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Maximum Likelihood Estimation and Hypothesis Testing
in the Bivariate Exponential Model of Marshall

and Olkin

By

G.K. Bhattacharyya and Richard A. J hnson
University of Wisconsin

ABSTRACT

The present work concerns statistical inference in the
bivariate exponential distribution introduced by Marshall

and Olkin. Even though the distribution has a singular

component, the use of a special dominating measure leads to
an explicit form of the likelihood whose properties are
investigated. The existence, uniqueness and asymptotic
distributional properties of the maximum likelihood estimators
are studied. Using the criterion of generalized variance,

it is shown that the simple unbiased estimators proposed by

Arnold are asymptotically lass efficient than the maximum
likelihood estimators and the loss in efficiency is particularly
serious in the case of independence. Uniformly most powerful
test for independence is derived for the special model having

identical marginal distributions.




1. INTRODUCTION AND SUMMARY

From reliability considerations, Marshall and Olkin (6]
formulated a multivariate analog of the exponential distribution
as a realistic model for a system wher. the component life
times may be dependent due to shocks affecting two or more
components simultaneously. In their bivariate mocdel, two
components A and B in a system are subject to three types of
shocks which occur independently according to Poisson processes
with intensity parameters Al, Az and 6§ respectively. The
first (second) type of shock affects only the component A (B)
while the third type of shock causes the failure of both A
and B so that their life times Y1 and Y2 will be dependent
when 6>0. It is shown in [6] that the joint distribution of

(Yl'Yz) has the right hand cdf

?(yl,yz) = P(Y,>y,,Y,>Y,) = expl-A1y; - Ay, - émax(y,.v,)]
Some properties of this distribution including the moment

generating function, the distribution of min(Yl,Yz), etc. are

studied in [6] and a natural extension to higher dimensions

is also presented.




Although developed from a Poisson shock model analogously
to the univariate exponential distribution, an analytical
treatment of this bivariate exponential distribution is made
difficult by the existence of a component which is singular
with respect to the two-dimensional Lekesgue measure. Several

authors (1], [2], [4] have mentioned this difficulty particularly

in the context of maximum likelihood estimation. Problems of
parameter estimation and testing certain hypotheses, based on
a random sample gi = (Yli'YZi)' i=l,...,n from (1.1), have
been considered by Arnold (1] and George [4]. Due to the
difficulty of explicitly writing out the likelihood function,
both authors start with an initial reduction of the data to

n

iilmln(yli'YZi)' Nl = #(Yli > Y

=3
(!

2i) ¢
(1.2)

where the symbol # ("+") denotes the number of vectors Y,
satisfying the statement "+"., The counts (No'Nl’Nz) have a
multinomial distribution and are inderendent of Tl which has

a gamma distribution. Based on this fact, unbiased estimators
of Al' Az and ¢ are obtained in [1] and likelihood ratic tests
are formulated in [4). However, aside from having a convenient

distribution, (NO’NI'NZ’Tl) does not constitute a sufficient




for (1.1) and therefore this reduction involves some loss of

information. In this paper, we study procedures based on the
complete random sample and its reduction to sufficient
statistics.

A mixture of cne- and two-dimensional Lebesgue measures
is used in Section 2 as a dominating measure which leads to
a joint density function and minimal sufficient statistics.
The distributional properties of the sufficient statistics
are studied and the lack of completeness is demonstrated for
the case of identical marginals. Maximum likelihood estimators
(MLE) are investigated in Section 3. It is shown that the MLE
is realized as the unique root of the likelihood equation
except in a subset of the sample space where it does not exist
or is not unique. The probability of this set however tends
to zero with increasing sample size. The structure of the
MLE is compared with the simple unbiased estimators proposed
by Arnold [l1] and the asymptotic distribution of both estimators
are obtained. Using the criterion of generalized variance,
the asymptotic efficiency of the unbiased estimators relative
to the MLE is derived and bounds of this efficiency are
studied.

A case of particular interest in the model (l.1) is the
one having identical marginal distributions, that is xlaxz.
This model fits real life situations where the components

which are connected in parallel in a system are similar in




nature and are likely to experience the same sort of shocks
component-wise in addition to occasionally being simultaneously
affected by some catastrophic shocks. Since independence of
life times introduces substantial simplification in system
reliability studies, in Section 4 we consider the problem of
testing for independence (8=0) in this model. Using the
concept of a least favorable distribution, thé uniformly most
powerful (UMP) test for independencg is derived in a convenient
form. The proof indicates a strong optimality of some othef
tests in reliability studies. For instance, when testing for
the equality of scale parameters in two exponential distribu-
tions against one sided alternatives, the usual F test is UMP
rather than just UMP unbiased and the same property nolds

even for censored samples.
2. LIKELIHOOD, SUFFICIENCY AND COMPLETENESS

Let (Yl,Yz) have the pivariate exponential cdf given by
(1.1) and denote this distribution by BVE (Al,xz,s) where the
parameter space is 0 = ((Al,xz,5): O<Ai<w, i=1,2; 0<8<w},

In order to obtain its probability density function (pdf),
we consider the Lebesgue measure U, on (R;, ) where R; is the
positive orthant of the (yl,yz) plane and is the corresponding

Borel o-field. 1In order to handle the singular component, we




define another measure v on (R;, ) as follows: let C°={(x,x):

0<x<w} be the diagonal line in R; and for Borel sets B R;.
set v(B) = ul({x: (x,x)eB Co}) where ¥y is the Lebesgue
measure on the real line. v is a o-finite measure on (R;, )
and is singular with respect to Mgy Finally, we let u=U,+v
on (R;, ) and note that the probabkilitvy measure determined
by (1.1) is absolutely continuous with respect to the measure
H.
Let C) = {(y,,¥,): 0<y;<y,<=} and C, = {(y),y,): 0<y <y <=}
; which are above and below the diagonal
respectively so that RY = 3 Ca' Then, from the properties

2
a=0
of the distribution (1.1) discussed in [6], we observe that

be the subsets of R
2 determination of the pdf of (Yl,Yz), with respect to yu,
is given by
2
£ly,.y,) = Za=0fa(yl.y2)lca(yl.y2) (2.1)
where

fo(Yl'Yz) = § exp[-(k1 + ‘2 + G)Yll

fz(yl,yz) Az(A1+6)exp[—Alyl - xzyz - 6y1]

e 4 crin e bt A e




and I is the indicator of the set appearing in its suifix.
The joint pdf of the random sample Yi = (Yli'YZi)’ i=l,...,n
n
is then the product 1 f(yl.,yz.) where f is defined by
i=1 i i
(2.1) and (2.2). To simplify the expression, we introduce

the following notations:

n n

"o = Fi=aTe (Y15e¥py) s 07001020 8y = Iy ¥gy. 0=1.2
Wiz = min(yli,yzi), Woy = max(yli,yzi), i=1l,...,n (2.3)
n n
ty, = L wy., t,= Lw,., v=1¢t,h6 - ¢t..
1l i=1 1i 2 i=1 2i 2 1

Thus n,,n, and n, are, respectively, the number of points
which are cn, above and below the diagonal line so that
no+n1+n2 = n., Also we have sl+52 = t1+t2. Noting that,

for every point (yl,yz) in R;, exactly one term in the r.h.s.
of (2.1) is non-zero, the likelihood function simplifies to

the form

f

=N

n

. a'¥15i:Y2;)
i=1 a

n
0 Zieca
n n

1 Ny Mo
= [ (A,#8)1 T[A, (0 +8)] %6 Dexpl-Ays; - A,8, - 8t,]

for (xl,xz,a) € N. (2.4)

y



For the case 6=0, the above functional form holds provided

we interprete 0°=1. The likelihood in this case is then 0
if ny>0 and (A A,)"expl-A s, - A,8,] if nj=o0.

From the factorization criterion, it follows that a set
of sufficient statistics is given by (Nl'NZ'Sl'Tl'TZ) or,
equivalently, by (Nl'NZ'sl'Tl'V) where the components are
defined in (2.3) using small letters. The minimality of this
sufficient statistics follows from the usual partitioning
operation of the sample space (c.f. [8], p. 50). For the
subfamily of (1.1) with 6=0, a minimal sufficient statistic
is ‘51'52’ since N2=0 with probability 1. This is also clear
from the fact that, in this subfamily, Yl and Y2 are independent
and exponentially distributed.

In the special subfamily of (1.1) having identical
marginals, we denote the common parameter 11=A2 by 8 and the
parameter space by 2, = {(B,6): 0<B<w, 0<6<=}. The likelihood
function is then given by

n-n, n,
L*(B,8) = [B(B+6)] s exp[-B(t1+t2) - Gtzl,

(8,8) € 2 (2.5)

and (NO,Tl,V) constitutes a set of minimal sufficient
statistics.
We now list some distributional properties of this

sufficient statistics for future reference, particularly for




Section 4 where we consider hypothesis testing in this

subfamily. FPor abbreviation we shall write "X is G(n,08)" to
mean that X has a gamma distribution with p.d.f. « exp[-ex]xn-l,

0<x<> and the corresponding cdf will be denoted by G(x: n,8).

Theorem 2.1. Let Y. i=1,...,n be a random sample from

BVE(B,B,6) and let NO' Tl, V be defined as in {2.3), then

the following hold:

(a) Tl is G(n, 28+6) and is independent of (NO,V)

(b) N, and V jointly have the mixed distribution given by

P(Ny=k, V<v) = ()pX(1-p)" G (v: n-k,B+6)
if k=0,...,n-1

=p if k=n (2.6)

where 0<v<x, and p=6/(28+6) is the probability mass on

the diagonal for a single observation.

(c) Conditionally given n0=0, V igs G(n,B+8).

The property (a) holds even in the general case of non-
identical marginals in which case 2B8+§ is to be replaced by

A1+A2+6. The distribution of 'r1 has already been noted in

[6]. Independence of T1 and (NO,V) can be verified by using
(2.1) and (2.2) to write out the joint pdf of Wiy and

Vi-WZi-wli and then factoring the pdf of "11 and Vi. Since

e -,




T)=IW,; .

establish (b), one needs to write P(No=k, v<v) = P(Nosk)P(V<v|No-k)

V=£Vi and Noai(vico), the result follows. To

and note that when k=n, V has the constant value 0 and for
n-k

any k<n, V is the sum of (n-k) terms Z Vi where vl,...,v
=1 73

are i.i.d. G(1,8+6) and (il,...,in) is a permutation of the

n

integers (1,...,n). (c) follows immediately from (b).
The following moments are obtained from the distributions }

stated in Theorem 2.1 using the properties of gamma distribution.

E(T,) = n(28+6) "1

E(NgT,) = n2s (28+6) "2

(2.7)

E(V) = E[E(V|N,)] = 2ng (8+8) "L (28+8) "1

E(VN,) = 2n (n-1) 86 (8+8) "1 (28+6) 2.

For the family BVE(§,§,8), we note that although the parameter
space is two-dimensional, the minimal sufficient statistic
obtained above has three components. To prove that the

sufficient statistic is not complete we consider the statistic i

T* = V(n+uo-1)t4n(n-1)1‘1 - Tl(n-No)Ianl-l. (2.8) a

By using the moments in (2.7) it is easy to verify that each

of the two terms in the r.h.s. of (2.8) is an unbiased




-11-

2 so that T* is an unbiased estimator

estimator of B(2B8+68)
of 0. Since T* is not identically 0, the statistics (No,Tl,V)
is not complete. Although the unbiased estimators constructed
by Arnold {[1] are functions of No and Tl’ the lack of complete-

ness prevents one from concluding that these have minimum

variance. In the general model BVE(Al,Az,d) where the
parameter space is three dimensional, the minimal sufficient
statistics have five components. It is unlikely that these
sufficient statistics are complete but we have not been able

to prove it.

3. MAXIMUM LIKELIHOOD ESTIMATION

This section is devoted to the derivation and study of
the asymptotic properties of the MLE for the parameters of

the general model BVE(AI,AZ,G) as well as for the special

model having identical marginals. The use of the dominating
measure U, introduced in Section 2, permits an explicit
functional representation of the likelihood whose properties
are readily studied. The investigation brings out some
interesting facts about the model with regard to the
existence and uniqueness of the MLE. We give the details

for the general model and only summarize the results for the

case of identical marginals.




Let B=B B

denote the boundary of the parameter space

1 °2
Q of the general model BVE(),,},,8) where B, = [§=0, 1,>0, A,>0]

and B, = [AI-O] [12=01. Note that B1 Q whereas Bz is

2
disjoint from Q, although it is in the closure of 2. Using

(2.4), the likelihood function is given by

S | na o
on Q-Dl
n
= [Alle exp[-Als1 - ‘252’I[n0=01' on Bl' (3.1)

Equating the first partial derivatives of 1ogz(x1,xz,a) on

Q-B, to zero, we obtain the likelihood equations

1

-1 -1
nlxl + n2(A1+6) = 8

-1 -
nl(l2+6) + n2x2 = s, {3.2)

1 -1

1

nl(A2+6) + nz(A1+6)

and the matrix Q of the second partial derivatives is given

by
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n n n
—1‘"'—'2—5_ 0 2
3 3
! 11 (X1+5) (Xl+6)
| 0 T2 ——2l——5 ——~2l—7 (3.3)
—Q= + .
;7 (A,+8) (A,+6)
2 2 2
x‘i
) n, n, ny . n, . ny
(Az+6)i (A, +6) 2 (x1+5)2 52

The existence and uniqueness properties of MLE are given in

the following theorem.

Theorem 3.1.

(1)

If n,,n,;,n, are all non-zero, the MLE of (1,,),,8) is

unique and is the unique root, belonging to Q-Bl, of

the set of equations (3.2).

If no=0, n1>0 and n2>0, the unique MLE is given4§x>§=0,

(ii)
A1=n/sl, A2=n/32.
=0 and either n1=0 or n2=0, the MLE exists but is

(iii) If n,

not unique.

If n0>0 and one or both of nl are 0, the MLE does

and n2

(iv)
not exist in the sense that the supremum of the likelihood

is not attained within the parameter space (.

(i) We first note that when ni>0, i=0,1,2, the diagonal

Proof.
matrix D = diag[nlkiz, "2*52' noé-zl is positive definite for




all (Al,lz,d) € Q-Bl and also it is easy to verify that the
matrix -(Q+D) is positive semi-definite. It follows that
when (Al,xz,s) € Q-Bl and all ni>0, the matrix Q is negative
definite. Thus log £ is a strictly concave function on Q-Bl.
Also, 2=0 on B1 and 2+0 as the argument (11,12,6) approaches
any point on the boundary B or tends to infinity in any
component. Hence £ has a unique maximum within Q-Bl and the ]
maximum is attained at the root of (3.2).

(ii) When n,=0, n1>0, n2>0 and (Al,Az,G) € Q-Bl, Q
is again negative definite so that log £ is strictly concave
on Q—Bl. Since % is continuous on B, it has a unique maximum

either at an interior point of Q@ or on the boundary B. 1If

possible, suppose the maximum occurs at an interior point

(Xl,xz,s). Then it must be a root of the equations (3.2). i
Substituting these values in (3.2) and subtracting the first
two equations from the third, we obtain
T L1 ¥=1
> -1 -1 _ . _ R |
n2(11+6) - nzxz t2 s,
Since t.-s. > 0 and t.-s. > 0, we have (i +5)~1 > (x.+5) "1 > 17!
21 = 272 ="' 2 - 1 2
But (il,iz,g), being an interior point of Q, satisfies

0<i2<i2+§; and we reach a contrzdiction. Therefore supft = sup?f
Q B
1

o,
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and it follows from (3.1) that the sup on B, is attained at

1l
klan/sl, x2=n/sz.
(iii) Consider the case notnl=0, n,=n so that sl=t2

and sz=tl. Then we have
-— n - -
LA{sAy,8) = [12(x1+6)] exp[-(X,+8)t, - A,t;] on Q.

It is easy to see chat £ is maximized at every point (il,xz,S)

in Q satisfying x2=n/t1 and X +8=n/t2. The MLE exists but

1
it is not unique as far as Al and § are concerned. The case

n0=n2=0, n,=n is entirely symmetric.

{iv) Let n,.>0, n

0
concave on Q-Bl. If (3.2) has a solution (il,iz,s) € Q-B

2>0 and n1=0, logl is again strictly
AN

ll
we have no/3=0 as can be seen from the first and third
equations after noting that sl=t2 in this case. This is a

contradiction. Hence sup? is not attained at any interior

point of 2, and on the boundary B, we have 2=0. The MLE does

1
not exist. However, if I is extended to include Bz' then

supf is attained on Q=0 B at the point flao, i2=n2/t1,

2
§=n/t2 and, by convention, we may take this to be the MLE.

The other situation to be considered is when n0=n which

implies sl=52=tl=t2 and hence

n
L(Al,xz,é) § exp[-(l1+A2+6)t1] on Q-B

1

=0 otherwise.

[P VRO
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Supf is clearly not attained at any point in  although it

is attained on the extended set  at the point X1=O, X.=0,

2
3=n/t1. This may be taken to be the MLE, by convention.

This concludes the proof of the theorem.

With increasing sample size, the probability that N1=0
or N2=O approaches 0 exponentially and therefore the cases
-which are important in large samples are (i) and (ii) of

the above theorem. For (i), a closed form expression of the

MLE could not be obtained due to the non-linear form of the

likelihood equations. In application, the estimates must be

M

computed by an iterative procedure. The unbiased estimators
of Al,xz,é proposed by Arnold [l] are based on (NO'NI'NZ'TI)
and do not use all the components of the minimal sufficient
statistic. In some parts of the sample space, these estimates
are close toc the MLE while in others they are quite different.
The two sets of estimators are presented in Table 1 for
comparison. In fgé first three columns, +(0) means that the

corresponding Ni is greater than (equal to) zero. The cases

(NO'NI’NZ) = (0,0,n) and (+,+,0) are not included in the
table because they follow by symmetry from (0,n,0) and

(+,0,+) respectively.




TABLE 1. COMPARISON OF MLE AND UNBIASED ESTIMATORS

c, = (n-1)/n

Estimators of (Al,kz.d)
N0 N1 N2 MLE Unbiased

+ + + Unique root of (3.2) cn(Nl/Tl, Nz/Tl' No/Tl)

*
0 n O (n/Tl, n/Tz, 0) cn(Nl/Tl' 0, 0)
n 0 0 (0, O, n/Tl) cn(o, 0, n/Tl)
+ 0 + (o, NZ/Tl' "/Tz) cn(o, Nz/Tl' No/Tl)

*
a member in the class of MLE.

In the model BVE (B,3,6) having identical marginals,
the derivation of the MLE is essentially similar and a closed
form expression can be obtained. However, even in this

simplified model, there is a part of the sample space where

the MLE does not exist. We state the findings without proof
since the derivations are along the same lines as in Theorem

3.1.
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Theorem 3.2. If ny<n, the MLE of (B,8) in the model BVE(8,8,6)

exists, is unique and is given bx»gso, §=2n/(t1+t2) if n°=0

and bx
8 = (2t1t2)“1[{n2(t2-t1)2+ 4n0(2n-n0)t1t2}5 - n(tz-tl)l
B = (n-n.)8[n.+6t ]-1
0 0 1

if ny>0. If n,=n, the MLE does not exist.

In order to investigate the asymptotic properties of

-~

2n’6n)

the MLE in the model BVE (Al,lz,é), we write §n = (Xln,i
for the MLE of 6 = (Al,AZ,G) where the suffix n indicates
the sample size. Also let N, = (NOn'Nln'NZn) where we

write Nin for Ni’ i=0,1,2 of the previous sections. We
consider first the case when the true 6 is an interior

point of , that is, 9’9- For every n, Nn has the trinomial
distribution TN(n;p) where p = (p,,P,,P,) = A“l(c,xl,xz) and
A= A1+A2+6. By the Borel-Cantelli lemma, almost surely

§n>0 for all but a finite number of n as n+». For all
sufficiently large n, §n is the unique root of the likelihood
equation (3.2) and hence §n~g with probability 1 by the strong
consistency property of MLE (c.f. Rao [7], p. 300). 1In the

multiparameter case, it is necessary to use the fact that the

log likelihood is dominated by an integrable function in some

small neighborhocd of 8 in order to use the uniform strong
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law. Further, the likelihood function (3.1), restricted to

Q-B,, satisfies the Cramér conditions (c.f. Rao [7], p. 299)

for asymptotic normality. The boundedness condition for the

third partial derivatives of logf in a neighborhood of 6

easily follows as these can be bounded by constants. Hence

n%(én-g) has asymptotically the trivariate normal distribution
1

3(0,Z) where It = E(—n'lg) is the information matrix

and Q is given in (3.3). Letting

2

]
i

- -2, -
AZ(A1+6) » b AI(A2+6)

[ 3]
i

Lo

a o0

1l

§=X' 0 b
a b

a+§/

and computing E(Q), we obtain

-1
z 1

The following lemma provides the limit distribution of the

unbiased estimators.

Lemma 3.1. If 60 € 9-B;, the limiting distribution of

-~

n'NZn'NOn) is

trivariate normal 3(9,§1) with Z, given by (3.4).

% 6" -0 h o 1 -1
n (-n'~)' where 8 = (n- )(nTln) (N1

\

=zl 4 c. (3.5)

e == <
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Proof. From the properties of BVE(Al,Az,G), we note that Tln
has the distribution G(n,\) and it is independent of Nn
which has a trinomial distribution. Letting Z, = (zln,zzn,z3n)

where

Nin

zin n

(2 -2, (3.6)
n Tl

we see that nkzn is asymptotically 3(O,I‘) where

-~

py{l-py)  -Ppp; O
0 0 A2 )

Employing the linear transformation .gn = uzn , where

-~

A 0 P,
H = 0 A P,
"l -1 93 [4

it follows that nkgn ~ 3(Q,HFH'). It is easy to check that

= n%(8" -6 -
vn n‘gn 9. (.J)

v n > 0. For example,

1 P 6 1

1 - . -1
pl)(nTln - Ay —>» 0 since n (Nlnn - pl)

= nk -
vln n (Nlnn




has a limiting normal distribution and nTI; £ 5> . There-

fore na(g;—g) ~ 3(9,HPH') and the lemma follows by checking
that HTH' = Zl.

From (3.4) and (3.5) it is clear that I '-I]' is non-
negative definite so that § -§ is non-negative definite.
This has several implications on the concentration of the
two asymptotic distributions. However, as a measure of the
asymptotic efficiency of the vector estimator g; relative to
the MLE §n, we only employ the criterion of the inverse ratio
of their asymptotic generalized variances. From (3.5) and

* PN
Lemma 3.1, the ARE of en relative to gn is given by

-1,.-1
-1
= (1 + z,c])
A A AL A

2 1 1*2 -1
= [1 + + + (SA,+8A+A 2,5 ] ~.
X¥8 7 R,8 (A1+6)2(A2+6)2 17727172

(3.8)

As for the bounds of the ARE, we note that e<l for all

(A Az,d) > 9. e+0 if A, and § are fixed and A2¢~ or if

1’ 1
Az and § are fixed and Al*w. Secondly, by keeping § fixed

and letting A1¢0, AZ»O, we have e+1l. Summarizing these, we

have

‘ _ v
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inf e(Al,Xz,G) =0 , sup e(ll,AZ,G) = 1.

Q-Bl Q-Bl

When geBl, we have 6=0. In this case the MLE is given

by \; =n/s;, i=1,2, §=0, while the unbiased estimator is

* *
Ain = ("-I)Nin/(nTln)' i=1,2, § =0, The asymptotic normality

~

of n%(x -A A, ~-\A,) and of nk(k* =X x* -\,) can be
In "1’ "2n "2 In "1’ "2n "2
established using the above method. The ARE of the unbiased

estimator relative to the MLE and its bounds are given by
e(hy,A,,0) = A A, (A +2,) 2
1’72’ 172717 %2

. 1l
ng e(xl,xz,O) =0, sgp e(llolzyo) = 3
1l 1l

The maximum efficiency occurs when the marginals have the
same scale parameter and the minimum occurs when x1/A2¢O
or =,

(3.9) and (3.11) show that the unbiased estimators pro-
posed in (1] ar-~ asymptotically less efficient than the MLE
and the loss in efficiency is serious in certain parts of
the parameter space, particularly when § is close to 0.
However, it should be remarked that the unbiased estimators
have a simple form even in the multidimensional case while
the derivation of the MLE in higher dimensions is rather

tedious.

(3.9)

(3.10)

(3.11) :

e Jiny

ke L.
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4, TEST OF INDEPENDENCE IN BVE(§,§,8)

In this section, we restrict ourselves to the bivariate
exponential distribution with identical marginals which, as
noted earlier, is a plausible model in many practical contexts
where identical components are connected in parallel. We
proceed to derive an optimal test for the null hypothesis
that the component life times are independent which is
equivalent to testing Ho: 6=0 against Hy: 6>0. Without loss
of generality, we can restrict attention to tests which are
functions of the sufficient statistics (No,Tl,V). Their
joint distribution, however, does not congstitute an exponential
family and therefore the standard procedure for deriving an
optimal test in an exponential family does not apply.

Let

1 {(B,8): 0<B<=, 0<8<=} denote the parameter

space and w

{(B,0): 0<B<»} denote the subset specified
by the composite null hypothesis. We shall write 60=(8,4)
to denote a point in Ql and ¢ = ¢(N°,T1,V) a test function.
The following lemma provides an essentially complete cluss

of level a tests.

Lemma 4.1. Let U= {(¢: Egé<a, 6ew} be the class of level

) *
a tests for H, vs. H, and define a class of tests Y{; as

1

follows:




€ = (6% ¢"=1 if N >0, ¢ =pe®3 if N =0). (4.1)

* I
Then 1&:2: and ; is an essentially complete class of level

o tests.

Proof. Under Ho' the probability of the event [NO>0] is

* *
zero. Thus, for any test ¢ ¢ & and any e, we have
*
Egd = Pg(N,>0) + Py (NO=0)Ee(¢|NO=0). (4.2)

and Eacb* = E,¢ if Bew. Hence 'CZ*C T . Also, since
0<¢<l, we have P,(N,>0) 2 Ee(¢|N0=O)Pe(N°>O) and hence
(4.2) vields Ee¢* > Ee¢ for all 6 € Ql—w. Consequently,
every test ¢c & has a power function which is dominated by
a test in 23* and thus, by definition, 23* is essentially
complete.

The lemma implies that we only need to look for a UMP
test within the class & . A UMP level a test ¢;, if one
exists, will maximize Ee(¢;|No=0) uniformly in 8el,-w
subject to Ee¢; = Ee(¢;|N2-O) < o, 8ew. This reduces the
problem to finding a UMP test in the conditional problem
given that NZ-O is observed.

From Theorem 2.1, we note that, conditionally given

Noao, 'r1 and V have the joint pdf given by




(28+8) ™ (8+6)™

g(t lv) =
1 [F(n)12

0 < tl' v<o, (B,S8) € Ql.

Theorem 4.1. The UMP level a test of HO: =0 vs. le §>0

for the family of distributions (4.3) exists and is given by

expl-(28+8)t, - (B+6)v] (£,n)"7 1

¢°(t1,v) 1l if 2t1/v > Fa

0 otherwise,

where F, is the upper a point of the central F distribution

with (2n,2n) degrees of freedom.

’

(4.3)

(4.4)

Proof. For convenience, we make the following transformations:

v = 2u

o
]

1% 2

2B8+6

£ 2(B+8) = n.

The *-int pdf of Ul’ U2 is given by

g(u,,uy5€,m) = c(E)e(n) expl-Eu; - nu,l(u,u,)"7L,

0<u <,

1’ Y2

(4.5)

(4.6)
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where c(f) = a“/r(n). The transformed parameter space is

Q* = {(§,n): 0<n/2<E <nc< »} and the hypotheses are
equivalent to H: E=n vs. Hy: E<n. Let w* = {(E,E): 0<E<w},

To derive the UMP test, we shall use the notion of least
favorable distributions. Consider a fixed simple alternative
(El.nl) € Q*-w* and let Eo be a suitable constant, to be
selected later, which satisfies E1<E°<n1. Let X(Eo) be a
prior probability distribution on Q* which concentrates mass
1l on the single point 9; = (Ec.Eo)ew*. Letting

g, (u,,u,) = fg(u,,u, ; g,n)dA(£ ), we have

qx(ul.uz) = cz(Eo)exp[-Eo(u1+u2)](uluz)“'l.

Consider the test ¥ defined by

g(u,,u, ; £,,n,) cl{&,)c(n,)
1, if 1(u2 _ )1 1 21 1
9, 41-4 c“(g,)

W(ul.uz)

0 otherwise. (4.7)

After some simplification of the inequality, ¢ is equivalently
given by y=1 if ul/u2 > (nl—Eo)/(Eo-El) and y=0 otherwise.
Now we choose Eo such that (nl—Eo)/(Eo-El) =F_. Such a
choice is always possible because the ratio tends to 0 and

© as Eo tends to ny and 51 respectively. With this choice
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of Eo and hence of the prior distribution A(Eo), we have
¢=1 if ul/u2 > Fa and y=0 otherwise. Since under any

* *
0 ew , Ul/U2 has a central F(2n,2n) distribution, we have

EQ;W(Ul.Uz) = Eg#y(U;,U,) = a for all 0'cw’. The
conditions for Corollary 5 in p. 92 of Lehmann [5] are
satisfied and therefore the test y is the most powerful
level a test for H, against the simple alternative (El.nl).
Transforming back to the variables t1 and v, we recognize
that ¢y is identical with the test ¢° given by (4.4). As
the test does not depend on the particular alternative

(El.nl). it is also the UMP test. This concludes the proof.

Combining Lemma 4.1 and Theorem 4.,., we have

Corollary 4.1. For testing HJ: 6=0 vs. le §>0 in the

distribution BVE(B,8,6)., a UMP level a test exists and is

given by

¢‘N°ITllv) = 1 if No>0 or ZTl/V > FG

= 0 otherwise.

Incidentally, we note that the test (4.8) can also be
derived from a natural invariance consideration. The
problem is invariant under a common scale change in the two

]
coordinates, that is, transformations of the form Yy4=CY14"

(4.8)




]
Y24™CY¥pq ¢ i=1l,...,n, ¢>0. On the set of sufficient statistics,

the induced transformation is N;-No, Tl-ch, V'-cv and a

maximal invariant is given by (NO,R) where R-ZTI/V. Conditionally,

given NO-O. R is distributed as kP where k = (28+68)/(28+26§)
and F nas a central F(2n,2n) distribution. FPor 0<kgl, the
family has monotone likelihood ratio in R and hence the
conditional UMP invariant test is the same as ¢°. Using
Lemma 4.1, it then follows that the UMP invariant test is
the one given by Corollary 4.1. Although it is easier to
derive the test through this invariance argument, the use of
least favorable distribution provides a stronger optimality
property of the test.

The test (4.8), being invariant under common scale
change, has a power function which depends only on p=§/8
which is the maximal invariant in the parameter space.

Using (4.2) and the distributional properties mentioned

above, the power function Y(o)sEp¢ is given by

n n s
Yl0) = 1 - (380 + (5550 PUETERE > Fy)
= 1 - [2/(2+0)1TH(2F (1+p) /(2+0)) (4.9)

where H(*) is the cdf of a central F(2n,2n). For given n

and p, the power Y(p) can be easily computed with the help

Ao
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of an incomplete beta function table. The power is strictly

increasing in p for every n. To see this, let q(p)= 2F (1+p)/(2+p)
and note that the derivative of y(p) is proportional to

J(p) = {nH{q(p)) - q(p)hla(p)]} where h(*) is the pdf of

F(2n,2n). For n>2, the pdf h(x) is strictly concave over

0 to the mode (n-1)/(n+l), so that 2H(x) > xh(x) for all

x>0 and hence J(p)>0. The case n=1 is immediate since h(x)

is monotone decreasing.

Remark. It is apparent from the proof of Theorem 4.1 that a
UMP test for testing Ho: E=n vs. le E<n can be constructed

in the same way even when U1 and U2 are independent G(nl,e)

and g(nz,n) respectively, and the parameter space is

Q" = {(g§,n): 0<g<n<»}, and n, and n, may be different. For

an application in life testing, let xl,...,x and Y¥,,...,Y
A n, 1 n,

be two independent random samples from f(x) = nexp(-nx) and
g(y) = £exp(-fy) respectively. Epstein and Tsao {3] con-
sidered the problem of testing Ho: £=n against two-sided
alternatives and showed that the UMP unbiased test rejects
for large and small values of X/Y¥. The above theorem shows
that for one-sided alternatives le £<n, the test which
rejects for large values of X/Y is UMP rather than just UMP
unbiased. Same property holds with the usual modification
of the test statistic when the samples are censored at fixed

numbers of order statistics.
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