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1. INTRODUCTION

A method is presented which expands the class of min-max problems

which can be solved using an algorithm programmable on a digital computer.

The min-max problem deals with determining u* and y* such that J(u*,y*)

min max where U and Y are convex, bounded Hilbert spaces.

u•.U y¢Y

This type of problem can occur quite frequently when formulating

mathematical models of physical systems. A quality of the system such as

cost or position of some object can be represented as the variable J which

we call a performance index.

Now J is a function of some variables represented by the vector U,

which the designor can control or specify, but J is also a function of other

variables y which cannot be specified and which are known only to lie within

a given range. These variables may be unmeasurable and if they vary, it is

assumed that the ch'a.)g is slow enough so that they may be considered time

inv,•riint vhleo the control is being applied.

#hen faced with unknown 'variables, an optimally adaptive controller

*ha'h combinEs -.6timation and optimization could be used; however, parameter

estimit ion may enp-cy systems with high gains, which are usually susceptible

to additive noise. An optimal controller in a noisy system may not keep the

performance index near the minimum as in the noiseless case.

The difficulties involved in parameter estimation in tl,% presence

of noise leads one to other approaches to the probelm. One such approach

is to find the control which minimizes the maximum value of the performance
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index as a function of plant parameters.

There has been considerable theoretical d-velopment of the min-max

problem213J4 and the author is aware of four algorithms5'6'798 which solve a

min-max problem. These algorithms treat the minimizing variable 4 as a vector

in a finite dimensional Euclidean space. The space Y is a finite set of points

and y is an element from this space. The space Y c..n be considered a definite -*

set of values which may be assumed by the unknowrn parameters.

This paper is concerned with expanding the algorithms of 6 and 8

to deal with the class of problems where the minimizing variable is a vector

in a function space.

"ul(t)u~)= [u2::)
Unt

where t < t < T.

In other words, u(t) is the control which can change with time.

For example, consider the system with the state equation:

x =Ax + Bu

and a performance index
T

J = x'(T)Qx(T) + 0 u'(T)Hu(¶)dT.
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Assume H is a diagonal matrix and is not a function of time. Also,

assume matrices A end B are constant over time, and assume that some of the

elements in A are unknown, but lie witlin a given range. Furthermore, assume

that each unknown element in A has K values where K denotes that the Ath element
A I

r
has k values. Then if there are r such elements, we have a set of y K. points.

A=l
r

Let N = *r K Then the set of N points constitutes the maximizing

space of the min-max problem

min max J. (u)
u icl,2...N

where J.(u) is the performance index when A assumes the ith value in the set

(AIA2 ... A n).
4

Demjanov developed a Taylor's series expansion of the max function

for the Euclidean or parameter space problem. This expansion for Hilbert

spaces is presented in Chapter 2. Also, from the theoretical development in

his paper one can construct a gradient algorithm.

According to the algorithm by D. M. Salmon5 one should start with a

subspace 6' conisisting of two elements from the original max space. Then find

tre u> which solves the mi.-max problem consisting of the original min space

a-d the new max space V'. With tnis u* find the element i' in the original

max space which maximizes the performance index. Then add i' to V' and

rcpea'. The stoppiig cri:eria will not be presented hEre; the reader is

referred to the paper.

Finding the value of u* for the min-max problem with V' as the max

space is naturally a min-max problem; therefore, this is not a complete

algorithm.

.,i"iillii Ii il~ _~ j,
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The Newton-Raphson method by J. Medanic could be used to solve this

sub min-max problem. If the performance index is quadratic in the minimizing

variable and the space V' is small, then the solution could be found in one

step However, a combination of a gradient method, as the one presented by

6. heller6, and the Newton-Raphson method will be more efficient than Salmon's

method and and the Newton-Raphson 'ethod. The reason for this is that the

space V' after several iterations will be larger than necessary, and because

of this, the Newton-Raphson method will become very slow. For this reason we

will not employ SA!mon's algorithm.

7The algorithm employing an elimination method by J. Medanic theo-

ret4ica 3 ly cannot be used for solving problems in function spaces. In this

algorithm one begins with a space bounded by hyperplanes. At an interior

point of this space one can construct a byperplane which divides the space into

two parts. We are able to determine that the min-max does not exist on one

of the two parts. We then can eliminate this half from the space being

considered. One proceeds in this manner until the space that has not been

eliminated consists of a very small vo)lumns.

rhe main difficulty with trying to use this algorithm to solve

problems in fi..-ction spaces is that it is impossible to enclose any region

large or small with a finite numbcr of hyperplanes. To enclose an area with

an i•.:inte nurber of hyperplanes would take a• i Lii-ite amount of time.

Therefore, we will usc. a gradien: method ur.til we get close to the

min-max and then use a second order method to reach the min-max.
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Let us consider for a moment minimization problems where the function

is continuous and smooth. The min-max problem does not fall in this class

because, in general, the max function is not smooth. The Newton-Raphson method

which we may alternately call the second order method or the quadratic method

is useful only in regions in which the function is for practical purposes

quadratic; that is, the function may not be quadratic in larger regions, but

in a small region near the minimum it may be for all practical purposes quadratic

and the quadratic method will be useful in this region. In problems where the

function is not quadratic except near the minimum it is generally desirable to

use some form of gradient method until you are near the minimum and then

switch to the quadratic method. The quadratic method will give a direction

and step size, but if the function is not quadratic, the step may be larger

than one that decreases the function. An acceptable procedure then would be

to use the direction found but decrease the step. However, since each iteration

in a quadrtic method is more complex than that of a gradient algorithm, it is

more profitable to use a gradient method until one is near the minimum.

rhi min-max case is similar and a gradient method should be used

before a q-adratic method is used. However, even if each function Ji in (1.1)

is q.adratlc azd the .umber of points N in the max space is large (10 or more

points ca-. be coqsidered large), Lhen we will show that it is still advisable

to use a gradient method first.

We will briefly look at. what is contained in Chapters 2 through 7.
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Chapter 2 is concerned with finding the first and second terms of the

Taylor's series expansion of the max function in Hilbert spaces. This is

necessary before developing a gradient and second order algorithm.

Chapter 3 deals with the basic proofs and methods necessary to

develop a gradient algorithm in Hilbert spaces.

Chapter 4 presents the basic proofs and methods for the second

order algorithm in Hilbert spaces.

Chapter 5 shows how to represent the gradients and other expressions

derived in Chapters 3 and 4 in function spaces, a type of Hilbert space.

Chapter 6 presents some experimental results and discusses possible

difficulties with the gradient and second order algorithms and discusses the

problems encountered when the gradient algorithm was programmed.

Chapter 7 describes the detailed steps in constructing the gradient

and second order algorithms for solving the min-max problem in function spaces.



2. TAYLOR'S SERIES EXPANSION OF THE MAX FUNCTION

Before we develop the first and second order algorithms, we must be

able to find the first and second terms of the Taylor's series expansion of

the max function.*

Now, even if the functions J i(x) are continuous and smooth, the max

function J(x) = max J i(x) is continuous but not necessarily smooth.
ig .... N

Therefore, J(x) is not Frechet-differentiable, but we will show that it is

Gateaux-differentiable.

Minimize the functional

F(y) = max f (y) (2.1)
icl,2.. .N

where f. (y) is a real, functional defined over a subset S of a Hilbert space H.I

S is closed and bounded and is Frechet-differentiable Z timen where I < <.
ni(y

The nth Frechet differential in the direction g is denoted - - Then we
,gn

can write the following Taylor's series expansion of f.(y) in the direction

g¢P (u1gHl < M < ) and with step size o such that (y-og)cS
S k • kf(y

It f (y)f-tv.'Y-og) = if(y) + Z k - k + 0( iaI[) (2.2)
k=l ;bg

where

*..4 Tlopmet of - ao

*This chapter follows the development of Demjanov 4 but is in Hilbert spaces.
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The notation 1,N designates the index set (l,2,...Nj.

Consider F(y) = max fi(y)"

iel,N

We will show F(y) is Gateaux-differentiable.

Fir.,t we must define R(y,¢) and P(y). Let

R(y,e) = (iji-lN, F(y) - fi(y) < s]

P(y) = [ilicT-J, F(y) = fi(y)).

Now since [I-,N is a finite set, there exists a 6, such that for

all e < 6 R(y,s) = P(y).

Now for any two finite sets of real numbers A and B, with elements

denoted A(i) and B(i) respectively, then

max fA(i) + B(i)) > max A(i) + max B(i)(2.3)
icl,N iel,N ieP

where

P -[itil-l , A(i) = ma_ A(j)x
jel,N

Proof: For any i'lI,N

max (A(i) + B(i)) ? A(i') + B(i'). (2.4)
isl,N

Now (2.4) is true for i'CP, but for such i', A(i') = max A(i)
isl,N

max [A(i) + B(i)) > max A(i) + B(i') (2.5)
igl,N i¢I,N

and (2.5) is true for any i'CP including max F(i).
i¢P

max [A(i) + B(i)} > max A(i) + max B(i)
iel,N iEf-,NN iP

Q.E.D.
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Now from (2.2) and (2.3) we have

kI k 6 fi (y)

F(y4ag) max f.(y+Og)= m0-v tti(y) + A ok+f0(y)

icl,N icl,N k=1 2gk

k
o k akf.(y)

> max f.(y) + max [ X + 0 i(O) (2.6)

On the other hand, since the f i's are continuous, for any e > 0,

there exists an Of > 0 such that if os[0,aI] then

F(y+cg) - max fi(y+crg) = max f (Y+ag)" (2.7')
icl,N i¢R(y, )

Now s must be large enough so that R(yc) contains all points which maximize

F(y) within the sphere with the center at y and a radius of IltgII.

From the triangle inequality we have
I Otk 6 k fi(y)

F(y+ag) - max fi(y+tg) < max fi (y) + max k! + 0k1k(fy
icR(y,C) il,N-- icR(y, 6) k .l agk

(2.9)

Thus F(y+ag) is between the quantities

A - •kakf i (y)
Smax E A -- + 0f.(1 )andC +-+ * 0 ) and

ieP(y) k=1 k! bgk

£ k1

IO k 6 k fi (y)

F(y) + i y E r, . +--k +
k=lk

As we stated previously, if c is sufficiently small, i.e. c < 8, then R(y,s)

- P(y). However, if we desire an e that small, then the sphere with the center

at y and a radius jIogjj must not contain any other maxima besides those in



ii

10

P(y), i.e. a _<atr*.

Therefore, when o < CY* and C < 6 then

e k 6kf. (y)
F(y-•g) = F(y) + max E Z k + 0() (2.10)

ieP(y) k=l 'bg.

and the directional derivative of F is

S•fi(y)

lim F(y+ag) F(y) - max g 2.li
C1 -# + 0 ic•) i



3. GRADIENT METHOD

In this chapter we will present the necessary facts and methods

for developing a gradient algorithm for solving the min-max problem in Hilbert

spaces.

3.1. Development of Gradient Algorithm and Necessary Conditions for Solution

y* is a local minimum of F(y) = max fi(y) if there exists some
i¢I,N

c > 0 such that for all yeS and satisfying Ily-y*II< e then F(y*) < F(y).*

For a gradient algorithm we assume fi(y) has a continuous Frechet

derivative. We denote

af i(y)
fg = (p (y) g$"

Proposition I: A necessary condition for y* to be a local min-max

solution is that

max (p (y),g) 0 all geS.

icP(y)

Proof: Assume that for g'

max (p.(y),g') = k < 0.
ieP(y)

* 6
This chapter tollows the development of Chapter 3 in Heller's paper , but is
in Hilbert spaces where his is in Euclidean spaces. Most of the propositions
and theorems are easily extended with the exception of Proposition 5 and
Theorem 1 in this paper which corresponds with Proposition 5 in Heller's. In
this case the proof in Hilbert spaces was considerably more involved.
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Then there is an a sufficiently small to satisfy the requirements

for equation (2.11) and where

[tpi(y),g')> >I O°i(cv) for icP(y).

Therefore F(y+ag') < F(y) and y is not a local minimum.

Q.E.D.

Define

C(y) = (YI(pi(y),Y) < 0}.

icP(y)

Proposition 2: if at a point yeS there exists a yeC(y), then there

exists an 0 > 0 such that

F(y+oy) < F(y).

The proof follows from the above.

Based on Proposition 2 a procedure can be formulated which converges

to points satisfying Proposition 1. Assume y is an arbitrary point in S and

define a sequence in Styn) by

Yn+l = Yn + nY (3.1.1)

where ynCC(yn), assuming C(y n) is not empty and an satisfies Propostion 2. If

C(y n) is empty for any n, the corresponding yn satisfies Proposition 1. The

sequence F(Yn) is a strictly decreasing one and is bounded by min max f.(y)
yeS icl,N

The sequence F(y n) therefore converges Lo a limit. As S is closed and bounded,

(yn} must also converge to a limit point y* which satisfies Propostion 1. If

the poinu y* did not satisfy Proposition 1, it would contradict the fact that
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F(y*) is the limit of F(yn) which foliows from the continuity of F. This can

be summarized in the form of a proposition.

Propositior 3. The sequence of admissible points in S, defined by

equation (3.1.1) converges to a point y* which satisfies the necessary condi-

tions for a local min-max solution.

Convergence to a point which satisfies the necessary conditions for

a local min-max solution is guaranteed. It is necessary to know that a pro-

cedure eventually converges, but to be usefui we must have a termination

criterion which indicates when a point yn is in the neighborhood of the

solution y*. A neighborhood termination criterion will be presented in the

next section.

3.2 Termination of the Algorithm

It is desirable to terminate the sequence when a point yn is in the

neighborhood of a point satisfying Proposition 1.

Define:

Ck•y) = fy¢C(y) (pi(v),y) < -k]

where k > 0.
Proposition 4: The set C ky) is empty if and only if the set C(y)

k

is empty.

Proof: If C(y) is empty, then Ck(y) must be empty since it is a

subset of C(y). Assume Ck(y) is empty and C(y) is not.

Then there exists an yleC(y) such that

(Pi (y)'yI -< -b < 0
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but then .4

kg. (pi (y),yl) < -k

k

therefore, k VCCCk(y) which'is a contradiction.

Q.E.D.

Define

C:(y) = [yj(pi(y),y) < -k)

ieR(y, g).

Let lwy*Il be the minimum element of C'(y); then as a sequence of points yn

approaches the min-max solution y*, 11y*1I approaches infinity. In order to

prove this we use Proposition 1, i.e.,

max (pi(y*),g) > 0 all geS. (3.2.1)
igP(y*)

However, in order to use this information, the point i*eP(y*) which maximizes

(3.2.1) must be included in R(y+Ig,c). Therefore, we must show the following:

Proposition 5: For any e, there exists a 6 such that if

(Y < 6 and 1lgll = 1 then

P(y) C R(y + og,c) (3.2.2)

Proof: Since f.(y) is continuous for all i there are 6.'s such that

if C. < 68, then

Ifi(y + tig) - fi(y) _< s/2

icl,N

and

I
!1
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if (y + 1 -g) F(y)I < c/2

ieP(y)

since fi(y) - F(y) for icP(y).

Let 6' - min 6m . Now if ,-2 - 8' then
iCP(y)

ifi(y + a'g) - F(y)I < :/ 2

icP(y).

We have shown F(y) to be Gateaux-differentiable and, hence, continuous.

Therefore, there is a 80 such that if o <8 6othen IF(y + o0 g) - F(y)I -< e/ 2 .

Let 8 = mrin [6',6o0 and let y < 6.

Then

Ifi(y + rg) - F(y "ag) 1 --< eiP(y). (3.2.3)

But all i's satisfying (3.2.3) are elements of R(y + og,e). Therefore

(3.2.2) follows. Q.E.D.

Now we are able to give the condition that indicates we are approach-

ing the min-max solution. Simply stated, the condition is that the minimal

element 1Y*tI of (:(yn + tg) approaches infinity as yn approaches y*. Or more

formally, we have:

Theorem I: For any € and for any N, there is a 6 such chat if y* is

a local min-max solution, then if o < 6 and 1lghl < 1, then the minimum element

1Iy*1I of cr(3-* + cg) is greater than N.

k- l i m ll i l i 'l lmmmmmmm- -m l
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Proof: Since y* is a local min-max solution, then for some i denoted

<Pi'(Y*)>Y*- 0 (3.2.4)

and since

P(y) C R(y + ag,¢)

then i'¢R(y + ig,s) and by the definition of y* we have

(P,'(y* + ag), y*) < - k for c < 6

Now add (3.2.4) and we get

(pi' (y* + Og) - Pi,(Y*), y*) < -k (3.2.5)

and let

b = pi' (y* + yg) - P (Y*)"

Since we assumed fi.(y) to have a continu)us derivative, i.e. pi,(y) is con-

tinuous, then for any k and any N there is a 6' such that if IIcgII < 6' then

lIbiI _5 k

Now we know from the Triangle Inequality,

But from (3.2.5) j(b,y*)j > k

" ilbil Iy*Il > k

l1y*II > N.
Q.E.D.
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3.3 The Direction to Move

From Proposition 2 and from the fact that Ck(y) is a subset of C(y)

we <now that any y which is an element of Ce(y) will be a suitable direction

which, with a small enough step, will decrease the max function. However,

we may wish to travel in the direction of greatest descent. That is, if O(y)

is defined to be

0(y + y) - F(y) + max (pi(y),Y) (3.3.1)
isR(y, e)

then we want to find the y denoted y* to be that direction which minimizes

06' + W

-(y + Y* min (y +-Y-). (3.3.2)

II Y*Il yC(y) 1Yllk€

Theorem 2: If y* is the minimal element of Ck(y) with respect to

the norm, then y* satisfies (3.3.2).

Proof: The maximum entry of

(pi (y),Y*)

is -k where

icR(y,e).

Assume for an arbitrary ysCk(y) the maximum of (p.(y),y) is -b where icR(y,¢)

and -b < -k.

The max of p(y), y ) is -k and k y is an element of C .There-

fore, we have:

max (pi(y), -- -) - k

icR(y,g) IY*ll l (3.3.3)

and
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max (p.(y), Y b (3.3.4)

i¢R(y,¢) IIIll Ilyll
S

And by assumption chat Iy*II is the minimal element of Ck(y),

IIy*II k< I lyll, or

-k < -b (1.3.5)

Ty-;I F
Therefore, from (3.3.3), (3.3.4), and (3.3.5) we have

max Pi (Y)' Y* < ma-x Pi(Y)' -- (3.3.6)
ieR(y,e)(y,) Ilyll

From (3.3.1) we have

O(Y + ) f F(y) + max (pi(y), _2L (3.3.7)
Y* icR(yC) Ily*ll

and

0(y + --Y--) = F(y) + max (pi(y), Y >. (3.3.8)

Ilyll icR(y,e ) IKHll

From (3.3.6), (3.3.7), and (3.3.8) we have

O(y + Y*f) < O(y + Y)
Ivlyl Uvlyl

Put another way we have

6(y + *) = mrin (y +

'l9Jk yeCk(Y) IjyJI Q.E.D.
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3.4 Implementation of the Algorithm

We have shown the direction of steepest descent is equal to the

minimum element of Ck(y); however, finding the minimum y¢Ck(y) with respect

to the norm is a minimization problem in Hilbert spaces. In most problems

where the Hilbert space is not the Euclidean space, this algorithm would not

be suitable. However, the problem can be transformed so that the minimization

is carried out in a Euclidean space.*

We wish to find min(y,y>k such that

(pi(y),y> < -k (3.4.1)

ieR(y,e)

if y' minimizes (3.4.1) it minimizes (y,y) subject tG the same constraint.

minimize (y,y) such that

(Pi (y) y) < -k

icR(y,¢).

From the Kuhn-Tucker theorem y represents a solution to (3.4.1)

if and only if a vector G exists such that

Y (j,u U<•••) < (Y,'

where u > 0 and

K
/(Y'u) = (Y,y) + Z u-(p (y),y) + k)

and K is the number of elements in R(y,c). This yields the Kuhn-Tucker con-

ditions:

,
This section deals with the Hilbert space development of the Method of Hildreth

11
and D'Espo
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(pi(y),y) + xi f -k (3.4.2)

icR(y,e)

K
2 y + E ujpj(Y) - 0 (3.4.3)

jl 
, 

JP

UtX - 0

u > 0 x > 0 (3.4.4)

Consequently,

K
-2 .j=I u.pj(y). (3.4.5)

Substitute (3.4.5) into (3.4.2) and we have
- E UK p (y)) + x.

Sj= J )i-ik

icR(y,¢)

This is equivalent to

1 • u.(p.(y) p (y)) + x. = -k. (3.4.6)
j-i1 j ' I

Equation (3.4.6) along with (3.4.3) and (3.4.4) frdm the Kuhn-Tucker

conditions of the following problem

min u'Gu - ku
(3.4.7)

with u > 0

with the matrix
1

G --• (Y)'Pj(y))"
ij 4 i

We have presented all the necessary operations to construct an

algorithm employing a steepest descent search and a stopping criterion.
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In Chapter 7 we will present the complete algorithm and how it should be used

in conjunction with a second order approach. Therefore, we will now present

dw the second order algorithm. It will be considered in two parts. First, we

will assume that each function fi, where

F(y) - max fi(y),

ilI,N

is quadratic in y and that the total number of points N in the max space is

small. Next, we will consider the case where f (y) is not quadratic and/or

the number of points N is large.
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4. SECOND ORDER ALGORITHM .1

In this chapter we will present the necessary facts and methods for

developing a Newton-Raphson or second order method for solving the min-max

problem in Hilbert spaces.*

4.1. The Quadratic Min-Max Problem

Consider the min-max problem

d* = min F(y) = min max f(y(4.1.1)
yeY yeY igl,N

where the fi(y)'s are quadratic functionals in the Hilbert space H, i.e.,
I-I

f.(y) = a. + (biy> + - (gi(Y),y>

gi(y) is a linear functional of y and (g i(y),y> is positive for all y 0 0 and

zero for y - 0.

The heart of the second order method is that the max function can

be expressed as a function of the original variable and a vector variable.
N

That is, F(y) = max fi(y) = max r cifi(y) = F(c,y). Also, F(c,y) possesses
igl,N c€C i-l

a saddle poinm- and is equal to the minimum of F(y). That is,

min max F(c,y) = max min F(c,y) = min F(y).
y c c y

This can be expressed in the following two theorems.

This chapter follows the development of Medanic8 except in Hilbert spaces.

I1
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Theorem 1: Let the max function

N
F (y) - max E cifi(y) (4.1.2)

m csC i-l

where c - (cl,.. .cN) and

N
Sc. = 1, c, > 0 i - 1,2,...N

and

F(y) = ma~x fi(y). (4.1.3)
icl,N

Then for all yell

F(y) = Fm (y).

Proof: Let c* maximize (4.1.2) and let c' be such that

r
E ci'fi(Y) - max fi(y) - F(y).
i=1 i-1,N

Clearly
N N

F (y) - E c*f (y) > E cifi(y) F(y) (4.1.4)m i=lI i=l

by the definition of c*.

On the other hand, since

f i(y) < F(y) icl,N

it follows that

N N
Sc•f (y) <_ E c*F(y) - F(y).

irn i i-1
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Therefore, .

N
F (y) = E ctf (y) _ F(y). (4.1.5)

ii=l

From (4.1.4) and (4.1.5) we have

F m(y) = F(y). Q.E.D.

Corollary 1. The min-max solution of the modified min-max problem

mrin max F(y,c) where
y c€C N

F(y,c) = ci f i(y)

is equivalent to the min-max solution of the original problem (4.1.1).

Theorem 2. The modified function F(y,c) possesses a global saddle

point, i.e., there exists a point (y*,c*) satisfying

d* = min max F(y,c) = max min F(y,c).
y ceC ceC y

Proof: Ky FanI0 has shown that if the domains of y and c are convex

and if F(y,c) is convex in y and concave in c, then

miin max F(y,c) = max min F(y,c)
y c c Y

Hence, we must show that the above conditions are satisfied. The

domain of y is not restricted and, hence, it is convex while the domain c

is convex since it is defined as the intersection of two convex sets: the
r

positive hyperquadrant c. 2 0 i = 1,...r and the hyperplane Z c. = 1.
i=l

Also, since the c. are non-negative and (gi,(y),y> is positive for

all y 0 0 then c f i(y) remains quadratic and, hence, convex. And since the

modified cost funcliona. is linear in c. i = 1,...r, it is also concave in c.
1

Q.E.D.
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4.2 Second Order Algorithm for the Convex Min-Max Problem

Two algorithms are possible from the above discussion, where one

is imbedded in the other. The first is an algorithm which solves the quadratic

min-max problem where the number of points in the maximizing space is small.

Since the min-max and max-min operations can be reversed, it is necessary to

find the minimum of J(y,c) with respect to y in terms of c, and then maximize

the resulting function of c.

This will yield the min-max solution with one maximization. Since

the maximizing space c has dimensions equal to the number of points in the

max set 1,N then N must be kept relatively small.

If N is large and/or the fuuctional is not quadratic, then an

alternate procedure must be used.

We will consider an algorithm that makes use of second order

variations.

Assume fi(y) is convex for igl,N and fi(y) can be differentiated

twice for all points.

Then from Sectiun 2:

F(y + ag) - max fi(y + 01g)
igl,N 221 2 8fi ia )

m at ,2 f 1  2
F(y + cig) > F(y) + max rot + + Ot

i-p (y) -g2 2

and

afi(y) 2 2 fi(y)
F(y + cig) < F(y) + max ro - + _+ 0i(c2)a .

ieR(y,c) 2 ýg2
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If fi(y) is quadratic for all igl,N, then from any initial point we

can immediately use an algorithm minimizing a quadratic. If, however, fi(y)

is not quadratic and if the initial point is a large distance from the minimum,

then higher order terms render a direction found to be no more useful than a

direction found only with a gradient algorithm. And since a direction obtained

with a quadratic minimization would consume more computer time than the gra-

dient method; then the gradient method should be used.

It would be advisable to use the gradient algorithm until the step

size becomes small. Therefore, assume fi(y) is quadratic or yn is close to

y* so that thirc or higher order terms are negligible. Then
;ýf, 2 a2f. (y)

min F(yn + cg) > F(y ) + min max [ia( 2 2

g Cig iep(y) ag g

and •fi+ 2 •2f.(y)

min F(y + tg) < F(yn) + min max [o - 2 ' +
'g ig ieR(y,¢) ýg 2 2 g

e must be large enough so that R(y,e) must contain all elements i'

where i'cP(y') and y' is within the sphere with y as center and y' -y as

radius.

The second order algorithm is as follows:

Find o*g* which minimizes
fi(n i 2 •2fi(yn)

max [ + 2 2"
icR(y,r) )g 2 E2

Then yn+l ' Yn + cj*g* and FYn+l ) should be less than F(Yn).

If it is not, it is because third order terms could not be neglected or e was

not large enough. If this is the case, find &' < I such that
F n

F(yn + 'I~*g*) < F',(yn).

_ - " I I I : I • - I I- |
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Repeat the algorithm with

Yn+l and en~l < 6'n

Terminate the algorithm when ym is within 6 of y*; this occurs when

i *g*!I < 6 and c < _ 1 such that R(ymi) P(ym).
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5. THE MIN-MAX PROBLEM IN FUNCTION SPACES

We have presented the gradient 4nd Newton-Raphson methods for .4

solving the min-max problem in Hilbert spaces. Let us consider a particular --

space, namely the function space.

Given

F(u) = max K. (u) (5.1)
iel,N

where
T

Ki (u) = f0 V(xi (t),u(t))dt (5.2)

and where

x(t) f(xi,u), and x(o) = X (5.3)

Therefore, where we have used the inner product we have

T M
(a,b) = Z i[ai(t) bi(t)]dt.

0 i=l

5.1 The Gradient Algorithm

We must know how to calculate the gradient. The gradient of Ki(u)

is:

grad K.=- 7 H. where (5.1.1)1 u i

H.-V(xiu) + X'fxiu) (5.1.2)

xi = X H x(0) = Xo (5.1.3)

X -V H X(T) = 0 (5.1.4)x

Therefore, to find the gradient of K. at a point u, solve (5.1.3)

for x(t); having this, solve (5.1.4) for X(t). Consequently, we can find -V H.
u

%1I
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We can now use the gradient algorithm presented in Chapter 3.

We have indicated how to find the gradient, namely by solving two

sets of n differential equations where n is the order of the system and sub-

stituting the results in equation (5.1.1). The gradient is not, however, the

direction to move unless there is but one point in R(y,c).

We must calculate the gradient for each point in R(y,e). It is then

possible to find the direction to move which is the minimum element of C"(y).

To find this element we minimize

u' G u- u (5.1.5)

with u > 0
u1 T

G.. = - r'(t) p.(t)dt
ij 4 j 0Pi J

where p, is the gradient of Ki associated with the ith point in R(y,¢). Now

the direction to move is

1K

Y = - ujpM(t)
j=lJ (5.1.6)

We can then find a suitable step size and repeat the process.

Minimizing (5.1.5) is an iterative process. If a minimum is not

found within a reasonable amount of time, it may be that cj(y) is empty and

no value of u exists, or y may be very large. Therefore, calculate y and if

it is greater than some N, then decrease C in C6(y) or terminate because the

solution has been found. If ' is less than N, continue the minimization process.
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5.2 Second Order Algorithm

In Chapter 4 we stated that we must find the minimum of J(u,c)

with respect to u in terms of c. We will now show how this can be done.

There are several ways in which to solve this problem. One method

is as follows:

Let
N T N

J(u,c) i=r- ciKi(u) = 0 ciV(xi'u)dt.
i=l 0o i1l

This can be rewritten as

T
J(uc) f V (x,u,c)dt

0

where

X M 2x 2 "f(-Xu) f f 2 (x 2 ,u)

L XN fN (xJ, U)

and Hi -V(x,u,c) + X' f(x,u). If x. is an n vector, then 7, and X are n-N

vectors.

If f(x,u) is linear, we can solve the Riccati equation and find

u*(c), the value of u which minimizes J(u,c) in terms of c.

However, this method would consume a considerable amount of machine

time and storage since we are dealing with (N.n) 2/2 simultaneous differential

equations and they must be solved many times because J(u,c) is first minimized

in terms of u, then maximized in terms of c and repeated until the saddle point
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is found.*

Let us consider another method for finding the minimum of J(u,c)

with respect to u in terms of c.

Let
T

K.1(u) - jOV(xi(t), u(t))dt. (5.2.1)

If V is quadratic in u or if higher order terms can be dropped then

T dV T d2V
K (u) Oa (=- ( .u(t))dt + 1Ju(t) A-j u(t)dt
i 0 J du 2 0 du2

Tu (x,u) contains u, explicitly and implicitly. Where u appears explicitly,

ddu

We can write

dV aV ax )Vdu (t) -X u (t) au(t)

Working concurrently but independently J. Medanic has produced an as yet

unpublished paper dealing with the quadratic problem in function spaces. He
has proofs similar to those in Section 4.1, and he uses the method employing
the Riccati equation described above. He has considered an example where the
max space N consists of two points. His paper does not present the method of
finding the minimum of J(u,c) with respect to u in terms of c that is pre-
sented helow, nor does he consider the gradient method, nor does he deal with
the problems encountered when N is large which we will discuss in Chapter 6.
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d2V a2V ax a2V
d2(t " u(t)•x •u(t) +u2t)_

du (t) au Mt

2x 2 V x +a, a2
d2V = x' •2 x •x •2V

du(,'r)du(t) U ax "x2 bu(t) Bu(T) bxau(t)

Now
N

J(uc) = i c.Ki(u).
j=l11

Find the gradient of J(u,c) with respect to u and set it equal to zero.

dJ 0
du

N dK.dJ
-- = Z c. -- = 0 (5,2.3)du i du

and
dK. dV. d2V. T d2V.

I = + u' (t) -i + U', (-r) du Id')dr = 0 (5.2.4)
du du du2 0J du(.r)du(t)

Putting equation (5.1.4) into (5.1.3) we get

N dv. d2V. T d2V.
, Cid + u(t) 2  + U'() du)du(t) = 0. (5.2.5)

i=1 du 0

The integral equation (5.2.5) must now be solved. In general, this

can be a fairly complex problem. We will now consider a specific example.

I
T
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5.3 A Specific Example

We will consider the problem presented in Chapter 1.

Given a state equation

x= Ax + Bu

and a performance index
T

J = x' (T)Qx(T) + f0U' (,r)H u(r)dt

Assume H is a diagonal matrix and is not a function of time. Also

assume matrices A and B are constant over time, and assume that some of the

elements in A are unknown, but lie within a given range. Furthermore, assume

that each unknown element in A has K values where K denotes that the Ath

element has k values. Then if there are r such elements, we have a set of
r
TT KI points.

2=I r
Let N = rr K . Then the set of N points constitutes the maximizing

space of the min-max problem

min max J. (u)
u i¢l,N

where J. (a) 1s the performance index when A assumes the ith value in the set1

(At,A 2 ,. .AN').

We wish to demonstrate the gradient and second order algorithms for

this problem. Now J is quadratic in u. However, assume that N is large;

therefore, we do not want to generate a minimizing space of dimension N.

In order to find the gradient of K. we must transform J so that J
t

takes the form of (5.2).
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'I

Let

i(t) = x' (t)Qx(t)
T T

R(T) - R(O) J A(t)dt - x'(t)Qx(t)dt
0 0,

Therefore,
T

R(T) - x' (T)Qx(T) x' (o)Qx(o) + 0x' (t)Qx(t)dt
0

Therefore,
T •

K. = x'(O)Qx.(0) + [x!(t)Qx (t) + u'(t)Hu(t)].

i 1 0

Now in calculating the gradient of K. the first term can be ignored since it1

is only a constant.

Therefore,

H. = - x!(t)Qx (t) - u'(t)Hu(t) + )'(A x + Bu(t))

grad K.i = -vu H = + Hu(t) - B')

and to find X' we must first solve for x(t) by solving

x=Ax + Bu x(O) = x

then solve

S= 2Q x(t) - A!X with X() = 0

We will now present the main computational aspects of the quadratic problem.

From the Taylor's series expansion in Chapter 2 we hIve:
dJ. 1 d-J

max J (u + h) ? max J(u) + max [- h) - h) (5.3.1)
icl,N o icl,N icP(u) + 2du 0

0

I,
SIii,
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and2
dJ i1 di

m~ax Ji(uo+h) : max Ji(u) max (--,h + -(h'ý-J-. h>].
igNigl,N iR(uoys) du

(5.3.2)

Nov we wish to find h to minimize

max dJ. 1 h))
iRu )[(dI(Uo),h) + duhlh)

where a is large enough to include all points in the sphere with u0as center

and lihil as radius.

Now
t

X(t) = (t't 0)x 0+ jf (t,T)Bu(¶r)d~r
0

I 2x(T)Q -x+2o()
du 

0uU 0 o 2x(T)Q§(T,.r)B + 2uo'(t)H

d 2J.

du2 - 2B'.I'(T,t)QI(T,.r)B + 2H.

du
0

We have now,

T
min max [f[2x .(T)QO 1 (T,T.)Bh + 2uO'H h~dTr
h icR(u 010 t 0

T I T
+ f f h'(t)B'I§ (T,t)Q§ .(T,r)Bh(.r)dtdr + f h'(x)H h(tOdt).

t 0t 0t 0(5.3.3)
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Now convert to a modified min-max problem.

N T
min max .E lci [2x.(T)Qýi(T,.r)Bh + 2u'H h]d¶

h ceCi=l t
0

S T T5+frh' (t)B'•i(T,t) Q§ (T,-r)Bh(,r)dtdr h' (t)Hh(t)dt). (5.3.4) "

tt
0 0 0

We can interchange the max and min operations and we wish to find the

gradient with respect to h and set it equal to zero.

N T
E ci[2xi(T)Q§i(T,-r)B + 2u'H + 2 f h'B'§i(T,t)Q§i(T,T)Bdt
il 1 t

0

+ 2h'H] = 0 (5.3.5)

We can write this as
N T N
E cifi(t) + Hh(t) + Z iE G i(t)K.i()h(T)dT 0 (5.3.6)

il "i "
t 0

f. is an m vector1

H is an mxm matrix

G. is a mxn matrix ard1

K. is a nxm matrix.

In order to solve the integral equations (5.3.5) or (5.3.6) we must

make use of the fact that if it has a solution, then h(t) must be a linear

combination of all the functions in the equation. We will express this fact

as equation (5.3.7). Then we will insert equation (5.3.7) into (5.3.6) and

will get a set of equations which contain the vector c and a new vector b of
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coefficients in (5.3.7) but the integrals no longer contain an unknown variable.

Consequently, the integrations can be calculated initially and then

for a given c one can solve the matrix equation for the vector b. Then find

the vector c which maximizes (5.3.10). Note that this maximization will be an

iterative process, and for each new value of c, the matrix equation must be

solved for b.
N N

An element of the r. cifi matrix is denoted [ ifl

Let
N N n

h = E Z c if.i /h + E Ec b g
il kll(5.3.7)

Put this into equation (5.3.6) and set the coefficients of gpjq- 0.

Thus
m T

SI k pqs(T)hs ( )d1 = 0 (5.3.8)Cpbpqgpjq p Cppjqsl

m T N n N
b + kpq[ [Z c f.] /h + E Z kCkbkegksl = 0 (5 3.9)

Pq s=l to i i sks =

N m T
b + Z c I Z 0k [f.] /h dT

pq i=1 is=

N n m T
+ E ck b bki E kpqsgksAdT = 0. (5.3.10)

k=l 1 s=l 0

Now if b is written as a single vector, we havepq

b + y + Ab - 0; b = -[I + A] Iy.

From examining equation (5.3.10) we have En.N-m] In.N+l] integrations to solve.
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It is necessary to maximize J(uc) with respect to c; however, it is necessary

to solve the above number of integrations only once and then a new value of b

and, consequently, h can be found using equations (5.3.10) and (5.^ 7).

It may be noted that for a problem where the order of the system

is 4, the number of inputs is 2 and R(uog) = N = 10, rn.N.m] [r-N+l] = 3280.

However, if the wethod employing the Riccati equation is employed,

(n.N) 2/2 = 800 simultaneous differential equations must bo solved Experience

shows that it is by far easier to solve tht 3280 integrations. Also, the 800

differential equations must be solved repeatedly as J is maximized with

respect to c.

As stated in Chapter 4, a new point un is found and the process is

repeated until the distance to the minimum is below some e.

4.
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6. POTENTIAL DIFFICULTIES AND LIMITATIONS OF THE ALGORITHMS

In order to take a reasonably large step size with either the

gradient or second order methods, e in R(u,e) must be large enough so that

R(u,¢) contains all points where the max may occur within a sphere at u and

a radius equal to the step size. And, clearly, near the min-max solution at

least all points which maximize the original function and all other points

which are very close must be considered.

In order for the algorithms to be useful, it is assumed that a

relatively small number of points will solve the max problem at the min-max

solution, i.e., that P(uo) is small where u is the min-max solution. The

question remains whether this is a valid assumption.

6.1 Some Reasons Why P(u) Maybe Large

Consider a min-max problem in a finite demensional space where the

minimizing vector consists of one component. Experience has shown that the

min-max may occur at two intersecting lines. It is not likely for more to

intersect, but two is very probable.

Next consider the case in which the minimizing vector consists of

two components In this case three surfaces very likely intersect at the

min-max. Continuing this reasoning, where the minimizing space is of order n,

the n+l points may maximize the function at the min-max.

Likewise, if the minimizing variable consists of an infinite number

of components, then an infinite number of points may maximize the function at

the min-max. Now if the max space consists of a finite number of points, then
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it is -ery likely that a large percentage, if not all, may maximize the function

at the min-max.

Now consider the problem x = Ax + Bu where some elements of A may

lie within a given region and

T
J = x'(T)Qx(T) + f u'('r)Hu(T)d•.

t
0

Now the max space ccnsists of a non-countable number of points. If

the minimizing variable consists of a non-countable number of elements as we

have considered, then it is very likely that at the min-max solution a non-

countable number of points from the max space may occur.

From this discussion it is now clear that our original assumption.

that the number of points maximizing the function at the min-max is a small

number, may not be reasonable.

6.2 A Numerical Example

The gradient algorithm was programmed for the following problem:

find the
T

min max J. (u) = x'(T)Q(T) + j u'HudT and where x = Ax + Bu.
u iCI t

0

An example was computed where the order was 2. Q equals I, the identity

matrix. There was only one input and H = 10 8, x0 = [1,11], and A varied

between I 2

L3 -4J and 5 ]5
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Three cases were considered: One where there were 125 points in the max space,

one where 24 points were considered and one where only eight points were con-

sidered. The method used for finding the gradient was the one presented at

the beginning of Section 5. The differential equations were solved using the

Runge-Kutta-Gill method. The closer one approached the min-max solution, the

greater degree of accuracy was necessary to find a point which decreased the

function. With one level of accuracy a direction would be given, but even with

an extremely small step size the function value could not be decreased. If

the accuracy was then increased ten-fold, a direction could be found where the

function value could be dccreased from 10 to 30 percent in one iteration.

This indicates that the solution has very steep V shaped ridges as

you approach th. min-max solution.

The input was divided into 26 parts and in solving the differential

equations each interval was further divided. In order to increase accuracy,

each of the 25 intervals was divided into a greater number of sub-intervals.

it may havt been desirable to increase the original number of points in the
coý,trol. Possibly this is a limitation of the gradient algorithm and it

may be necessary to switch to the secoid order mcthod..

A degree of accuracy was not obta3nrd with the gradient method to

detcrmine what percentages of points in the mix space were in P(u*) where u*

was the mi-max solution,

However, one thing is clear. Even if PVuO does not contain the

entire max space or even a large part of it, R(u ,n) must be a large propor-

tion of the max space or, ptcferably, all of it in order to minimize the



42

function in reasonable time. In the program that was constructed, R(un,¢) -.

could only accommodate ten values. When the max space consisted of 125 points,

the program took a considerable amount of computer time. The reason for this

is mainly because during the maximizing step, the full 125 points had to be

expanded, and when it became necessary to increase the accuracy for solving

the differential equations, the program was terminated.

The program was terminated before y*, the minimal element of Ck(U),

became large. This indicates that either un was not close to the min-max or

G was not large enough so that R(u n,) contained all the points in P(u*).

n"
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7. THE ALGORITHMS IN DETAIL

In this chapter we will present the detailed explanation of the

gradient and Newton-Raphson algorithms, and how they are used together in

solving the min-max problem in function spaces.

7.1 The Size of R(u n,)

As we have seen, the max function has steep gradients. Therefore,

it is not desirable to pick an c in R(u nc) and find the number of points in

it since it is too difficult to tell how large e should be. Consequently,

R(u n,) should be as large as the following considerations allow. The

algorithm which finds the minimum yC e(u ) becomes very time consuming as the
k n

number of elements in the vector y increases. (The number of elements in y

equals the number in R(u n,).) There is some optimal number of elements

R(u n,) should have which depends on the tc-al number of elements in the

wax space and the nature of the problem.

In the second order method we have the same problem, only to a

much greater degree. There the procedure which finds the saddle point solution

of Jku,c. becomes exponentially more complex with each new element in the

vector c. As the reader will recall, this is where either a large number of

differential equations must be solved repeatedly or an even larger number of

integral equations must be solved once.

The purpose of this discussion, then, is to use the gradient method

with R(ung) having a large numbcr of elements until one is near the solution
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and then use the quadratic method with R(unn) being small. This is assuming

that at the win-max solution P(u*) has no more elements than the number we

used for R(u n,). That is, R(u n,) must contain at least as many elements as

P(u*) and if it is a large number, then the problem for all practical purposes f

cannot be solved. At large distances from the min-max, it is not necessary to

have a very precise figure for the gradient. It is desirable to use a crude

approximation of the gradient until you are near the min-max when a greater

degree of accuracy is necessary.

The gradient algorithm can be used even if J is not quadratic. The

example presented in Chapters 1 and 5 is much more restricted than is necessary;

however, to use the quadratic method which employs the solution of integral

equations to solve the saddle point problem, it is necessary to have a very

restricted problem. It is necessary that the matrix H in J = x'(t)Qx(t)
T

+ tu'(t)Hu(t)dt b; diagonal. If it is not, then the set of integral equations

to be solvcd would be much more complex.

7.2 The Gradient Algorithm

1. Choose M1, the number of elements in R(u n,), the initial step

size a, the initial point in the minimizing space u and K

explained in step 5.

2. When u = u calculate the value of the function J at all N points

in the max space. Store the MI largest points. See Note I in

Section 7.4.

3. Calculate the gradients for the M, points. See Note 2.
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4. Calculate the M1 by M1 matrix G explained in Section 3.4 or Note 3.
5. Compute y* the minimum element in Cc See Note 4. If IIY*II ) K.

Ck(un)*

some large number, then we are getting near the min-max. If e in

R(u ,e) is sufficiently small, we are at the min-max. This can ben

determined by noting the difference for the greatest and least value

of J for the M1 values of J in R(u n,). This difference is equal to

c. If e is not small enough to terminate,then decrease MI by one

element. Now if MIS M 2 where M2 is the number of points in R(un,€)

for the Newton-Raphson method, then transfer to the Newton-Raphson

algorithm. If MI > M2 then calculate a new matrix G. Note that it

should be necessary only to delete the last row and column. Find a

new value of y*. Now if Iy*II < K proceed to Step 6.

6. Let un+1 u +n +01

7. If F(un+1 ) < F(un) return to Step 2.

1If F(un) > F(Un) Lhen let a o f and if o a return to Step 6.
n+l - n 2 -m

Observe that it is necessary to store the old value of u until then

condition in Step 7 is satisfied.

If a is very small, ioe. less than some am , the convergence is too

slow. It may be that the value of y is not accurate enough and this

may rt-sult from inaccurate gradient calculations. Therefore, in-

crease the number of points ND as explained in Note I, Section 7.4.

If this does not help, increase NO and ND and increase the accuracy

of the procedure minimizing u G u - u. If none of the above helps,

then switch to the Newton-Raphson algorithm.
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7.3 The Newton-Raphson Algorithm

There are two conditions where the program should be transferred

to the Newton-Raphson algorithm. The most desirable one is where IY*i

approaches infinity repeatedly as the number of elements in R(u n,) is decreased

until the number in R(u n,) is quite small.

The maximum number in R(u n,) will be denoted M2 and should be much

less than M1 otherwise the computation time will be excessive.

The second case where the program transfers to the second order

algorithm is when the gradient method produces a step which is too small to

be effective.

From the experience the author has gained from working with the

gradient algorithm, this will generally be the case. It may be that 11YI

never became very large and M2 was never decreased. If this is the case, it

may truly take excessive computer time to solve the problem. One can only

experiment in order to know how large to make M2 , because if it is too small,

you will have to decrease the step size more than what the algorithm indicates,

and if it is too large, the computation will be excessive.

We will now present the Newton-Raphson algorithm employing the

method of integral equations to solve the example presented in Chapters 1 and 5.

1. Choose the size of M2 and use the first value of u from the gradient

algorithm.

2. With u = u calculate the value 'f the function J at all N points in

the max space. Store the M2 largest points. If the difference

S... . . . "- • ;• H•Il ~ i all ii~ai2
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"between the largest and smallest value of J is less than some small

quantity, then increase M or terminate because it would not be
2

possible to improve the soiucon.

3. Find the transition matrix at NO points in time.

4. Perform integrations indicated in Step 5.

5. Form the equation b + y + Ab = 0 and solve for b for a given c.

We assume that this can be accomplished. It is not necessary that

there be a unique solution.

The vector b has dimension N.n where N = M2 and n is the order of2I
the system. We will show how to construct y and A above:

Form the vector fi = X.i(T)Q§i (T,T) at various points of time, and

where §i (T,T) is the transition matrix associated with the ith value

in R(u ,s). Form the matrices G. B'§i(T,t)Q where G. is a set ofn 1. 1

n-n matrices for varizus points of time. And form the matrices

K. ki(TB ,, ere K. is a set of n-m matrices for various pointsi 1 1

of tim,

TVE. notation K or G wili represent the qth row and Sth columnpqs pqs

of th- zua.trlx K or C . The Ith element of b and Lth row of
P P

b + y + AB ý C i- htained when - = (p-l) a + q where p is the pth

ýAerr,ý- Jr M 2 and 4 is the row of k.. Thercfore

N N I
b + c. K ()[f(TN]s/Hs d

i=l _l pqs 1 S

N n m T
+ E •k bkr K f K (T)gksr(T)dT 0

k=1 r=1 s=1 0 pqs
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The notation [fi(T)]s indicates the sth element of the vector and

H is the sth diagonal element of H. Therefore8S

N m T
y E c i s K 0pqs(.r)[f i()]s/Hss d

£ i=l s=_ ~Jpsoi S

and if 0 (k-i) n + r, then

m T
A•° 0 ck s Kl oKpqs()g ksr (e)dT.

6. With taI2 vector b found in Step 5 find
N N n

h - - f T c.f.]./H.. + r, lcbkg1~ 1 3 i k, kj kkl

7. Now form

T
Ei 0 r2xi(t)Q§i(TT)Bh + 2u' Hh]dT

T T T+ IT hl0(t)B' i(T't)Q§i(T,•)Bh(T)dtdT + h'(t)Hh(t)dt

0 0 1so~lt)htd

N N
8. Find the C which maximizes 2 CiEi with 0< c_<1 and T c. = 1

i= 1 i=l

9. Return to Step 5 to find a new b. Repeat this loop until the vectors

c and b no longer change. At this stage the saddle point has been

found. Note that it is not necessary to find c at a high degree of

accurancy in Step 8 at the early stages of the loop.

10. From the final value of b find h(t) as in Step 6, and form un+1

= u + h(t).n

11. If F(un) < F(u ) proceed to Step 12. If F(un+I) _ F(un) then
nI nn+l n -

let h I h and return to Step 9.
2
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12. If Ilh(t)II k eM, the step was large and it is uncertain that we are

now at the min-max. Return to Step 2.

If jfh(t)JJ < ~M, then we are at the min-max if e in R(unc) is small.

If c is large then reduce s and, consequently, M2 and return to

Step 2.

7.4 The Method of Calculating Various Quantities.

This section will be comprised of notes which show how to calculate

the various quantities presented in the algorithms. We will deal implicitly

with the example presented in Chapters I and 5.

Note #:

1. To calculate the function:
T

J = x!(T)Qxi(T) + fou'(t)HU(t)dt

x. -A.x + Bu x(o) = xL I n 0

We have a value of u at NO number of points between 0 and T.n

Further divide each interval of time by ND number of points. Use

the Runge-Kutta-Gill method for solving for x(t) at each of the

NO x ND points and store x(t) at each of the major NO points. Now

it will be necessary to use x(t) at the NO points to calculate

the gradient; however, we do not want to store x(t) for ali N points

in the max space. Rather, store x(t) for the first M1 points

calculated and the value of J for each of the M, points. Then if

succeeding values of J are larger than any previous value, then
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replace the new set of points x(t) with the set x(t) for which J

took the least value. In this way, after finding the value of J

for all N points in the max space, we will have the set of x(t) for

the M Iarrest values of J. Note that it is necessary to calculate

J'u'(t)Hun(t)dt only once since it is not a function of A.
0n n

2. Calculation of gradients. Use the same subroutine for solving

the equation X = 2Qxi(t) - A! X with x(T) = 0 as in Note 1. The

gradient of K. - Hu (t) -B' x.
1 fn

3. Calculate matrix G. An element of G denoted G. is equal toJ.j

T
Tp!(t)pj(t)dt where p.(t) is the gradient of K. found in Note 2.
0 1 1

4. Find y* the min± of Ce(un). Minimize u'Gu - u with u > 0 and G as

in Note 3. If it is possible to find a u which minimizes the above,

then k
y*= - u.p.(t). Rosenbrock's rotating coordinate system

j=l '

method 1 2 was used in this minimization. If a minimum is not found

after a given number of iterations, calculate y* as above anyway.

If 1Iy*I1 is less than some K, then continue the iterative process.

If it is greater than K, return tc main program.

- m • •° • m l m ... i i mm h • ' r'' m A
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8. CONCLUSION

This work presents the first attempt at solving the min-max problem

in function spaces where the max space is larger than a few elements. Initially,

it was hoped that the elimination method could be used, but as explained in the

Introduction, this was not possible. Two algorithms are presented; namely, the

Newton-Raphson and gradient. The gradient method was programmed and the results

are presented. The gradient method was successful in the range that was anti-

cipated, when one is far from the solution.

The best method of solving the saddle point problem which is one

part of the Newton-Raphson method is the method involving integral equations.

It is quite clear that the Newton-Raphson algorithm should be used

in conjunction with the gradient method. The reason for this is because if one

is far from the solution, then one iteration of the Newton-Raphson method will

not locate a point closer to the solution than a single iteration of the

gradient algoritý-; however, one iteration of the gradient method is consider-

ahly shorter than one of the second order fethod. However, as could be expected.

convertnce with the gradient method bezame slow near the mini:num.

Also prtesented in this paper are some arguments why P(y) (all points

from tbe max space which maximize the function at y) may be large compared to

the total number of points in ti-. max space. It was shown that if this happens,

then the solution to the min-max problem is exceedingly difficult.
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