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1. INTRODUCTION

A method is presented which expands the class of min-max problems
which can be solved using an algorithm programmable on a digital computer.
The min-max problem deals with determining w and y* such that J(u¥*,y*)

= min max where U and Y are convex, bounded Hilbert spaces.
ugl yeY

This type of problem can occur quite frequently when formulating
mathematical models of physical systems. A quality of the system such as
cost or position of some object can be represented as the variable J which
we call a performance index.

Now J is a function of some variables represented by the vector u,
which the designer can control or specify, but J is also a function of other
variables y which cannot be specified and which are known only to lie within
a given range. These variables may be unmeasurable and if they vary, it is
assumed that the chaage is slow enough so that they may be considered time
invariant while the control is being applied.

when faced with unknown variables, an optimally adaptive controller1
shich comblines estimation and optimization could be used; however, parameter
estimstion may enpicy systems with high gains, which are usually susceptible
to additive ncise. An optimal controller in a noigy system may not keep the
performance index near the minimum as in the nolseless case.

The difficulties involved in parameter estimation in tl.. presence
of noise leads one to other apprcaches to the probelm. One such approach

is to find the control which minimizes the maximum value of the performance




index as a function of plant parameters.
There has been considerable theoretical d~velopment of the min-max

problemz’s’4 and the author is aware of four algorithmss’6’7’8

which solve a
min-max problem. These algorithms treat the minimizing variable U as a vector
in a finite dimensional Euclidean space., The space Y is a finite set of points
and y is an element from this space. The space Y c¢an be considered a definite
set of values which may be assumed by the unknown parameters.

This paper is concerned with expanding the algorithms of 6 and 8

to deal with the class of problems where the minimizing variable is a vector

in a function space.

Tul(t) 7

u(t) = uz(t)

_Un(t) J

where to.S t <T.

In other words, u(t) is the control which can change with time.

For example, consider the system with the state equation:

x = Ax + Bu

and a performance index
T
J = x"(T)Qx(T) + f u'(T)Hu(T)dt.
0




Assume H is a diagonal matrix and is not a function of time. Also,
assume matrices A end B are constant over time, and assume that some of the
elements in A are unknown, bhut lie witltin a given range. Furthermore, assume
that each unknown element in A has Kt values where K! denotes that the £th element

r
has k values. Then if there are r such elements, we have a set of T KL points.
2=1

x
Let N =zEIKL' Then the set of N points constitutes the maximizing

space of the min-max problem

min max Ji(u)
u  iel,2...N

where Ji(u) is the performance index when A assumes the ith value in the set
(Al’AZ""An)'

Demjanov 4 developed a Taylor's series expansion of the max function
for the Euclidean or parameter space problem. This expansion for Hilbert
spaces is presented in Chapter 2. Also, from the theoretical development in
his paper one can construct a gradient algorithm.

According to the algorithm by D. M. Salmon5 one should start with a
subspace .’ coasistiag of two elements from the original max space. Then find
tre u” which solves the min-max problem consisting of the original min space ’
a~d the new max space Y'. With tnis uv* find the element i' in the original
max space which maximizes tke performance index. Then add i' to V' and
repeat. ite stopping criteria will not be presented here; the reader is
referred to the paper.

Finding the value of u* for the min-max problem with V' as the max
space is naturally a min-max problem; therefore, this is not a complete

algorithm.




The Newton-Raphsoc method by J. Medanic8 could be used to solve this

sub min-max problem. If the performance index is quadratic in the minimizing
variable and the space V' is small, then the solution could be found in one
step However, a combination of a gradient method, as the one presented by
2. heller6,and the Newton-Raphson method will be more efficient than Salmon's
method and and the Newton-Raphson method. The reason for this is that the
space V' after several 1terations will be larger than necessary, and because
of this, the Newton-Raphson method will become very slow. For this reason we
will not employ Salmon's algorithm,

The algorithm employing an elimination method by J. Medanic7 theo-
retically cannot be used for solving problems in function spaces. In this

algorithm one begins with a space bounded by hyperplanes. At an interior

point of this space one can construct a hyperplane which divides the space into

two parts. We are able to determine that tne min-max does not exist on one
of tte two parts. We then can eliminate this half from the space being
considered. One proceeds in this manner until the space that has not been
eliminated consists of a very srall volume.

The waiz difficulty with trying to use this algorithm to solve
problems in fu-ction spaces 1s that it is impossible to eunclose any region
large or small with a finite wumber of hyperplanes. To enclose an area with
an icfinite nuvber of hyperplanes would take an intirite amount of time.

Therefore, we will use a gradien: method uxtil we get close to the

min-max and then use a second order method to reach the min-max.




Let us consider for a moment minimization problems where the function
is continuous and smooth. The min-max problem does not fall in this class
because, in general, the max function is not smooth. The Newton-Raphson method
which we may alternately call the second order method or the quadratic methkod
is useful only in regions in which the function is for practical purposes
quadratic; that is, the function may not be quadratic in larger regions, but
in 8 small region near the minimum it may be for all practical purposes quadratic
and the quadratic method will be useful in this region. In problems where the
function is not quadratic except near the minimum it is generally desirable to
use some form of gradient method until you are near the minimum and then
switch to the quadratic method. The quadratic method will give a direction
and step size, but if the function is not guadratic, the step may be larger
than one that decreases the function. An acceptable procedur: then would be
to use the direction found but decrease the step. However, since each iteration
in a quadrtic method is more complex than that of a gradient algorithm, it is
more profiitable to use a gradient method until one is near the minimum.

The min-max case is similar and a gradient method should be used

before a quadraiic method is used. However, even if each function J, in (1.1)

i
is q:adratic and the -umber of points N in the max space is large (10 or more
points ca~ be considered large), Lhen we will show that it is still advisable

to use a gradient method first.

We will briefly look at what is contained in Chapters 2 through 7.




Chapter 2 is concerned with finding the first and second terms of the
Taylor's series expansion of the max function in Hilbert spaces. This is
necessary before developing a gradient and second order algorithm.

Chapter 3 deals with the basic proofs and methods necessary to
develop & gradient algorithm in Hilbert spaces.

Chapter 4 presents the basic proofs and methods for the second
order algorithm in Filbert spaces.:

Chapter 5 shows how to represent the gradients and other expressions
derived in Chapters 3 and 4 in function spaces, a type of Hilbert space.

Chapter 6 presents some experimental results and discusses possible
difficulties with the gradient and second order algorithms and discusses the
problems encountered when the gradient algorithm was programmed.

Chapter 7 describes the detailed steps in constructing the gradient

and second order algorithms for solving the min-max problem in function spaces.

.id
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2. TAYLOR'S SERIES EXPANSION OF THE MAX FUNCTION

Before we develop the first and second order algorithms, we must be
able to find the first and secozd terms of the Taylor's series expansion of
the max function.*

Now, even if the functions Ji(x) are continuous and smooth, the max

function J(x) = max Ji(x) is continuous but not necessarily smooth.
i¢l,...N

Therefore, J(x) is not Frechet-differentiable, but we will show that it is
Gateaux-differentiable.

Minimize the functional

F(y) = max £, (0 (2.1)
i¢l,2...N

where fi(y) is a real, functional defined over a subset S of a Hilbert space H.

S is closed and bounded and is Frechet-differentiable { times where 1 < f < =,

3", (v)
The nth Frechet differential in the direction g is denoted -——13—— . Then we
[-1:4

can write the following Taylor's series expansion of fi(y) in the direction

gel (Hg” < M < ®) and with step size o such that (y+ag)eS

t k3% ) ,
frag) = £.0) + T iT e + 0, (fa]™ (2.2)
k=1 o8
where
o, (|e])*
2 -0
la|® @0

*
This chapter follows the development of Demjanova but is in Hilbert spaces.




The notation 1,N designates the index set {1,2,...N}.

Consider F(y) = max_ £ (y).
iel,N

We will show F(y) is Gateaux-differentiatle.
First we must define R(y,e¢) and P(y). Let
R(y,e) = [i]iel,N, F(y) - £,(¥) < ¢}
P(y) = {i[icI,N, F(y) = £, ("],
Now since {T:ﬁ} is a finite set, there exists a §, such that for
all ¢ < § R(y,¢e) = P(y).
Now for any two finite gets of real numbers A and B, with elements

denoted A(i) and R(i) respectively, then

maex _ {A(i) + B(i)} > wmax A(i) + max B(i) (2.3)
i¢1,N iel,N ieP '

where

P = {i|igl,N, A(i) = max_A(j)}

jel,N
Proof: For any i'gijﬁ
max _ {A(i) + B(@i)} > A@{') + B(i'). (2.4)
iel,N
Now (2.4) is true for i'eP, but for such i', A(i') = max_ A(i)
iel,N
max_ {A(i) + B(1)} > max_ A(i) + B(i') (2.5)

igl,N i¢l,N

and (2.5) is true for any i'¢P including max F(i).
ieP

max_ {A(i) + B(i)} > max_A(i) + max B(i)

ic ,N iel,N i.cp
Q.E,D.




e

Now from (2.2) and (2.3) we have

L k3 (y) ’
F(y+ag) = mgz_fi(y+ag) = mav_ {ti(y) + T Tt Oi(a )}
1c1,N igL.N k=1 & 3
Lk akfi(y) .
> max f (y) + max [T =+ 0, (@ ). (2.6)

i¢l,N ieP(y) k=1 k! 2?g

On the other hand, since the fi's are continuous, for any ¢ > 0,

there exists an @, > 0 such that if ac[O,alj then

F(ytog) = max f (y+ag) = max £ (y+og). (2.7)
i¢l,N i¢R(y,¢)

Now ¢ must be large enough so that R(y,¢) contains all points which maximize
F(y) within the sphere with the center at y and a radius of |agl|.

From the triangle inequality we have

£k 355, () ’
F(y+ag) = max f (ytog) < max f (y) + max (i — % +0;,()]
ieR(y,¢) iel,N 1 ieR(y,¢) k=1"' 2g

(2.9)
Thus F(y+ag) is between the quantities
- k
k3" f (v
Q.

£
Fiy) + max [ v & 1" 49 (o)) and
1eP(y) kel k! 3g¥ i

k
L kdf (y)
o i 2
E(y) + i?ﬁ’fy,e)[kfl-k! _—agk + 0, (@)].

As we stated previously, if ¢ is sufficiently small, i.e. ¢ < §, ther R(y,s)
= P(y). However, if we desire an ¢ that small, then the sphere with the center

at y and a radius ||ag|| must not contain any other maxima besides those in




P(y), i.e. a < a*.

Therefore, when o < a* and ¢ < § then

k
Lk 37f, () 4
F(y+ag) = F(y) + max [ T {7 m + 0, (o )] (2.10)
ieP(y) k=1 " 23g
and the directional derivative of F is
o afi(Y)
lim F(y+ag) - F(y) = max = 3 (2.11)
a=++0 — ; ——  igP(y) g
ittty
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3. GRADIENT METHOD

In this chapter we will present the necessary facts and methods
for developing a gradient algorithm for solving the min-max problem in Hilbert

spaces.

3.1. Development of Gradient Algorithm and Necessary Conditions for Solution

y* is a local minimum of F(y) = max'fi(y) if there exists some
ie¢l,N

¢ > 0 such that for all ye¢S and satisfying ny-y*”g ¢ then F(y*) < F(y).*

For a gradient algorithm we assume fi(y) has a continuous Frechet

derivative. We denote

¥f. (¥)
-5§-— = (pi(y).gs-

Proposgition 1: A necessary condition for y* to be a local min-max

solution is that

max  (p.(y),g) > 0 all geS.
. 1
ieP(y)

Proof: Assume that for g'

0
-
A

=}

max (pi(y),g')
ieP(y)

*Thxs chapter follows the development of Chapter 3 in Heller's paper6, but is
in Hilbert spaces where his is in Euclidean spaces. Most of the propositions
and theorems are easi'y extended with the exception of Proposition 5 and
Theorem 1 in this paper which corresponds with Proposition 5 in Heller's. 1In
this case the proof in Hilbert spaces was considerably more involved.




71 s A

s
12

JRTI.

Then there is an o sufficiently small to satisfy the requirements

for equation (2.11) and where
lasp, (3),8")| > | 0 (@) | for ieP(y).

Therefore F(y+ag') < F(y) and y is not a local wminimum.
Q.E.Dl
Define
c{y) = {v[{p, (y),v) < 0}.

igP(y)

Proposition 2: If at a point yeS there exists a yeC(y), then there

exists an o > 0 such that
F(y+ay) < F(y).
The proof follows from the above.
Based on Proposition 2 a procedure can be formulated which converges
to points satisfying Proposition 1. Assume Yo is an arbitrary point in S and

define a sequence in S{yn} by

Yop1 = Y + %Y, (3.1.1)

where yncC(yn), assuming C(yn) is not empty and o satisfies Propostion 2. 1If
C(yn) is empty for any n, the corresponding Yn satisfies Proponsition 1. The

sequence F(yn) is a strictly decreasing one and is bounded by min max_f_ (y)
yeS ig¢l,N *

The sequence F(yn) therefore converges to a limit. As S is closed and bounded,
{yn] must also converge to a limit point y* which satisfies Propostion 1. If

the point y* did not satisfy Proposition 1, it would contrddict the fact that

v s ——
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F(y*) is the limit of F(yn) which foliows from the continuity of F. This can
be summarized in the form of a proposition.

Propositior 3. The sequence of admissible points in S, defined by
equation (3.1.1) converges to a point y* which satisfies the necessary condi-
tions for a local min-max solution.

Convergence to a point which satisfies the necessary conditions for
a local min-max solution is guaranteed. It is nécessary to know that a pro-
cedure eventually converges, but to be usefui we must have a termination
criterion which indicates when a point Yn is in the neighborhood of the
solution y*., A neighborhood termination criterion will be presented in the

next section.

3.2 Termination of the Algorithm

It is desirable to terminate the sequence when a point Yo is in the
neighborhood of a point satisfying Proposition 1.
Define:

¢ ) = {yeC) |{p, {M),v) < -k}

where & > 0.

Proposition 4: The set Ck{y) is empty if and only if the set C(y)
is empty.

Proof: If C(y) is empty, then Ck(y) must be empty since it is @
subset of C(y). Assume Ck(y) is empty and C(y) is not.

Then there exists an ylcC(y) such that L

<pi (Y))Y1> 5 -b <0




but then

L, ).y < -k

therefore, % Yleck(y) which is a contradiction.

Define

@ = {v|{p (),y) < -k}

ieR(Y, 3) .

Let ||y¥| be the minimum element of Ci(y); then as a sequence of points {yn}
approaches the min-max solution y*, ||y*|| approaches infinity. In order to

prove this we use Proposition 1, i.e.,

max  (p, (y*),g) > 0 all geS. (3.2.1)

ieP(y*)
However, in order to use this information, the point i*gP(y*) which maximizes
(3.2.1) must be included in R(y+wg,e¢). Therefore, we must show the following:

Proposition 5: For any ¢, there exists a § such that if

o <& and ||gl = 1 then
P(y) € R(y + og,¢) (3.2.2)

Proof: Since fi(Y) is continuous for all i there are Gi's such that

if o, < 8., then
i—="i

£, (v + a,8) - £, <¢/2

iel,N
and o
- —————————— MEsan At
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|£, (v + a,8) - F(»)| < ¢/2

ieP(y)

since fi(Y) = F(y) for ig¢P(y).

Let §' = min §,. Now if &' < §' then

ieP(y)
|£; (7 + ') - F(y)| < 6/2
ieP(y).

We have shown F(y) to be Gateaux-differentiable and, hence, continuous.
Therefore, there is a 60 such that if @, < 6o,then |F(y + aog) - F(y)[ < ef2.

Let § = min {6',60} and let o < 6.

Then

|£,¢v + a8) - F(y +ag)| < ¢ 16P(y). (3.2.3)

But all i's satisfying (3.2.3) are elements of R(y + ag.¢). Therefore

(3.2.2) follows. Q.E.D.

Now we are able to give the condition that indicates we are approach-
ing the min-max solution. Simply stated, the condition is that the minimal
element ||y*|| of (:z(yn + ag) approaches infinity as y_ approaches y*. Or more
formally, we have:

Theorem 1: For any ¢ and for any N, there is & § such that if y* is

a local min-max solution, then if o < § and ”g” < 1, then the minimum element

“Y*” of Cz(y* + ag) is greater than N,
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Proof: Since y* is a local min-max solution, then for some i denoted

i',
(P 1 ®)sv*) 2 0 (3.2.4)
and since
P(y) € R(y + ag,¢)
then i'¢R(y + ag,e¢) and by the definition of y* we have .-

Py  (y* + ag), Y*) < - k for a <6 .
Now add (3.2.4) and we get
(py+ (y* +ag) - p, (%), Y*) < -k (3.2.5)
and let
b=p,(*+ag) - p;, (4%
Since we assumed fi(y) to have a continusus derivative, i.e. pi,(y) is con-
tinuous, then for any k &nd any N there is a §' such that if |jag|| < &' then
bl <5 -

Now we know from the Triangle Inequality,

[<b,y*y| < [lbl ivA] -

But from (3.2.5) |{b,y*)| >k

L % [

vl 2 g

llv4| > N.




3.3 The Direction to Move

From Proposition 2 and from the fact that C;(y) is a subset of C(y)
we <now that any Yy which is an element of Cﬁ(y) will be a suitable direction
which, with a small enough step, will decrease the max function. However,
we may wish to traevel in the direction of greatest descent. That is, if ¢(y)

is defined to be

p(y + V) = F(y) + max  (p;(y),V) (3.3.1)
ieR(y,s)

then we want to find the ¥y denoted y* to be that direction which minimizes

¢(y+ﬁw)-

oy + L) = min ¢y +—L). (3.3.2)
NGl YCC:(y) livil
Theorem 2: If y* is the minimal element of C;(y) with respect to
the norm, then y* satisfies (3.3.2).
Proof: The maximum entry of
(py (7),¥%)
is -k where
ieR(y,€).
Assume for an arbitrary YeC;(y) the maximum of (pi(y),y) is -b where isR(y,¢)
and -b < -k,
The max onpi(y), % v) is -k and % ¥ is an element of C;(y). There-

fore, we have:

max  (p, (y), L) = - £—

icR(y,¢) v+l vl (3.3.3)

and

i
i
!
|
1
3
|
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max (p (y), =2 . (3.3.4)
ieR(y,¢) "Y“ vl
And by assumption chat.Hy*” is the minimal element of C:(y),
vl < 5 Ivls or
-k < -b 2
W > W . (2.3.5)
Therefore, from (3.3.3), (3.3.4), and (3.3.5) we have
max  {p, (y), X* < max (p, (y), (3.3.6)
ieR(Y,€) lv¥l = ieR(y,s) vl
From (3.3.1) we have
%* *
By + H'Y'IT) = F(y) + max (p (y), =) (3.3.7)
Y i¢R(y,e) vl
and
¢(y + —1) = F(y) *+ max (p; (2, Xy, " (3.3.8)
vl i€R(y,€) lIvll

From (3.3.6), (3.3.7), and (3.3.8) we have

oy + L) < gy + ).
V&l vl

Put another way we have

o(v + X2y = min  oly + ).
lvdl vec, () lIvll Q.E.D.




1y

3.4 Implementation of the Algorithm

We have shown the direction of steepest descent is equal to the
minimum element of Cz(y); however, finding the minimum Y‘C;(Y) with respect
to the norm is a minimization problem in Hilbert spaces. 1In most problems
where the Hilbert space is not the Euclidean space, this algorithm would not
be suitable. However, the problem can be transformed so that the minimization
is carried out in a Euclidean space.*

We wish to find min(Y,Y)% such that

(P (¥),Y) < -k
(3.4.1)
i¢R(y,¢)
if v' minimizes (3.4.1) it minimizes {Y,y) subject tc the same constraint.

‘. minimize {¥,Y) such that

ieR(y,¢).

From the Kuhn-Tucker theorem9 ¥ represents a solution to (3.4.1)
if and only if & vector i exists such that
¥(,u) < ¥(F,0) < ¥y,

where u > 0 and
K %
Y(y,u) = {v,¥) + T u (p,(y),y) + k)
w1 4 3
J
and K is the number of elements in R(y,¢). This yields the Kuha-Tucker con-

ditions:

*
This section deals with the Hilbert space development of the Method of Hildreth

and D'Espoll.
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(P (9),Y) + x; = -k (3.4.2)
isR(y,¢)
K
2y + = up,(y) =0 (3.4.3)
j=1 33
u'x = 0
u>0x>0. (3.4.4)
Consequently,
1 K
=-37 = u.pj(y). , (3.4.5)
=1
Substitute (3.4.5) into (3.4.2) and we have
K
1
(Pi(}’), - E jflujpj(}')) + Xi -k
ieR(y,¢)
This is equivalent to
1 K
-3 j§1uj<Pi(Y)’pj(Y)) +x, = -k. (3.4.6)

Equation (3.4.6) along with (3.4.3) and (3.4.4) from the Kuhn-Tucker
conditions of the following problem
min u'Gu - ku
(3.4.7)
with u >0

with the matrix

1
cij - (pi(y),pj(y)).

We have presented all the necessary operations to construct an

algorithm employing a steepest descent search and a stopping criterion.

-
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In Chapter 7 we will present the complete algorithm and how it should be used
in conjunction with a second order approsch. Therefore, we will now present
the second order slgorithm. It will be considered in two parts. First, we
will assume that each function fi, where
F(y) = max f (y),
iel,N

is quadratic in y and that the total number of points N in the max space is
small. Next, we will consider the case where fi(Y) is not quadratic and/or

the number of points N is large.
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4., SECOND ORDER ALGORITHM

In this chapter we will present the necessary facts and methods for
developing a Newton-Raphson or second order method for solving the min-max

problem in Hilbert spaces.*

4.1, The Quadratic Min-Max Problem

Consider the min-max prohblem

d* = min F(y) = min max fi(y) (4.1.1)
veY veY igl,N

where the fi(y)'s are quadratic functionals in the Hilbert space H, i.e.,

£,(y) = a, + (b»y) +% (8, (¥),¥)

gi(y) is a linear functional of y and (gi(y),y) is positive for all y # O and
zero for y = O,
The heart of the second order method is that the max function can
be expressed as a function of the original variable and a vector variable.
N

That is, F(y) = max f_(y) = max < c,f. (y) = F(c,y). Also, F(c,y) possesses

L T i i’i

iegl,N ceC i=1

a saddle poinr and is equal o the minimum of F(y). That is,

min max F(c,y) = max min F(c,y) = min F(y).
y c c y

This can be expressed in the following two theorems.

" .
This chapter follows the development of Medanic8 except in Hilbert spaces.
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Theorem l: Let the max function

N .
F ) =mx T c, £, (4.1.2)
ceC i=1
where ¢ = (cl,...cN) and
N
1§1ci =1, ¢, 2 0i=1,2,...N
and
F(y) = max_ £ (y) 4.1.3)
1el N
Then for all ygH
F(y) = F_(y).
Proof: Let c* maximize (4.1.2) and let c¢' be such that
r
z c'fi(y) = max_f (y) = F(y).
i= i= l,N
Clearly
N N
F@G)= L crE (v) 2 z c'fi(") F(y) (4.1.4)
i=l

by the definition of c*.

On the other hand, since

£,(0) < F(y) 1¢l,N

it follows that

N N
Zerf (y) < Z ctF(y) = F(y).
i=1 i=1

1




Therefore,

N
F.O) = iglctfi(Y) < F(y). (4.1.5)

From (4.1.4) and (4.1.5) we have

F (0 =F(). Q.E.D.

Corollary 1. The min-max solution of the modified min-max problem

min max F(y,c) where
y ceC

N
F(y,c) = Z c f. (y)
i=1 171

is equivalent to the min-max solution of the original problem (4.1.1).
Theorem 2. The modified function F(y,c) possesses a global saddle
point, i.e., there exists a point (y*,c*) satisfying

d* = min max F(y,c) = max min F(y,c).
y ceC ceC y

Proof: Ky Fanlo has shown that if the domains of y and c are convex
and if F(y,c) is convex in y and concave in c, then

min max F(y,c) = max min F(y,c)
y c c y

Hence, we must show that the above conditions are satisfied. The
domain of y is not restricted and, hence, it is convex while the domain c¢

ie - convex since it is defined as the intersection of two convex sets: the
T

positive - hyperquadrant ¢ 2 0i=1,...r and the hyperplane T ¢, = 1.
i=1

Also, since the c, are non-negative and (gi,(y),y) is positive for
all y # O then Ecifi(y) remains quadratic and, hence, convex. And since the

modified cost functiona’. is linear ia ci i=1,...r, it is also concave in c.

Q.E.D,
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4.2 Second Order Algorithm for the Convex Min-Max Problem

Two algofithms are possible from the above discussion, where one
is imbedded in the other. The first is an algorithm which solves the quadratic
min-max problem where the number of points in the maximizing space is gmall.
Since the min-max and max-min operations can be reversed, it is necessary to
find the minimum of J(y,c) with respect to y in terms of c, and then maximize
the resulting function of c.

This will yield the min-max solution with one maximization. Since
the maximizing space ¢ has dimensions equal to the number of pointé in the
max set L,N then N must be kept relatively small.

If N is large and/or the fuuctional is not quadratic, then en
alternate procedure must be used.

We will consider an algorithm that makes use of second order
variations.

Assume fi(Y) is convex for iéfjﬁ and fi(y) can be differentiated
twice for all points.

Then from Section 2:

F(y + ag) = max £ (y + ag)

161,N 2

of; o2 3% 2

F(y +og) 2 F(y) + max [o == +5 —5 +0,(@ )]
igP(y) (-1
and
2
Aaf, (y) 23 £, 2
F(y + ag) < F(y) + max [a 32 +5-—5— +0,@)]

ieR(y,¢) 28
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If fi(y) is quadratic for all igl,N, then from any initial point we
can immediately use an aslgorithm minimizing a quadratic. If, however, fi(y)
is not quadratic and if the initial point is a large distance from the minimum,
then higher order terms render a direction found to be no more useful than a
direction found only with a gradient algorithm. And since a direction obtained
with a quadratic minimization would consume more computer time than the gra-
dient method; then the gradient method should be used.

It would be advisable to use the gradient algorithm until the step
size becomes small. ‘herefore, assume fi(y) is quadratic or Yo is close to
y* so that thirc or higher order terms are negligible. Then 2

A, a_z_a £

min F(yn + ag) > F(yn) + min max (o é?-*b? — I

ag ag 1eP(y) 3g
and 9
Ay 27 ()
min F(yn + ag) < F(yn) + min max [o 3 + g— > ] . |
og ag ieR(y,s) y dg

¢ must be large enough so that R(y,e) must contain all elements i'

where i'gP(y’') and y' is within the sphere with Y, as center and y' -yn’l as

radius.
The second order algorithm is as follows:

Find o*g* which minimizes
A, ()
Ag

2
o{2 3 fi(yn)
+ 73

max [ 3
i€R(y,¢) Ag

Then Yorl = Yn a*g* and F{y _ .) should be less than F(yn).

n+l
If it is not, it is because third order terms could not be neglected or ¢ was
not large enough. If this is the case, find o' < 1 such that

ot

F(yn + ala*g*) < Fv.’yn).




Repeat the algorithm with

and ¢ <eg._.

Yn+l n+l n

Terminate the algorithm when Y is within § of y*; this occurs when

lle*g*!l < & and ¢ < €, such that R(y_,e) = P(y,)-
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5. THE MIN-MAX PROBLEM IN FUNCTION SPACES ‘g
We have presented the gradient and Newton-Raphson methods for b

solving the min-max problem in Hilbert spaces. Let us consider a particular --

space, namely the function space.

Given
F(u) = max K, (u) (5.1) |
igl,N
where e
T
K, (0)= Iov(xi(t),u(t))dt (5.2)
and where
ii(t) = fi(xi,u), and %x(o0) = X (5.3) .

Therefore, where we have used the inner product we have

T M
(a,b) = [ [Lai@® by ()de.

01

5.1 The Gradient Algorithm

We must know how to calculate the gradient. The gradient of Ki(u)

is:
grad Ki=- VuHi where (5.1.1)
= - 1 e
Hi V(xiu) + A f\xi,u) (5.1.2)
x, = VlH x(0) = X (5.1.3)
A= -9 H A(T) =0 (5.1.4)

Therefore, to find the gradient of Ki at a point u, solve (5.1.3)

for x(t); having this, solve (5.1.4) for \A(t). Consequently, we can find -VUH.
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We can now use the gradient algorithm presented in Chapter 3.

We have indicated how to find the gradient, namely by solving two
sets of n differential equations where n is the order of the system and sub-
stituting the results in equation (5.1.1). The gradient is not, however, the
direction to move unless there is but one point in R(y,g).

We nmust calculate the gradient for each point in R(y,e¢). It is then
possible to find the direction to move which is the minimum element of C;(y).
To find this element we minimize

u' Gu-u (5.1.5)

withu>0

T
=1 '

where Py is the gradient of Ki associated with the ith point in R(y,¢). Now

the direction to move is ]
1 K
y=-3 L ujpj(t)
j=1 (5.1.6)
We can then find a suitable step size and repeat the process. |
Minimizing (5.1.5) is an iterative process. If a minimum is not
found within a reasonable amount of time, it may be that C;(y) is empty and
no value of u exists, or y may be very large. Therefore, calculate y and if ?

it is greater than some N, then decrease ¢ in Cﬁ(y) or terminate because the

solution has been found. If y is less than N, continue the minimization process.

1
|




5.2 Second Order Algorithm

In Chapter 4 we stated
with respect to u in terms of c.
There are several ways

is as follows:

Let
N
J(u,c) = %
i=1
This can be rewritten
I?
J(u,c) =
0
where
X
X = x2 s
*N

mdﬁ=-V&mm)+i'?&mL
vectors,

If f(x,u) is linear, w
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that we must find the minimum of J(u,c)
We will now show how this can be done.

in which to solve this problem. One method

T
¢k, (u) = Io .

L e I~

1ciV(xi,u)dt.

as
v (;,u,c)dt

fl(xl,u) ]

-f-(i,u) = fz(xzyu)

fN(;r'“)j

If xi is an n vector, then X, and X are a-N

e can solve the Riccati equation and find

u*(c), the value of u which minimizes J(u,¢) in terms of c.

However, thigs method w

time and storage since we are de

equations and they must be solved many times because J(u,c) is first minimized

in terms of u, then maximized in terms of ¢ and repeated until the saddle point

ould consume a considerable amount of machine

aling with (N-n)2/2 simulteneous differential
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is found.*

Let us consider another method for finding the minimum of J(u,c)
with respect to u in terms of c.

Let
T

K, (u) = J‘OV(xi(t), u(t))de. (5.2.1)

If V is quadratic in u or if higher order terms can be dropped then .

T T 2
R () = a, + [ G ueyae +3 [ u'() &5 uvae
0 0 du
j j’ u' (t) du(t)dum’ u(r)dedr. (5.2.2)

The last two terms in (5.2.2) result from the fact that the vector
dV (x,u) contains u, explicitly and implicitly, Where u appears explicitly,
the third term results; where u is implicit in %%, the fourth term appears.

We can write

_dv__3v _ox + vV
du(t) = x au(t) du(t)

*WOrking concurrently but independently J. Medanic has produceé¢ an as yet 1
unpublished paper dealing with the quadratic problem in function spaces. He
has proofs similar to those in Section 4.1, and he uses the method employing
the Riccati equation described above. He has considered an example where the
max space N consists of two points. His paper does not present the method of
finding the minimum of J(u,c) with respect to u in terms of c that is pre-
sented below, nor does he consider the gradient method, nor does he deal with
the problems encountered when N is large which we will discuss in Chapter 6.
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a?v 2% _ax , 3%
duz(t) du(t)ax du(t) auZ(t)
av ___ _ax' 3% ax ., ax . _3%
du(e)du(t) dulr) axZ du(t)  dulr) dAxdu(t) °
Now
N
J(u,c) = T ¢.X,(u)
i=1 '

dJ _
du 0
dJ N dKi
-~ =z ¢, — =0
du , i du
i=1
and
dKi dVi dZVi T dZVi
— S e— f ] e ———————— =
du q tue) 4 J uren du(m)du(c) 97 0
du 0
Putting equation (5.1.4) into (5.1.3) we get
2 2
N dVi d Vi T d Vi
L) 1) —————————— =
izlci[ga— + u'(v) duz + fou () FRYESY (S dr] = 0. (5.2.5)

The integral equation (5.2.5) must now be solved. In general, this

can be a fairly complex problem. We will now consider a specific example.




5.3 A Specific Example

We will consider the problem presented in Chapter 1.
Given a state equation
x = Ax + Bu

and a performance index
T

J = x"(T)Qx(T) + I u!' (¢)H ulr)de .
0

Assume H is a diagonal matrix and is not a function of time. Also
assume matrices A and B are constant over time, and assume that some of the

elements in A are unknown, but lie within a given range. Furthermore, assume

4

element has k values. Then if there are r such elements, we have a set of
4
111 K£ points.
2=1 r
Let N= KZ' Then the set of N points constitutes the maximizing
2=1
space of the min-max problem

that each unknown element in A has K, values where KL denotes that the gth

min max Ji(u)
u iel,N

where Ji(u) is the performance index when A assumes the ith vilue in the set
(AI’AZ"'AN)'
We wish to demonstrate the gradient and second order algorithms for
’
this problem. Now J is quadratic in u. However, assume that N is large;
therefore, we do not want to generate a minimizing space of dimension N.

In order to find tne gradient of Ki we must transform J so that J

takes the form of (5.2).
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Let
R(t) = x' (£)Qx(t)
T T
R(T) - R(0) = j‘ R(t)dt = J‘ x' (£)Qx(t)dt
0 0
Therefore,
T
R(T) = x' (T)Qx(T) = x'(0)Qx(0) + [ x'(r)Qx(t)dt
0
Therefore,

T
K, = x{(0)Qx, (0) + IO[xg(t)Qxi(t) + u' (t)Hu(t)].

Now in calculating the gradient of Ki the first term can be ignored since it
is only a constant.
Therefore,

H, = - x{(£)Qx, (t) - u'(t)Hu(t) + \'(A;x, + Bu(t))

= - = - J
grad Ki qui + Hu(t) B':
and to find A' we must first solve for x(t) by solving
x = Ax + Bu x(0) = X,

then solve
A= 2Q x, (t) - Alx with A(T) = 0

We will now present the main computational aspects of the quadratfc problem.

From the Taylor's series expansion in Chapter 2 we hfve:
dJ, d-J

max Ji(uo + h) > max_ Ji(uo) + max [<E;L' h) + %(h'_—fi’ h)] (5.3.1) .
i¢l,N igl,N ieP(uo) du

P
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dJi
mgg_Ji(uo +h) < mgg_Ji(u ) + max [(—E;,
i¢l,N iel,N icR(uo,e)

Now we wish to find h to minimize

2
dJ d Ji

max e)[(E;i(uo),h) + K — h)]

ieR(uo,

dzJ

h) + %(h';—il, h)J.

(5.3.2)

where ¢ is large enough to include all points In the sphere with u, as center

and ||h|| as radius.

Now

t
x(t) = §(t,t )x_+ jo $(t,7)Bu(r)dr

Y1 = 2x(1)Q & 4 2ul(o)m
du

o = 2x(T)Q%(T,r)B + 2u;(t)H
a’s.

4 = 2B'3'(T,t)Q&{T,7)B + 2H.

du

u

o

We have now,

T
min max {I[in(T)QQi(T,T)Bh + 2u;H h])dr

h ieR(u ,e) t

T T T
+ [ J n'(e)Bre, (T,0)Q8, (T,7)Bh(r)dedr + [ h' (x)H h(t)ae),

t ¢t
o 0

t (5.3.3)

(o]
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Now convert to & modified min-max problem. oh
N T o
min max .IT ci{f [in(T)QQi(T,¢)Bh + 2uéH hldr wd
h ceC i=1 t
o
TT . T
+[ h' (t)B', (T,t) Q@, (T, 7)Bh(r)dedr + { h' (t)Hh(t)d:}. (5.3.4) .
t t
oo o

We can interchange the max and min operations and we wish to find the

gradient with respect to h and set it equal to zero, o
N T
] tnt
iflci[in(T)Qéi(T,T)B + 2u'H + 2 "[:' h'B'g, (T,t)Q4, (T,T)Bdt
[o]
+ 2h'H] =0 (5.3.5) !
We can write this as ..
N T N
T c £ (t) + BR(t) + j‘ T ;G (O)K, (r)h(r)dr = 0 (5.3.6)
i=1 ¢ i=1
o .

f. is an m vector
1
H is an mxm matrix
Gi is a mxn matrix anrd

Ki is a nxm matrix.

In order to solve the integral equations (5.3.5) or (5.3.6) we must

make use of the fact that if it has a solution, then h(t) must be & linear
combination of all the functions in the equation. We will express this fact
as equation (5.3.7). Then we will insert equation (5.3.7) into (5.3.6) and

will get a set of equations which contain the vector c and a new vector b of
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coefficients in (5.3.7) butkthe integrals no longer contain an unknown variable.
Consequently, the integrations can be calculated initially and then

for a given ¢ one can solve the matrix equation for the vector b. Then find

the vector c which maximizes (5.3.10). Note that this maximization will be an

iterative process, and for each new value of c, the matrix equation must be

solved for b.

N N

An element of the ¥ c.f matrix is denoted [ = N £.]
i44°

i=1 * i= 1
Let

N N n

h, =- [ Zc £ +
377 ettt BT Oy, (5.3.7)

Put this into equation (5.3.6) and set the coefficients of 8piq ™ 0.

Thus
m T
b . X T)h_(r)dr =0 5.3.8
“p°paBpia T “ppiq o) fo pqs (T)hg (147 .3.8)
m IF n N }
b + ¢ [k {[Zcf]/h + L Tcb g =0 (53.9)
Pq g=1 ¢ P45 = ss 4=1 k=1 k 'kg"kss
N m
bPq + 1§1c sEI J‘ k [fi]s/hssd-r
N n m T
+ T b X k dr = 0. (5.3.10)
1c Zf kz =1 IO pqsgksl T

Now if bpq is written as a single vector, we have
b+y+Ab=0; b=-[1I+ A]'ly.

From examining equation (5.3.10) we have [n:N:m] [n-N+1] integrations to solve. ﬁ
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It is necessary to maximize J(u,c) with respect to c; however, it is necessary ij
to solve the above number of integrations only once and then a new value of b
and, consequently, h can be found using equations (5.3.10) and (5." 7).
It may be noted that for a problem where the order of the system
is 4, the number of inputs is 2 and R(Uo,e) =N =10, [n:N-m] [n:-M1] = 3280.
However, if the method employing the Riccati equation iS employed,
(n-N)Z/Z = 800 simultaneous differential equations must be solved Experience
shows that it is by far easier to solve th¢ 3280 integrations. Also, the 800 o
differential equations must be solved repeatedly as J is maximized with
respect to c.
As stated in Chapter 4, a new point u is found and the prcocess is

repeated until the distance to the minimum is below some ¢.

e
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6. POTENTIAL DIFFICULTIES AND LIMITATIONS OF THE ALGORITHMS

In order fo take a reasonably large step size with either the
gradient or second order methods, ¢ in R(u,¢) must be large enough so that
R(u,¢) contains all points where the max may occur within a sphere at u and
a radius equal to the step size. And, clearly, near the min-max solution at
least all points which maximize the original function and all other points
which are very close must be considered.

In order for the algorithms to be useful, it is assumed that a
relatively small number of points will solve the max problem at the min-max
solution, i.e., that P(uo) is small where ug is the min-max solution. The

question remains whether this is a valid assumption.

6.1 Some Reasons Why P(uo)'May'be Large

Consider a min-max problem in a finite demensional space where the
minimizing vector consists of one component. Experience has shown that the
min-max may occur at two intersecting lines. It is not likely for more to
intersect, but two is very probable.

Next cpnsider the case in which the minimizing vector consists of
two ¢omponents 1a this case three surfaces very likely intersect at the
min-max. Continuing this reasoning, where the minimizing space is of order n,
the n+l points may maximize the function at the min-max.

Likewise, if the minimizing variable consists of an infinite number
of components, then an infinite number of points may maximize the function at

the min-max. Now if the max space consists of a finite number of points, then
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it is very likely that a large percentage, if not all, may maximize the function

VI . oy

at the min-max.
Now consider the problem x = Ax + Bu where some elements of A may

lie within a given region and

T
J = x"(T)Qx(T) + J‘ u' (v)Hu(7)dT.

[
(o]

Now the max space consists of a non-countable number of noints. 1If
the minimizing variable consists of a non-countable number of elements as we
have considered, then it is very likely that at the min-max solution a non-
countable number of points from the max space may occur.

From this discussion it is now clear that our original assumption,
that the number of points maximizing the function at the min-max is a small

number, may not be reasonable.

6.2 A Numerical Example

The gradient algorithm was programmed for the following problem:

find the
T L]
min max Ji(u) = x'(T)Q(T) + I u'Hudr and where x = Ax + Bu.

u i t
el o

An example was computed where the order was 2. Q equals I, the identity

matrix. There was only one input and H = 10-8, x = (1,11], and A varied

between
-1 -2 -2 -3

d
-3 -4 an -3 -5
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Three cases were considered: One where there were 125 points in the max space,
one where 24 points were considered and one where only eight points were con-
sidered. The method used for finding the gr#dient was the one presented at
the beginning of Section 5. The differential equations were solved using the
Runge-Kutta-Gill method. The closer one approached the min-max solution, the
greater degree of accuracy was necessary to find a point which decreased the
function. With one level of accuracy a direction would be given, but even with
@n extremely small step size the function value could not be decreased. 1f
the accuracy was then increased ten~fold, a direction could be found where the
function value could be deccreased from 10 to 30 percent in one iteration.

This indicates that the solution has very steep V shaped ridges as
you approach th» min-mex solution.

The input was divided into 26 parts and in solving the differential
equations each interval was further divided. In order to increase accuracy,
eachk of the 25 intervals was divided into a greater number of sub-intervals.
It may bhave been desirable to increase the original number of points in the
cortrol. Possibly this is a limitation of the gradient algorithm and it
m4y be necessary to switch to the second order method.

A degree of accuracy was not obtained with the gradient method to
determine what percentages of points in the mix space were in P(u*) where u*
was the min-max solution,

However, one thing is clear. Even if Pfu*) does not contain the
entire max space or even a large part of it, R(un,c) must be a large propor-

tion of the max space or, prcferably, all of it in order to minimize the
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function in reasonable time. In the program that was constructed, R(un,e) .
could only accommodate ten values. When the max space consisted of 125 points,
the program took a considerable amount of computer time. Tha reason for this
is mainly because during the maximizing step, the full 125 points had to be
expanded, and when it became necessary to increase the accuracy for solving
the differential equations, the program was terminated.
The program was terminated before y*, the minimal element of C;(u),
became large. This indicates that either u  was not close to the min-max or

€ was not large enough so that R(un,e) contained all the points in P(u¥%).
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7. THE ALGORITHMS IN DETAIL

In this chapter we will present the detailed explanation of the
gradient and Newton-Raphson algorithms, and how they are used together in

solving the min-max problem in function spaces.

7.1 The Size of R(un,e)

As we have seen, the max function has steep gradients. Therefore,
it is not desirable to pick an ¢ in R(un,e) and find the number of points in
it since it is too difficult to tell how large ¢ should be. Consequently,
R(un,e) should be as large as the following considerations allow. The
algorithm which finds the minimum Ysci(un) becomes very time consuming as the
number of elements in the vector y increases. (The number of elements in ¥y
equals the number in R(un,e).) There is some optimai number of elements
R(un,e) should have which depends on the tc:al number of elements in the
max space and the nature of the problem.

In the second order method we have the same problem, only to a
much greater degree. There the procedure which finds the saddle point solution
of Jyu,c: becomes exponentially more camplex with each new element in the
vector ¢. As the reader will recall, this is where either a large number of
differential equations must be solved repeatedly or an even larger number of
integral equations must be solved once.

The purpose of this discussion, then, is to use the gradient method

with R(un,c) having a large number of elements until one is near the solution
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and then use the quadratic method with R(Un,e) being small. This is assuming
that at the min-max solution P(u*) has no more elements than the number we
used for R(un,c). That is, R(un,e) must contain at least as many elements as
P(u*) and if it is a large number, then the problem for all practical purposes
cannot be solved. At large distances from the min-max, it is not necessary to
have a very precise figure for the gradient. It is desirable to use a crude
approximation of the gradient until you are near the min-max when a greater
degree of accuracy is necessary.

The gradient algorithm can be used even if J is not quadratic. The

example presented in Chapters 1 and 5 is much more restricted than is necessary;

however, to use the quadratic method which employs the solution of integral
equations to solve the saddle point problem, it is necessary to have a very
restricted problem. It is necessery that the matrix H in J = x'(t)Qx(t)

T

+ fu'(t)Hu(t)dt b: diagonal. If it is not, then the set of integral equations

to be solved would be much more complex.

7.2 The Gradient Algorithm

1. Choose Ml,the number of elements in R(un,s), the initial step
size a, the initial point in the minimizing space uo,and K
explained in step 5.

2. When u = u calculate the value of the function J at all N points

in the max space. Store the M, largest points. See Note 1 in

1
Section 7.4.

3. Calculate the gradients for the M1 points. See Note 2.
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1 by M, matrix G explained in Section 3.4 or Note 3.

5. Compute Y* the minimum element in C;(un). See Note 4. If “Y*H > K

4. Calculate the M

some large number, then we are getting near the min-max. If ¢ in
R(un,e) is sufficiently small, we are at the min-max, This can be
determined by noting the difference for the greatest and least value

of J for the M, values of J in R(un,e). This difference is equal to

1
¢. If ¢ is not small enough to terminate, then decrease Ml by one
element. Now if Ml < M2 where MZ is the number of points in R(un,e)

for the Newton-Raphson method, then transfer to the Newton-Raphson
algorithm. If Ml > M2 then calculate a new matrix G. Note that it
should be necessary only to delete the last row and column. Find a

new value of y*. Now if ||y*| < K proceed to Step 6.

*
6. Let un+1 = un + o nz;w .

7. 1f F(un+1) < F(un) return to Step 2.
1f F(un+1) > F(un) then let o = % o and if o g-am return to Step 6.
Observe that it is necessary to store the old value of u until the
condition in Step 7 is satisfied.
1f o is very small, i.e. less than some a > the convergence is too
slow. It may be that the value of y is not accurate enough and this
may result from inaccurate gradient calculations. Therefore, in-
crease the number of points ND as explained in Note 1, Section 7.4.

If this does not help, increase NO and ND and increase the accuracy

of the procedure minimizing u G u - u. If none of the above helps,

then switch to the Newton-Raphson algorithm.
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7.3 The Newton-Raphson Algorithm

There are two conditions where the program should be transferred
to the Newton-Raphson algorithm. The most desirable one is where Hy*“
approaches infinity repeatedly as the number of elements in R(un,c) is decreased
until the number in R(un,e) is quite small.

The maximum number in R(un,e) will be denoted M, and should be much

2

less than Ml otherwise the computation time will be excessive.

The second case where the program transfers to the second order
algorithm is when the gradient method produces a step which is too small to
be effective.

From the experience the author has gained from working with the
gradient algorithm, this will generally be the case. It may be that ||y*||
never became very large and MZ was never decreased. If this is the case, it
may truly take excessive computer time to solve the problem. One can only
experiment in crder to know how large to make M., because if it is too small,
you will have to decrease the step size more than what the algorithm indicates,
and if it is too large, the computation will be excessive.

We will now present the Newton-Raphson algorithm employing the

method of integral equations to solve the example presented in Chapters 1 and 5.

1. Choose the size of Mz and use the first value of u from the gradient

algorithm.

2. Withu = u calculate the value ‘f the function J at all N points in

the max space. Store the MZ largest points. If the difference
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between the largest and smallest value of J is less than some small
quantity, then increase M2 or terminate because it would not be
possible to improve the soiution,

Find the transition matrix at NO points in time.

Perform integrations indicated in Step 5.

Form the equation b + y + Ab = 0 and solve for b for a given c.

We assume that this can be accomplished. It is not necessary that
there be a unique solution,

The vector b has dimension Ne.n where N = M2 and n is the order of
the system. We will show how to construct y and A above:

Form the vector fi = xi(T)QQi(T,T) at various points of time, and
where Qi(T,T) is the transition matrix associated with the ith value
in R(un,s). Form the matrices Gi = B'Qi(T,t)Q where Gi is a set of
nen matric=3 for variosus points of time. And form the matrices

Ki = Qi(TgT)B w. ere Ki is a set of n-m matrices for various points
of time.

The notation qus or qus wil!l represent the qth row and Sth column
of tb» TERE 4 Kp or Gp. The gth element of b and gth row of

b+ v + AB = C is dhtained when g = (p-1) an + q where p is the pth

2lememt in M2 and 3 is the row of kp. Therefore
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The notation [fi(T)]s indicates the sth element of the vector and

H is the sth diagonal element of H. Therefore

ss
N m T
y,= T c. ¢ K _(0)[f, (M) _/H_dr
2 i=1 I s=1 IO Pgs i s’ 'ss
and if 0 = (k-1) n + r, then
m T
Ao =% T f quS(T)gksr(?)dT.
s=1 o
6. With tu2 vector b found in Step 5 find
X N n
h--7gcf]./H..+ ¥ % ¢cb, 8 .
4=1 * 171 13 k=1 g=1 k'kg“kijg

7. Now form

T
E; = jg M2x, (£)Qg, (T,T)Bh + 2u’ Hh]dr

T T T
+ j f h'(t)B'Qi(T,t)QQi(T,Y)Bh(T)dth + I h' (t)Hh(t)dt
00 0 :
N N
8. Find the C which maximizes ¥ CiEi with 0<c<l and g c, = 1
i=1 i=1

9. Return to Step 5 to find a new b. Repeat this loop until the vectors
c and b no longer change. At this stage the saddle point has been
found. Note that it is not necessary to find c at a high degree of
accurancy in Step 8 at the early stages of the loop.

10. From the final value of b find h(t) as in Step 6, and form U1

= u + h(t).

11. if F(un+1) < F(un) proceed to Step 12. If F(un+1) > F(un) then

1

let h = 2

h and return to Step 9.
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12. 1f |lh(t)|| > ¢y» the step was large and it is uncertain that we are
now at the min-max. Return to Step 2.
If ”h(t)” < €2 then we are at the min-max if ¢ in R(un,e) is small,
If ¢ is large then reduce ¢ and, consequently, Mz and return to
Step 2.

7.4 The Method of Calculating Various Quantities.

This section will be comprised of notes which show how to calculate
the various quantities presented in the algorithms. We will deal implicitly

with the example presented in Chapters 1 and 5.

Note #:

1. To calculate the function:

T
J = x!(T)Qx, (T) + Iou:l(t)Hun(t)dt

x, = A,x + Bu x(0) = x
i i n o

We have a value of u at NO number of points between O and T.
Fu:rther divide each interval of time by ND number of pouints. Use
the Runge-Kutta-Gill method for solving for x(t) at each of the

NO x ND points and store x(t) at each of the major NO points. Now

it will be necessary to use x(t) at the NO points to calculate !
the gradient; however, we do not want to store x(t) for ali N points

in the max space. Rather, store x(t) for the first M. points

1
calculated and the value of J for each of the MI points. Then if

succeeding values of J are larger than any previous value, then
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replace the new set of points x(t) with the set x(t) for which J
took the least value. 1In this way, after finding the value of J
for all N points in the max space, we will have the set of x(t) for

the M1 larvest values of J. Note that it is necessary to calculate

f u;(t)Hun(t)dt only once since it is not a function of A.
0

Calculation of gradients. Use the same subroutine for solving

the equation i = 2Qxi(t) - A{ » with A\ (T) = 0 as in Note 1. The
gradient of Ki = - Hun(t) -B' 2.

Calcuiate matrix G. An element of G denoted Gij is equal to

1 T

4 Iopi(t)pj(t)dt where pi(t) is the gradient of Ki found in Note 2.
Find y* the min of Cz(un). Minimize u'Gu ~ u with u » 0 and G as

in Note 3. If it is possible to find a u which minimizes the above,

k

Y= - % ujpj(t). Rosenbrock's rotating coordinate system
j=1

rthen

12 . . e . L. :
method™ = was used in this minimization. 1If a minimum is not found
after a given number of iterations, calculate y* as above anyway.
If ||y*| is less than some K, then continue the iterative process.

If it is greater than K, return tc main program.
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8. CONCLUSION

This work presents the first attempt at solving the min~-max problem
in function spaces where the max space is larger than a few elements. Initially,
it was hoped that the elimination method could be used, but as explained in the
Introduction, this was not possible, Two algorithms are presented; namely, the
Newton-Raphson and gradient. The gradient method was programmed and the results
are presented. The gradient method was successful in the range that was anti-
cipated:. when one is far from the solution.

The best method of solving the saddle point problem which is one
part of the Newton-Raphson method is the method involving integral equations.

It is quite clear that the Newton-Raphson algorithm should be used
in conjunction with the gradient method. The reason for this is because if one
is far from the solution, then one iteration of the Newton-Raphson method will
not locate a point closer to the solution than a single iteration of the
gradi=nt algoritbk~; however, one iteration of the gradient method is consider-
ahly shorter than one of the sccond order wethod. However, as could be expected.
convergence with the gradient method became slow near the mininum.

Also presented in this paper are some arguments why P(y) (all points
from the max space which maximize the function at y) may be large compared to
the total number of points in the max space. It was shown that if this happens,

then the solution to the min-max problem is exceedingly difficult.
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