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A ROUNDARY LAYER METHOD FOR OPTIMAL CONTROL OF
SINGULARLY PERTURBED SYSTEMS

Robert Reynolds Wilde, Ph.D.
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1972

A method is developed for approximating the solution of an optimally
controlled singularly perturbed system

. o
X, = Au(t,p.)x1 + Alz(t,u.)x2 + Bl(tgi)u, xl(to) =X,

o - = o
U'xz = A21(t.u-)xl + Azz(tau)xz + Bz(tsu)u’ xz(to) xz

with respect to the performance index
X Qp(t)  Qp,(tm) | x
J 1 11 12 1 + u'R(t,n)u | dt

t xz Qlé(t’p) sz(t’u) xZ

such that the approximate solution converges to the optimal solution cs

4 = O uniformly on the entire interval [to,T]. Here Xys X and u are

n=, 0,-, and m-dimensional vectors respectively, and u is a small positive
scalar parameter. The method is applicable to bpoth fixed and free end-pouint
problems where in the latter problem a terminal cost is added to the per-
formance index. Although the optimal solution is generally difficult to
obtain using existing numerical algorithms, this method avoids such dif-
ficulties. The approximate solution is obtained by properly combining the

solutions of three systems: a '"reduced" an-dimenstonal system, a




"left layer" time invariant initial value nz-dimensional system, and a
"right layer' time invariant initial value nz-dimensional system. The
layer solutions can be interpreted as the results of two boundary layer
regulators: one acting in forward time from the initial point and the
other acting in reverse time from the end point. Example problems are

worked which illustrate the method developed.
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1. INTRODUCTION

1.1 Problem Description

This thesis treats the problem of finding an approximate solution

to a linear class of optimally controlled singularly perturbed systems ]

il = fl(xl’xzvust’u)
(1.1)
uiz = fz(xlaxzsult,p’)

where X{> Xy, and u are ny -, Ny, and m-dimensional vectors respectively a-d
p is a small positive parameter. System (1.1) is called singularly perturbed
since its dimension is reduced from n, + n, to n, if the scalar parameter
is set equal to zero. Physically this parameter may represent a small timc
constant, mass, moment of inertia and other possibly negligible parameters.*
As is customary in engineering design, such parameters would be initially

neglected enabling the designer to solve an n,-th dimensional problem instead

1
of the original (n1 + nz)-th dimensional problem. An additional advantage of
such a reduced-dimensional design is the avoidance of fast transients present
in the high-dimensional problem, However, the best a reduced-dimensional
design can do in general is to approximate the optimal solution on an open

subinterval of the operation interval [to,T]. For even when u 1is very small,

large discrepancies between the optimal and the reduced solution may occur at

*For example, if v i{s a small time constant and m is a small mass,
then one can write T = o and m = o where oy and a, are appropriately
chosen coefficients.
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the ends of the interval because some of the boundary conditions were dis-
regarded in the reduced order design. The end intervals in which these
discrepancies rapidly diminish are called boundary layers due to analogy with
fluids. A boundary layer method is developed in this thesis to approximate
the optimal solution over the entire interval [to,T]. The method is straight
forward and avoids having to find the optimal solution which is often diffi-
cult to find using existing numerical methods. The difficulty is a result of
both widely varying decay transients and widely varying growth transients
associated with the solution of a two point boundary value (TPBV) problem.
The bouadary layer method developed is directly applicable to two

types of optimal control problems for the system

Xy Au(t,u,)x1 + Alz(t,u.)x2
(1.2)

HX,

Az]_(t ’p‘)xl + Azz(t:p-)xz

with quadratic performance indices: regulator problems and trajectory
optimization problems.

The approach taken to the regulator problem in this thesis is
through a stabilizability analysis of singularly perturbed systems. The
main result of this analysis is that a high-dimensional system is stabilizable
if two lower-dimensional systems are stabilizable: a reduced system and a
boundary layer system. The optimal regulator problem is then seen as the
selection of the best of the stabilizing controls. The existence and the
singular perturbation properties of the optimal regulator are shown by a

direct method not involving usual optimality conditions. This result
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represents further extension of related work in [41,55].f However, the
methodology used here is different from either of these. 1In this thesis,
optimality of the regulator design follows immediately from properties on
the reduced solution.

The major part of this thesis is devoted to trajectory optimiza-
tion. Both fixed end-point and terminal cost problems are treated by the
same method. Boundary layer correction terms are explicitly obtained for
each end of the interval, thus revealing the two-time scale properties of
singularly perturbed optimal trajectories. From a control designer's point
of view, a useful interpretation of the fast transients in the boundary
layers is that they can be viewed as the results of two boundary layer
regulators: one acting in forward time from the initial point and the other
acting in reverse time from the end point. To summarize, the approach taken
is to decompose a trajectory optimization problem into a '"slow" trajectory
optimization problem for a reduced system and into two regulator problems for
boundary layer systems. The solutions of these problems are obtained in
separate time scales, and when properly combined, they form an approximation
to the exact solution which is valid uniformly on the entire interval [to,T].

It should be pointed out that the singularly perturbed optimization
problem witl. fixed en:--points has not previously been considered from a control
point of view, although techniques for the solution of such problems are
reported in [24,26]. The problem with terminal cost is treated in [55]

where the approach was through use of a positive definite solution of a

TThe references [21,40,41] are for publication in the near
future,




singularly perturbed Riccati system. The approximation obtained by this

approach was not valid in the terminal boundary layer. This difficulty
does not occur in the method developed in this thesis where both positive
and negative definite Riccati solutions are employed to form a dichotomy
transformation. The dichotomy transformation is used to separate the TPBV
problem associated with the trajectory optimization problem into two inde-
pendent singularly perturbed initial value problems. This result not only
simplifiss calculations but permits the treatment of a singularly perturbed
TPBV problem by the more common treatments used for initial value problems.
It is hoped that the avoidance of TPBV theory {13,15,16,18) will help control
engineers to understand and apply singular perturbation methods in system
design. In the same spirit, most of the conditions used in lemmas and
theorems of the thesis are given in terms of notions familiar in control
theory such as controllability, observability, stabilizability, etc. It is

also shown, in the case of terminal cost, that the use of a feedback control

whose optimal Riccati gains are approximated by reduced and boundary layer
terms will result in an approximate solution to the optimal problem which is
valid uniformly on the closed interval [tO,T]. An alternate approach to

using Riccati equations for the same class of problems is the use of

singularly perturbed TPBV theory. Such an approach is developed in a yet
unpublished work L40].

In the method of this thesis, the main tool is a transformation
involving two solutions of a singularly perturbed matrix Riccati system. In
general, these solutions are not continuous at the ends of the interval due

to the presence of the boundary layer terms. However, the transformation

> |




Pt o Pum P Ouw Py

¥

needed here is to be twice continuously differentiable on the whole interval.
This difficulty can be avoided if the boundary conditions of the singularly
perturbed Riccati system are at a designer's disposal. In this thesis, the
end conditions for the Riccati transformation variables are free and are
selected to guarantee the continuity properties. By using the end value of
the reduced solution as the end condition for the singularly perturbed sys-
tem, the zero order boundary layer is eliminated as can be seen from
[21,39,53]. If by construction this boundary condition is an appropriate

function of ., boundary layers can be eliminated to any desired order,

1.2 Singular Perturbation Results in Control Theory

The first major analysis [28,45,46] of singularly perturbed optimal
control problems dealt with finding an approximate solution to the optimal
control problem on the open interval (to,T). Thus, only "outer' expansions
were considered. The analysis avoided a direct study of the singularly
perturbed TPBV equations by using two different approaches, each of which
resulted in the need to analyze only singularly perturbed initial value
problems. The first approach was to assume that the control and its deriva-
tive were continuous in t and 4 for t ¢ [to,T] and u € {o,u*). The approach
suffered from not being able to define a reasonable class of problems for
which this assumption is valid, yet did provide a correct outer expansion.
The second approach was for a linear-quadratic free end-point problem where
the feedback control was expressed in terms of Riccati gains. The approach
was successful but was applied under the following three restrictions; the

system is time invariant, the fast variable x, is not in the performance

2

index, and A is negative definite.

22
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The Riccati approach was extensively developed in ([29,55]. Time

varying systems were permitted, the fast variable X, couid appear in the
performance index, and the requirement that 522 be negative definite was
relaxed by requiring only boundary layer controllability and boundary layer
observability--notions introduced there. Both "inner" and “outer" expansion
terms were treated making it possible to approximate the Riccati solution
on the closed interval [to,T]. The singularly perturbed initial value
problem resulting upon insertion of the feedback control containing Riccati
gains with boundary layer jumps at t = T into the system equations was
suﬁcessfully analyzed but only for a subinterval of [to,T). The problem of
an end-point jump was avoided when various sub-optimal feedback designs were
proposed and analyzed by not permitting boundary layer jumps to occur in the
gain matrices. 1In this thesis, the results of [55] are extended by showing
that the use of two Riccati systems can avoid the difficulty of having to
analyze a system with boundary layer jumps at both ends. Thus an approxima-
tion to the optimal solution is given which is valid on the closed interval
[to,T]. Furthermore, the two Riccati approach permits an analysis of a
trajectory optimization problem; a problem which could not be treated by the
approach in [55].

Singularly perturbed optimal control applications in flight problems
are reported in (24,25,26]. 1In [26], a heuristic approach is given for con-
struction of an approximate solution to a non-linear optimal control problem
which accounts for boundary layer jumps at both ends of a fixed time interval.

The approach is in agreement with the expansion in [s0].

A complete expansion for the state variables, control and per-

formance index is given in [40] for the same linear-quadratic optimization




i»

. w

problem considered in {55). Each term of the state and control variables
contained a left and right inner term in addition to an outer term. The
validity of the asymptotic correctness of the method was based on [51].

The expansion would be similar to that of [50] for such a problem. Thus the
approximdation was shown to be valid for the closed interval [to,T]. The
hypotheses were not control oriented, and the treatment given assumed that’

the eigenvalues of

v Ay

f
, |
%2 'Azz'J

bave multiplicity one, an assumption rot made in this thesis. 1In [41], the

Riccati method was used to solve a time invariant regulator problem for a scalar

system. A formal expansion of the algebraic Riccati gains was made about the
origin and shown to be convergent there and without boundary layers. This
paper assumed conditions on the high-dimensional system in contrast to that
used in this thesis where assumptions on only the low-dimensional auxiliary
systems are made. Since no boundary layers appear in the system equations
when the optimal feedhack control is inserted into them, a standard singularly
perturbed initial value problem results to which expansions are well known

and valid for t € [to,T).

1.3 Stability Problems

There are two types of results for the high-dimensional infinite

time initial value problem. The first result guarantees that the solution

m——



converges uniformly in t to the reduced solution on any interval of the form
(t',») where t, < t'. The second result guarantees that a solution of the
high-dimensional problem is asymptotically (or conditionally asymptotically)
stable. The first result is used to approximate the solution of the high-
dimensional problem by that of the low-dimensional reduced problem. A
crucial hypothesis often assumed in proving similar approximation results on
a finite time interval is that the real part of all the eigenvalues of the

of

matrix g;g evaluated along the reduced trajectory is less than a fixed
2

negative number.f An additional hypothesis 1is generally assumed for the
infinite time problem. This hypothesis is the uniform asymptotic (or con-
ditional asymptotic) stability in the small of the reduced solution. Since
both of the hypotheses stated are for linearized systems, the results obtained
based on these hypotheses are only valid for initial conditions rtarting near
the reduced solution. Such hypotheses were made in [5,27) with the exception

of

that in [27] the eigenvalue-criteria of Sx. vas replaced by Krasovskii's
2

condition [14]. Both of these hypotheses were relaxed in [18,20]). Different

techniques were useda to establish these results: asymptotic [21], o
Lyapunov [ 18,20,27), and successive approximation [5). Conditionally stable

systems were treated only in [5,21]. The approximation and stability

results of [27) were extended in [18) and [20] respectively to treat a much

wider class of problems, and [18) permitted fl and £, to depend on u which

2
was not permitted in [20,27]. Both of the conditionally stable works [5,21]

permitted fl and £, to depend on u. !

2

1’A matrix in which the real part of all its eigenvalues is less
than a fixed negative number is called stable.

[ T Ul T T rr——
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1.4 Two Point Boundary Value Problems

The crucial hypothesis used in all the singularly perturbed TPBV
theocems surveyed here is that the absolute value of the real part of all

of
the eigenvalues of the matrix —— evaluated along the reduced trajectory is

ax
greater than a fixed positive nuiber. The basic method for analysis of such
problems was first made evident in [31] for an initial value singularly
perturbed system. The method consisted of finding an initial stable manifold
such that solutions starting on this manifold would rapidly converge and then
remain close to the reduced solution. For finite time problems, it was also
shown there that solutjons starting slightly off this initial stable maniiold
could also be made to remain close to the reduced solution by making u
sufficiently small. The singularly perturbed TPBV theory is based upon
recognizing that a terminal stable manifold exists similar to that of the
initial stable manifold. Solutions starting on the terminal manifold also
rapidly converge and then remain close to the reduced solution, but in
reverse tiume. Thus the manifolds exist as a consequence of the crucial
hypothesis stated.

For the boundary conditions to be on such manifolds at each end of
the time interval, it is necessary that there exists a particular association
of eigenvalues with the state variables. Assuming the eigenvaluvs are con-
tinuous, knowledge that the eigenvalues at any time t are associated with the
correct states implies the correct association with the states for all time.
To guarantee the proper association, an additional hypothesis is needed.

For this purpose a transformation hypothesis was given in [15,16] and still

another type was given in [13].




A linear system was analyzed in [15,16] for the most general

combination of boundary values at t = t0 and t = T. The hypotheses givea
were very difficult to check and the results valid only on an

open subinterval of [to,T]. Non-linear systems were analyzed in

{13,21,50]. The problem treated in [ 13] assumed the system was composed of
two slow systems Yyi» Yo and two fast systems Wy, W, satisfying boundary con-
ditions on Yy and wy at t = to and Yy and w, at t = T. The treatment adapted
the approach in {31) and proved the closeness of the reduced solution to the
high-dimensional solution providing the boundary condition on w, at t = to
and on Wy at t = T were close to the reduced solution. The most general

theorem availatle thus far is stated in [21]. If y is the fast system and w

the slow system. the boundary conditions at t := to were given there by

a(y(t)),w(t ),u) =0, B(y(T),w(T),u) = 0

where 4 and B are smooth functions of their arguments. The theorem guarantees
the closeness behavior providing the boundary value at t = to was on the
intersection of & and an initial stable manifold and at t = T was on the
intersection of @ and a terminal stable manifold. 1In [50], a method is given
for finding an asymptotic expansion for a system in which the fast variable
boundary conditions are given on the variables either at t = to or at t =T,

The slow variable boundary conditions were arbitrary.

1.5 Chapter Preview

Chapter 2 develops a methodology for proving the existence of an

optimal solution to a regulator problem which should be generally applicable

«d

ok




11

to broadening the class of linear systems with quadratic performance indices
known to have an optimal solution. It is shown that the existence of
stabilizing controls for two low-dimensional systems not only implies the
existence of a stabilizing control for the high-dimensional system but also
that an optimal solution exists to the regulator problem.

Chapter 3 is a preparatory chapter for the remaining chapters where
a dichotomy transformation is introduced and a comparison is made between
a non-singularly perturbed system and a singularly perturbed system. Condi-
tions are imposed so that both systems behave similarly to point out the
interchanging roles of the operation interval in the first case and p in
the second.

Chapter 4 contains the main results of the thesis where a method is
given to approximate the optimal solution of a fixed end-point problem whose
exact solution would in general be difficult to solve. An application of the
method is given for an example problem in Chapter 5.

The example problem of Chapter 5 graphically illustrates the
important points: two-time scale prope.’ty, boundary layers at both ends of
tr- time interval, closeness of the approximate solution to the actual
optimal, sti'fress, and how the interval in which the reduced solution may be
a good approximation can be extended by decreasing .

Chapter 6 applies the method to a free end-point problem and also
includes an example problem. Furthermore, it is shown that the optimal
solution is approximated uniformly on the interval [to.T] when an approximate

feedback structure is used consisting of Riccati gains approximated by their

reduced and boundary layer terms.
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2. REGULATOR PROBLEM

2.1 Problem Statement and Approach

This chapter considers the design of a feedback control to regulate

the singularly perturbed system

X, = £,(%,,%,,u,t,u)
1 1 1’ 2' » ?
(2.1
“’7.(2 = fz(xlixz:ust#)

for which

L]
o

£,(0,0,0,tp) = O, £,(0,0,0,t,u) (2.2)

for all t 2 to’ ue(o,p*l. Here X5 X5, and u are n,-, n,-, and m-dimen-

2 2
sional vectors respectively, and y is a small positive scalar parameter.

The zero solution of (2.1) might represent any nominal trajectory of a

system having the form (2.1) but which has been translated into the origin

in a new coordinate system. In this translated coordinate system, (2.1)
describes the motion about the original from a perturbed initial condition.
Thus one could consider the problem of regulation for the translated

system as that of finding the control to make 2 desired trajectory
asymptoticaliy stable. Restricting the class of non-linear problems to

those in which the behavior of the linearized system determines the behavior

of the non-linear system such as {27,52], only the linearized system of (2.1)
needs to. be analyzed. A stabilizing control is defined here as one which makes

the zero solution of (2.1) asymptotically stable. 1If such a contrel is

applied to the system, the system is then said to be stabilized. The first i

. d
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result of this chapter is to show in section 2.2 that the existence of
stabilizing controls for two lower-dimensional systems guarantees the
existence of a stabilizing control for the higher-dimensional system (2.1).
This theorem is applied in section 2.3 to a time invariant system
to justify the regulator design proposed in [55]. 1In general many
stabilizing controls can be found for a stabilizable system. Of interest
is the selection of one of these which can easily be found, implemented,
and which yields a performance cost close to the optimal cost. A perfor-
mance index will be given for the same system which was shown to possess
a stabilizing contrcl. The second result of this chapter is to show that
the existence of stabilizing controls for the two low-dimensional systems
not only implies the existence of a stabilizing control for the high-
dimensional system but also that an optimal solution exists to this
regulator problem. Lastly it will be shawﬁ that the proposed design is a

good approximation to the optimal design.

2.2 sStabilizing Controls

Since the existence of stabilizing controls follows from a stability
theorem, this theorem will be given first. Few stability results exist
for singularly perturbed systems, and the two main results, of which one is
given by Xlimushev and Krasovskii [27] and the other by Hoppensteadt [20],
are not well known. This is evidenced by the recent articles (10,11,47)
for linear time-invariant systems of form (2.1) applied to networks with
small and large parasitics. The stability theorems oi [10,11,47) are

encompassed by the earlier work done by Klimushev and Krasovskii. Hoppensteadt's

PR S
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hypotheses are numerous and. not well suited from an engine: ring standpoint even
though he treats a more general problem than that covered in (20). Neither of

these stability works considers the case when f, and f2 depend on u. Such a

1
result appears in [5] whose proof is based on successive approximations. A
stability theorem for.a linear system whose matrices depend on pu will be
given which is an extension of the theorem in [27] whose proof is baced on
Lyapanov functions.

The following theorem deals with the uniform asymptotic stability

of the linear system

x, = A (tu)x, + A, (t,n)x
1 11+ 1 12 * 2 (2.3)

WX, = A21(tnu')x1 + Azz(tnu’)xz

The stability prcperty of (2.3) for p sufficiently small is deduced from

stability properties of two auxiliary systems: the nz-dimensional system

q= A22(9 »0)q (2.4)

where 8 2 to is a fixed parameter, and the n,-dimensional system

1
b= (AL (5,00 - AL (t,004,,71(£,004,,(£,0)]p. (2.5)

Theorem 2.2.1 1If

(1) all the matrices Aij(t,u) in (2.3) and their derivatives with

respect to t and 4 are bounded and continuous for all t a to'

H-CEO.H-*] >
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(i1) the real parts of all the eigenvalues of A22(9,0) are smaller
than a fixed negative number for all & 2 t,»
(iii) system (2.5) is uniformly asymptotically stable,
then there exists a p* > 0 such that system (2.3) is uniformly asymptotically
stable for all pe(0,u*].

Proof: Define 8x and by using

(2.6)
A

where (il,iz) and (il,iz) are solutions of (2.3) corresponding to two
different initial conditions. For brevity, arguments of functions are
dropped when no confusion results, and a bar is used to indicate that y = 0.

Thus A,, denotes All(t,u) and 311 denotes All(t,O); Upon substitution of

11
(2.6) into (2.3),

6x = (R + AAu - AAIZS)éx + Alzby

AAZ1 AAZZ .. . _
puby = (—;— e S+S+SR+S AAu -S AAlzs)bx 2.7)
A OA
22 22 =
+ ( m + T + SA12)6y
-1- - - - -

where R = All - A12A22 AZl‘ S = A22 “21' and AAij - Alj(t,u) - Aij'
Clearly, when (2.7) 18 uniformly asymptotically stable for u> 0 so is

(2.3). Let M(®8,0) be the unique positive definite solution of
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Aéz(B,O)M + MAZZ(G,O) = . In2 (2.8)
for all 8 2 to. Here and in (2.11) Ik denotes a k x k identity matrix.
From (ii) it follows that q'M(8,0)q is a Lyapunov function for (2.4).

Let the function p'ﬁp, whose derivative for (2.5) is -p'ﬁ, be a Lyapunov
function guaranteeing (iii). This function exists by a well known
Lyapunov theorem, such as Theorem 3 of [23],

It is now shown that, for a sufficiently small positive w, the

function

w = 6x"N6x + §y'MSy (2.9)

is a Lyapunov function for (2.7) satisfying the requirements for uniform
asymptotic stability such as the conditions of Theorem 1 of [23]. By
definition of M = M(t,0) and N there exist continuous nondecreasing functions

@ and B of the norm be,6ﬂ| such that o(0) = 0, B(0) = 0 and
0 < a(l[6x,83]) = w s B(l6x,8y]) (2.10)

holds for all t 2 t, and all 6x # 0, 6y # 0. The derivative of w for (2.7)

is

1
[ &x -In1+ L11 qu ox
w = (2.11)

, 1
by le "3 In + L22 by

where




[
[]

- - -
g = N(eay; - 8a,,8) + (8A), - 8A,5)'N

. 1 N .
Ly, = RA, + [EAAZI - S8h)8 + § + (R + oAy, AA125>] i
2A AA
_: 22 o, 'o . o BAyy
L22 M + (-—“' + SAlZ) M+ M(—_u. + SAIZ).

AA1 .
The<jr—1 are bounded functions for t 2 to and for all uelo,u™) by (1).
After substitution of © by t in (2.8) and differentiation with respect to

t, it follows that

wg'd . A

N 7 A S 22°
M= i e (£,M + MA,,)e & (2.12)
o

Hence from (2.12) and hypothesis (i), the L, are bounded for all t 2 t, and

3

for all pe[o,u*J; moreover Lu - 0aspy —~ 0. Thus L11 is dominated by - In
1
for sufficiently small . Also L,, is dominated by - & In for u sufficiently

22
2
small. 1Inspection of leading principal minors of the symmetric matrix in
(2.11) shows that there exists a positive u* such that for all ue(O,u*],

all t 2 t, and all 6x # 0, 8y # O
w £ -y(l|6x,8y]) < 0 (2.13)

where v is a nondecreasing function and y(0) = 0. Properties (2.10) and
(2.13) of w and w prove that (2.7) is a uniformly asymptotically stable
system for ue(O,u*].

The purpose for including the §x term in transformation (2.6) was

to avoid the appearance of &A terms in the off-diagonal terms of the

L]

e
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coefficient matrix in (2.11). The smoothness assumptions made in (i) could
have been relaxed as is evident from the requirements that the coefficient
matrix in (2.11) be positive definite, It is further noted that if one were

to search for the least upper bound of j which makes the i-th leading principal
minor positive but which is not to exceed that found for the (i-1)~-th minor,
+n, a u* is obtainable.

1 2

The stabilization theorem will now be given for the system

then by reneating this process through i = n

*1 = Au(t,p.)x1 + Alz(t,p)xz + Bl(t,p)u
(2.14)
uk, = Ay, (t,u)x; + A, (t,0)x, + B,(t,u)u

The theorem is based on the existence of two controls: u

2 = D2(9,0)q to make

" the system

d
3{1 = 4,,(8,0)q + B,(8,0)u, (2.15)

asymptotically stable for all 6 2 to and u, = Bp to make the system

1

9 . (& (K +5,D,)&,,+5,D,) 1A
{An (A12+BID2)(A +B Dz) A21}p

dt 2272
(2.16)
- . - = - - =  =1=
+ {Bl-(A12+31D2) (A,,+B,D,) 32}u1
uniformly asymptotically stable. It will be shown that when Uy and uy do
exist, then the control
u= Dl(t,u)xl + Dz(t,p,)x2 (2.17)

=

e 1

L

P
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stabilizes (2.14). To formulate the corollary it is convenient to first
express u in (2.14) in terms of D1 and D2. Hence

xl = Cll(t’u)xl + Clz(t’u‘)xz
(2.18)
uiz = Czl(t,p.)x1 + sz(t,p)x2
where
Cip = A*By P> G = A*D
(2.19)
Ca1 = Ay ¥By0;s Cyg = Ay5*B,D,

) such that the Cij satisfy the

hypotheses of Theorem 2.2.1 where the Cij replace the Aij matrices, then there

Corollary 2.2.2 1If there exist D1 and D

exists a u* > 0 such that the control (2.17) makes system (2.14) uniformly
asymptotically stable for all ue(o,u*J.

The proof 1s obvious in view of Theorem 2.2.1.

2.3 A Regulator Design

As an application of the stability theorem 2.2.1, it i8 now investi-
gated whether the control proposed in [55|, for a time invariant system of the
form (2.14), is a stabilizing control for all ue(o,u*]- The proposed control
was to not only stabilize the system but yield a low cost for the performance

index

rQ. Qtrx
[ 11 ‘2][ ‘] + u'Ru;} dt (2.20)
Qs Qllx
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Since optimality is meaningless unless it can be shown that the system can be
stabilized, the latter is analyzed first. The control proposed in [55] is .

given by

B! K wk x
ool B 11 12 1
R ) ) i (2.21)
K)o wKao | | %2
With (2.21), system (2.14) becomes
, < r e o )
X A117511%017812%12 A5 9R =S 1K | | ¥
- (2.22)
: -e!' B gt 'R . 17
KX, Ay17512%917822512 Ay uS19K157850K0 | [ %2
where S.. = B R-lB' S., =B R-lB' S,, =8B R-lB' From the stability theorem
11 = B4R "By» S5 = ByR 7By, S,, = B,R "B,

it is evident that (2.21) is a stabilizing control if the following two

matrices are stable:

AZZ-SZZK22 (2.23)

S % % ®' VY-(A % ® 2 -8 ® Y laa v g .3 ®
(A11-511K117512K12) - (B15751K55) (By5=5,,K90) "(Ay1 =51 ,Ky1-8,5K10) (2.24)

This is indeed the case for the proposed control as a result of the hypotheses

given in [55] and of the selection of the K, .'s as the unique root for p=0

i)
of the algebraic Riccati system




1
- ! - - 3
1141 17815K12) - (A}, -5, K] )) Ky

0 = -K .(A

- - ALK + -
Kifar = A% 85 P05 - U

= - i - - - ! -
0 = =K 5(Ayp=8yKs0) = Ky A o #K 1819Ky0 = Ay1Kyn - Q) (2.25)
S uA K oK 51K 12782515509
0 = “Kyphyy = Ay Kyt 080K 00 = Qyy

) K 'S. . K

(A =5 Ky0) Ky = WK 981K 5]

r .
T ulK (A58, Ky

having the propertyv that ill and RZZ are symmetrical positive definite matrices.

Thus k22 is the symmetrical positive definite root of

K22822%899K927K92529K22%Q; = 0, (2.26)

éll iz the symmerrical positive definite root of

KA + A K - KER '&+ Q=o0, (2.27)
and
K, = K E, - E, (2.28)
wh-re
A=A +EA, +5 E +ES E, B=38 +EpB,

: . -1
By = (81K 070 ) 18,55,k )
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The hypotheses which have been assumed in [55] are ‘j

(1) The coefficient matrices of the time invariant plaut (2.14), Q, R %i

and their derivatives are bounded and continuous functions of --

for all pel0,u*1, il

(i1)  For all pel0,u*], the symmetrical matrix Q is positive semi- t:

definite and R is positive definite, “

(iii) The pair (322,52) is controllable and the pair (322,52) is 9
observable where Cé 5 = sz,

(iv) The pair (R,ﬁ) is controllable and the pair (3,&) is observable )

where '€ = Q.
Hypothesis (iii) guarantees the (2.23) is a stable matrix and hypothesis (iv)

guarantees that (2.24) is a stable matrix.

2.4 Optimal Regulator Design

Now that it has been established that the system can be stabilized,
it will be shown that an optimal solution exists for the problem. This is
done by two lemmas. The first verifies the existence of a unique symmetrical
positive definite root of (2.25) in the neighborhood of 4 = 0. The second
justifies the optimality of this roet, It will then be shown that the

proposed design is near optimal for sufficiently small p.

Lemma 2.4.1 There exists a p* such that for all ne (0,0*1,

(2.29)
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is the unique symmetrical positive definite root of (2.25) and that

- S
Ay A2 $;, A2 K1 sk
- H (2.30)
[ ]
o A 512 Sn « "
m " " K B 2 K222

is a stable matrix.

Proof: It follows from an application [48] of the implicit function
theorem that for , small there exist unique positive definite K11 and K22
satisfying (2.25) and that K, . = iij + 0(p).

Inspection of the leading principal minors of (2.29) shows that there exists
a u* such that for all ue(O,u*], this matrix (2.29) is positive definite.

That (2.30) is a stable matrix now follows upon application of Theorem 2.2.1

and the fact that K,, = ii

ij + 0(p).

b

Lemma 2.4.2 1f there exists a unique symmetrical positive semi-definite

root P_ to the algebraic Ricrati equation

A'K + KA - KSK +Q =0 (2.31)

and if the control u = -R'1

B'P_x makes the time invariant system

x = Ax + Bu (2.32)

asymptotically stable, then this control minimizes the performance index

SO RRRRRRERRRE e s - s
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I = [ (x'Qx + u'Ru)dt . | (2.33)

t
o]

The minimum value of the performance index where R is positive definite is

t
given by x (to)wa(to)'

1

Proof: Let y=u + R B'P_x. Then (2.32) and (2.33) become

% = (A - SP_)x + By (2.34)

1

3 =fx'Qx + (y - R7IB'R_x) 'R(y - R7IB'P_x)1at (2.35)
t

o

= IG[Y'RY + x'(Q + P_SP )x - 2y'B'PQx]dt
t

o

and recognizing the fact that P is a solution of (2.27), it follows that

J = J‘O(y'RY - 2[(A-SPm)x + By]' P_x) dt
t:O
= [ y'Rydt - 2 [ %'P_xdt
t0 tO

=tf v'Rydt + x'(to)gmx(to) (2.36)
o

Thus the minimizing control is given for y = O since R is positive definite,

and P°° is positive semi-definite, This proof is based on (2].

Theorem 2.4.3 For all us(o,u*], there exists a unique positive definite

root of (2.25) such that the feedback control

.4

.d
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(2.37)

minimizes (2.33).

Proof: This immediately follows from Lemma 2.4.1 and Lemma 2.4.2 defining

A Ay B,
A= R B =
v S/} B,
m m "
s
11 12 Q, Q5
N
S = , Q =
[}
S22 U, q
m 2 Lz 22

for use of Lemma 2.4.2.

The performance index is defined for ue[o,u*] and hence J - J as
4 — 0 and is represented by J = J+ 00;).* Thus the proposed design gives a
performance cost close to that resulting from the optimal control. An alternate

control having the same general properties as (2.21) is given by

u = -R'l[si Bé] (2.38)

$q(t) = 0(y) if the norm Iq(t)[ of the vector or matrix q satisgies
the inequality |q| < oy for some positive scalar constant @ and for y <, .




3. A DICHOTOMY IN LINEAR CONTROL THEORY

i

3.1 Introduction and Statement of Prob.em

This chapter introduces a dichotomy transformation which serves as
a tool in solving TPBV singular perturbation problems. Also, a comparison
is made between a singularly perturbed problem and a nonsingularly per-

turbed problem in which similarities are pointed cut.

A 2n-dimensional system

X A(L) -s(t) x

= 3.1)
A -Q(t) ~A'(t) A

is said to possess an '"'exponential dichotomy" if there exist positive

constants o, B, vy and € such that for all t 2 to

-y (t-t ) i 1

Ix(e)] + |A(t)] % ae °, for :Ezz; €Y (3.2)
€(t-t ) r §

x| + | 2ge  °,  for | Yol 4 v (3.3)
L 0’ J

where Y is a linear subspace of R2n and |x(t)| and |k(:)| are norms of
the n-dimensional vectors x(t) and A(t).

This chapter shows how, under suitable conditions, "dichotomy
transformations' are constructed which diagonalize (3.1) into two n-
dimensional systems, one exponentially stable in forward time and the
other exponentially stable in reverse time. In this way x(t) and A(t)

can be found by solving differential equations in their stable direction.
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This development is purposely introduced to stress similarities between

(3.1) and the singularly perturbed system

% A(t) -s(0) [ x

x -Q(t) -A' (L) A
A typical application is the optimization of

x = A(t)x + B(t)u (3.5)
with respect to

T
J = -% j[x'Q(t)x + u'R(t)uldt (3.6)
o
with x fixed at both ends. If in this prohlem the system (3.1), with
S(t) = B(t)R(t)B'(t). possesses an exponential dichotomy, and if the
interval [to,T] is large, then the corresponding TPBV problem can be

approximatcly solved by solving two independent initial value problems.

3.2 Negative Definite Riccati{ Matrix

Conditions for existence and uniqueness of the symmetrical positive

definite solution P(t) of

K = -KA(t) - A'(t)K + KS(t)K - Q(t), (3.7)

sub ject to a symmetric positive semi-definite end condition m,
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K=m at t =T, (3.8)
are known as well as the conditions for existence and uniqueness of the
symmetrical positive definite root P of the time invariant system
-KA-A'K+KSK-Q=0. (3.9

In the construction of dichotomy transformations in this chapter, symmetrical
negative definite solutions N(t) and N, of (3.7) and (3.9) will also be
used. The transformations follow after first presenting two lemmas which

depend upon the hypothesis

H 3.2.1 Let for all te[to,T] the matrices A(t), B(t), Q(t) and R(t)
be continuously differentiable functions of t, Q(t) be symmetric positive

semi-definite and R(t) be symmetric positive definite.

Lemma 3.2.2 Let H 3.2.1 be satisfied. Then for all t ¢ [to,T]
there exists a unique symmetric negative definite solution N(t) of (3.7)

subject to an initial condition
K= - at t =t (3.10)

where I' {s a symmetric positive semi-definite matrix.

Proof: Consider the minimization of

T

~ la ~ 1 -~ - ~ "

J= 5 x'T'x . + 3 t.I‘[x'Q(t:o-t"l'-‘t')x + u'R(to+T-T)u]dT (3.11)
o

[ 2]

..

-a
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subject to

dx A -
= -A(to+T-T)x - B(to+T-T)u (3.12)

with x given at v = to and free at T = T. The corresponding Riccati equation

dk _ . SR s ]
E‘T- KA(to+'I‘-'r) + A (t°+T-T)K + KS(to-I'T T)X - Q(t°+’1' T) (3.13)

has a unique positive definite solution R(T) satisfying the end condition
K=T attT =T (3.14)
The substitution of 7 = to+T-t in (3.13) and (3.14) shows that N = -R(to+T-t)

uniquely satisfies (3.7) and (3.10).

Lemma 3.2.3 Let H 3.2.1 be satisfied where A, B, R and Q = C'C are
constant matrices, [A,B] is a controllable pair and [A,C] is an observable
pair. Then the algebriac equation (3.9) has a unique symmetrical negative

definite root N, and -(A-SN ) is a stable matrix.

Proof: In (3.11). disregard the terminal cost term ani let T - =,
Then (3.11) and (3.12) constitute a well defined infinite time regulator
problem. Thus

KA+ A'RK+KSK - Q= 0 (3.15)

has the unique symmetrical positive definite root i‘ and -[A+SE°] is a
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stable matrix. The substitution of -N  for Q” into (3.15) then shows that
N, is the unique symmetrical negative definite root of (3.9). The unique-
ness is a direct consequence of the non-siugular transformation ip = -N

and the uniqueness of P, of (3.15).

3.3 Dichotomy Transformations

Note that if z = W(t)¢ transforms z = L(t)z into £ = D(t)%, then

W = L(t)W - WD(t) . (3.16)

We will consider L(t) as the 2n by 2n coefficient matrix in (3.1) and
construct a nonsingular transformation W(t) which will make the resulting

matrix D(t) block-diagonal.

Lemma 3.3.1 Under the conditions of Lemxna 3.2.2, the transformation

x(t) 1 1 y(t)
= (3.17)
A(t) P(t) N(t Ti(t)
is nonsingular for all t ¢ [to,T] and transforms (3.1) into
y A(t)-S(t)P(t) ‘ 0 y
= (3.18)
7 0 A(t)-S(t)N(t) il

Proof: Using (3.1), (3.17) and (3.18) to form (3.16) and noting

that P(t) and N(t) satisfy (3.7), (3.16) is -2itisfied as an identity.

-
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Transformation (3.17) is nonsingular since both P(t) and P(t) - N(t) are

nonsingular.

Theorem 3.3.2 Let the assumptions of Lemma 3.2.3 be satisfied and

use 7 = P_and -I' = N in (3.8) and (3.10). Then the transformation (3.17)

becomes

x(t) I 1 y(t)

= (3.19)
A (L) P N N(t)

[+ o«
and the subspace Y in (3.2) is defined by 7 = 0.
Proof: Note that W = @ aund (3.16) is satisfied. Since A - SP_ is
stable and - (A - SN,) is stable by Lemma 3.2.3, inequality (3.2) holds

only when ﬂ(to) = 0.

Theorem 3.3.3 Consider (3.5) and (3.6) and, using T = = and

Q(t) = Cc'(t)C(t), where C(t)x(t) is the output of (3.5), define an output
regulator problem as in [22] When this problem satisfies the stability
theorem by Kalman {22, Theorem 6.10], then the subspace Y generating the
dichotomy (3.2), (3.3) is defined by T = 0 in (3.17).

Proof: From [22], it is known that
2 = [a) - s(B(D)]y (3.20)

is uniformly asymptotically stable. From the definitions of uniform

complete controllability and observability [22] applied to (3.11) and

it
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(3.12), and using the same change of time variables as in Lemma 3.2.2, it

can also be shown that
= [ae) - seomen (3.21)

is uniformly asymptotically stable in reverse time.

Thus (3.17) and (3.19) are transformations which make transparent
the dichotomy properties of (3.1) guaranteed to exist by the assumptions
in Lemma 3.2,3 for time-invariant systems and in Theorem 3.3.3 for time-

varying systems. P(t) and N(t) are related by the expression
1 -1
N(t) = P(t) - 3 H (t) (3.22)
where H(t) is the unique symmetrical positive definite solution of

! 1
& - aw-s@r(In + HA®-SOPMD] + 35(8) (3.23)
with H = % [P(to) - N(to)]-l at t = to. This follows upon recognition
that N(t), P(t), and H(t) are unique solutions of their respective dif-
ferential equations and that H(t) defined in (3.22) satisfies (3.23) as
an identity. Another transformation which could have been used to show

the dichotomy properties 1is given by

x(t) 1 H(t) y(t)
= (3.24)
A(t) P(t) N(t)H(t) n(t)
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which transforms (3.1) into

y A(t)-S(t)P(t) 0 y
= . . (3.25)
Ll 0 -fa(e)-s(t)r(t)] 1

For a time invariant problem a similar transformation was used in [33].

3.4 An Application

Consider the minimization of (3.6) subject to (3.5) and with x
fixed at both ends,

x(to) = x°, x(T) = xT.

(3.26)
To solve the boundary value problem (3.1) and (3.26) using the transforma-
tion (3.19), yo and ﬂT are determined from

o

X I Y(to’T) yo

T Is (3.27)
e Q(T,to) 1 L

where Q(t,to) and Y(t,T) are the fundamental matrices of (3.20) and (3.21)
respectively. However, if (3.1) possesses the dichotomy (3.2), (3.3) and
if the interval [to,T] is sufficiently large, then |Y(t°,T)|<<1,

|#(T,t_)|<<1 and

(3.28)

\
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Using these boundary conditions, the approximate y(t) and T|(t) are obtained
from the independent initial value problems (3.20) and (3.21). The approxi-
mate solution of the boundary value problem (3.1) and (3.26) is then found 53
using .
Py
x(t) = y(t) + T(t)
(3.29) o
A(£) = P(t)y(t) + N(O)(t)
This procedure is particularly convenient when A, B, Q and R are constant
matrices, since then P(t) = P_ and N(t) = N, can be obtained by an
algebraic method.
3.5 Example
Consider finding an approximate solution of system (3.1) satisfying
(3.26) where A =0.5,B=1,Q =2, and R = 1. Then (3.1) becomes
x 0.5 -1 7[x x(0) = x°
= ; T (3.30)
A -2 -0.5JL*r x(T) = x
!
For this example, P = Z is the positive and N = -1 is the negative root of
2
K" -K-2=0. (3.31)
The transformation
:L.d
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x(t) 1 L1y
= (3.32)
A (L) 2 -1 n(e)
transforms (3.30) into
9 "1-5 0 y
1= (3.33)
M 0 1.5JL1
and (3.27) gilves
T .
<° = yo +1 e-l.ST
(3.34)
xT = yoe'l.ST + TlT .
o T 1.5T T -1.5T
If T is large, y > T e and N >> y°e *“7. " Hence
x(t) s xoe-l.St: + xTel.S(t--T) ’
(3.35)

A(E) 20015t _ T 1.5(t-T)

Note that both y(t) and TI(t) are obtained by solving (3.20) and (3.21)

in their stable directions.

3.6 Discussion

e

An interpretation of (3.20) is that it is the solution of a regulator
problem whose performance index has a penalty term at t = T and whose system ;
]
is subject to an initial boundary condition at t = to. Similarly, an i
£
)
é
» “"l" s —
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interpretation of (3.21) is that it is the solution of a regulator problem
whose performance index has a penalty term at t = to and whose system is
subject to a final boundary condition at t = T. The stability of these
regulated systems is assured by the assumptions given in Lemma 3.2.3 and
Theorem 3.3.3. For a sufficiently large interval, a simplifying approxi-
mation is possible and the TPBV problem is approximately solved by solving
only initial value regulated systems and adding the resulting solutionms.
As either the time constant associated with the exponential bound on the
regulator solutions is decreased or the time interval increased, the TPBV
solution appears as the summation of two decaying transients; one at each
end of the time interval. For a very small time constant, the transient
behavior at the initial time could be approximated by the solution of
(3.20) whose coefficient matrix is assumed constant (the functional value
at t = to). Similarly, the transient beuiavior at the final time could be
approximated by the solution of (3.21) whose coefficient matrix is

assumed constant (the functional value at t = T), The differential
equations (3.20) and (3.21) are called "stiff" when the transients occur

very rapidly.

3.7 A Preliminary Singular Perturbation Problem
It will now be shown that the solution of the singularly perturbed

time invariant system

wl L |= (3.36)

S

od

-« ¢
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satisfying the boundary conditions

x(t ) = x°, X(T) = x" (3.37)

behaves similar to the solution of the TPBV problem (3.1) satisfying
(3.37) under suitable stability conditions and for p sufficiently small.
Specifically, the previous requirement that the time interval [to,T] be
large relative to the transient intervals at the initial and final times
will be shown equivalent to the condition that p be sufficiently small
for the specified interval [to,T] of the problem. Furthermore, it will
be shown that an approximate solution of. (3.36) and. (3.37) is given by the
summation of solutions of two time-invariant regulated systems.

I1f the hypotheses of Lemma 3.2.3 are satisfied, then there exists
a unique symmetrical positive definite constant solution B, and a unique

symmetrical negative definite constant solution N of the Riccati equation
WK+ KA +A'K -KSK+Q =0 (3.38)

for (3.36). Also, [A - SP_] and - [A - SN ] are both stable matrices.

Thus (3.36) is transformed by

- (3.39)

into the two decoupled singularly perturbed systems
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by = (A-SB.)y (3.40)

pll = (a-sN N . (3.41)
Assuming that an initial condition yo is given for (3.40) and a final
condition ﬂT is given for (3.41), the solutions for y and T are given by
(A-SB) (t-t M
y=e y (3.42)

(A-SN_) (t-t_)/u
M=e o T (3.43)

The boundary conditions xo, xT are related to those of yo, nT by
y

(A-SN_) (to-T) /b o
x : 1 e y

= (3.44)
(A-SB ) (T-t ) /u
x e ° 1 ﬂT

Clearly for whatever to and T (to < T) have been given, it is always

possible to find a u* > 0 such that for all y ¢ [O,u*]

(A-SB,) (T-t )/u (A-SN,) (t_-T) /u
e <«< 1, e <«< 1

since [A-SPQ] and -[A-SNw] are stable matrices. Thus

(3.45)
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for u s u*. Hence the approximate x(t,u) solution is given by

(A-SE ) (t-t ) /u (A-SN,) (t-T)/u
x(t,u) = e “ x4+ e xT

(3.46)
This simplified problem pointgs out the interchanging roles of T
and 4 and represents a special case of a more general problem rigorously

analyzed in Chapter 4.




4. FIXED END-POINT PROBLEM: THEORY

4,1 Introduction and Problem Statement éi
The goal of this chapter is to develop an spproximation of the -
optimal solution of a trajectory optimization problem over the entire o

operation interval [to,T]. An approximate solution is sought instead of
the actual solution since the latter is often quite difficult to find
using existing methods. The complication is a result of both widely
varying decay transients and widely varying growth transients associated

with the solution of a TPBV problem. The design objectives for the - i

approximate design solution is:

(1) solution of a lower-dimensional problem than the original

problem when the approximation is to be valid only on an open
interval of [to,T];
(ii) accounting for boundary layer phenomena by finding correction
terms which, when added to the reduced solution, make the
_ approximation valid over the whole interval [to,’r];
(iii) determination of correction terms separately in a stretched

time scale thus avoiding 'stiff" problems.

This approximation design is developed for the problem of optimally

controlling the (n1 + nz)-dimensional system 1

).(1 = All(t’“')xl + Alz(td-")xz + Bl(tou)u
(4.1)

“-""2 = A, (Eu)%) + Ay (tu)x, + By(tu)u
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with respect to the performance index
]
Tyrx Q Q X
1= 1 1 11 7124 "Ly G'Ru Jae (4.2)
]
o \L*2 Q2 %l LX
where the boundary conditions for (4.1) are
o o
X, =% and Xy = X, at t to
(4.3)
X, = T nd = x T
S | & 2%  atta=rT

The following hypotheses are made about the matrices appearing in (4.1)
and (4.2).
H 4.1.1 For all t ¢ [to,T], b e [0,u*] the symetrical matrix
Q = Q(t,n) is positive semi-definite, and R = R(t,u) is positive definite.
H 4.1.2 For all t ¢ [to,T], w ¢ LO,u*] the elements of the matrices
in (4.1) and (4.2) are three times continuously differentiable functions of

their arguments.

From the optimality conditions for (4.1), (4.2), it follows that

u = -R'I(Bi A+ By XY (4.4)

and hence




i
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42 |
[ i | A S A s =] e
*1 11 11 12 12 | *1 b
A -Q -A0 -Q At A .
1| _| M 11 12 21 1 4. 5) 14
) e i
Xy A $12 Ay Saz| | *2 4
N - 1 - 1 - - 1 H
| Bra ] Q) A2 oY) Al | X o
Using iy
{xl X2
¥4 = ¥4 =
1 ’ 2 L
LM A
the system (4.5) 1s rewritten in the compact form
| 21 Dyy Do %
- (4.6)
k2, Dyy Dyaf |2

where the definition of Dij is evident from comparison of (4.6) with (4.5).

When y is set equal to zero, the 2(n1 + nz)-dimensional system (4.6)

reduces to a 2n,-dimensional system, and if the indicated inverse exists,

1
the reduced system becomes i
. = (B, - D0, 1D, )2 4.7
2= (Og) = DyoPap DypP7 - (4.7)
Variable 22 is not present in the differential system (4.7) but is
algebraically related to 51 by
2, = Py DyE, - (4.8)
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Thus in general iz will not satisfy the X, boundary conditions in (4.3).
A solution 51 satisfying (4.7) and the X, boundary conditions of (4.3) with

the corresponding z, obtained from (4.8) is called a reduced solution.

2
The approximation is based on the requirement that an auxiliary time
invariant system depending on a fixed parameter 1|

dx,
Tl Azz(n,O)x2 + Bz(n,O)u 4.9)

be stabilizable for each T in the interval [to,T]. The full meaning of
stabilizability of system (4.9) will be clear later when this system
appears in so called "layer regulators" and makes it possible to use
algebraic Riccati equations for calculation of the correction terms. Con-
trollability and observability hypothesis H 4.1.3 used here is more
restrictive than the stabilizability requirement but simplifies the forth-
coming derivations. This is the crucial hypothesis of Theorem 4.2.1.

H 4.1.3 For all t ¢ [co,T],

rank | B,,A, 5,4 2B A 4.10)
ank | Bys8yoBys8g9Bgscesflyy Byy = My (4.

n -1_ -

2 CéJ = n

2 (4.11)

- e . - 2. -
! L ) t ] ]
rank [CZ’AZZCZ’(AZZ) C2,...,(A22)
It is seen that hypothesis H 4.1.3 guarantees the existence of the
inverse in (4.7, and (4.8). The last hypothesis needed is
H 4.1.4 There exists a unique (bounded) reduced smolution satisfying

the Xy bc'ndary conditions in (4.3).

et —an b



4.2 Main Theorem

The theorem of this section establishes the existence of an
approximate solution for the trajectory optimization problem (4.1)-(4.3)
which accomplishes all of the design objectives (i)~(iii) set forth in
section 4.1. This permits numerically complicated problems to be approxi-

mately solved in a simplified manner,

Theorem 4.2.1 Let H 4.1.1, H 4.1.2, H 4.1.3, and H 4.1.4 be satisfied

for problem (4.1), (4.2), and (4.3). Then there exists a positive con-

*
stant , such that for = u* and t ¢ [to,T]

X (t,0) = % (t) + 0w

X, (E,0) = Xy (t) + £,(T) + R, (@) + O(k)

(4.12)
(6 = X () + O(k)
Myt = K () + Byn(t )5, (1) + Nyp (TR (@) + 0(W)
Here £2(T) is the solution of the '"left" layer system
d
FS?' - [Azz(to) - §‘22(‘0)’?’22(%)] L (4.13)

subject to initial condition

5 - x2° - iz(to) at T =0

o

i
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where 7 = (t-to)/u, &E(o) is the solution of the 'right" layer system
dR, - - -
& " [‘22(17 - szz"’“zz"”] R, (4.14)

subject to terminal condition
T -
&E =%, - xz(T) ato =20

where ¢ = (t-T)/y, and izz(to) and;ﬁzz(r) are the symmetrical positive and

negative definite algebraic solutions of

AyoRop + Kopphyy = KppSppKpp + 9y = 0 (4.15)
2valuated at to and T respectively.

Discussion: This theorem can be used for different types of
approximations of the optimal solution. For an approximation on the interval

1,t2j where t, < t1 < tz < T, one neglects the £2,E3 terms in (4.12) and

it
approximates the high-dimensional solution by the lcw-dimensional reduced
solction found from (4.7), (4.8). This approximation is within O(u) for u
sufficiently small. For the approximation to be valid on the interval
[to,tz], the left layer correction term is added to the reduced solution; for
the approximation to be valid on the interval [tl,T], the right layer
correction term is added to the reduced solution. When both left and righ-

layex correction terms are added, the approximation is valid on the entire

interval [*O,T].

e n
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It should be noted that the theorem has the desired lower-dimensional
and time scale separation properties. The correction terms are evaluated inde-
pendently and each is the solution of a time invariant initial value problem.
For computation of £2, only the symmetrical positive definite root 522 at
t =t needs to be found from the algebraic Riccati equation (4.15). The

symmetrical negative root N, of (4.15) at t = T is needed for EE.

22
Finally, a similar theorem could be formulated for an asymptotic
expansion as common in singular perturbation theory. This was not done here
in order to provide a clearer proof of the theorem.
The proof of this theorem will be given after first proving a set
of lemmas. The first two lemmas are used to establish certain properties of
two different solutions of a singularly perturbed Riccati system. One solution
is symmetrical positive semi-definite and the other is symmetrical negative
semi-definite. The third lemma uses these solutions in defining a transforma-

tion which enables one to solve two initial value problems in place of a

TPBV problem,

4.3 Properties of Riccati Matrices

Let the co-state variables xl and XZ be related to the state

variables L3 and X, by the Riccati transformation

M K K }
11 P12 X
= (4.16)

1
L9 SP) wKyo J L%2

The Riccati equations resulting after elimination of kl and xz from (4.5)

using (4.16) are given by

ot

i
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l.( K ] l'
11 = “K11(89778,5K10) - (A);75,,K9) Ky
- K - A 'R '
K182 = 41500 * K818 Y K80k - (4.17a)
. - - - - - A -
WKyp = “Kip(855-555K50) - KpjAyp + Kpp810K0p = 851K, - Qp,
- ! - - ]
WAy 1K) 5Ky 511K 97K19812K10) (4.17b)
Y I - ' -
WRyp = =Koyghoy = AyoKyy + Kyp855K90 = Q)
!
- [} - - - 1]
”[Klz(Alz S19%22) + (A5-5,5K5,) Ky “K12311K12] (4.17¢)

The corresponding reduced Riccati system obtained by setting b = 0 in (4.17) is

= - 2 _- [} - 2 _- L
11 = K (A8 10K ) - (By-S KK

1-512%2

- Righyy - KyiKpo + KppSp Ky Kp8a0Kys - @ (4.18a)

0 = -Kjy(R)y55Ky0) - Kyphyy + K j8 Ky = Ky1Kp, - Qy, (4.18b)
0 = -Kyhyy - AyKyy + Kyp8)yKyy = Qyy (4.18c)

and is to satisfy the same K.. boundary condition as imposed on K., for the

11 11

solution of (4,17). In general, it cannot satisfy the end conditions for K12

and K2 Since the system (4.18) has an algebraic part, it can have many

2°
solutions satisfying the symmetrical positive semi-definite boundary condition

on K11 at t = T. Only one of these solutions denoted by Rij

hypotheses H 4.1.1 - H 4.1.3 and the requirement that ill’ i22 by symmetrical

meets the previous

positive semi-definite matrices for all t ¢ [to,T]. When R1z and i22 at t =T

are equal to the respective boundary conditions imposed on K12 and K22 in
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(4.17), then the solution of (4.18) is designated by iij and the solution of
(4.17) satisfying these boundary conditions is designated by P,j(t,u). Like-
wise, of the many solutions of (4.18) satisfying the symmetrical negative semi-

definite boundary condition on K,. at t = t,s there is only one ﬁij satis-

11
fying the conditions imposed. These conditions are: tbe previous hypotheses
H4.1.1 - H 4.1.3 must be met, ﬁll and ﬁ22 are to be symmetrical negative
semi-definite for all t ¢ [to,T], and the values of ﬁ12 and ﬁ22 at t =t
are to be the same as the boundary conditions imposed on these variables in
(4.17). The solution of (4.17) satisfying these boundary conditions is
designated by Nij(t,u).

The basis of the proof of the main theorem is the existence of the
Riccati solutions Pij’ Nij' The singularly perturbed Riccati solution of
(4.17) is known to generally have a bLoundary layer jump at t = T when the
boundary conditions are given at t = T. Thus the Riccati solution would
rarely be continuous for all t ¢ [to,T], € [O,u*] which is a crucial require-
ment in the approach used to prove our Main Theorem. But by properly selecting

the boundary conditions for (4.17), the boundary layer jumps have been

eliminated and the continuity of Pij(t,u) and Nij(t,p) can be guaranteed.

lemma 4.3.1 Let H 4.1.1, H 4.1.2, and H 4.1.3 be satisfied and let the

boundary conditions for (4.17) be given by

Kip WK} e wRp,
= - at t =T (4- 19)
[} 1
VYY) WPy 9 WPy

et ol s i
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where n1161) is an arbitrary symmetrical positive semi-definite matrix which

is a three times continuously differentiable function of y for ally ¢ [O,u*].
*

Then there exists a u*’> 0 such that for all w £y the unique solution

Pij(t,u) of (4.17) satisfying (4.19) can be asymptotically approximated on

the entire interval [to,T] by

P (E0) = iij + 0(w) (i, = 1,2) (4.20)

where 511 and §22 are symmetrical positive definite matrices, except possibly

at t = T where P,, can be positive semi-definite. Furthermore [A,.-S

11 22

is a stable matrix.

222 ]

The proof is based on showing that the hypotheses of the singularly
perturbed initial value ' Lemma A.4 of the appendix are satisfied. In addition
to certain smoothness assumptions, these hypotheses require first, that the
reduced solution exists, and second, the stability of the boundary layer
equation., This proof in part uses facts established in [55] but differs from
the proof given there in two ways. First the problem considered here requires
only that the initial conditions of the Riccati problem lie within a neighbor-
bhood of the reduced Riccati solution at t = T. Thus global properties, which
can be proven, are not needed here. Second, a proof of boundary layer
stability is given where Kronecker products were not needed and the continuity

of Pij at u =0 is established.

Proof of Lemma 4.3.1: The existence of the reduced solution will first

be shown and then boundary layer stability; both of which are hypotheses of

T e

e en ey - gy
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the appendix. A unique algebraic symmetrical positive definite root §22 of (4.18c)

is guaranteed to exist for all t ¢ [to,T] by H4.1.1 and H 4.1.3. This can
easily be seen at a fixed time by interpreting (4.18c) as the Riccati equation

resulting from a time invariant optimal regulator problem. kK The continuity of

P22(t) for t e [to,T] then follows from the implicit function theorem and H 4.1.2.

This interpretation also makes evident that [AZZ-SZZPZZJ is a stable matrix

for each t ¢ [to,T]. From this and (4.18b) it follows that 512 is uniquely

expressible in terms of 511 and 522. The existence of the unique symmetrical

positive definite matrix ill (semi~definite at t = T if ﬁll is semi-definite
there) was established in [55] by showing it was the solution of a Riccati
system similar to (3.6). Thus the reduced solution iij exists. The stability

of the boundary layer equation

R
12 _ 5 - - A " - - - A - 'A -
3 - K (8ypm855K55) = KAy, + K8 0K - Ak - Qp
. (4.21)
dKyg & G R s R G

+ K,.5

ar - “Koghop 7 ByoKyy FKyp8y0Ky - Qy,

will now be shown about the reduced solution Rij =P for each t ¢ [tO,T]

ij
The linearized system of (4.21) about the reduced solution where ill = 511,
R12 = ?12 + 6K12, and R22 = 522 4 6K22 becomes
dGK12 - - . - - - - =
ar - 8K (Bpp5yFp0) - (Ay17P115127F12522)0K (4.22a)
d6K22

T = 6Ky (Rypm5y0Bp)) - (Ryy-5,)Py 06Ky, (4.22b)

whose coefficient macrices are functions of the fixed parameter t. Since

ob
eb

-
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[322-522§22] is a stable matrix, it immediately follows that the solution of
(4.22) is asymptotically stable. Upon substitution of this solution in
(4.22a) and again noting the presence of the stable matrix [522-§22§22], it
then follows that the solution of (4.22a) is asymptotically stable. Since

the smoothness assumptions are met, it remains only to note that the boundary
layer correction terms for P12 and P22 at t = T are eliminated as a direct
consequence of the special way in which the boundary conditions were chosen

in the hypothesis of this lemma. Thus satisfaction of Lemma A.4 guarantees

*
the existence of the & of this lemma.

Lemma 4.3.2 Let H 4.1.1, H 4.1.2, and H 4.1.3 be satisfied and let the

boundary conditions for (4.17) be given by

Kip ek Ty el

= - - at t = t, (4.23)
wkyp  uKy, W5 PY)

where -Tll(u) is an arbitrary symmetrical negative semi-definite matrix

which is three times continuously differentiable function of u for all
* * *

pwe LO,n" ). Then there exists a p > O such that for all u £ p , the

unique solution Ni (t,n) of (4.17) satisfying (4.19) can be asymptotically

3
approximated in the entire interval [to,T] by

Npj(Em) = Ny o+ 0(w) (1,3 = 1,2) (4.24)

where ﬁll and ﬁZZ are symmetrical negative definite matrices, except




possibly at t = T where ﬁll can be negative semi-definite. Furthermore,

- [AZZ-SZZNZZJ is a stable matrix.

Proof: Consider the Riccati system

dAKll ~ - A Ya a
= o - - [ ] - - - [ ]
& - KA TS1oKyg) T (AR K ) Ky + KBy
'A ' ~ ~ " ~ ' -
+ AyKpo * K 511Kyt KooK - 9 (4.252)
di(lz a ~ -~ - ~ A a
b—g = h(AK) 5K 811K 127K 98 19K 9) T Kpp(tAy5555K5))
~ s - 'A _
* KAt KppS19K9p T AK T Qp (4.25b)
df(zz o) "~ A A ~ ' ~
— = - Y. - - - -
Sy WLK 5 (-A1p-S19Kp0) + (-Ayp=819Rp5) Kyp-iK) oS, Ky,

~ A ~ ~ -
+ Kyghoy + Ax0Ky0 ¥ Kpo855K00 = Q) (4.25¢)

whose coefficients are functions of t,tT -y and whose boundary conditions

are given by

11 Hp Tp(w -,

. = . _ at t =T (4.26)
' - [ -
K2 ¥y RS PAC P PAL

Noting that (4.25) and (4.26) satisfy il.cnma 4.3.1 and making the substitution

y =t +T-tin (4.25) and (4.26), it is clear N = -f(ij(co + T-t)

ij
uniquely satisfies (4.17) and (4.26).

“d
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4.4 Dichotomy Transformation

Let the following transformation be defined

1 r A
rx1 I I 0 0 N
1 1
M Pijr Npp BBy, MR, 1
X, “lo 0 I I L, (4.27)
2 2
A P! N,. P N T
2 2
IR 22 22 | | "2
or equivalently
2 Wi Y12 9
= (4.28)
zZ, Wor  Wp q,
where
¥ )
1 2
q, = s q, - 4.29)
| )

and the definition of "11 is evident upon comparison of (4.28) with (4.27).
The non-singularity of transformation (4.27) for all t ¢ [to,T] and
[T [O,u*] can be seen from the determinant of the coefficient matrix of

(4.28)

omeiliidhes.




11 12

det

21 22

» det

= det

P

# 0 since the bracketed terms of (4.30) are non-zero.

o o ] [b 0 1
n i
P12 Npp P11 N11 L?lz “1gJ
In2 In2
. det + 0() (4.30)
Pys Ny

The following lemma shows that transformation (4.28) transforms

(4.6) into two decoupled systems; one containing zl

taining ry and r,.

and the other con-

and LZ

The transformation also results in the £ boundary layer

system being stable in forward time and that of the r boundary layer system

being stable in reverse time.

Thus transformation (4.28) dichotomizes the

Xy 12 boundary layer system as the transformation of Chapter 3 did for the

original system.

Lemma 4.4.1 Let the conditions of Lemmas 4.3.1 and 4.3.2 be satisfied.

Then the non-singular transformation (4.27) transforms system (4.5) into

. ‘] [~
- - 1]
Ly AtS11P117S 12712
R R -S..P,"
2] | AT S12P117522P12
C+ 1 (A, -s..N..-5..N.!
B 117°117117°1212
. = '
By ) | A2aS 127822 2

-~ 1 -

A12‘“511"12'512?22 £y
(4.31)

B2 512712750270 | | 42

9

Ap S N, SN, | [
(4.32)

8205121278202 | | T2




or in more compact notation,

where the definition of F

and that of Gij

PR
211 P
ui, Fa

. v
T 611
N I P
14 is evident

Fio| [ 4

(4.33)
Faa ] L%2.
C12t | 11

(4.34)

from comparison of (4.33) with (4.31)

from comparison of (4.34) with (4.32).

Proof: Upon elimination of LI from (4.6) using (4.28) and comparing

this result with what it must be to satisfy (4.31) and (4.32), it suffices

to show that

i1 Y2
uWyy W,
where
Enh*
By =

It can be readily

D)y Dpp i1
D,y Dy Wa1
F, 0

]
o0 6,4
Fyy O

]
0 G,

shown that (4.35) is

12 Win Vel B Fp
W2l [M¥21 V22 E)1 B2
(4.35)
¥, 0 |
E.. =
12 o -
(4.36)
F,, o
E =
22 7| Gy

satisfied as an identlity.
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4.5 Proof of Main Theorem

The systems (4.31) and (4.32) are convenient for a straight forward

proof of the theorem. It will first be assumed that initial conditions

Ll°0¢), 22005) are given at t = t for system (4.31) and final conditions
rqu;), rzTQ;) are given at t = T for system (4.32). These boundary conditions |
are assumed to be twice continuously differentiable, Thus two independent singu-
larly perturbed initial value problems exist, and Theorem A.5 can be applied pro-
viding its assumptions are satisfied since P, , and N, . are twice continuous dif-~

i] ij
ferentiable functions for all t ¢ [to,T] and for all pel0,u*]) in view of Lemmas

4.3.1,and 4.3.2. Also the boundary layer parts of 4.3.1 and 4.3.2 are stable in

their respective time directions since [A ] and -[Aa ] are

227522F22 22752922
stable matrices by Lemmas 4.3.1 and 4.3.2 respectively. Thus when Llo, Lzo

are given, Theorem A.3 permits one to write for (4.33)

L, = El + 0@R), 2, = EZ +L,(1) + 0@) (4.37)

where the reduced solution El satisfies

: - - = ele a=
L= (Fy, - FFn Fpdly (4.38)
and the initial condition
£, =1°%att=t 4.39)
1 1 o' (4.
and where Zz is algebraically related to ll by
i, =% 1 (4.40)
2 22 2171 ¢ :

LX) i
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Also, the left layer solution £2 satisfies

de
22 = [A,,(t) - §,,(t )R,y (t )] £, (4.61)

and the initial condition

£, =1,° - Pye) atr=0. (4.42)

Similarly, Theorem A.5 permits one to write for (4.34)
r, = ;1 +0Q), r, = Ez +R,(@) + 0() (4.43)

where the reduced solution ;1 satisfies

- -1- -
11 - 612622 621l Ty (4.44)
and the end condition

r, =r at t =T, (4.45)

and where ;2 is algebraically related to r, by

1

- s -le - a
T2 = G2 617y - (4.46)
Also, the right layer solution Pz satisfies
wz - - -

, , y
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and the end condition
R, =%,0 -T,(T) ato =0 (4.48)
2 2 2 : *
Thus far it has been assumed that the boundary conditions zl°, 220, rlT,
and rZT have been given. What now must be shown is how to find these
boundary conditions llo, Zzo, EIT, and EZT in terms of the boundary con-

ditions xlo, x2°, xlT, ai . sz specified in (4.3) to satisfy the theorem.

Using the transformation in (4.27)

x () = £ (0) + (4,6 - B ()] + 7)(0) + [ry(t) -7y ()]
x, () = p(t) +£,(1) + [yt ) - £y(8) - £,(M)] (4.49)

+ 1,(0) + Ry(0) + [ry(t)-1,(8) - Ry(0)]

is satisfied as an identity for all t ¢ [to,T] and for all w ¢ [0u*]. By
selecting boundary conditions in accordance with (4.39), (4.42), (4.45),

and (4.48) as required by Theorem A.5, (4.49) becomes

x (ea) = [ (8) + 7,(6)] + 0(u)
. . (4.50)
x, () = [Z,(8) + 1,()] + £, (1Y + R (@) + 0()

By H 4.1.4, there exists a unique reduced solution ;1’ il of system (4.7)
satisfying the xlo, xlT boundary conditions and it is uniquely related to

§2, iz in (4.8) by H 4.1.3. Recall the non-singular W(t,s) transformation

ad

s

TN
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in (4.28) is defined for y = 0. Thus solving the reduced ii’ ii system
(4.7), (4.8) is equivalent to solving the reduced ii’;i systems (4.38),
(4.44) providing the boundary condition requirements are met which are readily

seen from (4.28) for 4 = 0 to be
- - o - - T
gl(to) + rl(to) =%, zl(r) + tl(T) =% (4.51)

- 0 -
Thus the existence of Ll , and v

z T
1

- O -
1 is assured by letting Ll = zl(:o) and

= ;1(13 and x, and iZ can be expregsed by

1

x, (8) = £;(8) + 1, (1), x,(t) = £,(t) + T,(t) (4.52)

Since R,(c) - 0 as o0 - -=», this term is negligible when evaluating (4.50) at
2

t =t for small u. Thus for p = 0, (4.50) gives
o = o - -
£, = x,° = X (£ ) = [x,° - (e )] - E,(c) (4.53)
Hence EZO exists and is equal to x2° - fz(to) upon comparison with (4.42).

Similarly, since £2(T) -+ 0 as 7 =» =, this term is negligible when evaluating

(4.50) at t = T for small u. Thus for p = 0, (4.50) gives
T - T - -
Ry(0) = x," = Ky(D) = [x,T - £,(D] - £,(D) (4.54)

Hence §2T exists since ZZ(T) exists and is equal to xZT

with (4.48). Thus it has been established that

- EZ(T) upon comparison




]

x;(t,0) = x () + 0G)

x,(t,0) = %,(t) + £,(7) + Ry(0) + 0@)

The same argument used to establish (4.52) holds for proving

>
[
~~
r
N
i
a1l
™)
+
4]
2}

1 ¥ Epoky + Noo1y

Using transformation (4.28)

A(ew) = (B 4060 1240 T + [N 40w 1[x;40G) ]
+ (B 0@ IE 4, (1) + 0@)]
+ N 0@ IE 4R (o) + 0G)]

= (Bp8; +N;yx 1+ 0

#

)-‘1 +0(@)

Ny (En) = B 540G JE 0w T + (8 240G 1[F +0G) ]
+ [B) 10w J2,+2,(r) +0@W)]

+ (R, 40w) J[E, 4Ry (0) + 0()]

]

[§15Z1+ﬁlé{-l+§zziz+ﬁ22§2] + Bl (1)H,,R, (0) + 0G)

Ay () + Bop(0)E,(1) + Npp (DR, (0) + 0G)

Ry(£) + Byn(t )L, (1) + By (TR, (0) + 0)

60

(4.55)

(4.56)

(4.57)

(4.58)

-




The last step is justified by the continuity hypothesis H 4.1.2.

4.6 Control and Performance Index Approximation
Two corollaries will be proven in this section. The first establishes

the existence of an approximate control solution for the optimal control prob-
lem (4.1) -~ (4.3), and the second establishes the existence of an approximate
performance index for this problem.

Corollary 4.6.1 Let the hypotheses of Theorem 4.2.1 be satisfied. Then

*
there exists a positive constant i > 0 such that for y < p* and t ¢ [to,T],

u(t,p) = u(t) + U (r) +U,6) +0G) (4.59)

where
ae) = K B ()X, (1) + By(0N,(0)]
u (r) = -E e )ByCe )B,, (e )L, () (4.60)

U = -E I DMEYDR,, (DR, )

Proof: Recall from (4.4) that the control u is written as

- =1, '
Using the expansion for kl and Ay given in Theorem 4.2.1

us= -n'l(ni[il +0G)]

+ By[K48,, (£ )2, (1) + Hyp (DR () +0G)]) (4.62)




But from H 4.1.2, (4.62) can be written as

u= RGBT, - RTB B, (6 )8, (1)
RN, (DR, () + 0@) (4.63)
or
w=d - RN DB (e ), (e )2, (1)

- RHDELDR,, (DR, (@) + 04 (4.64)

Note from the corollary that the approximate control solution is
composed of three control vectors: u(t), uL(T), and uRﬁo). The uL(T) control

is the stabilizing control for the boundary layer system

d£2 _ _
o A22(t°)£2 + Bz(to)u (4.65)

and is responsible for steering the system

= + u (4.66)

from its initial state rapidly to its reduced gtate while optimizing the
performance index J. The reduced u(t) control retains the system solution

near its reduced solution while minimizing J until close to t = T. The

uR(c) control results in the boundary layer system

P P WSt e
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®, _
5= = Ay (DR, + By(Du (4.67)

being completely instable (no state stable) and is responsible for steering
(4.66) from its reduced state near t = T rapidly to its final state while

minimizing J.

Corollary 4.6.2 Let the hypotheses of Theorem 4.2.1 be satisfied. Then

there exists a positive constant p* > 0 such that for 4y s uy* and t ¢ [to,T],

J@) = J +0Q) (4.68)

where

Proof: From (4.2),
J = 1 IT(x'Q x, + 2x!Q. %, + x.Q,,%x, + u'Ru)dt (4.69)
2"t 171171 171272 272272 y
o

Using the asymptotic expressions for Xis Xg, ard u and H 4,1.2,

- T
I =3+ [ [aj(0)2,(r) + aj(£)R,y(0) Jdt
t
o

T
+ ] [ OA O5,0) + ROk @) it

T
+ [ £3(MA ()R, (0) de + 0G)’ (4.70)
t
o




whose a, vectors (i =1,2) and Ai matrix coefficients (i = 1,3) are continuous.

Recognizing that the norms of £2(T) and E&(c) are bounded by

~e(t-t )/u a(t-T) /u
[£5¢) | = Ke » Ry @) s ke (4.71)

for some positive constants K and o, it is readi.y seen that the norm of the
integral terms of (4.70) are bounded by O(u). Thus (4.70) can be written

as (4.68).

4.7 Discussion and Interpretation

Theorem 4.2.1 gives an approximate solution for (4.3), (4.5) and
proves it is asymptotically valid uniformly for t ¢ [to,T]. The essence of
the proof was to transform the singularly perturbed TPBV problem by a non-
singular transformation into two singularly perturbed initial value problems
which would satisfy the hypotheses of theorems for such systems. To comply
with a continuity hypothesis of Theorem A.5, the boundary conditions for two
singularly perturbed initial-value Riccati systems, whose Riccati gains com-
posed the transformation, were aphropriately selecced. The non-singularity of
the tiransformation was a consequence of its determinant being asymptotically
represented by the product of terms involving the determinant of the difference
of symmetrical positive definite Riccati matrices and symmetrical negative
def nite Riccati matrices. Upon approximating the solutions of the trans-
formed singularly perturbed systems involving £ and r variables respectively

by their zero-order asymptotic expansionst and by appropriately selecting the

*See Appendix for definition.
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£ and r boundary conditions, the summation of these terms yielded the x) and
x, asymptotic approximations given in the theorem, Here use was made of the
relation between il’ §2 and the reduced { and r terms expressed by the
transformation.

The left boundary variable £2, satisfying (4.13) and the associated

boundary condition, is the v term of the zero-order asymptotic approximation

of Lz. It can be seen as the solution of the following optimal regulator
problem
min ® L X B A1D ~
u £ [y'y + 0 R(to)u]dT (4.72)
subject to the constraint
d£2 - -
I " Ap(Edsy + Byl )R,
4.73)
[o] -
£2 =x, - xz(to) at v =0
and observed through
¥y =Cy(e )L, . (4.74)

The solution exists and the coefficient matrix [Azz(to)-szz(to)Pzz(to)]

is a stable matrix; thus £, - 0 as 1 - . Similarly ,(c) is seen to satisfy
2 2

the optimal regulator problem

min
u

0 -
[ ¥'7u'R(Du]do (4.75)

-Q0
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subject to constraint

dFE _ -

—= =4, (DR, + B, (T4,

do 22 2 2 (4.76)

T -

E} =X, - x(T) atoc =0

and observed through
¥ =C, (DR, . %.77)

Similar to £,, -[A22(T)-SZZ(T)N22(T)] is a stable matrix, and /?Z(o) - 0 and
G - -®, Thus the solution of X, for example is approximated by the sum of:

the reduced solution x the solution of a left layer regulator problem

2
£2(T), and the solution of a right layer regulator problem Eb(c). Corollary
4.6.1 shows that the optimal control u is also the sum of three different
controls--each of which is computed independently of the others. The theorem
permits an engineer to approximate the solution on any open interval by using
only the reduced solution and can add either a left, right, or both left and
right correction terms depending on his application

Since £2(T) -+ 0 as T = @ and &E(c) - 0 as g ~ -», it can readily be
seen when expressing 7 and ¢ as functions of time that a fast transient occurs
at t = to from £2 decaying with increasing time and that a fast transient
occurs at t = T from E} decaying with decreasing time, The time constants
for the decay are directly proportional to u. Therefore the presence of £2.
EE in the state and control variables demonstrates the two-time scale

separation properties.
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It is further noted that even though the approximate performance
index may be close to the optimal one, this in no way infers that the
approximating solutions for the state and control vectors are close to the
actual in the bouindary layer. This is true since the integral value from a
boundary layer term is negligible for u small enough.

The existence of a solution (o (4.5) satisfying boundary conditions
(4.3) could have been shown using fundamental matrices in a manner analogous

to (3.44). This method would show that Llo, lzo, rlT, and rzT are uniquely

o

determined from x.° X5 xlr, and sz. A useful reference for proving the

1 4
existence of the non-singularly perturbed linear TPBV problems of the type

considered is found in [3].
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5. FIXED END-POINT PROBLEM: EXAMPLES

5.1 Design Example

The example problem worked here illustrates the important points
stressed in Chapter 4: two-time scale property, boundary layers at both ends
of the time interval, closeness of the approximate solution to the actual
optimal, stiffness, and how the interval in which the reduced solution may be
a good approximation can be extended by decreasing u. Graphs are given which
clearly show these. The graphs not only compare the approximating and actual
solutions which shows the closeness of the approximation, but also compare
the actual and reduced solutions which shows the need to include boundary
layer terms. The selection of a time-invariant problem resulted in being
able to actually show how the system eigenvalues approach those of the
reduced and boundary layer systems as yu approaches zero.

The optimal control problem is to minimize with respect to the

control u *he performance index

T

3=[ @2 +x,% +uhyae (5.1)
- 1 2
0
for the singularly perturbed system
i =3
1T2%
(5.2)
WXp = -gx *tzx v

whose boundary constraints are given by

B

-F

-




X) =% att 0 and x; =x," att T (5.3a)
¥, =x,° at t = 0 and x, = x T at t =T (5.3b)
2 2 2 2 ‘

From (4.6), it is seen that the necessary conditions for an extremal are

given by

ol - 3 - r
%] 0 0 3 o] =,
. 3
X -4 0 o 3|
M L (5.4)
2% I i S SRR I
. 3 1
WA, Lo -3 -2 5]}

subject to (5.3). From (4.7) and (4.8), the reduced il' il solution is to

satisfy system

=

= 3 1 3 -
Xy 0 0 3 0 3 -1 -3 0 x1
= - 5.5)
z 3 1 3 (
).1 -4 0 0 3 -2 -3 o - 3 11
and boundary condition (5.3a). Variables iZ’ {2 are related to il’ il by
-1
- 1 3 -
Xy 3 -1 -3 0 Xy
= - 5.6)
- 1 3 - (
kz -2 - 3 0 - 3 hl

where the inverse can easily be seen to exist.
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It will first be shown that the hypotheses of Theorem 4.2.1 are

satisfied. Upon comparison of (4.6) and (5.4) it is seen that

4 0
Q=[o ZJ,R= 1,4, =1/2,B,=-1, andcz=./§

Thus H 4.1.1 is satisfied since both Q and R are positive definite. The
continuity assumptions of H 4.1.2 are certainly satisfied since this is a

time-invariant problem. The rank of [B,!A,.B,,] and [C,' !A,,'C,'] is one
21722722 2

y22 72
guaranteeing that H 4.1.3 is met. To satisfy H 4.1.4 it must be shown there

exists a unigue reduced solution. Rewriting (5.5) and (5.6),

1T ()]
xll 3 -1 Xy
- 1= 1 - (5.7)
-6 -= A
1] 2J L%
- 1 271 [(- 1
*2 3 T3 (%1
I _ (5.8)
: NS SR E
2 ] 3 33 L1
Explicitly solving (5.7), (5.8), and (5.3a), one obtains
_ NN
= @
X al( 2€ + a3e )
- - 2 3¢
kl al(iaze 2" -2 aqe 27) (5.9)
5 5
- 5 - st =t
x2 3 al(-aze 2+ 73e 27)
5 5
- 1 - 2 t
12 =-3 a1(7 a,e 27+ 2 a,e 25)




where

Thus all the hypotheses are satisfied. The boundary layer correction terms
will now be found. The Riccati equation (4.16) to which the unique algebraic

symnetrical positive and negative definite roots are to be found is

- K +2=0 (5.11)

22 22

The positive root §22(0) and negative root ﬁZZ(T) are
P22(0) =2 and NZZ(T) = -1 (5.12)

Using (4.l4) and (4.15), the boundary layer correciion terms £2 and @, are

given by
d£2 3 o -
T35, 8, =%, -x,(0) at1 =0 (5.13)
'
2 3 -
S5 = 3R, R, =x, - x(T) atc =0 (5.14)
Thus




3

£2(T) = [xzo - xz(O)] e 27 . T = t/u

T - s
R,@) = [x," - xZ(T)] e 2 , O = (t-T)/p

where from (5.9),
- _ 5
xz(O) =3 o:l( -a, + a3)
5 5

iz(T) = g @, ( 4xze- 274 @, e 2T

Using (5.9), (5.12), and (5.15)

x(E0) = x; + O()
Xy (E) = X, + £5(1) + R,(@) + O)
Ap(E) = A+ 0@)

y(tn) = hy + Pyy(0)E, (1) + Nyp(TIR, (@) + OGw)

Also, from (4.54), u = %, for the problem and

2

u(t ) = u+ 28,(1) - R,(0) + O(n)

A comparison of the actual solution with the reduced

order approximation will be done for the specific case when

° . x.° T . 0.5, and sz = -1.3

72

(5.15a)

(5.15b)

(5.16)

(5.17)

(5.18)

and zero-

(5.19)
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Figures 5.1 and 5.2 show this comparison for u = 0.1. Although the approxi-
mating solutions for Xy and X, are reasonably close to their aétual solutions,
the difference is expectable since the value of 4 is only a fifth of the value
of the smallest coefficient in the system description. The transients in

the boundary layers shown in Figure 5.2 are evident but are not exceptionally
steep. Figures 5.3 and 5.4 show the same compacison for p = 0.0l., Here the
difference is almost negligible on the scales shown and the transients shown

in Figure 5.4 are much steeper than in Figure 5.2.

5.2 Eigenvalue Discussion

In the simple problem it is possible to explicitly show the
dependence of the eigenvalues on u. It can be easiiy shown that the eigen-

values y of (5.4) are determined from the expression

2 4 2
1™y + 3602 - L)y~ + 9(25) = 0 (5.20)
and given by
3 1 64
Y=i’2—u'/'§ (1-2ui~/1- '—9LJ-2) (5.21)

An analysis of these eigenvalues will now be done as is common in the
design of stable feedback systems. 1In the latter case, one is often con-
cerned with how large a feedback constant must be to stabilize a system.
Root locus techniques can be employed to accomplish this. Meerov [37]
applied this technique to analyze the stability of a multiloop feedback

structure, each loop containing a feedback gain expressible as a constant




coefficient times the variable gain coefficient K., By letting p = 1/K, he

developed theorems guaranteeing the existence of a positive constant p* such
that for usu* all the eigenvalues of the system considered were stable. The
hypotheses of his theorems were based on showing the stability of simpler
auxiliary systems--one such hypothesis was to show the stability of a reduced
equation formed by setting p = 0 in the characteristic equation. Thus his
theory is similar to that employed in singular perturbation theory. By

writing (5.20) in the form

2 2

E

T -

) (5.22)
2)

9 (~ty2+2

it is easy to see that the eigenvalues for y = 0 correspond to those of the
poles of (5.22). This is termed the reduced solution and is most easily
obtained by setting u = 0 in (5.20). The other values can be found by con-

sideration of

9(8p%+25 ) - -

1
1 (5.23)
4(4p2-9)p? M

where P = v/u in (5.20). These eigenvalues, those not observed by looking at
the pcles of (5.22), for u = 0 correspoud to the poles of (5.23). The poles
of (5.22) are given by y = + % and are identical to the eigenvalues of the
reduced system (5.7). The poles of (5.23) are given by P = + % and are
identical to the roots of the auxiliary system (5.13) and (5.14). 1In (5.24),

these roots + Yo + v, are shown for different values of . Yy is scaled by u.
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W u-'Yl 'Yz

.188 .83 | 4.45

1 1.31 | 2.86

.01 1.48 | 2.52 (5.24)
0.0 1.50 | 2.50

From (5.24) it is noted that the eigenvalues for u = 0 are very close to those
for y = .01 but not so close for i = .1 and certainly not for y = .188 where
double roots occur. This is in agreement with the graphs shown in Figures

5.1 - 5.4,

5.3 Numerical 4spect

Should the problem be very stiff (u much less than .0l), an explicit
solution to this problem becomes very difficult and a special technique would
have to be determined for solving this problem. A straight forward way to
solve this time-invariant problem is to first find the eigenvalues and then
determine the < coefficients of the exponential terms describing the X1 Xy,
by and 12 variables to match the boundary conditions. The trouble with this

method is in matching the boundary conditions. For the example problem, let

Then one must find the solution of




N L \
76 b
1 1 1 1 _c; x
2 2 2 .2 c x
31 3 Y2 3Y1 3 Y2 2
' 3 5.25
v, T \P v, T T - .29
e e e (o
3
2. 1T 2 Y2t ot 2 T
| 3% 3Y2 3'1 3Y2 JLl% ) L
for u = 0.01, (5.25) becomes
[ a r e
.100E + 01 .100E + 01 .100E + 01 .100E + 01| | ¢, 4.0
.990E + 02 .168E + 01  -.990E + 02 -.168E + 01] | c.. 3.0
(5.26)
.302E + 65 .125E + 02 .321E - 64 .800E - 01| |c, 0.5
.299E + 67  .210E + 02  -.328E - 62 -.135E + 00§ |c, Ll.s_
whose solution vector c¢' is given by
-.354E - 66 .147E - 01 -.995E - 01 _4O8E + 01 (5.27)

It can easily be seen that overflow or underflow will occur for u much less

than 0.01 from (5.26), (5.27) respectively.

may not be practical to solve for the actual solution.

Thus for a very stiff system, it

described in this thesis is simple to find and will be very close to the

actual solution for y sufficiently small.

Yet the approximation
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6. TERMINAL COST PROBLEMS AMD EXAMPLES

6.1 Introduction and Statement of Problem

This chapter analyzes the optimal open and closed loop control of
the same singularly perturbed linear system (4.1) as in Chapters 4 and 5 but

with free end point and with a terminal cost in the performance index

T
3= & x| 41 7 'ex +u'Ru)de (6.1)
T %t
o
X W) e )
X = s = ' (6.2)
x2 U-nlz(p') Hﬂzz(ui

where 7 is symmetrical positive semi-definite and its nij matrix elements are three
times continuously differentiable functions of u. The two-time scale design
procedure presented here for obhtaining an expression asymptotic to the exact
solcetion is similar to that presented in Chapter 4. After the asvymptotic
corrvectness for the expression has been shown, it will be shown that a
¢imilar expression results if the singularly perturbed Riccati gains are
sybsrituted by their zero-order terms in finding the optimal solution of
the system The closeness of the approximate open and closed loop solutions
to the optimal one will be shown graphically for an example problem. The
results of this chapter are immediately applicable to the linear tracking
problem.

The boundary conditions for the necessary optimality equations (4 5)

are given by

o
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= ° = ° = i
X, = X and X, = X, at t to .. i
(6.3)
M 1 R | [ By -
= at t =T
By | WM BT, | %o
and those for the reduced system (4.7) are given by ;
§
- o
xl-xl att—to
(6.4)

As pointed out in the proof of Lemma 4.3.1, under the hypotheses of the lemma,

A, is related to il for all t ¢ [tO,T] by

1

>
"

-1

'Y

1= PXy (6.5)

where ﬁli is the unique symmetrical Riccati gain satisfying its associated

Riccati equation and boundary condition determined from 6.4, Thus the

reduced solution §I, Xl of this problem is known to exist and H 4.1.4 is

not needed.

e it

6 2 Open Loop Sclution

Theorem 6.2.1 Let H4.1.1, H4.1,2, and H 4.1.3 be satisfied for

problem (4.1), (6.1) and (6.2). Then there exists a positive constant p.*

such that for all , < u* and for all t € [to,TJ

_  aud
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X, (E,p) = % (£) +0G)
Xy (tan) = X,(t) + £,(r) + R,(@) + O(n)
(6.6)
A () = X (E) +0@)
My(Ea) = T,y (8) + By (£ )8, (1) + §,yy (DR, (0) + 0G)
Here £2(7) is the solution of the "left" layer system
T = [hyyleg) = 5y dPy, () 1L, (6.7
subject to initial condition
o - -
£2 =%, - xz(to) at 1 =0, (6.8)
EE(O) is the solution of the "right" layer system
w, .
:
subject to terminal condition
i
- IR L ey TYE (TR (T)E N

and P (to) and ﬁzz(T) are the symmetrical positive and negative algebraic

22

solutions of
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_ S _
AyoRop + Ryphyy = KoyoSpaKop 0y, =0 (6.11)

evaluated at to and T respectively.

Remark: Only the differences in the proof compared with that of
Theorem 4.2.1 will be emphasized. The essential difference lies in the

determination of the boundary condition.

Proof: The proof consists in showing that the boundary conditions
) O, ;lT, 220, §2T for (4.42) and (4.48) can be found in terms oi the boundary
conditions (6.3) to satisfy the theorem. From transformaiion (4.27) and
boundary conditions (6.3), it is readily seen that the reduced f, r
solutions satisfy

Bt + 1 () = x,° (6.12a)

B (D = -[F (D7 (D]TE (DR (DI (D (6.12b)

Since the reduced ;l’ §2, Xl’ XZ solution exists and is related to the { and
r solution by a non-singular transformation, the 2 and r solution exists

satisfying (6.12). Hence there exists an Zlo and T and,

1

(6.13)

- 0 . . .
The existence of 22 foilows from an argument identical to that in Theorem

4.2.1. The last step of the proof is to show the existence of r T Using

7

-
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(4.27) and (6.3),

= ' ' = ' =
Ay = Plzzl + N, 'r +P 22+N22r2 = n12(21+r1) + nzz(z2+r2) at t =T (6.14)

1271722

Grouping like terms and using the approximating £ and r expressions (4.37)

and (4.43) results in
(B3 - T AW + W5 - 70 (E+0G))

+ (ByymTy0) (LyHE, (1) 40 W)

+ ([, oT,)) (T30, (@) 40 (W) =0 (6.15)
t =T

Since £2(1) -0 as 1 - », the £2(T) term is negligible when evaluating (6.15)

at t = T for sufficiently small . Thus for u = 0, (6.15) becomes upon use

of (6.13)
- IR = mles = (TVR - 2 /T
R,10) = [N22<T) Tyl Ly (T) ﬂlz(T)xl(T) ﬂzz(T)xz\T,] (6.16)
hut from (4 4B), R (0) = r T. r.(T) or
EN K 2 2
7 = R(0) + T,(D) (6.17)
rz = 2 rz .

Here E210) given by (6.16) exists since 72, ;l’ and §2 exist and is related
to them by the non-singular matrix [ﬁzz(T) - GZZ(T)]. Likewise, ;Z(T) exists

- T . :
as previously stated. Hence r, exists and a u* exists sacisfying the theorem.

ad
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solution and boundary layer terms are evaluated in accordance with the

Theorem and the performance index is approximated by

Corollaries identical to 4.6.1 - 4.6.2 hold providing the reduced I

J=J+0@) (6.18)
where -
1 (%773 Q X
X X -r
5= Lazl 4L LI Rz LSRG ae (6.19)
2 1™ 2 illar g :
t=T o 2 12 22 2

6.3 Discussion

The following observation is made since it will be used in the

subsequent section. Suppose ™1 is symmetrical positive definite. Then Ly

choosing 511 = ﬁll at t =T, ;l(T) in (6.12b) is zero, ;1T = G. From (4.44)

and (4.46), this is seen to imply ;l(t) = (0 and ;z(t) = 0 for all t ¢ [tU,Tj

which in turn implies Elo = x.° from (6.12a). Thus from the non-singularity

1
of (4. 27), it follows that

X (£) = (), X, (8) = fy(t)
(6.20)
N - - = - - = =
/l(t) = Pll(t)z[(t), rz(t) = Plz(t)zl(t)+P2?(L)£2(t)
where EI and ZZ are evaluated from (4.38) and (4.40) with { © = x Y From

“1 1
[¢)

(4.53) it is seen that £2(O) = %,

- Zz(t ) and from (6.16) that the cxpression
%

for 92(0) there remains unchanged and is given by




- - .-l - - - -
Ry(0) = [N, ()7, ] TR, (1)1, 5 (D)%) (T) 1, ()%, (T)] (6.21)

Thus the role of the r-system is to produce the boundary layer jump at t =T
if one exists. For the special case when there is no slow system for the
terminal cost problem (6.1) and (6.2). it can be seen from (4.8) that iz =0
and Xz = 0 since il = 0 and Xl = 0. From this fact it is seen that

E}(O) = 0 and no zero-order boundary jump occurs at t = T,

6.4 Closed Loop Solution

Theorem 6.4.1 Let the hypotheses of H 4.1.1, H 4.1.2, and H 4.1.3 be

satisfied, let ﬁll be symmetrical positive definite, and let Kij(t’u) be the

solution of the Riccati system (4.17) satisfying the m,, boundary conditions

ij
from (6.3). Then the substitution of the zero-order Riccati gains for
Kij(t,u) given by iij(t) + Kij(o) in the determination of the state and co-
state variables yields an approximate solution which is asymptotic to the

correct solution xl(t,u), xz(t,u), Kl(t,p), and kz(t,u) and given by the

difference of the actual solution and Ofu),

x (E0) = x () + O@)

X, (ta) = X, (8) + £,.(1) + R,(6) + O(p)

2 2 2 2 (6.22)
A(tw) = A (t) + 0@)

Ry (E) = Ry(8) + By (E )L, (T) + Nyy(TIR, (@) + O()

Variables ;l(t)’ iz(t), Xl(t) and iz(t) are related to f and r parameters

as in (6.20). Vvariable £2(T) is the solution of
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at, ) 3 )

a = [Ag(t) - 5y ( )Py, (kIS (6.23)
sub ject to initial condition

— o > =
£2 =X, - xz(to) att =0
and Eé(c) is given by
- - -1 - -
Ry@) = -[Kyy (T)HH,, (@) -Npp ()] [, ,(0)x (TIH,, (@)%, (T)] (6.24)

Proof: The proof is based on first finding an asymptotic expression
for the state and co-state variables using the equivalent asymptotic
expressions for the Kij(t,u) solutions and then recognizing that these same

expressions result when using only the zero-order terms of Kij(t,u).

Let the actual Riccati gains be given by Kij(t,u) = (t)+5'ﬂi (©)+0 ()

Kij j

and the auxiliary "positive" and “negative" Riccati gains by

Pij(t.u) = Pij(t,+0(p) and Nij(t,u) = Nij(t)+0(u) respectively where
i,j=1,2. Here Kll(o) = 0 since no zero-order boundary layer occurs in
this variable and ﬁij(t) are chosen equal to ﬁij(t) for i,j = 1,2. Now

kl and k9 are expressible in terms of x, and Xy by

1

kl K

11 MKl *
= for all t ¢ [tO,T] (6.25)

4 L]
Bho 1 PRz BR[| %2

and in terms of ll' 12. rl. and r2 using transformation (4.27) as

| em————— ~=__“



>
[]

1 = Prpfdy N Ty FuB b, F el T,
(6.26)

A, = L, + ler

2 = Py t Pyk, + N

1 22%2

Thus it follows after elimination of Xl, kz using (6.25), (6.26) and (4.27)

and then groupiny

|
I
l
l
|
l
|

|
o

(RypPypdy + Ry o8y )1y + e (Ryp-Py )0y + (R ,-Ny ),
(6.27)

. ' ' oy ! - =
- (RypPypdly #+ (RppoNppdryp + (Kyp=Pyydhy + (Kyy-Nyo)ry = 0

Rewriting (6.27) using the expanded forms for Kij’ Pij’ and Nij
Cou)3e +IR ) -N) 40 Tr uld +0 ) IL tulR ) 40 -8 +0@) Ir, = 0

" [Rlé*O(u)]£1+{ﬁlé’ 13 N 5H0w) Ir; (6.28)

+ [R22+0(;)1z +£K22 22" 22+0(u)]r2 =0

Solving (6.28) for T, T
(}l] 0 0 21]
= - i ) + 0(u) (6.29)
]
sz_J (Ryy*Hy)-,5) l“12 (Ryp#y s +,5) l"22 £y
Therefore
r, = 0G)L (L,

(6.30)

~
¥

- -1 [}
2 T Ryt W) T 0D 400 HOM )L,
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Thus if Zlo and Z2° can be found in terms of the specified boundary corditions &i
xlo and x2°, then zl and 22 can be approximated by o
YO |
Li(E) = B (040G,  L,y(tm) = I, (£)H, (T)+0() (6.31) |
1 1 2 2 2 .
where £2(T) is the solution of (6.23) satisfying the boundary condition .b

£2 = Zzo - iz(to) = 220 - iz(to) at T = 0. Once Ll(t,u) and zz(t,p) are

found, rl(t,u) and rz(t:p) are known from (6.29). The xlo houndary conditions,

related through the transformation (4.27), is

o

2,° + O(p.)l,lo + O(u)-%2° by (6.30) (6.32)

(6.32) evaluated at u = 0. Similarly for X,

220 for u = 0 since r2° is zero from (6.30) (6.33)

upon recognizing the le and X variables are negligible at t = to.

22
Therefore,

7 O (o]
£, = x,
'S

and from before, llo = xlo . (6.34)

Hence the existence of ilo and Izo in terms of xlo and x2° has been established.

From the transformation




x)(E4) = £1(E0) + Ty (Esn)

El(t)+0(p.) using (6.30)

il(t)-i—o(p.) by (6.20)

xz(t,u) = Lz(t’“) + rz(t:u)

- - - -1 . -
Loty = (KygHly ) Nyn) Mook i 50 y)

+0(u) using (6.30)

“(Ryo#y5-Ny)) L"‘zzxz

. - - -1 - -
Loty m (Ryptiy o Nyo) (b7, 0 )+0G)

The latter step is justified after observing that the product of a ¢ and T

function are negligible for small enough u. Using H 4.1.2 and replacing

fz by ;2’ xz(t,u) can be written as
X,(E) = Ky () + £,(7) + Ry(©) + 0G)
where
kel . - A -1 - -
Ry (@) = -LR,p(T)Hl,, (@) -Nyp(t)] LK, , (@) (T)H,, (9)%,(T) ]

Knowing (6.35) and (6.37), from (6.25), (6.35) and (6.37)
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(6.35)

(6.36)

(6.37)

(6.38) ?
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H
aperol

-

)\.1(t,p.) = Kll(t)u-)hl(t:ﬂ)mklz(t’u)xz(tsl-")

».
o s

= (B o) IE+0@)] + 0@w)

51111 + 0@) = ’-‘;(t) + O(u) from (6.20) (6.39a) ;

Kz(t’“-) = Klé(t’u)xl(t#) + Kzz(t,u)xz(t’”) o

(K, 5#,,406) 100

+ [izzﬂczzw(u)] [E2+£2+f?2+0(p)]

i}

(k) 28 1Ry g d 40 o0 ) ) J4IR ) 4, JLE 4R, ] + 0u)

Ny (R0 Ny, IR H K, 4, 18 4R, ] + 0u)

At Ry #Ho I8, 4, R) + 0)

Lt}

Ay #Ry) (E)E, ()48, (TIR, (@) + OG) (6.39b)

Since the same asymptotic expressions result when the zero-order terms of

Kij(t,u) are used, the theorem is proved.

If Kl and AZ had been eliminated from (4.5) using (6.25), the
resulting Xy and Xy equations would generally be discontinuous at t = T
for w = 0. By using the £ and r systems it was possible to treat well
behaved functions. The £ system contained no boundary jumps and the r
variables which did were determined algebraically once the £ parameters

were found.




6.5 Open Loop Design Example
The optimal control problem is to minimize with respect to the

control u the performance index

1

2

T
- 2 2 2 2
J= x1(T) +tj‘ (2%,° + x,° + u)dt (6.40)

o

for the singularly perturbed system

. = éx
*1 2 *2
(6.41)
. 3 1
o T I T B T
whose boundary constraint is given by
= ° = ° =
X =% and X, = X, at t to (6.42)

The optimality conditions for this problem are identical to those given for
the problem in Chapter 5 except for the boundary constraints which are now

(6.42; and
Xl(T) = XL(T)’ KZ(T) =0 (6.43)
The solution il’ Xl is to satisfy the reduced system (5.7) and the Xy

Soundary condition of (6.42) and the Kl boundary condition of (6.43). The

variables §2, XZ are related to ;1’ il by (5.8). iince the hypotheses of
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Theorem 6.2.1 are identical to those of Theorem 4.2.1, the hypotheses are met

as previously established in Chapter 5. The reduced solution is thus

given by
- 5(t-T) =(t~T)
- 2 2 2 o
X179 [e t3e ] *1
5
A= o« [3e T2 6 2D IEN
1 4 3 ¢ 1
6.44)
5 5 (
- 2o [ S, 5<t-r)] o
X7 3% L7 3 € *1
5 b]
« =(t-T) =(t-T)
= 1 2 4 2 o
Y2 =739, [7e t3e IR
-2+ 3 e
where @, =e . The boundary layer correction terms are

found mext. Recall B,,(0) = 2 and ﬁzz(r) = -1 from (5.12). Thus these

correction terms are given as the solution of

Ea_ 3y goeno.: 0) at T = 0

& 7 L0 ta TRy 7 X T
(6.45)

ffé 3 R R, = A (T tog =0

o 3 Ry Ry = A(T) 2

as seen from (6.7) - (6.10) where from (6.44),
5 3T, - 31
xz(O) =3 aa(-e + 3 e )

(6.46)




Thus from (6.45) and (6.46),

Nl
-

£2(T) = [xzo - x2(0)] e )
(6.47).

Nlw
Q

25 o
(-—904xl)e

R,©)

Hence all the terms composing the zero-order approximate solution of the

variables are known--i.e.,

) (E) = %, (t) + O()

X, (E,h) = %,(t) + £,(T) + R,(0) + 0@)

(6.48)
At =R (8) + 0®)
Ay(ta) = K, (8) + B, (0)L, (1) + Ny (TIR, @) + 0)
Also, from (4.60), u = iz where iz is given in (6.44) and
u=u+ 2£,(1) - R,@) + 0) : (6.49)

To compare actuval solutions with zero-order solutions, the follow-
ing boundary conditions were selected.
= 4.0 and x

= 3.0 (6.50)

Figures (6.l) - (6.4) show this comparison for 4y = 0.1. The x, and X, plots,
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Figure (6.1) and Figure (6.2), are similar to their plots shown in Figures'

(5.1) and (5.2) respectively due to the special selection of boundary

conditions.
6.6 Closed Loop Design Example e
From (4.17) and (4.18) for the free end-point problem just discussed,
the singularly perturbed Riccati system is given by
R, = 3K, +K_ % -4
11 12 12
Ry, = -2 K, -+K. +2K, +K,.K 6.51) B
K2 2 K11 72 Kpp 77 Kop ¥ Koy (6.
R, = - 34K, - K, + K2 = 2
w822 12 - f22 7 Ra2 1
) 1
subject to boundary conditions
Ku =1, K12 = 0, and K22 =0 att=T (6.52)
and the reduced solution is to satisfy
R =3k . +R,.2-4
11 12 22
0 =-2%, -LR_ +32Rk.,+&.& (6.53)
2 11 2 12 2 22 12722 o
- = 2
0 K,y + K22 -2
and the boundary condition
, —
e e e e s e AR
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=] att=T. (6.54)

=

11

The reduced solution is given by

K =9“’es(t-T) K =3‘8e5(t-T) K., =2 (6.55)
) Ty ? . .
11 342 5(t-T) 12 3+2e 5(t-T) 22
The Riccati correction terms are to satisfy
ax
12 3 1
& "z %2t ¥ G ) (6.56)
T2y +3 6.57
© 2% +3) (6.57)
and the boundary condition
“12 = nlz(T)-Klz(T), x22 = nzz(T)—Kzz(T) at o = 0. (6.58)
But from (6.55), K12 = -1 and Ky, = 2 at t = T. Thus “12 = 1 and 322 = .2

at t = T. Hence

3
50 3
X.. @) = &2 (5-2e29
12 142 ¥
(6.59)
. X
X (c)s_
22 142 e X
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The Klj(t,u) solntions of (6.51) are thus approximated by
Kll(tdi) =Ky + 0(p)
Ky, (tu) = 1‘(12 + K ,(0) + 0@) (6.60)

Kyp (E4) = Ryy + Xyp (@) + O()

Figures (6.5) - (6.7) compare the actual and approximate solutions for Kll’
K12’ and KZZ for w = 0.1. Figure (6.8) does the same for u = 0.01l. The two
solutions are very close when y = .0l and the transient occurring at t = T

is becoming quite steep. Figures (6.1), (6.2) show that the X0 X, approx imate
solutions found using the Riccati approximations are very close to the

correct values. Figures (6.3), (6.4) show the same information for kl, Xz
computed using (6.25) with the corresponding approximate expressions for the
Riccati gains and state parameters. The fact that the closeness is better

than in the open loop case is not surprising since the correction terms

were computed from non-linear systems in the latter case. Thus this feed-
back example supports Theorem 6.4.1.

To emphasize the fact that u should be small for the theorems to
hold, recall from the eigenvalue analysis that 4 = 1 should be completely
unreasonable. To graphically show this, the plot of Xy is shown in
Figure (6.9). Closeness does not apply!

Remark: Recall the cxpression given for ?203) in Theorem 6.4.1

R,(@) = ~[Ryy (THHHy, (0) Ry (1] LK (@)%, (M) @)y (DT - (6.61)




It will be shown, for th~ problem considered, to be equivalent to the

Qz(c) term used in Theorem 6.2.1 given by (6.47).

% -1
R.c) =-|2-6% +1
2 1+2e3°
]
3 3
e—-zf——(s-ze-zc).—sdxo-b.gio—o_éaxo
142030 3951 70 p30 Tt
3
= (-%a4x1°)e_2° (6.62)

Thus the equivalency has been shown.
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APPENDIX A: INITIAL VALUE PROBLEM

This appendix contains an initial value singular perturbation lemma

and theorem for the non-linear system

xl. = fl(xl’xz»t.u), xl =p@®) at t = to
(A.1;
U'xz = fz(xlﬁxzrtiu)’ xZ = T](u.) at t = tO
where xl, x2 are n -, nz-dimensional vectors and y is a small positive scalar
parameter. The lemma establishes that the boundary layer terms of the solution
of (A.1) will be identically zero for some 7. The theorem establishes that the
solution of (A.1l) can be anproximated uniformly on the entire interval [to,T].
x

Let the reduced solution x 2 satisfy the system

1’

= fl(il,iz,t,O), il =p(0) at t =t

(A.2)
0 = fz(il,iz,c,O)

formed from (A.1) by setting u equal to zero. The following hypotheses
are assumed.
HA.1 System (A.2) has a continuous solution Xys %o for all t ¢ [to,T].
H A.2 The functions fl’ f2 have continuous derivatives to order R + 2
with fespect to (xl,xz,t,u) in some neighborhood of (il,iz,t,O), t e [to.T],
w ¢ (0,u*] for some u* > 0. Also p, | have continuous derivatives to

order R + 2 with respect to u for u ¢ [O,u*].

of
H A.3 The real parts of the eigenvalues of FY (il,iz,t,O) are less
2

than a fixed negative number for all t ¢ [to,T}.
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Lemma A.4 Let HA.1 - HA 3 be satisfied. Then there exists a u*, >0

such that when IpQ;)-i(tJl <o and p € [O,p*], a solution of

*'»1 - fl(xlyxzat»“-)a xl = p(u')

u.xz = fz(xl,XZ't'u)

exists which satisfies

R
x (tw) =T x) (o’ + O(uRﬂ)
z r
r=0
R r R+1
xz(t.u) = xp (thy +0w )
r=0 r

for all t e [c ,T], ue 0,u*].

Theorem A.5 Let HA.1 - H A.3 be satisfied where R =0

a u* > 0 such that for all u € y*, all the solutions X,

starting in some neighborhood of the reduced solution at t =

interval [to,I] and satisfy

x () = %, (t) + 0()

x2(t,u) = iz(c) + A(T) + 04

where A(t) is the solution of

da - ;
= £5,0000), MRy, ,0), A = T(O) - Xy(t)

and A -0 as 1 = »

(A.3)

(A.4)

Then there exists
(t,u), xz(t,u) of (A.1)

o exist on the

(A.5)

(A 6)

T

e T
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The X, and Xy solutions of (A.3) and their R + 1 derivatives with

respect to u are continuous and equal to the reduced solution at y = 0.

From (A.6) is is evident that the x, initial condition implied for problem (A.3)

2
should be §2(t). This lemma and theorem follow from a much more general
lemma and theorem given in [21]. The terms il(t) and §2(t) + A(r) are

called the "zero-order" approximation of xl(t,u) and xz(t,u) in (A.5).
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