmsumm'

49

References

Conclusion

We have presented briefly the idea of growing
software systems from a small kernel of code.
The basic Idea incorporates both small initial
size and self-sufficiency for internal growth. We
fleshed out these two ideas by describing sev-
eral associated elements cf design philosophy.
Throughout we have tried to present the basic
notions independent of our particular line of ex-
perimental systems (L*), though using it as a
source of illustrations. We have sought in this
way to draw attention to another alternative for
system-building that seems to have some promise.

1. Carr, John W. Ill, Growing Machine Handbook,
Moore School of Electrical Engineering, University
of Pennsylvania, 1967.

2. Newell, A. D. McCracken, G. Robertson, and L. De-
Benedefti, "L*(F)", Computer Science Department,
Carnegie-Mellon University, January, 1971.

3. Nievergelt, J. F. Fischer, M. I. Irland, and J. R. Sldlo,
"Nucleol—A Minimal List Processor," Department of
Computer Science, University of Illinois, Report No.
324, April, 1969.

4. Waife, W. M., "The Mobile Programming System;
STAGE2," Comm. ACM, vol. 13, no. 7, p. 415-421,
July, 1970.

5. Wilkes, M. V., "An Experiment with Self-compiling
Compiler for a Simple List-processing Language,"
Annual Review In Automatic Programming, vol. 4,
Richard Goodman (ad.), Macmillan, New York, 1964.

»■ iiiiiiin—twom—).

50

Appendix:
Description of L*(F) Kernel

L*(F) is a kernel system operational on the
PDP-10.2 Table 1 lists some of its main charac-
teristics. Space prohibits discussing these in
detail, but we can comment on a few of them
that relate to the central design idea.

First is the adoption of a simple list language
(called L*L) as the initial language. As is well
known, only a few primitive actions suffice for an
essentially complete list facility for doing sym-
bolic manipulation.

A second important feature is the use of a
homogeneous symbol system. Symbols are taken
to be addresses and arc used to refer to every-
thing. For instance, there is a symbol (an ad-
dress) corresponding to each of the 128 charac-
ters.

A third major mechanism is a universal type
system. Every symbol has a type, which de-
scribes the nature of the data structure it desig-
nates. Initially, only a minimum number of types
are provided: list (the basic data structure), pro-
gram list (list to be interpreted as programs),
integer (required for incremeniing and differenc-
ing addresses), machine (to identify machine
code), character (the fixed set of 128 symbols),
and cells (everything else). Everything has a type,
even the registers of the machine (type list and
type cell), the size of the symbol table (type
integer) and each instruction in the kernel (type
machine). Types are totally dynamic: the type of
any symbol can be changed, new types can be
created, the functions associated with a type can
be changed, the total number of types in the
system can be increased (or decreased).

Action can be type dependent everywhere, so
there is always available a relevant discrimina-
tion that can be used to direct processing. Thus,
print routines operate conditionally on the type
of the symbol to be printed. To obtain the ad-
vantages of a type system one needs to have
type dependent action as fast as possible (for it
is likD an inner loop calculation) and for the
structure that holds types to impose no constraint
on the types of data structures. In L'fF) we pay
a very high price for this: for each cell of the
system an extra cell is taken to hold the type
index. Although the space cost is substantial
(being reminiscent of the space-cost paid for list
structures), the gains appear to be impressive.

One feature of L*L is worth mentioning: the
principle of semantic interpretation. That is, to
interpret a symbol in a program list the interpreter
associated with the type of that symbol is exe-
cuted. This means that a program list itself has
no syntactic structure. For example, if LIST and
SYMB are respectively a list and symbol of type
list and TEST is a program, then the program list

(LIST SYMB TEST)
results in TEST being interpreted as a program
with LIST and SYMB as operands. This happens
because each of the three symbols is interpreted
in order, but the interpreter associated with LIST
and SYMB, being interpreter for type list, treats
these symbols as operands, whereas the inter-
preter for TEST treats it as a program. If TEST
were type machine, then it would be executed
as a machine routine.

The kernel of L*(F) does not contain direct
access to all the features of the PDP-10 machine.
Thus, ultimate access is obtained by providing
tools in the kernel. These are two special inter-
preters, one of which deposits a set of bits in a
field in a word, the other of which extracts a set
of bits from a word. These interpreters can be
associated with various types of symbols. Initially,
type character is the only type for which these
instructions make sense, permitting the packing
and unpacking of character strings simply by in-
terpreting lists of characters.

TABLE 1: CHARACTERISTICS OF L*(F)

51

Size of kernel:
1078 instructions, 924 data words, 7139 with all

available space.
Symbol system:

Homogeneous system of symbols;
Symbols are addresses;
All addresses in main segment are symbols.

Type system:
All symbols have types;
Types form a small discrete unstructured set (Initi-

ally 16);
Type dependent action is immediate;
The type of a symbol is completely dynamic;
The function of a particular type is dynamic (slowly);
Mechanized by putting type index for each symbol

(address) in a corresponding word in a special
segment (trades space for time).

Initial types:
Lists, program lists, machine, integers, characters,

cells.
Initial language:

L*L (a simple list language of type program list);
Interpretive (base rate = 30,000 .ycles per second);
Interpretation by executing interpreters associated

with each type:
For program lists: Interpret each symbol of list in

turn;
For machine: Execute machine routine;
For others (data): Push symbol into data stack;

Operand and result communication via data stack;
Operator/operand distinction made by type of sym-

bol (i.e., by inte m '"r used for type);
Control structure:

Loops handled by repeated interpretation of pro-
gram lists;

Action can be conditional on top of data stack;
No direct transfers (no "goto's");

Effective style of language is Polish post-fix.
Symbol table:

Entries in initial table limited to arbitrary 5 character
names;
Uses sequential search for lookup;

Number of names expandable dynamically:
Size of names not easily expandable;
Table scheme Is replaceable.

Accessibility:
All relevant names in kernel entered into L* symbol

table;
All routines In kernel executable from within L'L;
All Internal structure of L*L of type list (data and

routine stacks);
Kernel has simple structure:

85 almost Independent routines (maximum nest-
ing, 2 In almost all cases);

Standard scheme for communication between ma-
chine routines and environment (Including L*L
stacks);

Format lists to deposit and extract bits within words.
Interfaces to environment:

Interfaces exist to teletype and disk (via Monitor
conventions);

Communication via list of characters (I.e., symbols
of type character);

Processes by using special interpreter for type char-
acter (executes L*L process associated with each
character).

Style of use:
Conversational (via PDP-10 Monitor).

Debugging and recovery:
Swap mechanism to reinstate functioning context

and make buggy context available for investiga-
tion and correction dynamically.

Space management:
Automatic for lists and single cells;
No recovery when exhausted (but creatable);
Access to PDP-10 Monitor for more space.

Coding of kernel:
In Macro-10, the PDP-10 macroassembler.

liaiöMXl^ —s = iM©i»ii
S1)||M| »X9INI
«Xd|Msi?f •-. *?A999I
1MI1 ; ,i -sAMMi
AHM- B Swj|Mj
Ai.M« ; .4;

^ ^-rw^^w "» sAl|i

"sliiillliiiiiNIi
-iJiiiBliiiilieiiMii

•-•:==- -9He«®eiAAMH9eMif^fi9Mi

Illll9|aiv=.. -?f|ill||i|p|g|i||iiii(

piiiiiliiii^) sAf^HxatAs ?«fifiijM)5.;
IIIIIIIIII^Hl- -)Xil5MX3--s-s- = 5S-. .
liiitiilif^Ai: --fXM9A3?)s-» - -~
9ii99iil9As;.). —lAlX))- —
2BeM8HAl)l'-«--'S -. id-Als-.-.

-« ,. . -»))l)ls«l

^l)3)-)3)))2lsssslX2AM999M9«A)sss)s>s5)):
;:- 3 -sAAJ9^MM9Ü9s--- - --5.
2. . -^----lX99l9999liAr-..-. .,1

53

Faculty

C. Gordon Bell
Professor of Computer Science and

Electrical Engineering
S.B., Massachusetts Institute of

Technology (1956)
S.M., Massachusetts Institute of

Technology (1957)
Carnegie, 1966: Computers and Computer

Networks

Robert N. Chanon
Instructor
B.S., Carnegie-Mellon University (1967)
Carnegie, 1968: Programming

Lee Erman
Research Associate
B.S., University of Michigan (1966)
M.S., Stanford (1968)
Carnegie, 1970: Artificial Intelligence

Arie N. Habermann
Associate Professor of Computer Science
B.S., Free University, Amsterdam (1953)
M.S., Free University, Amsterdam (1957)
Ph.D., Technological University, Eindhoven,

The Netherlands (1967)
Carnegie, 1968: Operating Systems and

Programming Languages

Per Brinch Hansen
Visiting Research Associate
B.S., Technical University of Denmark
M.S., Technical University of Denmark
Carnegie, 1970: Software

Donald W. Loveland
Associate Professor of Computer Science and

Mathematics
B.A., Oberlin College (1956)
S.M., Massachusetts Institute of

Technology (1958)
Ph.D., New York University (1964)
Carnegie, 1967: Logic (Recursive Function

Theory), Mechanical Theorem Proving,
Computational Complexity

Philip H. Mason
Instructor
B.S., Carnegie-Mellon University (1967)
Carnegie, 1969: Systems Programming

John W. McCredie
Assistant Professor of Computer Science
B.E., Yale University (1962)
M.S.E.E., Yale University (1964)
M.S.I.A., Carnegie-Mellon University (1966)
Carnegie, 1968: Simulation, Optimization

Techniques and Systems Analysis

Ugo Montanari
Visiting Research Associate
Carnegie, 1970: Artificial Intelligence

Richard Neely
Research Associate
B.A., University of Oregon (1966)
M.S., Stanford University (1968)
Carnegie, 1970: Artificial Intelligence

54

Allen Newell
University Professor
B.S., Stanford University (1949)
Ph.D., Carnegie Institute of Technology (1957)
Carnegie, 1961: Artificial Intelligence,

Simulation of Human Thinking,
Programming Languages

David L. Parnas
Associate Professor of Computer Science
B.S., Carnegie Institute of Technology (1961)
M.S., Carnegie Institute of Technology (1964)
Ph.D., Carnegie Institute of Technology (1965)
Carnegie, 1966: Simulation, Automatic Design

of Finite Automata, Computer Languages,
Computer System Design

Alan J. Perils
Professor of Mathematics and Head of the

Department of Computer Science
B.S., Carnegie Institute of Technology (1943)
M.S., Massachusetts Institute of

Technology (1949)
Ph.D., Massachusetts Institute of

Technology (1950)
Ph.D. (Hon.), Davis and Elkins College (1968)
Carnegie, 1956: Programming Languages

D. Raj Reddy
Associate Professor of Computer Science
B.E., University of Madras (1958)
M. Tech., University of New South Wales (1961)
M.S., Stanford University (1964)
Ph.D., Stanford University (1966)
Carnegie, 1969: Artificial Intelligence and

Man-Machine Communication

Ronald M. Rutledge
Assistant Professor of Computer Science
S.B., University of Georgia (1957)
S.M., University of Georgia (1960)
Ph.D., University of Tennessee (1964)
Carnegie, 1968: Computer Science Management,

Measurement and Evaluation of Operating
Systems

Herbert A. Simon
Richard King Mellon Professor of Computer

Science and Psychology, Associate Dean of
the Graduate School of Industrial
Administration

A.B., University of Chicago (1936)
Ph.D., University of Chicago (1943)
D.Sc. (Hon.), Case Institute of Technology (1963)
D.Sc. (Hon.), Yale University (1963)
LL.D. (Hon.), University of Chicago (1964)
Fil.D. (Hon.), University of Lund, Sweden (1968)
Carnegie, 1949: Computer Simulation of

Cognitive Processes, Artificial Intelligence,
Management Science

William A. Wulf
Assistant Professor of Computer Science
B.S., University of Illinois (1961)
M.S.E.E., University of Illinois (1963)
D.Sc, University of Virginia (1968)
Carnegie, 1968: Systems Programming

Yechezkel Zalcstein
Assistant Professor of Computer Science
A.B., University of California, Berkeley (1962)
M.A., University of California, Berkeley (1965)
Ph.D., University of California, Berkeley (1968)
Carnegie, 1969: Automata Theory, Algebraic

Theory of Linear Systems, Finite Semigroups

'■^^smsme^mmummmajamm^msmx^^mwmisss.

55

Graduate Students

Agarwal, Durga
B.E., Birla Institute of Technology and

Science (1969)
Electronics

M.Tech., Indian Institute of Technology (1970)
Computer Science

Departmental Staff

Engineering
William Broadley—Manager of Engineering

Design and Senior Research Associate
Paolo Coraluppi—Engineer
Ralph De Lucia—Engineer
Roland Findlay—Technician
Christopher Hausier—Technician
Paul Newbury—Engineer
Kenneth Stupak—Technician
Jackson Wright—Design Engineer

Office Staff
Roberta Gray—Business Administrator
Dorothy Josephson—Technical Typist
Georgette Katona—Secretary to Dr. Perils
Mercedes Kostkas—Secretary
Mildred Sisko—Secretary to Dr. Newell

Operations
Carolyn Lisle—Manager of Computer Operations
Barbara Anderson—Lead Operator

Programming
Harold Van Zoeren—Manager of Programming
Howard Wactlar—Supervisor of Special

Programming Projects
Diana Bajzek—Programmer
Donald McCracken—Programmer
George Robertson—Programmer
David Wile—Junior Research Scientist

Apperson, Jerry
B.A., University of Virginia (1965)

Mathematics

Ariely, Gideon
B.A., Hebrew University (1969)

Mathematics-Computer Science

Aygun, Birol
B.S.M.E., Newark College of Engineering (1965)
M.S., Columbia University (1968)

Mathematical Methods in Engineering and
Operations Research

Barbacci, Mario
B.S., U.N.I. (Lima, Peru) (1966)

Electrical Engineering
Engineer, U.N.I. (Lima, Peru) (1968)

Electrical Engineering

Bauer, Madeline
A.B., Cornell University (1968)

Mathematics
M.A., University of Michigan (1970)

Computing and Communications Sciences

Berliner, Hans
B.A., George Washington University (1954)

Psychology

Bhatia, Sushil
B.Tech., Indian Institute of Technology (1966)

Electrical Engineering
M.S., Carnegie-Mellon University (1969)

Electrical Engineering

"fiBHBMUmWIilllHIHIlliii liiiiiiHiir iiiiiii iranwnuMnmmK .

56

Chang, Hsiau-Chung
B.S., National Taiwan University (1971)

Physics

Chen, Robert
B.S., Rensselaer Polytechnic Institute (1966)

Electrical Engineering
S.M., Massachusetts Institute of

Technology (1968)
Electrical Engineering

Cohen, Ellis
B.S., Drexel Institute of Technology (1970)

Mathematics

DeBenedetti, Lydia
B.A., Oberlin College (1967)

Economics

Dills, John
B.S., Clarkson College (1968)

Mathematics

Evans, Steven
B.A., Tulane University (1965)

Mediaeval German and Mathematics

Farley, Arthur
B.S., Rensselaer Polytechnic Institute (1968)

Mathematics

Fennell, Richard
B.S., Rensselaer Polytechnic Institute (1969)

Physics

Gerhart, Susan
B.A., Ohio Wesleyan University (1965)

Mathematics
M.S., University of Michigan (1967)

Communication Sciences

Geschke, Charles
A.B., Xavier University (Cincinnati, Ohio) (1962)

Latin
M.S., Xavier University (Cincinnati, Ohio) (1963)

Mathematics

Gillogly, James
B.A., UCLA (1967)

Mathematics

Goldberg, Henry
S.B., Massachusetts Institute of

Technology (1968)
Mathematics

Grove, Richard
B.S., Carnegie Institute of Technology (1964)

Mathematics
M.S., Carnegie Institute of Technology (1965)

Mathematics

Huen, Wing Hing
B.S., University of Hong Kong (1966)

Physics
M.S., University of Alberta (1969)

Computer Science

Johnsson, Richard
B.E., Vanderbilt University (1970)

Electrical Engineering

Jones, Anita
B.A., Rice University (1964)

Mathematics
M.A., University of Texas (1966)

English

Kedar, Eliahu
B.Sc, Hebrew University of Jerusalem (1968)

Mathematics and Physics

i®v^mwr?r$mmtmmmmm
s't.'msnsssttmmKsmti'xi

K

I:

57

Lipton, Richard
B.S., Case Western Reserve (1968)

Mathematics

Kendziora, Alois
B.A., Gannon College (1962)

Mathematics
M.A., University of Detroit (1964)

Mathematics

Knudsen, Michael
B.S., Pennsylvania State University (1966)

Engineering Science
S.M., Massachusetts Institute of

Technology (1968)
Electrical Engineering

Krutar, Rudolph
B.S., Carnegie Institute of Technology (1966)

Mathematics

Lee, Sal-Ming
B.A., UC at Berkeley (1970)

Mathematics-Computer Science

Lee, Tih-Ming
B.S., Tamkang College (Taiwan) (1966)

Mathematics

Lieberman, Robert
B.S., SUNY at Stony Brook (1968)

Mathematics

Linstrom, Gary
B.S., Carnegie Institute of Technology (1965)

Mathematics
M.S., Carnegie Institute of Technology (196ii)

Mathematics

Lowerre, Bruce
B.S., Case Institute of Technology (1965)

Chemistry
B.S., Case Western Reserve (1970)

Mathematics

Lunde, Amund
M.Sc, University of Oslo (1966)

Mathematics

Mann, William
B.S., Lehigh University (1956)

Electrical Engineering
M.E.A., George Washington University (1964)

Engineering Administration

McConnochie, John
B.A., Dartmouth College (1964)

Mathematics

Mitchell, James
B.Sc. (Hon.), University of Waterloo (1966)

Mathematics

Moore, James
S.B., Massachusetts Institute of

Technology (1964)
Mathematics

Moran, Thomas
B.Arch., University of Detroit (1965)

Architecture

Moyles, Dennis
B.S., Carnegie-Mellon University (1970)

Mathematics

Newcomer, Joseph
B.A., St. Vincent College (1967)

Mathematics

58

Schlesinger, Steven
B.A., Cornell University (1968)

Mathematics

Schneider, Edward
B.S., Carnegie-Mellon University (1970)

Mathematics

Shaw, Mary
B.A., Rice University (1965)

Mathematics

Ghlander, Ronald
B.S., St. Mary's College (1962)

Psychology

Pfefferkorn, Charles
B.S., Carnegie Institute of Technology (1964)

Physics

Pierson, Charles
B.S., Carnegie-Mellon University (1970)

Mathematics

Pollack, Frederick
B.S., University of Florida (1970)

Mathematics

Price, William
B.A., Lehigh University (1969)

Mathematics

Rege, Satish
B.Tech., Stevens Institute of Technology (1968)

Electrical Engineering
M.S., University of Pittsburgh (1969)

Electrical Engineering

Rinde, Joseph
B.S., Stevens Institute of Technology (1968)

Mathematics

Rizzo, Michael
B.S , Rensselaer Polytechnic Institute (1968)

Mathematics

Shu, Hou-Shing
B.S., Taiwan University (1969)

Physics

Snyder, Larry
B.A., University of Iowa (1968)

Mathematics

Stickel, Mark
B.S., University of Washington (1969)

Mathematics
M.S., University of Washington (1971)

Computer Science

Sung, David
B.S., National Taiwan University (1968)

Mathematics

Teitelbaum, Ray
S.B., Massachusetts Institute of

Technology (1964)
Mathematics

Vasudevan, Narayanan
B.S., Engineering College (Madras) (1966)

Electrical Engineering
M.Tech., Indian Institute of Technology (1969)

Electrical Engineering

Weinstock, Charles
B.S., Carnegie-Mellon University (1970)

Mathematics

Yuo, Peter
B.S., National Taiwan University (1968)

Mathematics

IllliilllflHIMIIillllllllMimHIIIJ

I

Publications

59

Bell, C. G., "Minicomputer Architecture and De-
sign," Proc. Institute ci Electrical and Elec-
tronics Engineers, March, 1971.

Bell, C. G., "Some Network-Space Dimensions,"
Ekisticn, 30, No. 1979, 270-271,

Bell, C. G., R. Cady, H. McFarland, B. Delagi,
J. O'Laughlin, R. Noonan, and W. Wulf, "A
New Architecture for Mini-Computers—
the DEC PDP-11.,' AFI PS—Conference Pro-
ceedings, Spring Joint Computer Conference,
1970,657-675.

Bell, C. G., D. Casasent, and R. Hamel, "The Use
of the Cache Memory in the PDP-8/F Mini-
computer," Spring Joint Computer Conference,
1971.

Bell, C. G., and J. Grason, "The Register Trans-
fer Module Design Concept," Computer Design,
10, No. 5, 87-94.

Bell, C. G., J. Grason, S. Mega, R. Van Naarden,
and P. Williams, "Register Transfer Modules
(RTM) for Higher Level Digital Systems De-
sign," Proc. Purdue 1971 Symposium on Appli-
cations of Computers to Electrical Engineering
Education, 163-166.

Bell, C. G., A. N. Habermann, J. McCredie, R.
Rutledge, and W. Wulf, "Computer Networks,"
Computer, Sept./Oct. 1970, 13-23:

Bell, C. G., and J. McCredie, "The Impact of
Minicomputers on Simulation—An Overview,"
Simulation, March, 1971.

Bell, C. G., and A. Newell, Computer Structures:
Readings and Examples. McGraw-Hill, 1971.

Bell, C. G., and A. Newell, "The PMS and ISP
Descriptive Systems for Computer Structures,"
AFIPS—Conference Proceedings, Spring Joint
Computer Conference, 1970, 351-374.

Berliner, H., "Experiences Gained in Construct-
ing and Testing a Chess Program," Proc. IEEE
Symposium on System Science and Cyber-
netics, Pittsburgh, Oct., 1970.

Berliner, H., "United States Computer Chess
Championship," SIGART Newsletter, No. 19,
Dec, 1970.

Erman, L, and D. R. Reddy, "Implications of Tele-
phone Input for Automatic Speech Recogni-
tion," Proc. Seventh International Congress on
Acoustics, Budapest, 1971.

For other references by L. Erman, see D. R.
Reddy et a/.

Habermann, A. N., "An Operating System Modeled
as a Set of Interactive Processes," Fifth An-
nual Princeton Conference on Information Sci-
ences and Systems, March, 1971.

Habermann, A. N., "An Undergraduate Course
on Operating System Principles," Cosine Task
Force of the Cosine Committee of the Com-
mission on Education of the National Academy
of Engineering, 2101 Constitution Ave., Wash-
ington, D.C., Spring, 1971.

For other references by A. N. Habermann, see
C. G. Bell et a/., and W. A. Wulf ef a/.

Loveland, D., "A Linear Format for Resolution,"
Lecture Notes on Mathematics (Symposium on
Automatic Demonstration) ^25, Springer-Ver-
lag, 1970, 147-162.

Loveland, D., "A Unifying View of Some Linear
Herbrand Procedures," submitted to the Jour-
nal of the Association for Computing Machine-
ry (based on CMU report "Some Linear Her-
brand Proof Procedured: an Analysis," Decem-
ber, 1970).

60

McCredie, J., "The Structure of Discrete Event
Simulation Languages," Summer Simulation
Conference Proceedings, June, 1970, 88-98.

McCredie, J. and S. Schlesinger, "A Modular
Simulation of TSS/360 Fourth Conference on
Applications of Simulation Proceedings Dec
1970, 220-206.

For other references by J. McCredie, see C G
Bell et a/.

Montanari, U., and D. R. Redcly, "Computer Pro-
cessing of Natural Scenes: Some Unsolved
Problems," Proc. AQARD Symposium on Arti-
ficial Intelligence, Rome, 1971.

Moran, T., "A Model of Multi-Lingual Designer,"
Emerging Methods in Environmental Design
and Planning, Gary T. Moore, ed., MIT Press
1970,69-78.

Moran, T., "(ARTIFICIAL, INTELLIGENT) ARCHI-
TECTURE: Computers in Design," Architec-
tural Record, March, 1971, 129-134.

Neely, R., and D. R. Reddy, "Speech Recognition
in the Presence of Noise," Proc. Seventh Inter-
national Cingress on Acoustics, Budapest, 1971.

For other references by R. Neely, see D R Reddy
et al.

Newell, A., "Remarks on the Relationship Be-
tween Artificial Intelligence and Cognitive Psy-
chology," in R. Banerji and J. D. Merarovic
(eds.). Theoretical Approaches to Non-Numeri-
cal Problem Solving, Part IV, Springer-Verlag
New York, 1970, 363-400.

Newell, A., O. Barnett, J. R. Cox, M. V. Mathews,
and B. Waxman, "Biology and the Future Man,"'
in P. Handler (ed.). Digital Computers in the
Life Sciences, Chap. 14, Oxford Universifv
Press, 1970.

For other references by A. Newell, see C. G. Bell
ef al., and H. A. Simon et al.

Parnas, D. L, "More on Simulation Languages
and Design Methodology for Computer Sys-
tems," Proc. SJCC, 1969, 739-743,

Parnas, D. L, "On the Use of Transition Diagrams
in the Design of a User Interface for an Inter-
active Computer System," Proc. 1969 National
ACM Conference, 379-386.

Parnas, D. L, "On Simulating Networks of Parallel
Processes in Which Simultaneous Events May
Occur," Communications of the ACM 1969
519-531. ' '

Parnas, D. L, "The Application of Modelling to
System Development and Design," Papers of
International Computing Symposium, ACM Eu-
ropean Chapters, 1970, 137-147.

Parnas, D. L, Review of "Dynamic Protection
Structures" [B. W. Lampson, AFIPS—Confer-
ence Proceedings, Fall Joint Computer Confer-
ence, 1969], Computing Reviews, Jan., 1971.

Parnas, D. L, Review of "Productivity of Multi-
programming Computers—Progress in Devel-
oping an Analytic Prediction Method," [D. J.
Lesser, Communications of the Association for
Computing Machinery 12, 12], Computing Re-
views, Jan., 1971.

Parnas, D. L, P. j. Courfois, and F. Heymans,
"Concurrent Control with Readers and Writers "'
Report R143 of the MBLE Laboratoire de Rech-
erches, Brussels, Belgium, September, 1970
Also to be published in the Communications of
the Association for Computing Machinery (Op-
erating Systems Dept.)

For other references by D. L. Parnas, see P. J
Courtois et al.

j» "rrmnniiiiiiiiiiiwiwHiinimiiiiiiiiii
^n^mwwmiammmmrismmmwmmKmtesm

61

Reddy, D. R., "Speech Input Terminals for Com-
puters: Problems and Prospects," Proc. 7970
IEEE International Computer Group Confer-
ence, 282-289.

Reddy, D. R., L. Erman, and R. Neely, "The CMU
Speech Recognition Project," Proc. 7970 IEEE
System Sciences and Cybernetics Conference.

For other references by D. R. Reddy, see L.
Erman et a!., U. Montanari et a/., and R. Neelv
et al.

Shaw, M., "360/Curse: Hymn of Hate," Datama-
tion, AprW 1,1971, 31.

Simon, H. A., "Gendai Soshiki no Kohon Dookoo,"
("Basic Trends in Modern Organization"), So-
shlki Kagaku (Organizational Science), Sum-
mer, 1970,44-52.

Simon, H. A., "Designing Organizations for an
Information-Rich World," in Martin Green-
berger (ed.). Computers, Communications, and
the Public Interest, John Hopkins Press, Balti-
more, 1971,37-72.

Simon, H. A., "Information Storage as a Problem
in Organization Design," Ekomomiskt Firum,
Argang 33, 1970, 46-59. Goterborg: Handel-
shogskolans i Goterborg Studenlkar.

Simon, H. A., "Information Storage as a Prob-
lem in Organi, ation Design," in Walter Gold-
berg (ed.), Bel avioral Approaches to Modern
Management, Vol. 1, Gotl-nnburg Studies in
Business Administration, Göteborg, 1970 141-
160.

Simon, H. A., Ningen Kodo no Moderu, Japanese
translation of Models of Man, Dobunken Pub-
lishing Co., Tokyo, 1970.

Simon, H. A., and Y. Ijiri, "Effects of Mergers and
Acquisitions on Business Firm Concentration,"
Journal of Political Economy, March/April 1971
314-322.

Simon, H. A., and A. Newell, "Human Problem
Solving: The State of the Theory in 1970,"
American Psychologist, Feb., 1971, 145-159.

Wulf, W. A., "BLISS: A Systems Programming
Language," University of Pittsburgh Press
Sept.. 1970.

Zalcstein, Y., "On Star-Free Events," Conference
Record of the 11th Annual IEEE Symposium on
Switchit,^ and Automata Theory, Oct., 1970
76-80.

Zalcstein, Y., and Y. Give'on, "Algebraic Struc-
tures in Linear Systems Theory," Journal of
Computer and System Sciences, 4, 539-556.

62

Research haporls

Support for the following research work came
largely from the Advanced Research Projects
Agency (F 44620-70-C0107) and in part from the
National Institutes of Health (MH-077722-02) and
the National Science Foundation (GP-7064).

These reports are registered with the Defense
Documentation Center. Accession numbers as-
signed as of July, 1971, are listed after the report
titles.

Barbacci, M., H. Goldberg, and M. Knudsen,
"C.ai (P.LISP)—A LISP Processor for C.ai,"
Computer Science Dept., CMU, June, 1971.

Krutar, R. A., "Conversational Systems Program-
ming (or Program Plagiarism Made Easy),"
Nov., 1970, unpublished.

Krutar, R. A., "Virtuality Is a Virtue," Nov., 1970,
unpublished.

Lindstrom, G. E., '.Variability in Language Proces-
sors," July, 1970. (AD 714695)

„-veland, D., "Some Linear Herbrand Proof Pro-
cedures: An Analysis," Dec, 1970. (AD 717753)

McCracken, D., and G. Robertson, "C.ai—An L*
Processor for C.ai," Computer Science Dept
CMU, April, 1971.

Montanari, U., "Networks of Constraints: Funda-
mental Properties and Applications to Picture
Processing," Jan., 1971.

Newell, A., J. Barnett, J. Forgie, C. Green, D.
Klatt, J. C. R. Licklider, J. Munson, R. Reddy,
and W. Woods, Speech Understanding Sys-
tems: Final Report of a Study Group, Computer
Science Dept., CMU, June, 1971.

Newell, A., P. Freeman, D. McCracken, and G.
Robertson, The Kernel Approach to Building
Software Systems. Computer Science Dept
CMU, March, 1971.

Newell, A., D. McCracken, G. Robertson, and
L. DeBenedetti, L'fF), Computer Science Dept
CMU, Jan., 1971.

Parnas, D. L, "Information Distribution Aspects
of Design Methodology," Feb., 197i. (AD
719863)

Parnas, D. L, "A Paradigm for Software Module
Specification with Examples," March, 1971.

Perils, A. J., R. D. Fennell, F. J. Pollack, W. R.
Price, and M. F. Rizzo, "Conversational Pro-
gramming—APL: An Implementation in BLISS,"
Computer Science Dept., CMU, June, 1971.

Zalcstein, Y., "Locally Testable Events and Semi-
groups," Computer Science Dept., CMU, March,
1971.

Zalcstein, Y., "A Note on Fast Cyclic Convolu-
tion," Dec, 1970. (AD 717209)

RESEARCH REPORTS TO BE PRESENTED AT
THE IFIP CONGRESS, LJUBLJANA, YUGOSLAV-
IA, AUGUST, 1971

Hansen, P.B., "An Analysis of Response Ratio
Scheduling."

Parnas, D. L, "Information Distribution Aspects
of Design Methodology."

Reddy, D. R., "Speech Recognition: Prospects for
the Seventies."

Simon, H. A., "The Theory of Problem Solving."

Wulf, W. A., "Programming without the GOTO."

»u^^^no^«!»»^. Br[||1||||,| ||||||H|IM|M|||||||||||ti| Hmm memmmmmmmu • ■ - VKlv?raViKÄ

63

Colloquia

September 1970

"Storage Hierarchies—Heart of the Information
Processing System"

Dr. E. W. Pugh, IBM

"Activities of PSAC-The President's Scientific
Advisory Councii"

Dr. H. Simon, Carnegie-Mellon University

October 1970

"Speech Synthesis"
Messrs. Coker and Umeda, Bell Laboratories

"Images from Computers"
Professor M. Schroeder, University of Goetingen

"Roles of Professional Society and Computer
Science and the United Nations"

Professor C. C. Gotlieb, University of Toronto

"The Design of Operating Systems"
Professor B. Lampson, Berkeley Computer Corp.

"Operating Systems"
Professor B. lampson, Berkeley Computer Corp.

"Graphics"
Dr. Ugo Montanari, Carnegie-Mellon University

"TSS"
Professor A. Kamerman, TSS Design Manager
SDD, IBM and Adjunct Association

"TSS"
Mr. Nick King, TSS Productivity Manager TSS
Project, IBM

"Systems-Basic"
Professor T. Kurtz, Dartmouth University

"The Great Paper"
Professor P. Calingaert, University of North
Carolina

"Great Machine"
Mr. R, Barton, University of Utah

November 1970

"Computer Science in the Soviet Union"
Dr. A. A. Ershov, Academy of Sciences, USSR
Novosibirsk

"Parallel Programming"
Dr. A. A. Ershov, Academy of Sciences, USSR
Novosibirsk

'Mathematical Semantics for Programming Lan-
guages"

Professor Dana Scott, Princeton University

"Operation of the Multi-Computer Lab at Liver-
more"

Dr. Sidney Fernbeck, Director of Computing of
the Livermore National Laboratory of the Uni-
versity of California

December 1970

"Feature Extraction Techniques in Speech"
L. Rabiner, Bell Laboratories

"On Using Functional Analysis for System De-
sign"

Dr. P. Freeman, Carnegie-Mellon University

"Complexify of Linear Inequalities with Applica-
tion to Sorting"

Professor P. M. Spira, University of California
at Berkeley

"OSL-TOOTH, An Operating System Language"
Mr. Peter Alsberg, University of Illinois

04

January 1971

"The Structures of a List Processing Computer"
Dr. Alan Kay, Stanford University

"Future Uses of Minicomputers"
Dr. Alan Kay, Stanford University

"Implementation of 'PMS'"
Michael Knudsen, Carnegie-Mellon University

February 1971

"PPL—An Extensible Language"
Dr. T. Standish, Harvard University

"A Natural Language Understanding System"
Dr. T. Winograd, Project MAC, MIT

"Survey of Graph Representations of Factual
Information

Stu Card, Carnegie-Mellon University

"Graph Representation of Floor Plan Layouts"
Dr. J. Grason, Carnegie-Mellon University

Software implementation and hardware areas
Professor Dr. ir. Van Der Poel, Delft University

"Directed Graph Representation of Concepts and
Experience"

Bill Mann, Carnegie-Mellon University

"Application to Electrical Networks"
Professor R. Duffin, Carnegie-Mellon University

"A Model for Functional Reasoning in Design"
Dr. P. Freeman, Carnegie-Mellon University

March 1971

"Graph Formulation of the Transportation Prob-
lem"

Professor G. Thompson, Carnegie-Mellon Uni-
versity

"DISCRETE-TIME Machines in Closed Categor-
ies"

Professor J. Goguen, University of Chicago

April 1971

"Toward a More General Theory of Data Struc-
tures"

Dr. D. Rine, West Virginia Univsrsity

"The role of analytic models and simulation in
the study of the feasibility of a circumferential
communications network"

Peter Cook, IBM Watson Research Center

"The Irrelevance of Resolution"
Professor Seymour Papert, MIT

"A Set Theoretic Language for the Description
of Algorithms"

Professor J. Schwartz, New York University

"Computers for Individualized Instruction"
Dr. R. Ferguson and Dr. K. Block, Learning Re-
search and Development Center

"Flowchartable Recursive Specifications"
H. R. Strong, IBM

"Program Control Flow and Data Flow Analysis"
Fran Allen, IBM

"Planner"
Dr. Carl Hewitt, MIT

"Information Processing in Visual Perception"
H. A. Simon, Carnegie-Mellon University

"Rational Reconditioning of Polynomials"
Dr. M. Rabin, Hebrew University and IBM Re-

search

"The Technology Chess Program"
J. Gillogly, Carnegie-Mellon University

65

Ph.D. Dissertations

The following persons have been awarded Ph.D.'s
in Computer Science since the establishment
of the Computer Science Department in 1965.
immediately following each recipient's name is
his position as of the 1970-71 school year.

Support for this work came largely from the Ad-
vanced Research Projects Agency under contract
F-44620-70-C-0107. The accession numbers fol-
low in parentheses after those dissertations
which are registered as reports with the Defense
Documentation Center.

Balzer. Robert M. (Systems and Communication
Sciences), Computer Sciences Department,
The RAND Corp., "Studies Concerning Minimal
Time Solutions to the Firing Squad Synchroni-
zation Problem," 1966, Professor A. Newell
(AD 635056).

Berglass, Gilbert R. (Systems and Communica-
tion Sciences), Assistant Professor of Comput-
er Science, state University of New York at
Buffalo, "A Generalization of Macro Proces-
sing," 1970, Professor A. J. Perils.

Caviness, B. F. (Mathematics), Associate Profes-
sor of Computer Science, University of Wis-
consin, "On Canonical Forms and Simplifica-
tion," 1967, Professor A. J. Perils. (AD 671938).

Coles, L. Stephen. (Systems and Communication
Sciences), Research Mathematician, Stanford
Research Institute, "Syntax Directed Interpre-
tation of Natural Language," 1967, Professor
H. /\ Simon. (AD 655923).

Darringor, John A. (Systems and Communication
Sciences), Consultant, Logic Systems Design
Department, N. V. Philips-Electrologica. Apel-
doorn. The Netherlands, "The Description, Sim-
ulation and Implementation of Digital Computer
Processes," 1969, Professor D. L. Parnas and
Professor C. G. Bell. (AD 700144).

Earley, Jay. (Computer Science), Acting Assistant
Professor, Department of Computer Science,
University of California, Berkeley, "An efficient
Context-Free Parsing Algorithm," 1968, Profes-
sor R. W. Floyd.

Ernst, George. (Systems and Communication Sci-
ences), Associate Professor, Department of
Computer Science, Computer Engineering Divi-
sion, Case Western Reserve University, "Gen-
erality and GPS," 1966, Professor A. Newell.
(AD 809354).

Evans, Arthur. (Mathematics), Lincoln Laborato-
ries, Lexington, Mass., "Syntax Analysis by a
Production Language," 1965, Professor A. J.
Perils. (AD 625465).

Feldman, Jerome A. (Mathematics), Associate
Professor of Computer Science, Department of
Computer Science, Stanford University, "A
Formal Semantics for Computer Oriented Lan-
guages," 1964, Professor A. J. Perils. (AD
462935).

Fikcs, Richard E. (Computer Science), Research
Mathematician, Stanford Research Institute, "A
Heuristic Program for Solving Problems Stated
as Nondeterministic Procedures," 1969, Profes-
sor A. Newell. (AD 688604).

Fisher, David. (Computer Science), Burroughs
Corp., Paoli (Philadelphia), "Control Structures
for Programming Languages," 1970. Professor
A. J. Perils. (AD 708511).

66

Freeman, Peter A. (Computer Science), Assistant
Professor of Computer Science, Department of
Information and Computer Science, University
of California at Irvine, "Sourcebook for CSD—
An Operating System Designer," 1970, Profes-
sor A. Newell.

Grason, John. (Systems t-nd Communication Sci-
ences), Assistant Professor of Electrical Engi-
neering, Department of Electrical Engineering,
Carnegie-Mellon University, "Methods for the
Computer-Implemented Solution of a Class of
'Floor Plan' Design Problems," 1970, Professor
H. A. Simon. (AD 717756).

Haney, Frederick M. (Computer Science), Man-
ager of Design, Scientific Data Systems, El
Cegundo, Cal., "Using a Computer to Design
Computer Instruction Sets," 1968, Professor
C. G. Bell. (AD 671939).

Iturriaga, Renato. (Computer Science), Director
of the Computation Center, University of Mexi-
co, Mexico City, "Contributions to Mechanical
Mathematics," 1967, Professor A. J. Perils.
(AD 660127).

King, James C. (Computer Science), Research
Staff, T. J. Watson Research Center, IBM Corp.,
"A Program Verifier," 1970, Professor R. W.
Floyd. (AD 699248).

Lindstrom, Gary. (Computer Science), Assistant
Professor of Computer Science, University of
Pittsburgh, "Variability in Language Proces-
sors," 1970, Professor A. J. Perils. (AD 714695).

London, Ralph L. (Mathematics), Associate Pro-
fessor of Computer Science, University of Wis-
consin, "A Computer Program for Discovering
and Proving Sequencial Recognition Rules for
Well-Formed Formulas Defined by a Backus
formal Form Grammar," 1964, Professor A.
Newell. (AD 804036).

Manna, Zohar. (Computer Science), Visiting Re-
searcher, Computer Science Department, Stan-
ford University, "Termination of Algorithms,"
1968, Professor R. W. Floyd. (AD 670558).

McCrelght, Edward M. (Computer Science), Xerox
Corp., "Classes of Computable Functions De-
fined by Bounds on Computation," 1970, Pro-
fessor A. R. Meyer. (AD 693327).

Michell, James. (Computer Science), Xerox
Corp., "The Design and Construction of Flexi-
ble and Efficient Interactive Programming Sys-
tems," 1970, Professor A. J. Perils. (AD 712721).

Moore, James. (Systems and Communication Sci-
ences), Research Associate, Carnegie-Mellon
University, "The Design and Evaluation of a
Knowledge Net for MERLIN," 1971, Professor
A. Newell.

Mullln, James K. (Systems and Communication
Sciences), Scientist, Division of Research in
Epidemology and Communication Sciences,
World Health Organization, Geneva, Switzer-
land, "A Computer Optimized Question Asker
for Aiding Bacteriological Species Identifica-
tion COQAB," 1967, Professor B. Green.

Parnas, David L. (Systems and Communication
Sciences), Associate Professor of Computer
Science, Computer Science Department, Car-
negie-Mellon University, "System Function De-
scription ALGOL—A Language for the Descrip-
tion of the Functions of Finite State Systems,
the Simulation of Finite Systems, and the Auto-
matic Production of the State Tables of Such
Systems," 1965. (AD 467633).

«««»^smTOBWBwas,^^
■MManmraaffl»

67

Pfefferkorn, Charles. (Computer Science), Assis-
tant Professor of Computer Science, Purdue
University, "Computer Design of Equipment
Layouts Using the Design Problem Solver
(DPS)," 1971, Professor H. A. Simon.

Quatse, Jesse T. (Electrical Engineering and Sys-
tems and Communication Sciences), Vice Pres-
ident, Berkeley Computer Corp., "A Highly-
Modular Organization of General Purpose Com-
puters," 1969, Professor A. Newell and Profes-
sor C. G. Bell.

Quilllan, M. Ross. (Psychology), Bolt, Beranek
and Newman, Inc., "Semantic Memory," 1967,
Professor H. A. Simon.

Shoup, Richard. (Computer Science), Xerox Re-
search Center, Palo Alto, Cal., "Programmable
Cellular Logic Arrays," 1970, Professor C. G.
Bell. (AD706891).

Slklossy, Laurent. (Computer Science), Computer
Science Department, University of Texas at
Austin, "Natural Language Learning by Com-
puter." 1968, Professor H. A. Simon. (AD
671937).

Standish, Thomas A. (Computer Science), Assis-
tant Professor of Computer Science, Harvard
University, "A Data Definition Facility for Pro-
gramming Languages," 1967, Professor A. J.
Perils. (AD 658042).

Strauss, Jon C. (Systems and Communication
Sciences), Director of Computing, Washington
University, St. Louis, "Identification of Contin-
uous Dynamic Systems by Parameter Optimiza-
tion," 1965, Professor A. Lavl. (AD 660887).

Strecker, William D. (Electrical Engineering), Sci-
entific Staff Engineer, RCA, "An Analysis of the
Instruction Execution Rate in Certain Computer
Structures," 1970, Professor C. G. Bell. (AD
711408).

Wagner, Robert A. (Computer Science), Assis-
tant Professor of Computer Science, Cornell
University, "Some Techniques for Algorithm
Optimization with Application to Matrix Arith-
metic Expressions," 1969, Professor A. J. Per-
ils. (AD 678629).

Waldinger, Richard J. (Computer Science), Re-
search Mathematician, Information Science
Laboratory, Stanford Research Institute, "Con-
structing Programs Automatically Using Theo-
orem Proving," 1969, Professor H. A. Simon.
(AD 697041).

Williams, Donald S. (Systems and Communica-
tion Sciences), Principal Member, Technical
Staff, RCA Corp., "Computer Program Organi-
zation Induced by Problem Example," 1969,
Professor H. A. Simon. (AD 688242).

Winlkoff, Arnold W. (Systems and Communica-
tion Sciences), Director of Programming, Blo-
med Computer Services, St. Paul, Minn., "Eye
Movement as an Aid to Protocol Analysis of
Problem Solving Behavior," 1967, Professor A.
Newell.

i
■

