
 ■ ■ J:^^!^ 

Computer Science 
ftaseaioh R3/iew ! 
1970-71 

Sprinafltld, y«.   221 Jl 

' ■        ,       ■ 



Security Clnssificalion 

DOCUMENT CONTROL DATA -R&D 
(Socrliy claitlfleallon ol Uli«, body ol «hslrccl im.l Indexing tmnolation mm-l be cnlerod when Ihr oveioll report Is eln**l(lpd}_ 

\:   ORIGINATING ACTIVITY (Corpora,o''«ZoZo I *>• REBORT SECURITY CLASSIFICATION 

Carnegie-Mellon University 
Dept of Computer Science 
Pittsburgh,  Penn 15213 

UNCLASSIFIED 
■STtiROUP 

3.   REPORT TITLE 

COMPUTER SCIENCE RESEARCH REVIEW 1970-71 

4.   DESCRIPTIVE NOTES (Typo ol roporl and Jnc/us/vo dales) 

Scientific JLo-tsxiin. 
5.   AUTHORlSl (First name, middle initial, last numo) 

T*.;i Moran 

6.   REPORT DATE 

1970-71 
5a. CONTRACT OR GRANT NO. 

F44620-70-C-0107 
b. PROJECT NO. 

A0827-5 

d. 

61102F 
681304 

la. TOTAL NO. OF PAGES 

67 

7b. NO. OF REFS 

0 
9o. ORIGINATOR'S REPORT NUMOERtS) 

96. OTHER REPORT NO(SI (Any oiliei nimibor« thai may be aaalQned 
thin report) 

AFQSR"TB-79-0 4fi2'  
10.  DISTRIBUTION STATEMENT 

Approved for public release; 
distribution unlimited. 

11. SUPPLEMENTARY NOTES 

TECH,  OTHER 

12.    SPONSDRIMG MILITARY ACTIVITY ,. .        „ .       />T,,i 
Air Force Office of Scientific Research (KM I 
1400 Wilson Blvd 
Arlington, Virginia 22209 

U. ABSTRACT 

This is the annual report published by the Dept of Computer Science, Carnegie- 
Mellon University, Pittsburgh, Penn. The reporting period is from 1970-1971-. 
The series of papers includes A brief primer on Resolution Proof Procedures by 
Donald W. Loveland, Control Structures by David A. Fisher, Bliss: A Language for 
Programming Systems by William A. Wulf and the Kernal Approach to Building Software 
Systems by Allen Newell, Peter Freeman, Donald McCracken, and George Robertson. j 

DD.FrJ473 



/)  ■■    ■ ",;:-; ■   -msmi mw'.srsxsmmsmsaxum'imn*. 

im -TR-,r2-0462 

Computer Science Research Review 
1970-71 

An Annual Report 
published by the 
Department of Computer Science 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

m » m | \ 

Approved for public releaa«! 
distribution unlimited. 

Edited by Tom Moran 



' «ffwW^^^wviwtMwtpMwnwuMHtrf« 0OTÄK«TST-a:>f.vi~r;w!«aS!3SSäai ' 

The work reported here was largely supported by the 
Advanced Research Projects Agency 
of the Office of the Senretary of Defer-je 
(Contract number F-44620-70-C-0107) 
and is monitored by the 

Air Force Office of Scientific Research. 
This work was also supported in part by the following: 
the National Institute of Health (MH-077722-02), 
the National Science Foundation (GP-7064), and 
the Mellon family and the Richard King Mellon Foundation. 

Pittsburgh, Pennsylvania 
September, 1971 



iT^maiiaimmmmmmmHimiJismsiemnKc, :r^»igSW^«y;^;i»»;M!ma!^8TO^ 

Contents 

Annual Review Introduction 
Allen Newell 5 

A Brief Primer on Resolution Prool Procedures 
Donald W. Loveland 7 

Control Structures 
David A. Fisher 21 

Bliss: A Language for Programming Systems 
William A. Wulf 27 

The Kernel Approach to Building Software Systems 
Allen Newell 
Peter Freeman 
Donald McCracken 
George Robertson 39 

Faculty 53 

Departmental Staff 55 

Graduate Students 55 

Publications 59 

Research Reports 62 

Colloquia 03 

Ph.D. Dissertations 65 



S-WSssi SHs-jSKstaßfjaiüasffl > BaMasawiMMiuikMiwawiiwiM««»«»»»»^»«««««!««»«^^ 

Annual Review Introduction 
This year's annual Review provides another 

sample of research in computer science at Car- 
negie-Mellon. Like our previous samples it is 
both revealing and concealing. In terms of con- 
tent this issue's emphasis on system building 
systems (the paper by Bill Wulf and also by 
Newell ef al.) is certainly revealing of a real 
emphasis in the CMU environment—an emphasis 
that David Fisher's paper on control structures 
broadens a bit, but fundamentally reinforces. 
Donald Loveland's paper suggests that our re- 
search is broader than this, not only by repre- 
senting a more mathematical concern, but also 
by indicating a connection with artificial intelli- 
gence. But this entire sample, taken all together, 
still conceals the major growth in activity that has 
occurred this last year in the design of computer 
hardware systems and in the development of 
speech recognition systems. 

There are more basic ways in which this annual 
Review is both revealing c:-d concealing. When 
placed as the latest mamber of a sequence of 
such Reviews, it reveals a continued and invariant 
commitment to the development of a computer 
science. It reveals, thus, an unchanging aspect 
of this environment. But it thereby conceals that 
we have just undergone our most major organiza- 
tional change since we became a Department of 
Computer Science in 1965. Alan Perils has left to 
become the Higgins Professor of Computer Sci- 
ence at Yale University. Much of the outside 
world has identified computer science at CMU 
with Alan Perils. Still, only those who have been 
in this environment can appreciate how thorough- 
ly it was saturated with his presence. We wish 
him well at Yale. He claims to be finished with 
department-heading and such like occupations. 
We also wish him well in this resolve. 

Joseph Traub has joined us as the new head 
of the Department of Computer Science, having 
previously been at the University of Washington 
in Seattle and before that at Bell Laboratories. 
His principle research interest is in numerical 
mathematics, an area in which we have not pre- 
viously laid much emphasis. We welcome him 
and look forward to a continued strengthening 

■ - A.N.        and broadening of the research that has been 
PrfiCßdinfif DäCffi hlflflk 18Aug71 illustrated by these annual Reviews. 





A Brief Primer on Resolution 
Proof Procedures 

Donald W. Loveland 

For mechanical theorem proving the decade of 
the sixties has been dominated by the develop- 
ment of complete proof procedures of first order 
logic.   Moreover, this approach has itself been 
dominated  by the off-shoots of one complete 
procedure, resolution. A complete proof proced- 
ure in first order logic is a mechanical procedure 
which can always verify, given sufficient time 
and resources, that a given first order theorem 
is a theorem. Complete procedures cannot iden- 
tify all non-theorems as such.  This article con- 
tains a summary of the resolution-based complete 
procedures  (here called  resolution  strategies). 
Special strategies for handling the equality rela- 
tion, though important, have been excluded here. 

The primary purpose of an article written for 
the Computer Science Research Review of CMU 
is to portray active areas of faculty research. 
Resolution-type   proof   procedures   are   of   in- 
terest to the authori'-'i and to Professor Peter 
Andrewsi'-2! of the CMU Mathematics Department. 
The author believes that the best way to present 
the results of this interest is to present a general 
picture into which the results fit. 

A second purpose of this article is to fill a 
present gap in the survey literature. Until now 
there has been no article which a computer scien- 
tist (including a student) with a one semester 
logic background can read for a brief technical 
survey of basic rosolution theory, although the 
word "resolution" is in almost every computer 
science student's vocabulary. This article is 
structured to provide enough information (with- 
out proof) to allow a person to design a reason- 
able resolution theorem-prover with an awareness 
of the several alternate approaches available 
to him. 

The article is split into sections with the intent 
lhat some will be read more closely than others 
depending on the reader's background and inter- 
est. In particular, section 1 concerning the pre- 
paration of a formula for input to a resolution 
procedure can be omitted by anyone with some 
exposure to the literature of this area. The work 
at CMU (related to first order resolution theory) 
is contained within section 5. The only references 
to the people responsible for the ideas reported 
here are in section 7. 

Almost all of the papers so far published con- 
taining results cited in this paper are referenced 
in Meltzer's paper.10 To a lesser extent the 
references appear also in the Anderson and 
Bledsoe paper.8 Also listed are J. A. Robinson's 
basic paper on resolution," two papers of inter- 
est not referenced in Meltzer's paper,7'' a basic 
logic text" where the logical concepts needed 
tor this paper can be found, and the relevant 
papers written at CMU.1' For further study, the 
Robinson paper followed by the Anderson and 
Bledsoe paper is appropriate for those interested 
in the completeness aspects of these proof pro- 
cedures, while the Meltzer paper is more appro- 
priate for those less inclined in this direction. 



1. Preparing a Formal Expression 

The sentence to be tested for theoremhood is 
written in the (first order) predicate calcu'us. 
Preparation consists of two parts: formation of a 
first order sentence, or closed formula, which 
expresses the intuitively conceived theorem and 
then conversion of the sentence to proper input 
form. Often the first part is partially completed 
by drawing on standard knowledge of the field 
in question. This part can be quite difficult to 
execute successfully for many reasons. The sec- 
ond part is a straightforward algorithmic pro- 
cedure. A brief discussior. will be given of the 
nature of the formation of a first order sentence, 
chiefly by example, followed by a procedure fcr 
preparation of a sentence for input to a resolu- 
tion proof procedure. 

A proposed theorem is often presented as a 
set of hypotheses about an environment (call 
such statements axioms) implying some desired 
assertion. The chief difficulty in formulating such 
a sentence (we assume hereafter all sentences, 
or formulas, are assumed to be in first order 
logic) is to describe sufficiently the predicates 
introduced by axioms so as to disallow unin- 
tended interpretations. This cannot be done in 
general, as any student of logic knows, but in 
sufficiently simple cases it can be accomplished. 
It is usually the case, anyway, that a finite set of 
axioms exist which sufficiently describes the en- 
vironment with respect to the "crucial properties" 
to allow a proof of any given "true" formula. How- 
ever, thesp crucial properties are not usually 
known in advance of the proof, so one usually 
models cie's intuition and tests the results. 

Consider first a quite simple-minded real world 
example, the question if, in a particular environ- 
ment, a monkey can get some bananas suspend- 
ed from a ceiling of a room. Although the result- 
ing theorem is trivial for most theorem provers, 
the process of formation of the statement may be 
instructive. Figure 1 lists the chosen constants 
and predicates (with their intended interpreta- 
tion) plus the axioms in the final input form. The 
input form is developed later in this section. How 
might a set of formulas which generate the 
ax.icms of Figure 1 be nhosen? 

Figure 1. 
Monkey-banana problem. 

Constants: 
M = monkey 
B = bananas 
C = chair 
F - floor 

Predicates: 
reach(x,y) 

get(x,y) 
andex(x) 
close(x,y) 

on(x,y) 
under(x,y) 

tall(x) 
inroom(x) 

= x can reach y 
= x can get y 
= x is a dexterous animal 
= x is close to y 
= x is on y (x can get on y) 
= x is under y 
= x is tall (x is high) 
= x is in the (given) room 

move(x,y,z) = x can move y near z 
climb(x,y)    = x can chmb y 

Axioms: 
(i) ~ reach(x,y)   gel(x,y) 

(ii) — andex(x) ~ close(x,y)    reach(x,y) 
(Hi) ~ on(x,y) ~ under(y,B) ~ tail(y) 

close(x,B) 
(iv) ~ inroom(x) — inroom(y) ~ inroom(z) 

~ tnove(x,y,z)    c!ose(z,F)    under(y,z) 
(v) - climb(x,y)   on(x,y) 

(vi) andex(M) 
(vii) iall(C) 
(viii) inroom(M) 

(ix) inroom(B) 
(x) inroom(C) 

(xi) move(M,C,B) 
(xii) - - close(B,F) 
(xiii) climb(M,C) 

Assertion: get (M,B) 
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The assertion to be tested is whether or not 
the monkey gets the bananas. Suppose the set- 
ting is a room with the bananas suspended in a 
corner away from both the monkey and a light 
chair. The monkey en the chair would be tall 
enough to get to the bananas. The goal is 
"get(M,3)" which is named as the assertion. 
Suppose the word "reach" means physical prox- 
imity plus outstretched arm in the proper direc- 
tion. Then a natural choice of axiom is: 

(1) reach(x,y) D get(x1y) 
That is, for all x.y, if x reaches for y, x gets y. 
Note ihe implicit universal quantification of x and 
y; this is traditional and adopted here. The predi- 
cate "reach" has additional strong connotations 
which must be sufficiently described by one or 
more further axioms: 

(2) [andex(x)&close(x,y)] D reachfr.y) 
This constrains the predicate "reach" but only by 
introducing two unconstrained (or undefined) 
predicates. It is reasonable simply to assert 
"andex(Mr (see axiom vi). More axioms could 
be provided concerning the predicate "andex" 
to better specify the situation in hopes that this 
would help establish tha assertion. We refrain 
from doing so here to keep the example of mod- 
est size. By hindsight it is known that such extra 
axioms actually are not needed in this case. The 
predicate "close" is constrained by the descrip- 
tion (definition): 

(3) [on(x,y) & under(y,B) & tall(y) ] D close(x,B). 
Continuing in this manner, "under" and "on" are 
themselves constrained: 

(4) [inroom(x) & inroom(y) & inroom(z) & 
~close(z,F)] D [move(x1y)z) D under(y,z)]; 

(5) climb(x,y) D on (x,y). 
These constraints establish the need for addition- 
al predicates, but at this stage it is not unreason- 
able to define them by specific identification of 
object with property as was done with "andex". 
Hence, add axioms (vi) through (xiii) of Figure 1. 
As stated before, the assertion about the environ- 
ment is 

(6) get(M,B). 

The candidate theorem is the universal closure 
of the conjunction of formulas (1) through (6) and 
axioms (vi) through (xiii). By conjunction is 
meant connecting the formulas by &'s and by 
universal closure is meant adding sufficient uni- 
versal quanthiers around the outside of the total 
formula to leave no free variables. 

As an example of a mathematical system that 
is described by a finite number of axioms, a nat- 
ural candidate is group theory. Let P(x,y,z) be 
interpreted as x • y = z. Then a group is a struc- 
ture which satisfies the following axioms (recall 
axioms are equivalent to their universal closure)^ 

(7) 3zP(x,y,z) closure 
(8) [P(x,y,u) & P(y,z,v)] D [P(x,v,w) = P(u,z,w)] 

associativity 
(9) 3x[VyP(x,y,y)&Vy3zP(z,y,x)] 

Left identity and 
Left inverse 

The statement (7=) & (8C) & (9=) D 3x[VyP(x,y,y) & 
Vy3zP(y,z,x)], where, e.g., (7^) denotes the univer- 
sal closeure of axiom (7), illustrates a reasonable 
formula to test for theoremhood.   The intended 
interpretation is that right inverses exist for each 
element of a group. The input form of a theorem 
slightly stronger than this one will be given later. 

Elementary number theory may be the most 
important of all axiomatic mathematical theories, 
but its natural axiomization involves an infinite 
number of first order axioms. A large portion of 
elementary number theory can be handled with- 
in a finite, and indeed relatively small, number of 
axioms, but in such formulations even the sim- 
plest results of number theory seem beyond the 
present procedures when reasonable time limits 
are imposed.  This is one of the reasons why a 
different approach to theorem-proving may domi- 
nate the next decade.   However, this will  not 
automatically be the case.   Heuristics superim- 
posed on resolution strategies may outperform 
even supposedly preferable systems, just as the 
refinements to the internal combustion engine has 
to date allowed it to dominate the steam engine 
in practice. 
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Of course, formulas simply to be tested for 
logical valid ty (or unsatlsfiability) are suitable 
inputs also. For example, one might wish to 
establish that the following formula is valid- 

(10) Vx[A(x) D B(x)] D I3xA(x) D 3xB(x)].' 
Here quantifiers take the smallest scope con- 
sistent with the parenthesizing. This is also true 
for negation symbols when used. 

The proof procedures under discussion are 
capable of indicating that certain formulas are 
unsatisfiable. Therefore, the formulas actually 
used for input to the resolution procedures are 
chosen so that unsatlsfiability is the quality to 
be ascertained. Thus, a formula to be tested for 
validity is negated to yield a formula to be tested 
for unsatlsfiability, the second formula being un- 
satisfiable if and only if the original formula is 
valid. 

Steps 0 through 7 below describe how to con- 
vert a closed formula to an appropriate input 
form. The input formula is said to be in Skolem 
functional form when it is in the format obtained 
at the end of step 7. 

Assume the formula presented for testing is 
closed. If the formula has free variables, and the 
test is for validity, add to the left of the formula 
a universal quantifier of each free variable. The 
order of attachment is unimportant. For ex- 
ample, the formula A(x) D A(y) should be re- 
placed by VxVy(A(x) D A(y)). If the test is for un- 
satlsfiability, add existential quantifiers in like 
manner. 

Step 0. Obtain unsatisfiable formula. If the given 
formula is to be tested for validity, negate the 
formula. If the test is for unsatlsfiability, do not 
negate. 

Example: Test equation MO) for validity.  Thus 
negate (10) giving: 

(11) ~ (Vx[A(x) D B(x)] D [3xA(x) D 3xB(x)]] 

Step 1. Eliminate     and D. Change each occur- 
rence of R     S to (~  R V S) & (~ s V R). 
Change each occurrence of R D S to ~ R V S 

Applying this step to (11) gives: 
(12) ~[~Vx[~A(x)VB(x)]V[~3xA(x)V 

3xB(x)]]. 

Step 2. Rename variables. Change names of 
bound variable occurrences when necessary so 
that each variable appears in one quantifier. Any 
change of name, of course, must be uniform 
throughout the scope of a quantifier. The re- 
naming of variables is necessary to make the 
transformations of step 3 acceptable. 

Example (cont'd): From (12): 
(13) ~ [~ Vx[~A(x) V B(x)] V [~3yA(y) V 

3zB(z)]]. 

Step 3. Place in prenex normal form. Replace 
the formula obtained after step 2 by another 
having the quantifiers all moved to the left as far 
as possible using only the following transforma- 
tions (here A and B are arbitrary formulas and 
x denotes an arbitrary variable): 

(a) ~VxAto3x~A 
~ 3xA to Vx ~ A ; 

(b) VxAVB to Vx(AVB) , AVVxB to Vx(AVB) 
3xAVB to 3x(AVB) , AV3xB to 3x(AVB) ;' 

(c) As (b), with & everywhere replacing V. 
Notice that Vx(3yAVB) can go to Vx3y(AVB) but 
not to 3yVx(AVB), Thus quantifier order is im- 
portant. However, 3yA V VzB can go to either 
3yVz(A V B) or Vz3y(A V B). Within the range of 
permissible moves, it is very desirable to bring 
each existential quantifier to the left of as many 
universal quantifiers as possible. The reason 
will become evident later. 

Example (cont'd.):  From (13): 
(14) 3yVzVx ~[~[~ A(x) V B(x)) V [~ A(y) V 

B(2)]] 
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Step  4.   Eliminate   3. Replace  all   existentially 
quantified variable occurrences by Skolem func- 
tions.   For each existentially quantified varaible 
introduce an expression, called a (Skolem) func- 
tion instance, consisting of a new function letter 
and, as arguments, all variables which have uni- 
versal quantifiers to the left of the pertient exis- 
tential   quantifier.   A  new  constant,  i.e.,  0-ary 
function,   is   associated   with   any  existentially 
quantified variable whose quantifier precedes all 
universal quantifiers.  After all appropriate func- 
tion instances are formed, drop all quantifiers 
and then for every variable occurrence which 
has an associated function  instance (i.e., any 
variable  previously  existentially quantified)   re- 
place the variable by its associated function in- 
stance.   For  example,   3xVy3zVwP(x,y,z,w)  be- 
comes P(a,y,f(y).w) whera P is a quantifier free 
formula not containing the constant a or the 
function symbol f. 

Example (cont'd.): From (14): 
(15) ~[^[^A(x) V B(x) ] V [~A(a) V B(z) ] ], 

where a is a constant. 

Step 5. Place in conjunctive normal form. To de- 
fine conjunctive normal form it is convenient to 
introduce some useful terminology. An atomic 
formula, or atom, is a predicate instance, i.e., a 
predicate letter followed by its arguments, which 
are terms. A literal is an atom or its negation. A 
disjunctive clause, or simply clause, is a disjunc- 
tion of literals. For example, ~ P(x) V Q(x,y) V ~ 
R(y) is a clause of three literals. A quantifier-free 
formula (qff) is in conjunctive normal form (cnf) 
if it is the conjunction of clauses. Thus P(x) & 
~ Q(y) & (R(y) V ~ R(x) is in cnf. A qff is placed 
m cnf by appropriate use of the following trans- 
formations: 

(a) ~ (AVB) to ~ A & ~ B, ~ (A & B) to 
~ A V ~ B, 

(b) A V (B & C) to (AVB) & (AVC), 
(c) A to A. 

Recall that V and & are commutative and asso- 
ciative. 

Example (cont'd.): A sequence of transforma- 
tions takes (15) into a for- 
mula (16) in cnf. 

~ ~ [~A(x) V B(x)] & ~ [~A(a) V B(2)]   by (a) 
[~A(x) V B(x)] & ~ i~A(a) V B(z)] by (c) 
[~A(x) V B(x)] & ~ ~A(a) & ~B(z) by (a) 

(16) [~A(x) V B(x)] & A(a) & ~B(z)        by (c) 

Step 6. Simplify, if a formula from step 5 con- 
tains a clause with both an atom and its negation 
the clause may be eliminated. A second occur- 
rence of a literal in a clause may also be elimi- 
nated. If a clause C exists which contains all the 
literals of another clause and perhaps more, then 
clause C can be eliminated. (Stronger than this 
last condition is the rule that any subsumed 
clause can be eliminated, but it is desirable to 
defer the definition of clause subsumption.) As 
an example of simplification, 

P(x) & [Q(x) V ~ P(y) V Q(x)] & [R(x) V ~ R(x)] 
& [P(x) V Q(y)] 

can be simplified to 
P(x) & [Q(x) V ~ P(y)]. 

Example (cont'd.): step 6 introduces no chanqe 
on (16). 

Sfep 7. Reduce notation. We shift to a set nota- 
tion from a formal language notation and take 
advantage of the commutivity and associativity of 
& and V.   Each clause is treated as a set of 
literals; the V symbol Is dropped.  However, the 
standard brace couplet { } denoting the boundary 
of the membership list is omitted.   Literals of 
the same clause are simply listed adjacent to 
one another with no separating symbol,   it is 
convenient to omit parentheses and commas from 
atoms also, writing Rf(xy)xy for R(f(x,y),x,y), for 
example. Thus, for instance, the clause R(g(x),y) 
V  Q(a,f(a,y))  is  rewritten  Rg(x)y  Qaf(ay).   The 
formula  itself is altered to  read  as a set of 
clauses.   The bracket delimiters are sometimes 
used with clauses separated by commas.  Often 
formulas are presented by displaying one clause 
per line with the clauses on successive lines and 
the bracket delimiters omitted. 

Example (cont'd.): (16) becomes: 
(17) -AxBx 
(18) Aa 
(19) ~Bz 
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A formula presented as given at step 6 or step 
7 is said to be in Skolem functional form   The 
manipulations of steps 1, 2, 3, and 5 do not alter 
unsatisfiability because logical equivalences are 
mvo ved   The introduction of Skolem functions 
at step 4 preserves only the property of having 
no mode (unsatisfiability) or at least one model 
The Skolem function can be regarded as the 
verifying function  for the existential  quantifier 
making the formula true (in an interpretation) if 
and only if there exists an individual making it 
rue.   The individual would clearly depend on 

those   variables   universally   quantified   within 
whose scope the existential quantifier lies 

A theorem within a first order theory with a 
finite number of axioms is easily converted to 
Skolem functional form as each axiom may be 
converted individually. Then the resultant clauses 
plus the negation of the theorem statement forms 
the appropriate formula for input. Thus the list 
of thirteen axioms and the negation of the asser- 
tion in Figure 1 presents the monkey-banana 
prob em in input form. The group axioms (7), (8) 
and (9) m Skolem functional form are- 

from (7) 
from (8) 
from (8) 
from (9) 
from (9) 

(20) Pxyf(xy) 
(21)~ Pxyu ~ Pyzv ~ Pxvw Puzw 
(22) ~ Pxyu ~ Pyzv ~ Puzw Pxvw 
(23) Peyy 
(24) P9^e rromiM. 

It suffices to add the Skolem functional form of 
he negation of the assertion of a group theory 

theorem (and perhaps special hypotheses as 
axioms) to present a group theory problem As 
an example consider 

(25)     ~ Pag(a)e 
which arises from the negation of VxPxg(x)e 
VxPxg(x)e asserts that the left inverse function g 
(introduced as a Skolem function) is also a riqht 
inverse function. a 

Sometimes a more desirable conversion can 
be obtained by introducing Skolem functions be- 
fore obtaining a prenex normal form 

2. The Basic Operation of Resolution 

Resolution can be characterized as the cut 
inference rule (or a generalized modus ponens 
inference rule) of prepositional logic with an 
appropriate substitution   rule.   Alternately   one 

^A/^PV6!0.'"110" is based on ,he tautology 
AVC & (^ CVB) D AVB). Consider the prepo- 

sitional part of resolution first. Two literals are 
complementary if one difters from the other only 
by possession of a negation sign. Px and ~ Px 
are complementary literals. At the prepositional 
level the resolution operation takes two parent 

c
C'am

U^S A^ •• An and B.B, ... Bm shading a 
commentary Pair of literals, the literals re- 
solved upon, say B, .-. ^ A,, and yields the re- 
solvent clause A2A3 . . . AnB2 .". . B (For formula _„»_.. <  ' ""? • • • "m- \rui lormuia 
nota ion see section 1, step 7). That is, the literal 
resolved upon in each clause is deleted and the 
remaining literals comprise the resolvent It is 
always assumed that no two literals of a clause 
are .denncal. Thus Bk, k > 2, is omitted from ex 
phcit appearance if Bt = A, for some i > 2 

Substitution is used to form a complementary 
parr between two clauses when none exists ex- 
plicitly.   For example, PxRu and ~ Pf(y)Qu are 
two clauses not qualified for resolution as given 
above, but by replacing the x by f(y) clauses 
Pf(y)Ru and ~ Pf(y)Qu can be re

y
soI^d t0   e 

RuQz   Note that the variable u in PxRu is not 
.dent.f.ed with the u of ~ Pf(y)Qu. A, the b    in. 
nmg of the resolution operation variables are re- 
named so no variable is named in both clauses 
The subst.tutions are always made uniformly at 

c"u?sCeCUrrenCeS 0f a Variab,e in any claüse' of 

Let v/ = A.A, ... An and <B = B.B,.. . B   reo- 
resent two clauses, with A, and B, two literals 
one from each clause. The resolvent of .J and «B 

follows.8"601,0 Ai '^ Bk' ' " eXiS,S' iS found a« 
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(1) Check if A, and Bk have the same predicate 
letter and precisely one has a negation 
sign. Halt, if this is not the case, since no 
resolvent clause with respect to A| and Bk 
exists. Otherwise, proceed. 

(2) Change variable names of "B as necessary 
so that no variable name is shared by a4 
and "B. 

(3) Match JA,! and |B„|, the atoms of A, and Bk, 
respectively by appropriate substitutions in 
each literal (the matching procedure is out- 
lined below). If the matching is unsuccess- 
ful, no resolvent exists, so halt. Otherwise, 
make the appropriate substitutions through 
cA and "B so thatc//' and "B' are substitution 
instances of c4 and 'B and A, and Bk are the 
complementary literals determined by the 
matching procedure. 

(4) Form the resolvent by deleting A,' and Bk' 
and putting the remaining literals of c/l' and 
"B' minus redundancies in a single clause 
(as demonstrated above). 

The matching procedure between atoms [Ail 
and |Bk| finds a substitution instance for each 
atom to make them identical if such a substitu- 
tion exists. The substitution obtained is in a suit- 
able sense the most general substitution possible, 
an important property for attaining complete proof 
procedures. This can be performed as follows. 
Let [A,] and Bk| share no variable names. The 
atoms are considered written as on paper in the 
notation adopted, all symbols in sequence. 

(a) Set a pointed at the predicate letter of |A|| 
and a pointer at the predicate letter of |Bk|. 

(b) Move the pointers in parallel to the right 
one symbol at a time (including parenthe- 
ses if present). Stop at the first place the 
pointers point to different symbols. If the 
end is (simultaneously) reached first, the 
atoms match; exit. Otherwise, proceed 
to (c). 

(c) If one pointer points to a parenthesis, or 
precisely one pointer has come to the end, 
there is a notational error (this shouldn't 
occur). If neither pointed points to a vari- 
able, match attempt fails; exit. If one 
pointer points to a function letter, search 
the function's arguments for an occurrence 
(at any depth) of the variable indicated by 
the other pointer. If an occurrence exists, 
match fails; exit. In all other cases, re- 
place the variable v at one pointer by the 
the term whose first symbol is indicated 
by the other pointer. The replacement oc- 
curs at all occurrences of v in both literals. 
The two pointers now agree. Return to (b). 

As an example, consider matching Pxf(y) and 
Pg(ww)w. A match exists, the common atom is 
P9(f(y)f(y))f(y), whereas Pxf(y) and Pyf(g(x)) do 
not match. This latter example serves to empha- 
size that the variable renaming that is part of the 
resolution operation is not part of the matching 
operation. 

One other necessary notion is that of a factor 
of a clause. A factor of clause c^ is a substitution 
instance c//' of c// determined by finding a match 
between two atoms of the clause that makes the 
two corresponding literals of c// identical. Thus 
QaPf(a)a is a factor of QxPf(x)xPya. Note that 
here variables are not renamed to make each 
literal have distinct variables as substitutions are 
always uniform throughout clauses. Thus Pf(a)a 
is not a factor of Pf(x)xPxa. A factor of a factor 
of o// is defined to be a factor of rj. Clearly a 
clause has only a finite number of factors. Ex- 
ample 1 below shows factoring is necessary for 
completeness. No refutation (see below) exists 
without factoring. 
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The basic resolution procedure proceeds as 
follows. Start with the set of given clauses as 
the "present" set. 

Form all possible resolvents of clauses of the 
present set and their factors. If the empty 
clause □ (the clause with not literals, the 
resolvent of two one-literal parent clauses) 
is formed, the given set represents an un- 
satisfiable formula. Otherwise, delete all 
tautologies (clauses with complementary lit- 
erals). Define the remaining clauses as the 
present set and return to the beginning of 
this paragraph. 

Each cycle of these instructions generates a new 
level of resolvents. The level of a clause is de- 
termined by the level of its first appearance. The 
calculation of all resolvents and factors of a 
given level at once is called a level saturation 
search. 

The need for factors is seen from applying the 
resolution operation alone to the two member 
unsatisfiable set S of clauses given by S = 
{PuPv, ~ Px - Py}. Although clearly unsatisfi- 
able (replace u,v,x,y by a) the resolvents are all 
two literal clauses. However, a is derived in the 
first cycle of the basic resolution procedure, thus 
D "occurs at level 1". See Examp'a 1 below. 

The justification for the correctness (sound- 
ness) and sufficiency (completeness) of the above 
procedure and those that follow come from the 
theorem due to Herbrand: If S is a formula in 
Skolem functional form then S is unsatisfiable if 
and only if there exist clause substitution in- 
stances C Cn such that C, & Cj & . .    & Cn 

is unsatisfiable. 

Three examples follow of deductions of D, two 
of which are from examples of section 1. A 
resolution deduction of clause C is a sequence 
of clauses, each a (substitution) instance of a 
clause of the given set S, a factor of a preceding 
clause, or a resolvent of two preceding clauses 
of the deduction and with last clause C. A de- 
duction of D is called a refutation. 

Example 1: A refutation of {PuPv, ~ Px ~ Py}: 
PuPv 

~ Px ~ Py 
Pu 

~ Px 
D 

given 
given 
factor of 1 
factor of 2 
resolvent of 3,4 

Example 2: A refutation of (11) of section 1 which 
in Skolem functional form appears as 
clauses (17), (18), (19): 

1. -AxBx (17) 
2. Aa (18) 
3. ~P^ (19) 
4. Ba resolvent of 1,2 
5. D resolvent of 3,4 

Examples: A  refutation  of  the  set 
(20) — (25), section 1: 

1. Pxyf(xy) 
2. ~ Pxyu ~ Pyzv ~ PxvwPuzw 
3. ~ Pxyu ~ Py^v ~ PuzwPxvw 
4. Peyy 
5. Pg(y)ye 
6. ~ Pag(a)e 
7. ~ Pxya ~ Pyg(a)v - Pxve 
8. ~ Pg(v)ya ~ Pyg(a)v 
9. ~ Pg(g(a))ea 

10. ~ Pg(g(a))yu ~ Pyze ~ Puza 
11. - Pg(g(a))ye ~ Pyae 
12. ^Pg(Q(a))g(a)e 
13. D 

of clauses 

(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
resolvent of 6,2 
resolvent of 7,5 
resolvent of 8,4 
resolvent of 9,3 
resolvent of 10,4 
resolvent of 11,5 
resolvent of 12,5 

The reader can quickly check that axioms (i) 
through (xiii) together with the negation of the 
assertion for the monkey-banana problem define 
a set of clauses which yields a refutation. 
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3. The Unit Preference and Set-of-Support 
Strategies 

Perhaps the earliest strategy to be applied to 
resolution Is the unit preference strategy. The 
basic idea is simple: resolve with one-literal 
(i.e., unit) clauses more often than called for by 
the basic resolution procedure. One can indeed 
demand that the only resolution operations al- 
lowed will be when at least one clause is a unit 
clause. This may prevent finding, even theoreti- 
cally, some refutations (i.e., this is not a complete 
process) but many sets of clauses can be shown 
unsatisfiable in this way with a great gain in 
search time over the basic procedure. Complete- 
ness is regained if the process intermittently 
forms the resolvents of various pairs of non-unit 
clauses so that eventually each level of resolv- 
ents is completed. Examples 1, 2, and 3 of the 
preceding section are "unit" proofs, i.e., have no 
resolvents of two non-unit clauses. 

The set-of-support strategy sharply limits the 
clauses obtained at the first level by the basic 
resolution procedure. Let S denote the given set 
of clauses (e.g., lines 1-6, example 3) and T be 
any satisfiable subset of S (e.g., lines 1-5, ex- 
ample 3). The set-of-si'oport strategy states that 
two clauses of T are not to be resolved together. 
A deduction under such constratint is said to "have 
set-of-support S-T". Example 3 is a refutation 
with sel-of-supporf S-T where S-T contains only 
clause 6. The set-of-support strategy is complete. 
It is often used in conjunction with the unit 
preference strategy. 

A very useful rule is the subsumption principle. 
Discard any clause C if there exists a clause D 
with a substitution instance D' such that every 
literal of D' is a literal of C. For example, Px 
subsumes PaQb so the latter should be discarded 
in the presence of Px. 

Another rule of some usefulness, the purity 
rule, states that any clause may be discarded if 
it contains a literal with no complement among 
the substitution instances of the given set of 
clauses. Both rules are applicable to the com- 
bined unit preference, set-of-support strategy. 

4. Partition Strategies 

Let S be a given set of clauses. Let M be a 
set of literals such that no two literals have sub- 
stitution instances which are complementary. We 
call M a setting. Thus {Px, ~ Rf(y)} is a setting 
but {Px, ~ Pf(y)} is not. A setting is a partition 
M, of S if every literal of (a clause of) S is identi- 
cal to, or a complement of, a substitution instance 
of a literal of Mv Examples of partitions of S are 
(1) the set of all atoms of S and (2) the set of 
negations of all atoms of S. A partition strategy 
is a resolution procedure where one parent clause 
of every resolution operation contains no literal 
which is a substitution instance of a literal of M.. 
Such a clause is called false in M,. Example 3 of 
section 2 is a refutation realizable within the 
partition strategy where M, is the set of all atoms 
of the given set S. Therefore, one parent clause 
of each resolution operation contains only ne- 
gated atoms in this example. Partition strategies 
are complete for any choice of partition. Unit 
preference can be combined with partition strate- 
gies, often to advantage, with completeness main- 
tained. A set-of-support strategy generally does 
not combine with a partition strategy to maintain 
completeness. However, a partition strategy can 
be regarded as a generalized set-of-support itself. 
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Ordering strategies can be superimposed on a 
partition strategy. This is highly effective in some 
cases and preserves completeness. For example, 
if the set S contains many predicate letters (such 
as occurs in information retrieval systems), assign 
an order to the predicate letters. Order all clauses 
that are false in Ms by ordering on predicate 
letters with the symbol < (less than), also read 
"to the left of;" in every other clause form the 
maximal length subclause false in Ms ordered by 
the predicate letter ordering.  Place any remain- 
ing literals of the clause after (to the right of) 
the ordered subclause;  these  literals may be 
placed in any desired order among themselves, 
if any clause false in Ms has several literals each 
of which could be rightmost, the clause is listed 
once for each  of these  "equal"  literals  with 
that literal occurring farthest right. A resolution 
operation is performed only if the rightmost literal 
of each clause is the literal resolved upon (also, 
of course, only if one parent is false in MJ. The 
resolvent is ordered as above. An example of a 
refutation realizable within this combined strategy 
is given below. 

Example 4: The given set S of clauses is listed 
in lines 1, 3-6. Ms is the set of all 
negations of atoms of S. Note that 
line 2 gives the same clause as line 1 
(clause 1 is false in MJ. The ordering 
of predicate letters is A < B. 

Aa Ab given clause 
Ab Aa clause 1, alternate order 
Ax Bx ~ Aa given clause 
Ax ~ Aa ~ Bx given clause 
Aa ~- Ax given clause 

~ Aa ~ Ab given clause 
Aa resolvent of 1,5 
Ax Bx resolvent of 7,3 
Ax ~ Aa resolvent of 8,4 
Ax resolvent of 9,7 

~ Aa resolvent of 10,6 
D resolvent of 11,7 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

5. Linear Resolution Slrategies 

The strategies considered in this section differ 
essentially from the preceding strategies which 
were oriented towards modifying, but not drasti- 
cally altering, the level saturation search of basic 
resolution. Linear resolution is depth oriented 
with little interaction between clauses at a given 
level. The definition is best given in terms of a 
deduction (defined a? the end of section 2). 

A linear (resolution) deduction "D of clause B„ 
is a resolution deduction B Bn where B," 
1 < i < k is a member, or a factor of a member' 
of the given set S and Bkli, 1 < i < n-k, is either 
a resolvent with B,,,,., as one parent clause, called 
the near parent, or (BM is) a factor of B^,.,.   If 
Bk+| is a resolvent then thei far parent of BJ must 
must be a Bm, or a factor of Bm, for some m<k+i. 
The initial sequence B,,.   ., Bt of 'D is called the 
prefix of 'D.   Although the definition of linear 
deduction just given allows a far parent to be a 
factor not explicitly appearing in the deduction, 
it can be shown that completeness is preserved 
and little flexibility lost if such an implicit factor- 
ing is disallowed.  A linear refutation is a linear 
deduction of D. Example 3 (section 2) is a linear 
refutation and Example 2 would be if lines 1 and 
3 were interchanged.  It might be instructive for 
the reader to find a linear refutation for the given 
set of Example 1. 

A more restrictive complete resolution strategy 
is that of s-linear resolution (so-called because 
the added restriction can be expressed in terms 
of a subsumpfion condition).  An s-linear refuta- 
tion 1) is a linear refutation with the following 
restriction: the far parent of a resolvent is either 
chosen from the prefix of 'D or is chosen from 
■D so that a certain modified resolvent is formed. 
The modilied resolvent must be a factor of the 
usual resolvent and also a substitution instance 
of the near parent clause minus its literal re- 
solved upon.   For example, if the near parent 
clause is AxByCz, then the clause Aa ~ Ob is an 
acceptable far parent clause even if not in the 
prefix  of "D for then take AaBy,  a factor of 
resolvent AxByAa, as the modified resolvent.   If 
a modified resolvent exists, in general it can be 
found by factoring the resolvent on the literals 
that arise from the far parent, as done above. 
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The process of finding modified resolvents is 
more complex than finding standard resolvents, 
but fewer far parents are now acceptable which 
prunes the search space of deductions nt any 
given depth of search. Example 5 below is an 
s-linear refutation where lines 8 and 11 satisfy 
the modified resolvent condition. (Line 8 is also 
permitted because the far parent is in the prefix 
of the deduction.) 

A strategy called merging may be superim- 
posied on s-linear refutation. A resolvent of two 
clauses, neither a tautology, is called a merge 
resolvent with merge literals L Lr, n > 1, if 
and only if the substitution instances of the two 
parents which form the resolvent propositionally 
each have L Ln as literals.  Thus AaBf(a) is 
a merge resolvent of AaByAg(x) and AxBf(x) ~ Ay. 
Note that the ordinary resolvent is AaByAxBf(x), 
so here a further substitution is necessary to 
produce a merge resolvent with merge literals 
Aa and Bf(a). The merge condition is added to 
s-linear resolution in the following way. If the 
far parent is not a member of the prefix of T), 
it must be a merge resolvent with a merge literal 
as the literal resolved upon (in addition to the 
s-linear resolution requirement). 

As with the strategies of the preceding sec- 
tions, tautologies need not be used. However, 
there are some sets S for which there is a clause 
C such that if C is the first near parent clause, 
then there exists a refutation of S "from C" if 
and only if tautologies are permitted. However, 
a "set-of-support" condition holds. If S- {C} is 
satisfiable and S is unsafisfiable, then there exists 
a refutation from clause C in any of the strategies 
considered in this section with no tautology 
appearing. 

There are further conditions which can be im- 
posed on s-linear resolution. A deduction is 
tight if and only if no clause subsumes (see sec- 
tion 3 a later clause in the deduction. An s-linear 
deduction is an ordered clause deJuction if all 
clauses are ordered (say, left to right when writ- 
ten) and every literal resolved on for near parent 
clauses and every literal factored is the rightmost 
literal of that clause. This last definition omits 
some technicalities (and improvements) which do 
not seriously alter the nature of the strategy. A 
version of merging can be incorporated with 
these strategies so that completeness is retained. 

Example 3 gives a tight ordered clause deduc- 
tion with line 6 as first near parent clause. The 
prefix is lines 1-6. Notice all far parents are 
members of the prefix. Such a refutation is called 
an input refutation. One of the more interesting 
results of resolution theory states that S has an 
input refutation if and only if it has a unit clause 
refutation. In general they are not the same re- 
futation. 

We give as Example 5 a tight ordered clause 
refutation with the merging condition that is not 
an input refutation. 

Examples: The given set of clauses is that of 
Example 4 and appears on lines 1-5. 
Lines 1-5 needn't be considered or- 
dered clauses as there is no order 
condition on the far parent. Line 5 
is considered ordered when viewed 
as first near parent, however. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 

AaAb 
~ Aa Ax Bx 
~ Bx Aa Ax 
~ Ax Aa 
~ Aa ~ Ab 
~ AaBb 
- AaAb 
~ Aa 

Ab 
Aa 
□ 

merge literal. 

given 
given 
given 
given 
given 
resolvent of 5,2 
resolvent of 6,3 
resolvent of 7,5 
resolvent of 8,1 
resolvent of 9,4 
resolvent of 10, 
line 8 
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The far parent condition of s-linear resolution 
and the tightness conditions, though strong, are 
expensive to check because in general several 
matchings need be checked per candidate. This 
costly multiple matching can be reduced to single 
matching by altering the resolution format of a 
tight ordered clause strategy in the following 
manner. When performing a resolution operation 
instead of deleting the rightmost literal of the 
near parent clause, retain it as a distinguished 
literal (we shall indicate such literals with bold- 
face) and add the far parent minus the literal 
resolved upon to the right as before. Any literal 
identical to a near parent literal is not added. A 
new optional operation (reduction) is added also. 
If a distinguished literal can be made complemen- 
tary to the rightmost literal in the clause, one 
forms the (ordered) clause with the appropriate 
substitution but with the rightmost literal deleted. 
Finally, one always deletes distinguished literals 
to the right of the rightmost ordinary literal as 
soon as that condition occurs within any opera- 
tion. Example 6 gives the same refutation as 
Example 5 in the new notation. 

Example 6: 
1. AaAb 
2. Ax Bx ~ Aa 
3. Ax ~ Aa ~ Bx 
4. Aa ~ Ax 
5. ~ Aa ~ Ab 
6. ~ Aa ~ Ab Bb 
7. ~ Aa ~ Ab Bb Ab 
8. ~Aa 
9. ~ AaAb 

10. ~ Aa Ab Aa 
11. D 

given 
given 
given 
given 
given 
far parent, 2 
far parent, 3 
reduction 
far parent, 1 
far parent, 4 

This strategy actually is a special type of model 
elimination procedure developed independently 
of resolution theory. There is more to that pro- 
cedure than outlined here, including some tests 
for rejection of bad deductions, use of "lemmas," 
etc. This can all be regarded as a refinement of 
linear resolution. 

6. Implementation 

Some variation of each of the strategies men- 
tioned here has been realized on the computer. 
To the author's knowledge, no strategy of any of 
the three categories (sections 3, 4, and 5) has 
uniformly dominated the others. For example, 
the s-linear resolution strategy (actually in model 
elimination format) has given some dramatic re- 
sults in search speed In cases where refutation 
existed by chance near the beginning of its 
search space (actually not too infrequent an 
occurrence because of multiple proof paths) but 
it can be equally unlucky and get "lost" in a 
search of outwardly, the "same size." The modi- 
fied level saturation types soem to be more uni- 
form in their performance, not reaching either 
extreme. 

Completeness is not the final criterion of de- 
sirability for implementation, it is useful to know 
that when one piles the merging condii.on on 
top of tightness, plus ordering, on top of s-linear- 
ity on top of linearity that the result is a complete 
procedure, for at first glance it might seem un- 
likely to yield a single refutation. However, per- 
formance is the final arbiter. With this mind, 
programs exist that allow the superposition of 
strategies from two or even all these categories 
and some mixes have been quite beneficial for 
some sample problems. Also, "classical" heur- 
istic procedures can be superimposed. One can 
envision a GPS-type difference analysis coupled 
to a linear resolution strategy, for example. 

Resolution procedures have proved simple 
elementary (i.e., formal) group theory and ele- 
mentary number theory problems (the latter when 
appropriate lemmas were given in the axiom set). 
Although these are real mathematical problems, 
and beyond the theorem provers of a decade 
ago, they are homework exercises for mathe- 
matics majors. Resolution procedures occur in 
some question-answerer (q-a) systems as the in- 
ference device. Such systems apparently are 
among the most competent q-a systems in exis- 
tence. A system using resolution strategies has 
verified recently published results on Boolean 
algebras whose proofs were not totally trivial. 
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Control Structures 

David A. Fisher 

Computer science is concerned with automata 
which can perform various operations. These 
operations differ from the usual functions of 
mathematics in that there is a time interval asso- 
ciated with each one. Consequently, the com- 
puter scientist is concerned with algorithms, i.e., 
with sequences of operations which approximate 
functions of logic in a finite time. Any single time 
ordered sequence of operations performed in an 
execution of an algorithm is called a control path. 
Those operations which determine the control 
path(s) to be followed through an algorithm are 
called control operations. The control operations 
of an algorithm together with the interpretation 
rules for the non-control operations constitute 
the control structure of the algorithm. 

Despite the importance of control to computer 
science, until recently1 little direct attention has 
been given to it. What are the control struc- 
tures of current programming languages? Are 
there other useful control structures? How can 
control be described formally? Can control struc- 
tures be composed, say, in the manner of func- 
tions? Can the use of control structures better 
suited to a task simplify that task or expose the 
significant problems of that task? 

No attempt will be made to answer all of these 
questions here. Instead, a set of primitive control 
operations will be defined from which it is 
claimed all others can be formed by composition. 
A few specialized control structures will then be 
defined by composition of these primitives. 

A set of primitive control operations should be 
large enough to span the space of control struc- 
tures but small enough to be manageable. Care 
must be exercised with the first requirement. It 
might be concluded that sequential processing 
and a conditional control, the only control struc- 
tures of the Turing machine, are sufficient. There 
are, however, useful and interesting properties of 
control structures that cannot be described in 
terms of just these two controls. If parallel pro- 
cessing were described by its simulation using 
sequential control primitives and by means of 

some scheduling algorithm, then, though one 
might come to understand parallel processing as 
a particular interleaved execution of sequential 
processes, the idea of concurrent execution 
would not be conveyed. Concurrency is a con- 
cept which cannot be composed purely from 
sequential primitives. 

Functional notation (e.g., f(X|,x2l.. .xn) where 
0 ^ n and the x/s may themselves be functional 
forms) will be used to describe the primitive con- 
trol operations and their compositions. For a 
non-control operation f, ffx,^,... xn) will be 
given the following interpretation: evaluate each 
of the x/s and apply the operation f to the result- 
ing values. This, implies that each of the argu- 
ments to a non-control operation must produce 
a value. 

For control operations the same notation will 
be used, but each operation will have a unique 
interpretation. For example, the control operation 
"if(c,x,y)" might be defined as follows: (1) Evalu- 
ate c (assumed to be a boolean expression). (2) 
If the resulting value is true, then evaluate x and 
take that resulting value as the value of //. (3) 
Otherwise evaluate y and take that resulting value 
as the value of //. In no case are both x and y 
to be evaluated. Note that to describe if as above 
the expressions for x and y rather than their 
values are treated as arguments to If. Thus the 
control operations are those operations which 
have expressions as their arguments. In the 
definitions below, those formal parameter names 
which refer to expressions are in boldface. 

The controls to be proposed are primitive in 
the sense that each encompasses only a single 
idea. This contrasts with many of the specalized 
controls (e.g., for statements of Algol-60) of cur- 
rent languages. This makes it possible to pro- 
vide accurate descriptions of the other control 
structures and to guarantee that composition 
will be meaningful, (e.g., with for, composition is 
restricted to strict imbedding). The proposed 
control operations follow. 
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The Primitive Operations 

seq(X|,x2l... xn) Sequential processing. 
The sequsnlial processing operation seq causes 

its arguments to be evaluated in the order given 
from left to right in such a way that the evaluation 
of an argument will not beoin until the evaluation 
of all arguments to its left are complete. Only 
that value produced by the evaluation of x„ will 
be taken as the value of seq. This means that 
the purpose of the evaluations of X|,x2,... xn.| 
must have been side effects (i.e., changes they 
impose on the environment). Evaluation for side 
effects only is usually called execution, although 
we will use the terms interchangeably. 

par(xl)x2,... xr) Parallel processing. 
The parallel processing control operation par 

causes its arguments to be evaluated indepen- 
dently (i.e., in parallel) as if each had its own 
processor. No assumptions are made about the 
relative speeds of these processors, so there 
are no guarantees concerning the chronogolical 
order of their side effects. These effects can, 
however, be controlled by the synchronization 
of the parallel control paths as described below. 
The establishment of parallel paths has no spe- 
cial effect on the environmental data structure 
of a program. In particular, copies of the en- 
vironment are not made for eaoh path, so that 
they must share the same global variables and 
define their own local variables. The value of x„ 
is taken as the value of par but is returned only 
after the execution of all the x/s is complete. 

cond(cl,xl,c2,x2,...) Condition testing. 
The conditional operation cond has an even 

number of arcjuments. Beginning with the left- 
most argument, every other argument will be 
evaluated in order from left to right until one 
having value true is encountered. The argument 
immediately to the right of this argument will 
then be evaluated and the result taken as the 
va)ue of cond. If none of the odd numbered 
arguments evaluates to true, the value of the ex- 
pression is undefined and none of the even num- 
bered arguments is evaluated. 

monitor(c,x) Monitoring. 
The monitor operation monitor causes the ex- 

pression c to be continuously evaluated until its 
value becomes (rue. The value of c can change only 
when the value of at least one of the variables of 
the expression c is changed as a side effect of a 
parallel path. (In practice c might be reevaluated 
only when any of its variables changes.) When 
the value of c becomes true, the repetitive evalu- 
ation of c will be terminated, the expression x 
will be evaluated, and the resulting value taken 
as the value of monitor. No assumption is made 
about the relative speeds of the processors which 
change the variables of c and the processor 
which evaluates c. Thus, as in parallel process- 
ing, synchronization is handled by a separate 
control operation as described below. 
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synch(d,x,y) Synchronizing. 
The operation sync/7 provides a number of 

equivalent functions: synchronization of parallel 
or interleaved processes, mutual exclusion,2 

and indivisibility of operations. The argument d 
must be a data structure. The argument x is an 
expression which will be evaluated only if no 
other sync/? with d as its first argument is simul- 
taneously evaluating its second argument. The 
argument y is an expression which will be evalu- 
ated whenever x cannot be evaluated. Thus, if 
several synch operations are executed simulta- 
neously on the same datum d then exactly one 
will have its second argument evaluated (which 
one is, however, undetermined). In no case does 
the synch operation cause waiting as with moni- 
tor. 

The synch operation can be used for mutual 
exclusion to guarantee that only one process at 
a time executes a critical section of a program 
or modifies a datum. Sync/? also provides for the 
relative indivisibility of operations because, for 
all synch operations on a given datum, the evalu- 
ation of their second arguments cannot be simul- 
taneous or interleaved (i.e., they are indivisible 
with respect to that datum). 

cont(x) Continuous processing. 
One control path will be called continuous with 

respect to another control path if and only if all 
non-monitoring operations of the former path oc- 
cur between two consecutive steps (i.e., state 
changes) of the latter. The control operation 
cont causes the evaluation of its argument to be 
continuous with respect to all other control paths. 
If two conf operations are executed simultaneous- 
ly then the evaluation of both their arguments 
would be continuous with respect to other paral- 
lel control paths, but would be as normal con- 
trol paths with respect to each other (e.g., synch 
would be required for mutual exclusion). Be- 
cause continuous and parallel processing opera- 
tions can be embedded within each other to 
arbitrary depth, many levels of relative continu- 
ity can occur. These roughly approximate the 
priority levels found in some operating systems. 

return(v,p) Call and return. 
The previous operations can be combined 

using functional composition to define new con- 
trol operations (e.g., f). Whenever such an oper- 
ation is called (e.g., f(X|,x2,...)) then the actual 
parameters, the Xi's, are associated with the cor- 
responding formal parameter names and control 
is passed to the expression defining f. The object 
which describes the dynamic state of the evalu- 
ation for a single activation of an operation will 
be called a process. The calling operation is im- 
plicit in the use of functional notation and need 
not be symbolized separately. 

In many cases control is to be returned to the 
calling process after the expression defining the 
operation has been evaluated. The control opera- 
tion return(v,p) causes both control and value v 
to be returned to the process p (usually the 
caller). 

self() and caller() 
The operations self and caller although not 

control operations will be useful in describing 
other operations. The value of self is the process 
in which it is executed. The value of caller is the 
process which called the current process. 

quole(x) and evat(y,e) 
The quote operation is used to inhibit the eval- 

uation of the expression x.   Eval evaijates the 
expression y in the context of environment (i.e., 
process e. Thus for any expression x: 

x= eval (quote(x),self()). 



■r'^3^^'^tMmmmt'smmi^imiimmmesammmmi^0!SSM 

24 

m 

Examples of Control Structure Construction 

Consider now some specific control structures 
which can be built from the preceding primitives. 
One commonly used control is the coroutine.1 

A coroutine relation between two processes is 
similar to the subroutine in that the initial call 
builds a new process and passes control to that 
process. The coroutine process, however, may 
pass control back to its caller before reaching 
its final return. Intermediate coroutine returns 
can be defined as follows: 

cocall(v,p) = return(v,p). 
Here v is the value to be returned and p is the 

coprocess (either caller or called). Notice the 
symmetry which permits each of the coprocesses 
to treat the other as if it were a subroutine (i.e., 
calling the process with the routine coca// and 
receiving the return value via the return in the 
expression defining coca//. 

For the remaining examples additional mne- 
monic notation will be used. Infix operators will 
be used for noncontrol operations, "x" will be 
"sed tor quote(x), ffx^Xj,...] will be used for 
f("x,","x2",...), 'x will be used for return 
(x,caller()), {c^x,; c2-»x2;...} will be used for 
cond("cl","x,","c2","x2"- ■ • •), and xe will be used 
to -eference the variable whose name is the value 
of x in the context of the environment which is 
the value of e. 

Another useful control structure is iteration. 
This might lake the form while(c,x,e) where the 
expression x is repetitively evaluated as long as 
the value of c is true and both c and x are to be 
evaluated in the context of environment e. To be 
more precise, while (c,x,e) first evaluates c in the 
context of e. If the resulting value is true, then 
first x is evaluated in the context of e and second 
(i.e., after the evaluation of x is completed) the 
while operation is repeated. If an evaluation of c 
does not yield true then control is returned to the 
calling process. Note the similarity between the 
above English definition of while (the previous 
three sentences) and the formal definition as a 
composition of primitive control operations below: 

while(c,x,e) =* (eval(c,e)-»seq[eval(x,e); 
while(c,x,e)]}. 

The while operation can be used to define more 
specialized iterative control structures. The Al- 
gol-60 form for l=A sfep B until C do S has sev- 
eral interpretations [4]. A liberal interpretation of 
the Algol report (5] would allow the expressions, 
I, A, B,and C to be evaluated only once giving the 
following definition 

for(l,A,B.C,S) =* seq[|.caller() := A; whllefA-c* 
.      t sign(B) S 0", 
Req[eval(S,caller()); l-caller() := A := A+B]", 

self())].' 
The notation lcaller() is used to indicate the 

(unique) I in the environment of the caller existent 
at the call. 

A strict interpretation, however, would require 
that all the arguments be evaluated for each iter- 
ation (in fact that B be evaluated twice and the 
address of I evaluated three times) as follows: 

for(l,A,B,C,S) =* seq|eval(l,caller()).caller() := 
eval(A,caller()); 

while("eval(l,caller() ).caller() 
-eval(C,caller())xsign(eval(B,caller())) S 0", 
•'seq(eval(S,caller()); eval(l,caller()).caller() := 

eval(l,callor()) ■ callerQ + eval(B,caller())", 
self())]. 

The Algol condition // C then X else Y can be de- 
fined as: 

if(C,X,Y) =* ( C->eval(X,caller()); 
true-»eval(Ytcaller())}. 
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A more unusual control structure is the side- 
track control3 which can be used to describe 
breadth first tree search algorithms (e.g., recog- 
nizers for context-free grammars). The operation 
sidetraek{A,y) causes the expressions x and y to 
be evaluated in parallel. The expressions repre- 
sent alternative branches of a binary search tree. 
When a failure condition is encountered in one 
of these branches the associated control path will 
be terminated by execution of the operation fer- 
minate{).  If a branch is successful, control (and 
possibly a value) will be returned to the caller of 
sidetrack. Because both branches might be suc- 
cessful (e.g., an ambiguous string in the case of 
a parser), there may be several returns of control 
to the same process.  To prevent the resulting 
conflict of states, all returns will be made using 
the multiple parallel return operation mpr which 
returns not to the specified process but tc a copy 
of it. The operations sidetrack, and mpr are de- 
fined below: 

sidetrack(x,y,p) = par[mpr(x,p); mpr(y,p)] 
mpr(x,p) = return(eval(x,p),copy(p)) 

A recognizer R for terminal strings of r where 
r ::=: A|B r could be written as: 

R(string) = sidetrack("{head(string) = 'A' -» 
tail(sfring); true -»terminate()}", 

"{head(string)= '8'-: R{tail(string)); true -» 
terminate()}",self()) 

UnderstanJing of control is in its infancy. The 
above has attempted to isolate and solidify some 
of the concepts and indicate the potential for 
formal means for defining control.  Here the ap- 
proach was to define control structures as com- 
positions of a given set of primitive control oper- 
ations.  The choice of primitives was somewhat 
arbitrary within the requirements for simplicity of 
the individual primitives and that they span one's 
intuitive understanding of the space of control 
structures. Other choices could have been made 
(in fact, a slightly modified set of primitives is 
being implemented to satisfy an additional re- 
quirement: run time efficiency on existing hard- 
ware).  Finally, a few examples have been givon 
to illustrate some of fhe variety in control struc- 
tures and to demonstrate control definition by 
composition of the proposed primitives.   Addi- 
tional examples ore given in reference 3. 
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Bliss: 
A Language for Programming Systems 

William A. Wulf 

The development of sophisticated programming 
systems, notably programming languages and 
operating systems, has largely been responsible 
for the increasingly wide application of com- 
puters. The primary objective of these systems 
is to permit the solution of a problem to be stated 
more concisely, and in terms more natural to 
the problem, than is possible with the numeric 
instruction encoding interpreted by computer 
hardware. This paper deals wilh a programming 
system, specifically a programming language, 
which is designed primarily for writing other pro- 
gramming systems. 

It is curious, but true, that although great 
strides have been made in creating programming 
systems to support the programming activities of 
application areas, systems programmers them- 
selves have been the beneficiary of almost none 
of this progress. In particular, the vast majority 
of programming systems continue to be written 
in assembly language—scarcely one step re- 
moved from the hardware numeric encodings. 
Why? Why haven't systems programmers chosen 
to write their systems using existing programming 
systems, particularly a programming language, 
and why hasn't their management insisted upon 
it? The advantage of using a so-called "higher- 
level" language are well known and thoroughly 
documented: programmers are most productive, 
programs contain fewer errors and are more 
easily repaired, programs are more easily under- 
stood and modified, etc. 

Part of the reason why systems programmers 
continue to use archaic tools is simply inertia— 
it's always been done that way. A more signifi- 
cant reason, however, is the feeling on the part 
of practicing systems programmers that existing 
programming languages are not appropriate for 
the kind of work that they do. In this context the 
question of why systems programmers don't use 
a higher-level language becomes: "What about 
systems programming is different from other pro- 
gramming tasks, and how should these differ- 
ences manifest themselves in a programming 
language specifically designed for this applica- 
tion?" 

In many ways systems programming is like 
other programming applications. Thus, for ex- 
ample, algorithms used in the construction of 
assemblers, compilers, interpreters, operating 
systems, etc., are certainly different from those 
which control missile trajectories, simulate the 
behavior of a nuclear reactor core, or produce a 
corporate payroll. But many of the issues which 
arise in the implementation of these algorithms 
are similar. Issues such as the order in which 
numeric computations are performed in order to 
maintain accuracy are as important in a com- 
piler's number conversion routines as in reactor 
simulations; proper overlapping of input-output 
with Komputation is critical to systems programs 
as well as to payroll programs; etc. There are 
differences in emphasis between these applica- 
tions, however, vfrhich give rise to differences in 
language features. Some of the more important 
differences for systems programs are: 

— efficiency 
— access to all hardware features 
— minimal run-time support 
— evolution of the resultant system. 
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Ideally all programs would be maximally effi- 
cient—rapid in execution and conservative in their 
use of storage. In. many applications, however 
economy in programming effort and conciseness 
m expression are traded for execution speed and 
use of storage. No programmer deliberately 
writes a program to be slow or wasteful of stor- 
age; however, due to the high frequency of the 
use of systems programs the emphasis on effi- 
ciency is generally greater than in other applica- 
tions. 

Most programming systems hide from their 
user, for his own protection and convenience 
idiosyncracies of particular hardware machines' 
To the system programmer, however, these idio- 
syncracies are an integral part of the problem 
and must not be hidden. 

Many features of modern programming sys- 
tems are not available directly in the hardware 
on which they run.   Instead, these features are 
implemented  with  software  "run-time support" 
programs—of  whose  existence the user  need 
not be consciously aware.  A simple example is 
the trigonometric "sine" function in most scien- 
tific   programming   languages.   Few  computers 
have this function in hardware—rather it is eval- 
uated by a subprogram automatically included 
m the user's program by the programming system 
without any overt action on the user's part. The 
systems programmer, whose task if is to create 
such support, cannot in turn require it.  The sys- 
tems programmer must be able to create and 
exploit his own support, thus "bootstrapping" to 
increasingly sophisticated systems. 

A final observation on programming systems 
is, perhaps, the most important of all. Program- 
ming systems are never finished but are in a 
constant state of evolution. New features are 
constantly added and old errors repaired The 
more heavily a system is used, the more rapid the 
rate of evolution and repair. This situation seems 
inevitable so long as new application areas, all 
with slightly differing requirements, continue to 
emerge. 

A central problem of devising a language for 
systems programming would appear to be that of 
providing mechanisms for enabling the program- 
mer to cope with this evolution (of programs 
written in the language) while satisfying the other 
three criteria mentioned earlier: efficiency, ac- 
cess to the hardware, and minimal run-time 
support. 

The present state in programming systems rel- 
ative to coping with evolution is summed up in 
the programming jargon word: "kludge". 

"I just had a neat idea for a new feature 
Now, the system wasn't meant 10 do this 
but ... in contort this a little, and rebuild 
that, and since no one uses thesp bits 
Gee, I think it'll work." 

That's a kludge with a small "k".   Now, repeat 
the process fifty, or a hundred, or a thousand 
times by many different people at computer in- 
stallations scattered across the country and the 
system becomes a Kludge.  Unfortunately almost 
all existing systems are Kiudrjes.  The propertv 
of systems which results in their evolution toward 
Kludges, and which a systems programming lan- 
guage must correct, is the ease in making trivial 
changes and the difficulty in making fundamental 
changes to systems.  The consequences of this 
property is the introduction of peripheral modifi- 
cations which subvert and distort the original 
structure of the system and lead ultimately to 
inefficient, "dirty" systems. 

The remai Jer of this paper is devoted to the 
description of a language. Bliss, which is de- 
signed to satisfy the goals set out above for a 
systems programming language. 
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The Representation of Data Structures: 
A Thesis 

The surface structure of the Buss programming 
language is a logical, but not especially innova- 
tive, evolution from the Algol-60 family of lan- 
guages. There is a central aspect of the language, 
however, which distinguishes it from other mem- 
bers of this family, that of the representation of 
data structures. That role of representation fol- 
lows from the thesis that: "The central issue in 
systems programming is that of the representa- 
tion of data structures. This issue is the key to 
both efficiency and to the rational evolution of 
programming systems." Subsequent sections will 
deal with the structure of the Bliss language and 
in particular with the manifestation of the concern 
with representation expressed by the thesis. In 
this section we are concerned only with the 
meaning and implications of the thesis. 

All programming deals with structured infor- 
mation—that  is,  with  atomic  information  items 
which not only have a value, but also bear some 
relation to other atomic information items. These 
relationships are expressed in programming lan- 
guages  by "data structures"  (such as arrays, 
lists,  queues,  stacks,  etc.)  which  are used  to 
model  the  real  relations wh'ch exist between 
data items.   Most programming languages con- 
tain a fixed   et of such data structures; namely, 
those deemed appropriate to an application area 
by the designers of the language. Scientific lan- 
guages such as Algol and Fortran, for example, 
contain only arrays (as models of the mathemati- 
cal vector and  matrix structures) while string 
processing languages such as SNOBOL contain 
sequences of characters as intrinsic structures. 
These data structures are, in turn, represented, 
or modeled, by the implementor of the program- 
ming system in terms of the explicit data struc- 
tures of a hardware computer. 

So long as the data structures required by an 
application area are small in number and fairly 
uniform over the area, as is largely the case in 
scientific applications, this situation is accept- 
able. In systems programming, however, this is 
decidedly not the case. All of the structures 
mentioned above are used, as well as many 
others that have no generic name. Furthermore, 
in the interest of efficiency, many different repre- 
sentations of the same logical structure are used. 
To achieve reasonable efficiency it is imperative 
that a language to be used for systems program- 
ming permit the definition of the representations 
to be used. 

When a programming system is initially built, 
the conscientious systems programmer devises 
representations to maximize the efficiency of his 
system. As new features are added to a system 
and it evolves, the original representations may 
no longer be the most appropriate. To the extent 
to which new, more natural representations can- 
not be provided, the original representations will 
be modified, thus circumventing the reorganiza- 
tion that evolution requires, ergo a kludge. 

In order to achieve the criteria outlined above, 
two principles were followed in the design of the 
data structure facility of Bliss: 

— The user must be able to specify the ac- 
cessing algorithm for elements of a struc- 
ture (which is equivalent to specifying the 
representation) at as low a level as he 
deems necessary. 

— The structure definition and the algorithms 
which operate on the elements of a struc- 
ture must be separated in such a way that 
either can be modified without affecting 
the other. 
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lanLl«8!0'"3^ '!? conventional programming 
languages to include a number of implicit data 
structures (such as arrays, lists, strings Id so 
forth) as an integral part of the language The 
-mplementor of these languages choos'es a repre! 
sentatlon for these structures and the languages 

eTy d^enr^0' ^ them- ^ takes a" ^ tire y different approach. The first of these orin- 
c-ples reflects the need for flexibility and ef" 
c-ency in systems programming.   It also Slec 
he c0nviction that the des of B|iss 
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syStemUn o
no0t~PrediCt WhiCh reP^entations a system prog.ammer will need. Any given set of 

primmve structures, with or withouf the abilt   to 

be toi0 ienar
P,eX f,rUCtUreS fr0m ,hem- wo"S be to al y inappropriate. Instead, representations 

of structures are defined in Bliss in terms of the 
computational procedure (the algorithm) by which 
elements of that structure are accessed Thus 
no decisions are made a priori by the Bliss im- 
plementation  concerning  the  most aporopriaTe 

trurPerseSeannda,i^, eVeni:he m0St elemen^ ^ 
ohoosin'one     ^ haS maXima, f,eXibi,i^ in 

The second principle reflects a concern for the 
modmcafion of systems written in Bliss. So long 

farSor^hrP|reSe^ati0n 01 StrUCtUres is seP^ated 
1L     a1?

or,,hms which operate on data con- 
amed m those structures, and the representa- 

tions are easily modifiable, it is possible for sys- 
tems to evolve in an orderly fashion.  Of course 

K'. h"9 ^H'3 faCili,y d0es not guarantee that' WM be used mtelligently-but that is an educa- 

stronrib,y mana9eria,•issue and "* a 

Most existing  languages  satisfy one or the other of the a^e criterja but not y or t e 

languages  allow  (indeed,   demand)  algorithmic 
pecificat on of data structures since they have 

no Implicit data structures other than those repre 
sentabe m the hardware itself. The speciflcafion 
of a structure in an assembly language program 

;Sh
n??.e ,0CaliZed' h0wever- and '3   suaTy distributed to all places where an element of the 

structure is accessed, thus making it difficult to 
modify.   Algol, Fortran, etc., on the other hand 
localize the specification of a structure to the 
Place where it is declared but do not allow its 
representation to be defined by the programmer 

Description of Bliss 

Bliss may be characterized as an Algol deriva- 
ivein the sense that it has a similar expression 

to mat and operator hierarchy, a block structure 
with lexically and dynamically local variables 
similar conditional and interative consSons' 
and (potentially) recursive procedures. The S 
lanty stops shortly beyond this surface compari- 
son, however. Bliss will be described in terms of 
'IT3 °r aSp

f
ects: W the underlying storage con- 

Jl L2lC°ntr01' and (3) data structures. A com- 
thfR,      r.

00 0f the lan9Ua9e maV ^ 'ound Tn the Bliss Reference Manual.' 

1. Storage Names and Identifiers 

In order to implement the objectives set out 
previously concerning the representation of data 
structures it is first necessary to adopt precise 
and consistenf interpretations of the concepts o* 
identifier", "name", and "value-. The distinction 

between these concepts is at best fuzzy in most 
programming languages. The distinction to be 
made is that between an object, a name for the 
object, and a name of the name, m English prose 

I rt^r ,0 '^ ^^ the s™"e3t im ger larger than five, one writes: 
6 

The above mark serves as a name for that par- 
..cular^nteger,  but there are many othe^Xr 

..   ., Six   IKII   vi   5+1 
Now  if one wishes to talk about one of these 
spec, lc names of siXi one enc|oses .t jn     thes 

ar«nhl.    H     T   aS   ,he   name  0f   a   P^icula s:c   which'in ,urn'names a SP- 
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Bliss makes a similar distinction except that 
the objects named are variables, i.e., their value 
may change in time, and are represented by some 
storage media in the computer. The name of a 
variable, also called a pointer to the variable is 
encoded as a bit pattern which itself may be 
manipulated and in particular may be the value 
of another named object. An identifier serves as 
the name of a name of (pointer to) a variable. 
To complete our analogy, then, a Bliss identifier 
serves the role of the quoting device in English, 
pointers correspond to simple names, and the 
objects ultimately named are variables repre- 
sented in storage. The weakness in this analogy 
is that English provides few mechanisms for per- 
forming operations on names while in Bliss names 
are encoded as bit patterns and hence may be 
operated upon by any operator in the language 
(see below). 

A Bliss program operates with and on a num- 
ber of storage segments. A storage segment con- 
sists of a fixed and finite number of words, each 
of which is composed of a fixed and finite num- 
ber of bits. A contiguous set of bits within a word 
is called a field. A field may be named, the value 
of a name is also called a pointer to the field. In 
particular, an entire word is a field and may be 
named. 

In practice a segment generally contains either 
program or data, and if the latter, it generally is 
an integer number, a floating point number, char- 
acters), or a pointer to other data. To a Bliss 
program, however, a field merely contains a pat- 
tern of bits on which the programmer may place 
any interpretation he chooses. Various specific 
operations are defined in Bliss and may be ap- 
plied to fields and bit patterns, such as; fetching 
a bit patterns (value) from a field, storing a bit 
pattern iiMo a field, arithmetic, comparison, and 
boolean operations on bit patterns, and so on. 
These operations are roughly those provided by 
the hardware. From these all other programmer- 
defined operations must be built. The interpre- 
tation placed upon a bit pattern and consequent 
transformation performed by an operator is an 
intrinsic property of the operator, and not of its 
operands. In particular, names (pointers) are bit 
patterns and as such are manipulable objects in 
the language. 

Segments and identifiers are introduced into a 
Bliss program by declarations, called 'allocation 
declarations'; for example: 

global g; 
own x,y[5], z; 
/oca/p[100]; 

Each declaration introduces one or more seg- 
ments and binds the identifiers mentioned to the 
name of the first word of the associated segment. 

The segments introduced by declarations con- 
tain one or more words; the size of a segment 
may be specified (as in "local p[100]") or de- 
fauted to one (as in "global g;"). The identifiers 
introduced by a declaration are lexically local to 
the block in which the declaration is made (that 
is, they obey the usual Algol scope rules) with 
one exception—namely, global identifiers are 
available to other, separately compiled programs. 
Segments created by own and global declarations 
are created only once and are preserved for the 
duration of the execution of a program. Seg- 
ments created by local declarations are created 
at the time of block entry and are preserved only 
for the duration of the execution of that block. 
Reentry of a block before it is exited (by recursive 
function calls, for example) behaves such that 
local segments are dynamically local to each in- 
carnation of the block. 
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It is important to reiterate that identifiers are 
bound to names by declarations, and that a name 
is a pointer (a particular interpretation on a bit 
pattern). Thus, the value of an instance of an 
identifier, say x, is a name of, or pointer to, x, 
not the value of the field named by x. Moreover, 
operators may be applied to names to yield new 
names. This interpretation requires a "contents 
of" or "value of" operator for which the symbol 
"." has been chosen. The operator "." may be 
applied to any expression—thus placing a "point- 
er" interpretation on the bit pattern which results 
from evaluating that expression. Thus the ve'ue 
of the expression "X" is the name (a pointer) c! 
a specific variable, X, ".X" is the bit patten 
stored in X and ". .X" is the value of a variable 
whose name is stored in X. If we denote the bit 
pattern which, when interpreted as a pointer, 
names X by X' and use boxes to represent storage 
cells, then the situation described above is: 

1 

i 

X (-X') 

.X (r^V) 

.X (^Z') 

There are two additional declarations whose 
effect is to bind identifiers to values (possibly 
names), but which do not create segments; ex- 
amples are: 

external s; 
bind        y2 = y-j 2, pa = p + .a; 

An external declaration binds one or more 
identifiers to the names represented by the same 
identifier declared global in another program. 
The bind declaration binds one or more identi- 
fiers to the value of an expression at block entry. 
Potentially the value of this expression may not 
be calculable until run-time, e.g., as in "pa= 
p + .a" above. 

2. Operations and Control 

Bliss is an expression language; that is, every 
executable construct, including those which man- 
ifest control, is an expression and computes a 
value. There are no statements in the sense of 
Algol or PL/I. Expressions may be concatenated 
with semicolons to form compound expressions, 
where the value of a compound expression is 
that of its last (rightmost) component expression. 
Thus ";" may be thought of as a dyadic operator 
whose value is simply that of its righthand 
operand. A pair of symbols begin and end, or 
left and right parentheses, may be used to em- 
brace such a compound expression and convert 
it into a simple expression. A block is merely a 
special case of this construction which happens 
to contain declarations; thus the value of a block 
is defined to be the value of its constituent ex- 
pression. 

The assignment operation, "«-", is a dyadic 
operator whose left operand is interpreted as a 
pointer and whose right operand is an uninter- 
preted bit pattern. The right operand is stored 
into the field named by the left operand; the value 
of the expression is that of its right operand. 
Recalling the interpretation of identifiers and the 
"." operator, the expression 

x <- .x + 1 
causes the value of the field named by x to be 
incremented by one.  The value of the entire as- 
signment expression is that of the incremented 
value. 

There are five forms of explicit control expres- 
sion: conditional, loop, case-select, function, and 
escape. 

The conditional expression 
// £ , then £, else £, 

is defined to have the value of the expression £v 

just in the case that the rightmost bit of expres- 
sion £ , is a 1; it has the value of d otherwise. 
The abbreviated form "// £, then £/' is con- 
sidered to be identical to "// d, then £ j else 0". 
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Whereas the conditional expression provides 
two-way branching, the case* and select' ex- 
pression provide more general n-way branching: 

cases of set £0; £,;...; £„.,; £ntes 
select e of nset £„:£,; £2: £,;...; 

€2n: €2n+l  ^SO 
The value of a case expression is £•„; that is, the 
expression e is evaluated and this value is used 
as an index to select one of the expressions 
Gi (0 < i < n), which then becomes the value 

of the entire case expression. 
The select expression is somewhat similar to 

the case expression except that the expression 
e is not used as a simple index, and hence not 
restricted to the range 0 < e < n. Instead, 
after e has been evaluated its value is succes- 
sively compared with the first element of each 
of the pairs e2i:C2i>l in the order of increasing 
values of i. For each pair such that e = £7i the 
the second element of the pair, £2Ul, is also 
executed and the last of these to be executed 
defines the value of the entire select expression. 

Loop expressions imply repeated execution 
(possibly zero limes) of an expression until a 
specific condition is satisfied. There are several 
forms, of which we shall mention three: 

while £, do £ 
do £ while £, 
incr < id > from £ i fo £:by £ 3 do £ 

'The symbol pairs sel-ies and nset-tesn are some- 
what arbitrarily chosen bracketing devices which 
delimit the set of choices in case and select expres- 
sions. 

In the first form the expression £ is repeated so 
long as the rightmost bit of £, remains 1. The 
second form is similar except that £ is evaluated 
before £,, thus guaranteeing at least one execu- 
tion of £. The last form is similar to the familiar 
"step ... until" construct of Algol, except (1) the 
control variable, <id>, is local to £, and (2) 
£„£1 and gj are computed only once (before 

entry to the loop). Except for the possibility of 
an escape expression within £ (see below) the 
value of a loop expression is uniformly taken 
to be -1. 

Invocation of functions (subroutines) is speci- 
fied by the usual notation: 

<E(€l.€2...€n) 
This expression causes activation of the segment 
named by  £ passing the values  £   £n as 
parameters. The value of a function call is that 
resulting from execution of the body of the named 
function. 

The familiar "goto... label" form of control 
has not been included in Bliss. Unrestricted 
goto's require considerable run-time support 
(principally due to the possibility of jumping out 
of functions and/or blocks). More importantly, 
the use of the general goto, because of the 
implied violation of program structure, is a major 
villain in making programs difficult to understand, 
modify and debug. The control mechanisms al- 
ready mentioned provide most of the control 
needed. In addition a highly structured form of 
forward branch, the escape-expression, has been 
included. There are eight forms of escape; one 
for each control environment: 

exitblock £ exitcase £ 
exitcompound £ exitselect £ 
exitloop £ exit £ 
exitset £ return £ 

Each escape expression causes control to exit 
from a specified control environment (a block, a 
loop, or a case expression, for example) and 
defines a value {£) tor it (exit exits from any 
control environment; return exits from a function). 

Other control expressions are defined in the 
language but will not be discussed here. 



34 

3. Data Structures 

In order to satisfy the objectives sot out earlier 
concerning the representation of data structures, 
no implicit structures are included in Bliss. In- 
stead, mechanisms are provided for defining rep- 
resentations algorithmically (that is, specifying 
the access method for elements of the structure), 
for associating particular representations with 
particular identifiers, and for invoking the access 
algorithm associated with an identifier. The defi- 
nition of a representation scheme is made by a 
declaration of the form 
structure <scid>[<formal parameter list>] = £ 
The <scid> in this declaration, called a struc- 
ture class identifier, may then be used to asso- 
ciate the accessing algorithm, denoted ^ above, 
with specific identifiers by another declaration 

map <scid> <idchuck> 
(where an <idchuk> is a sequence of identifiers, 
<id>'s, separated by colons) each of which is 
to be associated with <scid>. Once the asso- 
ciation between a variable identifier and a struc- 
ture representation has been established, the 
name-form "<id>[([i. 62 €n]" becomes val- 
id, and denotes invocation of the access algorithm 
defined in the associated structure declaration 
(with an appropriate substitution of actual for 
formal parameters). Thus the synlactic device 
"<id>[ C1, €?. • • • £n]" denotes a name (a point- 
er) resulting from the evaluation of a user-de- 
fined expression. 

Consider the following example: 
begin 

structure array2[i,j] = (.array2+.l*10+.j); 
ownx[100],y[100l,zI100]; 
map array2 x:y:z; 

x[.a,.b]«-.y[.b,.a]; 

end; 
In this example a very simple structure represen- 
tation, array2, for two dimensional (10+10) arrays, 
is introduced. The structure is to be represented 
by storing rows, and row elements, in contiguous 
memory locations; we declare three segments 
with names "x", "y". and "z" bound to them; and 
the structure class "array2" is associated with 
these names. The syntactic forms "xl€i.€?]" 
and "ylG, €.,]" are valid within this block and 
denote names resulting from evaluation of the 
accessing algorithm defined by the array2-sffüc- 
ture declaration (with an appropriate substitution 
of actual for formal parameters). 
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For purposes of exposition (though it's not im- 
plementeJ this way) one may think of the struc- 
ure declaration as defining a function which 

takes both the name of an instance of a structure 
and its accessing parameters as arguments The 
structure declaration in the previous example 

sfruc/ure array2[i,j] = (.array2+.i*10+.i)- ' 
is conceptually identical to a function declaration 

function array2(f0,fl)f2) = (.f0+.fl*10+ f2)- 
The expression "x[.a,.br and "y[.b).a]" corre- 
spond to calls on this function, i.e., to "arrav2 
(x,.a,.b)" and "array2(y,.b,.a)". 

Consider how the combined mechanisms of the 
structure declaration, map declaration, and name 
form "<id>[...]" achieve the objectives earlier 
set for them. 

First, the programmer has complete control 
over the representational scheme for each of his 
data structures.   Since names are manipulable 
objects in the language, any computation which 
is possible in the machine can be used to pro- 
duce a name, and hence can be used as the 
access algorithm for elements of a structure 
Specific  properties of specific  instances of  a 
data structure, the size of its elements, the usual 
form of their access, etc., may be fully exploited 

Second, the specification of a representation 
and the algorithms which manipulate elements in 
the structure have been separated. The syntactic 
form "X[.i,3J" denotes the name of a specific 
element of the structure called X, independent of 
how that structure is represented; the represen- 
tation of that structure may be changed by alter- 
ing the structure declaration without changing 
the algorithms which operate on elements of the 
structure. 

Efficiency 

Although it has not been explicitly discussed 
m the preceding material, a major aspect of the 
Bliss effort has been to design the language in 
such a way that it is possible for the Bliss com- 
piler to produce highly efficient object programs 
-comparable to those which a good program- 
mer would write in assembly language.   There 
are two facets to this aspect of the language 
design.   First, the language had to provide nat- 
ural mechanisms through which the user can gain 
access to the underlying  hardware.   In a few 
cases this  means  including  specific  language 
constructs which utilize specific hardware, fea- 
tures; in most cases, however, it means choosing 
the overall structure of the language so as to 
mesh neatly with the underlying hardware struc- 
ture   Second, the language had to be designed 
such that its compiler could reasonably interpret 
the programmer's intentions and produce "opti- 
mal" code. This aspect of the Bliss design is its 
most easily documentable success; examples of 
numeric subroutines, for example, written in Bliss 
generate one-half to one-third the code produced 
by some of the most highly touted optimizinq 
compilers (e.g., IBM/360 Fortran H) 
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Experiences Using Bliss 

The Bliss language has been In active use for 
approximately two years for a wide variety of 
systems, including: the Bliss compiler itself, a 
WATFOR-like fast Fortran compiler, an implemen- 
tation of APL (a conversational programming sys- 
tem), a SIMULA-like discrete event simulation 
system, an i/o support system, an accounting 
system, the kernel of a small operating system, 
and many applications programs. Our experience 
using the language over the past (wo years, and 
in watching others use it on a variety of systems, 
gives us some confidence that we can objectively 
evaluate it as a tool for systems programming. 
For example, along the dimension of programmer 
productivity (measured in instructions/program- 
mer/ day (i/p/d) of debugged code) we recently 
obtained the following data on some projects 
at CMU: 

Project 
Algol 
Bliss 
APL 
TENFOR' 
BLIOb 

POOMASc 

TECHd 

Language 
Assembly Lang. 
Bliss 
Bliss 
Bliss 
Bliss 
Bliss 
Bliss 

Size 
12k 
31k 
30k 
12k 

7k 
7k 
3k 

Man- 
months 
SO 
62 
35 

7 
2 
3 

i/p/d 
11 
23 
39 
78 

159 
100 

91 

" tho WATFOR-like fast Fortran compiler 
h the i/o support system 
c the SIMULA-like simulation system 
cl a chess-playing program 

A generally accepted value for i/p/d is five for 
systems written in assembly language; thus, we 
see a productivity increase of 4 to 30 resulting 
from the use of Bliss. So far as we are able to 
determine the quality of these systems, measured 
by code size and speed, are comparable to (say 
withm 10%), or surpass those written in assembly 
language. The quality of these systems when 
measured by such criteria as readability and mod- 
ifyability certainly exceeds that of systems writ- 
ten in assembly language, but it is nearly im- 
possible to assign quantitative values to these 
measures. 

Looking more closely at specific features of 
the language which were considered "experi- 
mental" at the time of the initial design, some 
have been a resounding success, others have 
failed in one way or another. For example, the 
removal of the goto, the structure mechanism, 
and the "match" between the logical Bliss ma- 
chine and the physical computer on which it is 
implemented, are counted as substantial suc- 
cesses. One of our notable failures was in not 
recognizing the need for incorporating Bliss into 
a "total system" including a specialized editor, 
debugging support, teaching aids, etc. 

One outgrowth of the experience gained from 
the use of Bliss merits special mention—the tim- 
ing package. Systems such as those written in 
Bliss are usually large, and quickly exceed the 
implementor's ability to grasp the interaction be- 
tween their various parts. Even though a lan- 
guage such as Bliss facilitates the modification 
of a system to improve its performance ("tuning" 
it) it is seldom clear what parts of the system 
need such attention. Human intuition about such 
things is usually very poor. Therefore, a set of 
Bliss routines has been developed which makes 
dynamic measures of a system's performance 
and displays information such as the space and 
time devoted to various portions of the system, 
the interaction of its various components, etc. 
The design and further development of the timing 
package and other similar support tools is cur- 
rently one of the major research activities cen- 
tered around Bliss. 
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Conclusion 

An attempt has been made to present a design 
rationale and its manifestation in Bliss.  One in- 
terpretation of this rationale is an indirect defi- 
nition of the systems programming problem area. 
In the simplest case this manifests itself in a 
break with the traditional interpretation of identi- 
fiers in higher-level, languages, and in the conse- 
quent demand on the programmer to be con- 
sciously aware of the distinction between names 
and values.   The structure mechanism may be 
interpreted as a statement of judgment as to the 
extreme importance of the representation, modi- 
fication, and allocation issues in systems pro- 
gramming—and hence that these issues must be 
explicitly within the programmer's attention and 
control. 
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The Kernel Approach to Building 
Software Systems 

Allen Newell 
Peter Freeman 
Donald McCracken 
George Robertson 

In this short essay we will discuss a possible 
approach to building software systems. Our in- 
terest in building systems is driven most directly 
by involvement in the construction of artificial 
intelligence systems. But building large systems 
of programs is a fundamental activity throughcut 
all of computing and has independent status as a 
central problem in computer science. The formid- 
able difficulties that have emerged in producing 
third generation software systems well illustrate 
the problem. 

The scheme to be explored for creating soft- 
ware systems is based on growth from a small 
kernel of code and data. The approach responds 
to somewhat different considerations than the 
more widely used alternatives of macro-assem- 
blers and higher level languages. A full treatment 
would require laying out the existing approaches, 
as currently understood, and providing a com- 
parative analysis. The purpose of this paper, 
however, will be served by a characterization of 
what is involved in the kernel approach. 

We have been experimenting on the PDP-10 
for some time with a succession of kernel sys- 
tems: L*(A), L*(B) We must emphasize that 
the approach is highly experimental and that 
substantial issues remain unresolved so that we 
focus here on some of the implications of using 
the kernel approach to system building. L*(F), 
the version which has received the most polish- 
ing and use,2 will serve as an example to make 
our points concrete. Its specifications are sum- 
marized briefly in the Appendix. 

The idea of evolving a system from a small be- 
ginning is not new. It supplies some of the fas- 
cination that computer science has always had 
with bootstrapping and recursion. A widespread 
variant, for example, is getting compilers to com- 
pile more efficient versions of themselves. The 
concept of the growing machine, developed by 
Carr and his students at Pennsylvania' has some 
of the same spirit. Also Nievergelt has built a 
minimal list processing system suitable as a basis 
for more complex list processors.1- But probably 
the most explicit kernel development is an ex- 
perimental system called WISP, developed a few 
years ago by Maurice Wilkes,5 which stressed 
not only bootstrapping, but also starting with a 
small initial system. WISP has had some prog- 
eny' and possibly should be taken as the spirit- 
ual ancestor of kernel software systems. But the 
idea is so fundamentally attractive that undoubted- 
ly other such systems have been created, not 
oil of which have seen the light of publication. 

. 
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The Basic Idea of a Software Kernel 

A kernel software system is a small nucleus 
(i.e., kernel) of code and data that grows to be- 
come a larger, more complex system. The kernel 
provides a base for an expanding range of sys- 
tems, as shown in Figure 1.  The arrows in the 
figure represent evolution through time. The kernel 
evolves into a system with system building capa- 
bilities, which then evolves into a particular ap- 
plication system (in our case, an artificial inte1' 
gence program).   We draw a tree to show h  ,•- 
each use of the kernel system to build a new 
program follows a different linear line of evolu- 
tion that branches off either earlier or later from 
its sibling system. We have shown each system 
as containing tile whole of the preceding system 
from which it grew.   However, nothing prevents 
a  final   application   system   from   being   totally 
separate from the system that produces it (as a 
compiled program is distinct from its compiler) 

We will finesse the question of the exact nature 
of software systems and of system-building sys- 
tems.   As a definitional matter, we can take a 
software system as a body of code and data that 
has the capabilities of producing further pro- 
grams; a system-building system thus being one 
capable of producing further systems.   By enu- 
meration, software systems contain facilities for 
creating,   executing,   debugging,  filing,   editing 
and managing programs.  Accurate characteriza- 
tion of the nature of software systems is ulti- 
mately critical to the design of system-building 
systems, but is beyond the limits of this essay. 

The two fundamental notions that define the 
design philosophy of a kernel system are small 
initial size and self-sufficiency for growth.   Out 
of these two must come whatever advantages 
the approach has.  Let us examine each in turn 

Small initial size. Large systems must eventual- 
ly be grown.  Thus the advantages of small size 
directly affect only the initial system.   But small 
size can insure that the kernel itself can be easily 
constructed and completely debugged.   It can 
insure that the user can fully understand the 
kernel and that radical modification is possible. 

The advantages just enumerated stem not from 
the size of the  kernel  in  absolute terms,  but 
from size relative to the capabilities of human 
programmers.   The L*(F) kernel (see Appendix) 
appears to be small enough to gain the advan- 
tages.    For  instance,   the  first   implementation, 
L*(D),  was constructed  and debugged  by one 
man in about five months.  Subsequent versions 
such as L*(F), have taken on the order of half a 
man-month,   even   though   involving  substantial 
conceptual modifications implicating more than 
50% of the code. The L-(F) kernel appears to be 
virtually bug free after an additional man-month 
of polishing. 

The small initial size of the kernel is essentially 
a commitment to simplicity as a design philoso- 
phy. Size per se does not guarantee simplicity, 
of course. It can be thrown away by introducing 
complexity and baroqueness at any juncture 
Thus, a requirement of simplicity must enter into 
each design decision in the development of the 
kernel and of the strategies for growth. 



Figure 1. 

Kernel Kernel System Building Systems Application Systems 

■ 



42 

In L*(F) the kernel has the simple structure of 
an independent set of subroutines, each typically 
5-15 instructions long. The maximum routine is 
60 instructions, dictated by the need to deal 
with the essentially arbitrary i/o interface of the 
PDP-10 monitor. The depth of sub-routine nest- 
ing, which indicates the interdependency in a set 
of routines, is at most two in almost all cases. 
Uniform naming and coding conventions can be 
maintained throughout. Thus, the amount of in- 
formation needed to comprehend any part of the 
kernel is small. 

The advantages given above of small size and 
simplicity show up primarily in terms of ease of 
understanding and modifiability (e.g., another one 
is ease of producing complete and comprehensi- 
ble documentation). These requirements are de- 
sirable in any system, but they are absolutely 
central to the kernel system approach. In many 
design philosophies, one strives to construct an 
interface with the user (consisting primarily of a 
higher level programming language) that is suf- 
ficiently smooth and self-contained that the user 
need never be concerned with the underlying 
structure that realizes the interface. Ease of un- 
derstanding applies only to the face presented 
to the user. With a kernel system, each ultimate 
user system is potentially grown from the kernel 
itself (though it may initially start off from some 
advanced base). All aspects of the kernel must 
be understandable to permit the user to grow 
the system in ways appropriate to his own needs. 

Self-sufticlency for growth. We can contrast a 
system that is grown by means of mechanisms 
internal to it with a system that is produced as a 
passive object by some set of external tools. A 
compiler is an example of an external system, as 
is a text editor. A kernel system is an example 
of a system capable of internal growth. A priori, 
neither design philosophy is better; it is doubtful 
that any such general approach can emerge as 
preferred for all systems building tasks. How- 
ever, the two philosophies lead in different 
directions. 

Growth means adding instructions and data, 
debugging them, and providing for their execu- 
tion and the use of their output. Growth in this 
context must be extended to modification and 
contraction of existing structure. Indeed, the 
structures provided in early stages of growth 
are almost always deficient in some respects, 
e.g., efficiency, and require reshaping or replace- 
ment later. 

For growth to be internal requires that all 
mechanisms to effect that growth must be in 
the kernel. This requirement can be satisfied in 
a highly indirect way, of course. The kernel may 
not contain the tools necessary for a given task, 
but only the tools necessary to construct these 
fools. Bootstrapping as a design philosophy im- 
plies the emergence of ultimate results through 
an extensive cycle producing tools for tools for 
tools. 

It is doubtful whether an invariant set of initial 
functions must be provided by a kernel. For one 
thing, different machine environments will impose 
different functional requirements. For another, 
there may well be alternative bases. The set of 
functions provided by the L*(F) kernel, operating 
within the PDP-10 time-sharing monitor, serves 
as an example. We state these functions in gen- 
eral terms, though they are realized in specific 
ways for L'(F), as indicated in parentheses: 
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(1) Creation of internal symbols to designate 
data structures (addresses). 

(2) Creation, manipulation and interpretation 
of a class of arbitrary symbolic expres- 
sions (lists). 

(3) Input and output to a standard user in- 
terface (teletype). 

(4) Creation and modification of external 
names to be in correspondence with inter- 
nal symbols (name table). 

(5) Reading and writing to secondary mem- 
ory (disk files via monitor). 

(6) Access to all of the entities in the kernel 
(preassigned external names for all kernel 
routines and data). 

(7) Creation and recognition of arbitrary bit 
patterns (operations to go from lists to 
bits and bits to lists). 

(8) Saving an existing instance of the system 
and restarting a copy of it at a later date 
(operators to evoke save and restart 
mechanisms in monitor). 

(9) Recovery from error and exploration of 
the errorful instance of the system (con- 
text swapping operation to establish a 
viable operating context). 

(10) Locus of control at the user interface 
top-most level of control reads input from 
teletype to be interpreted as program). 

(11) Enough resources to avoid sudden death 
and access to additional resources (initial 
available space and operations to get 
more from PDP-10 monitor). 

This list of functions differs considerably from 
that associated with a programming language, 
such as Algol, for the emphasis is on being a 
viable self-contained system. Thus, the ability 
to save and restart the system and to survive 
catastrophic error, functions normally associated 
with operating systems, show up as critical initial 
functions. The specification of locus of control 
at the user interface (item 10) is to be especially 
emphasized. This is essentially the direct mode 
of execution existing in many conversational pro- 
gramming languages (e.g., see the description of 
LCC in the 1969 Annual Review). With this con- 
trol the user plays the role of the executive 
routine, executing operations singly and at will, 
shaping the system as required. 

Many things are missing from this list that must 
ultimately be provided in any system-building 
system and some of the functions in the list are 
provided only in rudimentary form. For instance, 
access to the secondary memory is essential 
right at the beginning, but a rather elementary 
capability suffices. (In L*(F) it is read and write 
from a single fixed file.) Some of the missing 
facilities that come immediately to mind are: 

(1) Editing 
(2) Tracing programs 
(3) General communication to monitor 
(4) General storage and retrieval of files 
(5) Assembly of machine routines 
(6) Modification of user interface 
(7) Higher level language at user interface 
(8) Creation  of  new data types with  their 

proper opeiations. 
(9) Space management 

(10) Error detection with diagnostics 
All of these must be grown with the facilities 

given initially in the kernel. This involves a boot- 
strapping procedure in which elementary tools 
are built and from these still other tools are de- 
veloped. For instance in the bootstrapping se- 
quence developed for L*(F), the first thing that is 
done is to create ways of modifying the interpre- 
tation given to the input stream, so that some 
new notation can be introduced. Later in the 
sequence the initially existing limitation on ex- 
ternal names to five characters (which permitted 
a simple name table) is lifted by replacing the 
entire external naming system. This new system 
is such that it permits the introduction, one by 
one, of the various notations of a higher level 
language at the user interface. These later nota- 
tions supersede, of course, the original mecha- 
nism for achieving various notations. 

It might be thought that there is a single boot- 
strapping sequence, but that is not the case. 
For example, early on an editor and an inter- 
preter for stepping through a program under 
manual control are introduced. Both are very 
much a matter of individual design, and alterna- 
tive growths of the system could dictate sub- 
stantially variant schemes. Thus, the branching 
process indicated in Figure 1 occurs at many 
places along the line of development. 
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Consequences of the Main Ideas 

The two notions—small initial size (with the 
more general commitment to simplicity) and self- 
sufficiency for internal Qrowth—constitute the 
central design philosophy of a kernel system. 
But consequences for additional features of de- 
sign philosophy flow from them. Some of these 
need not be followed, for in growing a kernel 
into a larger system it can be shaped ultimately 
to quite divergent strategies. But these addi- 
tional characteristics are consonant with the 
basic philosophy and serve to exploit it. 

Total accessibility. The point of growing a 
large system from a small beginning is to permit 
all aspects of the system to be shaped by the 
ultimate needs. Any aspect of a pre-existing sys- 
tem can become a limiting factor on the efficiency 
or abilities of a final user system. It has always 
been an important consideration in system-build- 
ing systems that they have complete access to 
the total facilities of the target machine. This at 
least provides the potentiality of designing user 
systems with maximum efficiency and capability. 
The continued popularity of assemblers is due in 
part to the transparent way in which they provide 
complete access to the machine's facilities. 

Total accessibility is a combination of require- 
ments, some on ease of understanding of the sys- 
tem, some on the available means for construct- 
ing new systems. The emphasis earlier on small 
initial size and simplicity indicates how a kernel 
system deals with requirements on ease of under- 
standing. We are concerned here with the means 
for constructing new systems. One aspect is 
access to the kernel itself. In L*(F) this is pro- 
vided by having external names for all the rou- 
tines and data structures in the kernel and by 
having all of the kernel in the address space 
(i.e., internal symbols to designate every cell in 
the kernel). 

The most important aspect of total accessibil- 
ity is being able to make use of all of the ma- 
chine's basic facilities. One course is to mirror 
each feature of the underlying machine in the 
operations of the kernel (in the manner of an 
assembler). Give the complexity of current ma- 
chines (e.g., many instruction types and hundreds 
of individual instructions) this conflicts strongly 
with the requirements of simplicity and small 
initial size. Attempting to accomplish it in the 
initial system anyway forces an impoverished 
and minimal scheme. Assemblers show just such 
impoverishment in comparison with higher level 
language systems. The solution used in l.*(F) is 
to delay access to the total machine until later 
in the evolution. The provision in the kernel of 
a basic bit facility (item 7) yields the logical 
capability to lay down arbitrary code and the 
provision of the general symbolic manipulation 
system (item 2) yields the potential for construct- 
ing linguistically suitable schemes for designating 
new instructions, routines and data types. 
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Integrated programming environment. Conver- 
sational language systems, such as Joss and 
LCC, have moved toward providing all computing 
functions—program definition, editing, execution, 
debugging, storage and retrieval on files, etc.— 
with a common language. It is no longer neces- 
sary in such systems continually to change be- 
tween distinct (and generally non-cooperating) 
subsystems, each with their own conventions, to 
perform the different tasks associated with build- 
ing programs. This is called an integrated pro- 
gramming environment and its desirability is 
widely recognized. 

Integrated environments occur only rarely out- 
side of specialized conversational systems. The 
design philosophy inherent in most operating 
systems encourages a plurality of distinct pro- 
cessors and languages, e.g., assemblers, editors, 
higher languages, the command language, file 
systems, etc. Most system building is accom- 
plished in this kind of an environment. 

The kernel system leads naturally to an em- 
phasis on attaining an integrated programming 
environment. It is consonant with the already 
established goal of simplicity. Since the eventual 
system has roots all the way back to the kernel, 
there is less inclination for a layered structure 
of system and subsystem to grow up, which is 
the genesis of multiple language systems. If a 
partially grown system appears to be congealing 
into clusters of subsystems with distinct con- 
ventions, then the system can be regrown from 
an earlier point and shaped to a more homoge- 
neous form. 

Modest experience with L*(F) indicates that 
a   unified   environment   may   be   rather   easily 
achieved, mainly because at appropriate stages 
of growth the adding of new facilities with di- 
verse functions requires only small amounts of 
new program. The initial language of L*(F) is a 
simple list language called L*L, which is written 
horizontally and whose coding density is not un- 
like that of LISP.  In this language a simple on- 
line editor requires a few lines; a monitor for 
manually  stepping  through   programs   requires 
less than a page of code; a system for entering 
text requires less than half a page.   All these 
come along  rather early in the bootstrapping 
sequence, though not before some other tools 
have been constructed.  A rudimentary compiler 
to transform L*L expressions into machine calls 
(thus eliminating the interpreter)  requires  less 
than two pages of code and a primitive assembler 
without macro features (unneeded in L* with its 
general symbolic capabilities) requires about two 
pages.  Some of the simplicity of these systems 
arises from the design philosophy of creating an 
integrated programming environment.  Each aug- 
mentation relies on the existing mechanisms and 
conventions, being just the necessary growth to 
provide the additional functions. 
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Design iteration. Iteration of a design is gen- 
erally considered a laudable goal. In large soft- 
ware systems (as in some other areas) it rarely 
happens, primarily because of the extensive effort 
involved and the inevitable occurrence of un- 
anticipated difficulties that stretch out the con- 
struction effort beyond all preset deadlines. Typi- 
cally, design iteration occurs at the specification 
stage, then the design is committed and an initial 
version is brought into being. Once in use, modi- 
fications and revisions are made (in successive 
"releases" of the system) attempting to adapt 
the system to the actual environment. 

The kernel system approach appears to lead 
to a highly iterative design style. Systems are 
grown and regrown from early points in the 
tree of development (Figure 1), and design be- 
comes an experimental activity rather than an 
analytic one. Part of the reason for this design 
style is certainly the small initial size, which of 
course must eventually give way to mature sys- 
tems of large size. But part of the reason also 
appears to be that the growing system contains 
substantial investment in structures that help to 
grow the system further. Thus easy regeneration 
of the system from early stages becomes an im- 
portant subgoal in the design of a system. 

Our experience in L*(F) on iterative design of 
large application systems through regeneration 
is still minimal. We do have experience about 
iteration of design for the kernel itself. So far 
during the year in which we have devoted sub- 
stantial effort to L* we have brought six systems 
into full existence: L*(D) through L*(G) on the 
PDP-10 and L*11(A) and L*11(B) on the PDP-11. 
Each of these has explored basic variations in 
the design space of kernel systems. Several 
more iterations seem indicated at present before 
we will finally know enough about the kernel to 
create a final system, all of whose further modi- 
fications should arise through internal growth. 

Summary. All of these aspects of system de- 
sign just discussed are consonant with the idea 
of a kernel system building system. However, 
they are not essential. It is quite possible that 
highly successful lines of development would 
shun some of them entirely. One could start with 
a kernel, construct a particular application sys- 
tem with its own programming language, file 
system, etc., discarding all the system-building 
scaffolding so that no trace of it remained in the 
final application system. But these notions of 
personalization, design iteration, multiple use of 
structures, etc., appear to be the ideas to be 
exploited to make the kernel approach to system 
building viable. 
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The Essential Problems 

So far we have defined the essential nature of 
the kerne! system approach to system building 
and explored the various directions in which its 
advantages might lie. But there are some diffi- 
culties, too. A kernel system depends on getting 
most of the ultimate facilities for system building 
indirectly, providing only the tools for their con- 
struction (and sometimes being even more re- 
mote). Looking at current schemes for building 
systems, four main things have been provided by 
one or another system: (1) direct and transparent 
access to the underlying machine; (2) higher 
level languages; (3) efficient code production and 
(4) supporting facilities, predefined and working, 
evocable through a command language. None 
of these is available directly in the kernel- all 
have to be built. 

The essential tension (to use a favorite phrase 
of Bill Wulfs) is between the effort to be spent 
in building up these facilities and the advantages 
of the user having shaped them himself to his 
own needs. On the effort side must be counted 
not only the programming and debugging re- 
quired, but also the intellectual investment by the 
user in understanding the functions to be built 
and the mechanism that will realize them. It may 
turn out that users simply will not wish to under- 
stand all the subsystems involved in their appli- 
cation system. More likely, the use of kernel sys- 
tems will be restricted to professional systems 
programmers and will not be a tool for the casual 
user. Our own intended use, to build artificial 
intelligence systems, certainly is of this sort. 

Success of the kernel system approach de- 
mands that all of the ultimate facilities of a sys- 
tem-building system (editors, translators, higher 
level languages, etc.) be obtainable without un- 
due pain and effort. Otherwise it is surely not 
worth anyone's while to work through their con- 
struction. Given that kernels start with so little 
and given the general experience with how much 
work it is to build systems programs, this appears 
highly implausible on the face of it. The distance 
between the initial point and a fully developed 
system simply appears to be too great.  We did 
note some positive evidence earlier from L*(F)  
that subsystems require very little code. But the 
evidence is far from conclusive yet. That the 
distance really can be covered with ease is un- 
doubtedly the most important hypothesis under- 
lying the use of kernels for system-building. 
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Appendix: 
Description of L*(F) Kernel 

L*(F) is a kernel system operational on the 
PDP-10.2 Table 1 lists some of its main charac- 
teristics. Space prohibits discussing these in 
detail, but we can comment on a few of them 
that relate to the central design idea. 

First is the adoption of a simple list language 
(called L*L) as the initial language. As is well 
known, only a few primitive actions suffice for an 
essentially complete list facility for doing sym- 
bolic manipulation. 

A second important feature is the use of a 
homogeneous symbol system. Symbols are taken 
to be addresses and arc used to refer to every- 
thing. For instance, there is a symbol (an ad- 
dress) corresponding to each of the 128 charac- 
ters. 

A third major mechanism is a universal type 
system. Every symbol has a type, which de- 
scribes the nature of the data structure it desig- 
nates. Initially, only a minimum number of types 
are provided: list (the basic data structure), pro- 
gram list (list to be interpreted as programs), 
integer (required for incremeniing and differenc- 
ing addresses), machine (to identify machine 
code), character (the fixed set of 128 symbols), 
and cells (everything else). Everything has a type, 
even the registers of the machine (type list and 
type cell), the size of the symbol table (type 
integer) and each instruction in the kernel (type 
machine). Types are totally dynamic: the type of 
any symbol can be changed, new types can be 
created, the functions associated with a type can 
be changed, the total number of types in the 
system can be increased (or decreased). 

Action can be type dependent everywhere, so 
there is always available a relevant discrimina- 
tion that can be used to direct processing. Thus, 
print routines operate conditionally on the type 
of the symbol to be printed. To obtain the ad- 
vantages of a type system one needs to have 
type dependent action as fast as possible (for it 
is likD an inner loop calculation) and for the 
structure that holds types to impose no constraint 
on the types of data structures. In L'fF) we pay 
a very high price for this: for each cell of the 
system an extra cell is taken to hold the type 
index. Although the space cost is substantial 
(being reminiscent of the space-cost paid for list 
structures), the gains appear to be impressive. 

One feature of L*L is worth mentioning: the 
principle of semantic interpretation. That is, to 
interpret a symbol in a program list the interpreter 
associated with the type of that symbol is exe- 
cuted. This means that a program list itself has 
no syntactic structure. For example, if LIST and 
SYMB are respectively a list and symbol of type 
list and TEST is a program, then the program list 

(LIST SYMB TEST) 
results in TEST being interpreted as a program 
with LIST and SYMB as operands. This happens 
because each of the three symbols is interpreted 
in order, but the interpreter associated with LIST 
and SYMB, being interpreter for type list, treats 
these symbols as operands, whereas the inter- 
preter for TEST treats it as a program. If TEST 
were type machine, then it would be executed 
as a machine routine. 

The kernel of L*(F) does not contain direct 
access to all the features of the PDP-10 machine. 
Thus, ultimate access is obtained by providing 
tools in the kernel. These are two special inter- 
preters, one of which deposits a set of bits in a 
field in a word, the other of which extracts a set 
of bits from a word. These interpreters can be 
associated with various types of symbols. Initially, 
type character is the only type for which these 
instructions make sense, permitting the packing 
and unpacking of character strings simply by in- 
terpreting lists of characters. 
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Size of kernel: 
1078  instructions,  924  data  words,  7139 with  all 

available space. 
Symbol system: 

Homogeneous system of symbols; 
Symbols are addresses; 
All addresses in main segment are symbols. 

Type system: 
All symbols have types; 
Types form a small discrete unstructured set (Initi- 

ally 16); 
Type dependent action is immediate; 
The type of a symbol is completely dynamic; 
The function of a particular type is dynamic (slowly); 
Mechanized by putting type index for each symbol 

(address) in a corresponding word in a special 
segment (trades space for time). 

Initial types: 
Lists, program lists, machine, integers, characters, 

cells. 
Initial language: 

L*L (a simple list language of type program list); 
Interpretive (base rate = 30,000 .ycles per second); 
Interpretation  by executing  interpreters  associated 

with each type: 
For program lists: Interpret each symbol of list in 

turn; 
For machine: Execute machine routine; 
For others (data): Push symbol into data stack; 

Operand and result communication via data stack; 
Operator/operand distinction made by type of sym- 

bol (i.e., by inte m '"r used for type); 
Control structure: 

Loops handled by repeated interpretation of pro- 
gram lists; 

Action can be conditional on top of data stack; 
No direct transfers (no "goto's"); 

Effective style of language is Polish post-fix. 
Symbol table: 

Entries in initial table limited to arbitrary 5 character 
names; 
Uses sequential search for lookup; 

Number of names expandable dynamically: 
Size of names not easily expandable; 
Table scheme Is replaceable. 

Accessibility: 
All relevant names in kernel entered into L* symbol 

table; 
All routines In kernel executable from within L'L; 
All Internal structure of L*L of type list (data and 

routine stacks); 
Kernel has simple structure: 

85 almost Independent routines (maximum nest- 
ing, 2 In almost all cases); 

Standard scheme for communication between ma- 
chine routines and environment (Including L*L 
stacks); 

Format lists to deposit and extract bits within words. 
Interfaces to environment: 

Interfaces exist to teletype and disk  (via Monitor 
conventions); 

Communication via list of characters (I.e., symbols 
of type character); 

Processes by using special interpreter for type char- 
acter (executes L*L process associated with each 
character). 

Style of use: 
Conversational (via PDP-10 Monitor). 

Debugging and recovery: 
Swap  mechanism  to  reinstate  functioning  context 

and make buggy context available for investiga- 
tion and correction dynamically. 

Space management: 
Automatic for lists and single cells; 
No recovery when exhausted (but creatable); 
Access to PDP-10 Monitor for more space. 

Coding of kernel: 
In Macro-10, the PDP-10 macroassembler. 
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Faculty 

C. Gordon Bell 
Professor of Computer Science and 

Electrical Engineering 
S.B., Massachusetts Institute of 

Technology (1956) 
S.M., Massachusetts Institute of 

Technology (1957) 
Carnegie, 1966: Computers and Computer 

Networks 

Robert N. Chanon 
Instructor 
B.S., Carnegie-Mellon University (1967) 
Carnegie, 1968: Programming 

Lee Erman 
Research Associate 
B.S., University of Michigan (1966) 
M.S., Stanford (1968) 
Carnegie, 1970: Artificial Intelligence 

Arie N. Habermann 
Associate Professor of Computer Science 
B.S., Free University, Amsterdam (1953) 
M.S., Free University, Amsterdam (1957) 
Ph.D., Technological University, Eindhoven, 

The Netherlands (1967) 
Carnegie, 1968: Operating Systems and 

Programming Languages 

Per Brinch Hansen 
Visiting Research Associate 
B.S., Technical University of Denmark 
M.S., Technical University of Denmark 
Carnegie, 1970: Software 

Donald W. Loveland 
Associate Professor of Computer Science and 

Mathematics 
B.A., Oberlin College (1956) 
S.M., Massachusetts Institute of 

Technology (1958) 
Ph.D., New York University (1964) 
Carnegie, 1967: Logic (Recursive Function 

Theory), Mechanical Theorem Proving, 
Computational Complexity 

Philip H. Mason 
Instructor 
B.S., Carnegie-Mellon University (1967) 
Carnegie, 1969: Systems Programming 

John W. McCredie 
Assistant Professor of Computer Science 
B.E., Yale University (1962) 
M.S.E.E., Yale University (1964) 
M.S.I.A., Carnegie-Mellon University (1966) 
Carnegie, 1968: Simulation, Optimization 

Techniques and Systems Analysis 

Ugo Montanari 
Visiting Research Associate 
Carnegie, 1970: Artificial Intelligence 

Richard Neely 
Research Associate 
B.A., University of Oregon (1966) 
M.S., Stanford University (1968) 
Carnegie, 1970: Artificial Intelligence 
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Allen Newell 
University Professor 
B.S., Stanford University (1949) 
Ph.D., Carnegie Institute of Technology (1957) 
Carnegie, 1961: Artificial Intelligence, 

Simulation of Human Thinking, 
Programming Languages 

David L. Parnas 
Associate Professor of Computer Science 
B.S., Carnegie Institute of Technology (1961) 
M.S., Carnegie Institute of Technology (1964) 
Ph.D., Carnegie Institute of Technology (1965) 
Carnegie, 1966: Simulation, Automatic Design 

of Finite Automata, Computer Languages, 
Computer System Design 

Alan J. Perils 
Professor of Mathematics and Head of the 

Department of Computer Science 
B.S., Carnegie Institute of Technology (1943) 
M.S., Massachusetts Institute of 

Technology (1949) 
Ph.D., Massachusetts Institute of 

Technology (1950) 
Ph.D. (Hon.), Davis and Elkins College (1968) 
Carnegie, 1956: Programming Languages 

D. Raj Reddy 
Associate Professor of Computer Science 
B.E., University of Madras (1958) 
M. Tech., University of New South Wales (1961) 
M.S., Stanford University (1964) 
Ph.D., Stanford University (1966) 
Carnegie, 1969: Artificial Intelligence and 

Man-Machine Communication 

Ronald M. Rutledge 
Assistant Professor of Computer Science 
S.B., University of Georgia (1957) 
S.M., University of Georgia (1960) 
Ph.D., University of Tennessee (1964) 
Carnegie, 1968: Computer Science Management, 

Measurement and Evaluation of Operating 
Systems 

Herbert A. Simon 
Richard King Mellon Professor of Computer 

Science and Psychology, Associate Dean of 
the Graduate School of Industrial 
Administration 

A.B., University of Chicago (1936) 
Ph.D., University of Chicago (1943) 
D.Sc. (Hon.), Case Institute of Technology (1963) 
D.Sc. (Hon.), Yale University (1963) 
LL.D. (Hon.), University of Chicago (1964) 
Fil.D. (Hon.), University of Lund, Sweden (1968) 
Carnegie, 1949: Computer Simulation of 

Cognitive Processes, Artificial Intelligence, 
Management Science 

William A. Wulf 
Assistant Professor of Computer Science 
B.S., University of Illinois (1961) 
M.S.E.E., University of Illinois (1963) 
D.Sc, University of Virginia (1968) 
Carnegie, 1968: Systems Programming 

Yechezkel Zalcstein 
Assistant Professor of Computer Science 
A.B., University of California, Berkeley (1962) 
M.A., University of California, Berkeley (1965) 
Ph.D., University of California, Berkeley (1968) 
Carnegie, 1969: Automata Theory, Algebraic 

Theory of Linear Systems, Finite Semigroups 
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Graduate Students 

Agarwal, Durga 
B.E., Birla Institute of Technology and 

Science (1969) 
Electronics 

M.Tech., Indian Institute of Technology (1970) 
Computer Science 

Departmental Staff 

Engineering 
William Broadley—Manager of Engineering 

Design and Senior Research Associate 
Paolo Coraluppi—Engineer 
Ralph De Lucia—Engineer 
Roland Findlay—Technician 
Christopher Hausier—Technician 
Paul Newbury—Engineer 
Kenneth Stupak—Technician 
Jackson Wright—Design Engineer 

Office Staff 
Roberta Gray—Business Administrator 
Dorothy Josephson—Technical Typist 
Georgette Katona—Secretary to Dr. Perils 
Mercedes Kostkas—Secretary 
Mildred Sisko—Secretary to Dr. Newell 

Operations 
Carolyn Lisle—Manager of Computer Operations 
Barbara Anderson—Lead Operator 

Programming 
Harold Van Zoeren—Manager of Programming 
Howard Wactlar—Supervisor of Special 

Programming Projects 
Diana Bajzek—Programmer 
Donald McCracken—Programmer 
George Robertson—Programmer 
David Wile—Junior Research Scientist 

Apperson, Jerry 
B.A., University of Virginia (1965) 

Mathematics 

Ariely, Gideon 
B.A., Hebrew University (1969) 

Mathematics-Computer Science 

Aygun, Birol 
B.S.M.E., Newark College of Engineering (1965) 
M.S., Columbia University (1968) 

Mathematical Methods in Engineering and 
Operations Research 

Barbacci, Mario 
B.S., U.N.I. (Lima, Peru) (1966) 

Electrical Engineering 
Engineer, U.N.I. (Lima, Peru) (1968) 

Electrical Engineering 

Bauer, Madeline 
A.B., Cornell University (1968) 

Mathematics 
M.A., University of Michigan (1970) 

Computing and Communications Sciences 

Berliner, Hans 
B.A., George Washington University (1954) 

Psychology 

Bhatia, Sushil 
B.Tech., Indian Institute of Technology (1966) 

Electrical Engineering 
M.S., Carnegie-Mellon University (1969) 

Electrical Engineering 
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Chang, Hsiau-Chung 
B.S., National Taiwan University (1971) 

Physics 

Chen, Robert 
B.S., Rensselaer Polytechnic Institute (1966) 

Electrical Engineering 
S.M., Massachusetts Institute of 

Technology (1968) 
Electrical Engineering 

Cohen, Ellis 
B.S., Drexel Institute of Technology (1970) 

Mathematics 

DeBenedetti, Lydia 
B.A., Oberlin College (1967) 

Economics 

Dills, John 
B.S., Clarkson College (1968) 

Mathematics 

Evans, Steven 
B.A., Tulane University (1965) 

Mediaeval German and Mathematics 

Farley, Arthur 
B.S., Rensselaer Polytechnic Institute (1968) 

Mathematics 

Fennell, Richard 
B.S., Rensselaer Polytechnic Institute (1969) 

Physics 

Gerhart, Susan 
B.A., Ohio Wesleyan University (1965) 

Mathematics 
M.S., University of Michigan (1967) 

Communication Sciences 

Geschke, Charles 
A.B., Xavier University (Cincinnati, Ohio) (1962) 

Latin 
M.S., Xavier University (Cincinnati, Ohio) (1963) 

Mathematics 

Gillogly, James 
B.A., UCLA (1967) 

Mathematics 

Goldberg, Henry 
S.B., Massachusetts Institute of 

Technology (1968) 
Mathematics 

Grove, Richard 
B.S., Carnegie Institute of Technology (1964) 

Mathematics 
M.S., Carnegie Institute of Technology (1965) 

Mathematics 

Huen, Wing Hing 
B.S., University of Hong Kong (1966) 

Physics 
M.S., University of Alberta (1969) 

Computer Science 

Johnsson, Richard 
B.E., Vanderbilt University (1970) 

Electrical Engineering 

Jones, Anita 
B.A., Rice University (1964) 

Mathematics 
M.A., University of Texas (1966) 

English 

Kedar, Eliahu 
B.Sc, Hebrew University of Jerusalem (1968) 

Mathematics and Physics 
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Lipton, Richard 
B.S., Case Western Reserve (1968) 

Mathematics 

Kendziora, Alois 
B.A., Gannon College (1962) 

Mathematics 
M.A., University of Detroit (1964) 

Mathematics 

Knudsen, Michael 
B.S., Pennsylvania State University (1966) 

Engineering Science 
S.M., Massachusetts Institute of 

Technology (1968) 
Electrical Engineering 

Krutar, Rudolph 
B.S., Carnegie Institute of Technology (1966) 

Mathematics 

Lee, Sal-Ming 
B.A., UC at Berkeley (1970) 

Mathematics-Computer Science 

Lee, Tih-Ming 
B.S., Tamkang College (Taiwan) (1966) 

Mathematics 

Lieberman, Robert 
B.S., SUNY at Stony Brook (1968) 

Mathematics 

Linstrom, Gary 
B.S., Carnegie Institute of Technology (1965) 

Mathematics 
M.S., Carnegie Institute of Technology (196ii) 

Mathematics 

Lowerre, Bruce 
B.S., Case Institute of Technology (1965) 

Chemistry 
B.S., Case Western Reserve (1970) 

Mathematics 

Lunde, Amund 
M.Sc, University of Oslo (1966) 

Mathematics 

Mann, William 
B.S., Lehigh University (1956) 

Electrical Engineering 
M.E.A., George Washington University (1964) 

Engineering Administration 

McConnochie, John 
B.A., Dartmouth College (1964) 

Mathematics 

Mitchell, James 
B.Sc. (Hon.), University of Waterloo (1966) 

Mathematics 

Moore, James 
S.B., Massachusetts Institute of 

Technology (1964) 
Mathematics 

Moran, Thomas 
B.Arch., University of Detroit (1965) 

Architecture 

Moyles, Dennis 
B.S., Carnegie-Mellon University (1970) 

Mathematics 

Newcomer, Joseph 
B.A., St. Vincent College (1967) 

Mathematics 
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Schlesinger, Steven 
B.A., Cornell University (1968) 

Mathematics 

Schneider, Edward 
B.S., Carnegie-Mellon University (1970) 

Mathematics 

Shaw, Mary 
B.A., Rice University (1965) 

Mathematics 

Ghlander, Ronald 
B.S., St. Mary's College (1962) 

Psychology 

Pfefferkorn, Charles 
B.S., Carnegie Institute of Technology (1964) 

Physics 

Pierson, Charles 
B.S., Carnegie-Mellon University (1970) 

Mathematics 

Pollack, Frederick 
B.S., University of Florida (1970) 

Mathematics 

Price, William 
B.A., Lehigh University (1969) 

Mathematics 

Rege, Satish 
B.Tech., Stevens Institute of Technology (1968) 

Electrical Engineering 
M.S., University of Pittsburgh (1969) 

Electrical Engineering 

Rinde, Joseph 
B.S., Stevens Institute of Technology (1968) 

Mathematics 

Rizzo, Michael 
B.S , Rensselaer Polytechnic Institute (1968) 

Mathematics 

Shu, Hou-Shing 
B.S., Taiwan University (1969) 

Physics 

Snyder, Larry 
B.A., University of Iowa (1968) 

Mathematics 

Stickel, Mark 
B.S., University of Washington (1969) 

Mathematics 
M.S., University of Washington (1971) 

Computer Science 

Sung, David 
B.S., National Taiwan University (1968) 

Mathematics 

Teitelbaum, Ray 
S.B., Massachusetts Institute of 

Technology (1964) 
Mathematics 

Vasudevan, Narayanan 
B.S., Engineering College (Madras) (1966) 

Electrical Engineering 
M.Tech., Indian Institute of Technology (1969) 

Electrical Engineering 

Weinstock, Charles 
B.S., Carnegie-Mellon University (1970) 

Mathematics 

Yuo, Peter 
B.S., National Taiwan University (1968) 

Mathematics 
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Ekisticn, 30, No. 1979, 270-271, 
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Colloquia 

September 1970 

"Storage Hierarchies—Heart of the Information 
Processing System" 

Dr. E. W. Pugh, IBM 

"Activities of PSAC-The President's Scientific 
Advisory Councii" 

Dr. H. Simon, Carnegie-Mellon University 

October 1970 

"Speech Synthesis" 
Messrs. Coker and Umeda, Bell Laboratories 

"Images from Computers" 
Professor M. Schroeder, University of Goetingen 

"Roles  of  Professional  Society and  Computer 
Science and the United Nations" 

Professor C. C. Gotlieb, University of Toronto 

"The Design of Operating Systems" 
Professor B. Lampson, Berkeley Computer Corp. 

"Operating Systems" 
Professor B. lampson, Berkeley Computer Corp. 

"Graphics" 
Dr. Ugo Montanari, Carnegie-Mellon University 

"TSS" 
Professor A. Kamerman, TSS Design Manager 
SDD, IBM and Adjunct Association 

"TSS" 
Mr. Nick King, TSS Productivity Manager TSS 
Project, IBM 

"Systems-Basic" 
Professor T. Kurtz, Dartmouth University 

"The Great Paper" 
Professor   P.   Calingaert,   University   of   North 
Carolina 

"Great Machine" 
Mr. R, Barton, University of Utah 

November 1970 

"Computer Science in the Soviet Union" 
Dr. A. A. Ershov, Academy of Sciences, USSR 
Novosibirsk 

"Parallel Programming" 
Dr. A. A. Ershov, Academy of Sciences, USSR 
Novosibirsk 

'Mathematical Semantics for Programming Lan- 
guages" 

Professor Dana Scott, Princeton University 

"Operation of the Multi-Computer Lab at Liver- 
more" 

Dr. Sidney Fernbeck, Director of Computing of 
the Livermore National Laboratory of the Uni- 
versity of California 

December 1970 

"Feature Extraction Techniques in Speech" 
L. Rabiner, Bell Laboratories 

"On Using Functional Analysis for System De- 
sign" 

Dr. P. Freeman, Carnegie-Mellon University 

"Complexify of Linear Inequalities with Applica- 
tion to Sorting" 

Professor P. M. Spira, University of California 
at Berkeley 

"OSL-TOOTH, An Operating System Language" 
Mr. Peter Alsberg, University of Illinois 
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January 1971 

"The Structures of a List Processing Computer" 
Dr. Alan Kay, Stanford University 

"Future Uses of Minicomputers" 
Dr. Alan Kay, Stanford University 

"Implementation of 'PMS'" 
Michael Knudsen, Carnegie-Mellon University 

February 1971 

"PPL—An Extensible Language" 
Dr. T. Standish, Harvard University 

"A Natural Language Understanding System" 
Dr. T. Winograd, Project MAC, MIT 

"Survey  of  Graph  Representations  of  Factual 
Information 

Stu Card, Carnegie-Mellon University 

"Graph Representation of Floor Plan Layouts" 
Dr. J. Grason, Carnegie-Mellon University 

Software implementation and hardware areas 
Professor Dr. ir. Van Der Poel, Delft University 

"Directed Graph Representation of Concepts and 
Experience" 

Bill Mann, Carnegie-Mellon University 

"Application to Electrical Networks" 
Professor R. Duffin, Carnegie-Mellon University 

"A Model for Functional Reasoning in Design" 
Dr. P. Freeman, Carnegie-Mellon University 

March 1971 

"Graph Formulation of the Transportation Prob- 
lem" 

Professor G. Thompson, Carnegie-Mellon  Uni- 
versity 

"DISCRETE-TIME Machines in Closed Categor- 
ies" 

Professor J. Goguen, University of Chicago 

April 1971 

"Toward a More General Theory of Data Struc- 
tures" 

Dr. D. Rine, West Virginia Univsrsity 

"The role of analytic models and simulation in 
the study of the feasibility of a circumferential 
communications network" 

Peter Cook, IBM Watson Research Center 

"The Irrelevance of Resolution" 
Professor Seymour Papert, MIT 

"A Set Theoretic Language for the Description 
of Algorithms" 

Professor J. Schwartz, New York University 

"Computers for Individualized Instruction" 
Dr. R. Ferguson and Dr. K. Block, Learning Re- 
search and Development Center 

"Flowchartable Recursive Specifications" 
H. R. Strong, IBM 

"Program Control Flow and Data Flow Analysis" 
Fran Allen, IBM 

"Planner" 
Dr. Carl Hewitt, MIT 

"Information  Processing   in  Visual   Perception" 
H. A. Simon, Carnegie-Mellon University 

"Rational Reconditioning of Polynomials" 
Dr. M. Rabin, Hebrew University and IBM Re- 

search 

"The Technology Chess Program" 
J. Gillogly, Carnegie-Mellon University 
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Ph.D. Dissertations 

The following persons have been awarded Ph.D.'s 
in Computer Science since the establishment 
of the Computer Science Department in 1965. 
immediately following each recipient's name is 
his position as of the 1970-71 school year. 

Support for this work came largely from the Ad- 
vanced Research Projects Agency under contract 
F-44620-70-C-0107. The accession numbers fol- 
low in parentheses after those dissertations 
which are registered as reports with the Defense 
Documentation Center. 

Balzer. Robert M. (Systems and Communication 
Sciences), Computer Sciences Department, 
The RAND Corp., "Studies Concerning Minimal 
Time Solutions to the Firing Squad Synchroni- 
zation Problem," 1966, Professor A. Newell 
(AD 635056). 

Berglass, Gilbert R. (Systems and Communica- 
tion Sciences), Assistant Professor of Comput- 
er Science, state University of New York at 
Buffalo, "A Generalization of Macro Proces- 
sing," 1970, Professor A. J. Perils. 

Caviness, B. F. (Mathematics), Associate Profes- 
sor of Computer Science, University of Wis- 
consin, "On Canonical Forms and Simplifica- 
tion," 1967, Professor A. J. Perils. (AD 671938). 

Coles, L. Stephen. (Systems and Communication 
Sciences), Research Mathematician, Stanford 
Research Institute, "Syntax Directed Interpre- 
tation of Natural Language," 1967, Professor 
H. /\ Simon.   (AD 655923). 

Darringor, John A. (Systems and Communication 
Sciences), Consultant, Logic Systems Design 
Department, N. V. Philips-Electrologica. Apel- 
doorn. The Netherlands, "The Description, Sim- 
ulation and Implementation of Digital Computer 
Processes," 1969, Professor D. L. Parnas and 
Professor C. G. Bell.  (AD 700144). 

Earley, Jay. (Computer Science), Acting Assistant 
Professor, Department of Computer Science, 
University of California, Berkeley, "An efficient 
Context-Free Parsing Algorithm," 1968, Profes- 
sor R. W. Floyd. 

Ernst, George. (Systems and Communication Sci- 
ences), Associate Professor, Department of 
Computer Science, Computer Engineering Divi- 
sion, Case Western Reserve University, "Gen- 
erality and GPS," 1966, Professor A. Newell. 
(AD 809354). 

Evans, Arthur. (Mathematics), Lincoln Laborato- 
ries, Lexington, Mass., "Syntax Analysis by a 
Production Language," 1965, Professor A. J. 
Perils. (AD 625465). 

Feldman, Jerome A. (Mathematics), Associate 
Professor of Computer Science, Department of 
Computer Science, Stanford University, "A 
Formal Semantics for Computer Oriented Lan- 
guages," 1964, Professor A. J. Perils. (AD 
462935). 

Fikcs, Richard E. (Computer Science), Research 
Mathematician, Stanford Research Institute, "A 
Heuristic Program for Solving Problems Stated 
as Nondeterministic Procedures," 1969, Profes- 
sor A. Newell. (AD 688604). 

Fisher, David. (Computer Science), Burroughs 
Corp., Paoli (Philadelphia), "Control Structures 
for Programming Languages," 1970. Professor 
A. J. Perils. (AD 708511). 
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Freeman, Peter A. (Computer Science), Assistant 
Professor of Computer Science, Department of 
Information and Computer Science, University 
of California at Irvine, "Sourcebook for CSD— 
An Operating System Designer," 1970, Profes- 
sor A. Newell. 

Grason, John. (Systems t-nd Communication Sci- 
ences), Assistant Professor of Electrical Engi- 
neering, Department of Electrical Engineering, 
Carnegie-Mellon University, "Methods for the 
Computer-Implemented Solution of a Class of 
'Floor Plan' Design Problems," 1970, Professor 
H. A. Simon.  (AD 717756). 

Haney, Frederick M. (Computer Science), Man- 
ager of Design, Scientific Data Systems, El 
Cegundo, Cal., "Using a Computer to Design 
Computer Instruction Sets," 1968, Professor 
C. G. Bell.   (AD 671939). 

Iturriaga, Renato. (Computer Science), Director 
of the Computation Center, University of Mexi- 
co, Mexico City, "Contributions to Mechanical 
Mathematics," 1967, Professor A. J. Perils. 
(AD 660127). 

King, James C. (Computer Science), Research 
Staff, T. J. Watson Research Center, IBM Corp., 
"A Program Verifier," 1970, Professor R. W. 
Floyd. (AD 699248). 

Lindstrom, Gary. (Computer Science), Assistant 
Professor of Computer Science, University of 
Pittsburgh, "Variability in Language Proces- 
sors," 1970, Professor A. J. Perils. (AD 714695). 

London, Ralph L. (Mathematics), Associate Pro- 
fessor of Computer Science, University of Wis- 
consin, "A Computer Program for Discovering 
and Proving Sequencial Recognition Rules for 
Well-Formed Formulas Defined by a Backus 
formal Form Grammar," 1964, Professor A. 
Newell. (AD 804036). 

Manna, Zohar. (Computer Science), Visiting Re- 
searcher, Computer Science Department, Stan- 
ford University, "Termination of Algorithms," 
1968, Professor R. W. Floyd. (AD 670558). 

McCrelght, Edward M. (Computer Science), Xerox 
Corp., "Classes of Computable Functions De- 
fined by Bounds on Computation," 1970, Pro- 
fessor A. R. Meyer.  (AD 693327). 

Michell, James. (Computer Science), Xerox 
Corp., "The Design and Construction of Flexi- 
ble and Efficient Interactive Programming Sys- 
tems," 1970, Professor A. J. Perils. (AD 712721). 

Moore, James. (Systems and Communication Sci- 
ences), Research Associate, Carnegie-Mellon 
University, "The Design and Evaluation of a 
Knowledge Net for MERLIN," 1971, Professor 
A. Newell. 

Mullln, James K. (Systems and Communication 
Sciences), Scientist, Division of Research in 
Epidemology and Communication Sciences, 
World Health Organization, Geneva, Switzer- 
land, "A Computer Optimized Question Asker 
for Aiding Bacteriological Species Identifica- 
tion COQAB," 1967, Professor B. Green. 

Parnas, David L. (Systems and Communication 
Sciences), Associate Professor of Computer 
Science, Computer Science Department, Car- 
negie-Mellon University, "System Function De- 
scription ALGOL—A Language for the Descrip- 
tion of the Functions of Finite State Systems, 
the Simulation of Finite Systems, and the Auto- 
matic Production of the State Tables of Such 
Systems," 1965. (AD 467633). 
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Pfefferkorn, Charles. (Computer Science), Assis- 
tant Professor of Computer Science, Purdue 
University, "Computer Design of Equipment 
Layouts Using the Design Problem Solver 
(DPS)," 1971, Professor H. A. Simon. 

Quatse, Jesse T. (Electrical Engineering and Sys- 
tems and Communication Sciences), Vice Pres- 
ident, Berkeley Computer Corp., "A Highly- 
Modular Organization of General Purpose Com- 
puters," 1969, Professor A. Newell and Profes- 
sor C. G. Bell. 

Quilllan, M. Ross. (Psychology), Bolt, Beranek 
and Newman, Inc., "Semantic Memory," 1967, 
Professor H. A. Simon. 

Shoup, Richard. (Computer Science), Xerox Re- 
search Center, Palo Alto, Cal., "Programmable 
Cellular Logic Arrays," 1970, Professor C. G. 
Bell.  (AD706891). 

Slklossy, Laurent. (Computer Science), Computer 
Science Department, University of Texas at 
Austin, "Natural Language Learning by Com- 
puter." 1968, Professor H. A. Simon. (AD 
671937). 

Standish, Thomas A. (Computer Science), Assis- 
tant Professor of Computer Science, Harvard 
University, "A Data Definition Facility for Pro- 
gramming Languages," 1967, Professor A. J. 
Perils. (AD 658042). 

Strauss, Jon C. (Systems and Communication 
Sciences), Director of Computing, Washington 
University, St. Louis, "Identification of Contin- 
uous Dynamic Systems by Parameter Optimiza- 
tion," 1965, Professor A. Lavl.  (AD 660887). 

Strecker, William D. (Electrical Engineering), Sci- 
entific Staff Engineer, RCA, "An Analysis of the 
Instruction Execution Rate in Certain Computer 
Structures," 1970, Professor C. G. Bell. (AD 
711408). 

Wagner, Robert A. (Computer Science), Assis- 
tant Professor of Computer Science, Cornell 
University, "Some Techniques for Algorithm 
Optimization with Application to Matrix Arith- 
metic Expressions," 1969, Professor A. J. Per- 
ils. (AD 678629). 

Waldinger, Richard J. (Computer Science), Re- 
search Mathematician, Information Science 
Laboratory, Stanford Research Institute, "Con- 
structing Programs Automatically Using Theo- 
orem Proving," 1969, Professor H. A. Simon. 
(AD 697041). 

Williams, Donald S. (Systems and Communica- 
tion Sciences), Principal Member, Technical 
Staff, RCA Corp., "Computer Program Organi- 
zation Induced by Problem Example," 1969, 
Professor H. A. Simon. (AD 688242). 

Winlkoff, Arnold W. (Systems and Communica- 
tion Sciences), Director of Programming, Blo- 
med Computer Services, St. Paul, Minn., "Eye 
Movement as an Aid to Protocol Analysis of 
Problem Solving Behavior," 1967, Professor A. 
Newell. 
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