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A 'OUNDARY LAYER 1NETHOD FOR OPTIMAL CONTROL OF
SINGULARLY PERTURBED SYSTEMS

Robert Reynolds Wilde, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1972

A method is developed for approximating the solution of an optimally

controlled singularly perturbed system

l = All(tjp)xl + A1 2 (tP)x 2 + Bl(tp)u, xl(to) = xO

pi2 = A2 1 (t,')xl + A2 2 (t,')x 2  + B2 (t,.i)u ' x 2 (to) = x2o

with respect to the performance index

xl Qll(tP) Q 1 2 (t'4&) x1] + u'R(t,p)u d

LT(:2 [Qlk(t,p.) Q22(t,1j)l
0

such that the approximate solution converges to the optimal solution .os

S- 0 uniformly on the entire interval [toT]. Here xi, X2 , and u are

nI-, n2 -, and m-dimensional vectors respectively, and p is a small positive

scalar parameter. The method is applicable to both fixed and free end-point

problems whe.re in the latter problem a terminal cost is added to the per-

formance index. Although the optimal solution is generally difficult to

obtain using existing numerical algorithms, this method avoids such dif-

ficulties. The approximate solution is obtained by properly combining the

solutions of three systems: a "reduced" 2n -dimensional system, a

• " -" V •: " I • " 1 iona systemi I , a •• =



"left layer" time invariant initial value n 2-dtuenulonal system, and a

"right layer" time invariant initial value n2 -dimensional system. The

layer solutions can be interpreted as the results of two boundary layer

regulators: one acting in forward time from the initial point and the

other acting in reverse time from the end point. Example problems are

worked which illustrate the method developed.
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1. INTRODUCTION

1.1 Problem Description

This thesis treats the problem of finding an approximate solution

to a linear class of optimally controlled singularly perturbed systems

il = f 1 (xl 1 x 2,uStAI)

Pk2 = f2 (xlx 23 utp.)

where xl, x2 , and u are nl-, n2 -, and m-dimensional vectors respectively aid

p. is a small positive parameter. System (1.1) is called singularly perturbed

since its dimension is reduced from nI + n2 to nIl if the scalar parameter p

is set equal to zero. Physically this parameter may represent a small time

constant, mass, moment of inertia and other possibly negligible parameters.t

As is customary in engineering design, such parameters would be initially

neglected enabling the designer to solve an n 1 -th dimensional problem instead

of the original (nI + n 2 )-th dimensional problem. An additional advantage of

such a reduced-dimensional design is the avoidance of fast transients present

in the high-dimensional problem. However, the best a reduced-dimensional

design can do in general is to approximate the optimal solution on an open

subinterval of the operation interval Ct0,T]. For even when 4 is very small,

large discrepancies between the optimal and the reduced solution may occur at

tFor example, if -r is a small t.me constant and m is a small mass,
then one can write T - alp and m - *2! where 1 and c2 are appropriately
chosen coefficients.
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the ends of the interval because some of the boundary conditions were dis-

regarded in the reduced order design. The end intervals in which these

discrepancies rapidly diminish are called boundary layers due to analogy with

fluids. A boundary layer method is developed in this thesis to approximate

the optimal solution over the entire interval Cto,T]. The method is straight

forward and avoids having to find the optimal solution which is often diffi-

cult to find using existing numerical methods. The difficulty is a result of

both widely varying decay transients and widely varying growth transients

associated with the solution of a two point boundary value (TPBV) problem.

The boundary layer method developed is directly applicable to two

types of optimal control problems for the system

i = A1 1 (tp)xl + A1 2 (tO)x 2

(1.2)
Pý2 = A2 1 (t,p)x1 + A22(tP)x2

with quadratic performance indices: regulator problems and trajectory

optimization problems.

The approach taken to the regulator problem in this thesis is

through a stabilizability analysis of singularly perturbed systems. The

main result of this analysis is that a high-dimensional system is stabilizable

if two lower-dimensional systems are stabilizable: a reduced system and a

boundary layer system. The optimal regulator problem is then seen as the

selection of the best of the stabilizing controls. The existence and the

singular perturbation properties of the optimal regulator are shown by a

direct method not involving usual optimality conditions. This result
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represents further extension of related work in [41,55. t However, the

I methodology used here is different from either of these. In this thesis,

optimality of the regulator design follows immediately from properties on

the reduced solution.

The major part of this thesis is devoted to trajectory optimiza-

tion. Both fixed end-point and terminal cost problems are treated by the

same method. Boundary layer correction terms are explicitly obtained for

each end of the interval, thus revealing the two-time scale properties of

singularly perturbed optimal trajectories. From a control designer's point

of view, a useful interpretation of the fast transients in the boundary

layers is that they can be vicwed as the results of two boundary layer

reeulators: one acting in forward time from the initial point and the other

acting in reverse time from the end point. To summarize, the approach taken

is to decompose a trajectory optimization problem into a "slow" trajectory

optimization problem for a reduced system and into two regulator problems for

boundary layer systems. The solutions of these problems are obtained in

separate time scales, and when properly combined, they form an approximation•

to the exact solution which is valid uniformly on the entire interval [to,T].

It should be pointed out that the singularly perturbed optimization

problem with, fixed en,:-points has not previously been considered from a control

point of view, although techniques for the solution of such problems are

reported in [24,26]. The problem with terminal cost is treated in L553

where the approach was through use of a positive definite solution of a

tThe references [21,40,411 are for publication in the near

future.

S
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singularly perturbed Riccati system. The approximation obtained by this

approach was not valid in the terminal boundary layer. This difficulty

does not occur in the method developed in this thesis where both positive

and negative definite Riccati solutions are employed to form a dichotomy

transformation. The dichotomy transformation is used to separate the TPBV

problem associated with the trajectory optimization problem into two inde-

pendent singularly perturbed initial value problems. This result not only

simplifies calculations but permits the treatment of a singularly perturbed

TPBV problem by the more common treatments used for initial value problems.

It is hoped that the avoidance of TPBV theory [13,15,16,18] will help control

engineers to understand and apply singular perturbation methods in system

design. In the same spirit, most of the conditions used in lemmas and

theorems of the thesis are given in terms of notions familiar in control

theory such as controllability, observability, stabilizability, etc. It is

also shown, in the case of terminal cost, that the use of a feedback control

whose optimal Riccati gains are approximated by reduced and boundary layer

terms will result in an approximate solution to the optimal problem which is

valid uniformly on the closed interval [to,T]. An alternate approach to

using Riccati equations for the same class of problems is the use of

singularly perturbed TPBV theory. Such an approach is developed in a yet

unpublished work [40].

In the method of this thesis, the main tool is a transformation

involving two solutions of a singularly perturbed matrix Riccati system. In

general, these solutions are not continuous at the ends of the interval due

to the presence of the boundary layer terms. However, the transformation

IA
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needed here is to be twice continuously differentiable on the whole interval.

This difficulty can be avoided if the boundary conditions of the singularly

perturbed Riccati system are at a designer's disposal. In this thesis, the

end conditions for the Riccati transformation variables are free and are

selected to guarantee the continuity properties. By using the end value of

the reduced solution as the end condition for the singularly perturbed Sys-

tem, the zero order boundary layer is eliminated as can be seen from

[21,39,53]. If by construction this boundary condition is an appropriate

function of p., boundary layers can be eliminated to any desired order.

1.2 Singular Perturbation Results in Control Theory

The first major analysis [28,45,46] of singularly perturbed optimal

control problems dealt with finding an approximate solution to the optimal

control problem on the open interval (t ,T). Thus, only "outer" expansions

were considered. The analysis avoided a direct study of the singularly

perturbed TPBV equations by using two different approaches, each of which

resulted in the need to analyze only singularly perturbed initial value

problems. The first approach was to assume that the control and its deriva-

tive were continuous in t and p for t 6 [to,T] and p £ O,p.*]. The approach

suffered from not being able to define a reasonable class of problems for

which this assumption is valid, yet did provide a correct outer expansion.

The second approach was for a linear-quadratic free end-point problem where

the feedback control was expressed in terms of Riccati gains. The approach

was successful but was applied under the following three restrictions; the

system is time invariant, the fast variable x2 is not in the performance

index, and A2 2 is negative definite.

S...1f' • •• r l~ll i Ullldlg Ul"O uu~ nouw • • ~ • • ...........2J
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The Riccati approach was extensively developed in £29,553. Time

varying systems were permitted, the fast variable x2 could appear in the

performance index, and the requirement that A2 2 be negative definite was

relaxed by requiring only boundary layer controllability and boundary layer

observability--notions introduced there. Both "inner" and "outer" expansion

terms were treated making it possible to approximate the Riccati solution

on the closed interval [t ,T]. The singularly perturbed initial value
0

problem resulting upon insertion of the feedback control containing Riccati

gains with boundary layer jumps at t = T into the system equations was

successfully analyzed but only for a subinterval of EttT). The problem of

an end-point jump was avoided when various sub-optimal feedback designs were

proposed and analyzed by not permitting boundary layer jumps to occur in the

gain matrices. In this thesis, the results of [55] are extended by showing

that the use of two Riccati systems can avoid the difficulty of having to

analyze a system with boundary layer jumps at both ends. Thus an approxima-

tion to the optimal solution is given which is valid on the closed interval

[t ,T]. Furthermore, the two Riccati approach permits an analysis of a

trajectory optimization problem; a problem which could not be treated by the

approach in [55].

Singularly perturbed optimal control applications ira flight problems

are reported in [24,25,26]. In [26], a heuristic approach is given for con-

struction of an approximate solution to a non-linear optimal control problem

which accounts for boundary layer jumps at both ends of a fixed time interval.

The approach is in agreement with the expansion in [50].

A complete expansion for the state variables, control and per-

formance index is given in [40] for the same linear-quadratic optimization
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problem considered in £553. Each term of the state and control variables

contained a left and right inner term in addition to an outer term. The

validity of the asymptotic correctness of the method was based on [511.

The expansion would be similar to that of £50) for such a problem. Thus the

approximdtion was shown to be valid for the closed interval Eto,TI. The

hypotheses were not control oriented, and the treatment given assumed that

the eigenvalues of

A2 2  -S 2 2

I -

L Q22  -A 2ýJ

have multiplicity one, an assumption not made in this thesis, In [411, the

Riccati method was used to solve a time invariant regulator problem for a scalar

system. A formal expansion of the algebraic Riccati gains was made about the

origiai and shown to be convergent there and without boundary layers. This

paper assumed conditions on the high-dimensional system in contrast to that

used in this thesis where assumptions on only the low-dimensional auxiliary

systems are made. Since no boundary layers appear in the system equations

when the optimal feedback control is inserted into them, a standard singularly

perturbed initial value problem results to which expansions are well known

and valid for t 6 [toT).

1.3 Stability Problems

There are two types of results for the high-dimensional infinite

time initial value problem. The first result guarantees that the solution
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converges uniformly in t to the reduced solution on any interval of the form

Ct',/) where t < t'. The second result guarantees that a solution of the

high-dimensional problem is asymptotically (or conditionally asymptotically)

stable. The first result is used to approximate the solution of the high-

dimensional problem by that of the low-dimensional reduced problem. A

crucial hypothesis often assumed in proving similar approximation results on

a finite time interval is that the real part of all the eigenvalues of the
bf 2

matrix - evaluated along the reduced trajectory is less than a fixed
ýx2 .

negative number. An additional hypothesis is generally assumed for the

infinite time problem. This hypothesis is the uniform asymptotic (or con-

ditional asymptotic) stability in the small of the reduced solution. Since

both of the hypotheses stated are for linearized systems, the results obtained

based on these hypotheses are only valid for initial conditions Ptarting near

the reduced solution. Such hypotheses were made in [5,273 with the exception

that in £27) the eigenvalue-criteria of !2 was replaced by Krasovskii's
2

condition [14]. Both of these hypotheses were relaxed in [18,201. Different

techniques were used to establish these results: asymptotic [213,

Lyapunov £18,20,27], and successive approximation [5). Conditionally stable

systems were treated only in [5,212. The approximation and stability

results of £273 were extended in [18) and [20) respectively to treat a much

wider class of problems, and [18) permitted f1 and f 2 to depend on ýL which

was not permitted in [20,27]. Both of the conditionally stable works [5,213

permitted f1 and f 2 to depend on &.

tA matrix in which the real part of all its eigenvalues is less
than a fixed negative number is called stable.

L



1.4 Two Point Boundary Value Problems

The crucial hypothesis used in all the singularly perturbed TPBV

theorems surveyed here is that the absolute value of the real part of all

the eigenvalues of the matrix a- evaluated along the reduced trajectory is

greater than a fixed positive number. The basic method for analysis of such

problems was first made evident in [31] for an initial value singularly

perturbed system. The method consisted of finding an initial stable manifold

such that solutions starting on this manifold would rapidly converge and then

remain close to the reduced solution. For finite time problems, it was also

shown there that solutions starting slightly off this initial stable manifold

could also be made to remain close to the reduced solution by making P

sufficiently small. The singularly perturbed TPBV theory is based upon

recognizing that a terminal stable manifold exists similar to that of the

initial stable manifold. Solutions starting on the terminal manifold also

rapidly converge and then remain close to the reduced solution, but in

reverse time, Thus the manifolds exist as a consequence of the crucial

hypothesis stated.

For the boundary conditions to be on such manifolds at each end of

the time interval, it is necessary that there exists a particular association

of eigenvalues with the state variables. Assuming the eigenvalu'.s are con-

tinuous, knowledge that the eigenvalues at any time I are associated with the

correct states implies the correct association with the states for all time.

To guarantee the proper association, an additional hypothesis is needed.

For this purpose a transformation hypothesis was given in [15,163 and still

another type was given in [13].
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A linear system was analyzed in [15,161 for the most general

combination of boundary values at t = t and t = T. The hypotheses given0

were very difficult to check and the results valid only on an

open subinterval of [t ,TI. Non-linear systems were analyzed in

[13,21,50]. The problem treated in [13) assumed the system was composed of --

two slow systems yI, y2 and two fast systems W1 , w2 satisfying boundary con- 04

ditions on yl and wi at t = t and Y2 and °)2 at t = T. The treatment adapted

the approach in [31) and proved the closeness of the reduced solution to the

high-dimensional solution providing the boundary condition on wI at t - t 0

and on w2 at t = T were close to the reduced solution. The most general

theorem available thus far is stated in [21). If y is the fast system and w

the slow system, the boundary conditions at t := t were given there by
0

a(y(to),W(to),P) = 0, B(y(T),w(T),p) = 0

where 6 and B are smooth functions of their arguments. The theorem guarantees

the closeness behavior providing the boundary value at t - t was on theO

intersection of 6 and an initial stable manifold and at t = T was on the

intersection of B and a terminal stable manifold. In [50), a method is given

for finding an asymptotic expansion for a system in which the fast variable

boundary conditions are given on the variables either at t - t or at t - T.
0

The slow variable boundary conditions were arbitrary.

1.5 Chapter Preview

Chapter 2 develops a methodology for proving the existence of an

optimal solution to a regulator problem which should be generally applicable

I
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to broadening the class of linear systems with quadratic performance indices

known to have an optimal solution. It is shown that the existence of
4.

stabilizing controls for two low-dimensional systems not only implies the

existence of a stabilizing control for the high-dimensional system but also

that an optimal solution exists to the regulator problem.

Chapter 3 is a preparatory chapter for the remaining chapters where

"a dichotomy transformation is introduced and a comparison is made between

"a non-singularly perturbed system and a singularly perturbed system. Condi-

tions are imposed so that both systems behave similarly to point out the

interchanging roles of the operation interval in the first case and 4 in

the second.

Chapter 4 contains the main results of the thesis where a method is

given to approximate the optimal solution of a fixed end-point problem whose

exact solution would in general be difficult to solve. An application of the

method is given for an example problem in Chapter 5.

The example problem of Chapter 5 graphically illustrates the

important points: two-time scale prope.'ty, boundary layers at both ends of

t.- time interval, closeness uf the approximate solution to the actual

optimal, sti'f~ess, and how the interval in which the reduced solution may be

a good approximation can be extended by decreasing 4.

Chapter 6 applies the method to a free end-point problem and also

includes an example problem. Furthermore, it is shown that the optimal

solution is approximated uniformly on the interval Eto,T) when an approximate

feedback structure is used consisting of Riccati gains approximated by their

reduced and boundary layer terms.
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2. REGULATOR PROBLEM

2.1 Problem Statement and Approach

This chapter considers the design of a feedback control to regulate

the singularly perturbed system

1 = f1(XlX2,Ultl)
(2.1)

li-2 = f 2(xl 'x2'u't o)

for which

f (0,O,O,t,p) = 0, f 2(O,O,O,t,) - 0 (2.2)

for all t t to, P.6(O,*3. Here xl, x2 , and u are nh-, n2 -, and m-dimen-

sional vectors respectively, and p is a small positive scalar parameter.

The zero solution of (2.1) might represent any nominal trajectory of a

system having the form (2.1) but which has been translated into the origin

in a new coordinate system. In this translated coordinate system, (2.1)

describes the motion about the original from a perturbed initial condition.

Thus one could consider the problem of regulation for the translated

system as that of finding the control to make e desired trajectory

asymptotically stable. Restricting the cless of non-linear problems to

those in which the behavior of the linearized system determines the behavior

of the non-linear system such as [27,521, only the linearized system of (2.1)

needs to. be analyzed. A stabilizing control is defined here as one which makes

the zero solution of (2.1) asymptotically stable. If such a control is

applied to the system, the sybtew is then said to be stabilized. The first
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result of this chapter is to show in section 2.2 that the existence of

stabilizing controls for two lower-dimensional systems guarantees the

existence of a stabilizing control for the higher-dimensional system (2.1).

This theorem is applied in section 2.3 to a time invariant system

to justify the regulator design proposed in [55). In general many

stabilizing controls can be found for a stabilizable system. Of interest

is the selection of one of these which can easily be found, implemented,

and which yields a performance cost close to the optimal cost. A perfor-

mance index will be given for the same system which was shown to possess

a stabilizing control. The second result of this chapter is to show that

the existence of stabilizing controls for the two low-dimensional systems

not only implies the existence of a stabilizing control for the high-

dimensional system but also that an optimal solution exists to this

regulator problem. Lastly it will be shown that the proposed design is a

good approximation to the optimal design.

2.2 Stabilizing Controls

Since the existence of stabilizing controls follows from a stability

theorem, this theorem will be given first. Few stability results exist

for singularly perturbed systems, and the two main results, of which one is

given by Klimushev and Krasovskii £27] and the other by Hoppensteadt [201,

are not well known. This is evidenced by the recent articles [10,11,473

for linear time-invariant systems of form (2.1) applied to networks with

small and large parasitics. The stability theorems of [10,11,47) are

encompassed by the earlier work done by Klimushev and Krasovskii. Hoppensteadt's
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hypotheses are numerous and not well suited from an engine, ring standpoint even

though he treats a more general problem than that covered in [201. Neither of

these stability works considers the case when f1 and f2 depend on &. Such a

result appears in [53 whose proof is based on successive approximations. A

stability theorem for.a linear system whose matrices depend on & will be 1
given which is an extension of the theorem in [27] whose proof is based on

Lyapanov functions. J
The following theorem deals with the uniform asymptotic stability

of the linear system

I
ki A ll(t .P)Xl + A1 2 (t,;)x 2  (2.3)

= A2 1(t,.)X 1 + A2 2 (t4J.)x 2

The stability property of (2.3) for . sufficiently small is deduced from

stability properties of two auxiliary systems: the n -dimensional system T2

4 A2 2 (e,o)q (2.4) 1
II

where e k to is a fixed parameter, and the n1 -dimensional system

o 1

=A11 (t,O) - A1 2 (tO)A2 2 l(t,O)A2 1(tO))p. (2.5)

Theorem 2.2.1 If

(i) all the matrices Aij(t,3 ) in (2.3) and their derivatives with

respect to t and p are bounded and continuous for all t A t, I
p•g[o,p*), U



15

(ii) the real parts of all the eigenvalues of A22 (8,0) are smaller

than a fixed negative number for all e 2 t0,

(iii) system (2.5) is uniformly asymptotically stable,

then there exists a L* > 0 such that system (2.3) is uniformly asymptotically

j stable for alle(0,&*3.

Proof: Define 8x and 6y using

i
•I" I+ ax

- - 1- (2.6)

2 1 + 6y - 122" A21 6.

where (R1,•2) and (^ 1 ,x 2) are solutions of (2.3) corresponding to two

different initial conditions. For brevity, arguments of functions are

dropped when no confusion results, and a bar is used to indicate that I - 0.

Thus A denotes All(t,) and denotes A1 1 (t,O)" Upon substitution of

(2.6) into (2.3),

68 (R + &A1 1 - AA12 S)6x + A1 2 6y

&A• ,(A21 •AA22
21 - 22- +5 + SR+Sat - S AIS6 (2.7)

-6 S +S + SR +SAA 1 1  9 A 129)ax(27

A2 2  AA2 2
+ (- + + SA12)Y

where R -Aill -12A22 1A21' 2 1 A2 2  A2 1 ' and &Aij - Aij(t,;) - iJ'

Clearly, when (2.7) is uniformly asymptotically stable for 4 > 0 so is

(2.3). Let M(e,O) be the unique positive definite solution of
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A;(2,0)M + MA=22 (o) - -In 2  (2.8)

for all e k t . Here and in (2.11) 1 k denotes a k x k identity matrix.

From (ii) it follows that q'M(9,O)q is a Lyapunov function for (2.4).

Let the function p'Np, whose derivative for (2.5) is -p'p, be a Lyapunov

function guaranteeing (iii). This function exists by a well known

Lyapunov theorem, such as Theorem 3 of [23),

It is now shown that, for a sufficiently small positive .i, the

function

w - 6x'N6x + 6y'M•y (2.9)

is a Lyapunov function for (2.7) satisfying the requirements for uniform

asymptotic stability such as the conditions of Theorem 1 of [23]. By

definition of M M(t,O) and N there exist continuous nondecreasing functions

C and 0 of the norm l18x,6yiI such that a(O) - 0, 0(0) - 0 and

0 < 1(!16x,'6yI) C w I 0(d6x,'6y1) (2.10)

holds for all t • t and all 6x 0 0, 6y 0 0. The derivative of w for (2.7)0

is

6 -1+ L 11Ll 6x

iy LL 2  - n 2 L22

where
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L1 = 9(AA1 1  &AA1 2 ) + (AA 1 1 .A-29),i

Lv.. A2 + A2 - SA22 + S + + &A - 4Ai 2 )

A 12  L.21 ~22 S ( i 11  )12
4AA22 ,T AA 22 _L = + -• + §AI2 + SA•

L2 2  
SA11 2 )•

AAX
The - are bounded functions for t k t and for all ps[O,p*) by (i).

After substitution of 6 by t in (2.8) and differentiation •:ith respect to

t, it follows that

"A22

M = "e (t-2 ?I + RA22 )e W (2.12)

Hence from (2.12) and hypothesis (i), the Lij are bounded for all t ! t and

for all g1eOg.*]; moreover L -, 0 as P -. 0. Thus L is dominated by - I

for sufficiently small p. Also L is dominated by - I forn sufficiently

small. Inspection of leading principal minors of the symmetric matrix in

(2.11) shows that there exists a positive p such that for all ic(O,,

alI t t and all 6x 0, 6y 0 0

S " -Y(116x,8y11) < 0 (2.13)

where y is a nondecreasing function and y(O) 0. Properties (2.10) and

(2.13) of w and , prove that (2.7) is a uniformly asymptotically stable

system for L((O,p*•.

The purpose for including the 6x term in transformation (2.6) was

to avoid the appearance of -A terms in the off-diagonal terms of the
~Lij
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coefficient matrix in (2.11). The smoothness assumptions made in (1) could

have been relaxed as is evident from the requirements that the coefficient

matrix in (2.11) be positive definite. It is further noted that if one were

to search for the least upper bound of p which makes the i-th leading principal

minor positive but which is not to exceed that found for the (i-l)-th minor,

then by repeating this process through i = n 1 + n2 a p. is obtainable.

The stabilization theorem will now be given for the system

1l = A1 1 (t'0,)X + A1 2 (tp)x 2 + B1 (t'p)u

(2.14)

Ik2 = A2 1 (t'P)x 1 + A2 2(tp,)x 2 + B2(t')u

The theorem is based on the existence of two controls: u2  D D2 (0,O)q to make

the system

_ A2 2 (0,0)q + B2(6,O)u 2  (2.15)

dt 2

asymptotically stable for all 6 ; t and u1 = P to make the system

dt A1  (A1 2+B1 D2 ) "I22+ 2 2 A2 1]p

(2.16)
+ [iB1 " (A1 2 +B1 D2 ) (A2 2 +B2 D2)- "B 2 )u 1

uniformly asymptotically stable. It will be shown that when u1 and u2 do

exist, then the control

u = DI(t,jl)x 1 + D2 (t,O)x2 (2.17)
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stabilizes (2.14). To formulate the corollary it is convenient to first

Iexpress u in (2.14) in terms of D and D2 . Hence

I xl = Cll(t,p)x1 +C1(i)2

(2.18)

4 1'2 = C2 1 (t 1 p)xI + C22(t'V)x2

where

C1 1 = A1 1 +BID1 , C1 2 = A12+BID2

(2.19)

C = A2+B2DID C = A2+B2D
21 2 1 +B2 D 22 22 2 2

Corollary 2,2.2 If there exist D and D2 such that the C j satisfy the

hypotheses of Theorem 2.2.1 where the Cij replace the Aij matrices, then there

exists a L > 0 such that the control (2.17) makes system (2.14) uniformly

asymptotically stable for all pie(O,kt*J.

Tb, proof is obvious in view of Theorem 2.2.1.

2..3 A Regulator Design

As an application of the stability theorem 2.2.1, it is now investi-

gated whether the control proposed in [551, for a time invariant system of the

form (2•&IL), is a stabilizing control for all c(O,p.*j. The proposed control

was to not only stabilize the system but yield a low cost for the performance

index

= 1 [ [ Q121 ['I + u'Ru dt (2.20)
0 2 Q12 22 2
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Since optimality is meaningless unless it can be shown that the system can be

stabilized, the latter is analyzed first. The control proposed in [55] is ,

given by

B21 rxKII J'K2 x1

u -R" B• (2.21)

u.12  2

With (2.21), system (2.14) becomes

=2 ](2.22)A ,2-s;2ll-2 F2 -S A R -2
2- 21 1 22F-1222"SI'2KI2- S22K2 X2J

where SI11= B IR'I1Bl, S 12 B BIR' 1B2, $ 22 = B 2R- IB2. From the stability theorem

it is evident that (2.21) is a stabilizing control if the following two

matrices are stable:

A 22-S 22K22 (2.23)

(A.11-S1 1K1 1 -S 1 2 K 1 2) -(A, 1 2 -S 1 2 K2 2 )(A 2 2 -S 2 2K2 2) (A ( 2 1 -S1 2 Kv I-IS 2 2 K.12 ) (2.24)

This is indeed the case for the proposed control as a result of the hypotheses
given in [55] and of the selection of the ij's as the unique root for p - 0

of the algebraic Riccati system
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o - -K11 (A1-s12)2 -( 1 1 -S 1 2 K 12 ) K1I

-K A 'K A ? +K S K+"12 21 21 12 11 11 ll'KI 2 2"1 2 " Q11

0 = -K 12(A22-S22K22) - K 11 12 K S12 K22 " A2 K2 2  Q12 (2.25)

- . (A, K -K S K -K S !K
11 12 11 11 12 12 12 12~

0 = -K22A22 - A2 2 2 +K2S22 22 -2 2

12KI2 A 1 2 "S1 2 K2 2 + A 1 2 -S 1222) 12 - WKI•S 1lK 1 2 ]

having the property that K|1 and K22 are symmetrical positive definite matrices.

Thus K22 is the symmetrical positive definite root of

K A +A: K -K2 2 S2 2 K2 2+ 2 2 = 0, (2.26)
22 22 2? 2? 22 22

IC is tbh symmietricalI positive- definitE root of

KA + A < R- I•&R-&(+ 0 = O, (2.27)

and

K12 = K1I - E2 (2.28)

wh- rc-

A = A +EIA21 + s 12 E+ Es12 B B BI +E B2
Q = .F2A21A21 F2-F 2 S 22 F 2+1

F, = 219:F A )'.AF2-SF2K
.2 21 212 2 S2 2F 2+

L2= (A? 21K 22QI2)'.A22-22K22)-
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The hypotheses which have been assumed in [55] are

(i) The coefficient matrices of the time invariant plaut (2.14), Q, R

and their derivatives are bounded and continuous functions of . _.

for all pe[O,p*],

(ii) For all pe(O,p*], the symmetrical matrix Q is positive semi-

definite and R is positive definite,

(iii) The pair (A2 2 ,B 2 ) is controllable and the pair (A2 2 ,C2 ) is

observable where C•C 2 =

(iv) The pair (A,B) is controllable and the pair (IC) is observable

where C'C = Q.

Hypothesis (iii) guarantees the (2.23) is a stable matrix and hypothesis (iv)

guarantees that (2.24) is a stable matrix.

2.4 Optimal Regulator Design

Now that it has been established that the system can be stabilized,

it will be shown that an optimal solution exibts for the problem. This is

done by two lemmas. The first verifies the existence of a unique symmetrical

positive definite root of (2.25) in the neighborhood of p = 0. The second

jt'stifies the optimality of this root. It will then be shown that the

proposed design is near optimal for sufficiently small p.

Lemma 2.4.1 There exists a p* such that for all pie(O,p*],

(2.29)
K12 K22-
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is the unique symmetrical positive definite root of (2.25) and that

- LA2--1 A2• S12'- S2• 12- K pK2

S-(2.30)

is a stable matrix.

Proof: It follows from an application [48] of the implicit function

A. theorem that for p small there exist unique positive definite K and K22

satisfying (2.25) and that Kij = Kij + O(p,).

Inspection of the leading principal minors of (2.29) shows that there exist6

a i * such that for all c(0,.*1, this matrix (2.29) is positive definite.
9.

That (2.30) is a stable matrix now follows upon application of Theorem 2.2.1

and the fact that K = Ki + 0(1).
ii i

Lem•a 2.4.2 If there exists a unique symmetrical positive semi-definite

root P to the algebraic Ricrati equation

A'K,+ KA - KK + Q - 0 (2.31)

and if the control u = -R-BIP x makes the time invariant system

x = Ax + Bu (2.32)

asymptotically stable, then this control minimizes the performance index
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? •

O

J J" (x'Qx + u'Ru)dt . (2.33)
t
0

The minimum value of the performance index where R is positive definite is

given by x'(t )P OX(t )0

Proof: Let y-u + R B'P x. Then (2.32) and (2.33) become

k: (A - SPf)x + By (2.34)

J =JXI'Qx + (y - R'B'P x)'R(y - R 1 BIP x)]dt (2.35)

t
0

= + x'(Q + P0 SP 0 )x - 2y'B'P x]dt
t
0

and recognizing the fact that P. is a solution of (2.27), it follows that

J= .1 (y'Ry - 2[(A-SPOD)x + By]' P Ox) dt
t
0

0O 00

= y'Rydt - 2 J k'Pwxdt
t t

o o
0

=t f y'Rydt + x'(to)P x(t) (2.36)

0

Thus the minimizing control is given for y f 0 since R is positive definite,

and P. is positive semi-definite. This proof is based on [23.

Theorem 2.4.3 For all pe(O,p,*], there exists a unique positive definite

root of (2.25) such that the feedback control
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-R B - 1 P2 (2.37)

minimizes (2.33).

Proof: This immediately follows from Leimma 2.4.1 and Lemma 2.4.2 defining

Ai21,A2221

P 2-

S1 p1 22T2 Q2

for use of Lemma 2.4.2.

The performance index is defined for pC[O,p.*] and hence J -. 3 as

p. - 0 and is represented by J = J + 0(p). * Thus the proposed design gives a

vcrformarce cost close to that resulting from the optimal control. An alternate

control having the same general properties as (2.21) is given by

u = -R- [B1 B 2 J[[X (2.38)
S 2211 2

'q(t) = 0(p.) if the norm Jq(t)I of the vector or matrix q satisfies

the inequality Iqi T ou for some positive scalar constant @ and for p :C.
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3. A DICHOTOMY IN LINEAR CONTROL THEORY

3.1 Introduction and Statement of Problem

This chapter introduces a dichotomy transformation which serves as

a tool in solving TPBV singular perturbation problems. Also, a comparison

is made between a singularly perturbed problem and a nonsingularly per-

turbed problem in which similarities are pointed cut.

A 2n-dimensional system

i A=t) -S~t)F (3.1)

[ L-Q(t) -A'(t)J X

is said to possess an "exponential dichotomy" if there exist positive

constants c, 0, y and g such that for all t z t 0

""e , for - 0Y (3.2)
Ix(tl'tot [X(t )I0)

Ix(t)I + IX(t)l 2: 0e , for LX(t0)J 4 Y (3.3)

2n
where Y is a linear subspace of R and Ix(t)I and IX(t)j are norms of

the n-dimensional vectors x(t) and X(t).

This chapter shows how, under suitable conditions, "dichotomy

transformations" are constructed which diagonalize (3.1) into two n-

dimensional systems, one exponentially stable in forward time and the

other exponentially stable in reverse time. In this way x(t) and X(t)

can be found by solving differential equations in their stable direction.
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This development is purposely introduced to stress similarities between

[ (3.1) and the singularly perturbed system

F 1- A(t) -S(t)V xl

A't.1 Iit] (3.4)
I L ] -Q(t) -A'(t)J X

I A typical application is the optimization of

T

x = A(t)x + B(t)u (3.5)

with respect to

T

1 [x'Q(t)x + u'R(t)u~dt (3.6)
t

with x fixed at both ends. It in this problem the system (3.1), with

S(t) = B(t)R(t)B'(t). possesses an exponential dichotomy, and if the

interval Et .T] is large, then the corresponding TPBV problem can be

approximatLly solved by solving two independent initial value problems.

3-2 Negative Definite Riccati Matrix

Conditions for existence and uniqueness of the symmetrical positive

definite solution P(t) of

K = -KA(t) - A'(t)K + KS(t)K - Q(t), (3.7)

subject to a symmetric positive semi-definite end condition n,
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K TT at t T, (3.8) I

are known as well as the conditions for existence and uniqueness of the

symmetrical positive definite root P, of the time invariant system

I
- KA - A'K + KSK - Q = 0 . (3.9)

I
In the construction of dichotomy transformations in this chapter, symmetrical

negative definite solutions N(t) and N, of (3.7) and (3.9) will also be

used. The transformations follow after first presenting two lemmas which

depend upon the hypothesis

H 3.2.1 Let for all tetoS,T) the matrices A(t), B(t), Q(t) and R(t) a.

be continuously differentiable functions of t, Q(t) be symmetric positive
*4

semi-definite and R(t) be symmetric positive definite.

Lemma 3.2.2 Let H 3.2.1 be satisfied. Then for all t C [to,T"

there exists a unique symmetric negative definite solution N(t) of (3.7)

subject to an initial condition

K=f- at tt 0 (3.10) -0

where r is a symmetric positive semi-definite matrix.

Proof: Consider the minimization of

I TS="2 nr + "2 .[•Q(to+T.•r)^ + WR(to+T.•r)^u]d- (3.11)

2 T 0t
0
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I subject to

I- = -A(t0+T-r)ý - B(t0+T--r)Z (3.12)

with c given at -r t and free at T - T. The corresponding Riccati equation1 0

KA(t T-T-) + A'(t +T-T)k + KS(t +T-T)K - Q(t+T-¶) (3.13)LdK 0 0 0

L has a unique positive definite solution K(T) satisfying the end condition

L k - r at - = T (3.14)

The substitution of T - t +T-t in (3.13) and (3.14) shows that N M -K(t +T-t)
0 0

i. uniquely satisfies (3.7) and (3.10).

Lemma 3.2.3 Let H 3.2.1 be satisfied where A, B, R and Q - C'C are

constant matrices, CA,B] is a controllable pair and EA,C] is an observable

pair. Then the algebriac equation (3.9) has a unique symmetrical negative

definite root Nt,, and -(A-SN,) is a stable matrix.

Proof: In (3.11). disregard the terminal cost term an! let T- .

Then (3.11) and (3.12) constitute a well defined infinite time regulator

problem. Thus

A + A'lk + KS^K - Q -0 (3.15)

A A

has the unique symmetrical positive definite root P. and -LA+SPi] is a

n IIll ~ lm ran m mmnmnutn:,-,,--,,•, ~ m•wuL'],•.'• ,m,. . . *1
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stable matrix. The substitution of -N, for into (3.15) then shows that-

N. is the unique symmetrical negative definite root of (3.9). The unique-
-... ,

ness is a direct consequence of the non-siuigular transformation P -N

and the uniqueness of P of (3.15).

3.3 Dichotomy Transformations

Note that if z = W(t)g transforms • L(t)z into • - D(t)', then

4 = L(t)W - WD(t) . (3.16)

We will consider L(t) as the 2n by 2n coefficient matrix in (3.1) and

construct a nonsingular transformation W(t) which will make the resulting

matrix D(t) block-diagonal.

Lemma 3.3.1 Under the conditions of Lemma 3.2.2, the transformation

= (3.17)

S(t) P(t) N(t T,(t)

is nonsingular for all t c CtoT] and transforms (3.1) into

S0 A(t)-S it)Nit)] l

Proof: Using (3.1), (3.17) and (3.18) to form (3.16) and noting

that P(t) and N(t) satisfy (3.7), (3.16) is ,Lisfied as an identity.
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Transformation (3.17) is nonsingular since both P(t) and P(t) - N(t) are

nons ingular.

Theorem 3.3.2 Let the assumptions of Lemma 3.2.3 be satisfied and

use ýr = P. and - .N in (3.8) and (3.10). Then the transformation (3.17)

becomes

1 (3.19)

and the subspace Y in (3.2) is defined by .= 0.

Proof: Note that W = 0 an, (3.16) is satisfied. Since A - SP is

stable and - (A - SN,) is stable by Lemma 3.2.3, inequality (3.2) holds

only when T(t) 0.

Theorem 3.3.3 Consider (3.5) and (3.6) and, using T = and

Q(t) = C'(t)C(t), where C(t)x(t) is the output of (3.5), define an output

regulator problem as in [221 When this problem satisfies the stability

theorem by Kalman [22, Theorem 6.103, then the subspace Y generating the

dichotomy (3.2), (3.3) is defined by T 0 in (3.17).

Proof: From [22], it is known that

[ £ A(t) - S(t)P(t)]y (3.20)
dt

is uniformly asymptotically stable. From the definitions of uniform

complete controllability and observability [22) applied to (3.11) and
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(3.12), and using the same change of time variables as in Lemma 3.2.2, It

can also be shown that
4

t =[A(t) - S(t)N(t)3, (3.21)dt'

is uniformly asymptotically stable in reverse time.

Thus (3.17) and (3.19) are transformations which make transparent

the dichotomy properties of (3.1) guaranteed to exist by the assumptions

in Lemma 3.2.3 for time-invariant systems and in Theorem 3.3.3 for time-

varying systems. P(t) and N(t) are related by the expression

1 -1
N(t) = P(t) - I H (t) (3.22)

where H(t) is the unique symmetrical positive definite solution of

"dH _ A(t)-S(t)P(c)]H + H[A(t)-S(t)P(t)3 + 1.S(t) (3.23)
dr

with H [P(t - N(to)]l at t = t . This follows upon recognition

that N(t), P(t), and H(t) are unique solutions of their respective dif-

ferential equations and that H(t) defined in (3.22) satisfies (3.23) as

an identity. Another transformation which could have been used to show

the dichotomy properties is given by

X~t) H~t) Y(t)

= 1(3.24)
LX (t) I - P(t) N(t)tH(t)] [ý(t)I
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which transforms (3.1) into

[ [A(t)-S(t)P(t) 0 y

0 -[A(t) -S (t) P(t)(

For a time invariant problem a similar transformation was used in [33].

"3.4 An Application

Consider the minimization of (3.6) subject to (3.5) and with x

fixed at both ends,

o T

X(t 0 xo, x(T) - x . (3.26)

To solve the boundary value problem (3.1) and (3.26) using the transforma-

tion (3.19), y and are determined from

X T §(T,to0) 1 IT ,(.7

where ý(tt 0 ) and Y(tT) are the fundamental matrices of (3.20) and (3.21)

respectively. However, if (3.1) possesses the dichotomy (3.2), (3.3) and

if the interval Eto0 T] is sufficiently large, then IY(toT)I<<l,

II(T,t)1<<Il and

o o T Ty f x , OW x (3.28)
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Using these boundary conditions, the approximate y(t) and J(t) are obtained

from the independent initial value problems (3.20) and (3.21). The approxi-

mate solution of the boundary value problem (3.1) and (3.26) is then found

using

x(t) = y(t) + TI(t)

(3.29)

X(t) = P(t)y(t) + N(t)11(t)

This procedure is particularly convenient when A, B, Q and R are constant

matrices, since then P(t) = P. and N(t) = N can be obtained by an

algebraic method.

3.5 Example

Consider finding an approximate solution of system (3.1) satisfying

(3.26) where A f 0.5, B = 1, Q 2, and R = 1. Then (3.1) becomes

= ; T(3.30)
] 2 -0.5 x(T) -x (

For this example, P 2 is the positive and N -1 is the negative root of

K2 - K - 2 - 0 . (3.31)

The transformation
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I-I 
(3.32)

X Ml (t)J -2 L1[(t)

"transforms (3.30) into

ffi (3.33)

0 1.5[[1]

and (3.27) gives

S o -1.5Tx =y +¶1e

(3.34)
T o -I.5T Tx ye +

T
0 13T T> 0-1.5T

If T is large, y >> 11 e- and >T Y el " Hence

o -1.5t T 1.5(t-T)x(t) s x e + xe

X(t)ow 2x0e-1.5t -xT 1.5(t-T) (3.35)

Note that both y(t) and J(t) are obtained by solving (3.20) and (3.21)

in their stable directions.

3.6 Discussion

An interpretation of (3.20) is that it is the solution of a regulator

problem whose performance index has a penalty term at t - T and whose system

is subject to an initial boundary condition at t - t . Similarly, an
0
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interpretation of (3.21) is that it is the solution of a regulator problem

whose performance index has a penalty term at t - t and whose system iso

subject to a final boundary condition at t - T. The stability of these

regulated systems is assured by the assumptions given in Lemma 3.2.3 and

Theorem 3.3.3. For a sufficiently large interval, a simplifying approxi-

mation is possible and the TPBV problem is approximately solved by solving

only initial value regulated systems and adding the resulting solutions.

As either the time constant associated with the exponential bound on the

regulator solutions is decreased or the time interval increased, the TPBV

solution appears as the summation of two decaying transients; one at each

end of the time interval. For a very small time constant, the transient

behavior at the initial time could be approximated by the solution of

(3.20) whose coefficient matrix is assumed constant (the functional value

at t = t ). Similarly, the transient behavior at the final time could be

approximated by the solution of (3.21) whose coefficient matrix is

assumed constant (the functional value at t - T). The differential

equations (3.20) and (3.21) are called "stiff" when the transients occur

very rapidly.

3.7 A Preliminary Singular Perturbation Problem

It will now be shown that the solution of the singularly perturbed

time invariant system

(3.36)

~~~~~~~_ -A. I , n 1 1 u m " . . .. . .
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I satisfying the boundary conditions

X(to) - x 0 x(T) x (3.37)

behaves similar to the solution of the TPBV problem (3.1) satisfying

(3.37) under suitable stability conditions and for p sufficiently small.

I Specifically, the previous requirement that the time interval Cto0 T] be

large relative to the transient intervals at the initial and final times

will be shown equivalent to the condition that L be sufficiently small

for the specified interval [to,T] of the problem. Furthermore, it will

i be shown that an approximate solution of.(3.36) and. (3.37) is given by the

"sumnation of solutions of two time-invariant regulated systems.
4

If the hypotheses of Lemma 3.2.3 are satisfied, then there exists

a unique symnetrical positive definite constant solution P. and a unique

symmetrical negative definite constant solution N. of the Riccati equation

+ K + K+A'K - K + Q - 0 (3.38)

for (3.36). Also, [A - SP.] and - [A - SN,) are both stable matrices.

Thus (3.36) is transformed by

I [ =[: :2 ] (3.39)

into the two decoupled singularly perturbed systems
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= (A-SP.)y (3.40)

L = (A-SN.). (3.41)

Assuming that an initial condition y is given for (3.40) and a final

condition T is given for (3.41), the solutions for y and f are given by --

(A-SP.) (t-to)-/P i

y 0e y (3.42)

l=e 0 (3.43)

0 T 0 T
The boundary conditions x x are related to those of y by

x 0 e (A -S ý) (t o -T )/ L 0o3 .4

xT e(A-SP•) (T-t o)/t •yT

Clearly for whatever t and T (t 0 T) have been given, it is always

possible to find a p * > 0 such that for all . e 10,P*1

e(A-SPI)(T/t°)P << 1, (A-SNj)(t 0 -T)/. << 1

since [A-SPW] and -[A-SN.] are stable matrices. Thus

o o T T (3.45)
y ftx ft XT (345
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for 1. S *. Hence the approximate x(t,p) solution is given by

x(t,4) = e (A-SPc)(t-t /P0 e + (A-SNx)(t-T)/4.LT (3.46)I
This simplified problem points out the interchanging roles of T

and p and represents a special case of a more general problem rigorously

analyzed in Chapter 4.

I
i
t

n - - • l - i i i a nF - • ,I-- •
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4. FIXED END-POINT PROBLEM: THEORY I

4.1 Introduction and Problem Statement

The goal of this chapter is to develop an opproximation of the

optimal solution of a trajectory optimization problem over the entire

operation interval [tT]. An approximate solution is sought instead of

the actual solution since the latter is often quite difficult to find

using existing methods. The complication is a result of both widely

varying decay transients and widely varying growth transients associated

with the solution of a TPBV problem. The design objectives for the

approximate design solution is:

(i) solution of a lower-dimensional problem than the original

problem when the approximation is to be valid only on an open

interval of Et0 9 TI;

(ii) accounting for boundary layer phenomena by finding correction

terms which, when added to the reduced solution, make the

approximation valid over the whole interval [to,T];

(iii) determination of correction terms separately in a stretched

time scale thus avoiding "stiff" problems.

This approximation design is developed for the problem of optimally

controlling the (nI + n2 )-dimensional system

il = All(t'4)Xl + A1 2 (t',)x 2 + Bl(t4•)u

(4.1)

-:: A2 1(t,•j)Xl + A2 2 (t,•)x 2 + B2 (t,•L)u
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with respect to the performance index

J E X J + u'Ru dt (4.2)
t oT •2 Q1#2 Q221 x2

where the boundary conditions for (4.1) are

x = X° and x2  x2 ° at t -t
2 2 0

(4.3)
T T

x, = x 1  and x2 = x2  at t - T

The following hypotheses are made about the matrices appearing in (4.1)

and (4.2).

H 4.1.1 For all t e [t ,T, p . [0,p*] the symmetrical matrix

Q - Q(t,p) is positive semi-definite, and R - R(t,p) is positive definite.

H 4.1.2 For all t [to,T], P e [0,03* the elements of the matrices

in (4.1) and (4.2) are three times continuously differentiable functions of

their arguments.

From the optimality conditions for (4.1), (4.2), it follows that

U = -I (Bj 1 + B (4.4)

and hence
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A 1 1  -11 A 12  "A2 1I

Q (4.5)Q1

2 A21  -S12 A2 2  -S 2 2  x2  
(45

. L

Using

z1 " , Z2 [ ]

the system (4.5) is rewritten in the compact form

i -= r21 D2 2-(4.6)

where the definition of D ij is evident from comparison of (4.6) with (4.5).

When • is set equal to zero, the 2(n 1 + n 2 )-dimensional system (4.6)

reduces to a 2n -dimensional system, and if the indicated inverse exists,

the reduced system becomes

Z2=W (DI1 -D12D22 D 21 )z 1 (4.7)

Variable z2 is not present in the differential system (4.7) but is

algebraically related to z by

z2 -6 22 ID21 z 1 (4.8)
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Thus in general x 2 will not satisfy the x 2 boundary conditions in (4.3).

A solution z1 satisfying (4.7) and the xI boundary conditions of (4.3) with

the corresponding z 2 obtained from (4.8) is called a reduced solution.

The approximation is based on the requirement that an auxiliary time

invariant system depending on a fixed parameter I

d•c2
2= A2 2 1,0) 2 + B2 (,0) (4.9)

be stabilizable for each TI in the interval Cto,T]. The full meaning of

stabilizability of system (4.9) will be clear later when this system

appears in so called "layer regulators" and makes it possible to use

algebraic Riccati equations for calculation of the correction terms. Con-

trollability and observability hypothesis H 4.1.3 used here is more

restrictive than the stabilizability requirement but simplifies the forth-

coming derivations. This is the crucial hypothesis of Theorem 4.2.1.

H 4.1.3 For all t g Eto,T],

rankF - - -2- _n2 -_ 4.L 2  2 2 B2 ,A 2 2 B2 ,.. .,A 2 2  B 2 (4.10)

_ )_2 
n 2 - 1 ,

rank "2,;'22,-2 2- ,"-"",(A 2P " n2 (4.11)

It is seen that hypothesis H 4.1.3 guarantees the existence of the

inverse in (4.7, and (4.8). The last hypothesis needed is

H 4.1.4 There exists a unique(bounded)reduced solution satisfying

the x1 bc-ndary conditions in (4.3).

dond
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4.2 Main Theorem .1

The theorem of this section establishes the existence of an

approximate solution for the trajectory optimization problem (4.1)-(4.3)

which accomplishes all of the design objectives (i)-(iii) set forth in
'.i

section 4.1. This permits numerically complicated problems to be approxi-

mately solved in a simplified manner.

Theorem 4.2.1 Let H 4.1.1, H 4.1.2, H 4.1.3, and H 4.1.4 be satisfied

for problem (4.1), (4.2), and (4.3). Then there exists a positive con-

stant such that for p • and t e CtoT3

"xl(t,1) = xl(t) + O(P)

"x2 (t,)) = x2 (t) + 2((T) + R22 (a) + O(p) (4.12)

X 1(tP) = Xl(t) + O(P)
Xl(t)+,(T

=2(t,) = 2(t) + P2 2 (to).Z2(.) + N2 2 (T)a(a) + 0(P)

Here 1(-T) is the solution of the "left" layer system

L[ 2 2 (to) 2 2 (ýo) 2 2 (to) 24.13)

subject to initial condition

£2 - - x 2 (to) at T - 0
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where T (t-to)/0 , e2 (a) is the solution of the "right" layer system

dR) (4.14)

j subject to terminal condition

"?'2 T - x2(T) at a = 0

where a = (t-T)/;, and P2 2 (to) and N2 2 (T) are the symmetrical positive and

negative definite algebraic solutions of

"22K22 + K2 2 A2 2 - K2 2 S2 2 K2 2 + . 2 2 - 0 (4.15)

evaluated at t and T respectively.

Discussion: This theorem can be used for different types of

approximations of the optimal solution. For an approximation on the interval

Lt ,t j where t < t ' t < T, one neglects the C2 ,R2 terms in (4.12) and

approximates the high-dimensional solution by the low-dimensional reduced

solction found from (4.7), (4.8). This approximation is within O(p) for ýi

sufficiei.tly small. For the approximation to be valid on the interval

[tot 2 ], the left layer correction term is added to the reduced solution; for

1the approximati,in to be valid on the interval [t ,T], the right layer

correction term is added to the reduced solution. When both left and rigL,.

layer correcti-rn terms are added, the approximation is valid on the entire

interval [,-,T].

C,,
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It should be noted that the theorem has the desired lower-dimensional I

and time scale separation properties. The correction terms are evaluated inde-

pendently and each is the solution of a time invariant initial value problem.

For computation of £2' only the symmetrical positive definite root P22 at

t = t needs to be found from the algebraic Riccati equation (4.15). The

symmetrical negative root N2 2 of (4.15) at t = T is needed for '2.

Finally, a similar theorem could be formulated for an asymptotic

expansion as common in singular perturbation theory. This was not done here

in order to provide a clearer proof of the theorem.

The proof of this theorem will be given after first proving a set

of lemmas. The first two lemmas are used to establish certain properties of

two different solutions of a singularly perturbed Riccati system. One solution

is symmetrical positive semi-definite and the other is symmetrical negative

semi-definite. The third lemma uses these solutions in defining a transforma-

tion which enables one to solve two initial value problems in place of a

TPBV problem.

4.3 Properties of Riccati Matrices

Let the co-state variables X1 and X2 be related to the state

variables xI and x2 by the Riccati transformation

I K 1 1  ýK1

(4.16)122I x2l

The Riccati equations resulting after elimination of X and X2 from (4.5)

using (4.16) are given by
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KII=KI( 2K12 - (AII-Sl 2 KI•) K11

- K12 A2 1 - A2 Kll + KllSllKu +K K12S22 " QU (4.17a)

P'K12 = -K 1 2 (A2 2 -S 2 2 K2 2 ) - K,1 A1 2 + KllS1 2 K2 2 - A21K2 2 - Q1 2

p-(A1IK12 -K1 S 1 K12 -K12S 1K 1 2) (4.17b)

"" '22 = -K22A22 - A22K2 2 + K2 2 S22 K22 - Q22

- {K1 (A1 2.Sl 2K-2 2) + (Al2 51l2K2 2) 'K12 -IL K,-1 ,1 K 1 2] (4.17c)I
The corresponding reduced Riccati system obtained by setting . - 0 in (4.17) is

11 = -K 1 1 (A1 1 -S 1 2 K1 2) - (i 1 1 -S 1 2 K21 )Kll

KI21 ' K' + -K + '2S22K - Q11 (4.18a)

0 = -K 12(A2-SK2) K + K, K Q12 (4.18b)222 2 11ý12 l11 2 21 22

212 12K K (4.18c)
""0 =-K 2 2A2 2 -A 2 K2 2 +K 2 2 S2 2 K2 2 - Q22(4.18c)

and is to satisfy the same K11 boundary condition as imposed on KIl for the

solution of (4.17). In general, it cannot satisfy the end conditions for K1 2

and K22* Since the system (4.18) has an algebraic part, it can have many

solutions satisfying the symmetrical positive semi-definite boundary condition

on K11 at t = T. Only one of these solutions denoted by K j meets the previous

hypotheses H 4.1.1 - H 4.1.3 and the requirement that KIP K22 by symmetrical

positive semi-definite matrices for all t c [to,T]. When K1 2 and K2 2 at t w T

are equal to the respective boundary conditions imposed on K12 and K22 in
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(4.17), then the solution of (4.18) is designated by Pij and the solution of

(4.17) satisfying these boundary conditions is designated by P4 j(t,p). Like-

wise, of the many solutions of (4.18) satisfying the symmetrical negative semi-

definite boundary condition on K at t = to, there is only one N.. satis-
11 ii

fying the conditions imposed. These conditions are: the previous hypotheses

H 4.1.1 - H 4.1.3 must be met, N11 and N2 2 are to be symmetrical negative

semi-definite for all t e [to,T], and the values of N1 2 and N2 2 at t - to

are to be the same as the boundary conditions imposed on these variables in

(4.17). The solution of (4.17) satisfying these boundary conditions is

designated by N ij(t,P).

The basis of the proof of the main theorem is the existence of the

Riccati solutions Pij, Nij. The singularly perturbed Riccati solution of

(4.17) is known to generally have a boundary layer jump at t = T when the

boundary conditions are given at t = T. Thus the Riccati solution would

rarely be continuous for all t e [toT], p e [Op*] which is a crucial require-

ment in the approach used to prove our Main Theorem. But by properly selecting

the boundary conditions for (4.17), the boundary layer jumps have been

eliminated and the continuity of Pi.(t,p) and Nij(tp) can be guaranteed.
iJ

Lemma 4.3,1 Let H 4.1.1, H 4.1.2, and H 4.1.3 be satisfied and let the

boundary conditions for (4.17) be given by

1K1 1K2-1 11( •121
1 l=1 at t = T (4.19)

LPX12. AK22j L 12 4P2 2
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where T 1 1 J.) is an arbitrary symetrical positive semi-definite matrix which

is a three times continuously differentiable function of p for all 4 e [0,P*].

Then there exists a p* > 0 such that for all p t p the unique solution

P ij(t,p) of (4.17) satisfying (4.19) can be asymptotically approximated on

the entire interval [toT] by

P ij(tp) = Pij + 0(11) (ij = 1,2) (4.20)

where P11 and P22 are symmetrical positive definite matrices, except possibly

at t = T where P11 can be positive semi-definite. Furthermore (122-§22P22]

is a stable matrix.

The proof is based on showing that the hypotheses of the singularly

perturbed initial value Lemma A.4 of the appendix are satisfied. In addition

to certain .smoothness assumptions, these hypotheses require first, that the

reduced solution exists, and second, the stability of the boundary layer

equation. This proof in part uses facts established in [55] but differs from

Lhe proof given there in two ways. First the problem considered here requires

only that the initial conditions of the Riccati problem lie within a rneighbor-

hood of the reduced Riecati solution at t = T. Thus global properties, which

can be proven, are not needed here. Second, a proof of boundary layer

stability is given where Kronecker products were not needed and the continuity

of Pij at p = 0 is established.

Proof of Lemma 4.3.1: The existence of the reduced solution will first

be shown and then boundary layer stability; both of which are hypotheses of
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the appendix. A unique algebraic symmetrical positive definite root P22 of (4.18c)

is guaranteed to exist for all t c [to,Ti by H 4.1.1 and H 4.1.3. This can

easily be seen at a fixed time by interpreting (4.18c) as the Riccatj cquation

resulting from a time invariant optimal regulator problem.. The continuity of .6

P 22(t) for t.C It ,TJ then follows from the implicit function theorem and H 4.1.2.

This interpretation also makes evident that [A 22-S 22P 22j is a stable matrix

for each t e EtoT]. From this and (4.18b) it follows that P1 2 is uniquely

expressible in terms of P and P 22 The existence of the unique symmetrical

positive definite matrix P (semi-definite at t = T if ilr is semi-definite

there) was established in [55] by showing it was the solution of a Riccati

system similar to (3.6). Thus the reduced solution Pij exists. The stability

of the boundary layer equation

dKl12. .. ,^,"dK = -K1 2 ( 2 2  22 + KA2 S1222 " 21K22 12

(4.21)

dK2 2  -

d- 2 2A22  A2 K 2 2 +K 22 S§2 2 K2 2  22

will now be shown about the reduced solution K = Pij for each t e ItoT].

The linearized system of (4.21) about the reduced solution where K = P

K12 1 12 + 6K 1 2 ' and K22 P 22 - 6K 2 2 becomes

d6K 12d6 = -6K12(A22-S22P22) - (A2 1-P 1 1 5 1 2 -P 1 2 S2 2 )6K 2 2  (4.22a)

d6K 2 2  . . .. . .

d-T = _-6K 2 2 (A2 2 -S 2 2 P 2 2 ) - (A22-S22P22)6K22 (4.22b)

whose coefficient n.ecrices are functions of the fixed parameter t. Since
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[A2 2 - s 2 2 r 2 2  is a stable matrix, it immediately follows that the solution of

(4.22) is asymptotically stable. Upon substitution of this solution in

(4.22a) and again noting the presence of the stable matrix 5A2 2 § 2 2 P2 2 3, it

then follows that the solution of (4.22a) isasymptotically stable. Since

the smoothness assumptions are met, it remains only to note that the boundary

layer correction terms for P12 and P22 at t - T are eliminated as a direct

consequence of the special way in which the boundary conditions were chosen

in the hypothesis of this lemma. Thus satisfaction of Lemma A.4 guarantees

the existence of the P of this lemma.

Lemma 4.3.2 Let H 4.1.1, H 4.1.2, and H 4.1.3 be satisfied and let the

boundary conditions for (4.17) be given by

1 f2 :."l P'2 j at t - t (4.23)

where -fll(p) is an arbitrary symmetrical negative semi-definite matrix

which is three times continuously differentiable function of P for all

p . [0,p.*I. Then there exists a * > 0 such that for all p s p , the

unique solution Nij(t,p) of (4.17) satisfying (4.19) can be asymptotically

approximated in the entire interval [to,T] by

N ij(tP) -Nij + 0(0) (i,j - 1,2) (4.24)

where N11 and N2 2 are symmetrical negative definite matrices, except
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possibly at t = T where N1 1 can be negative semi-definite. Furthermore,

- EA 2-$S 1N is a stable matrix.

22 22 22

Proof: Consider the Riccati system

dK11  , ' +
y -K -K1 1 (-A -S 1 2 K1 2) "(-All-' :.2 K12' K'l K12A21

+ A2 1KI2 + KIISIIKII + KU2 S2 2KI2 QII (4.25a)

dK1 2 12, S• = _-p(-A IIK2-KIISllKI2-K12Sl2Kl2) - k12 (-A 22-S22K22)

+ K1 1A1 2 +K•11S12 K22 + A -2'^K22 " Q12 (4.25b)

dK 22+^A^,
dK• = PEkl(-A12-S12K.22) + (-A 1 2 -S 1 K2 2 ) K1 2 -4K 12S1 1l 1 2J

K22A22 + A + KSK - Q (4.25c)+ 2  A z2 K2222 K22S2222 Q22

whose coefficients are functions of t + T - y and whose boundary conditions

are given by

= 
at t - T (4.26)W, li PKr22 -A1( -PN 22(11)

Noting that (4.25) and (4.26) satisfy ILcnm 4.3.1 and making the substitution

y to + T - t in (4.25) and (4.26), it is clear N - -Kij(t0 + T-t)

uniquely satisfies (4.17) and (4.26).
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4.4 Dichotomy Transformation

Let the following transformation be defined

x I In 0 0 11

X1 PI1 N1 11 P12 N12 r I
in 2  A (4.27)

X2 P12 N12 P22 N22 r2

or equivalently

=2 L(4.28)
z2 LW21 W 2 q2

where

q=, q 2 (4.29)

and the definition of Wtj is evident upon comparison of (4.28) with (4.27).

The non-singularity of transformation (4.27) for all t € 0t,T] and

P 9 £O,P*. can be seen from the determinant of the coefficient matrix of

(4.28)
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Wi1  W1 2  In1  In1
1

det = det n .

W2 1  W2 2  P1 1  Ni11

In n 2 1 • n 0 0. n F11F N Pý 121N1

dt 22 12 [: :1[ 2 :12

In I n In

rn n n
- det . det + 00) (4.30)

P N P N
1 111 P2 2  22

S0 since the bracketed terms of (4.30) are non-zero.

The following lemma shows that transformation (4.28) transforms

(4.6) into two decoupled systems; one containing AI and A2 and the other con-

taining r 1 and r 2 . The transformation also results in the A boundary layer

system being stable in forward time and that of the r boundary layer system

being stable in reverse time. Thus transformation (4.28) dichotom~izes the

x2 ), 2 boundary layer system as the transformation of Chapter 3 did for the

original system.

Lemma 4.4.1 Let the conditions of Lemmas 4.3.1 and 4.3.2 be satisfied.

Then the non-singular transformation (4.27) transforms system (4.5) into

[J$1L A2 1 "ST2PII-S2 2PlI A2 2 "•SI2PT2 -S 22 2 L'] (4.31)

r11A U - 11 N11 -12 12ý 12-pS11N 1 2 S1 N 22 rl( . 2

221 llS22 Nj1 A -S N (4.32)
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or in more compact notation,

L F 1 1  F 12  1
= J(4.33)

J2L F21 F2 2  -2

S1 1(4.34)pi2 - LG 21 G 22 r 2

where the definition of F j is evident from comparison of (4.33) with (4.31)

and that of G j from comparison of (4.34) with (4.32).

Proof: Upon elimination of zlz 2 from (4.6) using (4.28) and comparing

this result with what it must be to satisfy (4.31) and (4.32), it suffices

to show that

11 12 1 1 2 [ 11 [2 11 12] [ 1.2]W21 ýLi22- LD 21 D 22- W 21 W22J ]W2 W2 E LE "22J

(4.35)

where

Ell - [11, E [ 12  ]

El GI1]1 G1Iz

(4.36)

[ 21 ] E 
2 2

t21 c G2e r s 
G 22

it can be readily shown that (4.35) is satisfied as an identity.
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4.5 Proof of Main Theorem

The systems(4.31) and (4.32) are convenient for a straight forward

proof of the theorem. It will first be assumed that initial conditions

i0°(1), 12.(p) are given at t - t for system (4.31) and final conditions --T 0

r IT(), r2 T(ji) are given at t - T for system (4.32). These boundary conditions

are assumed to be twice continuously differentiable, Thus two independent singu-

larly perturbed initial value problems exist, and Theorem A.5 cavi be applied pro-

viding its assumptions are satisfied since P and N are twice continuous dif-
ii ij

ferentiable functions for all t e (toT] and for all pe[O,P*] in viewof Lemmas

4.3.l.aud.4.3.2. Also the boundary layer parts.of 4.3.1 ,n# 4.3.2 are stable in

their respective time directions since EA22-S22P22] and -[A2 2-S 2 2N2 21 are

stable matrices by Lemmas 4.3.1 and 4.3.2 respectively. Thus when Al0, A20

are given, Theorem A. 5 permits one to write for (4.33)

, = 1 + 0(p), ' 2 =2 + I 2 (T) + 0(11) (4.37)

where the reduced solution A1 satisfies

Li =Fll - Fi2F22- f21]N 1(4.38)

and the initial condition

i at t - tof (4.39)

and where .2 is algebraically related to t1 by

i2 22 -F2 21 i 1 (4.40)
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Also, the left layer solution Z2 satisfies

dg2

-F(t) " o 2 2 (to) 2 2 (to) £2 (4.41)

and the initial condition

£2 " £2 - t 2 (to) at T - 0 . (4.42)

Similarly, Theorem A.5 permits one to write for (4.34)

r1 = rI +o(p), r2 = r 2 + ' 2 (a) + 0(p) (4.43)

where the reduced solution r1 satisfies

rl [a " G12G22 6G21] rE G (4.44)

and the end condition

- Tr 1  r1  at t - T, (4.45)

and where r2 is algebraically related to r 1 by

r 2 = -G2 2 - 1G2 1 r 1 (4.46)

Also, the right layer solution R 2 satisfies

-=A 2 2 (T) - ' 2 2 (T)N 2 2 (T)] R2 (4.47)
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and the end condition I

T 2  - r 2 (T) at a 0. (4.48)

Thus far it has been assumed that the boundary conditions 1i, 1 2° rT

and r 2 T have been given. What now must be shown is how to find these

boundary conditions •i°, 120, rIT, and r2T in terms of the boundary con-

ditions xl° x2 ° XlT Iai, 2T specified in (4.3) to satisfy the theorem.

Using the transformation in (4.27)

x (t,P) = IL(t) + ILt(t,11) - A(t)) + r 1 (t) + Cr (t,ý)-i (t)]

x2 (t,P) = 1 2 (t) + £ 2 (T) + [A2(tIL) - 1 2 (t) - £ 2Cr)e (4.49)

+ r 2 (t) + P2(a) + [r 2 (tp)-r 2 (t) - R2(o)]

is satisfied as an identity for all t e Cto,T] and for all p e [0,4*1. By

selecting boundary conditions in accordance with (4.39), (4.42), (4.45),

and (4.48) as required by Theorem A.5, (4.49) becomes

"Xl(t,P) = Mt) + r-(t)] + 0(P)
(4.50)

"x2 (tw.) = [' 2 (t) + r 2 (t)] + 2 ( r +'2(a) + 0(Ik)

By H 4.1.4, there exists a unique reduced solution xi, X l of system (4.7)

satisfying the x, xT boundary conditions and it is uniquely related to

>'2' 2 in (4.8) by H 4.1.3. Recall the non-singular W(t,i) transformation
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in (4.28) is defined for p 0. Thus solving the reduced system

(4.7), (4.8) is equivalent to solving the reduced Ji,ri systems (4.38),

(4.44) providing the boundary condition requirements are met which are readily

I seen from (4.28) for p = 0 to be

jl(to) + 1 (t) = X 0, I(T) + 1(T) = xIT (4.51)

Thus the existence of L 0 , and lT is assured by letting i 0 = il(t 0 ) and

-T- -

r = r 1 (T) and x 1 and x2 can be expressed by

Xl(t) = il(t) + rl(t), 2 (t) = i 2 (t) + r 2 (t) (4.52)

Since R2(a) -* 0 as a -, this term is negligible when evaluating (4.50) at

t = t for small p. Thus for • = 0, (4.50) gives
o

£2(3) = x2
0 - x 2 (to) = [x 2 ° - r 2 (to)] - Z2 (to) (4.53)

Hence 12 exists and is equal to x 2 - 2'(t0) upon comparison with (4.42).

Similarly, since I2(T) - 0 as T- -- •, this term is negligible when evaluating

(4.50) at t = T for small p. Thus for p = 0, (4.50) gives

k2(0) = x2 - x2(T) = [x2T - i 2 (T)] - ; 2 (T) (4.54)

Hence r2T exists since i 2 (T) exists and is equal to x2 T - i 2 (T) upon comparison

with (4.48). Thus it has been established that
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x (tP) = Xl(t) + 040)

(4.55)

x2 (t,P) = x2 (t) + z2(T) + ?2(a) + o(G)

The same argument used to establish (4.52) holds for proving

Xl(t) P11ll1 + 1l

(4.56)

2I2 1 I+ +22 +12 22r2

Using transformation (4.28)

xk(t,P) = (P 11+ol() ]EL•l4o(0)] + (All+O() l+OU)

"+ P1 2P12+0 (P) ] 2 +£+2 (T) + 0(p)]

"+ P[12 +0 (U) ]2+R2(a) + O(j)]

= Pl~l+ rl~l + 0 (ý)

= +1 + 0P) (4.57)

xtP)= 1P l2+ (Pi)]['l-O(p)] + [gl 2 X0(L)t1R 40(101

"+ [P 2 2 +0 (±)]LR 2 +12 (T) + O(P)]

"+ [R 2 2+O(Pl)]r2- R2 (a) + O(1)]

'"12 1+N'-P 2 2 L2 2 2 2 ] + P2 2 2 (C)+N2 2 ?2 () + 0()

= X2 (t) + P 2 2 (t)Z 2 (r ) + N2 2 (t)R 2 (a) + 0(4)

X 2 (t) + P 2 2 (t).t 2 (T) + N2 2 (T)/ 2 (o) + 0(,u) (4.58)
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The last step is justified by the contiuft-7 bypotbasis U 4.1.2.

4.6 Control and Performance Index &Uproxzition

Two corollaries will be proven in this section. The first establishes

the existence of an approximate control solution for the optimal control prob-

lem (4.1) - (4.3), and the second establishes the existence of an approximate

performance index for this problem.

Corollary 4.6.1 Let the hypotheses of Theorem 4.2.1 be satisfied. Then

there exists a positive constant p > 0 such that for P f g and t et 0t,T],

u(tp) = a(t) + ULY() + 11Rr) + 0C) (4.59)

where
;(t) "-17l(t) [I1(t)Kl(t) + '2'(t)K,2(t)]

U L () . .. Z(to)121 (to0)F 22z(to) z2 () (4.60o)

Ro 2U()..-R (T) B•(T) R2 2 (• 2 (o)

Proof: Recall from (4.4) that the control u is written as

u - -R'(3•X1 + B%2 ) (4.61)

Using the expansion for XI and X2 given in Theorem 4.2.1

+ BICfz+ 22 (to)i 2 (T) + i 2 2 (")i 2 (a) + "(A)) (4.62)



62

But from H 4.1.2, (4.62) can be written as

.--1 ,= -- •--1-- 2 to £2 •
u = (BI 1 I+Bg2 2 ) -

-P12 (T)&72(2) + 0(p) (4.63)

or

u = k- --1 )(to)r 2 2 (to)£ 2 (T)

- R-(T)B9'(T)N2 2 (T),9 2 (o') + O(pj) (4.64)

Note from the corollary that the approximate control solution is

composed of three control vectors: ;(t), UL(T), and U R(o). The UL(T) control

is the stabilizing control for the boundary layer system

U 2d- = A2 2 (to ) 2 + B2 (t 0 )u (4.65)

and is responsible for steering the system

xI A 11 A 12 xl
L + u (4.66)Lx2 A21 A22 x2 B 2

from its initial state rapidly to its reduced state while optimizing the

performance index J. The reduced u(t) control retains the system solution

near its teduced solution while minimizing J until close to t = T. The

URR(a) control results in the boundary layer system
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2-

37- A2 2 (T)" 2 + B2 (T)u (4.67)

being completely instable (no state stable) and is responsible for steering

(4.66) from its reduced state near t - T rapidly to its final state while

minimizing J.

Corollary 4.6.2 Let the hypotheses of Theorem 4.2.1 be satisfied. Then

there exists a positive constant p* > 0 such that for p r.p* and t e [t 0 ,TJ,

J4) = J + 0 (P) (4.68)

where

1 tOi[] rl: Q1I21 F ;l )

-f 1 1' rd I

T - '2J LQ%2 Q2 2 J L 2d

Proof: From (4.2),

T ,

2 (to Qlxl + 2xiQ1 2 x2 + xQ2 2 x2 + u'Ru)dt (4.69)

Using the asymptotic expressions for xl, x2 , and u and H 4.1.2,

J = +. .Ta(t)£C 2 (r) + a2(t)R2(a)]dt

0

T
+ f Et2(T)A 1 (t)t 2 (T) + R2(a)A2(t)'f2(a) )dt

0

T
+ t j Z(T)A3 (t)R 2 (a) dt + 0O•0) (4.70)

0
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whose a. vectors (i = 1,2) and A. matrix coefficients (i = 1,3) are continuous.

Recognizing that the norms of £ 2 (T) and R2(a) are bounded by

-a (t - t')/ 41ot(t-T) /•-

1 2(T)I f Ke, R2 (a) Ke (4.71) j

for some positive constants K and y, it is readiLy seen that the norm of the .1
integral terms of (4.70) are bounded by 0(p). Thus (4.70) can be written

as (4.68). 
2S

4.7 Discussion and Interpretation

Theorem 4.2.1 gives an approximate solution for (4.3), (4.5) and

proves it is asymptotically valid uniformly for t e [t,TJ]. The essence of

the proof was to transform the singularly perturbed TPBV problem by a non-

singular transformation into two singularly perturbed initial value problems

which would satisfy the hypotheses of theorems for such systems. To comply

with a continuity hypothesis of Theorem A.5, the boundary conditions for two

singularly perturbed initial-value Riccati systemp, whose Riccati gains com-

posed the transformation, were appropriately selected. The non-singularity of

the transformation was a consequence of its determinant being asymptotically

represented by the product of terms involving the determinant of the difference

of symmetrical positive definite Riccati matrices and symmetrical negative

def.'iite Riccati matrices. Upon approximating the solutions of the trans-

formed singularly perturbed systems involving I and r variables respectively

by their zero-order asymptotic expansions, and by appropriately selecting the

tSee Appendix for definition.
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L and r boundary conditions, the s-unation of these terms yielded the xI and

x2 asymptotic approximations given in the theorem. Here use was made of the

relation between xl, x2 and the reduced i and r terms expressed by the

trans formation.

The left boundary variable £2I satisfying (4.13) and the associated

boundary condition, is the T term of the zero-order asymptotic approximation

of t2. It can be seen as the solution of the following optimal regulator

problem

minu [Y' + u'R(to)u&d-r (4.72)

subject to the constraint

dl 2 (to) + 2 (t)G ,

(4.73)

£ 2 =x 2 0 x 2 (to) at = 0

and observed through

2= 2 (to)C 2  (4.74)

The solution exists and the coefficient matrix A22 (t )-S 22(t)P 22(t )]

is a stable matrix; thus £2 - 0 as T -4 =. Similarly R2 (a) is seen to satisfy

the optimal regulator problem

min 0 (
r (4.75)
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subject to constraint

dP--
da= 22(T)2 + 2(T)U,.76)

T
'2 fx 2  X(T) at a= 0

and observed through

= C2 (T)? 2  (4.77)

Similar to £2' -[i 2 2 (T)-5 2 2 (T)N 2 2 (T)] is a stable matrix, and 92 (a) -. 0 and

a -. -_. Thus the solution of x 2 for example is approximated by the sum of:

the reduced solution x2, the solution of a left layer regulator problem

2 (T), and the solution of a right layer regulator problem R2(a). Corollary

4.6.1 shows that the optimal control u is also the sum of three different

controls--each of which is computed independently of the others. The theorem

permits an engineer to approximate the solution on any open interval by using

only the reduced solution and can add either a left, right, or both left and

right correction terms depending on his application

Since £2(7) - 0 as r - = and 2(c) -. 0 as a -, it can readily be

seen when expressing T and a as functions of time that a fast transient occurs

at t = t from £2 decaying with increasing time and that a fast transient

occurs at t = T from '?2 decaying with decreasing time. The time constants

for the decay are directly proportional to 4, Therefore the presence of £2,

R2 in the state and control variables demonstrates the two-time scale

separation properties,
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It is further noted that even though the approximate performance

index may be close to the optimal one, this in no way infers that the

approximating solutions for the state and control vectors are close to the

actual in the boianiary layer. This is true since the integral value from a

boundary layer term is negligible for p small enough.

The existence of a solution ýo (4.5) satisfying boundary conditions

(4.3) could have been shown using fundamental matrices in a manner analogous

0 0 T Tto (3.44). This method would show that I A° 2 , r1 , and r 2 are uniquely

determined from x1 °, x 2 °, xiT, and x2T. A useful reference for proving the

existence of the non-singularly perturbed linear TPBV problems of the type

considered is found in [33.
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5. FIXED END-POINT PROBLEM: EXAMPLES J

5.1 Design Example

The example problem worked here illustrates the important points

stressed in Chapter 4: two-time scale property, boundary layers at both ends

of the time interval, closeness of the approximate solution to the actual

optimal, stiffness, and how the interval in which the reduced solution may be

a good approximation can be extended by decreasing p. Graphs are given which

clearly show these. The graphs not only compare the approximating and actual

solutions which shows the closeness of the approximation, but also compare

the actual and reduced solutions which shows the need to include boundary

layer terms. The selection of a time-invariant problem resulted in being

able to actually show how the system eigenvalues approach those of the

reduced and boundary layer systems as p approaches zero.

The optimal control problem is to minimize with respect to the

control u -he performance index

2 2
(2x + x + u2)dt (5.1)02

for the singularly perturbed system

3
l x2

(5.2)

px2  2 1 2 -2

whose boundary constraints are given by
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x 1 x1
0 at t - 0 and xI- x1T at t, I T (5.3a)

x2  x2 at t - 0 and x2 x2T at t - T (5.3b)

From (4.6), it is seen that the necessary conditions for an extremal are

given by

x,! o o 2 -x
x1 2 1

= -4 0 0 . X(

3 1 (5.4)
w•x2  0 - -1 x

2 22 2
I,^ I 0 3 1

0 -2 - •- 22- L. 2 2- L2-

subject to (5.3). From (4.7) and (4.8), the reduced x1 , X1 solution is to

-11

2l- 2
and ['] =L: :14: °f::] L' ][] (55

and boundary condition (5.3a). Variables x2 , X2 are related to Xlp X1 by

F- 1Fl -1 3
x 2 1 2 0 x 1

L 1 4(5.6)

where the inverse can easily be seen to exist.
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It will first be shown that the hypotheses of Theorem 4.2.1 are

satisfied. Upon comparison of (4.6) and (5.4) it is seen that

Q = [4 ], R = 1 , A2 2  1/2, B2 = -1, and C2  r2
-a

Thus H 4.1.1 is satisfied since both Q and R are positive definite. The

continuity assumptions of H 4.1.2 are certainly satisfied since this is a

I I

time-invariant problem. The rank of ]B2 A i I and NcI :A2 2 'C2 'I is one

guaranteeing that H 4.1.3 is met. To satisfy H 4.1.4 it must be shown there

exists a uni4ue reduced solution. Rewriting (5.5) and (5.6),

=L (5.8)

X -6

Explicitly solving (5.7), (5.8), and (5.3a), one obtains

5 5

=I : 1 (3 2 e- 2t _ 2 I3 t 59

12 3

5 25 5

5 . 5 t

X,=O 1(012 e 2 + of3e 2

'2 3 7 • 2e + 2 e 2

i~ ~~ ~ 3 l( a 3-- : •... .i i* II l i l i i ' l l l • • • .. ...
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where

5 T T 5T o T
1/(e T e 2),2 e2 x - x 1

5 T (5.10)

0 - e 2 x I +x 1

Thus all the hypotheses are satisfied. The boundary layer correction terms

will now be found. The Riccati equation (4.16) to which the unique algebraic

syimmetrical positive and negative definite roots are to be found is

K 2 2 " 2 2 + 2 - 0

The positive root P2 2 (0) and negative root N2 2 (T) are

P2 2 (o) - 2 and N2 2 (T) - 1 (5.12)

Using (4.14) and, (4.15), the boundary layer correction terms £2 and Are

given by

d2 3 -2' -2 ' '2 x2(0) at t - 0 (5.13)

S3 T
da R2' R2 ý x2 - x 2 (T) at a - 0 (5.14)

Thus
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0 3

2 ( 2° - x2 ()] e 2 , = t/• (5.15a)

3

R2(c) = [x2- x 2 .2 (T) e , a = (t-T)/p (5.15b)

.4

where from (5.9),

5

x2(°) = 3 *1( -*2 + a3)

5 T (5.16)

x2 (T) = a . ( -a 2 e 2 + e2 )

Using (5.9), (5.12), and (5.15)

xl(t,P) = xI + 0(p)

x 2(t,) = x2 + £2 (r) + R 2 (a) + 0()

(5.17)
X (t'4) = X1 + 0(0)

X 2(t') = ý2 + P22(0)C2(T) + N2 2 (T)R 2 (o) + 0(p)

Also, from (4.54), u = 2 for the problem and

u(t,4) = u + 2£ 2 (.T) - p 2 (c) + O(p.) (5.18)

A comparison of the actual solution with the reduced and zero-

order approximation will be done for the specific case when

x 03.0, T T1 ., 2 *'.0 x1 = 0.5, adLZ x2 -1.3 (5.19)
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Figures 5.1 and 5.2 show this comparison for p = 0.1. Although the approxi-

mating solutions for x1 and x2 are reasonably close to their actual solutions,

the difference is expectable since the value of kt is only a fifth of the value

of the smallest coefficient in the system description. The transients in

the boundary layers shown in Figure 5.2 are evident but are not exceptionally

steep. Figures 5.3 and 5.4 show the same comparison for p = 0.01, Here the

difference is almost negligible on the scales shown and the transients shown

in Figure 5,4 are much steeper than in Figure 5.2.

5.2 Eigenvalue Discussion

In the simple problem it is possible to explicitly show the

dependence of the eigenvalues on p. It can be easily shown that the eigen-

values y of (5.4) are determined from the expressi.on

24 9

6 2y4 + 36(i - l)-y + 9(25) = 0 (5.20)

and given by

341 6 4-2(5.21)

An analysis of these eigenvalues will now be done as is common in the

design of stable feedback systems. In the latter case, one is often con-

cerned with how large a feedback constant must be to stabilize a system.

Root locus techniques can be employed to accomplish this. Meerov [37]

applied this technique to analyze the stability of a multiloop feedback

structure, each loop containing a feedback gain expressible as a constant
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coefficient times the variable gain coefficient K. By letting p = l/K, he

developed theorems guaranteeing the existence of a positive constant P* such

that for p** all the eigenvalues of the system considered were stable. The

hypotheses of his theorems were based on showing the stability of simpler

auxiliary systems--one such hypothesis was to show the stability of a reduced

equation formed by setting p = 0 in the characteristic equation. Thus his

theory is similar to that employed in singular perturbation theory. By

writing (5.20) in the form

8Y2(2.y2+91 1 (5.22)

9(-4y2 +25)

it is easy to see that the eigenvalues for p = 0 correspond to those of the

poles of (5.22). This is termed the reduced solution and is most easily

obtained by setting p = 0 in (5.20). The other values can be found by con-

sideration of

9(8P2 +25L) 1 - 1 (5.23)

4(4P 2_9)P2

where P = y/p. in (5.20). These eigenvalues, those not observed by looking at

the poles of (5.22), for p = 0 corresponid to the poles of (5.23). The poles
5

of (5.22) are given by y = + - and are identical to the eigenvalues of the
2

3
reduced system (5.7). The poles of (5.23) are given by P = + 2 and are

2

identical to the roots of the auxiliary system (5.13) and (5.14). In (5.24),

these roots + yl' + Y2 are shown for different values of ý.. y, is scaled by p.
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P P Y1 Y2

.188 .83 4.45

.1 1.31 2.86

.01 1.48 2.52 (5.24)

0.0 1.50 2.50

From (5.24) it is noted that the eigenvalues for p = 0 are very close to those

for . = .01 but not so close for p = .i and certainly not for p = .188 where

double roots occur. This is in agreement with the graphs shown in Figures

5.1 - 5.4.

5.3 Numerical 4spect

Should the problem be very stiff (ii much less than .01), an explicit

solution to this problem becomes very difficult and a special technique would

have to be determined for solving this problem. A straight forward way to

solve this time-invariant problem is to first find the eigenvalues and then

determine the c. coefficients of the exponential terms describing the xI, x2 P

ý., and X2 variables to match the boundary conditions. The trouble with this

mLthod is in matching the boundary conditions. For the example problem, let

Ylt Y2 t -Yit -Y22t

x] =cIe + c2e + c3e + c4e

Then one must find the solution of
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2 2 2 *y2 X0

3T 23l 3 Y2 2 2
y1  (5.25)2T

e e e e c3x

2 yIT 2 y 2 T 2 -Y1 T 2 -Y2T T
3Yle " -e L '2

for • = 0.01, (5.25) becomes

.IOOE + 01 .100E + 01 .100E + 01 .100E + 01 c 1  4.0

.990E + 02 .168E + 01 -. 990E + 02 -. 168E + 01 c2 , 3.0 (5.26)

.302E + 65 .125E + 02 .321E - 64 .800E - 01 c 3  0.5

.299E + 67 .210E + 02 -. 328E - 62 -. 135E + 00 c4 J -1.3

whose solution vector c' is given by

-. 354E - 66 .147E - 01 -. 995E - 01 .408E + 01 (5.27)

It can easily be seen that overflow or underflow will occur for p. much less

than 001 from (5.26), (5.27) respectively. Thus for a very stiff system, it

may not be practical to solve for the actual solution. Yet the approximation

described in this thesis is simple to find and will be very close to the

actual solution for L sufficiently small.

, j -n r I nnuun nnmmnmnam.' am,= .=.=.,..-=n~rs~n, =Al
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4.0
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Fig. 5.1. Fixed End Point Problem



3 ' ' " ' I ' 
' I 

7 8
78

2~ ~0. 1
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/
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Fig. 5.2. Fixed End Point Problem.
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Fig. 5.3. Fixed End Point Problem.
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S=0.01 "

2

X2 (t, u.)

0
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O
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Fig. 5.4. Fixed End Point Problem.
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6. TERMINAL COST PROBLEMS AND EXA)IPLES

6.1 Introduction and Statement of Problem

This chapter analyzes the optimal open and closed loop control of

the same singularly perturbed linear system (4.1) as in Chapters 4 and 5 but

with free end point and with a terminal cost in the performance index

1 +Y iT (x'Qx + u'Ru)dt (6.1)J=2 IT 2t.

0

x , L P r = P )'22(PJ (6.2)

where rr is symmetrical positive semi-definite and its Tij matrix elements are three

times continuously differentiable functions of p. The two-time scale design

procedure presented here for obtaining an expression asymptotic to the exact

s''L~tion is similar to that presented in Chapter 4. After the asymptotic

correctness for the expression has been shown, it will be shown that a

•imilar eypression results if the singularly perturbed Riccati gains are

,ubs'ituted by their zero-order terms in finding the optimal solution of

the svstem The closeness of the approximate open and closed loop solutions

to the optimal one will be shown graphically for an example problem. The

results of this chapter are immediately applicable to the linear tracking

problem.

The boundary conditions for the necessary optimality equations (4 5)

are given by
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xI = 0 and x 2 =x 2  at t = t

(6.3)LT: 1 11  P~121 [xI
i at t =T

PIT PrT22 x2

and those for the reduced system (4.7) are given by

x1 = x at t = t

(6.4)
=I =r 11 x at t = T

As pointed out in the proof of Lemma 4.3.1, under the hypotheses of the lemma,

S1 is related to xI for all t C [t ,T] by

S PI ~ (6.5)

where P is the unique symmetrical Riccati gain satisfying its associated

Riccati equation and boundary condition determined from 6.4. Thus the

reduced solution x 1, A of this problem is known to exist and H 4.1.4 is

not needed.

6 2 Open Loop Solution

Theorem 6.2.1 Let H 4.1.1, H 4.1.2, and H 4.1.3 be satisfied for

problem (4.1), (6.1) and (6.2). Then there exists a positive constant 1*

such that for all ý j •* and for all t C [to,Tj
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xl(t,P) = M1 (t) + 0(U)

x2 (t,1) = x2 (t) + £ 2 ( T) + R2(q) + (6.6)

x1(t,)= K(t) + O(L)

k2(tP)= K2 (t) + P2 2 (to)£ 2 (T) + N2 2 (T)/R2 (a) -I,-0(.)

Here 12(T) is the solution of the "left" layer system

- = A2 (t S 2 2(t)f 2 2 (to)] 2  (6.7)

dT £ 2 2 (ot 2 2

subject to initial condition

0-
£2 - x2 (to) at T = 0 , (6.8)

1?,(a) is the solution of the "right" layer system

d-2 = [A2 2 (T) " S2 2 (T)N( T )T)&]9 2  (6.9)

s•.bject to ttrminal condition

?2= -.L22 (T)-r 22j°LX2(T)-n'(;(T)(T)-TT22(T)x2(T)J at a 0 (6.10)

and P2 2 (t ) and N2 2 (T) are the symmetrical positive and negative algebraic

solutions of

... -.... .
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A'K + K K, -K S 22K + Q 22 0 (6.11)
2222 2222 222222 22

evaluated at t and T respectively.
0

Remark: Only the differences in the proof compared with that of

Theorem 4.2.1 will be emphasized. The essential difference lies in the

determination of the boundary condition.

Proof: The proof consists in showing that the boundary conditions

0o - T -o - T
So r1  2 , r 2  for (4.42) and (4.48) can be found in terms oZ the boundary

conditions (6.3) to satisfy the theorem. From transformaLion (4.27) and

boundary conditions (6.3), it is readily seen that the reduced i, r

solutions satisfy

0

k I(t) + rI(t) 0 xI (6.1 2 a)

r = I(T)(T) -=•lr 1 1 (T)]-III(T).-rI 1 (T)] 1 (T) (6.12b)

Since the reduced xi, x2 , ý' X2 solution exists and is related to the k and

r solution by a non-singular transformation, the j and r solution exists

satisfying (6.12). Hence there exists an 11 and rI and,

xI = Ai + r' Xi Pit11 + N1lrI
(6.13)x2= •2+ r2 +2 =1 PrI I"+Nlr + P22k2+N2r

Th exsec of2 12 2 22ý2
The existence of i 2 follows from an argumlent identical to that in Theorem

T T4.2.1. The last step of the proof is to show the existence of r2 .Using
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(4.27) and (6.3),

X = PIý + N 1 2rl+P2 2 2 + 2 2 r 2  l(l ) + r 2 2 (j 2 r 2 ) at t = T (6.14)

Grouping like terms and using the approximating I and r expressions (4.37)

and (4.43) results in

P " l )(f ) + " 0)41)

+ (P 22-TI 22) (12+£C2(r)+0()4))

+ (N2 2 -n 2 2 )(r 2 +9 2 (o)+0( iT)) 0 (6.15)
It = T

Since £2 (-r) - 0 as T -- -, the £ 2 (T) term is negligible when evaluating (6.15)

at r - T for sufficiently small i. Thus for i = 0, (6.15) becomes upon use

of (6. 13)

P4.0) = -rN (T)-rr (T)-TT'(T)x(T)-T•2(T)x2(T (T (6.16)
2 22 221 212 122 2

hit from 44.48), = r2T r 2(T) or

-T
r2 = P2(0) + r 2 (T) (6.17)

Here 92 0) given by (6.16) exists since t2' xP, and x2 exist and is related

to them by the non-singular matrix "N2 2 (T) - r 2 2(T)I. Likewise, r2(T) exists

- Ti• prcviously stated. Hence r2 exists and a •* exists sa~isfying the theorem.
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Corollaries identical to 4.6.1 - 4.6.2 hold providing the reduced I

solution and boundary layer terms are evaluated in accordance with the

Theorem and the performance index is approximated by

I
J = J + O(U) (6.18)

where ns

- 2X T X L ll + uRu dt (6.19),t=T 0- L21 [LQ2 22J

6.3 Discussion

The following observation is made since it will be used in the

subsequent section. Suppose rr1 1 is symmetrical positive definite. Then by

- - Tchoosing P11 =11 at t = T, rI(T) in (6.12b) is zero, r = 0. From (4.44)

and (4.46), this is seen to imply r 1 (t) = 0 and r 2 (t) = 0 for all t e [to,TJ

which in turn implies if = from (6.12a). Thus from the non-singularity

of (4 27), it follows that

X (t) = =i(t), x2(t) = 2(t)

(6.20)
(let) = (t)• t), • 2 (t) = P 'l t)'l(t)+Pz2(t)iz(t)
1t = 1 P 2ti( 12

- 0 =
wbtre ;I and 2 are evaluated from (4.38) and (4.40) with l From

(4.53) it is seen that £2(0) = 2° - i2(to,) and from (6.16) that the expression

for P2 (0) there remain,; unchanged and is given by

'2t
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2 (0) = -CN2 2 (T) -¶ 2 2 ] - 2 (T) -T12(T)x (T)-" 2 2 (T)x 2 (T)] (6.21)

Thus the role of the r-system is to produce the boundary layer jump at t - T

if one exists. For the special case when there is no slow system for the

terminal cost problem (6.1) and (6.2). it can be seen from (4.8) that x2 - 0

and X 2 0 since xI = 0 and Xi = 0. From this fact it is seen that

R2(0)= 0 and no zero-order boundary jump occurs at t = T.

6.4 Closed Loop Solution

Theorem 6.4.1 Let the hypotheses of H 4.1.1, H 4.1.2, and H 4.1.3 be

satisfied, let .1ll be symmetrical positive definite, and let Kij(ttw) be the

solution of the Riccati system (4.17) satisfying the rij boundary conditions

from (6.3). Then the substitution of the zero-order Riccati gains for

Kij(t,') given by ij (t) + Xij(a) in the determination of the state and co-

state variables yields an approximate solution which is asymptotic to the

correct solution x 1(tL), x2 (t,p), Xl(t,P), and X2 (t,4 ) and given by the

aifferencE of the actual solution and 0(p),

" l(t,•) = xl(t) + 061)

"x2 (t,") M x2 (t) + £ 2 (-r) +R2(0) + O(P)
(6.22)

I,(t'") = YO~t + 0(P)

2(t,4)= X,2 (t) + P 2 2 (to)£ 2 (T) + N2 2 (T))?2 (a) + O(P)

Variables xl(t), x2 (t), Xl(t) and X2 (t) are related to I and r parameters

as in (6.20). Variable £2(") is the solution of
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T = [i 22(to) -S22(to)'22 (t o)]£2 (6.23)

subject to initial condition

I
£2 = x2 - x 2 (t) atT =0 0

and R2(a) is given by

R2 (a) -UK2 2 (T)+1 2 2 (a)-N2 2 (T)] C. 1 2 (a)xl(T)+W2 2 (C)x 2 (T)] (6.24) ,.

Proof: The proof is based on first finding an asymptotic expression

for the state and co-state variables using the equivalent asymptotic

expressions for the K. (t,.j) solutions and then recognizing that these same
ii

expressions result when using only the zero-order terms of Kij(tO).

Let the actual Riccati gains be given by Kij(t,1) - Kij(t)+X ij(a)+O00

and the auxiliary "positive" and "negative" Riccati gains by

P ij(t.) = Pij(t)+O(p) and Nij(t,ýi) = Nij(t)+0(l.) respectively where

i,j = 1,2. Here XlI(a) = 0 since no zero-order boundary layer occurs in

this variable and P ij(t) are chosen equal to Kij(t) for i,j = 1,2. Now

I1 and X 2 are expressible in terms of x1 and x2 by

1] = 11:: 12] [xl] for all t e [t ,T] (6.25)

m2  K1  2 u2sn to

and in terms ot 1I, 1 2' rl, and r 2 using transformation (4.27) as
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1 =ll1 + N1 1r1 + P142 + PN12r2S~(6.26)

X2= Pl 1• + NlrI + P22'2 + N22r2

!
Thus it follows after elimination of X., X2 using (6.25), (6.26) and (4.27)

J and then groupinv

(K I1- P1II) + (Kll-Nll)rl + p4(K1 2 -P 1 2 )t 2 + p.(K 1 2 -N 1 2 )r 2 = 0

(6.27)

- (KI•-PI)l I+ (KI2-NI2)rl + (K 2 2 -P 2 2 )L 2 + (K 2 2 -N 2 2 )r 2 = 0

Rewriting (6.27) using the expanded forms for Kij, Pij' and Nij

10() IKI-)]t2[K2+i{I2-NI 2 +0(i)r2= 0

1K21-1Oo() r (6.28)

+ [HX2 2+0(,.)]1,2 +C R2 2-'( 2 2 - N2 2 +O(p•))r 2 = 0

Solving (b,28) for ri, r2

+2 2 04) (6.29)

-(K *X -N -xl'2

Lr2 1 22--2m22- 22)- (k' 2 2 "- -2)O 2

Therefore

rI 1 0 ()1 )t +0(6 )12

r2 =-K22 }22- 22) - 1 3 I 2 22)0la• ( )26.)
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Thus if a1 a 2 can be found in terms of the specified boundary corditions

o 0x and x2, then A 1 and i2 can be approximated by

Itl(t,P) = £1 (t)+O(P), A2 (tp) = ! 2 (t)+Z2 (T)+0(P) (6.31)

where I2(T) is the solution of (6.23) satisfying the boundary condition

£2 = i2 - 1 2 (to) = '20 - x 2 (to) at 1 = 0. Once L1 (t,p) and '12 (t,p) are

found, rl(t,p) and r 2 (t;p) are known from (6.29). The x 0 boundary conditions,

related through the transformation (4.27), is

0~ i0+r0

11 1

= 01 + 0(;).ti0 + 0(II). 2
0  by (6.30) (6.32)

thus 1 = x10 (6.32) evaluated at p = 0. Similarly for x2

2 2° 2x2 0 
0+ 

r2

12 for p = 0 since r 2  is zero from (6.30) (6.33)

upon recognizing the XC2 and X22 variables are negligible at t to.

Therefore,

12 = x20 and from before, 0 - x 1l0 (6.34)

Hence the existence of 1iO and in terms of x and x has been established.

From the transformation
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xl(tP) = t~(t,p) + rl(t,P)

A L1 (t)+O(11) using (6.30)

- X1 (t0+O(p) by (6.20) (6.35)

x 2(tP) ffi L2(t,) + r 2 (tp.)

= t 2 +.C2 - (K2 2 +K2 2 -N2 2 ) ("I2 22+XI14I)

- (K22+x22-iN22)- X22"2+0(.) using (6.30)

= i 2+.r2 - (K2 2 +X2 2 -N 2 2)"1(22' +2 X 12 ' 1 )+0() (6.36)

The latter step is justified after observing that the product of a a and T

function are negligible for small enough p. Using H 4.1.2 and replacing

A2 by x, x2(t,p) can be written as
~2 by x 2, tp)cabewiens

x2 (t,P) x2 (t) + £ 2 (T) + R2(y) + 0(11) (6.37)

whe re

'2(')= -[K 2 2 (T) + 2 2 (a)-N2 2 (t)]-CX 1 2 (a)xl(T)+X2 2 (a)x 2 (T)l (6.38)

Knowing (6.35) and (6.37), from (6.25), (6.35) and (6.37)
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-1

1.(t,2J.) =(t.4)

= [ill+0(l)11 j+0 (11)] + O(P)

= Pui•I + 0(p) =.(t) + O(p) from (6.20) (6.39a)

•2(tp) = Klý(t,P)xl(t,1) + K2 2 (t,P)x 2 (t,p.)

+ [i +X+()I + ?+w
+ 22+ 22+()][• 2+ 2+•+ •

= [K 1? 1+K2 2 L2 ]+•H 1I+X22'23+[K22+"22][•2R2] + 0(P)

2 2-CK2 2 +H2 2 -N2 2 i? 24CK2 2+K2 2 3[12+?2 3 + 0 (p)

X 22+ K2 24K 2 2]Z 2+92 f 2 + 0(p)

=X 2 +K2 2 (to)2 (T )+N2 2 (T)R 2 (a) + 0(11) (6.39b)

Since the same asymptotic expressions result when the zero-order terms of

Kij(t,kt) are used, the theurem is proved.

If X1 and X2 had been eliminated from (4.5) using (6.25), the

resulting x1 and x2 equations would generally be discontinuous at t = T

for 4 = 0. By using the I and r systems it was possible to treat well

behaved functions. The A system contained no boundary jumps and the r

variables whiLh did were determined algebraically once the I parameters

were found.
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6.5 Open Loop Design Example

The optimal control problem is to minimize with respect to the

control u the performance index

I xl(T) + (2x 1
2 + x2 2 + u 2)dt (6.40)

t
0

for the singularly perturbed system

3S-x2

(6.41)

3 2 2

whose boundary constraint is given by

X o x1  and x2 = x2  at t = t (6.42)

The optimality conditions for this problem are identical to those given for

the problem in Chapter 5 except for the boundary constraints which are now

(6.42, and

X1 (T) = x 1 (T), X2 (T) = 0 (6.43)

The solution xi, X is to satisfy the reduced system (5.7) and the
boundary condition of (6.42) and the X boundary condition of (6.43). The

variables x2 , k2 are related to xl, X1 by (5.8). iince the hypotheses of
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Theorem 6.2.1 are identical to those of Theorem 4.2.1, the hypotheses are met

as previously established in Chapter 5. The reduced solution is thus

given by

5- (t-T) 2 5(t-T)

x2 a • 4 [e+ e x1
5 5

_ 7e 5(t-T) 4 5(t-T) 0

5 T/I2 2 0S

5e 5 (6.44- T/(l 1(t-TT
-i+-e

where a = e . The boundary layer correction terms are

found next. Recall P2 2 (0) = 2 and i 22 (T) = -1 from (5.12). Thus these

correction terms are given as the solution of

d2 2 3 0

= 22 2 = x2 - x2(0) at T 0

(6.45)

dR2 = 3 ()a

W 2 2' R2 = 2 at

as seen from (6.7) - (6.10) where from (6.44),

5 5
5 2Z 2 2

x2 (0) -51 4(-e +-e )
(6.46)

25 0x-2 (T) 9, -2 1
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Thus from (6.45) and (6.46),

3

£ 2 (Tr) x 2  x2 (O)3e e

3 (6.47)

S( -2 5 ) e

Hence all the terms composing the zero-order approximate solution of the

variables are known--i.e.,

x1 (tP) = x1 (t) + 0(0)

x 2 (t,P) = x2 (t) + £ 2 ((T) + ,R2 (a) + O(.&) (6.48)

X 1(tio -Kl(t) + 0 (P)

X 2 (tp) = 2 (t) + P2 2 (0)L'2 (r) + N2 2 (T)R 2 (a) + 0(p)

Also, from (4.60), 2i =2 where X2 is given in (6.44) and

u M u + 2Z 2 (T) - R2 () + 0 (4) (6.49)

To compare actual solutions with zero-order solutions, the follow-

ing boundary conditions were selected.

x1 4.0 and 3.0 (6.50)

Figures (6.1) - (6.4) show this comparison for p - 0.1. The x and x2 plots,

• -F," -" N l •mm..f • m-ikm i • ~ m • mm,,,•,,,,,•, ---1
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Figure (6.1) and Figure (6.2), are similar to their plots shown in Figures I
(5.1) and (5.2) respectively due to the special selection of boundary

conditions.

6.6 Closed Loop Design Example -

From (4.17) and (4.18) for the free end-point problem just discussed,

the singularly perturbed Riccati system is given by

11 3K12 + K1 2  -4

• 3 1 3 + (6.51)
12 2 11E 2 12 2 22 12K22

22 - K2 2 + K2 2  2

subject to boundary conditions

K11 = 1, K12 ' 0, and K2 2  0 at t = T (6.52)

and the reduced solution is to satisfy

--- 2
K11  3K1 2 +- 22

0 + -"(6.53)
2  1 1  2 12 2 22 12 2 2  (.30 =- •KI--K I2 + • K2 2 K22

0 - -~ 2
0 = R -22 + R22 2

and the boundary condition
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K 1l at t T. (6.54)

The reduced solution is given by

9 - 4 e 5(t-T) - 3 8 e 5(t-T)

Kl1 3 + 2 e 5(t-T)' K12 3 + 2 e 5(t-T)' 122 - 2. (6.55)

The Riccati correction terms are to satisfy

c•2 3 1•-- 2 3 2 + X2 (1 + K1 2) (6.56)

'22 S= x22(J22 + 3) (6.57)

and the boundary condition

x 1 2 = 7I12 (T)-K 1 2 (T), X2 2 = T12 2 (T)-K 2 2 (T) at a = 0. (6.58)

But from (6.55), K -12 1 and K22 =2 at t - T. Thus X1 2  l and X2 2 -- 2

at t = T. Hence

33K12 (a.),_ ea a

12 3c (5- 2 e 2
1+2 e (6.59)

S22K(a) = -. e 3a
1+2 e
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The K .(t,4) solvutions of (6.51) are thus approximated by

Kll1(tp) = Kill + 0(P)

K12(tp) = K12 + " 1 2 (a) + 0(p.) (6.60)

K22(t,p) = K22 + X 2 2 (a) + 0(P)

Figures (6.5) - (6.7) compare the actual and approximate solutions for KII,

K1 2 , and K22 for -- = 0.1. Figure (6.8) does the same for i = 0.01. The two

solutions are very close when . = .01 and the transient occurring at t = T

is becoming quite steep. Figures (6.1), (6.2) show that the xl, x2 approximate

solutions found using the Riccati approximations are very close to the

correct values. Figures (6.3), (6.4) show the same information for Xi. %2

computed using (6.25) with the corresponding approximate expressions for the

Riccati gains and state parameters. The fact that the closeness is better

than in the open loop case is not surprising since the correction terms

were computed from non-linear systems in the latter case. Thus this feed-

back example supports Theorem 6.4.1.

To emphasize the fact that 4 should be small for the theorems to

hold, recall from the eigenvalue analysis that p- = I should be completely

unreasonable. To graphically show this, the plot of x2 is shown in

Figure (6.9). Closeness does not apply.

Remark: Recall the expression given for )?2(o) in Theorem 6.4.1

.?2(a') = -IlR22(T )+K•22(c)-l•22(T)-0 12(a') l)+Y'22(o)x2(T•• (.1
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It will be shown, for tI• problem considered, to be equivalent to the

•2(a) term used in Theorem 6.2.1 given by (6.47).

R2(a) =- - 6--- +

1+2e3

e2"f (5 - 2e a5 e - 5 o
12e 3a "3 01X 1+2e 3a• 9 =4 1

3
= 25 0 )e (6.62)

9i 24x10 e

Thus the equivalency has been shown.

I
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4.0

p,=0.1 •

3.6

SXzX, t,/,) '

3.2 • ..... X(t,1L) Using Zero .4

Order Riccati

" \ "2.84-

2.4-

X.2.0\

1.60 04

Time
Fig. 6.1. Free End Point Problem.



101

3 --

/= 0.1

2X2040

in.... X2(t)

S"X 2 (t) +Z2(T) + 42(0')
--.-. X2 (tqs) Using Zero

Order Riccati

X2

4. o.I

% %

-5
-36

- I 7 L
0 0.2 0.4 0.6 0.8 1.0Time FP -2,

Fig. 6.2. Free End Point Problem.
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13 1

12 /L0.1l

110
10 ,X1 (t,/M)_•

- \-
9- --- X1(t,FL) Using Zero

8 '- \ •Order Riccati .
8 -

7-

6

5-

4-

37-

2-

1

0 0.2 0.4 0.6 0.8 1.0
Time FP-2948

Fig. 6.3. Free End point Problem.
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8
*S X2(t,/.)
-.... 2(t)+F22 (OlZ2(r)+R29zT)R?(c)r

6 t".I -- ... 2(t)
-.-.. X20,(tJ) Using Zero

Order Riccati

4

2

S
X2 0

I

-2--.

l' A' f

4 /

-6-

-8 /

-I0 p I I p I p I
0 0.2 0.4 0.6 0.8 1.0T im e FP- 247

Fig. 6.4. Free End Point Problem.
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3.2 1 1 1 .

2.8 -

2.4(

2.0 -

K1 1.6

1.2-'

0.8

0.4- Kj-- i~ k)

00 0.2 0.4 0.6 0.8 1.0

Time P--2946

Fig. 6.5. Free End Point Problem.
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0.8 
4% /.L]

,I,
0 .6-

\ I'
0.4- L

0.2-

K2 0

-0.2-•

I.

K2044)

0 0.2 0.4 0.6 0.8 1.0

Time r? 945

Fig. 6.6. Free End Point Problem.
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2.4 1 ,,

0.1

2.0 - - ---- - ---. -- -- - -- e--- ----

1.6-

r\3

1.2

0.8

K3 (0 1,/)
K 3 Mt + 3 (0-)

0.4- -... K 3 (t)

0 1 n i 1 I I

0 0.2 0.4 0.6 0.8 1.0
Time FP -2

Fig. 6.7. Free End Point Problem.
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i F: 0.01 -

0.8 -

0-6- (,u

0.4-

K2 o

00.2-46

-0.4-

-0.6 -

- ~K2( 0, ý)

-0.3 R2lt) --X 2(0-)

_0 0.2 0.4 0.6 0.8 l.0

Time

Fig. 6.8. Free End Point Problem.
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4-

x2 0

-2

-6- -- '-X2(t,p.) Using Zero
- Order Ricatti

0 0.2 0.4 0.60.10
Time Pk5

Fig. 6.9. Free End Point Problem.

.........
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APPENDIX A: INITIAL VALUE PROBLEM

This appendix contains an initial value singular perturbation lemma

and theorem for the non-linear system

XI = fI(xlx 2 t2't#4)1 Xl = p(p) at t - t

(A.l,
Ik2 = f 2 (xlx 2,t.4), x 2 = 1(4) at t - to

where xi, x2 are nl -, n 2-dimensional vectors and . is a small positive scalar

parameter. The lemma establishes that the boundary layer terms of the solution

of (A.1) will be identically zero for some f. The theorem establishes that the

solution of (A.1) can be aproximated uniformly on the entire interval [toT].

Let the reduced solution x1, x2 satisfy the system

=f 1(x1 x2 tO), x= p(O) at t tX l 0

(A.2)

0 = f2(xl,x 2,t,O)

formed from (A.1) by setting . equal to zero. The folloving hypotheses

are assumed.

H A,1 System (A.2) has a continuous solution xi, x. for all t C 0to,T].

H A.2 The functions fl, f2 have continuous derivatives to order R + 2

with respect to (x 1 ,x 2 ,t,p) in some neighborhood of (x 1 ,x 2 ,t,O), t C [to,T],

[0,pL*J for some p. > 0. Also p, T have continuous derivatives to

order R + 2 with respect to p for 4 £ 10,w.*1.
af 2

H A.3 The real parts of the eigenvalues of i- (XlX 2 ,t,0) are less-- 5x2

than a fixed negative number for all t c [t ,T].
61
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Lemma A.4 Let H A.1 - H A 3 be satisfied. Then there exists a p c, > 0

such that when IP(i)-x(tdI < a and ý e [,* a solution of

"- fI(XlX2't 40 Xl = P(A) (A.3)

4k = f 2 (xlx 2 't,ýL)

exists which satisfies

R

xItr) = E XIr(t)4r + 0(p.R+1)
r= (A.4)

2(tP) = r x2 r(t) r + 0 R+1)2 r=0

for all t e [to,T], p c (Op*].

Theorem A.5 Let H A.1 - H A.3 be satisfied where R = 0 Then there exists

a p > 0 such that for all S L*, all the solutions x (t,4), x2 (t,4) of (A.])

starting in some neighborhood of the reduced solution at t = to exist on the

interval [toP] and satisfy

"x1 (t,4) - x1 (t) + 06()

(A. 5)
"x2 (t,) - x 2 (t) + A(r) + 0 (0.

where A(T') is the solution of

Sf2(p(O), A+x 2;to0), A - T](0) - x 2 (t) (A 6)
dT A 0 a 2 0

and A -"0 as T ,



The x and x2 solutions of (A.3) and their R + 1 derivatives with

respect to p are continuous and equal to the reduced solution at P = 0.

From (A.6) is is evident that the x2 initial condition implied for problem (A.3)

should be x2 (t). This lemma and theorem follow from a much more general

lemma and theorem given in (211. The terms x (t) and x2 (t) + A(T) are

called the "zero-order" approximation of xI(tp) and x2 (tp) in (A.5).
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